Science.gov

Sample records for finite density qcd

  1. LATTICE QCD AT FINITE DENSITY.

    SciTech Connect

    SCHMIDT, C.

    2006-07-23

    I discuss different approaches to finite density lattice QCD. In particular, I focus on the structure of the phase diagram and discuss attempts to determine the location of the critical end-point. Recent results on the transition line as function of the chemical potential (T{sub c}({mu}{sub q})) are reviewed. Along the transition line, hadronic fluctuations have been calculated; which can be used to characterize properties of the Quark Gluon plasma and eventually can also help to identify the location of the critical end-point in the QCD phase diagram on the lattice and in heavy ion experiments. Furthermore, I comment on the structure of the phase diagram at large {mu}{sub q}.

  2. LATTICE QCD AT FINITE TEMPERATURE AND DENSITY.

    SciTech Connect

    BLUM,T.; CREUTZ,M.; PETRECZKY,P.

    2004-02-24

    With the operation of the RHIC heavy ion program, the theoretical understanding of QCD at finite temperature and density has become increasingly important. Though QCD at finite temperature has been extensively studied using lattice Monte-Carlo simulations over the past twenty years, most physical questions relevant for RHIC (and future) heavy ion experiments remain open. In lattice QCD at finite temperature and density there have been at least two major advances in recent years. First, for the first time calculations of real time quantities, like meson spectral functions have become available. Second, the lattice study of the QCD phase diagram and equation of state have been extended to finite baryon density by several groups. Both issues were extensively discussed in the course of the workshop. A real highlight was the study of the QCD phase diagram in (T, {mu})-plane by Z. Fodor and S. Katz and the determination of the critical end-point for the physical value of the pion mass. This was the first time such lattice calculations at, the physical pion mass have been performed. Results by Z Fodor and S. Katz were obtained using a multi-parameter re-weighting method. Other determinations of the critical end point were also presented, in particular using a Taylor expansion around {mu} = 0 (Bielefeld group, Ejiri et al.) and using analytic continuation from imaginary chemical potential (Ph. de Forcrand and O. Philipsen). The result based on Taylor expansion agrees within errors with the new prediction of Z. Fodor and S. Katz, while methods based on analytic continuation still predict a higher value for the critical baryon density. Most of the thermodynamics studies in full QCD (including those presented at this workshop) have been performed using quite coarse lattices, a = 0.2-0.3 fm. Therefore one may worry about cutoff effects in different thermodynamic quantities, like the transition temperature T{sub tr}. At the workshop U. Heller presented a study of the transition

  3. Dynamical instability of holographic QCD at finite density

    NASA Astrophysics Data System (ADS)

    Chuang, Wu-Yen; Dai, Shou-Huang; Kawamoto, Shoichi; Lin, Feng-Li; Yeh, Chen-Pin

    2011-05-01

    In this paper we study the dynamical instability of Sakai-Sugimoto’s holographic QCD model at finite baryon density. In this model, the baryon density, represented by the smeared instanton on the world volume of the probe D8-D8¯ mesonic brane, sources the world-volume electric field, and through the Chern-Simons term it will induce the instability to form a chiral helical wave at sufficient high density. Our results show that this kind of instability occurs for sufficiently high baryon number densities. The phase diagram of holographic QCD will thus be changed from the one which is based only on thermodynamics.

  4. Dynamical instability of holographic QCD at finite density

    SciTech Connect

    Chuang, Wu-Yen; Dai, Shou-Huang; Kawamoto, Shoichi; Lin, Feng-Li; Yeh, Chen-Pin

    2011-05-15

    In this paper we study the dynamical instability of Sakai-Sugimoto's holographic QCD model at finite baryon density. In this model, the baryon density, represented by the smeared instanton on the world volume of the probe D8-D8 mesonic brane, sources the world-volume electric field, and through the Chern-Simons term it will induce the instability to form a chiral helical wave at sufficient high density. Our results show that this kind of instability occurs for sufficiently high baryon number densities. The phase diagram of holographic QCD will thus be changed from the one which is based only on thermodynamics.

  5. Phase transition in finite density and temperature lattice QCD

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Chen, Ying; Gong, Ming; Liu, Chuan; Liu, Yu-Bin; Liu, Zhao-Feng; Ma, Jian-Ping; Meng, Xiang-Fei; Zhang, Jian-Bo

    2015-06-01

    We investigate the behavior of the chiral condensate in lattice QCD at finite temperature and finite chemical potential. The study was done using two flavors of light quarks and with a series of β and ma at the lattice size 24 × 122 × 6. The calculation was done in the Taylor expansion formalism. We are able to calculate the first and second order derivatives of ≤ft< {\\bar{\\psi} \\psi } \\right> in both isoscalar and isovector channels. With the first derivatives being small, we find that the second derivatives are sizable close to the phase transition and that the magnitude of \\bar{\\psi} \\psi decreases under the influence of finite chemical potential in both channels. Supported by National Natural Science Foundation of China (11335001, 11105153, 11405178), Projects of International Cooperation and Exchanges NSFC (11261130311)

  6. Simple QED- and QCD-like models at finite density

    NASA Astrophysics Data System (ADS)

    Pawlowski, Jan M.; Stamatescu, Ion-Olimpiu; Zielinski, Christian

    2015-07-01

    In this paper we discuss one-dimensional models reproducing some features of quantum electrodynamics and quantum chromodynamics at nonzero density and temperature. Since a severe sign problem makes a numerical treatment of QED and QCD at high density difficult, such models help to explore various effects peculiar to the full theory. Studying them gives insights into the large density behavior of the Polyakov loop by taking both bosonic and fermionic degrees of freedom into account, although in one dimension only the implementation of a global gauge symmetry is possible. For these models we evaluate the respective partition functions and discuss several observables as well as the Silver Blaze phenomenon.

  7. Complex spectrum of finite-density lattice QCD with static quarks at strong coupling

    NASA Astrophysics Data System (ADS)

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    2016-05-01

    We calculate the spectrum of transfer matrix eigenvalues associated with Polyakov loops in finite-density lattice QCD with static quarks. These eigenvalues determine the spatial behavior of Polyakov loop correlation functions. Our results are valid for all values of the gauge coupling in 1 +1 dimensions and in the strong-coupling region for any number of dimensions. When the quark chemical potential μ is nonzero, the spatial transfer matrix Ts is non-Hermitian. The appearance of complex eigenvalues in Ts is a manifestation of the sign problem in finite-density QCD. The invariance of finite-density QCD under the combined action of charge conjugation C and complex conjugation K implies that the eigenvalues of Ts are either real or part of a complex pair. Calculation of the spectrum confirms the existence of complex pairs in much of the temperature-chemical potential plane. Many features of the spectrum for static quarks are determined by a particle-hole symmetry. For μ that is small compared to the quark mass M , we typically find real eigenvalues for the lowest-lying states. At somewhat larger values of μ , pairs of eigenvalues may form complex-conjugate pairs, leading to damped oscillatory behavior in Polyakov loop correlation functions. However, near μ =M , the low-lying spectrum becomes real again. This is a direct consequence of the approximate particle-hole symmetry at μ =M for heavy quarks. This behavior of the eigenvalues should be observable in lattice simulations and can be used as a test of lattice algorithms. Our results provide independent confirmation of results we have previously obtained in Polyakov-Nambu-Jona-Lasinio models using complex saddle points.

  8. Lattice QCD at finite temperature and density in the phase-quenched approximation.

    SciTech Connect

    Kogut, J. B.; Sinclair, D. K.; High Energy Physics; Univ Maryland

    2008-06-01

    QCD at a finite quark-number chemical potential {mu} has a complex fermion determinant, which precludes its study by standard lattice QCD simulations. We therefore simulate lattice QCD at finite {mu} in the phase-quenched approximation, replacing the fermion determinant with its magnitude. (The phase-quenched approximation can be considered as simulating at finite isospin chemical potential 2{mu} for N{sub f}/2 u-type and N{sub F}/2 d-type quark flavors.) These simulations are used to study the finite-temperature transition for small {mu}, where there is some evidence that the position (and possibly the nature) of this transition is unchanged by this approximation. We look for the expected critical endpoint for 3-flavor QCD. Here, it has been argued that the critical point at zero {mu} would become the critical endpoint at small {mu}, for quark masses just above the critical mass. Our simulations indicate that this does not happen, and there is no such critical endpoint for small {mu}. We discuss how we might adapt techniques used for imaginary {mu} to improve the signal/noise ratio and strengthen our conclusions, using results from relatively low statistics studies.

  9. Lattice QCD at finite temperature and density in the phase-quenched approximation

    SciTech Connect

    Kogut, J. B.; Sinclair, D. K.

    2008-06-01

    QCD at a finite quark-number chemical potential {mu} has a complex fermion determinant, which precludes its study by standard lattice QCD simulations. We therefore simulate lattice QCD at finite {mu} in the phase-quenched approximation, replacing the fermion determinant with its magnitude. (The phase-quenched approximation can be considered as simulating at finite isospin chemical potential 2{mu} for N{sub f}/2 u-type and N{sub f}/2 d-type quark flavors.) These simulations are used to study the finite-temperature transition for small {mu}, where there is some evidence that the position (and possibly the nature) of this transition is unchanged by this approximation. We look for the expected critical endpoint for 3-flavor QCD. Here, it has been argued that the critical point at zero {mu} would become the critical endpoint at small {mu}, for quark masses just above the critical mass. Our simulations indicate that this does not happen, and there is no such critical endpoint for small {mu}. We discuss how we might adapt techniques used for imaginary {mu} to improve the signal/noise ratio and strengthen our conclusions, using results from relatively low statistics studies.

  10. Vacuum Energy, EoS, and the Gluon Condensate at Finite Baryon Density in QCD

    SciTech Connect

    Zhitnitsky, Ariel R.

    2007-02-27

    The Equation of States (EoS) plays the crucial role in all studies of neutron star properties. Still, a microscopical understanding of EoS remains largely an unresolved problem. We use 2-color QCD as a model to study the dependence of vacuum energy (gluon condensate in QCD) as function of chemical potential {mu} << {lambda}QCD where we find very strong and unexpected dependence on {mu}. We present the arguments suggesting that similar behavior may occur in 3-color QCD in the color superconducting phases. Such a study may be of importance for analysis of EoS when phenomenologically relevant parameters (within such models as MIT Bag model or NJL model) are fixed at zero density while the region of study lies at much higher densities not available for terrestrial tests.

  11. A holographic model for QCD in the Veneziano limit at finite temperature and density

    NASA Astrophysics Data System (ADS)

    Alho, T.; Järvinen, M.; Kajantie, K.; Kiritsis, E.; Rosen, C.; Tuominen, K.

    2014-04-01

    A holographic model of QCD in the limit of large number of colors, N c , and massless fermion flavors, N f , but constant ratio x f = N f /N c is analyzed at finite temperature and chemical potential. The five dimensional gravity model contains three bulk fields: a scalar dilaton sourcing Tr F 2, a scalar tachyon dual to and a 4-vector dual to the baryon current γ μ q. The main result is the μ, T phase diagram of the holographic theory. A first order deconfining transition along T h ( μ) and a chiral transition at T χ ( μ) > T h ( μ) are found. The chiral transition is of second order for small μ and becomes of first order at larger μ. The two regimes are separated by a tricritical point. The dependence of thermodynamical quantities including the speed of sound and susceptibilities on the chemical potential and temperature is computed. A new quantum critical regime is found at zero temperature and finite chemical potential. It is controlled by an AdS2 × R 3 geometry and displays semi-local criticality.

  12. RECENT LATTICE RESULTS ON FINITE TEMPERATURE AND DENSITY QCD, PART II.

    SciTech Connect

    KARSCH,F.

    2007-07-09

    We discuss recent progress in studies of QCD thermodynamics with almost physical light quark masses and a physical value of the strange quark mass. We summarize results on the transition temperature in QCD and analyze the relation between deconfinement and chiral symmetry restoration.

  13. Mass modification of /D-meson at finite density in QCD sum rule

    NASA Astrophysics Data System (ADS)

    Hayashigaki1, A.

    2000-08-01

    We evaluate the mass shift of isospin-averaged /D-meson in the nuclear medium. Borel-transformed QCD sum rules are used to describe an interaction between the /D-meson and a nucleon by taking into account all the lowest dimension-4 operators in the operator product expansion (OPE). We find at normal matter density the /D-meson mass shift is about /10 times (/~50 MeV) larger than that of /J/ψ. This originates from the fact that the dominant contribution in the OPE for the /D-meson is the nucleon matrix element of mcq¯q, where mc is the charm-quark mass and /q denotes light quarks. We also discuss that the mass shift of the /D-meson in nuclear matter may cause the level crossings of the charmonium states and the /DD¯ threshold. This suggests an additional mechanism of the /J/ψ suppression in high energy heavy-ion collisions.

  14. RECENT LATTICE RESULTS ON FINITE TEMPERATURE AND DENSITY QCD, PART 1.

    SciTech Connect

    KARSCH,F.

    2007-07-09

    We discuss recent progress made studies of bulk thermodynamics of strongly interacting matter through lattice simulations of QCD with an almost physical light and strange quark mass spectrum. We present results on the QCD equation of state at vanishing and non-vanishing quark chemical potential and show first results on baryon number and strangeness fluctuations, which might be measured in event-by-event fluctuations in low energy runs at RHIC as well as at FAIR.

  15. Lattice QCD and High Baryon Density State

    SciTech Connect

    Nagata, Keitaro; Nakamura, Atsushi; Motoki, Shinji; Nakagawa, Yoshiyuki; Saito, Takuya

    2011-10-21

    We report our recent studies on the finite density QCD obtained from lattice QCD simulation with clover-improved Wilson fermions of two flavor and RG-improved gauge action. We approach the subject from two paths, i.e., the imaginary and chemical potentials.

  16. Finite density phase transition of QCD with N{sub f}=4 and N{sub f}=2 using canonical ensemble method

    SciTech Connect

    Li Anyi; Alexandru, Andrei; Liu, Keh-Fei; Meng Xiangfei

    2010-09-01

    In a progress toward searching for the QCD critical point, we study the finite density phase transition of N{sub f}=4 and 2 lattice QCD at finite temperature with the canonical ensemble approach. We develop a winding number expansion method to accurately project out the particle number from the fermion determinant which greatly extends the applicable range of baryon number sectors to make the study feasible. Our lattice simulation was carried out with the clover fermions and improved gauge action. For a given temperature, we calculate the baryon-chemical potential from the canonical approach to look for the mixed phase as a signal for the first-order phase transition. In the case of N{sub f}=4, we observe an 'S-shape' structure in the chemical potential-density plane due to the surface tension of the mixed phase in a finite volume which is a signal for the first-order phase transition. We use the Maxwell construction to determine the phase boundaries for three temperatures below T{sub c}. The intersecting point of the two extrapolated boundaries turns out to be at the expected first-order transition point at T{sub c} with {mu}=0. This serves as a check for our method of identifying the critical point. We also studied the N{sub f}=2 case, but do not see a signal of the mixed phase for temperature as low as 0.83T{sub c}.

  17. Gauge cooling for the singular-drift problem in the complex Langevin method — a test in Random Matrix Theory for finite density QCD

    NASA Astrophysics Data System (ADS)

    Nagata, Keitaro; Nishimura, Jun; Shimasaki, Shinji

    2016-07-01

    Recently, the complex Langevin method has been applied successfully to finite density QCD either in the deconfinement phase or in the heavy dense limit with the aid of a new technique called the gauge cooling. In the confinement phase with light quarks, however, convergence to wrong limits occurs due to the singularity in the drift term caused by small eigenvalues of the Dirac operator including the mass term. We propose that this singular-drift problem should also be overcome by the gauge cooling with different criteria for choosing the complexified gauge transformation. The idea is tested in chiral Random Matrix Theory for finite density QCD, where exact results are reproduced at zero temperature with light quarks. It is shown that the gauge cooling indeed changes drastically the eigenvalue distribution of the Dirac operator measured during the Langevin process. Despite its non-holomorphic nature, this eigenvalue distribution has a universal diverging behavior at the origin in the chiral limit due to a generalized Banks-Casher relation as we confirm explicitly.

  18. Two-color QCD at high density

    NASA Astrophysics Data System (ADS)

    Boz, Tamer; Giudice, Pietro; Hands, Simon; Skullerud, Jon-Ivar; Williams, Anthony G.

    2016-01-01

    QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor'kov propagator. We express the Gor'kov propagator in terms of form factors and present recent lattice simulation results.

  19. QCD THERMODYNAMICS AT ZERO AND NON-ZERO DENSITY.

    SciTech Connect

    SCHMIDT, C.

    2007-07-03

    We present recent results on thermodynamics of QCD with almost physical light quark masses and a physical strange quark mass value. These calculations have been performed with an improved staggered action especially designed for finite temperature lattice QCD. In detail we present a calculation of the transition temperature, using a combined chiral and continuum extrapolation. Furthermore we present preliminary results on the interaction measure and energy density at almost realistic quark masses. Finally we discuss the response of the pressure to a finite quark chemical potential. Within the Taylor expansion formalism we calculate quark number susceptibilities and leading order corrections to finite chemical potential. This is particularly useful for mapping out the critical region in the QCD phase diagram.

  20. QCD nature of dark energy at finite temperature: Cosmological implications

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Katırcı, N.

    2016-05-01

    The Veneziano ghost field has been proposed as an alternative source of dark energy, whose energy density is consistent with the cosmological observations. In this model, the energy density of the QCD ghost field is expressed in terms of QCD degrees of freedom at zero temperature. We extend this model to finite temperature to search the model predictions from late time to early universe. We depict the variations of QCD parameters entering the calculations, dark energy density, equation of state, Hubble and deceleration parameters on temperature from zero to a critical temperature. We compare our results with the observations and theoretical predictions existing at different eras. It is found that this model safely defines the universe from quark condensation up to now and its predictions are not in tension with those of the standard cosmology. The EoS parameter of dark energy is dynamical and evolves from -1/3 in the presence of radiation to -1 at late time. The finite temperature ghost dark energy predictions on the Hubble parameter well fit to those of Λ CDM and observations at late time.

  1. Recent progress in lattice QCD at finite temperature

    SciTech Connect

    Petreczky,P.

    2009-02-01

    I review recent progress in finite temperature lattice calculations,including the study of the nature of the deconfinement transition in QCD, equation of state, screening of static quarks and meson spectral functions.

  2. Two-flavor lattice QCD with a finite density of heavy quarks: heavy-dense limit and "particle-hole" symmetry

    NASA Astrophysics Data System (ADS)

    Rindlisbacher, Tobias; de Forcrand, Philippe

    2016-02-01

    We investigate the properties of the half-filling point in lattice QCD (LQCD), in particular the disappearance of the sign problem and the emergence of an apparent particle-hole symmetry, and try to understand where these properties come from by studying the heavy-dense fermion determinant and the corresponding strong-coupling partition function (which can be integrated analytically). We then add in a first step an effective Polyakov loop gauge action (which reproduces the leading terms in the character expansion of the Wilson gauge action) to the heavy-dense partition function and try to analyze how some of the properties of the half-filling point change when leaving the strong coupling limit. In a second step, we take also the leading nearest-neighbor fermion hopping terms into account (including gauge interactions in the fundamental representation) and mention how the method could be improved further to incorporate the full set of nearest-neighbor fermion hoppings. Using our mean-field method, we also obtain an approximate ( μ, T) phase diagram for heavy-dense LQCD at finite inverse gauge coupling β. Finally, we propose a simple criterion to identify the chemical potential beyond which lattice artifacts become dominant.

  3. QCD AT HIGH PARTON DENSITY

    SciTech Connect

    KOVCHEGOV,Y.V.

    2000-04-25

    The authors derive an equation determining the small-x evolution of the F{sub 2} structure function of a large nucleus which resumes a cascade of gluons in the leading logarithmic approximation using Mueller's color dipole model. In the traditional language it corresponds to resummation of the pomeron fan diagrams, originally conjectured in the GLR equation. The authors show that the solution of the equation describes the physics of structure functions at high partonic densities, thus allowing them to gain some understanding of the most interesting and challenging phenomena in small-x physics--saturation.

  4. Quark screening lengths in finite temperature QCD

    SciTech Connect

    Gocksch, A. California Univ., Santa Barbara, CA . Inst. for Theoretical Physics)

    1990-11-01

    We have computed Landau gauge quark propagators in both the confined and deconfined phase of QCD. I discuss the magnitude of the resulting screening lengths as well as aspects of chiral symmetry relevant to the quark propagator. 12 refs., 1 fig., 1 tab.

  5. QCD Phase Diagram at Finite Baryon and Isospin Chemical Potentials

    SciTech Connect

    Sasaki, T.; Sakai, Y.; Yahiro, M.; Kouno, H.

    2011-10-21

    The phase structure of two-flavor QCD is explored for finite temperature T and finite baryon- and isospin-chemical potentials, {mu}{sub B} and {mu}{sub I}, by using the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model. The PNJL model with the scalar-type eight-quark interaction can reproduce lattice QCD data in the {mu}{sub I}-T plane at {mu}{sub B} = 0. In the {mu}{sub I}-{mu}{sub B}-T space, the critical endpoint of the chiral phase transition in the {mu}{sub B}-T plane at {mu}{sub I} = 0 moves to the tricritical point of the pion-superfluidity phase transition in the {mu}{sub I}-T plane at {mu}{sub B} = 0 as {mu}{sub I} increases.

  6. Calculation of the equation of state of QCD at finite chemical and zero temperature

    SciTech Connect

    Zong Hongshi; Sun Weimin

    2008-09-01

    In this paper, we give a direct method for calculating the partition function, and hence the equation of state (EOS) of quantum chromodynamics (QCD) at finite chemical potential and zero temperature. In the EOS derived in this paper the pressure density is the sum of two terms: the first term P({mu})|{sub {mu}}{sub =0} (the pressure density at {mu}=0) is a {mu}-independent constant; the second term, which is totally determined by G{sub R}[{mu}](p) (the renormalized dressed quark propagator at finite {mu}), contains all the nontrivial {mu}-dependence. By applying a general result in the rainbow-ladder approximation of the Dyson-Schwinger approach obtained in our previous study [Phys. Rev. C 71, 015205 (2005)], G{sub R}[{mu}](p) is calculated from the meromorphic quark propagator proposed in [Phys. Rev. D 70, 014014 (2004)]. From this the full analytic expression of the EOS of QCD at finite {mu} and zero T is obtained (apart from the constant term P({mu})|{sub {mu}}{sub =0} which can in principle be calculated from the Cornwall-Jackiw-Tomboulis effective action). A comparison between our EOS and the cold, perturbative EOS of QCD of Fraga, Pisarski, and Schaffner-Bielich is made. It is expected that our EOS can provide a possible new approach for the study of neutron stars.

  7. Stringy holography at finite density

    NASA Astrophysics Data System (ADS)

    Goykhman, Mikhail; Parnachev, Andrei

    2013-09-01

    We consider an exactly solvable worldsheet string theory in the background of a black brane with a gauge field flux. Holographically, such a system can be interpreted as a field theory with finite number of degrees of freedom at finite temperature and density. This is to be contrasted with more conventional holographic models which involve gravity in the bulk and possess infinite number of degrees of freedom and mean field critical exponents. We construct closed string vertex operators which holographically represent the U(1) gauge field and the stress-energy tensor and compute their two-point functions. At finite temperature and vanishing charge density the low-energy excitations are described by hydrodynamics. As the density is raised, the system behaves like a sum of two non-interacting fluids. We find low-energy excitations in the shear and sound channels of each fluid. We thank A. Giveon for pointing out to us the role of this equation in the 2d charged black hole solution of type-II superstring theory.

  8. On aspects of holographic thermal QCD at finite coupling

    NASA Astrophysics Data System (ADS)

    Sil, Karunava; Misra, Aalok

    2016-09-01

    In the context of string theoretic dual of thermal QCD-like theories at finite gauge/string coupling of [1] (as part of the 'MQGP' limit of [2]), we obtain the QCD deconfinement temperature compatible with lattice results for the right number of light flavors Nf = 3, and the correct mass scale of the light (first generation) quarks. The type IIB background of [1] is also shown to be thermodynamically stable. Further, we show that the temperature dependence of DC electrical conductivity mimics a one-dimensional Luttinger liquid, and the requirement of the Einstein relation (ratio of electrical conductivity and charge susceptibility equal to the diffusion constant) to be satisfied requires a specific dependence of the Ouyang embedding parameter on the horizon radius. These results arise due to the non-Kählerity and non-conformality of the type IIB background. On the geometrical side we quantify the former (non-Kählerity) by evaluating the SU (3) /G2-structure torsion classes of the local type IIA mirror/M-theory uplift. Analogous to what was shown for the type IIB background in [5], we first show that the type IIA delocalized SYZ mirror (after fine tuning) can also be approximately supersymmetric. We then work out the G2-structure torsion classes of the local M-theory uplift of the mirror type IIA metric - in the large-N limit at finite coupling, G2 structure approaches G2 holonomy.

  9. Understanding QCD at high density from a Z3 -symmetric QCD-like theory

    NASA Astrophysics Data System (ADS)

    Kouno, Hiroaki; Kashiwa, Kouji; Takahashi, Junichi; Misumi, Tatsuhiro; Yahiro, Masanobu

    2016-03-01

    We investigate QCD at large μ /T by using Z3-symmetric S U (3 ) gauge theory, where μ is the quark-number chemical potential and T is temperature. We impose the flavor-dependent twist boundary condition on quarks in QCD. This QCD-like theory has the twist angle θ as a parameter, and agrees with QCD when θ =0 and becomes symmetric when θ =2 π /3 . For both QCD and the Z3-symmetric S U (3 ) gauge theory, the phase diagram is drawn in μ -T plane with the Polyakov-loop extended Nambu-Jona-Lasinio model. In the Z3-symmetric S U (3 ) gauge theory, the Polyakov loop φ is zero in the confined phase appearing at T ≲200 MeV and μ ≲300 MeV . The perfectly confined phase never coexists with the color superconducting (CSC) phase, since finite diquark condensate in the CSC phase breaks Z3 symmetry and then makes φ finite. When μ ≳300 MeV , the CSC phase is more stable than the perfectly confined phase at T ≲100 MeV . Meanwhile, the chiral symmetry can be broken in the perfectly confined phase, since the chiral condensate is Z3 invariant. Consequently, the perfectly confined phase is divided into the perfectly confined phase without chiral symmetry restoration in a region of μ ≲300 MeV and T ≲200 MeV and the perfectly confined phase with chiral symmetry restoration in a region of μ ≳300 MeV and 100 ≲T ≲200 MeV . At low temperature, the basic phase structure of Z3-symmetric QCD-like theory remains in QCD. Properties of the sign problem in Z3-symmetric theory are also discussed. We discuss a numerical framework to evaluate observables at θ =0 from those at θ =2 π /3 .

  10. QCD phase diagram at finite baryon and isospin chemical potentials

    SciTech Connect

    Sasaki, Takahiro; Sakai, Yuji; Yahiro, Masanobu; Kouno, Hiroaki

    2010-12-01

    The phase structure of two-flavor QCD is explored for thermal systems with finite baryon- and isospin-chemical potentials, {mu}{sub B} and {mu}{sub iso}, by using the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model. The PNJL model with the scalar-type eight-quark interaction can reproduce lattice QCD data at not only {mu}{sub iso}={mu}{sub B}=0, but also {mu}{sub iso}>0 and {mu}{sub B}=0. In the {mu}{sub iso}-{mu}{sub B}-T space, where T is temperature, the critical endpoint of the chiral phase transition in the {mu}{sub B}-T plane at {mu}{sub iso}=0 moves to the tricritical point of the pion-superfluidity phase transition in the {mu}{sub iso}-T plane at {mu}{sub B}=0 as {mu}{sub iso} increases. The thermodynamics at small T is controlled by {radical}({sigma}{sup 2}+{pi}{sup 2}) defined by the chiral and pion condensates, {sigma} and {pi}.

  11. Finite-volume cumulant expansion in QCD-colorless plasma

    NASA Astrophysics Data System (ADS)

    Ladrem, M.; Ahmed, M. A. A.; Alfull, Z. Z.; Cherif, S.

    2015-09-01

    Due to the finite-size effects, the localization of the phase transition in finite systems and the determination of its order, become an extremely difficult task, even in the simplest known cases. In order to identify and locate the finite-volume transition point T0(V) of the QCD deconfinement phase transition to a colorless QGP, we have developed a new approach using the finite-size cumulant expansion of the order parameter and the L_{mn}-method. The first six cumulants C_{1,2,3,4,5,6} with the corresponding under-normalized ratios (skewness Σ kurtosis κ , pentosis \\varPi _{± }, and hexosis {H}_{1,2,3}) and three unnormalized combinations of them, ({O}={{σ }2 {κ } }{{Σ }^{-1} }, {U} ={{σ }^{-2} {Σ }^{-1} }, {N} = {σ }2 {κ }) are calculated and studied as functions of ( T, V). A new approach, unifying in a clear and consistent way the definitions of cumulant ratios, is proposed. A numerical FSS analysis of the obtained results has allowed us to locate accurately the finite-volume transition point. The extracted transition temperature value T0(V) agrees with that expected T0N(V) from the order parameter and the thermal susceptibility χ T( T,V) , according to the standard procedure of localization to within about 2 %. In addition to this, a very good correlation factor is obtained proving the validity of our cumulants method. The agreement of our results with those obtained by means of other models is remarkable.

  12. Global QCD Analysis of Polarized Parton Densities

    SciTech Connect

    Stratmann, Marco

    2009-08-04

    We focus on some highlights of a recent, first global Quantum Chromodynamics (QCD) analysis of the helicity parton distributions of the nucleon, mainly the evidence for a rather small gluon polarization over a limited region of momentum fraction and for interesting flavor patterns in the polarized sea. It is examined how the various sets of data obtained in inclusive and semi-inclusive deep inelastic scattering and polarized proton-proton collisions help to constrain different aspects of the quark, antiquark, and gluon helicity distributions. Uncertainty estimates are performed using both the robust Lagrange multiplier technique and the standard Hessian approach.

  13. Transverse momentum dependent quark densities from Lattice QCD

    SciTech Connect

    Bernhard Musch,Philipp Hagler,John Negele,Andreas Schafer

    2011-10-01

    We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. We discuss the basic concepts of the method, including renormalization of the gauge link. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.

  14. Transverse momentum dependent quark densities from Lattice QCD

    SciTech Connect

    Musch, B. U.; Haegler, Ph.; Negele, J. W.; Schaefer, A.

    2011-10-24

    We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. We discuss the basic concepts of the method, including renormalization of the gauge link. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.

  15. REMARKS ON THE MAXIMUM ENTROPY METHOD APPLIED TO FINITE TEMPERATURE LATTICE QCD.

    SciTech Connect

    UMEDA, T.; MATSUFURU, H.

    2005-07-25

    We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.

  16. Numerical study of QCD phase diagram at high temperature and density by a histogram method

    NASA Astrophysics Data System (ADS)

    Ejiri, Shinji; Aoki, Sinya; Hatsuda, Tetsuo; Kanaya, Kazuyuki; Nakagawa, Yoshiyuki; Ohno, Hiroshi; Saito, Hana; Umeda, Takashi

    2012-12-01

    We study the QCD phase structure at high temperature and density adopting a histogram method. Because the quark determinant is complex at finite density, the Monte-Carlo method cannot be applied directly. We use a reweighting method and try to solve the problems which arise in the reweighting method, i.e. the sign problem and the overlap problem. We discuss the chemical potential dependence of the probability distribution function in the heavy quark mass region and examine the applicability of the approach in the light quark region.

  17. Chirally Symmetric but Confined Hadrons at Finite Density

    NASA Astrophysics Data System (ADS)

    Ya. Glozman, L.; Wagenbrunn, R. F.

    At a critical finite chemical potential and low temperature QCD undergoes the chiral restoration phase transition. The folklore tradition is that simultaneously hadrons are deconfined and there appears the quark matter. We demonstrate that it is possible to have confined but chirally symmetric hadrons at a finite chemical potential and hence beyond the chiral restoration point at a finite chemical potential and low temperature there could exist a chirally symmetric matter consisting of chirally symmetric but confined hadrons. If it does happen in QCD, then the QCD phase diagram should be reconsidered with obvious implications for heavy ion programs and astrophysics.

  18. Transverse momentum dependent quark densities from Lattice QCD

    SciTech Connect

    Bernhard Musch,Philipp Hagler,John Negele,Andreas Schafer

    2011-02-01

    We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simpli?ed operator geometry show visible dipole de- formations of spin-dependent quark momentum densities. We discuss the basic concepts of the method, including renormalization of the gauge link, and an ex- tension to a more elaborate operator geometry that would allow us to analyze process-dependent TMDs such as the Sivers-function.

  19. Thermodynamics of Hot Hadronic Gases at Finite Baryon Densities

    NASA Astrophysics Data System (ADS)

    Albright, Michael Glenn

    In this thesis we investigate equilibrium and nonequilibrium thermodynamic properties of Quantum Chromodynamics (QCD) matter at finite baryon densities. We begin by constructing crossover models for the thermodynamic equation of state. These use switching functions to smoothly interpolate between a hadronic gas model at low energy densities to a perturbative QCD equation of state at high energy densities. We carefully design the switching function to avoid introducing first-, second-, or higher-order phase transitions which lattice QCD indicates are not present at small baryon chemical potentials. We employ three kinds of hadronic models in the crossover constructions, two of which include repulsive interactions via an excluded volume approximation while one model does not. We find that the three crossover models are in excellent agreement with accurate lattice QCD calculations of the equation of state over a wide range of temperatures and baryon chemical potentials. Hence, the crossover models should be very useful for parameterizing the equation of state at finite baryon densities, which is needed to build next-generation hydrodynamic simulations of heavy-ion collisions. We next calculate the speed of sound and baryon number fluctuations predicted by the crossover models. We find that crossover models with hadronic repulsion are most successful at reproducing the lattice results, while the model without repulsion is less successful, and hadron (only) models show poor agreement. We then compare the crossover models to net-proton fluctuation measurements from the STAR Collaboration at the Relativistic Heavy Ion Collider (RHIC). The comparisons suggest baryon number fluctuations freeze-out well below the chemical freeze-out temperature. We also search for signs of critical fluctuations in the STAR data, but we find no evidence for them at this time. Finally, we derive kinetic theory formulas for the shear and bulk viscosity and thermal conductivity of hot hadronic

  20. Calculation of equation of state of QCD at zero temperature and finite chemical potential

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Li, Ning; Sun, Wei-Min; Zong, Hong-Shi

    2010-09-01

    In this paper we calculate the equation of state (EOS) of QCD at zero temperature and finite chemical potential by using several models of quark propagators including the Dyson-Schwinger equations (DSEs) model, the hard-dense-loop (HDL) approximation and the quasi-particle model. The results are analyzed and compared with the known results in the literature.

  1. Order of the Roberge-Weiss endpoint (finite size transition) in QCD

    NASA Astrophysics Data System (ADS)

    D'Elia, Massimo; Sanfilippo, Francesco

    2009-12-01

    We consider the endpoint of the Roberge-Weiss (RW) first order transition line present for imaginary baryon chemical potentials. We remark that it coincides with the finite size transition relevant in the context of large Nc QCD and study its order in the theory with two degenerate flavors. The RW endpoint is first order in the limit of large and small quark masses, while it weakens for intermediate masses where it is likely in the Ising 3D universality class. Phenomenological implications and further speculations about the QCD phase diagram are discussed.

  2. Order of the Roberge-Weiss endpoint (finite size transition) in QCD

    SciTech Connect

    D'Elia, Massimo; Sanfilippo, Francesco

    2009-12-01

    We consider the endpoint of the Roberge-Weiss (RW) first order transition line present for imaginary baryon chemical potentials. We remark that it coincides with the finite size transition relevant in the context of large N{sub c} QCD and study its order in the theory with two degenerate flavors. The RW endpoint is first order in the limit of large and small quark masses, while it weakens for intermediate masses where it is likely in the Ising 3D universality class. Phenomenological implications and further speculations about the QCD phase diagram are discuss0008.

  3. Finite temperature QCD with two flavors of nonperturbatively improved Wilson fermions

    SciTech Connect

    Bornyakov, V.G.; Chernodub, M.N.; Ichie, H.; Mori, Y.; Nakamura, Y.; Suzuki, T.; Koma, Y.; Polikarpov, M.I.; Uvarov, P.V.; Veselov, A.I.; Schierholz, G.; Slavnov, A. A.; Stueben, H.

    2005-06-01

    We study QCD with two flavors of nonperturbatively improved Wilson fermions at finite temperature on the 16{sup 3}8 lattice. We determine the transition temperature at lattice spacing as small as a{approx}0.12 fm, and study string breaking below the finite temperature transition. We find that the static potential can be fitted by a two-state ansatz, including a string state and a two-meson state. We investigate the role of Abelian monopoles at finite temperature.

  4. Noncommutativity of the zero chemical potential limit and the thermodynamic limit in finite density systems

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Anagnostopoulos, K. N.; Nishimura, J.; Verbaarschot, J. J.

    2004-08-01

    Monte Carlo simulations of finite density systems are often plagued by the complex action problem. We point out that there exists certain noncommutativity in the zero chemical potential limit and the thermodynamic limit when one tries to study such systems by reweighting techniques. This is demonstrated by explicit calculations in a Random Matrix Theory, which is thought to be a simple qualitative model for finite density QCD. The factorization method allows us to understand how the noncommutativity, which appears at the intermediate steps, cancels in the end results for physical observables. In the recent reweighting type of approaches to QCD in the small μ regime, we expect a transition when the volume reaches Vtr≃const./μ2, which however may not be in the range of current lattice calculations.

  5. Finite Volume Dependence of Hadron Properties and Lattice QCD

    SciTech Connect

    Anthony W. Thomas; Jonathan D. Ashley; Derek B. Leinweber; Ross D. Young

    2005-02-01

    Because the time needed for a simulation in lattice QCD varies at a rate exceeding the fourth power of the lattice size, it is important to understand how small one can make a lattice without altering the physics beyond recognition. It is common to use a rule of thumb that the pion mass times the lattice size should be greater than (ideally much greater than) four (i.e., m{sub {pi}} L >> 4). By considering a relatively simple chiral quark model we are led to suggest that a more realistic constraint would be m{sub {pi}} (L - 2R) >> 4, where R is the radius of the confinement region, which for these purposes could be taken to be around 0.8-1.0 fm. Within the model we demonstrate that violating the second condition can lead to unphysical behavior of hadronic properties as a function of pion mass. In particular, the axial charge of the nucleon is found to decrease quite rapidly as the chiral limit is approached.

  6. An exact, finite, gauge-invariant, non-perturbative approach to QCD renormalization

    NASA Astrophysics Data System (ADS)

    Fried, H. M.; Tsang, P. H.; Gabellini, Y.; Grandou, T.; Sheu, Y.-M.

    2015-08-01

    A particular choice of renormalization, within the simplifications provided by the non-perturbative property of Effective Locality, leads to a completely finite, non-perturbative approach to renormalized QCD, in which all correlation functions can, in principle, be defined and calculated. In this Model of renormalization, only the Bundle chain-Graphs of the cluster expansion are non-zero. All Bundle graphs connecting to closed quark loops of whatever complexity, and attached to a single quark line, provided no 'self-energy' to that quark line, and hence no effective renormalization. However, the exchange of momentum between one quark line and another, involves only the cluster-expansion's chain graphs, and yields a set of contributions which can be summed and provide a finite color-charge renormalization that can be incorporated into all other QCD processes. An application to High Energy elastic pp scattering is now underway.

  7. An exact, finite, gauge-invariant, non-perturbative approach to QCD renormalization

    SciTech Connect

    Fried, H.M.; Tsang, P.H.; Gabellini, Y.; Grandou, T.; Sheu, Y.-M.

    2015-08-15

    A particular choice of renormalization, within the simplifications provided by the non-perturbative property of Effective Locality, leads to a completely finite, non-perturbative approach to renormalized QCD, in which all correlation functions can, in principle, be defined and calculated. In this Model of renormalization, only the Bundle chain-Graphs of the cluster expansion are non-zero. All Bundle graphs connecting to closed quark loops of whatever complexity, and attached to a single quark line, provided no ‘self-energy’ to that quark line, and hence no effective renormalization. However, the exchange of momentum between one quark line and another, involves only the cluster-expansion’s chain graphs, and yields a set of contributions which can be summed and provide a finite color-charge renormalization that can be incorporated into all other QCD processes. An application to High Energy elastic pp scattering is now underway.

  8. On the Baryonic Density and Susceptibilities in a Holographic Model of QCD

    SciTech Connect

    Kim, Keun-young; Liao, Jinfeng

    2009-06-16

    In this paper, we calculate analytically the baryonic density and susceptibilities, which are sensitive probes to the fermionic degrees of freedom, in a holographic model of QCD both in its hot QGP phase and in its cold dense phase. Interesting patterns due to strong coupling dynamics will be shown and valuable lessons for QCD will be discussed.

  9. Equation of state in two-, three-, and four-color QCD at nonzero temperature and density

    NASA Astrophysics Data System (ADS)

    Gorda, Tyler; Romatschke, Paul

    2015-07-01

    We calculate the equation of state at nonzero temperature and density from first principles in two-, three-, and four-color QCD with two fermion flavors in the fundamental and two-index, antisymmetric representation. By matching low-energy results (from a "hadron resonance gas") to high-energy results from (resummed) perturbative QCD, we obtain results for the pressure and trace anomaly that are in quantitative agreement with full lattice-QCD studies for three colors at zero chemical potential. Our results for nonzero chemical potential at zero temperature constitute predictions for the equation of state in QCD-like theories that can be tested by traditional lattice studies for two-color QCD with two fundamental fermions and four-color QCD with two two-index, antisymmetric fermions. We find that the speed of sound squared at zero temperature can exceed 1 /3 , which may be relevant for the phenomenology of high-mass neutron stars.

  10. Up- and down-quark masses from finite-energy QCD sum rules to five loops

    SciTech Connect

    Dominguez, C. A.; Nasrallah, N. F.; Roentsch, R. H.; Schilcher, K.

    2009-01-01

    The up- and down-quark masses are determined from an optimized QCD finite-energy sum rule involving the correlator of axial-vector divergences, to five-loop order in perturbative QCD, and including leading nonperturbative QCD and higher order quark-mass corrections. This finite-energy sum rule is designed to reduce considerably the systematic uncertainties arising from the (unmeasured) hadronic resonance sector, which in this framework contributes less than 3-4% to the quark mass. This is achieved by introducing an integration kernel in the form of a second degree polynomial, restricted to vanish at the peak of the two lowest lying resonances. The driving hadronic contribution is then the pion pole, with parameters well known from experiment. The determination is done in the framework of contour improved perturbation theory, which exhibits a very good convergence, leading to a remarkably stable result in the unusually wide window s{sub 0}=1.0-4.0 GeV{sup 2}, where s{sub 0} is the radius of the integration contour in the complex energy (squared) plane. The results are m{sub u}(Q=2 GeV)=2.9{+-}0.2 MeV, m{sub d}(Q=2 GeV)=5.3{+-}0.4 MeV, and (m{sub u}+m{sub d})/2=4.1{+-}0.2 MeV (at a scale Q=2 GeV)

  11. QCD string tension curve, the ferromagnetic magnetization, and the quark-antiquark confining potential at finite temperature

    SciTech Connect

    Bicudo, P.

    2010-08-01

    We study the string tension as a function of temperature, fitting the SU(3) lattice QCD finite temperature free energy potentials computed by the Bielefeld group. We compare the string tension points with order parameter curves of ferromagnets, superconductors, or string models, all related to confinement. We also compare the SU(3) string tension with the one of SU(2) lattice QCD. With the curve providing the best fit to the finite temperature string tensions, the spontaneous magnetization curve, we then show how to include finite temperature, in the state of the art confining and chiral invariant quark models.

  12. Phase structure of two-flavor QCD at finite chemical potential.

    PubMed

    Braun, Jens; Haas, Lisa M; Marhauser, Florian; Pawlowski, Jan M

    2011-01-14

    We study the phase diagram of two-flavor QCD at imaginary chemical potentials in the chiral limit. To this end we compute order parameters for chiral symmetry breaking and quark confinement. The interrelation of quark confinement and chiral symmetry breaking is analyzed with a new order parameter for the confinement phase transition. We show that it is directly related to both the quark density as well as the Polyakov loop expectation value. Our analytical and numerical results suggest a close relation between the chiral and the confinement phase transition. PMID:21405221

  13. QCD

    NASA Astrophysics Data System (ADS)

    Fleming, Sean

    In this talk I review recent experimental and theoretical results in QCD. Since the topic is too vast to cover within given time constraints I choose to highlight some of the subjects that I find particularly exciting. On the experimental side I focus on measurements made at the Tevatron. Specifically jet production rates, and the cross section for B meson production. In addition I discuss an interesting measurement made by the Belle collaboration of double exclusive charmonium production. On the theory side I quickly review recent advances in computing hadronic cross sections at subleading order in perturbation theory. I then move on to soft-collinear effective theory. After a lightning review of the formalism I discuss recently published results on color-suppressed B → D decays.

  14. B to D(D*)e{nu}{sub e} transitions at finite temperature in QCD

    SciTech Connect

    Azizi, K.; Er, N.

    2010-05-01

    In this article, we work out the properties of the B, D, and D* mesons as well as the B{yields}D(D*)e{nu}{sub e} decay properties at finite temperature QCD. The behavior of the masses, decay constants and widths of the B, D, and D* mesons in terms of the temperature is studied. The temperature dependency of the form factors responsible for such decays are also obtained. These temperature-dependent form factors are used to investigate the variation of the branching ratios with respect to the temperature. It is shown that the branching ratios do not change up to T/T{sub c}=0.3, however they start to diminish with increasing the temperature after this region and vanish at the critical or deconfinement temperature.

  15. Dynamical simulations of QCD at finite temperature with a truncated perfect action

    NASA Astrophysics Data System (ADS)

    Shcheredin, Stanislav

    2006-12-01

    The Hypercube operator determines a variant of the approximate, truncated perfect fermion ac- tion. In this pilot study we are going to report on first experiences in dynamical QCD simulations with the Hypercube fermions. We apply this formulation in an investigation of the finite tempera- ture transition for two flavours. On lattices of size 83 × 4 we explore the phase diagram. Physical scales are estimated from pseudoscalar and vector meson masses obtained on 83 × 16 lattices. We observe the presence of a metastability region but do not find evidence for an Aoki phase. The Hypercube operator allows us to simulate at ratios of pseudoscalar to vector meson masses at least as small as 0.8 at the thermal crossover at Nt = 4, which renders this formulation cheaper than the Wilson like fermions.

  16. QCD bound states and their response to extremes of temperature and density.

    SciTech Connect

    Maris, P.

    1998-06-09

    We describe the application of Dyson-Schwinger equations to the calculation of hadron observable. The studies at zero temperature (T) and quark chemical potential ({mu}) provide a springboard for the extension to finite-(T, {mu}). Our exemplars highlight that much of hadronic physics can be understood as simply a manifestation of the nonperturbative, momentum-dependent dressing of the elementary Schwinger functions in QCD.

  17. Magnetic susceptibility of QCD at zero and at finite temperature from the lattice

    NASA Astrophysics Data System (ADS)

    Bali, G. S.; Bruckmann, F.; Constantinou, M.; Costa, M.; Endrődi, G.; Katz, S. D.; Panagopoulos, H.; Schäfer, A.

    2012-11-01

    The response of the QCD vacuum to a constant external (electro)magnetic field is studied through the tensor polarization of the chiral condensate and the magnetic susceptibility at zero and at finite temperature. We determine these quantities using lattice configurations generated with the tree-level Symanzik improved gauge action and Nf=1+1+1 flavors of stout smeared staggered quarks with physical masses. We carry out the renormalization of the observables under study and perform the continuum limit both at T>0 and at T=0, using different lattice spacings. Finite size effects are studied by using various spatial lattice volumes. The magnetic susceptibilities χf reveal a spin-diamagnetic behavior; we obtain at zero temperature χu=-(2.08±0.08)GeV-2, χd=-(2.02±0.09)GeV-2 and χs=-(3.4±1.4)GeV-2 for the up, down and strange quarks, respectively, in the MS¯ scheme at a renormalization scale of 2 GeV. We also find the polarization to change smoothly with the temperature in the confinement phase and then to drastically reduce around the transition region.

  18. Charged hadrons in local finite-volume QED+QCD with C⋆ boundary conditions

    NASA Astrophysics Data System (ADS)

    Lucini, B.; Patella, A.; Ramos, A.; Tantalo, N.

    2016-02-01

    In order to calculate QED corrections to hadronic physical quantities by means of lattice simulations, a coherent description of electrically-charged states in finite volume is needed. In the usual periodic setup, Gauss's law and large gauge transformations forbid the propagation of electrically-charged states. A possible solution to this problem, which does not violate the axioms of local quantum field theory, has been proposed by Wiese and Polley, and is based on the use of C⋆ boundary conditions. We present a thorough analysis of the properties and symmetries of QED in isolation and QED coupled to QCD, with C⋆ boundary conditions. In particular we learn that a certain class of electrically-charged states can be constructed in a fully consistent fashion without relying on gauge fixing and without peculiar complications. This class includes single particle states of most stable hadrons. We also calculate finite-volume corrections to the mass of stable charged particles and show that these are much smaller than in non-local formulations of QED.

  19. THERMODYNAMICS OF TWO-FLAVOR LATTICE QCD WITH AN IMPROVED WILSON QUARK ACTION AT NON-ZERO TEMPERATURE AND DENSITY.

    SciTech Connect

    MAEZAWA,Y.; AOKI, S.; EJIRI, S.; HATSUDA, T.; ISHII, N.; KANAYA, K.; UKITA, N.

    2006-11-14

    The authors report the current status of the systematic studies of the QCD thermodynamics by lattice QCD simulations with two flavors of improved Wilson quarks. They evaluate the critical temperature of two flavor QCD in the chiral limit at zero chemical potential and show the preliminary result. Also they discuss fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to chemical potential.

  20. Finiteness of the vacuum energy density in quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Manoukian, Edward B.

    1983-03-01

    Recent interest in the finiteness problem of the vacuum energy density (VED) in finite QED has motivated us to reexamine this problem in the light of an analysis we have carried out earlier. By a loopwise summation procedure, supplemented by a renormalization-group analysis, we study the finiteness of the VED with α, the renormalized fine-structure constant, fixed in the process as the (infinite order) zero of the eigenvalue condition F[1](x)|x=α=0∞, and with the electron mass totally dynamical of origin. We propose a possible finite solution for the VED in QED which may require only one additional eigenvalue condition for α.

  1. A study on the optimization of finite volume effects of B K in lattice QCD by using the CUDA

    NASA Astrophysics Data System (ADS)

    Kim, Jangho; Cho, Kihyeon

    2015-07-01

    Lattice quantum chromodynamics (QCD) is the non-perturbative implementation of field theory to solve the QCD theory of quarks and gluons by using the Feynman path integral approach. We calculate the kaon CP (charge-parity) violation parameter B K generally arising in theories of physics beyond the Standard Model. Because lattice simulations are performed on finite volume lattices, the finite volume effects must be considered to exactly estimate the systematic error. The computational cost of numerical simulations may increase dramatically as the lattice spacing is decreased. Therefore, lattice QCD calculations must be optimized to account for the finite volume effects. The methodology used in this study was to develop an algorithm to parallelize the code by using a graphic processing unit (GPU) and to optimize the code to achieve as close to the theoretical peak performance as possible. The results revealed that the calculation speed of the newly-developed algorithm is significantly improved compared with that of the current algorithm for the finite volume effects.

  2. Tests of QCD at HERA: determination of the gluon density

    SciTech Connect

    Repond, J.

    1996-12-31

    An overview is given of the various methods available to the colliding beam experiments at HERA to determine the gluon density of the proton. The article includes a description of fits to the structure function F{sub 2}, of studies of dijet and open charm production in deep inelastic scattering, of elastic and inelastic {psi} photoproduction, and of inclusive diffractive scattering. 13 refs., 8 figs.

  3. QCD at zero baryon density and the Polyakov loop paradox

    SciTech Connect

    Kratochvila, Slavo; Forcrand, Philippe de

    2006-06-01

    We compare the grand-canonical partition function at fixed chemical potential {mu} with the canonical partition function at fixed baryon number B, formally and by numerical simulations at {mu}=0 and B=0 with four flavors of staggered quarks. We verify that the free energy densities are equal in the thermodynamic limit, and show that they can be well described by the hadron resonance gas at TT{sub c}. Small differences between the two ensembles, for thermodynamic observables characterizing the deconfinement phase transition, vanish with increasing lattice size. These differences are solely caused by contributions of nonzero baryon density sectors, which are exponentially suppressed with increasing volume. The Polyakov loop shows a different behavior: for all temperatures and volumes, its expectation value is exactly zero in the canonical formulation, whereas it is always nonzero in the commonly used grand-canonical formulation. We clarify this paradoxical difference, and show that the nonvanishing Polyakov loop expectation value is due to contributions of nonzero triality states, which are not physical, because they give zero contribution to the partition function.

  4. Holographic vector mesons from spectral functions at finite baryon or isospin density

    SciTech Connect

    Erdmenger, Johanna; Kaminski, Matthias; Rust, Felix

    2008-02-15

    We consider gauge/gravity duality with flavor for the finite-temperature field theory dual of the AdS-Schwarzschild black hole background with embedded D7-brane probes. In particular, we investigate spectral functions at finite baryon density in the black hole phase. We determine the resonance frequencies corresponding to meson-mass peaks as function of the quark mass over temperature ratio. We find that these frequencies have a minimum for a finite value of the quark mass. If the quotient of quark mass and temperature is increased further, the peaks move to larger frequencies. At the same time the peaks narrow, in agreement with the formation of nearly stable vector meson states which exactly reproduce the meson-mass spectrum found at zero temperature. We also calculate the diffusion coefficient, which has finite value for all quark mass to temperature ratios, and exhibits a first-order phase transition. Finally we consider an isospin chemical potential and find that the spectral functions display a resonance peak splitting, similar to the isospin meson-mass splitting observed in effective QCD models.

  5. Finite temperature effect in infrared-improved AdS/QCD model with back reaction of bulk vacuum

    NASA Astrophysics Data System (ADS)

    Cui, Ling-Xiao; Fang, Zhen; Wu, Yue-Liang

    2016-06-01

    Based on an IR-improved soft-wall AdS/QCD model for mesons, which provides a consistent prediction for the mass spectra of resonance scalar, pseudoscalar, vector and axial-vector mesons, we investigate its finite temperature effect. By analyzing the spectral function of mesons and fitting it with a Breit-Wigner form, we perform an analysis for the critical temperature of mesons. The back-reaction effects of bulk vacuum are considered and the thermal mass spectral function of resonance mesons is calculated based on the back-reaction improved action. A reasonable melting temperature is found to be T c ≈ 150 ± 7 MeV, which is consistent with the recent results from lattice QCD simulations. Supported by National Nature Science Foundation of China (NSFC)(10975170, 10905084, 10821504), and Project of Knowledge Innovation Program (PKIP) of Chinese Academy of Science

  6. On criticality and the equation of state of QCD at finite chemical potential

    NASA Astrophysics Data System (ADS)

    Gupta, Sourendu; Karthik, Nikhil; Majumdar, Pushan

    2014-08-01

    We obtain the baryon number density, n, and the excess contribution to the pressure, ΔP, at finite chemical potential, μB, and temperature, T, by resumming the Taylor series expansion in a lattice computation with lattice spacing of 1/(4T) and two flavors of quarks at three different quark masses. The method proceeds by giving a critical μB and limits on the critical exponent, and permits reliable estimations of the errors in resummed quantities. We find that n and ΔP are insensitive to the quark mass. We also report the bulk isothermal compressibility, κ, over a range of T and μB.

  7. Finite-size scaling as a tool for the search of the critical endpoint of QCD in heavy-ion data

    SciTech Connect

    Palhares, L. F.; Fraga, E. S.

    2012-07-15

    We briefly discuss the role played by the finiteness of the system created in high-energy heavyion collisions (HIC's) in the experimental search of the QCD critical endpoint and, in particular, the applicability of the predicting power of finite-size scaling plots in data analysis of current HIC's.

  8. SUPPRESSION OF DIELECTRONIC RECOMBINATION DUE TO FINITE DENSITY EFFECTS

    SciTech Connect

    Nikolic, D.; Gorczyca, T. W.; Korista, K. T.; Ferland, G. J.; Badnell, N. R.

    2013-05-01

    We have developed a general model for determining density-dependent effective dielectronic recombination (DR) rate coefficients in order to explore finite-density effects on the ionization balance of plasmas. Our model consists of multiplying by a suppression factor those highly-accurate total zero-density DR rate coefficients which have been produced from state-of-the-art theoretical calculations and which have been benchmarked by experiment. The suppression factor is based upon earlier detailed collision-radiative calculations which were made for a wide range of ions at various densities and temperatures, but used a simplified treatment of DR. A general suppression formula is then developed as a function of isoelectronic sequence, charge, density, and temperature. These density-dependent effective DR rate coefficients are then used in the plasma simulation code Cloudy to compute ionization balance curves for both collisionally ionized and photoionized plasmas at very low (n{sub e} = 1 cm{sup -3}) and finite (n{sub e} = 10{sup 10} cm{sup -3}) densities. We find that the denser case is significantly more ionized due to suppression of DR, warranting further studies of density effects on DR by detailed collisional-radiative calculations which utilize state-of-the-art partial DR rate coefficients. This is expected to impact the predictions of the ionization balance in denser cosmic gases such as those found in nova and supernova shells, accretion disks, and the broad emission line regions in active galactic nuclei.

  9. A model for QCD at high density and large quark mass

    SciTech Connect

    De Pietri, Roberto; Feo, Alessandra; Seiler, Erhard; Stamatescu, Ion-Olimpiu

    2007-12-01

    We study the high density region of QCD within an effective model obtained in the frame of the hopping parameter expansion and choosing Polyakov-type loops as the main dynamical variables representing the fermionic matter. To get a first idea of the phase structure, the model is analyzed in strong coupling expansion and using a mean field approximation. In numerical simulations, the model still shows the so-called sign problem, a difficulty peculiar to nonzero chemical potential, but it permits the development of algorithms which ensure a good overlap of the Monte Carlo ensemble with the true one. We review the main features of the model and present calculations concerning the dependence of various observables on the chemical potential and on the temperature, in particular, of the charge density and the diquark susceptibility, which may be used to characterize the various phases expected at high baryonic density. We obtain in this way information about the phase structure of the model and the corresponding phase transitions and crossover regions, which can be considered as hints for the behavior of nonzero density QCD.

  10. Gauge invariance and anomalous theories at finite fermionic density

    SciTech Connect

    Roberge, A. )

    1990-04-15

    We investigate the issue of stability of anomalous matter at finite fermionic density using a two-dimensional toy model. In particular, we pay careful attention to the issue of gauge invariance. We find that, contrary to some recent claims, the effective free energy (obtained by integrating out the fermions) cannot be obtained by the simple inclusion of a Chern-Simons term multiplying the fermionic chemical potential. We obtain some conditions for stability of anomalous charges when some finite density of conserved charge is present as well as for the neutral case. We also show that, under reasonable conditions, no sphaleron-type solution can exist in the toy model unless the anomalous charge density vanishes. We argue that this could be the case for more realistic models as well.

  11. The effects of QCD equation of state on the relic density of WIMP dark matter

    SciTech Connect

    Drees, Manuel; Hajkarim, Fazlollah; Schmitz, Ernany Rossi

    2015-06-12

    Weakly Interactive Massive Particles (WIMPs) are the most widely studied candidate particles forming the cold dark matter (CDM) whose existence can be inferred from a wealth of astrophysical and cosmological observations. In the framework of the minimal cosmological model detailed measurements on the cosmic microwave background by the PLANCK collaboration fix the scaled CDM relic density to Ω{sub c}h{sup 2}=0.1193±0.0014, with an error of less than 1.5%. In order to fully exploit this observational precision, theoretical calculations should have a comparable or smaller error. In this paper we use recent lattice QCD calculations to improve the description of the thermal plasma. This affects the predicted relic density of “thermal WIMPs”, which once were in chemical equilibrium with Standard Model particles. For WIMP masses between 3 and 15 GeV, where QCD effects are most important, our predictions differ from earlier results by up to 9% (12%) for pure S-wave (P-wave) annihilation. We use these results to compute the thermally averaged WIMP annihilation cross section that reproduces the correct CDM relic density, for WIMP masses between 0.1 GeV and 10 TeV.

  12. QCD Chiral Restoration at Finite T Under the Magnetic Field. Studies Based on the Instanton Vacuum Model

    NASA Astrophysics Data System (ADS)

    Kao, Chung Wen; Nam, Seung-il

    2013-03-01

    We investigate the chiral restoration at finite temperature ( T) under the strong external magnetic field {{B}=B0hat{z}} of the SU(2) light-flavor QCD matter. We employ the instanton-liquid QCD vacuum configuration accompanied with the linear Schwinger method for inducing the magnetic field. The Harrington-Shepard caloron solution is used to modify the instanton parameters, i.e. the average instanton size {(bar{ρ})} and inter-instanton distance {(bar{R})}, as functions of T. In addition, we include the meson-loop corrections as the large- N c corrections because they are critical for reproducing the universal chiral restoration pattern. We present the numerical results for the constituent-quark mass as well as chiral condensate which signal the spontaneous breakdown of chiral-symmetry (SBχS), as functions of T and B. Besides we find that the changes for the F π and m π due to the magnetic field is relatively small, in comparison to those caused by the finite T effect.

  13. Quarkyonic Matter and the Phase Diagram of QCD

    SciTech Connect

    McLerran,L.

    2008-05-15

    Quarkyonic matter is a new phase of QCD at finite temperature and density which is distinct from the confined and de-confined phases. Its existence is unambiguously argued in the large numbers of colors limit, N{sub c} {yields} {infinity}, of QCD. Hints of its existence for QCD, N{sub c} = 3, are shown in lattice Monte-Carlo data and in heavy ion experiments.

  14. Steady-State Density Functional Theory for Finite Bias Conductances.

    PubMed

    Stefanucci, G; Kurth, S

    2015-12-01

    In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade. PMID:26571349

  15. Hill Stability in the Finite Density N-Body Problem

    NASA Astrophysics Data System (ADS)

    Scheeres, Daniel J.

    2016-05-01

    A Celestial Mechanics system is Hill Stable if its components cannot escape from each other. Such stability is difficult to prove for general Celestial Mechanics problems with N ≥ 3 bodies interacting with each other. This is in part due to the ability of two bodies to come arbitrarily close to each other, freeing kinetic energy that can be used for an additional body to escape. When considering bodies with finite density, meaning that they have finite sizes and their mass centers cannot come arbitrarily close to each other, this pathway to escape has specific limits that make the determination of Hill Stability feasible. This opens up new definitions of Hill Stability that can be used to determine energetic thresholds at which a rubble pile body with sufficient angular momentum can shed mass components of various sizes. This talk will review recent advances in Hill Stability with direct application to the interaction of self-gravitating rubble pile bodies.

  16. Standing Wave Ground State in High Density, Zero Temperature QCD at Large NC

    NASA Astrophysics Data System (ADS)

    Deryagin, D. V.; Grigoriev, D. Yu.; Rubakov, V. A.

    Chiral symmetry breaking in QCD at zero temperature and high fermionic density is studied in the limit NC → ∞. We evaluate the effective action in the ladder approximation and integrate out fermions by introducing the bilocal field Σ(x, y), which enters the action as the mass operator for fermions. It is argued that at large fermionic chemical potential the mass operator Σ(x, y) has a small but nonvanishing expectation value. The condensate of the field Σ(x, y) and the fermionic condensate < bar ψ (x) ψ (y)> are inhomogeneous and anisotropic, so that the ground state has the structure of the standing wave with respect to these order parameters. Unlike possible color superconductivity, this symmetry breaking occurs to the leading order in 1/NC.

  17. Computation of form factors in massless QCD with finite master integrals

    NASA Astrophysics Data System (ADS)

    von Manteuffel, Andreas; Panzer, Erik; Schabinger, Robert M.

    2016-06-01

    We present the bare one-, two-, and three-loop form factors in massless quantum chromodynamics as linear combinations of finite master integrals. Using symbolic integration, we compute their ɛ expansions and thereby reproduce all known results with an independent method. Remarkably, in our finite basis, only integrals with a less-than-maximal number of propagators contribute to the cusp anomalous dimensions. We report on indications of this phenomenon at four loops, including the result for a finite, irreducible, twelve-propagator form factor integral. Together with this article, we provide our automated software setup for the computation of finite master integrals.

  18. Heavy quark scattering and quenching in a QCD medium at finite temperature and chemical potential

    NASA Astrophysics Data System (ADS)

    Berrehrah, H.; Bratkovskaya, E.; Cassing, W.; Gossiaux, P. B.; Aichelin, J.

    2015-05-01

    The heavy quark collisional scattering on partons of the quark gluon plasma (QGP) is studied in a quantum chromodynamics medium at finite temperature and chemical potential. We evaluate the effects of finite parton masses and widths, finite temperature T , and quark chemical potential μq on the different elastic cross sections for dynamical quasiparticles (on- and off-shell particles in the QGP medium as described by the dynamical quasiparticle model "DQPM") using the leading order Born diagrams. Our results show clearly the decrease of the q Q and g Q total elastic cross sections when the temperature and the quark chemical potential increase. These effects are amplified for finite μq at temperatures lower than the corresponding critical temperature Tc(μq) . Using these cross sections we, furthermore, estimate the energy loss and longitudinal and transverse momentum transfers of a heavy quark propagating in a finite temperature and chemical potential medium. Accordingly, we have shown that the transport properties of heavy quarks are sensitive to the temperature and chemical potential variations. Our results provide some basic ingredients for the study of charm physics in heavy-ion collisions at Beam Energy Scan at RHIC and CBM experiment at FAIR.

  19. Finite-size effects in lattice QCD with dynamical Wilson fermions

    SciTech Connect

    Orth, Boris; Lippert, Thomas; Schilling, Klaus

    2005-07-01

    As computing resources are limited, choosing the parameters for a full lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming to push unquenched simulations with the Wilson action towards the computationally expensive regime of small quark masses we address the question whether one can possibly save computing time by extrapolating results from small lattices to the infinite volume, prior to the usual chiral and continuum extrapolations. In the present work the systematic volume dependence of simulated pion and nucleon masses is investigated and compared with a long-standing analytic formula by Luescher and with results from chiral perturbation theory (ChPT). We analyze data from hybrid Monte Carlo simulations with the standard (unimproved) two-flavor Wilson action at two different lattice spacings of a{approx_equal}0.08 and 0.13 fm. The quark masses considered correspond to approximately 85% and 50% (at the smaller a) and 36% (at the larger a) of the strange quark mass. At each quark mass we study at least three different lattices with L/a=10 to 24 sites in the spatial directions (L=0.85-2.08 fm). We find that an exponential ansatz fits the volume dependence of the pion masses well, but with a coefficient about an order of magnitude larger than the theoretical leading-order prediction. In the case of the nucleon we observe a remarkably good agreement between our lattice data and a recent formula from relativistic baryon ChPT.

  20. FOREWORD: Extreme QCD 2012 (xQCD)

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei; Bazavov, Alexei; Liu, Keh-Fei

    2013-04-01

    The Extreme QCD 2012 conference, held at the George Washington University in August 2012, celebrated the 10th event in the series. It has been held annually since 2003 at different locations: San Carlos (2011), Bad Honnef (2010), Seoul (2009), Raleigh (2008), Rome (2007), Brookhaven (2006), Swansea (2005), Argonne (2004), and Nara (2003). As usual, it was a very productive and inspiring meeting that brought together experts in the field of finite-temperature QCD, both theoretical and experimental. On the experimental side, we heard about recent results from major experiments, such as PHENIX and STAR at Brookhaven National Laboratory, ALICE and CMS at CERN, and also about the constraints on the QCD phase diagram coming from astronomical observations of one of the largest laboratories one can imagine, neutron stars. The theoretical contributions covered a wide range of topics, including QCD thermodynamics at zero and finite chemical potential, new ideas to overcome the sign problem in the latter case, fluctuations of conserved charges and how they allow one to connect calculations in lattice QCD with experimentally measured quantities, finite-temperature behavior of theories with many flavors of fermions, properties and the fate of heavy quarkonium states in the quark-gluon plasma, and many others. The participants took the time to write up and revise their contributions and submit them for publication in these proceedings. Thanks to their efforts, we have now a good record of the ideas presented and discussed during the workshop. We hope that this will serve both as a reminder and as a reference for the participants and for other researchers interested in the physics of nuclear matter at high temperatures and density. To preserve the atmosphere of the event the contributions are ordered in the same way as the talks at the conference. We are honored to have helped organize the 10th meeting in this series, a milestone that reflects the lasting interest in this

  1. Lattice simulation study of SU(2) QCD with a nonzero baryon density

    NASA Astrophysics Data System (ADS)

    Braguta, V. V.; Kotov, A. Yu.; Nikolaev, A. A.; Valgushev, S. N.

    2015-06-01

    The lattice simulation of SU(2) QCD with two quark dynamical flavors and a nonzero baryon chemical potential has been performed. The dependence of the Polyakov loop and chiral condensate on the chemical potential has been studied. It has been shown that the chemical potential reduces the chiral condensate, thus weakening the breaking of the chiral symmetry.

  2. A unified approach to hadron phenomenology at zero and finite temperatures in a hard-wall AdS/QCD model

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyuan; Ma, Bo-Qiang

    2016-05-01

    We propose a unified approach to study meson, nucleon and Δ -baryon properties at zero and finite temperatures in the context of hard-wall AdS/QCD model. We first combine some previous works dealing with mesons and baryons separately, and introduce a new parameter ξ so that the model could give a universal description of spectrum and couplings of both sectors in a self-consistent way. All observables calculated numerically show reasonable agreement with experimental data. We then study these observables at nonzero temperature by modifying the AdS space-time into AdS-Schwartzchild space-time. Numerically solving the model, we find an interesting temperature dependence of the spectrum and the couplings. We also make a prediction on the finite-temperature decay width of some nucleon and Δ excited states.

  3. Study of the Z{sub 3} symmetry in QCD at finite temperature and chemical potential using a worm algorithm

    SciTech Connect

    Krein, Gastao; Leme, Rafael R.; Woitek, Marcio

    2013-03-25

    Traditional Monte Carlo simulations of QCD in the presence of a baryon chemical potential are plagued by the complex phase problem and new numerical approaches are necessary for studying the phase diagram of the theory. In this work we consider a Z{sub 3} Polyakov loop model for the deconfining phase transition in QCD and discuss how a flux representation of the model in terms of dimer and monomer variable solves the complex action problem. We present results of numerical simulations using a worm algorithm for the specific heat and two-point correlation function of Polyakov loops. Evidences of a first order deconfinement phase transition are discussed.

  4. Relativistic density functional theory for finite nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Piekarewicz, Jorge

    In 1939 Oppenheimer and Volkoff demonstrated using Einstein's theory of general relativity that a neutron star supported exclusively by neutron degeneracy pressure will collapse into a black hole if its mass exceeds seven tenths of a solar mass. Seventy five years after such a pioneering prediction the existence of neutron stars with masses as large as two solar masses has been firmly established. This fact alone highlights the critical role that nuclear interactions play in explaining the structure of neutron stars. Indeed, a neutron star is a gold mine for the study of nuclear phenomena that span an enormous range of densities and neutron-proton asymmetries. Physical phenomena over such diverse scales are best described by a formalism based on Relativistic Density Functional Theory. In this contribution I focus on the synergy between theory, experiment, and observation that is needed to elucidate the myriad of exotic states of matter that are believed to exist in a neutron star.

  5. On the Density of Languages Representing Finite Set Partitions

    NASA Astrophysics Data System (ADS)

    Moreira, Nelma; Reis, Rogério

    2005-05-01

    We present a family of regular languages representing partitions of a set of n elements in less or equal c parts. The density of those languages is given by partial sums of Stirling numbers of second kind for which we obtain explicit formulas. We also determine the limit frequency of those languages. This work was motivated by computational representations of the configurations of some numerical games.

  6. (Super)Yang-Mills at finite heavy-quark density

    NASA Astrophysics Data System (ADS)

    Faedo, Antón F.; Kundu, Arnab; Mateos, David; Tarrío, Javier

    2015-02-01

    We study the gravitational duals of d-dimensional Yang-Mills theories with d ≤ 6 in the presence of an density of heavy quarks, with N the number of colors. For concreteness we focus on maximally supersymmetric Yang-Mills, but our results apply to a larger class of theories with or without supersymmetry. The gravitational solutions describe renormalization group flows towards infrared scaling geometries characterized by fixed dynamical and hyperscaling-violating exponents. The special case d = 5 yields an geometry upon uplifting to M-theory. We discuss the multitude of physical scales that separate different dynamical regimes along the flows, as well as the validity of the supergravity description. We also present exact black brane solutions that encode the low-temperature thermodynamics.

  7. Determination of an Initial Mesh Density for Finite Element Computations via Data Mining

    SciTech Connect

    Kanapady, R; Bathina, S K; Tamma, K K; Kamath, C; Kumar, V

    2001-07-23

    Numerical analysis software packages which employ a coarse first mesh or an inadequate initial mesh need to undergo a cumbersome and time consuming mesh refinement studies to obtain solutions with acceptable accuracy. Hence, it is critical for numerical methods such as finite element analysis to be able to determine a good initial mesh density for the subsequent finite element computations or as an input to a subsequent adaptive mesh generator. This paper explores the use of data mining techniques for obtaining an initial approximate finite element density that avoids significant trial and error to start finite element computations. As an illustration of proof of concept, a square plate which is simply supported at its edges and is subjected to a concentrated load is employed for the test case. Although simplistic, the present study provides insight into addressing the above considerations.

  8. QCD In Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    Introduction Symmetry and the Phenomena of QCD Apparent and Actual Symmetries Asymptotic Freedom Confinement Chiral Symmetry Breaking Chiral Anomalies and Instantons High Temperature QCD: Asymptotic Properties Significance of High Temperature QCD Numerical Indications for Quasi-Free Behavior Ideas About Quark-Gluon Plasma Screening Versus Confinement Models of Chiral Symmetry Breaking More Refined Numerical Experiments High-Temperature QCD: Phase Transitions Yoga of Phase Transitions and Order Parameters Application to Glue Theories Application to Chiral Transitions Close Up on Two Flavors A Genuine Critical Point! (?) High-Density QCD: Methods Hopes, Doubts, and Fruition Another Renormalization Group Pairing Theory Taming the Magnetic Singularity High-Density QCD: Color-Flavor Locking and Quark-Hadron Continuity Gauge Symmetry (Non)Breaking Symmetry Accounting Elementary Excitations A Modified Photon Quark-Hadron Continuity Remembrance of Things Past More Quarks Fewer Quarks and Reality

  9. Dark energy from QCD

    SciTech Connect

    Urban, Federico R.; Zhitnitsky, Ariel R.

    2010-08-30

    We review two mechanisms rooted in the infrared sector of QCD which, by exploiting the properties of the QCD ghost, as introduced by Veneziano, provide new insight on the cosmological dark energy problem, first, in the form of a Casimir-like energy from quantising QCD in a box, and second, in the form of additional, time-dependent, vacuum energy density in an expanding universe. Based on [1, 2].

  10. Towards the chiral limit in QCD

    SciTech Connect

    Shailesh Chandrasekharan

    2006-02-28

    Computing hadronic observables by solving QCD from first principles with realistic quark masses is an important challenge in fundamental nuclear and particle physics research. Although lattice QCD provides a rigorous framework for such calculations many difficulties arise. Firstly, there are no good algorithms to solve lattice QCD with realistically light quark masses. Secondly, due to critical slowing down, Monte Carlo algorithms are able to access only small lattice sizes on coarse lattices. Finally, due to sign problems it is almost impossible to study the physics of finite baryon density. Lattice QCD contains roughly three mass scales: the cutoff (or inverse lattice spacing) a{sup -1}, the confinement scale {Lambda}{sub QCD}, and the pion mass m{sub {pi}}. Most conventional Monte Carlo algorithms for QCD become inefficient in two regimes: when {Lambda}{sub QCD} becomes small compared to a{sup -1} and when m{sub {pi}} becomes small compared to {Lambda}{sub QCD}. The former can be largely controlled by perturbation theory thanks to asymptotic freedom. The latter is more difficult since chiral extrapolations are typically non-analytic and can be unreliable if the calculations are not done at sufficiently small quark masses. For this reason it has been difficult to compute quantities close to the chiral limit. The essential goal behind this proposal was to develop a new approach towards understanding QCD and QCD-like theories with sufficiently light quarks. The proposal was based on a novel cluster algorithm discovered in the strong coupling limit with staggered fermions [1]. This algorithm allowed us to explore the physics of exactly massless quarks and as well as light quarks. Thus, the hope was that this discovery would lead to the complete solution of at least a few strongly coupled QCD-like theories. The solution would be far better than those achievable through conventional methods and thus would be able to shed light on the chiral physics from a new

  11. Non-Periodic Finite-Element Formulation of Orbital-Free Density Functional Theory

    SciTech Connect

    Gavini, V; Knap, J; Bhattacharya, K; Ortiz, M

    2006-10-06

    We propose an approach to perform orbital-free density functional theory calculations in a non-periodic setting using the finite-element method. We consider this a step towards constructing a seamless multi-scale approach for studying defects like vacancies, dislocations and cracks that require quantum mechanical resolution at the core and are sensitive to long range continuum stresses. In this paper, we describe a local real space variational formulation for orbital-free density functional theory, including the electrostatic terms and prove existence results. We prove the convergence of the finite-element approximation including numerical quadratures for our variational formulation. Finally, we demonstrate our method using examples.

  12. Finite-volume corrections to the CP-odd nucleon matrix elements of the electromagnetic current from the QCD vacuum angle

    NASA Astrophysics Data System (ADS)

    Akan, Tarik; Guo, Feng-Kun; Meißner, Ulf-G.

    2014-09-01

    Nucleon electric dipole moments originating from strong CP-violation are being calculated by several groups using lattice QCD. We revisit the finite volume corrections to the CP-odd nucleon matrix elements of the electromagnetic current, which can be related to the electric dipole moments in the continuum, in the framework of chiral perturbation theory up to next-to-leading order taking into account the breaking of Lorentz symmetry. A chiral extrapolation of the recent lattice results of both the neutron and proton electric dipole moments is performed, which results in dn=(-2.7±1.2)×10-16eθ0 cm and dp=(2.1±1.2)×10-16eθ0 cm.

  13. Baryonic matter onset in two-color QCD with heavy quarks

    NASA Astrophysics Data System (ADS)

    Scior, Philipp; von Smekal, Lorenz

    2015-11-01

    We study the cold and dense regime in the phase diagram of two-color QCD with heavy quarks within a three-dimensional effective theory for Polyakov loops. This theory is derived from two-color QCD in a combined strong-coupling and hopping expansion. In particular, we study the onset of diquark density as the finite-density transition of the bosonic baryons in the two-color world. In contrast to previous studies of heavy dense QCD, our zero-temperature extrapolations are consistent with a continuous transition without binding energy. They thus provide evidence that the effective theory for heavy quarks is capable of describing the characteristic differences between diquark condensation in two-color QCD and the liquid-gas transition of nuclear matter in QCD.

  14. Density dependence of the symmetry energy from neutron skin thickness in finite nuclei

    SciTech Connect

    Vinas, X.; Centelles, M.; Roca-Maza, X.; Warda, M.

    2012-10-20

    The density dependence of the symmetry energy, characterized by the parameter L, is studied using information provided by the neutron skin thickness in finite nuclei. An estimate of L is obtained from experimental data of antiprotonic atoms. We also discuss the ability of parity violating electron scatering to obtain information about the neutron skin thickness in {sup 208}Pb.

  15. Complex Langevin simulation of chiral symmetry restoration at finite baryonic density

    NASA Astrophysics Data System (ADS)

    Ilgenfritz, Ernst-Michael

    1986-12-01

    A recently proposed effective SU(3) spin model with chiral order parameter is studied by means of the complex Langevin equation. A first-order chiral symmetry restoring and deconfining transition is observed at sufficiently low temperature at finite baryonic density. Permanent address: Sektion Physik, Karl-Marx Universität, DDR-7010 Leipzig, German Democratic Republic.

  16. Kaon condensation in the linear sigma model at finite density and temperature

    SciTech Connect

    Tran Huu Phat; Nguyen Van Long; Nguyen Tuan Anh; Le Viet Hoa

    2008-11-15

    Basing on the Cornwall-Jackiw-Tomboulis effective action approach we formulate a theoretical formalism for studying kaon condensation in the linear sigma model at finite density and temperature. We derive the renormalized effective potential in the Hartree-Fock approximation, which preserves the Goldstone theorem. This quantity is then used to consider physical properties of kaon matter.

  17. Higher-order adaptive finite-element methods for Kohn–Sham density functional theory

    SciTech Connect

    Motamarri, P.; Nowak, M.R.; Leiter, K.; Knap, J.; Gavini, V.

    2013-11-15

    We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688

  18. Higher-order adaptive finite-element methods for Kohn-Sham density functional theory

    NASA Astrophysics Data System (ADS)

    Motamarri, P.; Nowak, M. R.; Leiter, K.; Knap, J.; Gavini, V.

    2013-11-01

    We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn-Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss-Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100-200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn-Sham DFT problem. Our studies suggest that staggering computational savings-of the order of 1000-fold-relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn-Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688 atoms using

  19. Finite temperature bosonic charge and current densities in compactified cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Bezerra de Mello, E. R.

    2016-06-01

    In this paper, we study the expectation values of the induced charge and current densities for a massive bosonic field with nonzero chemical potential in the geometry of a higher-dimensional compactified cosmic string with magnetic fluxes along the string core and also enclosed by the compactified direction in thermal equilibrium at finite temperature T . These densities are calculated by decomposing them into the vacuum expectation values and finite temperature contributions coming from the particles and antiparticles. The only nonzero components correspond to the charge, azimuthal, and axial current densities. By using the Abel-Plana formula, we decompose the components of the densities into the part induced by the cosmic string and the one by the compactification. The charge density is an odd function of the chemical potential and even periodic function of the magnetic flux with a period equal to the quantum flux. Moreover, the azimuthal (axial) current density is an even function of the chemical potential and an odd (even) periodic function of the magnetic flux with the same period. In this paper, our main concern is the thermal effect on the charge and current densities, including some limiting cases, the low- and high-temperature approximations. We show that in all cases, the temperature enhances the induced densities.

  20. Density-matrix Chern insulators: Finite-temperature generalization of topological insulators

    NASA Astrophysics Data System (ADS)

    Rivas, A.; Viyuela, O.; Martin-Delgado, M. A.

    2013-10-01

    Thermal noise can destroy topological insulators (TI). However, we demonstrate how TIs can be made stable in dissipative systems. To that aim, we introduce the notion of band Liouvillian as the dissipative counterpart of band Hamiltonian, and show a method to evaluate the topological order of its steady state. This is based on a generalization of the Chern number valid for general mixed states (referred to as density-matrix Chern value), which witnesses topological order in a system coupled to external noise. Additionally, we study its relation with the electrical conductivity at finite temperature, which is not a topological property. Nonetheless, the density-matrix Chern value represents the part of the conductivity which is topological due to the presence of quantum mixed edge states at finite temperature. To make our formalism concrete, we apply these concepts to the two-dimensional Haldane model in the presence of thermal dissipation, but our results hold for arbitrary dimensions and density matrices.

  1. Relative Equilibria in the Spherical, Finite Density Three-Body Problem

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.

    2016-05-01

    The relative equilibria for the spherical, finite density three-body problem are identified. Specifically, there are 28 distinct relative equilibria in this problem which include the classical five relative equilibria for the point-mass three-body problem. None of the identified relative equilibria exist or are stable over all values of angular momentum. The stability and bifurcation pathways of these relative equilibria are mapped out as the angular momentum of the system is increased. This is done under the assumption that they have equal and constant densities and that the entire system rotates about its maximum moment of inertia. The transition to finite density greatly increases the number of relative equilibria in the three-body problem and ensures that minimum energy configurations exist for all values of angular momentum.

  2. Sum rules and spectral density flow in QCD and in superconformal theories

    NASA Astrophysics Data System (ADS)

    Costantini, Antonio; Delle Rose, Luigi; Serino, Mirko

    2014-11-01

    We discuss the signature of the anomalous breaking of the superconformal symmetry in N = 1 super Yang Mills theory and its manifestation in the form of anomaly poles. Moreover, we describe the massive deformations of the N = 1 theory and the spectral densities of the corresponding anomaly form factors. These are characterized by spectral densities which flow with the mass deformation and turn the continuum contributions from the two-particle cuts of the intermediate states into poles, with a single sum rule satisfied by each component. The poles can be interpreted as signaling the exchange of a composite axion/dilaton/dilatino (ADD) multiplet in the effective Lagrangian. We conclude that global anomalous currents characterized by a single flow in the perturbative picture always predict the existence of composite interpolating fields.

  3. Fermion structure of non-Abelian vortices in high density QCD

    SciTech Connect

    Yasui, Shigehiro; Itakura, Kazunori; Nitta, Muneto

    2010-05-15

    We study the internal structure of a non-Abelian vortex in color superconductivity with respect to quark degrees of freedom. Stable non-Abelian vortices appear in the color-flavor-locked phase whose symmetry SU(3){sub c+L+R} is further broken to SU(2){sub c+L+R} x U(1){sub c+L+R} at the vortex cores. Microscopic structure of vortices at scales shorter than the coherence length can be analyzed by the Bogoliubov-de Gennes equation (rather than the Ginzburg-Landau equation). We obtain quark spectra from the Bogoliubov-de Gennes equation by treating the diquark gap having the vortex configuration as a background field. We find that there are massless modes (zero modes) well-localized around a vortex, in the triplet and singlet states of the unbroken symmetry SU(2){sub c+L+R} x U(1){sub c+L+R}. The velocities v{sub i} of the massless modes (i=t, s for triplet and singlet) change at finite chemical potential {mu}{ne}0, and decrease as {mu} becomes large. Therefore, low energy excitations in the vicinity of the vortices are effectively described by 1+1 dimensional massless fermions whose velocities are reduced v{sub i}<1.

  4. Lattice QCD

    SciTech Connect

    Bornyakov, V.G.

    2005-06-01

    Possibilities that are provided by a lattice regularization of QCD for studying nonperturbative properties of QCD are discussed. A review of some recent results obtained from computer calculations in lattice QCD is given. In particular, the results for the QCD vacuum structure, the hadron mass spectrum, and the strong coupling constant are considered.

  5. Optimum element density studies for finite-element thermal analysis of hypersonic aircraft structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Olona, Timothy; Muramoto, Kyle M.

    1990-01-01

    Different finite element models previously set up for thermal analysis of the space shuttle orbiter structure are discussed and their shortcomings identified. Element density criteria are established for the finite element thermal modelings of space shuttle orbiter-type large, hypersonic aircraft structures. These criteria are based on rigorous studies on solution accuracies using different finite element models having different element densities set up for one cell of the orbiter wing. Also, a method for optimization of the transient thermal analysis computer central processing unit (CPU) time is discussed. Based on the newly established element density criteria, the orbiter wing midspan segment was modeled for the examination of thermal analysis solution accuracies and the extent of computation CPU time requirements. The results showed that the distributions of the structural temperatures and the thermal stresses obtained from this wing segment model were satisfactory and the computation CPU time was at the acceptable level. The studies offered the hope that modeling the large, hypersonic aircraft structures using high-density elements for transient thermal analysis is possible if a CPU optimization technique was used.

  6. Estimating ŋ/s of QCD matter at high baryon densities

    NASA Astrophysics Data System (ADS)

    Karpenko, Iu.; Bleicher, M.; Huovinen, P.; Petersen, H.

    2016-01-01

    We report on the application of a cascade + viscous hydro + cascade model for heavy ion collisions in the RHIC Beam Energy Scan range, √snn = 6.3…200 GeV. By constraining model parameters to reproduce the data we find that the effective (average) value of the shear viscosity over entropy density ratio ŋ/s decreases from 0.2 to 0.08 when collision energy grows from √sNN ≈ 7 to 39 GeV.

  7. LATTICE QCD THERMODYNAMICS WITH WILSON QUARKS.

    SciTech Connect

    EJIRI,S.

    2007-11-20

    We review studies of QCD thermodynamics by lattice QCD simulations with dynamical Wilson quarks. After explaining the basic properties of QCD with Wilson quarks at finite temperature including the phase structure and the scaling properties around the chiral phase transition, we discuss the critical temperature, the equation of state and heavy-quark free energies.

  8. All-electron time-dependent density functional theory with finite elements: time-propagation approach.

    PubMed

    Lehtovaara, Lauri; Havu, Ville; Puska, Martti

    2011-10-21

    We present an all-electron method for time-dependent density functional theory which employs hierarchical nonuniform finite-element bases and the time-propagation approach. The method is capable of treating linear and nonlinear response of valence and core electrons to an external field. We also introduce (i) a preconditioner for the propagation equation, (ii) a stable way to implement absorbing boundary conditions, and (iii) a new kind of absorbing boundary condition inspired by perfectly matched layers. PMID:22029294

  9. Densities mixture unfolding for data obtained from detectors with finite resolution and limited acceptance

    NASA Astrophysics Data System (ADS)

    Gagunashvili, N. D.

    2015-04-01

    A procedure based on a Mixture Density Model for correcting experimental data for distortions due to finite resolution and limited detector acceptance is presented. Addressing the case that the solution is known to be non-negative, in the approach presented here, the true distribution is estimated by a weighted sum of probability density functions with positive weights and with the width of the densities acting as a regularization parameter responsible for the smoothness of the result. To obtain better smoothing in less populated regions, the width parameter is chosen inversely proportional to the square root of the estimated density. Furthermore, the non-negative garrote method is used to find the most economic representation of the solution. Cross-validation is employed to determine the optimal values of the resolution and garrote parameters. The proposed approach is directly applicable to multidimensional problems. Numerical examples in one and two dimensions are presented to illustrate the procedure.

  10. Exact finite reduced density matrix and von Neumann entropy for the Calogero model

    NASA Astrophysics Data System (ADS)

    Osenda, Omar; Pont, Federico M.; Okopińska, Anna; Serra, Pablo

    2015-12-01

    The information content of continuous quantum variables systems is usually studied using a number of well known approximation methods. The approximations are made to obtain the spectrum, eigenfunctions or the reduced density matrices that are essential to calculate the entropy-like quantities that quantify the information. Even in the sparse cases where the spectrum and eigenfunctions are exactly known, the entanglement spectrum- the spectrum of the reduced density matrices that characterize the problem- must be obtained in an approximate fashion. In this work, we obtain analytically a finite representation of the reduced density matrices of the fundamental state of the N-particle Calogero model for a discrete set of values of the interaction parameter. As a consequence, the exact entanglement spectrum and von Neumann entropy is worked out.

  11. The effects of finite element grid density on model correlation and damage detection of a bridge

    SciTech Connect

    Simmermacher, T.; Mayes, R.L.; Reese, G.M.; James, G.H.; Zimmerman, D.C.

    1995-12-31

    Variation of model size as determined by grid density is studied for both model refinement and damage detection. In model refinement 3 it is found that a large model with a fine grid is preferable in order to achieve a reasonable correlation between the experimental response and the finite element model. A smaller model falls victim to the inaccuracies of the finite element method. As the grid become increasing finer, the FE method approaches an accurate representation. In damage detection the FE method is only a starting point. The model is refined with a matrix method which doesn`t retain the FE approximation, therefore a smaller model that captures most of the dynamics of the structure can be used and is preferable.

  12. Low Density Parity Check Codes Based on Finite Geometries: A Rediscovery and More

    NASA Technical Reports Server (NTRS)

    Kou, Yu; Lin, Shu; Fossorier, Marc

    1999-01-01

    Low density parity check (LDPC) codes with iterative decoding based on belief propagation achieve astonishing error performance close to Shannon limit. No algebraic or geometric method for constructing these codes has been reported and they are largely generated by computer search. As a result, encoding of long LDPC codes is in general very complex. This paper presents two classes of high rate LDPC codes whose constructions are based on finite Euclidean and projective geometries, respectively. These classes of codes a.re cyclic and have good constraint parameters and minimum distances. Cyclic structure adows the use of linear feedback shift registers for encoding. These finite geometry LDPC codes achieve very good error performance with either soft-decision iterative decoding based on belief propagation or Gallager's hard-decision bit flipping algorithm. These codes can be punctured or extended to obtain other good LDPC codes. A generalization of these codes is also presented.

  13. Experimental measurement of energy density in a vibrating plate and comparison with energy finite element analysis

    NASA Astrophysics Data System (ADS)

    Navazi, H. M.; Nokhbatolfoghahaei, A.; Ghobad, Y.; Haddadpour, H.

    2016-08-01

    In this paper, a new method and formulation is presented for experimental measurement of energy density of high frequency vibrations of a plate. By use of the new proposed method and eight accelerometers, both kinetic and potential energy densities are measured. Also, a computer program is developed based on energy finite element method to evaluate the proposed method. For several points, the results of the developed experimental formulation are compared with those of the energy finite element analysis results. It is observed that, there is a good agreement between experimental results and analyses. Finally, another test setup with reduced accelerometer spacing was prepared and based on the comparison between kinetic and potential results, it is concluded that, the kinetic and potential counterparts of the energy density are equal in high frequency bands. Based on this conclusion, the measurement procedure was upgraded to an efficient and very simple one for high frequency ranges. According to the new test procedure, another experimental measurement was performed and the results had a good agreement with the EFEA results.

  14. QUARKONIUM AT FINITE TEMPERATURE.

    SciTech Connect

    UMEDA, T.

    2006-06-09

    Lattice QCD studies on charmonium at finite temperature are presented After a discussion about problems for the Maximum Entropy Method applied to finite temperature lattice QCD, I show several results on charmonium spectral functions. The 'wave function' of charmonium is also discussed to study the spatial correlation between quark and anti-quark in deconfinement phase.

  15. Higher-order finite-difference formulation of periodic Orbital-free Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Ghosh, Swarnava; Suryanarayana, Phanish

    2016-02-01

    We present a real-space formulation and higher-order finite-difference implementation of periodic Orbital-free Density Functional Theory (OF-DFT). Specifically, utilizing a local reformulation of the electrostatic and kernel terms, we develop a generalized framework for performing OF-DFT simulations with different variants of the electronic kinetic energy. In particular, we propose a self-consistent field (SCF) type fixed-point method for calculations involving linear-response kinetic energy functionals. In this framework, evaluation of both the electronic ground-state and forces on the nuclei are amenable to computations that scale linearly with the number of atoms. We develop a parallel implementation of this formulation using the finite-difference discretization. We demonstrate that higher-order finite-differences can achieve relatively large convergence rates with respect to mesh-size in both the energies and forces. Additionally, we establish that the fixed-point iteration converges rapidly, and that it can be further accelerated using extrapolation techniques like Anderson's mixing. We validate the accuracy of the results by comparing the energies and forces with plane-wave methods for selected examples, including the vacancy formation energy in Aluminum. Overall, the suitability of the proposed formulation for scalable high performance computing makes it an attractive choice for large-scale OF-DFT calculations consisting of thousands of atoms.

  16. A density-dependant finite element model for analysis of saltwater intrusion in coastal aquifers

    NASA Astrophysics Data System (ADS)

    Abd-Elhamid, H. F.; Javadi, A. A.

    2011-05-01

    SummarySaltwater intrusion is a serious problem in coastal regions all over the world. It is one of the processes that degrade water-quality by raising salinity to levels exceeding acceptable drinking water standards. It may occur due to human activities and/or by natural events. Over-abstraction is considered the main cause of saltwater intrusion. Moreover, climate change and sea level rise speed up saltwater intrusion. This paper presents the development and validation of a coupled transient finite element model for simulation of fluid flow and solute transport in saturate and unsaturated soils with application to study saltwater intrusion in coastal aquifers. The model includes coupling of water flow, air flow, heat flow and solute transport. Furthermore, transient density-dependent flow is included in the model and the dependency of dispersion on velocity is considered. Different mechanisms that govern solute transport in porous media including, advection, diffusion, dispersion, adsorption, chemical reactions and biological degradation are included in the model. The governing equation of the solute transport is solved together with three balance equations for water flow, air flow and heat transfer. The nonlinear system of governing differential equations is solved using the finite element method in the space domain and a finite difference scheme in the time domain. The model is validated by application to a standard case study from the literature (Henry's problem) and then applied to predict saltwater intrusion in a coastal aquifer. The results of the model predictions are presented and discussed.

  17. On finite density effects on cosmic reheating and moduli decay and implications for Dark Matter production

    SciTech Connect

    Drewes, Marco

    2014-11-01

    We study the damping of an oscillating scalar field in a Friedmann-Robertson-Walker spacetime by perturbative processes, taking into account the back-reaction of the plasma of decay products on the damping rate. The scalar field may be identified with the inflaton, in which case this process resembles the reheating of the universe after inflation. It can also model a modulus that dominates the energy density of the universe at later times. We find that the finite density corrections to the damping rate can have a drastic effect on the thermal history and considerably increase both, the maximal temperature in the early universe and the reheating temperature at the onset of the radiation dominated era. As a result the abundance of some Dark Matter candidates may be considerably larger than previously estimated. We give improved analytic estimates for the maximal and the reheating temperatures and confirm them numerically in a simple model.

  18. Finite element analysis of cylinder shell resonator and design of intelligent density meter

    NASA Astrophysics Data System (ADS)

    W, Sui X.; M, Fan Y.; X, Zhang G.; R, Qiu Z.

    2005-01-01

    On the basis of the mathematical model and finite element analysis of the cylinder shell resonator, a novel resonant liquid density meter is designed. The meter consists of a cylinder shell resonator fixed on both ends, a measurement circuit with automatic gain control and automatic phase control, and a signal processing system with microcomputer unit C8051F021. The density meter is insensitive to the liquid pressure, and it can intelligently compensate for the temperature. The experiment results show the meter characteristic coefficients of K0, K1, and K2 at 25 centigrade are -129.5668 kg m-3, -0.2535 × 106 kg m-3 s-1 and 0.6239 × 1010 kg m-3 s-2, respectively. The accuracy of the sensor is ±0.1% in range of 700-900 kg m-3

  19. Hadron Resonances from QCD

    NASA Astrophysics Data System (ADS)

    Dudek, Jozef J.

    2016-03-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  20. Density-based load estimation using two-dimensional finite element models: a parametric study.

    PubMed

    Bona, Max A; Martin, Larry D; Fischer, Kenneth J

    2006-08-01

    A parametric investigation was conducted to determine the effects on the load estimation method of varying: (1) the thickness of back-plates used in the two-dimensional finite element models of long bones, (2) the number of columns of nodes in the outer medial and lateral sections of the diaphysis to which the back-plate multipoint constraints are applied and (3) the region of bone used in the optimization procedure of the density-based load estimation technique. The study is performed using two-dimensional finite element models of the proximal femora of a chimpanzee, gorilla, lion and grizzly bear. It is shown that the density-based load estimation can be made more efficient and accurate by restricting the stimulus optimization region to the metaphysis/epiphysis. In addition, a simple method, based on the variation of diaphyseal cortical thickness, is developed for assigning the thickness to the back-plate. It is also shown that the number of columns of nodes used as multipoint constraints does not have a significant effect on the method. PMID:17132530

  1. ATLAS: A real-space finite-difference implementation of orbital-free density functional theory

    NASA Astrophysics Data System (ADS)

    Mi, Wenhui; Shao, Xuecheng; Su, Chuanxun; Zhou, Yuanyuan; Zhang, Shoutao; Li, Quan; Wang, Hui; Zhang, Lijun; Miao, Maosheng; Wang, Yanchao; Ma, Yanming

    2016-03-01

    Orbital-free density functional theory (OF-DFT) is a promising method for large-scale quantum mechanics simulation as it provides a good balance of accuracy and computational cost. Its applicability to large-scale simulations has been aided by progress in constructing kinetic energy functionals and local pseudopotentials. However, the widespread adoption of OF-DFT requires further improvement in its efficiency and robustly implemented software. Here we develop a real-space finite-difference (FD) method for the numerical solution of OF-DFT in periodic systems. Instead of the traditional self-consistent method, a powerful scheme for energy minimization is introduced to solve the Euler-Lagrange equation. Our approach engages both the real-space finite-difference method and a direct energy-minimization scheme for the OF-DFT calculations. The method is coded into the ATLAS software package and benchmarked using periodic systems of solid Mg, Al, and Al3Mg. The test results show that our implementation can achieve high accuracy, efficiency, and numerical stability for large-scale simulations.

  2. Quantal Brownian motion from second RPA dynamics at finite temperature: Explicit density operator and related quantities

    NASA Astrophysics Data System (ADS)

    Jang, S.

    1991-07-01

    Within the framework of the quantum dynamical description of Brownian motion, a closed expression for the density operator is extracted from the master equation based on the dynamics of the second random phase approximation (RPA) at finite temperature. The second RPA theory is an extension of the usual RPA theory up to next higher order. The entropy and effective temperature of the system of collective RPA phonons are subsequently calculated by exploiting the analogy with the quantum optics damped oscillator, and their temporal behavior is surveyed by showing how these quantities relax to their equilibrium values. The calculation is carried out without invoking the so-called the resonant approximation, which amounts to ignoring the rapidly oscillating coupling terms. Particular attention is paid to the effect of these coupling terms.

  3. Quasiparticle theory of transport coefficients for hadronic matter at finite temperature and baryon density

    NASA Astrophysics Data System (ADS)

    Albright, M.; Kapusta, J. I.

    2016-01-01

    We develop a flexible quasiparticle theory of transport coefficients of hot hadronic matter at finite baryon density. We begin with a hadronic quasiparticle model which includes a scalar and a vector mean field. Quasiparticle energies and the mean fields depend on temperature and baryon chemical potential. Starting with the quasiparticle dispersion relation, we derive the Boltzmann equation and use the Chapman-Enskog expansion to derive formulas for the shear and bulk viscosities and thermal conductivity. We obtain both relaxation-time approximation formulas and more general integral equations. Throughout the work, we explicitly enforce the Landau-Lifshitz conditions of fit and ensure the theory is thermodynamically self-consistent. The derived formulas should be useful for predicting the transport coefficients of the hadronic phase of matter produced in heavy-ion collisions at the Relativistic Heavy Ion Collider and at other accelerators.

  4. QCD Phase Diagram According to the Center Group

    SciTech Connect

    Delgado Mercado, Ydalia; Gattringer, Christof; Evertz, Hans Gerd

    2011-06-03

    We study an effective theory for QCD at finite temperature and density which contains the leading center symmetric and center symmetry breaking terms. The effective theory is studied in a flux representation where the complex phase problem is absent and the model becomes accessible to Monte Carlo techniques also at finite chemical potential. We simulate the system by using a generalized Prokof'ev-Svistunov worm algorithm and compare the results to a low temperature expansion. The phase diagram is determined as a function of temperature, chemical potential, and quark mass. The shape and quark mass dependence of the phase boundaries are as expected for QCD. The transition into the deconfined phase is smooth throughout, without any discontinuities or critical points.

  5. Variational density matrices in quantum field theory at finite temperature and chemical potential

    SciTech Connect

    Nadeau, H.

    1996-07-01

    I evaluate the Helmholtz free energy of finite temperature {lambda}{var_phi}{sup 4} theory, both real and complex, using a variational quadratic {ital ansatz} for the density matrix. Minimizing with respect to the variational parameters produces results identical to those obtained by summing the daisy and superdaisy diagrams. In the nonrelativistic limit this is equivalent to a Hartree-Fock mean field with an effective mass. Quartic terms are then included by means of a relativistic generalization of the hypernetted-chain approximation without exchange terms, called the {open_quote}{open_quote}direct approximation.{close_quote}{close_quote} In this way infinite groups of rings and ladders are summed, giving nonperturbative expressions for the internal energy and four-point function in terms of a small number of Dyson-like integral equations. An expression is obtained for the internal energy of a zero-temperature system in terms of only two variational parameters. Because the hypernetted-chain approximation preserves the Euler-Lagrange variational principle, minimizing the internal energy with respect to these parameters should provide a semiquantitative upper bound on the ground state energy of an interacting relativistic system at zero temperature. For the full finite temperature theory in the direct approximation, there are now three variational parameters and it is necessary to obtain the entropy in a approximation comparable to that for the internal energy. This is done in an analogous manner to the separability approximation of nonrelativistic hypernetted-chain theory. Finally, an improvement on the direct approximation is attained by including exchange terms of all types. This proceeds along the lines of parquet summations, resulting in a set of integral equations that, when solved self-consistently, includes all series and parallel connections of direct and exchange diagrams. {copyright} {ital 1996 The American Physical Society.}

  6. Explore the high-density QCD medium via particle correlations in pPb collisions at CMS

    SciTech Connect

    Li, Wei

    2015-01-15

    The observation of a long-range, near-side two-particle correlation (“ridge”) in very high multiplicity proton–proton and proton–lead collisions has opened up new opportunity of studying novel QCD phenomena in small collision systems. In 2013, high luminosity pPb data were collected by the CMS experiment at the LHC. New results of two- and multi-particle correlations in pPb collisions from CMS are presented over a wide event multiplicity and transverse momentum range. A direct comparison of pPb and PbPb systems is provided. Physics implications, especially in the context of color glass condensate and hydrodynamics models are also discussed.

  7. Dislocation density-based finite element method modeling of ultrasonic consolidation

    NASA Astrophysics Data System (ADS)

    Pal, Deepankar

    A dislocation density-based constitutive model has been developed and implemented into a crystal plasticity quasi-static finite element framework. This approach captures the statistical evolution of dislocation structures and grain fragmentation at the bonding interface when sufficient boundary conditions pertaining to the Ultrasonic Consolidation (UC) process are prescribed. The hardening is incorporated using statistically stored and geometrically necessary dislocation densities (SSDs and GNDs), which are dislocation analogs of isotropic and kinematic hardening, respectively. Since the macroscopic global boundary conditions during UC involves cyclic sinosuidal simple shear loading along with constant normal pressure, the cross slip mechanism has been included in the evolution equation for SSDs. The inclusion of cross slip promotes slip irreversibility, dislocation storage, and hence, cyclic hardening during the UC. The GND considers strain-gradient and thus renders the model size-dependent. The model is calibrated using experimental data from published refereed literature for simple shear deformation of single crystalline pure aluminum alloy and uniaxial tension of polycrystalline Aluminum 3003-H18 alloy. The model also incorporates various local and global effects such as (1) friction, (2) thermal softening, (3) acoustic softening, (4) surface texture of the sonotrode and initial mating surfaces, and (6) presence of oxide-scale at the mating surfaces, which further contribute significantly specifically to the grain substructure evolution at the interface and to the anisotropic bulk deformation away from the interface during UC in general. The model results have been predicted for Al-3003 alloy undergoing UC. A good agreement between the experimental and simulated results has been observed for the evolution of linear weld density and anisotropic global strengths macroscopically. Similarly, microscopic observations such as embrittlement due to grain substructure

  8. Family of finite geometry low-density parity-check codes for quantum key expansion

    NASA Astrophysics Data System (ADS)

    Hsu, Kung-Chuan; Brun, Todd A.

    2013-06-01

    We consider a quantum key expansion (QKE) protocol based on entanglement-assisted quantum error-correcting codes (EAQECCs). In these protocols, a seed of a previously shared secret key is used in the postprocessing stage of a standard quantum key distribution protocol like the Bennett-Brassard 1984 protocol, in order to produce a larger secret key. This protocol was proposed by Luo and Devetak, but codes leading to good performance have not been investigated. We look into a family of EAQECCs generated by classical finite geometry (FG) low-density parity-check (LDPC) codes, for which very efficient iterative decoders exist. A critical observation is that almost all errors in the resulting secret key result from uncorrectable block errors that can be detected by an additional syndrome check and an additional sampling step. Bad blocks can then be discarded. We make some changes to the original protocol to avoid the consumption of the preshared key when the protocol fails. This allows us to greatly reduce the bit error rate of the key at the cost of a minor reduction in the key production rate, but without increasing the consumption rate of the preshared key. We present numerical simulations for the family of FG LDPC codes, and show that this improved QKE protocol has a good net key production rate even at relatively high error rates, for appropriate choices of these codes.

  9. Finite-connectivity spin-glass phase diagrams and low-density parity check codes

    NASA Astrophysics Data System (ADS)

    Migliorini, Gabriele; Saad, David

    2006-02-01

    We obtain phase diagrams of regular and irregular finite-connectivity spin glasses. Contact is first established between properties of the phase diagram and the performance of low-density parity check (LDPC) codes within the replica symmetric (RS) ansatz. We then study the location of the dynamical and critical transition points of these systems within the one step replica symmetry breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that the location of the dynamical transition line does change within the RSB theory, in comparison with the results obtained in the RS case. For LDPC decoding of messages transmitted over the binary erasure channel we find, at zero temperature and rate R=1/4 , an RS critical transition point at pc≃0.67 while the critical RSB transition point is located at pc≃0.7450±0.0050 , to be compared with the corresponding Shannon bound 1-R . For the binary symmetric channel we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes its location when the RSB ansatz is employed; the dynamical transition point occurs at higher values of the channel noise. Possible practical implications to improve the performance of the state-of-the-art error correcting codes are discussed.

  10. Twisted mass finite volume effects

    SciTech Connect

    Colangelo, Gilberto; Wenger, Urs; Wu, Jackson M. S.

    2010-08-01

    We calculate finite-volume effects on the pion masses and decay constant in twisted mass lattice QCD at finite lattice spacing. We show that the lighter neutral pion in twisted mass lattice QCD gives rise to finite-volume effects that are exponentially enhanced when compared to those arising from the heavier charged pions. We demonstrate that the recent two flavor twisted mass lattice data can be better fitted when twisted mass effects in finite-volume corrections are taken into account.

  11. A Galerkin-based formulation of the probability density evolution method for general stochastic finite element systems

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Vissarion; Kalogeris, Ioannis

    2016-05-01

    The present paper proposes a Galerkin finite element projection scheme for the solution of the partial differential equations (pde's) involved in the probability density evolution method, for the linear and nonlinear static analysis of stochastic systems. According to the principle of preservation of probability, the probability density evolution of a stochastic system is expressed by its corresponding Fokker-Planck (FP) stochastic partial differential equation. Direct integration of the FP equation is feasible only for simple systems with a small number of degrees of freedom, due to analytical and/or numerical intractability. However, rewriting the FP equation conditioned to the random event description, a generalized density evolution equation (GDEE) can be obtained, which can be reduced to a one dimensional pde. Two Galerkin finite element method schemes are proposed for the numerical solution of the resulting pde's, namely a time-marching discontinuous Galerkin scheme and the StreamlineUpwind/Petrov Galerkin (SUPG) scheme. In addition, a reformulation of the classical GDEE is proposed, which implements the principle of probability preservation in space instead of time, making this approach suitable for the stochastic analysis of finite element systems. The advantages of the FE Galerkin methods and in particular the SUPG over finite difference schemes, like the modified Lax-Wendroff, which is the most frequently used method for the solution of the GDEE, are illustrated with numerical examples and explored further.

  12. Finite size effects in the averaged eigenvalue density of Wigner random-sign real symmetric matrices

    NASA Astrophysics Data System (ADS)

    Dhesi, G. S.; Ausloos, M.

    2016-06-01

    Nowadays, strict finite size effects must be taken into account in condensed matter problems when treated through models based on lattices or graphs. On the other hand, the cases of directed bonds or links are known to be highly relevant in topics ranging from ferroelectrics to quotation networks. Combining these two points leads us to examine finite size random matrices. To obtain basic materials properties, the Green's function associated with the matrix has to be calculated. To obtain the first finite size correction, a perturbative scheme is hereby developed within the framework of the replica method. The averaged eigenvalue spectrum and the corresponding Green's function of Wigner random sign real symmetric N ×N matrices to order 1 /N are finally obtained analytically. Related simulation results are also presented. The agreement is excellent between the analytical formulas and finite size matrix numerical diagonalization results, confirming the correctness of the first-order finite size expression.

  13. Direct numerical simulations of particle-laden density currents with adaptive, discontinuous finite elements

    NASA Astrophysics Data System (ADS)

    Parkinson, S. D.; Hill, J.; Piggott, M. D.; Allison, P. A.

    2014-05-01

    High resolution direct numerical simulations (DNS) are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier-Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE) DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two, and three-dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring mesh performance in capturing the range of dynamics. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. Use of discontinuous discretisations and adaptive unstructured meshing technologies, which reduce the required element count by approximately two orders of magnitude, results in high resolution DNS models of turbidity currents at a fraction of the cost of traditional FE models. The benefits of this technique will enable simulation of turbidity currents in complex and large domains where DNS modelling was previously unachievable.

  14. Exponentially modified QCD coupling

    SciTech Connect

    Cvetic, Gorazd; Valenzuela, Cristian

    2008-04-01

    We present a specific class of models for an infrared-finite analytic QCD coupling, such that at large spacelike energy scales the coupling differs from the perturbative one by less than any inverse power of the energy scale. This condition is motivated by the Institute for Theoretical and Experimental Physics operator product expansion philosophy. Allowed by the ambiguity in the analytization of the perturbative coupling, the proposed class of couplings has three parameters. In the intermediate energy region, the proposed coupling has low loop-level and renormalization scheme dependence. The present modification of perturbative QCD must be considered as a phenomenological attempt, with the aim of enlarging the applicability range of the theory of the strong interactions at low energies.

  15. Lattice QCD in Background Fields

    SciTech Connect

    William Detmold, Brian Tiburzi, Andre Walker-Loud

    2009-06-01

    Electromagnetic properties of hadrons can be computed by lattice simulations of QCD in background fields. We demonstrate new techniques for the investigation of charged hadron properties in electric fields. Our current calculations employ large electric fields, motivating us to analyze chiral dynamics in strong QED backgrounds, and subsequently uncover surprising non-perturbative effects present at finite volume.

  16. Finite-density effects in the Fredrickson-Andersen and Kob-Andersen kinetically-constrained models

    SciTech Connect

    Teomy, Eial Shokef, Yair

    2014-08-14

    We calculate the corrections to the thermodynamic limit of the critical density for jamming in the Kob-Andersen and Fredrickson-Andersen kinetically-constrained models, and find them to be finite-density corrections, and not finite-size corrections. We do this by introducing a new numerical algorithm, which requires negligible computer memory since contrary to alternative approaches, it generates at each point only the necessary data. The algorithm starts from a single unfrozen site and at each step randomly generates the neighbors of the unfrozen region and checks whether they are frozen or not. Our results correspond to systems of size greater than 10{sup 7} × 10{sup 7}, much larger than any simulated before, and are consistent with the rigorous bounds on the asymptotic corrections. We also find that the average number of sites that seed a critical droplet is greater than 1.

  17. Initial Energy Density in Heavy Ion Collisions from a Color Neutral Three-Dimensional Color Glass Condensate Model of QCD

    NASA Astrophysics Data System (ADS)

    Ozonder, Sener

    In the ultrarelativistic heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC), Brookhaven National Lab (BNL) and the Large Hadron Collider (LHC), CERN, hot, dense and strongly interacting Quark Gluon Plasma has been created. After the Quark Gluon Plasma reaches local thermal equilibrium, the fireball expands rapidly. Relativistic hydrodynamics successfully captures this evolution given the initial energy and initial entropy densities, along with the equation of state. This is followed by freeze-out of the plasma into hadrons, which are finally recorded at the detectors. The final multiplicity of the detected particles as well as their distribution in transverse momentum and rapidity are determined by the initial conditions of the hydrodynamic evolution of the Quark Gluon Plasma. In this thesis, the initial energy density of heavy-ion collisions is calculated in the framework of an effective model based on Quantum Chromodynamics. An overview of heavy ion collisions and Quark Gluon Plasma is given first. Then, the three-dimensional, color neutral McLerran-Venugopalan model is introduced and its parameters are fixed from the data on gluon distribution functions. Finally, we apply this model to Au-Au (at RHIC) and Pb-Pb (at LHC) collisions to calculate the initial energy density. The most important result of the work presented here is calculation of the rapidity profile of the initial energy density. Finally we compare our results on the energy density profile with that is used in hydrodynamic simulations.

  18. Level density of a Fermi gas and integer partitions: A Gumbel-like finite-size correction

    SciTech Connect

    Roccia, Jerome; Leboeuf, Patricio

    2010-04-15

    We investigate the many-body level density of a gas of noninteracting fermions. We determine its behavior as a function of the temperature and the number of particles. As the temperature increases, and beyond the usual Sommerfeld expansion that describes the degenerate gas behavior, corrections due to a finite number of particles lead to Gumbel-like contributions. We discuss connections with the partition problem in number theory, extreme value statistics, and differences with respect to the Bose gas.

  19. Extending the density functional embedding theory to finite temperature and an efficient iterative method for solving for embedding potentials.

    PubMed

    Huang, Chen

    2016-03-28

    A key element in the density functional embedding theory (DFET) is the embedding potential. We discuss two major issues related to the embedding potential: (1) its non-uniqueness and (2) the numerical difficulty for solving for it, especially for the spin-polarized systems. To resolve the first issue, we extend DFET to finite temperature: all quantities, such as the subsystem densities and the total system's density, are calculated at a finite temperature. This is a physical extension since materials work at finite temperatures. We show that the embedding potential is strictly unique at T > 0. To resolve the second issue, we introduce an efficient iterative embedding potential solver. We discuss how to relax the magnetic moments in subsystems and how to equilibrate the chemical potentials across subsystems. The solver is robust and efficient for several non-trivial examples, in all of which good quality spin-polarized embedding potentials were obtained. We also demonstrate the solver on an extended periodic system: iron body-centered cubic (110) surface, which is related to the modeling of the heterogeneous catalysis involving iron, such as the Fischer-Tropsch and the Haber processes. This work would make it efficient and accurate to perform embedding simulations of some challenging material problems, such as the heterogeneous catalysis and the defects of complicated spin configurations in electronic materials. PMID:27036426

  20. Extending the density functional embedding theory to finite temperature and an efficient iterative method for solving for embedding potentials

    NASA Astrophysics Data System (ADS)

    Huang, Chen

    2016-03-01

    A key element in the density functional embedding theory (DFET) is the embedding potential. We discuss two major issues related to the embedding potential: (1) its non-uniqueness and (2) the numerical difficulty for solving for it, especially for the spin-polarized systems. To resolve the first issue, we extend DFET to finite temperature: all quantities, such as the subsystem densities and the total system's density, are calculated at a finite temperature. This is a physical extension since materials work at finite temperatures. We show that the embedding potential is strictly unique at T > 0. To resolve the second issue, we introduce an efficient iterative embedding potential solver. We discuss how to relax the magnetic moments in subsystems and how to equilibrate the chemical potentials across subsystems. The solver is robust and efficient for several non-trivial examples, in all of which good quality spin-polarized embedding potentials were obtained. We also demonstrate the solver on an extended periodic system: iron body-centered cubic (110) surface, which is related to the modeling of the heterogeneous catalysis involving iron, such as the Fischer-Tropsch and the Haber processes. This work would make it efficient and accurate to perform embedding simulations of some challenging material problems, such as the heterogeneous catalysis and the defects of complicated spin configurations in electronic materials.

  1. Effects of Finite Density Fluctuations and of the Upper Hybrid Resonance on O-X Correlation Reflectometry

    SciTech Connect

    Kramer, G.J.; Nazikian, R.; Valeo, E.

    2001-02-10

    The correlation between O-mode and X-mode reflectometer signals is studied with a 1-D reflectometer model taking into account the influence of finite density fluctuation levels and the upper hybrid resonance. It is found that a high level of O-X correlation can only be achieved for sufficiently small density fluctuation levels (typically much less than 1%) or very low magnetic field strengths. The influence of the upper hybrid resonance on the O-X correlation was found to also degrade the correlation between the O and X mode signals for very low magnetic field strengths or for very short density scale lengths. The extrapolation of these results to reactor-scale parameters indicates that the magnetic field strength can reliably be measured in the core plasma provided the density fluctuation level is typically much less than 1%.

  2. QCD phenomenology

    SciTech Connect

    Hess, Peter O.

    2006-09-25

    A review is presented on the contributions of Mexican Scientists to QCD phenomenology. These contributions range from Constituent Quark model's (CQM) with a fixed number of quarks (antiquarks) to those where the number of quarks is not conserved. Also glueball spectra were treated with phenomenological models. Several other approaches are mentioned.

  3. Method to study complex systems of mesons in lattice QCD

    DOE PAGESBeta

    Detmold, William; Savage, Martin J.

    2010-07-30

    Correlation functions involving many hadrons allow finite density systems to be explored with Lattice QCD. Recently, systems with up to 12more » $$\\pi^+$$'s or $K^+$'s have been studied to determine the the $3$-$$\\pi^+$$ and $3$-$K^+$ interactions and the corresponding chemical potential has been determined as a function of density in each case. We derive recursion relations between correlation functions that allow us to extend this work to systems of arbitrary numbers of mesons and to systems containing arbitrary different types of mesons such as $$\\pi^+$$'s, $K^+$'s, $D^0$'s and $B^+$'s. These relations allow for the study of finite-density systems in arbitrary volumes, and the study of high-density systems. Systems comprised of up to N=12 m mesons can be explored with Lattice QCD calculations utilizing $m$ different sources for the quark propagators. As the recursion relations require only a small, N-independent, number of operations to derive the N+1 meson contractions from the N meson contractions, they are compuationally feasible.« less

  4. Lattice QCD at the physical point: simulation and analysis details

    NASA Astrophysics Data System (ADS)

    Dürr, S.; Fodor, Z.; Hoelbling, C.; Katz, S. D.; Krieg, S.; Kurth, T.; Lellouch, L.; Lippert, T.; Szabó, K. K.; Vulvert, G.

    2011-08-01

    We give details of our precise determination of the light quark masses m ud = ( m u + m d )/2 and m s in 2 + 1 flavor QCD, with simulated pion masses down to 120 MeV, at five lattice spacings, and in large volumes. The details concern the action and algorithm employed, the HMC force with HEX smeared clover fermions, the choice of the scale setting procedure and of the input masses. After an overview of the simulation parameters, extensive checks of algorithmic stability, autocorrelation and (practical) ergodicity are reported. To corroborate the good scaling properties of our action, explicit tests of the scaling of hadron masses in N f = 3 QCD are carried out. Details of how we control finite volume effects through dedicated finite volume scaling runs are reported. To check consistency with SU(2) Chiral Perturbation Theory the behavior of M π 2 /m ud and F π as a function of m ud is investigated. Details of how we use the RI/MOM procedure with a separate continuum limit of the running of the scalar density R S ( μ, μ') are given. This procedure is shown to reproduce the known value of r 0 m s in quenched QCD. Input from dispersion theory is used to split our value of m ud into separate values of m u and m d . Finally, our procedure to quantify both systematic and statistical uncertainties is discussed.

  5. All-electron Kohn–Sham density functional theory on hierarchic finite element spaces

    SciTech Connect

    Schauer, Volker; Linder, Christian

    2013-10-01

    In this work, a real space formulation of the Kohn–Sham equations is developed, making use of the hierarchy of finite element spaces from different polynomial order. The focus is laid on all-electron calculations, having the highest requirement onto the basis set, which must be able to represent the orthogonal eigenfunctions as well as the electrostatic potential. A careful numerical analysis is performed, which points out the numerical intricacies originating from the singularity of the nuclei and the necessity for approximations in the numerical setting, with the ambition to enable solutions within a predefined accuracy. In this context the influence of counter-charges in the Poisson equation, the requirement of a finite domain size, numerical quadratures and the mesh refinement are examined as well as the representation of the electrostatic potential in a high order finite element space. The performance and accuracy of the method is demonstrated in computations on noble gases. In addition the finite element basis proves its flexibility in the calculation of the bond-length as well as the dipole moment of the carbon monoxide molecule.

  6. Finite Elements approach for Density Functional Theory calculations on locally refined meshes

    SciTech Connect

    Fattebert, J; Hornung, R D; Wissink, A M

    2006-03-27

    We present a quadratic Finite Elements approach to discretize the Kohn-Sham equations on structured non-uniform meshes. A multigrid FAC preconditioner is proposed to iteratively solve the equations by an accelerated steepest descent scheme. The method was implemented using SAMRAI, a parallel software infrastructure for general AMR applications. Examples of applications to small nanoclusters calculations are presented.

  7. Finite Element approach for Density Functional Theory calculations on locally refined meshes

    SciTech Connect

    Fattebert, J; Hornung, R D; Wissink, A M

    2007-02-23

    We present a quadratic Finite Element approach to discretize the Kohn-Sham equations on structured non-uniform meshes. A multigrid FAC preconditioner is proposed to iteratively solve the equations by an accelerated steepest descent scheme. The method was implemented using SAMRAI, a parallel software infrastructure for general AMR applications. Examples of applications to small nanoclusters calculations are presented.

  8. Phase structure of QCD for heavy quarks

    NASA Astrophysics Data System (ADS)

    Fischer, Christian S.; Luecker, Jan; Pawlowski, Jan M.

    2015-01-01

    We investigate the nature of the deconfinement and Roberge-Weiss transition in the heavy quark regime for finite real and imaginary chemical potential within the functional approach to continuum QCD. We extract the critical phase boundary between the first-order and crossover regions and also explore tricritical scaling. Our results confirm previous ones from finite volume lattice studies.

  9. Baryons in holographic QCD

    SciTech Connect

    Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru

    2007-04-15

    We study baryons in holographic QCD with D4/D8/D8 multi-D-brane system. In holographic QCD, the baryon appears as a topologically nontrivial chiral soliton in a four-dimensional effective theory of mesons. We call this topological soliton brane-induced Skyrmion. Some review of D4/D8/D8 holographic QCD is presented from the viewpoints of recent hadron physics and QCD phenomenologies. A four-dimensional effective theory with pions and {rho} mesons is uniquely derived from the non-Abelian Dirac-Born-Infeld (DBI) action of D8 brane with D4 supergravity background at the leading order of large N{sub c}, without small amplitude expansion of meson fields to discuss chiral solitons. For the hedgehog configuration of pion and {rho}-meson fields, we derive the energy functional and the Euler-Lagrange equation of brane-induced Skyrmion from the meson effective action induced by holographic QCD. Performing the numerical calculation, we obtain the soliton solution and figure out the pion profile F(r) and the {rho}-meson profile G-tilde(r) of the brane-induced Skyrmion with its total energy, energy density distribution, and root-mean-square radius. These results are compared with the experimental quantities of baryons and also with the profiles of standard Skyrmion without {rho} mesons. We analyze interaction terms of pions and {rho} mesons in brane-induced Skyrmion, and find a significant {rho}-meson component appearing in the core region of a baryon.

  10. Hadron scattering and resonances in QCD

    NASA Astrophysics Data System (ADS)

    Dudek, Jozef J.

    2016-05-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel π >K, ηK scattering. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  11. Testing density-dependent groundwater models: Two-dimensional steady state unstable convection in infinite, finite and inclined porous layers

    USGS Publications Warehouse

    Weatherill, D.; Simmons, C.T.; Voss, C.I.; Robinson, N.I.

    2004-01-01

    This study proposes the use of several problems of unstable steady state convection with variable fluid density in a porous layer of infinite horizontal extent as two-dimensional (2-D) test cases for density-dependent groundwater flow and solute transport simulators. Unlike existing density-dependent model benchmarks, these problems have well-defined stability criteria that are determined analytically. These analytical stability indicators can be compared with numerical model results to test the ability of a code to accurately simulate buoyancy driven flow and diffusion. The basic analytical solution is for a horizontally infinite fluid-filled porous layer in which fluid density decreases with depth. The proposed test problems include unstable convection in an infinite horizontal box, in a finite horizontal box, and in an infinite inclined box. A dimensionless Rayleigh number incorporating properties of the fluid and the porous media determines the stability of the layer in each case. Testing the ability of numerical codes to match both the critical Rayleigh number at which convection occurs and the wavelength of convection cells is an addition to the benchmark problems currently in use. The proposed test problems are modelled in 2-D using the SUTRA [SUTRA-A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report, 02-4231, 2002. 250 p] density-dependent groundwater flow and solute transport code. For the case of an infinite horizontal box, SUTRA results show a distinct change from stable to unstable behaviour around the theoretical critical Rayleigh number of 4??2 and the simulated wavelength of unstable convection agrees with that predicted by the analytical solution. The effects of finite layer aspect ratio and inclination on stability indicators are also tested and numerical results are in excellent agreement with theoretical stability criteria and with

  12. Structural Health Monitoring Using High-Density Fiber Optic Strain Sensor and Inverse Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Vazquez, Sixto L.; Tessler, Alexander; Quach, Cuong C.; Cooper, Eric G.; Parks, Jeffrey; Spangler, Jan L.

    2005-01-01

    In an effort to mitigate accidents due to system and component failure, NASA s Aviation Safety has partnered with industry, academia, and other governmental organizations to develop real-time, on-board monitoring capabilities and system performance models for early detection of airframe structure degradation. NASA Langley is investigating a structural health monitoring capability that uses a distributed fiber optic strain system and an inverse finite element method for measuring and modeling structural deformations. This report describes the constituent systems that enable this structural monitoring function and discusses results from laboratory tests using the fiber strain sensor system and the inverse finite element method to demonstrate structural deformation estimation on an instrumented test article

  13. Closed-orbit theory of spatial density oscillations in finite fermion systems.

    PubMed

    Roccia, Jérôme; Brack, Matthias

    2008-05-23

    We investigate the particle and kinetic-energy densities for N noninteracting fermions confined in a local potential. Using Gutzwiller's semiclassical Green function, we describe the oscillating parts of the densities in terms of closed nonperiodic classical orbits. We derive universal relations between the oscillating parts of the densities for potentials with spherical symmetry in arbitrary dimensions and a "local virial theorem" valid also for arbitrary nonintegrable potentials. We give simple analytical formulas for the density oscillations in a one-dimensional potential. PMID:18518516

  14. Wave coupling in the magnetized plasma edge: Impact of a finite, inhomogeneous density inside the antenna box

    NASA Astrophysics Data System (ADS)

    Lu, L.; Crombé, K.; Van Eester, D.; Colas, L.; Jacquot, J.

    2015-12-01

    Most present Ion Cyclotron Resonant Frequency (ICRF) heating codes and antenna codes assume the antenna sitting in a vacuum region and consider the fast wave only, which implicitly performs an abrupt density transition from vacuum to above lower hybrid (LH) resonance. We studied the impact of densities that decay continuously inside the antenna box on near field patterns and power coupling. A new full wave code based on the COMSOL Finite Element Solver has been developed to investigate this topic. It is shown that: up to the memory limits of the adopted workstation, the local RF field pattern in low-density regions below the LH resonance changes with the grid size. Interestingly and importantly, however, the total coupled spectrum is independent to the mesh size and is weakly affected by the presence of the density profile inside the antenna box in dipole phasing. Thus one can drop out this density for coupling studies. Simulation also shows that varying the density gradient in the fast wave evanescence region has no significant effect on wave coupling.

  15. Internal one-particle density matrix for Bose-Einstein condensates with finite number of particles in a harmonic potential

    SciTech Connect

    Yamada, Taiichi; Funaki, Yasuro; Horiuchi, Hisashi; Roepke, Gerd; Schuck, Peter; Tohsaki, Akihiro

    2009-05-15

    Investigations on the internal one-particle density matrix in the case of Bose-Einstein condensates with a finite number (N) of particles in a harmonic potential are performed. We solve the eigenvalue problem of the Pethick-Pitaevskii-type internal density matrix and find a fragmented condensate. On the contrary the condensate Jacobi-type internal density matrix gives complete condensation into a single state. The internal one-particle density matrix is, therefore, shown to be different in general for different choices of the internal coordinate system. We propose two physically motivated criteria for the choice of the adequate coordinate systems that give us a unique answer for the internal one-particle density matrix. One criterion is that in the infinite particle number limit (N={infinity}) the internal one-particle density matrix should have the same eigenvalues and eigenfunctions as those of the corresponding ideal Bose-Einstein condensate in the laboratory frame. The other criterion is that the coordinate of the internal one-particle density matrix should be orthogonal to the remaining (N-2) internal coordinates, though the (N-2) coordinates, in general, do not need to be mutually orthogonal. This second criterion is shown to imply the first criterion. It is shown that the internal Jacobi coordinate system satisfies these two criteria while the internal coordinate system adopted by Pethick and Pitaevskii for the construction of the internal one-particle density matrix does not. It is demonstrated that these two criteria uniquely determine the internal one-particle density matrix that is identical to that calculated with the Jacobi coordinates. The relevance of this work concerning {alpha}-particle condensates in nuclei, as well as bosonic atoms in traps, is pointed out.

  16. Neutron star structure from QCD

    NASA Astrophysics Data System (ADS)

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2016-03-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  17. Finite-size scaling of the magnetization probability density for the critical Ising model in slab geometry

    NASA Astrophysics Data System (ADS)

    Lopes Cardozo, David; Holdsworth, Peter C. W.

    2016-04-01

    The magnetization probability density in d  =  2 and 3 dimensional Ising models in slab geometry of volume L\\paralleld-1× {{L}\\bot} is computed through Monte-Carlo simulation at the critical temperature and zero magnetic field. The finite-size scaling of this distribution and its dependence on the system aspect-ratio ρ =\\frac{{{L}\\bot}}{{{L}\\parallel}} and boundary conditions are discussed. In the limiting case ρ \\to 0 of a macroscopically large slab ({{L}\\parallel}\\gg {{L}\\bot} ) the distribution is found to scale as a Gaussian function for all tested system sizes and boundary conditions.

  18. Effects of 2D and Finite Density Fluctuations on O-X Correlation Reflectometry

    SciTech Connect

    G.J. Kramer; R. Nazikian; E. Valeo

    2001-07-05

    The correlation between O-mode and X-mode reflectometer signals is studied with a 1D and 2D reflectometer model in order to explore its feasibilities as a q-profile diagnostic. It was found that 2D effects and finite fluctuation levels both decrease the O-X correlation. At very low fluctuation levels, which are usually present in the plasma core, there is good possibility to determine the local magnetic field strength and use that as a constraint for the equilibrium reconstruction.

  19. Relative weights approach to SU(3) gauge theories with dynamical fermions at finite density

    NASA Astrophysics Data System (ADS)

    Greensite, Jeff; Höllwieser, Roman

    2016-07-01

    We derive effective Polyakov line actions for SU(3) gauge theories with staggered dynamical fermions, for a small sample of lattice couplings, lattice actions, and lattice extensions in the time direction. The derivation is via the method of relative weights, and the theories are solved at finite chemical potential by mean field theory. We find in some instances that the long-range couplings in the effective action are very important to the phase structure, and that these couplings are responsible for long-lived metastable states in the effective theory. Only one of these states corresponds to the underlying lattice gauge theory.

  20. The QCD vacuum, hadrons and superdense matter

    SciTech Connect

    Shuryak, E.

    1986-01-01

    This is probably the only textbook available that gathers QCD, many-body theory and phase transitions in one volume. The presentation is pedagogical and readable. Contents: The QCD Vacuum: Introduction; QCD on the Lattice Topological Effects in Gauges Theories. Correlation Functions and Microscopic Excitations: Introduction; Operator Product Expansion; The Sum Rules beyond OPE; Nonpower Contributions to Correlators and Instantons; Hadronic Spectroscopy on the Lattice. Dense Matter: Hadronic Matter; Asymptotically Dense Quark-Gluon Plasma; Instantons in Matter; Lattice Calculations at Finite Temperature; Phase Transitions; Macroscopic Excitations and Experiments: General Properties of High Energy Collisions; ''Barometers'', ''Thermometers'', Interferometric ''Microscope''; Experimental Perspectives.

  1. QCD at nonzero chemical potential: Recent progress on the lattice

    NASA Astrophysics Data System (ADS)

    Aarts, Gert; Attanasio, Felipe; Jäger, Benjamin; Seiler, Erhard; Sexty, Dénes; Stamatescu, Ion-Olimpiu

    2016-01-01

    We summarise recent progress in simulating QCD at nonzero baryon density using complex Langevin dynamics. After a brief outline of the main idea, we discuss gauge cooling as a means to control the evolution. Subsequently we present a status report for heavy dense QCD and its phase structure, full QCD with staggered quarks, and full QCD with Wilson quarks, both directly and using the hopping parameter expansion to all orders.

  2. The effect of particle density in turbulent channel flow laden with finite size particles in semi-dilute conditions

    NASA Astrophysics Data System (ADS)

    Fornari, W.; Formenti, A.; Picano, F.; Brandt, L.

    2016-03-01

    We study the effect of varying the mass and volume fraction of a suspension of rigid spheres dispersed in a turbulent channel flow. We performed several direct numerical simulations using an immersed boundary method for finite-size particles changing the solid to fluid density ratio R, the mass fraction χ, and the volume fraction ϕ. We find that varying the density ratio R between 1 and 10 at constant volume fraction does not alter the flow statistics as much as when varying the volume fraction ϕ at constant R and at constant mass fraction. Interestingly, the increase in overall drag found when varying the volume fraction is considerably higher than that obtained for increasing density ratios at same volume fraction. The main effect at density ratios R of the order of 10 is a strong shear-induced migration towards the centerline of the channel. When the density ratio R is further increased up to 1000, the particle dynamics decouple from that of the fluid. The solid phase behaves as a dense gas and the fluid and solid phase statistics drastically change. In this regime, the collision rate is high and dominated by the normal relative velocity among particles.

  3. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model. PMID:26723661

  4. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    SciTech Connect

    Franco-Pérez, Marco E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Ayers, Paul W. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Gázquez, José L. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Vela, Alberto E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  5. The response of cranial biomechanical finite element models to variations in mesh density.

    PubMed

    Bright, Jen A; Rayfield, Emily J

    2011-04-01

    Finite element (FE) models provide discrete solutions to continuous problems. Therefore, to arrive at the correct solution, it is vital to ensure that FE models contain a sufficient number of elements to fully resolve all the detail encountered in a continuum structure. Mesh convergence testing is the process of comparing successively finer meshes to identify the point of diminishing returns; where increasing resolution has marginal effects on results and further detail would become costly and unnecessary. Historically, convergence has not been considered in most CT-based biomechanical reconstructions involving complex geometries like the skull, as generating such models has been prohibitively time-consuming. To assess how mesh convergence influences results, 18 increasingly refined CT-based models of a domestic pig skull were compared to identify the point of convergence for strain and displacement, using both linear and quadratic tetrahedral elements. Not all regions of the skull converged at the same rate, and unexpectedly, areas of high strain converged faster than low-strain regions. Linear models were slightly stiffer than their quadratic counterparts, but did not converge less rapidly. As expected, insufficiently dense models underestimated strain and displacement, and failed to resolve strain "hot-spots" notable in contour plots. In addition to quantitative differences, visual assessments of such plots often inform conclusions drawn in many comparative studies, highlighting that mesh convergence should be performed on all finite element models before further analysis takes place. PMID:21370496

  6. The effect of grid transparency and finite collector size on determining ion temperature and density by the retarding potential analyzer

    NASA Technical Reports Server (NTRS)

    Troy, B. E., Jr.; Maier, E. J.

    1973-01-01

    The analysis of ion data from retarding potential analyzers (RPA's) is generally done under the planar approximation, which assumes that the grid transparency is constant with angle of incidence and that all ions reaching the plane of the collectors are collected. These approximations are not valid for situations in which the ion thermal velocity is comparable to the vehicle velocity, causing ions to enter the RPA with high average transverse velocity. To investigate these effects, the current-voltage curves for H+ at 4000 K were calculated, taking into account the finite collector size and the variation of grid transparency with angle. These curves are then analyzed under the planar approximation. The results show that only small errors in temperature and density are introduced for an RPA with typical dimensions; and that even when the density error is substantial for non-typical dimensions, the temperature error remains minimal.

  7. Euler-Heisenberg-Weiss action for QCD +QED

    NASA Astrophysics Data System (ADS)

    Ozaki, Sho; Arai, Takashi; Hattori, Koichi; Itakura, Kazunori

    2015-07-01

    We derive an analytic expression for one-loop effective action of QCD +QED at zero and finite temperatures by using the Schwinger proper time method. The result is a nonlinear effective action not only for electromagnetic and chromo-electromagnetic fields but also for the Polyakov loop, and thus reproduces the Euler-Heisenberg action in QED, QCD, and QED +QCD , and also the Weiss potential for the Polyakov loop at finite temperature. As applications of this "Euler-Heisenberg-Weiss" action in QCD +QED , we investigate quark pair productions induced by QCD +QED fields at zero temperature and the Polyakov loop in the presence of strong electromagnetic fields. Quark one-loop contribution to the effective potential of the Polyakov loop explicitly breaks the center symmetry, and is found to be enhanced by the magnetic field, which is consistent with the inverse magnetic catalysis observed in lattice QCD simulation.

  8. Finite temperature fermion condensate, charge and current densities in a (2+1)-dimensional conical space

    NASA Astrophysics Data System (ADS)

    Bellucci, S.; Bezerra de Mello, E. R.; Bragança, E.; Saharian, A. A.

    2016-06-01

    We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even function of the chemical potential. The behavior of the expectation values in various asymptotic regions of the parameters are discussed in detail. In particular, we show that for points near the cone apex the vacuum parts dominate. For a massless field with zero chemical potential the fermion condensate and charge density vanish. Simple expressions are derived for the part in the total charge induced by the planar angle deficit and magnetic flux. Combining the results for separate irreducible representations, we also consider the fermion condensate, charge and current densities in parity and time-reversal symmetric models. Possible applications to graphitic nanocones are discussed.

  9. Lefschetz thimble structure in one-dimensional lattice Thirring model at finite density

    NASA Astrophysics Data System (ADS)

    Fujii, Hirotsugu; Kamata, Syo; Kikukawa, Yoshio

    2015-11-01

    We investigate Lefschetz thimble structure of the complexified path-integration in the one-dimensional lattice massive Thirring model with finite chemical potential. The lattice model is formulated with staggered fermions and a compact auxiliary vector boson (a link field), and the whole set of the critical points (the complex saddle points) are sorted out, where each critical point turns out to be in a one-to-one correspondence with a singular point of the effective action (or a zero point of the fermion determinant). For a subset of critical point solutions in the uniform-field subspace, we examine the upward and downward cycles and the Stokes phenomenon with varying the chemical potential, and we identify the intersection numbers to determine the thimbles contributing to the path-integration of the partition function. We show that the original integration path becomes equivalent to a single Lefschetz thimble at small and large chemical potentials, while in the crossover region multiple thimbles must contribute to the path integration. Finally, reducing the model to a uniform field space, we study the relative importance of multi-thimble contributions and their behavior toward continuum and low-temperature limits quantitatively, and see how the rapid crossover behavior is recovered by adding the multi-thimble contributions at low temperatures. Those findings will be useful for performing Monte-Carlo simulations on the Lefschetz thimbles.

  10. String effects and the distribution of the glue in static mesons at finite temperature

    SciTech Connect

    Bakry, A. S.; Leinweber, D. B.; Moran, P. J.; Williams, A. G.; Sternbeck, A.

    2010-11-01

    The distribution of the gluon action density in mesonic systems is investigated at finite temperature. The simulations are performed in quenched QCD for two temperatures below the deconfinement phase. Unlike the gluonic profiles displayed at T=0, the action-density isosurfaces display a prolate-spheroid-like shape. The curved width profile of the flux tube is found to be consistent with the prediction of the free bosonic string model at large distances.

  11. Chiral symmetry restoration in holographic noncommutative QCD

    NASA Astrophysics Data System (ADS)

    Nakajima, Tadahito; Ohtake, Yukiko; Suzuki, Kenji

    2011-09-01

    We consider the noncommutative deformation of the Sakai-Sugimoto model at finite temperature and finite baryon chemical potential. The space noncommutativity is possible to have an influence on the flavor dynamics of the QCD. The critical temperature and critical value of the chemical potential are modified by the space noncommutativity. The influence of the space noncommutativity on the flavor dynamics of the QCD is caused by the Wess-Zumino term in the effective action of the D8-branes. The intermediate temperature phase, in which the gluons deconfine but the chiral symmetry remains broken, is easy to be realized in some region of the noncommutativity parameter.

  12. Finite difference calculations of current densities in a homogeneous model of a man exposed to extremely low frequency electric fields.

    PubMed

    Dimbylow, P J

    1987-01-01

    This paper presents three-dimensional finite difference calculations of induced current densities in a grounded, homogeneous, realistically human-shaped phantom. Comparison is made with published experimental values of current density at 60 Hz, measured in conducting saline manikins with their arms down by the side. The congruence between calculation and experiment gives confidence in the applicability of the numerical method and phantom shape to other configurations. The effect of raising both arms above the head is to reduce the current densities in the head and neck by approximately 50% and to increase those from the thorax downwards by 20-30%. A sensitivity analysis was performed on the shape and dimensions of the phantom, from a 45-kg, 1.5-m-tall person to a 140-kg, 1.9-m-tall person. When the phantom is grounded through both feet the current densities range from 50 to 90 microAm-2 in the head (all values for a 60-Hz, 1-kVm-1, vertical applied field), 70 to 140 microAm-2 in the thorax, 150 to 440 microAm-2 at the crotch, and 500 to 2,230 microAm-2 in the ankle. When grounded through only one foot the current densities at the crotch range from 400 to 1,000 microAm-2 and from 1,000 to 4,400 microAm-2 in the ankle of the grounded leg. Scale transformations of the short-circuit current with phantom height, weight, and surface area are confirmed. PMID:3122768

  13. Translationally invariant calculations of form factors, nucleon densities and momentum distributions for finite nuclei with short-range correlations included

    NASA Astrophysics Data System (ADS)

    Shebeko, A. V.; Grigorov, P. A.; Iurasov, V. S.

    2012-11-01

    Relying upon our previous treatment of the density matrices for nuclei (in general, nonrelativistic self-bound finite systems) we are studying a combined effect of center-of-mass motion and short-range nucleon-nucleon correlations on the nucleon density and momentum distributions in light nuclei (4He and 16O). Their intrinsic ground-state wave functions are constructed in the so-called fixed center-of-mass approximation, starting with mean-field Slater determinants modified by some correlator ( e.g., after Jastrow or Villars). We develop the formalism based upon the Cartesian or boson representation, in which the coordinate and momentum operators are linear combinations of the creation and annihilation operators for oscillatory quanta in the three different space directions, and get the own "Tassie-Barker" factors for each distribution and point out other model-independent results. After this separation of the center-of-mass motion effects we propose additional analytic means in order to simplify the subsequent calculations ( e.g., within the Jastrow approach or the unitary correlation operator method). The charge form factors, densities and momentum distributions of 4He and 16O evaluated by using the well-known cluster expansions are compared with data, our exact (numerical) results and microscopic calculations.

  14. A new method to predict the evolution of the power spectral density for a finite-amplitude sound wave

    NASA Astrophysics Data System (ADS)

    Menounou, Penelope; Blackstock, David T.

    2004-02-01

    A method to predict the effect of nonlinearity on the power spectral density of a plane wave traveling in a thermoviscous fluid is presented. As opposed to time-domain methods, the method presented here is based directly on the power spectral density of the signal, not the signal itself. The Burgers equation is employed for the mathematical description of the combined effects of nonlinearity and dissipation. The Burgers equation is transformed into an infinite set of linear equations that describe the evolution of the joint moments of the signal. A method for solving this system of equations is presented. Only a finite number of equations is appropriately selected and solved by numerical means. For the method to be applied all appropriate joint moments must be known at the source. If the source condition has Gaussian characteristics (it is a Gaussian noise signal or a Gaussian stationary and ergodic stochastic process), then all the joint moments can be computed from the power spectral density of the signal at the source. Numerical results from the presented method are shown to be in good agreement with known analytical solutions in the preshock region for two benchmark cases: (i) sinusoidal source signal and (ii) a Gaussian stochastic process as the source condition.

  15. A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    NASA Astrophysics Data System (ADS)

    Gu, Xuejun; Jelen, Urszula; Li, Jinsheng; Jia, Xun; Jiang, Steve B.

    2011-06-01

    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite-size pencil beam (FSPB) algorithm with a 3D-density correction method on graphics processing unit (GPU). This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework (Gu et al 2009 Phys. Med. Biol. 54 6287-97). Dosimetric evaluations against Monte Carlo dose calculations are conducted on ten IMRT treatment plans (five head-and-neck cases and five lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 s (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (~5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning.

  16. A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation.

    PubMed

    Gu, Xuejun; Jelen, Urszula; Li, Jinsheng; Jia, Xun; Jiang, Steve B

    2011-06-01

    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite-size pencil beam (FSPB) algorithm with a 3D-density correction method on graphics processing unit (GPU). This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework (Gu et al 2009 Phys. Med. Biol. 54 6287-97). Dosimetric evaluations against Monte Carlo dose calculations are conducted on ten IMRT treatment plans (five head-and-neck cases and five lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 s (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (∼5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning. PMID:21558589

  17. A finite-temperature density functional study of electron self-trapping in 3He and 4He.

    PubMed

    Jin, Dafei; Guo, Wei

    2012-06-28

    We introduce a compact finite-temperature density functional model to study electron self-trapping in both liquid and vapor (3)He and (4)He. This model can quantitatively reproduce the most essential thermodynamic properties of (3)He and (4)He along their liquid-vapor coexistence lines. The structures and energetics of self-trapped electron bubbles on the 1S ground state and 1P excited state are particularly investigated. Our results show that 1S and 1P bubbles exist in liquid at any temperature, whereas 1S bubbles exist in vapor only above 1.6 K in (3)He and above 2.8 K in (4)He, 1P bubbles exist in vapor only above 2.5 K in (3)He and 4.0 K in (4)He. An initially spherical 1P bubble is unstable against deformation towards a peanut shape. In liquid, a peanut-shaped 1P bubble is held from fission by surface tension until reaching the liquid-vapor critical point, whereas in vapor it always splits into two smaller bubbles. The existence of 1P bubbles in finite-temperature liquid helium and their fission instability in helium vapor reveal interesting physics in this system. PMID:22755590

  18. Comparison of mechanical stress and change in bone mineral density between two types of femoral implant using finite element analysis.

    PubMed

    Hirata, Yasuhide; Inaba, Yutaka; Kobayashi, Naomi; Ike, Hiroyuki; Fujimaki, Hiroshi; Saito, Tomoyuki

    2013-12-01

    Stress shielding after total hip arthroplasty (THA) remains an unsolved issue. Various patterns of mechanical stress appear according to the type of femoral stem used. To compare differences in mechanical stress conditions between Zweymuller type and fit-and-fill type stems, finite element analysis (FEA) was performed. Differences in bone mineral density (BMD) changes in the femur were also compared. Maximum stress was confirmed in Gruen zone 4, whereas zone 1 had the minimum amount of stress with both types of implant. The Zweymuller stem group had less mechanical stress and lower BMD in zone 7 than the fit-and-fill stem group. In conclusion, differences in mechanical stress may be related to changes in BMD after THA. PMID:23683518

  19. The One-Body and Two-Body Density Matrices of Finite Nuclei and Center-of-Mass Correlations

    SciTech Connect

    Shebeko, A.; Papakonstantinou, P.; Mavrommatis, E.

    2006-04-26

    A method is presented for the calculation of the one-body (1DM) and two-body (2DM) density matrices and their Fourier transforms in momentum space, that is consistent with the requirement for translational invariance (TI), in the case of a nucleus (a finite self-bound system). We restore TI by using the so-called fixed center-of-mass (CM) approximation for constructing an intrinsic nuclear ground state wavefunction (WF) by starting from a non-translationally invariant (nTI) WF and applying a projection prescription. We discuss results for the one-body (OBMD) and two-body (TBMD) momentum distributions of the 4He nucleus calculated with the Slater determinant of the harmonic oscillator (HO) orbitals, as the initial nTI WF. Effects of such an inclusion of CM correlations are found to be quite important in the momentum distributions.

  20. Irreversible bimolecular reactions with inertia: from the trapping to the target setting at finite densities.

    PubMed

    Piazza, Francesco; Foffi, Giuseppe; De Michele, Cristiano

    2013-06-19

    We investigate numerically pseudo-first-order irreversible bimolecular reactions of the type A + B → B between hard spheres undergoing event-driven Brownian dynamics. We study the encounter rate and the survival probability of A particles as functions of the packing fraction ϕ in the trapping (a single particle diffusing among static non-overlapping traps) and target (many traps diffusing in the presence of a single static target particle) settings, as well as in the case of diffusing traps and particles (full mobility). We show that, since inertial effects are accounted for in our simulation protocol, the standard Smoluchowski theory of coagulation of non-interacting colloids is recovered only at times greater than a characteristic time Δt, marking the transition from the under-damped to the over-damped regime. We show that the survival probability S(t) decays exponentially during this first stage, with a rate 1/τ0 is proportional to φ. Furthermore, we work out a simple analytical expression that is able to capture to an excellent extent the numerical results for t < Δt at low and intermediate densities. Moreover, we demonstrate that the time constant of the asymptotic exponential decay of S(t) for diffusing traps and particles is k(S)(-1), where kS = 4π(DA + DB)Rρ is the Smoluchowski rate. Detailed analyses of the effective decay exponent β = d [log(-logS(t))]/d (logt) and of the steady-state encounter rate reveal that the full mobility and trapping problem are characterized by very similar kinetics, rather different from the target problem. Our results do not allow one to ascertain whether the prediction S(t) is proportional to exp(-at(3/2)) (a = const.) as t → ∞ for the trapping problem in 3D is indeed recovered. In fact, at high density, S(t) is dominated by short encounter times, which makes it exceedingly hard to record the events corresponding to the exploration of large, trap-free regions. As a consequence, at high densities the steady

  1. Validation of density-elasticity relationships for finite element modeling of human pelvic bone by modal analysis.

    PubMed

    Scholz, Roger; Hoffmann, Falk; von Sachsen, Sandra; Drossel, Welf-Guntram; Klöhn, Carsten; Voigt, Christian

    2013-10-18

    In total hip arthroplasty and particularly in revision surgery, computer assisted pre-operative prediction of the best possible anchorage strategy for implant fixation would be a great help to the surgeon. Computer simulation relies on validated numerical models. In the current study, three density-elasticity relationships (No. 1-3) from the literature for inhomogeneous material parameter assignment from CT data in automated finite element (FE) modeling of long bones were evaluated for their suitability for FE modeling of human pelvic bone. Numerical modal analysis was conducted on 10 FE models of hemipelvic bone specimens and compared to the gold standard provided by experimental modal analysis results from a previous in-vitro study on the same specimens. Overall, calculated resonance frequencies came out lower than measured values. Magnitude of mean relative deviation of numerical resonance frequencies with regard to measured values is lowest for the density-elasticity relationship No. 3 (-15.9%) and considerably higher for both density-elasticity relationships No. 1 (-41.1%) and No. 2 (-45.0%). Mean MAC values over all specimens amount to 77.8% (No. 1), 78.5% (No. 2), and 83.0% (No. 3). MAC results show, that mode shapes are only slightly influenced by material distribution. Calculated resonance frequencies are generally lower than measured values, which indicates, that numerical models lack stiffness. Even when using the best suited (No. 3) out of three investigated density-elasticity relationships, in FE modeling of pelvic bone a considerable underestimation of model stiffness has to be taken into account. PMID:24001928

  2. Observation of finite-wavelength screening in high-energy-density matter.

    PubMed

    Chapman, D A; Vorberger, J; Fletcher, L B; Baggott, R A; Divol, L; Döppner, T; Falcone, R W; Glenzer, S H; Gregori, G; Guymer, T M; Kritcher, A L; Landen, O L; Ma, T; Pak, A E; Gericke, D O

    2015-01-01

    A key component for the description of charged particle systems is the screening of the Coulomb interaction between charge carriers. First investigated in the 1920s by Debye and Hückel for electrolytes, charge screening is important for determining the structural and transport properties of matter as diverse as astrophysical and laboratory plasmas, nuclear matter such as quark-gluon plasmas, electrons in solids, planetary cores and charged macromolecules. For systems with negligible dynamics, screening is still mostly described using a Debye-Hückel-type approach. Here, we report the novel observation of a significant departure from the Debye-Hückel-type model in high-energy-density matter by probing laser-driven, shock-compressed plastic with high-energy X-rays. We use spectrally resolved X-ray scattering in a geometry that enables direct investigation of the screening cloud, and demonstrate that the observed elastic scattering amplitude is only well described within a more general approach. PMID:25904218

  3. Observation of finite-wavelength screening in high-energy-density matter

    DOE PAGESBeta

    Chapman, D. A.; Vorberger, J.; Fletcher, L. B.; Baggott, R. A.; Divol, L.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Gregori, G.; Guymer, T. M.; et al

    2015-04-23

    A key component for the description of charged particle systems is the screening of the Coulomb interaction between charge carriers. First investigated in the 1920s by Debye and Hückel for electrolytes, charge screening is important for determining the structural and transport properties of matter as diverse as astrophysical and laboratory plasmas, nuclear matter such as quark-gluon plasmas, electrons in solids, planetary cores and charged macromolecules. For systems with negligible dynamics, screening is still mostly described using a Debye–Hückel-type approach. Here, we report the novel observation of a significant departure from the Debye–Hückel-type model in high-energy-density matter by probing laser-driven, shock-compressedmore » plastic with high-energy X-rays. We use spectrally resolved X-ray scattering in a geometry that enables direct investigation of the screening cloud, and demonstrate that the observed elastic scattering amplitude is only well described within a more general approach.« less

  4. Observation of finite-wavelength screening in high-energy-density matter

    SciTech Connect

    Chapman, D. A.; Vorberger, J.; Fletcher, L. B.; Baggott, R. A.; Divol, L.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Gregori, G.; Guymer, T. M.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Pak, A. E.; Gericke, D. O.

    2015-04-23

    A key component for the description of charged particle systems is the screening of the Coulomb interaction between charge carriers. First investigated in the 1920s by Debye and Hückel for electrolytes, charge screening is important for determining the structural and transport properties of matter as diverse as astrophysical and laboratory plasmas, nuclear matter such as quark-gluon plasmas, electrons in solids, planetary cores and charged macromolecules. For systems with negligible dynamics, screening is still mostly described using a Debye–Hückel-type approach. Here, we report the novel observation of a significant departure from the Debye–Hückel-type model in high-energy-density matter by probing laser-driven, shock-compressed plastic with high-energy X-rays. We use spectrally resolved X-ray scattering in a geometry that enables direct investigation of the screening cloud, and demonstrate that the observed elastic scattering amplitude is only well described within a more general approach.

  5. Observation of finite-wavelength screening in high-energy-density matter

    PubMed Central

    Chapman, D. A.; Vorberger, J.; Fletcher, L. B.; Baggott, R. A.; Divol, L.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Gregori, G.; Guymer, T. M.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Pak, A. E.; Gericke, D. O.

    2015-01-01

    A key component for the description of charged particle systems is the screening of the Coulomb interaction between charge carriers. First investigated in the 1920s by Debye and Hückel for electrolytes, charge screening is important for determining the structural and transport properties of matter as diverse as astrophysical and laboratory plasmas, nuclear matter such as quark-gluon plasmas, electrons in solids, planetary cores and charged macromolecules. For systems with negligible dynamics, screening is still mostly described using a Debye–Hückel-type approach. Here, we report the novel observation of a significant departure from the Debye–Hückel-type model in high-energy-density matter by probing laser-driven, shock-compressed plastic with high-energy X-rays. We use spectrally resolved X-ray scattering in a geometry that enables direct investigation of the screening cloud, and demonstrate that the observed elastic scattering amplitude is only well described within a more general approach. PMID:25904218

  6. QCD with chiral 4-fermion interactions ({chi}QCD)

    SciTech Connect

    Kogut, J.B.; Sinclair, D.K.

    1996-10-01

    Lattice QCD with staggered quarks is augmented by the addition of a chiral 4-fermion interaction. The Dirac operator is now non-singular at m{sub q}=0, decreasing the computing requirements for light quark simulations by at least an order of magnitude. We present preliminary results from simulations at finite and zero temperatures for m{sub q}=0, with and without gauge fields. Chiral QCD enables simulations at physical u and d quark masses with at least an order of magnitude saving in CPU time. It also enables simulations with zero quark masses which is important for determining the equation of state. A renormalization group analysis will be needed to continue to the continuum limit. 7 refs., 2 figs.

  7. Nucleon Axial Charge in Full Lattice QCD

    SciTech Connect

    Edwards, R.G.; Richards, D.G.; Fleming, G.T.; Haegler, Ph.; Negele, J.W.; Pochinsky, A.V.; Orginos, K.; Renner, D.B.; Schroers, W.

    2006-02-10

    The nucleon axial charge is calculated as a function of the pion mass in full QCD. Using domain wall valence quarks and improved staggered sea quarks, we present the first calculation with pion masses as light as 354 MeV and volumes as large as (3.5 fm){sup 3}. We show that finite volume effects are small for our volumes and that a constrained fit based on finite volume chiral perturbation theory agrees with experiment within 7% statistical errors.

  8. Quarkyonic Matter and the Revised Phase Diagram of QCD

    SciTech Connect

    McLerran,L.

    2009-03-30

    At high baryon number density, it has been proposed that a new phase of QCD matter controlsthe physics. This matter is confining but can have densities much larger than 3QCD. Its existenceis argued from large Nc approximations, and model computations. It is approximately chirallysymmetric.

  9. Brane-induced Skyrmion on S{sup 3}: Baryonic matter in holographic QCD

    SciTech Connect

    Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru

    2009-01-15

    We study baryonic matter in holographic QCD with D4/D8/D8 multi-D brane system in type IIA superstring theory. The baryon is described as the 'brane-induced Skyrmion', which is a topologically nontrivial chiral soliton in the four-dimensional meson effective action induced by holographic QCD. We employ the ''truncated-resonance model'' approach for the baryon analysis, including pion and {rho} meson fields below the ultraviolet cutoff scale M{sub KK}{approx}1 GeV, to keep the holographic duality with QCD. We describe the baryonic matter in large N{sub c} as single brane-induced Skyrmion on the three-dimensional closed manifold S{sup 3} with finite radius R. The interactions between baryons are simulated by the curvature of the closed manifold S{sup 3}, and the decrease of the size of S{sup 3} represents the increase of the total baryon-number density in the medium in this modeling. We investigate the energy density, the field configuration, the mass and the root-mean-square radius of single baryon on S{sup 3} as the function of its radius R. We find a new picture of 'pion dominance' near the critical density in the baryonic matter, where all the (axial) vector meson fields disappear and only the pion fields survive. We also find the swelling phenomena of the baryons as the precursor of the deconfinement, and propose the mechanism of the swelling in the general context of QCD. The properties of the deconfinement and the chiral symmetry restoration in the baryonic matter are examined by taking the proper order parameters. We also compare our truncated-resonance model with another instanton description of the baryon in holographic QCD, considering the role of cutoff scale M{sub KK}.

  10. Foundations of Perturbative QCD

    NASA Astrophysics Data System (ADS)

    Collins, John

    2011-04-01

    1. Introduction; 2. Why QCD?; 3. Basics of QCD; 4. Infra-red safety and non-safety; 5. Libby-Sterman analysis and power counting; 6. Parton model to parton theory I; 7. Parton model to parton theory II; 8. Factorization; 9. Corrections to the parton model in QCD; 10. Factorization and subtractions; 11. DIS in QCD; 12. Fragmentation; 13. TMD factorization; 14. Hadron-hadron collisions; 15. More advanced topics; Appendices; References; Index.

  11. Foundations of Perturbative QCD

    NASA Astrophysics Data System (ADS)

    Collins, John

    2013-11-01

    1. Introduction; 2. Why QCD?; 3. Basics of QCD; 4. Infra-red safety and non-safety; 5. Libby-Sterman analysis and power counting; 6. Parton model to parton theory I; 7. Parton model to parton theory II; 8. Factorization; 9. Corrections to the parton model in QCD; 10. Factorization and subtractions; 11. DIS in QCD; 12. Fragmentation; 13. TMD factorization; 14. Hadron-hadron collisions; 15. More advanced topics; Appendices; References; Index.

  12. Probing QCD at high energy via correlations

    SciTech Connect

    Jalilian-Marian, Jamal

    2011-04-26

    A hadron or nucleus at high energy or small x{sub Bj} contains many gluons and may be described as a Color Glass Condensate. Angular and rapidity correlations of two particles produced in high energy hadron-hadron collisions is a sensitive probe of high gluon density regime of QCD. Evolution equations which describe rapidity dependence of these correlation functions are derived from a QCD effective action.

  13. Electrostatic interactions in finite systems treated with periodic boundary conditions: application to linear-scaling density functional theory.

    PubMed

    Hine, Nicholas D M; Dziedzic, Jacek; Haynes, Peter D; Skylaris, Chris-Kriton

    2011-11-28

    We present a comparison of methods for treating the electrostatic interactions of finite, isolated systems within periodic boundary conditions (PBCs), within density functional theory (DFT), with particular emphasis on linear-scaling (LS) DFT. Often, PBCs are not physically realistic but are an unavoidable consequence of the choice of basis set and the efficacy of using Fourier transforms to compute the Hartree potential. In such cases the effects of PBCs on the calculations need to be avoided, so that the results obtained represent the open rather than the periodic boundary. The very large systems encountered in LS-DFT make the demands of the supercell approximation for isolated systems more difficult to manage, and we show cases where the open boundary (infinite cell) result cannot be obtained from extrapolation of calculations from periodic cells of increasing size. We discuss, implement, and test three very different approaches for overcoming or circumventing the effects of PBCs: truncation of the Coulomb interaction combined with padding of the simulation cell, approaches based on the minimum image convention, and the explicit use of open boundary conditions (OBCs). We have implemented these approaches in the ONETEP LS-DFT program and applied them to a range of systems, including a polar nanorod and a protein. We compare their accuracy, complexity, and rate of convergence with simulation cell size. We demonstrate that corrective approaches within PBCs can achieve the OBC result more efficiently and accurately than pure OBC approaches. PMID:22128924

  14. Unified description of the dc conductivity of monolayer and bilayer graphene at finite densities based on resonant scatterers

    NASA Astrophysics Data System (ADS)

    Ferreira, Aires; Viana-Gomes, J.; Nilsson, Johan; Mucciolo, E. R.; Peres, N. M. R.; Castro Neto, A. H.

    2011-04-01

    We show that a coherent picture of the dc conductivity of monolayer and bilayer graphene at finite electronic densities emerges upon considering that strong short-range potentials are the main source of scattering in these two systems. The origin of the strong short-range potentials may lie in adsorbed hydrocarbons at the surface of graphene. The equivalence among results based on the partial-wave description of scattering, the Lippmann-Schwinger equation, and the T-matrix approach is established. Scattering due to resonant impurities close to the neutrality point is investigated via a numerical computation of the Kubo formula using a kernel polynomial method. We find that relevant adsorbate species originate impurity bands in monolayer and bilayer graphene close to the Dirac point. In the midgap region, a plateau of minimum conductivity of about e2/h (per layer) is induced by the resonant disorder. In bilayer graphene, a large adsorbate concentration can develop an energy gap between midgap and high-energy states. As a consequence, the conductivity plateau is supressed near the edges and a “conductivity gap” takes place. Finally, a scattering formalism for electrons in biased bilayer graphene, taking into account the degeneracy of the spectrum, is developed and the dc conductivity of that system is studied.

  15. Bone density and anisotropy affect periprosthetic cement and bone stresses after anatomical glenoid replacement: A micro finite element analysis.

    PubMed

    Chevalier, Yan; Santos, Inês; Müller, Peter E; Pietschmann, Matthias F

    2016-06-14

    Glenoid loosening is still a main complication for shoulder arthroplasty. We hypothesize that cement and bone stresses potentially leading to fixation failure are related not only to glenohumeral conformity, fixation design or eccentric loading, but also to bone volume fraction, cortical thickness and degree of anisotropy in the glenoid. In this study, periprosthetic bone and cement stresses were computed with micro finite element models of the replaced glenoid depicting realistic bone microstructure. These models were used to quantify potential effects of bone microstructural parameters under loading conditions simulating different levels of glenohumeral conformity and eccentric loading simulating glenohumeral instability. Results show that peak cement stresses were achieved near the cement-bone interface in all loading schemes. Higher stresses within trabecular bone tissue and cement mantle were obtained within specimens of lower bone volume fraction and in regions of low anisotropy, increasing with decreasing glenohumeral conformity and reaching their maxima below the keeled design when the load is shifted superiorly. Our analyses confirm the combined influences of eccentric load shifts with reduced bone volume fraction and anisotropy on increasing periprosthetic stresses. They finally suggest that improving fixation of glenoid replacements must reduce internal cement and bone tissue stresses, in particular in glenoids of low bone density and heterogeneity. PMID:27087675

  16. Electrostatic interactions in finite systems treated with periodic boundary conditions: Application to linear-scaling density functional theory

    NASA Astrophysics Data System (ADS)

    Hine, Nicholas D. M.; Dziedzic, Jacek; Haynes, Peter D.; Skylaris, Chris-Kriton

    2011-11-01

    We present a comparison of methods for treating the electrostatic interactions of finite, isolated systems within periodic boundary conditions (PBCs), within density functional theory (DFT), with particular emphasis on linear-scaling (LS) DFT. Often, PBCs are not physically realistic but are an unavoidable consequence of the choice of basis set and the efficacy of using Fourier transforms to compute the Hartree potential. In such cases the effects of PBCs on the calculations need to be avoided, so that the results obtained represent the open rather than the periodic boundary. The very large systems encountered in LS-DFT make the demands of the supercell approximation for isolated systems more difficult to manage, and we show cases where the open boundary (infinite cell) result cannot be obtained from extrapolation of calculations from periodic cells of increasing size. We discuss, implement, and test three very different approaches for overcoming or circumventing the effects of PBCs: truncation of the Coulomb interaction combined with padding of the simulation cell, approaches based on the minimum image convention, and the explicit use of open boundary conditions (OBCs). We have implemented these approaches in the ONETEP LS-DFT program and applied them to a range of systems, including a polar nanorod and a protein. We compare their accuracy, complexity, and rate of convergence with simulation cell size. We demonstrate that corrective approaches within PBCs can achieve the OBC result more efficiently and accurately than pure OBC approaches.

  17. A dislocation density based crystal plasticity finite element model: Application to a two-phase polycrystalline HCP/BCC composites

    NASA Astrophysics Data System (ADS)

    Ardeljan, Milan; Beyerlein, Irene J.; Knezevic, Marko

    2014-05-01

    We present a multiscale model for anisotropic, elasto-plastic, rate- and temperature-sensitive deformation of polycrystalline aggregates to large plastic strains. The model accounts for a dislocation-based hardening law for multiple slip modes and links a single-crystal to a polycrystalline response using a crystal plasticity finite element based homogenization. It is capable of predicting local stress and strain fields based on evolving microstructure including the explicit evolution of dislocation density and crystallographic grain reorientation. We apply the model to simulate monotonic mechanical response of a hexagonal close-packed metal, zirconium (Zr), and a body-centered cubic metal, niobium (Nb), and study the texture evolution and deformation mechanisms in a two-phase Zr/Nb layered composite under severe plastic deformation. The model predicts well the texture in both co-deforming phases to very large plastic strains. In addition, it offers insights into the active slip systems underlying texture evolution, indicating that the observed textures develop by a combination of prismatic, pyramidal, and anomalous basal slip in Zr and primarily {110}<111> slip and secondly {112}<111> slip in Nb.

  18. In Situ Parameter Identification of Optimal Density-Elastic Modulus Relationships in Subject-Specific Finite Element Models of the Proximal Femur

    PubMed Central

    Cong, Alexander; Buijs, Jorn Op Den; Dragomir-Daescu, Dan

    2010-01-01

    Quantitative computed tomography based finite element analysis of the femur is currently being investigated as a method for non-invasive stiffness and strength predictions of the proximal femur. The specific objective of this study was to determine better conversion relationships from QCT-derived bone density to elastic modulus, in order to achieve accurate predictions of the overall femoral stiffness in a fall-on-the-hip loading configuration. Twenty-two femurs were scanned, segmented and meshed for finite element analysis. The elastic moduli of the elements were assigned according to the average density in the element. The femurs were then tested to fracture and force-displacement data was collected to calculate femoral stiffness. Using a training set of nine femurs, finite element analyses were performed and the parameters of the density-elastic modulus relationship were iteratively adjusted to obtain optimal stiffness predictions in a least-squares sense. The results were then validated on the remaining 13 femurs. Our novel procedure resulted in parameter identification of both power and sigmoid functions for density-elastic modulus conversion for this specific loading scenario. Our in situ estimated power law achieved improved predictions compared to published power laws, and the sigmoid function yielded even smaller prediction errors. In the future, these results will be used to further improve the femoral strength predictions of our finite element models. PMID:21030287

  19. Quark eigenmodes and lattice QCD

    NASA Astrophysics Data System (ADS)

    Liu, Guofeng

    In this thesis, we study a number of topics in lattice QCD through the low-lying quark eigenmodes in the domain wall fermion (DWF) formulation in the quenched approximation. Specifically, we present results for the chiral condensate measured from these eigenmodes; we investigate the QCD vacuum structure by looking at the correlation between the magnitude of the chirality density, |psi†(x)gamma5psi( x)|, and the normal density, psi†( x)psi(x), for these states; we study the behavior of DWF formulation at large quark masses by investigating the mass dependence of the eigenvalues of the physical four dimensional-states as well as the bulk, five-dimensional states.

  20. Nuclear reactions from lattice QCD

    SciTech Connect

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.

  1. Nuclear reactions from lattice QCD

    DOE PAGESBeta

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less

  2. QCD for Postgraduates (3/5)

    ScienceCinema

    None

    2011-10-06

    Modern QCD - Lecture 3 We will introduce processes with initial-state hadrons and discuss parton distributions, sum rules, as well as the need for a factorization scale once radiative corrections are taken into account. We will then discuss the DGLAP equation, the evolution of parton densities, as well as ways in which parton densities are extracted from data.

  3. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.

    PubMed

    Väänänen, Sami P; Grassi, Lorenzo; Flivik, Gunnar; Jurvelin, Jukka S; Isaksson, Hanna

    2015-08-01

    Areal bone mineral density (aBMD), as measured by dual-energy X-ray absorptiometry (DXA), predicts hip fracture risk only moderately. Simulation of bone mechanics based on DXA imaging of the proximal femur, may help to improve the prediction accuracy. Therefore, we collected three (1-3) image sets, including CT images and DXA images of 34 proximal cadaver femurs (set 1, including 30 males, 4 females), 35 clinical patient CT images of the hip (set 2, including 27 males, 8 females) and both CT and DXA images of clinical patients (set 3, including 12 female patients). All CT images were segmented manually and landmarks were placed on both femurs and pelvises. Two separate statistical appearance models (SAMs) were built using the CT images of the femurs and pelvises in sets 1 and 2, respectively. The 3D shape of the femur was reconstructed from the DXA image by matching the SAMs with the DXA images. The orientation and modes of variation of the SAMs were adjusted to minimize the sum of the absolute differences between the projection of the SAMs and a DXA image. The mesh quality and the location of the SAMs with respect to the manually placed control points on the DXA image were used as additional constraints. Then, finite element (FE) models were built from the reconstructed shapes. Mean point-to-surface distance between the reconstructed shape and CT image was 1.0 mm for cadaver femurs in set 1 (leave-one-out test) and 1.4 mm for clinical subjects in set 3. The reconstructed volumetric BMD showed a mean absolute difference of 140 and 185 mg/cm(3) for set 1 and set 3 respectively. The generation of the SAM and the limitation of using only one 2D image were found to be the most significant sources of errors in the shape reconstruction. The noise in the DXA images had only small effect on the accuracy of the shape reconstruction. DXA-based FE simulation was able to explain 85% of the CT-predicted strength of the femur in stance loading. The present method can be used to

  4. Lattice QCD phase diagram in and away from the strong coupling limit.

    PubMed

    de Forcrand, Ph; Langelage, J; Philipsen, O; Unger, W

    2014-10-10

    We study lattice QCD with four flavors of staggered quarks. In the limit of infinite gauge coupling, "dual" variables can be introduced, which render the finite-density sign problem mild and allow a full determination of the μ-T phase diagram by Monte Carlo simulations, also in the chiral limit. However, the continuum limit coincides with the weak coupling limit. We propose a strong-coupling expansion approach towards the continuum limit. We show first results, including the phase diagram and its chiral critical point, from this expansion truncated at next-to-leading order. PMID:25375704

  5. Study of the deconfinement phase transition in a finite volume with massive particles: Hydrodynamics of the system near the transition

    SciTech Connect

    Ghenam, L.; Djoudi, A. Ait El

    2012-06-27

    We study the finite size and finite mass effects for the thermal deconfinement phase transition in Quantum Chromodynamics (QCD), using a simple model of coexistence of hadronic (H) gas and quark-gluon plasma (QGP) phases in a finite volume. We consider the equations of state of the two phases with the QGP containing two massless u and d quarks and massive s quarks, and a hadronic gas of massive pions, and we probe the system near the transition. For this, we examine the behavior of the most important hydrodynamical quantities describing the system, at a vanishing chemical potential ({mu}= 0), with temperature and energy density.

  6. Exploring hyperons and hypernuclei with lattice QCD

    SciTech Connect

    Beane, S.R.; Bedaque, P.F.; Parreno, A.; Savage, M.J.

    2003-01-01

    In this work we outline a program for lattice QCD that wouldprovide a first step toward understanding the strong and weakinteractions of strange baryons. The study of hypernuclear physics hasprovided a significant amount of information regarding the structure andweak decays of light nuclei containing one or two Lambda's, and Sigma's.From a theoretical standpoint, little is known about the hyperon-nucleoninteraction, which is required input for systematic calculations ofhypernuclear structure. Furthermore, the long-standing discrepancies inthe P-wave amplitudes for nonleptonic hyperon decays remain to beunderstood, and their resolution is central to a better understanding ofthe weak decays of hypernuclei. We present a framework that utilizesLuscher's finite-volume techniques in lattice QCD to extract thescattering length and effective range for Lambda-N scattering in both QCDand partially-quenched QCD. The effective theory describing thenonleptonic decays of hyperons using isospin symmetry alone, appropriatefor lattice calculations, is constructed.

  7. Spectral continuity in dense QCD

    SciTech Connect

    Hatsuda, Tetsuo; Yamamoto, Naoki; Tachibana, Motoi

    2008-07-01

    The vector mesons in three-flavor quark matter with chiral and diquark condensates are studied using the in-medium QCD sum rules. The diquark condensate leads to a mass splitting between the flavor-octet and flavor-singlet channels. At high density, the singlet vector meson disappears from the low-energy spectrum, while the octet vector mesons survive as light excitations with a mass comparable to the fermion gap. A possible connection between the light gluonic modes and the flavor-octet vector mesons at high density is also discussed.

  8. Effects of finite size and symmetry energy on the phase transition of stellar matter at subnuclear densities

    NASA Astrophysics Data System (ADS)

    Bao, S. S.; Shen, H.

    2016-02-01

    We study the liquid-gas phase transition of stellar matter with the inclusion of the finite-size effect from surface and Coulomb energies. The equilibrium conditions for two coexisting phases are determined by minimizing the total free energy including the surface and Coulomb contributions, which are different from the Gibbs conditions used in the bulk calculations. The finite-size effect can significantly reduce the region of the liquid-gas mixed phase. The influence of the symmetry energy on the liquid-gas phase transition is investigated with the inclusion of finite-size effects. It is found that the slope of the symmetry energy plays an important role in determining the boundary and properties of the mixed phase.

  9. QCD results at CDF

    SciTech Connect

    Norniella, Olga; /Barcelona, IFAE

    2005-01-01

    Recent QCD measurements from the CDF collaboration at the Tevatron are presented, together with future prospects as the luminosity increases. The measured inclusive jet cross section is compared to pQCD NLO predictions. Precise measurements on jet shapes and hadronic energy flows are compared to different phenomenological models that describe gluon emissions and the underlying event in hadron-hadron interactions.

  10. Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Ryttov, Thomas A.

    2016-08-01

    We suggest how to consistently calculate the anomalous dimension γ* of the ψ ¯ ψ operator in finite order perturbation theory at an infrared fixed point for asymptotically free theories. If the n +1 loop beta function and n loop anomalous dimension are known, then γ* can be calculated exactly and fully scheme independently in a Banks-Zaks expansion through O (Δfn) , where Δf=N¯ f-Nf , Nf is the number of flavors, and N¯f is the number of flavors above which asymptotic freedom is lost. For a supersymmetric theory, the calculation preserves supersymmetry order by order in Δf. We then compute γ* through O (Δf2) for supersymmetric QCD in the dimensional reduction scheme and find that it matches the exact known result. We find that γ* is astonishingly well described in perturbation theory already at the few loops level throughout the entire conformal window. We finally compute γ* through O (Δf3) for QCD and a variety of other nonsupersymmetric fermionic gauge theories. Small values of γ* are observed for a large range of flavors.

  11. Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD.

    PubMed

    Ryttov, Thomas A

    2016-08-12

    We suggest how to consistently calculate the anomalous dimension γ_{*} of the ψ[over ¯]ψ operator in finite order perturbation theory at an infrared fixed point for asymptotically free theories. If the n+1 loop beta function and n loop anomalous dimension are known, then γ_{*} can be calculated exactly and fully scheme independently in a Banks-Zaks expansion through O(Δ_{f}^{n}), where Δ_{f}=N[over ¯]_{f}-N_{f}, N_{f} is the number of flavors, and N[over ¯]_{f} is the number of flavors above which asymptotic freedom is lost. For a supersymmetric theory, the calculation preserves supersymmetry order by order in Δ_{f}. We then compute γ_{*} through O(Δ_{f}^{2}) for supersymmetric QCD in the dimensional reduction scheme and find that it matches the exact known result. We find that γ_{*} is astonishingly well described in perturbation theory already at the few loops level throughout the entire conformal window. We finally compute γ_{*} through O(Δ_{f}^{3}) for QCD and a variety of other nonsupersymmetric fermionic gauge theories. Small values of γ_{*} are observed for a large range of flavors. PMID:27563948

  12. Transverse momentum distributions inside the nucleon from lattice QCD

    SciTech Connect

    Musch, B. U.; Haegler, Ph.; Negele, J. W.; Schaefer, A.

    2011-07-15

    We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.

  13. Ion cyclotron wave coupling in the magnetized plasma edge of tokamaks: impact of a finite, inhomogeneous density inside the antenna box

    NASA Astrophysics Data System (ADS)

    Lu, L.; Crombé, K.; Van Eester, D.; Colas, L.; Jacquot, J.; Heuraux, S.

    2016-05-01

    Most present ion cyclotron resonant frequency (ICRF) heating codes and antenna codes assume the antenna sitting in a vacuum region and consider the fast wave only, which implicitly performs an abrupt density transition from vacuum to above lower hybrid (LH) resonance. The impact of the appearance of the LH resonance is entirely overlooked in their simulations. We studied the impact of densities that decay continuously inside the antenna box on near field patterns and power coupling. A new full wave code based on the COMSOL Finite Element Solver has been developed to investigate this topic. It is shown that: up to the memory limits of the adopted workstation, the local RF field pattern in low-density regions below the LH resonance changes with the grid size. Interestingly and importantly, however, the total coupled toroidal spectrum is almost independent on the mesh size and is weakly affected by the presence of the density profile inside the antenna box in dipole toroidal strap phasing. This suggests one can drop out this density for coupling studies to speed up the computation. Simulation also shows that varying the density gradient in the fast wave evanescence region has no significant effect on wave coupling.

  14. Nuclear Physics and Lattice QCD

    SciTech Connect

    Beane, Silas

    2003-11-01

    Impressive progress is currently being made in computing properties and interac- tions of the low-lying hadrons using lattice QCD. However, cost limitations will, for the foreseeable future, necessitate the use of quark masses, Mq, that are signif- icantly larger than those of nature, lattice spacings, a, that are not significantly smaller than the physical scale of interest, and lattice sizes, L, that are not sig- nificantly larger than the physical scale of interest. Extrapolations in the quark masses, lattice spacing and lattice volume are therefore required. The hierarchy of mass scales is: L 1 j Mq j â ºC j a 1 . The appropriate EFT for incorporating the light quark masses, the finite lattice spacing and the lattice size into hadronic observables is C-PT, which provides systematic expansions in the small parame- ters e m L, 1/ Lâ ºC, p/â ºC, Mq/â ºC and aâ ºC . The lattice introduces other unphysical scales as well. Lattice QCD quarks will increasingly be artificially separated

  15. Lattice QCD in rotating frames.

    PubMed

    Yamamoto, Arata; Hirono, Yuji

    2013-08-23

    We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD. PMID:24010426

  16. Lee-Yang zero distribution of high temperature QCD and the Roberge-Weiss phase transition

    NASA Astrophysics Data System (ADS)

    Nagata, Keitaro; Kashiwa, Kouji; Nakamura, Atsushi; Nishigaki, Shinsuke M.

    2015-05-01

    Canonical partition functions and Lee-Yang zeros of QCD at finite density and high temperature are studied. Recent lattice simulations confirm that the free energy of QCD is a quartic function of quark chemical potential at temperature slightly above pseudocritical temperature Tc, as in the case with a gas of free massless fermions. We present analytic derivation of the canonical partition functions and Lee-Yang zeros for this type of free energy using the saddle point approximation. We also perform lattice QCD simulation in a canonical approach using the fugacity expansion of the fermion determinant and carefully examine its reliability. By comparing the analytic and numerical results, we conclude that the canonical partition functions follow the Gaussian distribution of the baryon number, and the accumulation of Lee-Yang zeros of these canonical partition functions exhibit the first-order Roberge-Weiss phase transition. We discuss the validity and applicable range of the result and its implications both for theoretical and experimental studies.

  17. Nf=2 QCD chiral phase transition with Wilson fermions at zero and imaginary chemical potential

    NASA Astrophysics Data System (ADS)

    Philipsen, Owe; Pinke, Christopher

    2016-06-01

    The order of the thermal phase transition in the chiral limit of quantum chromodynamics (QCD) with two dynamical flavors of quarks is a long-standing issue and still not known in the continuum limit. Whether the transition is first or second order has important implications for the QCD phase diagram and the existence of a critical end point at finite densities. We follow a recently proposed approach to explicitly determine the region of first order chiral transitions at imaginary chemical potential, where it is large enough to be simulated, and extrapolate it to zero chemical potential with known critical exponents. Using unimproved Wilson fermions on coarse Nt=4 lattices, the first order region turns out to be so large that no extrapolation is necessary. The critical pion mass mπc≈560 MeV is by nearly a factor 10 larger than the corresponding one using staggered fermions. Our results are in line with investigations of three-flavor QCD using improved Wilson fermions and indicate that the systematic error on the two-flavor chiral transition is still of order 100%.

  18. From QCD to physical resonances

    NASA Astrophysics Data System (ADS)

    Bolton, Daniel R.; Briceño, Raúl A.; Wilson, David J.

    2016-05-01

    In this talk, we present the first chiral extrapolation of a resonant scattering amplitude obtained from lattice QCD. Finite-volume spectra, determined by the Hadron Spectrum Collaboration at mπ = 236 MeV [1], for the isotriplet ππ channel are analyzed using the Lüscher method to determine the infinite-volume scattering amplitude. Unitarized Chiral Perturbation Theory is then used to extrapolate the scattering amplitude to the physical light quark masses. The viability of this procedure is demonstrated by its agreement with the experimentally determined scattering phase shift up to center-of-mass energies of 1.2 GeV. Finally, we analytically continue the amplitude to the complex plane to obtain the ρ-pole at [ 755 (2 )(1 )(02 20 ) -i/2 129 (3 )(1 )(1 7 ) ] MeV.

  19. Resonances in QCD

    NASA Astrophysics Data System (ADS)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  20. Exploring Hyperons and Hypernuclei with Lattice QCD

    SciTech Connect

    S.R. Beane; P.F. Bedaque; A. Parreno; M.J. Savage

    2005-01-01

    In this work we outline a program for lattice QCD that would provide a first step toward understanding the strong and weak interactions of strange baryons. The study of hypernuclear physics has provided a significant amount of information regarding the structure and weak decays of light nuclei containing one or two Lambda's, and Sigma's. From a theoretical standpoint, little is known about the hyperon-nucleon interaction, which is required input for systematic calculations of hypernuclear structure. Furthermore, the long-standing discrepancies in the P-wave amplitudes for nonleptonic hyperon decays remain to be understood, and their resolution is central to a better understanding of the weak decays of hypernuclei. We present a framework that utilizes Luscher's finite-volume techniques in lattice QCD to extract the scattering length and effective range for Lambda-N scattering in both QCD and partially-quenched QCD. The effective theory describing the nonleptonic decays of hyperons using isospin symmetry alone, appropriate for lattice calculations, is constructed.

  1. The QCD running coupling

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-09-01

    We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and

  2. QCD (&) event generators

    SciTech Connect

    Skands, Peter Z.; /Fermilab

    2005-07-01

    Recent developments in QCD phenomenology have spurred on several improved approaches to Monte Carlo event generation, relative to the post-LEP state of the art. In this brief review, the emphasis is placed on approaches for (1) consistently merging fixed-order matrix element calculations with parton shower descriptions of QCD radiation, (2) improving the parton shower algorithms themselves, and (3) improving the description of the underlying event in hadron collisions.

  3. Comparison between mechanical stress and bone mineral density in the femur after total hip arthroplasty by using subject-specific finite element analyses.

    PubMed

    Ike, Hiroyuki; Inaba, Yutaka; Kobayashi, Naomi; Hirata, Yasuhide; Yukizawa, Yohei; Aoki, Chie; Choe, Hyonmin; Saito, Tomoyuki

    2015-08-01

    The mechanism underling bone mineral density (BMD) loss that occurs in the femur after total hip arthroplasty (THA) remains unknown. We compared the equivalent stress and strain energy density (SED) to BMD in the femur after THA using subject-specific finite element analyses. Twenty-four patients who had undergone primary cementless THA were analysed. BMD was measured using dual-energy X-ray absorptiometry (DEXA) at 1 week and 3, 6 and 12 months after THA. Seven regions of interest (ROIs) were defined in accordance with Gruen's system (ROIs 1-7). Computed tomography images of the femurs were acquired pre- and postoperatively, and the images were converted into three-dimensional finite element (FE) models. Equivalent stress and SED were analysed and compared with DEXA data. BMD was maintained 1 year after THA in ROIs 3, 4, 5 and 6, whereas BMD decreased in ROIs 1, 2 and 7. FE analysis revealed that equivalent stress in ROIs 3, 4, 5 and 6 was much higher than that in ROIs 1, 2 and 7. A significant correlation was observed between the rate of changes in BMD and equivalent stress. Reduction of equivalent stress may contribute to decrease in BMD in the femur after THA. PMID:24661022

  4. Absence of finite-temperature ballistic charge (and spin) transport in the 1D Hubbard model at half filling (and zero spin density)

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Gu, Shi-Jian; Sampaio, M. J.

    2014-06-01

    Finite-temperature T > 0 transport properties of integrable and nonintegrable one-dimensional (1D) many-particle quantum systems are rather different, showing ballistic and diffusive behavior, respectively. The repulsive 1D Hubbard model is a prominent example of an integrable correlated system. For electronic densities n ≠ 1 (and spin densities m ≠ 0) it is an ideal charge (and spin) conductor, with ballistic charge (and spin) transport for T ⩾ 0. In spite of the fact that it is solvable by the Bethe ansatz, at n = 1 (and m = 0) its T > 0 charge (and spin) transport properties are an issue that remains poorly understood. Here we combine this solution with symmetry and the explicit calculation of current-operator matrix elements between energy eigenstates to show that for on-site repulsion U > 0 and at n = 1 the charge stiffness Dη(T) vanishes for T > 0 in the thermodynamic limit. A similar behavior is found by such methods for the spin stiffness Ds(T) for U > 0 and T > 0, which vanishes at m = 0. This absence of finite temperature n = 1 ballistic charge transport and m = 0 ballistic spin transport are exact results that clarify long-standing open problems.

  5. Need for CT-based bone density modelling in finite element analysis of a shoulder arthroplasty revealed through a novel method for result analysis.

    PubMed

    Pomwenger, Werner; Entacher, Karl; Resch, Herbert; Schuller-Götzburg, Peter

    2014-10-01

    Treatment of common pathologies of the shoulder complex, such as rheumatoid arthritis and osteoporosis, is usually performed by total shoulder arthroplasty (TSA). Survival of the glenoid component is still a problem in TSA, whereas the humeral component is rarely subject to failure. To set up a finite element analysis (FEA) for simulation of a TSA in order to gain insight into the mechanical behaviour of a glenoid implant, the modelling procedure and the application of boundary conditions are of major importance because the computed result strongly depends upon the accuracy and sense of realism of the model. The goal of this study was to show the influence on glenoid stress distribution of a patient-specific bone density distribution compared with a homogenous bone density distribution for the purpose of generating a valid model in future FEA studies of the shoulder complex. Detailed information on the integration of bone density properties using existing numerical models as well as the applied boundary conditions is provided. A novel approach involving statistical analysis of values derived from an FEA is demonstrated using a cumulative distribution function. The results show well the mechanically superior behaviour of a realistic bone density distribution and therefore emphasise the necessity for patient-specific simulations in biomechanical and medical simulations. PMID:24897390

  6. Connecting physical resonant amplitudes and lattice QCD

    NASA Astrophysics Data System (ADS)

    Bolton, Daniel R.; Briceño, Raúl A.; Wilson, David J.

    2016-06-01

    We present a determination of the isovector, P-wave ππ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using mπ = 236 MeV. The finite volume spectra are described using extensions of Lüscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at mπ = 140 MeV. The scattering phase shift is found to agree with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a ρ-resonance pole at Eρ = [ 755 (2) (1) (20 -i/2 129 (3) (1) 7 1) ] MeV. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.

  7. Connecting physical resonant amplitudes and lattice QCD

    NASA Astrophysics Data System (ADS)

    Bolton, Daniel R.; Briceño, Raúl A.; Wilson, David J.

    2016-06-01

    We present a determination of the isovector, P-wave ππ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using mπ = 236 MeV. The finite volume spectra are described using extensions of Lüscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at mπ = 140 MeV. The scattering phase shift is found to agree with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a ρ-resonance pole at Eρ = [ 755 (2) (1) (20 02) -i/2 129 (3) (1) (7 1) ] MeV. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.

  8. The nucleon axial charge in full lattice QCD

    SciTech Connect

    Robert Edwards; George Fleming; P Hagler; John Negele; Konstantinos Orginos; Andrew Pochinsky; Dru Renner; David Richards; Wolfram Schroers

    2005-10-13

    The nucleon axial charge is calculated as a function of the pion mass in full QCD. Using domain wall valence quarks and improved staggered sea quarks, we present the first calculation with pion masses as light as 354 MeV and volumes as large as (3.5 fm)3. We show that finite volume effects are small for our volumes and that a constrained fit based on finite volume chiral perturbation theory agrees with experiment within 5% statistical errors.

  9. Pure-state noninteracting v-representability of electron densities from Kohn-Sham calculations with finite basis sets

    NASA Astrophysics Data System (ADS)

    de Silva, Piotr; Wesolowski, Tomasz A.

    2012-03-01

    Within the linear combination of atomic orbitals (LCAO) approximation, one can distinguish two different Kohn-Sham potentials. One is the potential available numerically in calculations, and the other is the exact potential corresponding to the LCAO density. The latter is usually not available, but can be obtained from the total density by a numerical inversion procedure or, as is done here, analytically using only one LCAO Kohn-Sham orbital. In the complete basis-set limit, the lowest-lying Kohn-Sham orbital suffices to perform the analytical inversion, and the two potentials differ by no more than a constant. The relation between these two potentials is investigated here for diatomic molecules and several atomic basis sets of increasing size and quality. The differences between the two potentials are usually qualitative (wrong behavior at nuclear cusps and far from the molecule even if Slater-type orbitals are used) and δ-like features at nodal planes of the lowest-lying LCAO Kohn-Sham orbital. Such nodes occur frequently in LCAO calculations and are not physical. Whereas the behavior of the potential can be systematically improved locally by the increase of the basis sets, the occurrence of nodes is not correlated with the size of the basis set. The presence of nodes in the lowest-lying LCAO orbital can be used to monitor whether the effective potential in LCAO Kohn-Sham equations can be interpreted as the potential needed for pure-state noninteracting v-representability of the LCAO density. Squares of such node-containing lowest-lying LCAO Kohn-Sham orbitals are nontrivial examples of two-electron densities which are not pure-state noninteracting v-representable.

  10. Gluonic profile of the static baryon at finite temperature

    NASA Astrophysics Data System (ADS)

    Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.

    2015-05-01

    The gluon flux distribution of a static three quark system has been revealed at finite temperature in the pure SU(3) Yang-Mills theory. An action density operator is correlated with three Polyakov loops representing the baryonic state at temperatures near the end of the QCD plateau, T /Tc≈0.8 , and another just before the deconfinement point, T /Tc≈0.9 . The flux distributions at short distance separations between the quarks display an action-density profile consistent with a rounded filled Δ shape iso surface. However the Δ shape action iso-surface distributions are found to persist even at large interquark separations. The action density distribution in the quark plane exhibits a nonuniform pattern for all quark separations considered. This result contrasts with the Y-shaped uniform action density gluonic-flux profile obtained using the Wilson loop as a quark source operator at zero temperature. We systematically measure and compare the main aspects of the profile of the flux distribution at the two considered temperature scales for three sets of isosceles triangle quark configurations. In this paper, we present major characteristics of the gluonic profile including radii, amplitudes, and rate of change of the width of the flux distribution. These aspects show significant changes as the temperature changes from the end of the QCD plateau towards the deconfinement point. In particular, we found the flux tube is exhibiting a linear divergence at some planes of the gluonic pattern for the temperature close to the deconfinement point.

  11. QCD physics at CDF

    SciTech Connect

    Harris, R.

    1992-05-01

    We present measurements of jet production and isolated prompt photon production in p{bar p} collisions at {radical}s = 1.8 TeV from the 1988--89 run of the Collider Detector at Fermilab (CDF). To test QCD with jets, the inclusive jet cross section (p{bar p} {yields} J + X) and two jet angular distributions (p{bar P} {yields} JJ + X) are compared to QCD predictions and are used to search for composite quarks. The ratio of the scaled jet cross sections at two Tevatron collision energies ({radical}s= 546 and 1800 GeV) is compared to QCD predictions for X{sub T} scaling violations. Also, we present the first evidence for QCD interference effects (color coherence) in third jet production (p{bar p} {yields} JJJ + X). To test QCD with photons, we present measurements of the transverse momentum spectrum of single isolated prompt photon production (p{bar p} {yields} {gamma} + X), double isolated prompt photon production (p{bar p} {yields} {gamma}{gamma} + X), and the angular distribution of photon-jet events (p{bar p} {yields} {gamma} J + X). We have also measured the isolated production ratio of {eta} and {pi}{sup 0} mesons (p{bar p} {yields} {eta} + X)/(p{bar p} {yields} {pi}{sup 0} + X) = 1.02 {plus minus} .15(stat) {plus minus} .23(sys).

  12. QCD physics at CDF

    SciTech Connect

    Harris, R.; The CDF Collaboration

    1992-05-01

    We present measurements of jet production and isolated prompt photon production in p{bar p} collisions at {radical}s = 1.8 TeV from the 1988--89 run of the Collider Detector at Fermilab (CDF). To test QCD with jets, the inclusive jet cross section (p{bar p} {yields} J + X) and two jet angular distributions (p{bar P} {yields} JJ + X) are compared to QCD predictions and are used to search for composite quarks. The ratio of the scaled jet cross sections at two Tevatron collision energies ({radical}s= 546 and 1800 GeV) is compared to QCD predictions for X{sub T} scaling violations. Also, we present the first evidence for QCD interference effects (color coherence) in third jet production (p{bar p} {yields} JJJ + X). To test QCD with photons, we present measurements of the transverse momentum spectrum of single isolated prompt photon production (p{bar p} {yields} {gamma} + X), double isolated prompt photon production (p{bar p} {yields} {gamma}{gamma} + X), and the angular distribution of photon-jet events (p{bar p} {yields} {gamma} J + X). We have also measured the isolated production ratio of {eta} and {pi}{sup 0} mesons (p{bar p} {yields} {eta} + X)/(p{bar p} {yields} {pi}{sup 0} + X) = 1.02 {plus_minus} .15(stat) {plus_minus} .23(sys).

  13. Finite-Element Model Predicts Current Density Distribution for Clinical Applications of tDCS and tACS.

    PubMed

    Neuling, Toralf; Wagner, Sven; Wolters, Carsten H; Zaehle, Tino; Herrmann, Christoph S

    2012-01-01

    Transcranial direct current stimulation (tDCS) has been applied in numerous scientific studies over the past decade. However, the possibility to apply tDCS in therapy of neuropsychiatric disorders is still debated. While transcranial magnetic stimulation (TMS) has been approved for treatment of major depression in the United States by the Food and Drug Administration (FDA), tDCS is not as widely accepted. One of the criticisms against tDCS is the lack of spatial specificity. Focality is limited by the electrode size (35 cm(2) are commonly used) and the bipolar arrangement. However, a current flow through the head directly from anode to cathode is an outdated view. Finite-element (FE) models have recently been used to predict the exact current flow during tDCS. These simulations have demonstrated that the current flow depends on tissue shape and conductivity. To face the challenge to predict the location, magnitude, and direction of the current flow induced by tDCS and transcranial alternating current stimulation (tACS), we used a refined realistic FE modeling approach. With respect to the literature on clinical tDCS and tACS, we analyzed two common setups for the location of the stimulation electrodes which target the frontal lobe and the occipital lobe, respectively. We compared lateral and medial electrode configuration with regard to their usability. We were able to demonstrate that the lateral configurations yielded more focused stimulation areas as well as higher current intensities in the target areas. The high resolution of our simulation allows one to combine the modeled current flow with the knowledge of neuronal orientation to predict the consequences of tDCS and tACS. Our results not only offer a basis for a deeper understanding of the stimulation sites currently in use for clinical applications but also offer a better interpretation of observed effects. PMID:23015792

  14. The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis.

    PubMed

    Goossens, Liesbet; Vanderoost, Jef; Jaecques, Siegfried; Boonen, Steven; D'hooge, Jan; Lauriks, Walter; Van der Perre, Georges

    2008-01-01

    For the clinical assessment of osteoporosis (i.e., a degenerative bone disease associated with increased fracture risk), ultrasound has been proposed as an alternative or supplement to the dual-energy X-ray absorptiometry (DEXA) technique. However, the interaction of ultrasound waves with (trabecular) bone remains relatively poorly understood. The present study aimed to improve this understanding by simulating ultrasound wave propagation in 15 trabecular bone samples from the human lumbar spine, using microcomputed tomography-based finite-element modeling. The model included only the solid bone, without the bone marrow. Two structural parameters were calculated: the bone volume fraction (BV/TV) and the structural (apparent) elastic modulus (E(s)), and the ultrasound propagation parameter speed of sound (SOS). Relations between BV/TV and E(s) were similar to published experimental relations. At 1 MHz, correlations between SOS and the structural parameters BV/TV and Es were rather weak, but the results can be explained from the specific features of the trabecular structure and the intrinsic material elastic modulus E(i). In particular, the systematic differences between the three main directions provide information on the trabecular structure. In addition, at 1 MHz the correlation found between the simulated SOS values and those calculated from the simple bar equation was poor when the three directions are considered separately. Hence, under these conditions, the homogenization approach-including the bar equation-is not valid. However, at lower frequencies (50-300 kHz) this correlation significantly improved. It is concluded that detailed analysis of ultrasound wave propagation through the solid structure in various directions and with various frequencies, can yield much information on the structural and mechanical properties of trabecular bone. PMID:18599411

  15. Translationally Invariant Calculations of Form Factors, Densities and Momentum Distributions for Finite Nuclei with Short-Range Correlations Included: A Fresh Look

    NASA Astrophysics Data System (ADS)

    Shebeko, A.; Grigorov, P.; Iurasov, V.

    2014-08-01

    The approach proposed in the 70s (Dementiji et al. in Sov J Nucl Phys 22:6-9, 1976), when describing the elastic and inelastic electron scattering off 4 He, and elaborated in (Shebeko et al.in Eur Phys J A27:143-155, 2006) for calculations of the one-body, two-body and more complex density matrices of finite bound systems has been applied (Shebeko and Grigorov in Ukr J Phys 52:830-842, 2007; Shebeko et al. in Eur. Phys. J. A48:153-172, 2012) in studying a combined effect of the center-of-mass motion and nucleon-nucleon short-range correlations on the nucleon density and momentum distributions in light nuclei beyond the independent particle model. Unlike a common practice, suitable for infinite bound systems, these distributions are determined as expectation values of appropriate intrinsic operators that depend upon the relative coordinates and momenta (Jacobi variables) and act on the intrinsic ground-state wave functions (WFs). The latter are constructed in the so-called fixed center-of-mass approximation, starting with a mean-field Slater determinant modified by some correlator (e.g., after Jastrow or Villars). Our numerical calculations of the charge form factors ( F CH ( q)), densities and momentum distributions have been carried out for nuclei 4 He and 16 O choosing, respectively, the 1 s and 1 s-1 p Slater determinants of the harmonic oscillator model as trial, nontranslationally invariant WFs.

  16. The QCD running coupling

    DOE PAGESBeta

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-05-09

    Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled

  17. QCD Evolution 2015

    NASA Astrophysics Data System (ADS)

    These are the proceedings of the QCD Evolution 2015 Workshop which was held 26-30 May, 2015 at Jefferson Lab, Newport News, Virginia, USA. The workshop is a continuation of a series of workshops held during four consecutive years 2011, 2012, 2013 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques we look forward with great enthusiasm to the 2015 meeting. A special attention was also paid to participation of experimentalists as the topics discussed are of immediate importance for the JLab 12 experimental program and a future Electron Ion Collider.

  18. Implication of nonintegral occupation number and Fermi-Dirac statistics in the local-spin-density approximation applied to finite systems

    SciTech Connect

    Dhar, S.

    1989-02-01

    In electronic-structure calculations for finite systems using the local-spin-density (LSD) approximation, it is assumed that the eigenvalues of the Kohn-Sham equation should obey Fermi-Dirac (FD) statistics. In order to comply with this assumption for some of the transition-metal atoms, a nonintegral occupation number is used which also minimizes the total energy. It is shown here that for finite systems it is not necessary that the eigenvalues of the Kohn-Sham equation obey FD statistics. It is also shown that the Kohn-Sham exchange potential used in all LSD models is correct only for integer occupation number. With a noninteger occupation number the LSD exchange potential will be smaller than that given by the Kohn-Sham potential. Ab initio self-consistent spin-polarized calculations have been performed numerically for the total energy of an iron atom. It is found that the ground state belongs to the 3d/sup 6/4s/sup 2/ configuration. The ionization potentials of all the Fe/sup n//sup +/ ions are reported and are in agreement with experiment.

  19. A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS

    NASA Astrophysics Data System (ADS)

    Faria, Paula; Hallett, Mark; Cavaleiro Miranda, Pedro

    2011-12-01

    We investigated the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in transcranial direct current stimulation (tDCS). For this purpose, we used the finite element method to compute the distribution of the current density in a four-layered spherical head model using various electrode montages, corresponding to a range of electrode sizes and inter-electrode distances. We found that smaller electrodes required slightly less current to achieve a constant value of the current density at a reference point on the brain surface located directly under the electrode center. Under these conditions, smaller electrodes also produced a more focal current density distribution in the brain, i.e. the magnitude of the current density fell more rapidly with distance from the reference point. The combination of two electrodes with different areas produced an asymmetric current distribution that could lead to more effective and localized neural modulation under the smaller electrode than under the larger one. Focality improved rapidly with decreasing electrode size when the larger electrode sizes were considered but the improvement was less marked for the smaller electrode sizes. Also, focality was not affected significantly by inter-electrode distance unless two large electrodes were placed close together. Increasing the inter-electrode distance resulted in decreased shunting of the current through the scalp and the cerebrospinal fluid, and decreasing electrode area resulted in increased current density on the scalp under the edges of the electrode. Our calculations suggest that when working with conventional electrodes (25-35 cm2), one of the electrodes should be placed just 'behind' the target relative to the other electrode, for maximum current density on the target. Also electrodes with areas in the range 3.5-12 cm2 may provide a better compromise between focality and current density in the scalp than the traditional

  20. Novel QCD Phenomena

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2007-07-06

    I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable {zeta} which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions.

  1. The Influence of Mesh Density on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.

    2004-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0- in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA version 960 for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at five discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density. As a final comparison, the model with a fine panel and fine foam mesh was executed with slightly different material properties for the RCC. For this model, the average degraded properties of the RCC were replaced with the maximum degraded properties. Similar comparisons of panel and foam responses were made for the average and maximum degraded models.

  2. Visualization Tools for Lattice QCD - Final Report

    SciTech Connect

    Massimo Di Pierro

    2012-03-15

    Our research project is about the development of visualization tools for Lattice QCD. We developed various tools by extending existing libraries, adding new algorithms, exposing new APIs, and creating web interfaces (including the new NERSC gauge connection web site). Our tools cover the full stack of operations from automating download of data, to generating VTK files (topological charge, plaquette, Polyakov lines, quark and meson propagators, currents), to turning the VTK files into images, movies, and web pages. Some of the tools have their own web interfaces. Some Lattice QCD visualization have been created in the past but, to our knowledge, our tools are the only ones of their kind since they are general purpose, customizable, and relatively easy to use. We believe they will be valuable to physicists working in the field. They can be used to better teach Lattice QCD concepts to new graduate students; they can be used to observe the changes in topological charge density and detect possible sources of bias in computations; they can be used to observe the convergence of the algorithms at a local level and determine possible problems; they can be used to probe heavy-light mesons with currents and determine their spatial distribution; they can be used to detect corrupted gauge configurations. There are some indirect results of this grant that will benefit a broader audience than Lattice QCD physicists.

  3. Strangeness of the nucleon from lattice QCD

    NASA Astrophysics Data System (ADS)

    Alexandrou, Constantia; Constantinou, Martha; Dinter, Simon; Drach, Vincent; Hadjiyiannakou, Kyriakos; Jansen, Karl; Koutsou, Giannis; Vaquero, Alejandro; ETM Collaboration

    2015-05-01

    We present a nonperturbative calculation of the strangeness of the nucleon yN within the framework of lattice QCD. This observable is known to be an important cornerstone to interpret results from direct dark matter detection experiments. We perform a lattice computation for yN with an analysis of systematic effects originating from discretization, finite size, chiral extrapolation and excited state effects leading to the value of yN=0.173 (50 ) . The rather large uncertainty of this value of yN is dominated by systematic uncertainties which we are able to quantify in this work.

  4. Universality and the QCD Anderson transition.

    PubMed

    Giordano, Matteo; Kovács, Tamás G; Pittler, Ferenc

    2014-03-14

    We study the Anderson-type transition previously found in the spectrum of the QCD quark Dirac operator in the high-temperature, quark-gluon plasma phase. Using finite size scaling for the unfolded level spacing distribution, we show that in the thermodynamic limit there is a genuine mobility edge, where the spectral statistics changes from Poisson to Wigner-Dyson statistics in a nonanalytic way. We determine the correlation length critical exponent ν and find that it is compatible with that of the unitary Anderson model. PMID:24679282

  5. Lattice QCD for parallel computers

    NASA Astrophysics Data System (ADS)

    Quadling, Henley Sean

    Lattice QCD is an important tool in the investigation of Quantum Chromodynamics (QCD). This is particularly true at lower energies where traditional perturbative techniques fail, and where other non-perturbative theoretical efforts are not entirely satisfactory. Important features of QCD such as confinement and the masses of the low lying hadronic states have been demonstrated and calculated in lattice QCD simulations. In calculations such as these, non-lattice techniques in QCD have failed. However, despite the incredible advances in computer technology, a full solution of lattice QCD may still be in the too-distant future. Much effort is being expended in the search for ways to reduce the computational burden so that an adequate solution of lattice QCD is possible in the near future. There has been considerable progress in recent years, especially in the research of improved lattice actions. In this thesis, a new approach to lattice QCD algorithms is introduced, which results in very significant efficiency improvements. The new approach is explained in detail, evaluated and verified by comparing physics results with current lattice QCD simulations. The new sub-lattice layout methodology has been specifically designed for current and future hardware. Together with concurrent research into improved lattice actions and more efficient numerical algorithms, the very significant efficiency improvements demonstrated in this thesis can play an important role in allowing lattice QCD researchers access to much more realistic simulations. The techniques presented in this thesis also allow ambitious QCD simulations to be performed on cheap clusters of commodity computers.

  6. REGGE TRAJECTORIES IN QCD

    SciTech Connect

    Radyushkin, Anatoly V.; Efremov, Anatoly Vasilievich; Ginzburg, Ilya F.

    2013-04-01

    We discuss some problems concerning the application of perturbative QCD to high energy soft processes. We show that summing the contributions of the lowest twist operators for non-singlet $t$-channel leads to a Regge-like amplitude. Singlet case is also discussed.

  7. QCD and Hadron Physics

    SciTech Connect

    Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.

    2015-02-26

    This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.

  8. Progress in lattice QCD

    SciTech Connect

    Andreas S. Kronfeld

    2002-09-30

    After reviewing some of the mathematical foundations and numerical difficulties facing lattice QCD, I review the status of several calculations relevant to experimental high-energy physics. The topics considered are moments of structure functions, which may prove relevant to search for new phenomena at the LHC, and several aspects of flavor physics, which are relevant to understanding CP and flavor violation.

  9. QCD: Quantum Chromodynamics

    ScienceCinema

    Lincoln, Don

    2016-06-28

    The strongest force in the universe is the strong nuclear force and it governs the behavior of quarks and gluons inside protons and neutrons. The name of the theory that governs this force is quantum chromodynamics, or QCD. In this video, Fermilab?s Dr. Don Lincoln explains the intricacies of this dominant component of the Standard Model.

  10. QCD physics at CDF

    SciTech Connect

    Devlin, T.; CDF Collaboration

    1996-10-01

    The CDF collaboration is engaged in a broad program of QCD measurements at the Fermilab Tevatron Collider. I will discuss inclusive jet production at center-of-mass energies of 1800 GeV and 630 GeV, properties of events with very high total transverse energy and dijet angular distributions.

  11. QCD results from CDF

    SciTech Connect

    Plunkett, R.; The CDF Collaboration

    1991-10-01

    Results are presented for hadronic jet and direct photon production at {radical}{bar s} = 1800 GeV. The data are compared with next-to-leading QCD calculations. A new limit on the scale of possible composite structure of the quarks is also reported. 12 refs., 4 figs.

  12. Baryons and QCD

    SciTech Connect

    Nathan Isgur

    1997-03-01

    The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections.

  13. Novel QCD Phenomenology

    SciTech Connect

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2011-08-12

    I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spin asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of searches for new physics at the LHC

  14. Toward a first-principle derivation of confinement and chiral-symmetry-breaking crossover transitions in QCD

    SciTech Connect

    Kondo, Kei-Ichi

    2010-09-15

    We give a theoretical framework to obtain a low-energy effective theory of quantum chromodynamics (QCD) towards a first-principle derivation of confinement/deconfinement and chiral-symmetry breaking/restoration crossover transitions. In fact, we demonstrate that an effective theory obtained using simple but nontrivial approximations within this framework enables us to treat both transitions simultaneously on equal footing. A resulting effective theory is regarded as a modified and improved version of nonlocal Polyakov-loop extended Nambu-Jona-Lasinio (nonlocal PNJL) models proposed recently by Hell, Roessner, Cristoforetti, and Weise, and Sasaki, Friman, and Redlich, extending the original (local) PNJL model by Fukushima and others. A novel feature is that the nonlocal NJL coupling depends explicitly on the temperature and Polyakov loop, which affects the entanglement between confinement and chiral-symmetry breaking, together with the cross term introduced through the covariant derivative in the quark sector considered in the conventional PNJL model. The chiral-symmetry breaking/restoration transition is controlled by the nonlocal NJL interaction, while the confinement/deconfinement transition in the pure gluon sector is specified by the nonperturbative effective potential for the Polyakov loop obtained recently by Braun, Gies, Marhauser, and Pawlowski. The basic ingredients are a reformulation of QCD based on new variables and the flow equation of the Wetterich type in the Wilsonian renormalization group. This framework can be applied to investigate the QCD phase diagram at finite temperature and density.

  15. Toward a first-principle derivation of confinement and chiral-symmetry-breaking crossover transitions in QCD

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi

    2010-09-01

    We give a theoretical framework to obtain a low-energy effective theory of quantum chromodynamics (QCD) towards a first-principle derivation of confinement/deconfinement and chiral-symmetry breaking/restoration crossover transitions. In fact, we demonstrate that an effective theory obtained using simple but nontrivial approximations within this framework enables us to treat both transitions simultaneously on equal footing. A resulting effective theory is regarded as a modified and improved version of nonlocal Polyakov-loop extended Nambu-Jona-Lasinio (nonlocal PNJL) models proposed recently by Hell, Rössner, Cristoforetti, and Weise, and Sasaki, Friman, and Redlich, extending the original (local) PNJL model by Fukushima and others. A novel feature is that the nonlocal NJL coupling depends explicitly on the temperature and Polyakov loop, which affects the entanglement between confinement and chiral-symmetry breaking, together with the cross term introduced through the covariant derivative in the quark sector considered in the conventional PNJL model. The chiral-symmetry breaking/restoration transition is controlled by the nonlocal NJL interaction, while the confinement/deconfinement transition in the pure gluon sector is specified by the nonperturbative effective potential for the Polyakov loop obtained recently by Braun, Gies, Marhauser, and Pawlowski. The basic ingredients are a reformulation of QCD based on new variables and the flow equation of the Wetterich type in the Wilsonian renormalization group. This framework can be applied to investigate the QCD phase diagram at finite temperature and density.

  16. QCD with many fermions and QCD topology

    NASA Astrophysics Data System (ADS)

    Shuryak, Edward

    2013-04-01

    Major nonperturbative phenomena in QCD - confinement and chiral symmetry breaking - are known to be related with certain topological objects. Recent lattice advances into the domain of many Nf = O(10) fermion flavors have shown that both phase transitions had shifted in this case to much stronger coupling. We discuss confinement in terms of monopole Bose condensation, and discuss how it is affected by fermions "riding" on the monopoles, ending with the Nf dependence of the critical line. Chiral symmetry breaking is discussed in terms of the (anti)selfdual dyons, the instanton constituents. The fermionic zero modes of those have a different meaning and lead to strong interaction between dyons and antidyons. We report some qualitative consequences of this theory and also some information about our first direct numerical study of the dyonic ensemble, in respect to both chiral symmetry breaking and confinement (via back reaction to the holonomy potential).

  17. 't Hooft vertices, partial quenching, and rooted staggered QCD

    SciTech Connect

    Bernard, Claude; Golterman, Maarten; Shamir, Yigal; Sharpe, Stephen R.

    2008-06-01

    We discuss the properties of 't Hooft vertices in partially quenched and rooted versions of QCD in the continuum. These theories have a physical subspace, equivalent to ordinary QCD, that is contained within a larger space that includes many unphysical correlation functions. We find that the 't Hooft vertices in the physical subspace have the expected form, despite the presence of unphysical 't Hooft vertices appearing in correlation functions that have an excess of valence quarks (or ghost quarks). We also show that, due to the singular behavior of unphysical correlation functions as the massless limit is approached, order parameters for nonanomalous symmetries can be nonvanishing in finite volume if these symmetries act outside of the physical subspace. Using these results, we demonstrate that arguments recently given by Creutz - claiming to disprove the validity of rooted staggered QCD - are incorrect. In particular, the unphysical 't Hooft vertices do not present an obstacle to the recovery of taste symmetry in the continuum limit.

  18. Nature of the Roberge-Weiss transition in Nf=2 QCD with Wilson fermions

    NASA Astrophysics Data System (ADS)

    Philipsen, Owe; Pinke, Christopher

    2014-05-01

    At imaginary values of the quark chemical potential μ, quantum chromodynamics shows an interesting phase structure due to an exact center, or Roberge-Weiss (RW), symmetry. This can be used to constrain QCD at real μ, where the sign problem prevents Monte Carlo simulations of the lattice theory. In previous studies of this region with staggered fermions it was found that the RW endpoint, where the center transition changes from first order to a crossover, depends nontrivially on the quark mass: for high and low masses, it is a triple point connecting to the deconfinement and chiral transitions, respectively, changing to a second-order endpoint for intermediate mass values. These parameter regions are separated by tricritical points. Here we present a confirmation of these findings using Wilson fermions on Nτ=4 lattices. In addition, our results provide a successful quantitative check for a heavy quark effective lattice theory at finite density.

  19. Hyperon matter at low densities

    SciTech Connect

    Sulaksono, A.

    2014-09-25

    It was reported recently that hyperons can be present inside PSRJ1614-2230 compact star. This can be realized only if the strength of the ω-hyperons and φ-hyperons coupling of conventional hyperons coupling constant on the extended relativistic mean field (ERMF) model increase by a factor of 1.5 to 3. In the present work, the mass and radius relation of the neutron star that is calculated by using BSR28 parameter set of ERMF model augmented with maximal coupling strength of the ω-hyperons and φ-hyperons (X=1), is compared to the mass and radius relation of the neutron star that is predicted by the same RMF parameter set but by assuming that hyperons do not exist in the matter (No. Hyp) as well as those by assuming the hyperons coupling constant fulfilled the conventional SU(6) and SU(3) symmetry. The consequences of implementing X=1 prescription are also discussed. The potential depths of hyperons in symmetric nuclear matter (SNM), pure neutron matter (PNM) and pure lambda matter (PLM) based on this parameter set are also calculated by using the X=1, SU (6) and SU (3) prescriptions. The results are compared to those obtained from microscopic models, quark meson coupling model (χ QMM) and the QCD sum rule for finite density (QCD SM) result.

  20. Two flavor QCD and confinement

    SciTech Connect

    D'Elia, Massimo; Di Giacomo, Adriano; Pica, Claudio

    2005-12-01

    We argue that the order of the chiral transition for N{sub f}=2 is a sensitive probe of the QCD vacuum, in particular, of the mechanism of color confinement. A strategy is developed to investigate the order of the transition by use of finite size scaling analysis. An in-depth numerical investigation is performed with staggered fermions on lattices with L{sub t}=4 and L{sub s}=12, 16, 20, 24, 32 and quark masses am{sub q} ranging from 0.01335 to 0.307036. The specific heat and a number of susceptibilities are measured and compared with the expectations of an O(4) second order and of a first order phase transition. A detailed comparison with previous works, which all use similar techniques as ours, is performed. A second order transition in the O(4) and O(2) universality classes are incompatible with our data, which seem to prefer a first order transition. However we have L{sub t}=4 and unimproved action, so that a check with improved techniques (algorithm and action) and possibly larger L{sub t} will be needed to assess this issue on a firm basis.

  1. Phases and approximations of baryonic popcorn in a low-dimensional analogue of holographic QCD

    NASA Astrophysics Data System (ADS)

    Elliot-Ripley, Matthew

    2015-07-01

    The Sakai-Sugimoto model is the most pre-eminent model of holographic QCD, in which baryons correspond to topological solitons in a five-dimensional bulk spacetime. Recently it has been shown that a single soliton in this model can be well approximated by a flat-space self-dual Yang-Mills instanton with a small size, although studies of multi-solitons and solitons at finite density are currently beyond numerical computations. A lower-dimensional analogue of the model has also been studied in which the Sakai-Sugimoto soliton is replaced by a baby Skyrmion in three spacetime dimensions with a warped metric. The lower dimensionality of this model means that full numerical field calculations are possible, and static multi-solitons and solitons at finite density were both investigated, in particular the baryonic popcorn phase transitions at high densities. Here we present and investigate an alternative lower-dimensional analogue of the Sakai-Sugimoto model in which the Sakai-Sugimoto soliton is replaced by an O(3)-sigma model instanton in a warped three-dimensional spacetime stabilized by a massive vector meson. A more detailed range of baryonic popcorn phase transitions are found, and the low-dimensional model is used as a testing ground to check the validity of common approximations made in the full five-dimensional model, namely approximating fields using their flat-space equations of motion, and performing a leading order expansion in the metric.

  2. Hybrid baryons in QCD

    SciTech Connect

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbers $N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$ and $\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $J^{P}=1^{+}$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.

  3. Introduction to lattice QCD

    SciTech Connect

    Gupta, R.

    1998-12-31

    The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.

  4. QCD tests at CDF

    SciTech Connect

    Kovacs, E.; CDF Collaboration

    1996-02-01

    We present results for the inclusive jet cross section and the dijet mass distribution. The inclusive cross section and dijet mass both exhibit significant deviations from the predictions of NLO QCD for jets with E{sub T}>200 GeV, or dijet masses > 400 GeV/c{sup 2}. We show that it is possible, within a global QCD analysis that includes the CDF inclusive jet data, to modify the gluon distribution at high x. The resulting increase in the jet cross-section predictions is 25-35%. Owing to the presence of k{sub T} smearing effects, the direct photon data does not provide as strong a constraint on the gluon distribution as previously thought. A comparison of the CDF and UA2 jet data, which have a common range in x, is plagued by theoretical and experimental uncertainties, and cannot at present confirm the CDF excess or the modified gluon distribution.

  5. Comparative Study of Algorithms for the Numerical Simulation of Lattice QCD

    SciTech Connect

    Luz, Fernando H. P.; Mendes, Tereza

    2010-11-12

    Large-scale numerical simulations are the prime method for a nonperturbative study of QCD from first principles. Although the lattice simulation of the pure-gauge (or quenched-QCD) case may be performed very efficiently on parallel machines, there are several additional difficulties in the simulation of the full-QCD case, i.e. when dynamical quark effects are taken into account. We discuss the main aspects of full-QCD simulations, describing the most common algorithms. We present a comparative analysis of performance for two versions of the hybrid Monte Carlo method (the so-called R and RHMC algorithms), as provided in the MILC software package. We consider two degenerate flavors of light quarks in the staggered formulation, having in mind the case of finite-temperature QCD.

  6. Future directions for QCD

    SciTech Connect

    Bjorken, J.D.

    1996-10-01

    New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC.

  7. Predictions from lattice QCD

    SciTech Connect

    Kronfeld, A.S.; Allison, I.F.; Aubin, C.; Bernard, C.; Davies, C.T.H.; DeTar, C.; Di Pierro, M.; Freeland, E.D.; Gottlieb, Steven; Gray, A.; Gregor, E.; Heller, U.M.; Hetrick, J.E.; El-Khadra, Aida X.; Levkova, L.; Mackenzie, P.B.; Maresca, F.; Menscher, D.; Nobes, M.; Okamoto, M.; Oktay, M.B.; /Fermilab /Glasgow U. /Columbia U. /Washington U., St. Louis /Utah U. /DePaul U. /Art Inst. of Chicago /Indiana U. /Ohio State U. /Arizona U. /APS, New York /U. Pacific, Stockton /Illinois U., Urbana /Cornell U., LEPP /Simon Fraser U. /UC, Santa Barbara

    2005-09-01

    In the past year, we calculated with lattice QCD three quantities that were unknown or poorly known. They are the q{sup 2} dependence of the form factor in semileptonic D {yields} K/{nu} decay, the decay constant of the D meson, and the mass of the B{sub c} meson. In this talk, we summarize these calculations, with emphasis on their (subsequent) confirmation by experiments.

  8. QCD tests at CDF

    SciTech Connect

    Giannetti, P. )

    1991-05-01

    Recent analysis of jet data taken at the Fermilab Tevatron Collider at {radical}S = 1.8 Tev are presented. Inclusive jet, dijet, trijet and direct photon measurements are compared to QCD parton level calculations, at orders {alpha}{sub s}{sup 3} or {alpha}{sub s}{sup 2}. The large total transverse energy events are well described by the Herwig shower Montecarlo. 19 refs., 20 figs., 1 tab.

  9. Pion observables and QCD

    SciTech Connect

    Roberts, C.D.

    1994-09-01

    The Dyson-Schwinger equations (DSEs) are a tower of coupled integral equations that relate the Green functions of QCD to one another. Solving these equations provides the solution of QCD. This tower of equations includes the equation for the quark self-energy, which is the analogue of the gap equation in superconductivity, and the Bethe-Salpeter equation, the solution of which is the quark-antiquark bound state amplitude in QCD. The application of this approach to solving Abelian and non-Abelian gauge theories is reviewed. The nonperturbative DSE approach is being developed as both: (1) a computationally less intensive alternative and; (2) a complement to numerical simulations of the lattice action of QCD. In recent years, significant progress has been made with the DSE approach so that it is now possible to make sensible and direct comparisons between quantities calculated using this approach and the results of numerical simulations of Abelian gauge theories. Herein the application of the DSE approach to the calculation of pion observables is described: the {pi}-{pi} scattering lengths (a{sub 0}{sup 0}, a{sub 0}{sup 2}, A{sub 1}{sup 1}, a{sub 2}{sup 2}) and associated partial wave amplitudes; the {pi}{sup 0} {yields} {gamma}{gamma} decay width; and the charged pion form factor, F{sub {pi}}(q{sup 2}). Since this approach provides a straightforward, microscopic description of dynamical chiral symmetry breaking (D{sub X}SB) and confinement, the calculation of pion observables is a simple and elegant illustrative example of its power and efficacy. The relevant DSEs are discussed in the calculation of pion observables and concluding remarks are presented.

  10. Hadronic Resonances from Lattice QCD

    SciTech Connect

    Lichtl, Adam C.; Bulava, John; Morningstar, Colin; Edwards, Robert; Mathur, Nilmani; Richards, David; Fleming, George; Juge, K. Jimmy; Wallace, Stephen J.

    2007-10-26

    The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

  11. Hadronic Resonances from Lattice QCD

    SciTech Connect

    John Bulava; Robert Edwards; George Fleming; K. Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace

    2007-06-16

    The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

  12. Hamiltonian Effective Field Theory Study of the N*(1535 ) Resonance in Lattice QCD

    NASA Astrophysics Data System (ADS)

    Liu, Zhan-Wei; Kamleh, Waseem; Leinweber, Derek B.; Stokes, Finn M.; Thomas, Anthony W.; Wu, Jia-Jun

    2016-02-01

    Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying JP=1 /2- nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.

  13. Dense hadronic matter in holographic QCD

    NASA Astrophysics Data System (ADS)

    Kim, Keun-Young; Sin, Sang-Jin; Zahed, Ismail

    2013-10-01

    We provide a method to study hadronic matter at finite density in the context of the Sakai-Sugimoto model. We introduce the baryon chemical potential through the external U(1) v gauge field in the induced (DBI plus CS) action on the D8-probe-brane, where baryons are skyrmions. Vector dominance is manifest at finite density. We derive the effect of the baryon density on the energy density, and on the dispersion relations of pions and vector mesons at large N c . The energy density asymptotes are constant at large density, suggesting that dense matter at large N c freezes, with the pion velocity dropping to zero. Holographic dense matter enforces exactly the tenets of vector dominance and efficiently screens vector mesons. At the freezing point, the ρ — ππ coupling vanishes with a finite rho mass of about 20% its vacuum value.

  14. Material Modeling of 6000 Series Aluminum Alloy Sheets with Different Density Cube Textures and Effect on the Accuracy of Finite Element Simulation

    NASA Astrophysics Data System (ADS)

    Yanaga, Daisaku; Kuwabara, Toshihiko; Uema, Naoyuki; Asano, Mineo

    2011-08-01

    Biaxial tensile tests of 6000 series aluminum alloy sheet with different density cube textures were carried out using cruciform specimens similar to that developed by one of the authors [Kuwabara, T. et al., J. Material Process. Technol., 80/81(1998), 517-523.]. The specimens are loaded under linear stress paths in a servo-controlled biaxial tensile testing machine. Plastic orthotropy remained coaxial with the principal stresses throughout every experiment. Successive contours of plastic work in stress space and the directions of plastic strain rates were precisely measured and compared with those calculated using selected yield functions. The Yld2000-2d yield functions with exponents of 12 and 6 [Barlat, F. et al., Int. J. Plasticity 19 (2003), 1297-1319] are capable of reproducing the general trends of the work contours and the directions of plastic strain rates observed for test materials with high and low cube textures, respectively. Hydraulic bulge tests were also conducted and the variation of thickness strain along the meridian direction of the bulged specimen was compared with that calculated using finite element analysis (FEA) based on the Yld2000-2d yield functions with exponents of 12 and 6. The differences of cube texture cause significant differences in the strain distributions of the bulged specimens, and the FEA results calculated using the Yld2000-2d yield functions show good agreement with the measurement results.

  15. Dynamic response of silicon nanostructures at finite frequency: An orbital-free density functional theory and non-equilibrium Green's function study

    NASA Astrophysics Data System (ADS)

    Xu, Fuming; Wang, Bin; Wei, Yadong; Wang, Jian

    2013-10-01

    Orbital-free density functional theory (OFDFT) replaces the wavefunction in the kinetic energy by an explicit energy functional and thereby speeds up significantly the calculation of ground state properties of the solid state systems. So far, the application of OFDFT has been centered on closed systems and less attention is paid on the transport properties in open systems. In this paper, we use OFDFT and combine it with non-equilibrium Green's function to simulate equilibrium electronic transport properties in silicon nanostructures from first principles. In particular, we study ac transport properties of a silicon atomic junction consisting of a silicon atomic chain and two monoatomic leads. We have calculated the dynamic conductance of this atomic junction as a function of ac frequency with one to four silicon atoms in the central scattering region. Although the system is transmissive with dc conductance around 4 to 5 e2/h, capacitive-like behavior was found in the finite frequency regime. Our analysis shows that, up to 0.1 THz, this behavior can be characterized by a classic RC circuit consisting of two resistors and a capacitor. One resistor gives rise to dc resistance and the other one accounts for the charge relaxation resistance with magnitude around 0.2 h/e2 when the silicon chain contains two atoms. It was found that the capacitance is around 5 aF for the same system.

  16. Resource Letter QCD-1: Quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Kronfeld, Andreas S.; Quigg, Chris

    2010-11-01

    This Resource Letter provides a guide to the literature on quantum chromodynamics (QCD), the relativistic quantum field theory of the strong interactions. Journal articles, books, and other documents are cited for the following topics: Quarks and color, the parton model, Yang-Mills theory, experimental evidence for color, QCD as a color gauge theory, asymptotic freedom, QCD for heavy hadrons, QCD on the lattice, the QCD vacuum, pictures of quark confinement, early and modern applications of perturbative QCD, the determination of the strong coupling and quark masses, QCD and the hadron spectrum, hadron decays, the quark-gluon plasma, the strong nuclear interaction, and QCD's role in nuclear physics.

  17. QCD Phase Diagram and the Constant Mass Approximation

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Ayala, A.; Bashir, A.; Gutiérrez, E.; Raya, A.

    2015-11-01

    Dynamical generation of quark masses in the infrared region of QCD plays an important role to understand the peculiar nature of the physics of hadrons. As it is known, the solution of QCD gap equation for the quark mass function is flat for low momentum, but smoothly evolves to the perturbative behavior at high momentum. In this work, we use an effective truncation of QCD gap equation valid up to 1 GeV, and implement it at finite temperature and chemical potential to understand the QCD phase diagram for chiral symmetry breaking-chiral symmetry restoration, and confinement-deconfinement phase transitions from the Schwinger-Dysin equations point of view. Our effective kernel contains a gluon dressing function with two light quark flavors Nf = 2, with current quark mass 0.0035 GeV. An effective coupling, adjusted to reproduce the behavior of the chiral condensate at finite T complements our truncation. We find the critical end point of the phase diagram located at the temperature TE = 0.1245 GeV and the baryonic chemical potential μEB = 0.211 GeV.

  18. AGK Rules in Perturbative QCD

    NASA Astrophysics Data System (ADS)

    Bartels, Jochen

    2006-06-01

    I summarize the present status of the AGK cutting rules in perturbative QCD. Particular attention is given to the application of the AGK analysis to diffraction and multiple scattering in DIS at HERA and to pp collisions at the LHC. I also discuss the bootstrap conditions which appear in pQCD.

  19. QCD: Questions, challenges, and dilemmas

    SciTech Connect

    Bjorken, J.

    1996-11-01

    An introduction to some outstanding issues in QCD is presented, with emphasis on work by Diakonov and co-workers on the influence of the instanton vacuum on low-energy QCD observables. This includes the calculation of input valence-parton distributions for deep-inelastic scattering. 35 refs., 3 figs.

  20. QCD coupling constants and VDM

    SciTech Connect

    Erkol, G.; Ozpineci, A.; Zamiralov, V. S.

    2012-10-23

    QCD sum rules for coupling constants of vector mesons with baryons are constructed. The corresponding QCD sum rules for electric charges and magnetic moments are also derived and with the use of vector-meson-dominance model related to the coupling constants. The VDM role as the criterium of reciprocal validity of the sum rules is considered.

  1. Gravitational waves from the cosmological QCD transition

    NASA Astrophysics Data System (ADS)

    Mourão Roque, V. R. C.; Roque, G. Lugones o.; Lugones, G.

    2014-09-01

    We determine the minimum fluctuations in the cosmological QCD phase transition that could be detectable by the eLISA/NGO gravitational wave observatory. To this end, we performed several hydrodynamical simulations using a state-of-the-art equation of state derived from lattice QCD simulations. Based on the fact that the viscosity per entropy density of the quark gluon plasma obtained from heavy-ion collision experiments at the RHIC and the LHC is extremely small, we considered a non-viscous fluid in our simulations. Several previous works about this transition considered a first order transition that generates turbulence which follows a Kolmogorov power law. We show that for the QCD crossover transition the turbulent spectrum must be very different because there is no viscosity and no source of continuous energy injection. As a consequence, a large amount of kinetic energy accumulates at the smallest scales. From the hydrodynamic simulations, we have obtained the spectrum of the gravitational radiation emitted by the motion of the fluid, finding that, if typical velocity and temperature fluctuations have an amplitude Δ v /c ≳ 10-2 and/or Δ T/T_c ≳ 10-3, they would be detected by eLISA/NGO at frequencies larger than ˜ 10-4 Hz.

  2. The Symmetries of QCD

    ScienceCinema

    Sekhar Chivukula

    2010-01-08

    The symmetries of a quantum field theory can be realized in a variety of ways. Symmetries can be realized explicitly, approximately, through spontaneous symmetry breaking or, via an anomaly, quantum effects can dynamically eliminate a symmetry of the theory that was present at the classical level.  Quantum Chromodynamics (QCD), the modern theory of the strong interactions, exemplify each of these possibilities. The interplay of these effects determine the spectrum of particles that we observe and, ultimately, account for 99% of the mass of ordinary matter. 

  3. QCD and strings

    SciTech Connect

    Sakai, Tadakatsu; Sugimoto, Shigeki

    2005-12-02

    We propose a holographic dual of QCD with massless flavors on the basis of a D4/D8-brane configuration within a probe approximation. We are led to a five-dimensional Yang-Mills theory on a curved space-time along with a Chern-Simons five-form on it, both of which provide us with a unifying framework to study the massless pion and an infinite number of massive vector mesons. We make sample computations of the physical quantities that involve the mesons and compare them with the experimental data. It is found that most of the results of this model are compatible with the experiments.

  4. QCD and strings

    NASA Astrophysics Data System (ADS)

    Sakai, Tadakatsu; Sugimoto, Shigeki

    2005-12-01

    We propose a holographic dual of QCD with massless flavors on the basis of a D4/D8-brane configuration within a probe approximation. We are led to a five-dimensional Yang-Mills theory on a curved space-time along with a Chern-Simons five-form on it, both of which provide us with a unifying framework to study the massless pion and an infinite number of massive vector mesons. We make sample computations of the physical quantities that involve the mesons and compare them with the experimental data. It is found that most of the results of this model are compatible with the experiments.

  5. N* Spectroscopy from Lattice QCD: The Roper Explained

    NASA Astrophysics Data System (ADS)

    Leinweber, Derek; Kamleh, Waseem; Kiratidis, Adrian; Liu, Zhan-Wei; Mahbub, Selim; Roberts, Dale; Stokes, Finn; Thomas, Anthony W.; Wu, Jiajun

    This brief review focuses on the low-lying even- and odd-parity excitations of the nucleon obtained in recent lattice QCD calculations. Commencing with a survey of the 2014-15 literature we'll see that results for the first even-parity excitation energy can differ by as much as 1 GeV, a rather unsatisfactory situation. Following a brief review of the methods used to isolate excitations of the nucleon in lattice QCD, and drawing on recent advances, we'll see how a consensus on the low-lying spectrum has emerged among many different lattice groups. To provide insight into the nature of these states we'll review the wave functions and electromagnetic form factors that are available for a few of these states. Consistent with the Luscher formalism for extracting phase shifts from finite volume spectra, the Hamiltonian approach to effective field theory in finite volume can provide guidance on the manner in which physical quantities manifest themselves in the finite volume of the lattice. With this insight, we will address the question; Have we seen the Roper in lattice QCD?

  6. Cool QCD: Hadronic Physics and QCD in Nuclei

    NASA Astrophysics Data System (ADS)

    Cates, Gordon

    2015-10-01

    QCD is the only strongly-coupled theory given to us by Nature, and it gives rise to a host of striking phenomena. Two examples in hadronic physics include the dynamic generation of mass and the confinement of quarks. Indeed, the vast majority of the mass of visible matter is due to the kinetic and potential energy of the massless gluons and the essentially massless quarks. QCD also gives rise to the force that binds protons and neutrons into nuclei, including subtle effects that have historically been difficult to understand. Describing these phenomena in terms of QCD has represented a daunting task, but remarkable progress has been achieved in both theory and experiment. Both CEBAF at Jefferson Lab and RHIC at Brookhaven National Lab have provided unprecedented experimental tools for investigating QCD, and upgrades at both facilities promise even greater opportunities in the future. Also important are programs at FermiLab as well as the LHC at CERN. Looking further ahead, an electron ion collider (EIC) has the potential to answer whole new sets of questions regarding the role of gluons in nuclear matter, an issue that lies at the heart of the generation of mass. On the theoretical side, rapid progress in supercomputers is enabling stunning progress in Lattice QCD calculations, and approximate forms of QCD are also providing deep new physical insight. In this talk I will describe both recent advances in Cool QCD as well as the exciting scientific opportunities that exist for the future.

  7. Massively Parallel QCD

    SciTech Connect

    Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G

    2007-04-11

    The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results.

  8. Nonperturbative QCD Calculations

    NASA Astrophysics Data System (ADS)

    Dellby, Niklas

    1995-01-01

    The research described in this thesis is an exact transformation of the Yang-Mills quantum chromodynamics (QCD) Lagrangrian into a form that is suitable for nonperturbative calculations. The conventional Yang-Mills Lagrangian has proven to be an excellent basis for perturbative calculations, but in nonperturbative calculations it is difficult to separate gauge problems from physical properties. To mitigate this problem, I develop a new equivalent Lagrangian that is not only expressed completely in terms of the field strengths ofthe gauge field but is also manifestly Lorentz and gauge invariant. The new Lagrangian is quadratic in derivatives, with non-linear local couplings, thus it is ideally suited for a numerical calculation. The field-strength Lagrangian is of such a form that it is possible to do a straightforward numerical stationary path expansion and find the fundamental QCD properties. This thesis examines several approximations analytically, investigating different ways to utilize the new Lagrangian. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  9. Hybrid baryons in QCD

    DOE PAGESBeta

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less

  10. QCD for Postgraduates (1/5)

    ScienceCinema

    None

    2011-10-06

    Modern QCD - Lecture 1 Starting from the QCD Lagrangian we will revisit some basic QCD concepts and derive fundamental properties like gauge invariance and isospin symmetry and will discuss the Feynman rules of the theory. We will then focus on the gauge group of QCD and derive the Casimirs CF and CA and some useful color identities.

  11. QCD Factorization and PDFs from Lattice QCD Calculation

    NASA Astrophysics Data System (ADS)

    Ma, Yan-Qing; Qiu, Jian-Wei

    2015-02-01

    In this talk, we review a QCD factorization based approach to extract parton distribution and correlation functions from lattice QCD calculation of single hadron matrix elements of quark-gluon operators. We argue that although the lattice QCD calculations are done in the Euclidean space, the nonperturbative collinear behavior of the matrix elements are the same as that in the Minkowski space, and could be systematically factorized into parton distribution functions with infrared safe matching coefficients. The matching coefficients can be calculated perturbatively by applying the factorization formalism on to asymptotic partonic states.

  12. Charmed bottom baryon spectroscopy from lattice QCD

    DOE PAGESBeta

    Brown, Zachary S.; Detmold, William; Meinel, Stefan; Orginos, Kostas

    2014-11-19

    In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with JP = 1/2+ and JP = 3/2+. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physicalmore » pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/mQ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.« less

  13. Nontrivial center dominance in high temperature QCD

    NASA Astrophysics Data System (ADS)

    Ishikawa, K.-I.; Iwasaki, Y.; Nakayama, Yu; Yoshie, T.

    2016-07-01

    We investigate the properties of quarks and gluons above the chiral phase transition temperature Tc, using the renormalization group (RG) improved gauge action and the Wilson quark action with two degenerate quarks mainly on a 323 × 16 lattice. In the one-loop perturbation theory, the thermal ensemble is dominated by the gauge configurations with effectively Z(3) center twisted boundary conditions, making the thermal expectation value of the spatial Polyakov loop take a nontrivial Z(3) center. This is in agreement with our lattice simulation of high temperature quantum chromodynamics (QCD). We further observe that the temporal propagator of massless quarks at extremely high temperature β = 100.0(T ≃ 1058T c) remarkably agrees with the temporal propagator of free quarks with the Z(3) twisted boundary condition for t/Lt ≥ 0.2, but differs from that with the Z(3) trivial boundary condition. As we increase the mass of quarks mq, we find that the thermal ensemble continues to be dominated by the Z(3) twisted gauge field configurations as long as mq ≤ 3.0T and above that the Z(3) trivial configurations come in. The transition is similar to what we found in the departure from the conformal region in the zero-temperature many-flavor conformal QCD on a finite lattice by increasing the mass of quarks.

  14. Charmed bottom baryon spectroscopy from lattice QCD

    SciTech Connect

    Brown, Zachary S.; Detmold, William; Meinel, Stefan; Orginos, Kostas

    2014-11-19

    In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with JP = 1/2+ and JP = 3/2+. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/mQ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.

  15. Lattice QCD and Nuclear Physics

    SciTech Connect

    Konstantinos Orginos

    2007-03-01

    A steady stream of developments in Lattice QCD have made it possible today to begin to address the question of how nuclear physics emerges from the underlying theory of strong interactions. Central role in this understanding play both the effective field theory description of nuclear forces and the ability to perform accurate non-perturbative calculations in lo w energy QCD. Here I present some recent results that attempt to extract important low energy constants of the effective field theory of nuclear forces from lattice QCD.

  16. Hadron physics in holographic QCD

    NASA Astrophysics Data System (ADS)

    Santra, A. B.; Lombardo, U.; Bonanno, A.

    2012-07-01

    Hadron physics deals with the study of strongly interacting subatomic particles such as neutrons, protons, pions and others, collectively known as baryons and mesons. Physics of strong interaction is difficult. There are several approaches to understand it. However, in the recent years, an approach called, holographic QCD, based on string theory (or gauge-gravity duality) is becoming popular providing an alternative description of strong interaction physics. In this article, we aim to discuss development of strong interaction physics through QCD and string theory, leading to holographic QCD.

  17. Cut-constructible part of QCD amplitudes

    SciTech Connect

    Britto, Ruth; Feng Bo; Mastrolia, Pierpaolo

    2006-05-15

    Unitarity cuts are widely used in analytic computation of loop amplitudes in gauge theories such as QCD. We expand upon the technique introduced in hep-ph/0503132 to carry out any finite unitarity cut integral. This technique naturally separates the contributions of bubble, triangle and box integrals in one-loop amplitudes and is not constrained to any particular helicity configurations. Loop momentum integration is reduced to a sequence of algebraic operations. We discuss the extraction of the residues at higher-order poles. Additionally, we offer concise algebraic formulas for expressing coefficients of three-mass triangle integrals. As an application, we compute all remaining coefficients of bubble and triangle integrals for nonsupersymmetric six-gluon amplitudes.

  18. Moving Forward to Constrain the Shear Viscosity of QCD Matter

    NASA Astrophysics Data System (ADS)

    Denicol, Gabriel; Monnai, Akihiko; Schenke, Björn

    2016-05-01

    We demonstrate that measurements of rapidity differential anisotropic flow in heavy-ion collisions can constrain the temperature dependence of the shear viscosity to entropy density ratio η /s of QCD matter. Comparing results from hydrodynamic calculations with experimental data from the RHIC, we find evidence for a small η /s ≈0.04 in the QCD crossover region and a strong temperature dependence in the hadronic phase. A temperature independent η /s is disfavored by the data. We further show that measurements of the event-by-event flow as a function of rapidity can be used to independently constrain the initial state fluctuations in three dimensions and the temperature dependent transport properties of QCD matter.

  19. Excited Baryons in Holographic QCD

    SciTech Connect

    de Teramond, Guy F.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2011-11-08

    The light-front holographic QCD approach is used to describe baryon spectroscopy and the systematics of nucleon transition form factors. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. The transition from the hard-scattering perturbative domain to the non-perturbative region is sensitive to the detailed dynamics of confined quarks and gluons. Computations of such phenomena from first principles in QCD are clearly very challenging. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time; however, dynamical observables in Minkowski space-time, such as the time-like hadronic form factors are not amenable to Euclidean numerical lattice computations.

  20. QCD analogy for quantum gravity

    NASA Astrophysics Data System (ADS)

    Holdom, Bob; Ren, Jing

    2016-06-01

    Quadratic gravity presents us with a renormalizable, asymptotically free theory of quantum gravity. When its couplings grow strong at some scale, as in QCD, then this strong scale sets the Planck mass. QCD has a gluon that does not appear in the physical spectrum. Quadratic gravity has a spin-2 ghost that we conjecture does not appear in the physical spectrum. We discuss how the QCD analogy leads to this conjecture and to the possible emergence of general relativity. Certain aspects of the QCD path integral and its measure are also similar for quadratic gravity. With the addition of the Einstein-Hilbert term, quadratic gravity has a dimensionful parameter that seems to control a quantum phase transition and the size of a mass gap in the strong phase.

  1. Combination of H1 and ZEUS Inclusive Deep Inelastic e{sup {+-}}p Scattering Cross Section Measurements and Extraction of the Proton Parton Density Functions using a NLO-QCD Fit

    SciTech Connect

    Radescu, Voica A.

    2009-03-23

    A new averaging method is used to combine previously published HERA-I data by the H1 and ZEUS Collaborations of neutral and charged current inclusive cross sections for e{sup {+-}}p scattering. The combination procedure takes into account the systematic error correlations in a coherent approach, leading to a significantly reduced overall cross section uncertainty. This precise combined HERA-I data set is then used as the sole input for a next-to-leading order (NLO) QCD parton distribution function (PDF) fit. The consistent treatment of systematic uncertainties in the combined data results in PDFs with greatly reduced experimental uncertainties compared to the separate analyses of the H1 and ZEUS experiments. Model uncertainties, including those arising from parametrisation dependence, are also carefully considered. The resulting HERAPDFs have impressive precision compared to the global fits.

  2. Perfect Actions and Operators for Lattice QCD

    NASA Astrophysics Data System (ADS)

    Wiese, Uwe-Jens

    1996-05-01

    Wilson's renormalization group implies that lattice actions located on a renormalized trajectory emanating from a fixed point represent perfect discretizations of continuum physics. With a perfect action the spectrum of a lattice theory is identical with the one of the continuum theory even at finite lattice spacing. Similarly, perfect operators yield cut-off independent matrix elements. Hence, continuum QCD can in principle be reconstructed from a lattice with finite spacing. In practice it is difficult to construct perfect actions and perfect operators explicitly. Here perturbation theory is used to derive perfect actions for quarks and gluons by performing a block renormalization group transformation directly from the continuum. The renormalized trajectory for free massive quarks is identified and a parameter in the renormalization group transformation is tuned such that for 1-d configurations the perfect action reduces to the nearest neighbor Wilson fermion action. Then the 4-d perfect action turns out to be extremely local as well, which is vital for numerical simulations. The fixed point action for free gluons is also obtained by blocking from the continuum. For 2-d configurations it reduces to the standard plaquette action, and for 4-d configurations it is still very local. With interactions between quarks and gluons switched on the perfect quark-gluon and 3-gluon vertex functions are computed analytically. In particular, a perfect clover term can be extracted from the quark-gluon vertex. The perturbatively perfect action is directly applicable to heavy quark physics. The construction of a perfect QCD action for light quarks should include nonperturbative effects, which is possible using numerical methods. Classically perfect quark and gluon fields are constructed as well. They allow to interpolate the continuum fields from the lattice data. In this way one can obtain information about space-time regions between lattice points. The classically perfect fields

  3. Competition for finite resources

    NASA Astrophysics Data System (ADS)

    Cook, L. Jonathan; Zia, R. K. P.

    2012-05-01

    The resources in a cell are finite, which implies that the various components of the cell must compete for resources. One such resource is the ribosomes used during translation to create proteins. Motivated by this example, we explore this competition by connecting two totally asymmetric simple exclusion processes (TASEPs) to a finite pool of particles. Expanding on our previous work, we focus on the effects on the density and current of having different entry and exit rates.

  4. QCDNUM: Fast QCD evolution and convolution

    NASA Astrophysics Data System (ADS)

    Botje, M.

    2011-02-01

    The QCDNUM program numerically solves the evolution equations for parton densities and fragmentation functions in perturbative QCD. Un-polarised parton densities can be evolved up to next-to-next-to-leading order in powers of the strong coupling constant, while polarised densities or fragmentation functions can be evolved up to next-to-leading order. Other types of evolution can be accessed by feeding alternative sets of evolution kernels into the program. A versatile convolution engine provides tools to compute parton luminosities, cross-sections in hadron-hadron scattering, and deep inelastic structure functions in the zero-mass scheme or in generalised mass schemes. Input to these calculations are either the QCDNUM evolved densities, or those read in from an external parton density repository. Included in the software distribution are packages to calculate zero-mass structure functions in un-polarised deep inelastic scattering, and heavy flavour contributions to these structure functions in the fixed flavour number scheme. Program summaryProgram title: QCDNUM version: 17.00 Catalogue identifier: AEHV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public Licence No. of lines in distributed program, including test data, etc.: 45 736 No. of bytes in distributed program, including test data, etc.: 911 569 Distribution format: tar.gz Programming language: Fortran-77 Computer: All Operating system: All RAM: Typically 3 Mbytes Classification: 11.5 Nature of problem: Evolution of the strong coupling constant and parton densities, up to next-to-next-to-leading order in perturbative QCD. Computation of observable quantities by Mellin convolution of the evolved densities with partonic cross-sections. Solution method: Parametrisation of the parton densities as linear or quadratic splines on a discrete grid, and evolution of the spline

  5. Realization of chiral symmetry breaking and restoration in holographic QCD

    NASA Astrophysics Data System (ADS)

    Chelabi, Kaddour; Fang, Zhen; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2016-05-01

    With proper profiles of the scalar potential and the dilaton field, for the first time, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature are correctly realized in the holographic QCD framework. In the chiral limit, a nonzero chiral condensate develops in the vacuum and decreases with temperature, and the phase transition is of the second order for a two-flavor case and of the first order for a three-flavor case. In the case of explicit chiral symmetry breaking, in the two-flavor case, the second-order phase transition turns into a crossover with any nonzero current quark mass, and in the three-flavor case, the first-order phase transition turns into a crossover at a finite current quark mass. The correct description of chiral symmetry breaking and restoration makes the holographic QCD models more powerful in dealing with nonperturbative QCD phenomena. This framework can be regarded as a general setup in an application of AdS/CFT to describe conventional Ginzburg-Landau-Wilson-type phase transitions, e.g. in condensed matter and cosmology systems.

  6. Lattice QCD input for axion cosmology

    NASA Astrophysics Data System (ADS)

    Berkowitz, Evan; Buchoff, Michael I.; Rinaldi, Enrico

    2015-08-01

    One intriguing beyond-the-Standard-Model particle is the QCD axion, which could simultaneously provide a solution to the Strong C P Problem and account for some, if not all, of the dark matter density in the Universe. This particle is a pseudo-Nambu-Goldstone boson of the conjectured Peccei-Quinn symmetry of the Standard Model. Its mass and interactions are suppressed by a heavy symmetry-breaking scale, fa, the value of which is roughly greater than 109 GeV (or, conversely, the axion mass, ma, is roughly less than 104 μ eV ). The density of axions in the Universe, which cannot exceed the relic dark matter density and is a quantity of great interest in axion experiments like ADMX, is a result of the early Universe interplay between cosmological evolution and the axion mass as a function of temperature. The latter quantity is proportional to the second derivative of the temperature-dependent QCD free energy with respect to the C P -violating phase, θ . However, this quantity is generically nonperturbative, and previous calculations have only employed instanton models at the high temperatures of interest (roughly 1 GeV). In this and future works, we aim to calculate the temperature-dependent axion mass at small θ from first-principle lattice calculations, with controlled statistical and systematic errors. Once calculated, this temperature-dependent axion mass is input for the classical evolution equations of the axion density of the Universe, which is required to be less than or equal to the dark matter density. Due to a variety of lattice systematic effects at the very high temperatures required, we perform a calculation of the leading small-θ cumulant of the theta vacua on large volume lattices for SU(3) Yang-Mills with high statistics as a first proof of concept, before attempting a full QCD calculation in the future. From these pure glue results, the misalignment mechanism yields the axion mass bound ma≥(14.6 ±0.1 ) μ eV when Peccei-Quinn breaking occurs

  7. Confronting QCD with the experimental hadronic spectral functions from tau decay

    SciTech Connect

    Dominguez, C. A.; Nasrallah, N. F.; Schilcher, K.

    2009-09-01

    The (nonstrange) vector and axial-vector spectral functions extracted from {tau} decay by the ALEPH Collaboration are confronted with QCD in the framework of a finite energy sum rule involving a polynomial kernel tuned to suppress the region beyond the kinematical end point where there is no longer data. This effectively allows for a QCD finite energy sum rule analysis to be performed beyond the region of the existing data. Results show excellent agreement between data and perturbative QCD in the remarkably wide energy range s=3-10 GeV{sup 2}, leaving room for a dimension d=4 vacuum condensate consistent with values in the literature. A hypothetical dimension d=2 term in the operator product expansion is found to be extremely small, consistent with zero. Fixed order and contour improved perturbation theory are used, with both leading to similar results within errors. Full consistency is found between vector and axial-vector channel results.

  8. QCD measurements at the Tevatron

    SciTech Connect

    Bandurin, Dmitry; /Florida State U.

    2011-12-01

    Selected quantum chromodynamics (QCD) measurements performed at the Fermilab Run II Tevatron p{bar p} collider running at {radical}s = 1.96 TeV by CDF and D0 Collaborations are presented. The inclusive jet, dijet production and three-jet cross section measurements are used to test perturbative QCD calculations, constrain parton distribution function (PDF) determinations, and extract a precise value of the strong coupling constant, {alpha}{sub s}(m{sub Z}) = 0.1161{sub -0.0048}{sup +0.0041}. Inclusive photon production cross-section measurements reveal an inability of next-to-leading-order (NLO) perturbative QCD (pQCD) calculations to describe low-energy photons arising directly in the hard scatter. The diphoton production cross-sections check the validity of the NLO pQCD predictions, soft-gluon resummation methods implemented in theoretical calculations, and contributions from the parton-to-photon fragmentation diagrams. Events with W/Z+jets productions are used to measure many kinematic distributions allowing extensive tests and tunes of predictions from pQCD NLO and Monte-Carlo (MC) event generators. The charged-particle transverse momenta (p{sub T}) and multiplicity distributions in the inclusive minimum bias events are used to tune non-perturbative QCD models, including those describing the multiple parton interactions (MPI). Events with inclusive production of {gamma} and 2 or 3 jets are used to study increasingly important MPI phenomenon at high p{sub T}, measure an effective interaction cross section, {sigma}{sub eff} = 16.4 {+-} 2.3 mb, and limit existing MPI models.

  9. Chiral logarithms in quenched QCD

    SciTech Connect

    Y. Chen; S. J. Dong; T. Draper; I. Horvath; F. X. Lee; K. F. Liu; N. Mathur; and J. B. Zhang

    2004-08-01

    The quenched chiral logarithms are examined on a 163x28 lattice with Iwasaki gauge action and overlap fermions. The pion decay constant fpi is used to set the lattice spacing, a = 0.200(3) fm. With pion mass as low as {approx}180 MeV, we see the quenched chiral logarithms clearly in mpi2/m and fP, the pseudoscalar decay constant. The authors analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory (chiPT) to apply. With the constrained curve-fitting method, they are able to extract the quenched chiral logarithmic parameter delta together with other low-energy parameters. Only for mpi<=300 MeV do we obtain a consistent and stable fit with a constant delta which they determine to be 0.24(3)(4) (at the chiral scale Lambdachi = 0.8 GeV). By comparing to the 123x28 lattice, they estimate the finite volume effect to be about 2.7% for the smallest pion mass. They also fitted the pion mass to the form for the re-summed cactus diagrams and found that its applicable region is extended farther than the range for the one-loop formula, perhaps up to mpi {approx}500-600 MeV. The scale independent delta is determined to be 0.20(3) in this case. The authors study the quenched non-analytic terms in the nucleon mass and find that the coefficient C1/2 in the nucleon mass is consistent with the prediction of one-loop chiPT. They also obtain the low energy constant L5 from fpi. They conclude from this study that it is imperative to cover only the range of data with the pion mass less than {approx}300 MeV in order to examine the chiral behavior of the hadron masses and decay constants in quenched QCD and match them with quenched one-loop chiPT.

  10. Gauge Configurations for Lattice QCD from The Gauge Connection

    DOE Data Explorer

    The Gauge Connection is an experimental archive for lattice QCD and a repository of gauge configurations made freely available to the community. Contributors to the archive include the Columbia QCDSP collaboration, the MILC collaboration, and others. Configurations are stored in QCD archive format, consisting of an ASCII header which defines various parameters, followed by binary data. NERSC has also provided some utilities and examples that will aid users in handling the data. Users may browse the archive, but are required to register for a password in order to download data. Contents of the archive are organized under four broad headings: Quenched (more than 1200 configurations); Dynamical, Zero Temperature (more than 300 configurations); MILC Improved Staggered Asqtad Lattices (more than 7000 configurations); and Dynamical, Finite Temperature (more than 1200 configurations)

  11. Thermodynamics of QCD from Sakai-Sugimoto model

    NASA Astrophysics Data System (ADS)

    Isono, Hiroshi; Mandal, Gautam; Morita, Takeshi

    2015-12-01

    Till date, the only consistent description of the deconfinement phase of the Sakai-Sugimoto model appears to be provided by the analysis of [1]. The current version of the analysis, however, has a subtlety regarding the monodromy of quarks around the Euclidean time circle. In this note, we revisit and resolve this issue by considering the effect of an imaginary baryon chemical potential on quark monodromies. With this ingredient, the proposal of [1] for investigating finite temperature QCD using holography is firmly established. Additionally, our technique allows a holographic computation of the free energy as a function of the imaginary chemical potential in the deconfinement phase; we show that our result agrees with the corresponding formula obtained from perturbative QCD, namely the Roberge-Weiss potential.

  12. QCD trace anomaly

    SciTech Connect

    Andersen, Jens O.; Leganger, Lars E.; Strickland, Michael; Su, Nan

    2011-10-15

    In this brief report we compare the predictions of a recent next-to-next-to-leading order hard-thermal-loop perturbation theory (HTLpt) calculation of the QCD trace anomaly to available lattice data. We focus on the trace anomaly scaled by T{sup 2} in two cases: N{sub f}=0 and N{sub f}=3. When using the canonical value of {mu}=2{pi}T for the renormalization scale, we find that for Yang-Mills theory (N{sub f}=0) agreement between HTLpt and lattice data for the T{sup 2}-scaled trace anomaly begins at temperatures on the order of 8T{sub c}, while treating the subtracted piece as an interaction term when including quarks (N{sub f}=3) agreement begins already at temperatures above 2T{sub c}. In both cases we find that at very high temperatures the T{sup 2}-scaled trace anomaly increases with temperature in accordance with the predictions of HTLpt.

  13. The effects of bone density and crestal cortical bone thickness on micromotion and peri-implant bone strain distribution in an immediately loaded implant: a nonlinear finite element analysis

    PubMed Central

    2016-01-01

    Purpose This study investigated the effects of bone density and crestal cortical bone thickness at the implant-placement site on micromotion (relative displacement between the implant and bone) and the peri-implant bone strain distribution under immediate-loading conditions. Methods A three-dimensional finite element model of the posterior mandible with an implant was constructed. Various bone parameters were simulated, including low or high cancellous bone density, low or high crestal cortical bone density, and crestal cortical bone thicknesses ranging from 0.5 to 2.5 mm. Delayed- and immediate-loading conditions were simulated. A buccolingual oblique load of 200 N was applied to the top of the abutment. Results The maximum extent of micromotion was approximately 100 μm in the low-density cancellous bone models, whereas it was under 30 μm in the high-density cancellous bone models. Crestal cortical bone thickness significantly affected the maximum micromotion in the low-density cancellous bone models. The minimum principal strain in the peri-implant cortical bone was affected by the density of the crestal cortical bone and cancellous bone to the same degree for both delayed and immediate loading. In the low-density cancellous bone models under immediate loading, the minimum principal strain in the peri-implant cortical bone decreased with an increase in crestal cortical bone thickness. Conclusions Cancellous bone density may be a critical factor for avoiding excessive micromotion in immediately loaded implants. Crestal cortical bone thickness significantly affected the maximum extent of micromotion and peri-implant bone strain in simulations of low-density cancellous bone under immediate loading. PMID:27382504

  14. Recent QCD results from the Tevatron

    SciTech Connect

    Pickarz, Henryk; CDF and DO collaboration

    1997-02-01

    Recent QCD results from the CDF and D0 detectors at the Tevatron proton-antiproton collider are presented. An outlook for future QCD tests at the Tevatron collider is also breifly discussed. 27 refs., 11 figs.

  15. QCD thermodynamics using five-dimensional gravity

    NASA Astrophysics Data System (ADS)

    Megías, E.; Pirner, H. J.; Veschgini, K.

    2011-03-01

    We calculate the critical temperature and free energy of the gluon plasma using the dilaton potential [B. Galow, E. Megias, J. Nian, and H. J. Pirner, Nucl. Phys.NUPBBO0550-3213 B834, 330 (2010).10.1016/j.nuclphysb.2010.03.022] in the gravity theory of anti-de Sitter/QCD. The finite temperature observables are calculated in two ways: first, from the Page-Hawking computation of the free energy, and secondly using the Bekenstein-Hawking proportionality of the entropy with the area of the horizon. Renormalization is well defined, because the T=0 theory has asymptotic freedom. We further investigate the change of the critical temperature with the number of flavors induced by the change of the running coupling constant in the quenched theory. The finite temperature behavior of the speed of sound, spatial string tension and vacuum expectation value of the Polyakov loop follow from the corresponding string theory in AdS5.

  16. Kenneth Wilson and Lattice QCD

    NASA Astrophysics Data System (ADS)

    Ukawa, Akira

    2015-09-01

    We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson's seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward better understanding of physics, better algorithms, and more powerful supercomputers have produced major breakthroughs in our understanding of the strong interactions. We review the salient results of this effort in understanding the hadron spectrum, the Cabibbo-Kobayashi-Maskawa matrix elements and CP violation, and quark-gluon plasma at high temperatures. We conclude with a brief summary and a future perspective.

  17. Finiteness of the Coulomb gauge QCD perturbative effective action

    NASA Astrophysics Data System (ADS)

    Andraši, A.; Taylor, J. C.

    2015-05-01

    At 2-loop order in the Coulomb gauge, individual Feynman graphs contributing to the effective action have energy divergences. It is proved that these cancel in suitable combinations of graphs. This has previously been shown only for transverse external fields. The calculation results in a generalization of the Christ-Lee term which was inserted into the Hamiltonian.

  18. Infrared features of unquenched finite temperature lattice Landau gauge QCD

    SciTech Connect

    Furui, Sadataka; Nakajima, Hideo

    2007-09-01

    The color diagonal and color antisymmetric ghost propagators slightly above T{sub c} of N{sub f}=2 MILC 24{sup 3}x12 lattices are measured and compared with zero-temperature unquenched N{sub f}=2+1 MILC{sub c} 20{sup 3}x64 and MILC{sub f} 28{sup 3}x96 lattices and zero-temperature quenched 56{sup 4} {beta}=6.4 and 6.45 lattices. The expectation value of the color antisymmetric ghost propagator {phi}{sup c}(q) is zero, but its Binder cumulant, which is consistent with that of N{sub c}{sup 2}-1 dimensional Gaussian distribution below T{sub c}, decreases above T{sub c}. Although the color diagonal ghost propagator is temperature independent, the l{sup 1} norm of the color antisymmetric ghost propagator is temperature dependent. The expectation value of the ghost condensate observed at zero-temperature unquenched configuration is consistent with 0 in T>T{sub c}. We also measure transverse, magnetic, and electric gluon propagator and extract gluon screening masses. The running coupling measured from the product of the gluon dressing function and the ghost dressing function are almost temperature independent, but the effect of A{sup 2} condensate observed at zero temperature is consistent with 0 in T>T{sub c}. The transverse gluon dressing function at low temperature has a peak in the infrared at low temperature, but it becomes flatter at high temperature. The magnetic gluon propagator at high momentum depends on the temperature. These data imply that the magnetic gluon propagator and the color antisymmetric ghost propagator are affected by the presence of dynamical quarks, and there are strong nonperturbative effects through the temperature-dependent color antisymmetric ghost propagator.

  19. Finiteness of the Coulomb gauge QCD perturbative effective action

    SciTech Connect

    Andraši, A.; Taylor, J.C.

    2015-05-15

    At 2-loop order in the Coulomb gauge, individual Feynman graphs contributing to the effective action have energy divergences. It is proved that these cancel in suitable combinations of graphs. This has previously been shown only for transverse external fields. The calculation results in a generalization of the Christ–Lee term which was inserted into the Hamiltonian.

  20. Chiral interface at the finite temperature transition point of QCD

    NASA Technical Reports Server (NTRS)

    Frei, Z.; Patkos, A.

    1990-01-01

    The domain wall between coexisting chirally symmetric and broken symmetry regions is studied in a saddle point approximation to the effective three-flavor sigma model. In the chiral limit the surface tension varies in the range ((40 to -50)MeV)(exp 3). The width of the domain wall is estimated to be approximately or equal to 4.5 fm.

  1. The supercritical pomeron in QCD.

    SciTech Connect

    White, A. R.

    1998-06-29

    Deep-inelastic diffractive scaling violations have provided fundamental insight into the QCD pomeron, suggesting a single gluon inner structure rather than that of a perturbative two-gluon bound state. This talk outlines a derivation of a high-energy, transverse momentum cut-off, confining solution of QCD. The pomeron, in first approximation, is a single reggeized gluon plus a ''wee parton'' component that compensates for the color and particle properties of the gluon. This solution corresponds to a super-critical phase of Reggeon Field Theory.

  2. QCD inequalities for hadron interactions.

    PubMed

    Detmold, William

    2015-06-01

    We derive generalizations of the Weingarten-Witten QCD mass inequalities for particular multihadron systems. For systems of any number of identical pseudoscalar mesons of maximal isospin, these inequalities prove that near threshold interactions between the constituent mesons must be repulsive and that no bound states can form in these channels. Similar constraints in less symmetric systems are also extracted. These results are compatible with experimental results (where known) and recent lattice QCD calculations, and also lead to a more stringent bound on the nucleon mass than previously derived, m_{N}≥3/2m_{π}. PMID:26196617

  3. Recent QCD results from CDF

    SciTech Connect

    Yun, J.C.

    1990-10-10

    In this paper we report recent QCD analysis with the new data taken from CDF detector. CDF recorded an integrated luminosity of 4.4 nb{sup {minus}1} during the 1988--1989 run at center of mass system (CMS) energy of 1.8 TeV. The major topics of this report are inclusive jet, dijet, trijet and direct photon analysis. These measurements are compared of QCD predictions. For the inclusive jet an dijet analysis, tests of quark compositeness are emphasized. 11 refs., 6 figs.

  4. QCD corrections to triboson production

    NASA Astrophysics Data System (ADS)

    Lazopoulos, Achilleas; Melnikov, Kirill; Petriello, Frank

    2007-07-01

    We present a computation of the next-to-leading order QCD corrections to the production of three Z bosons at the Large Hadron Collider. We calculate these corrections using a completely numerical method that combines sector decomposition to extract infrared singularities with contour deformation of the Feynman parameter integrals to avoid internal loop thresholds. The NLO QCD corrections to pp→ZZZ are approximately 50% and are badly underestimated by the leading order scale dependence. However, the kinematic dependence of the corrections is minimal in phase space regions accessible at leading order.

  5. Lattice QCD clusters at Fermilab

    SciTech Connect

    Holmgren, D.; Mackenzie, Paul B.; Singh, Anitoj; Simone, Jim; /Fermilab

    2004-12-01

    As part of the DOE SciDAC ''National Infrastructure for Lattice Gauge Computing'' project, Fermilab builds and operates production clusters for lattice QCD simulations. This paper will describe these clusters. The design of lattice QCD clusters requires careful attention to balancing memory bandwidth, floating point throughput, and network performance. We will discuss our investigations of various commodity processors, including Pentium 4E, Xeon, Opteron, and PPC970. We will also discuss our early experiences with the emerging Infiniband and PCI Express architectures. Finally, we will present our predictions and plans for future clusters.

  6. Glueball decay in holographic QCD

    SciTech Connect

    Hashimoto, Koji; Tan, C.-I; Terashima, Seiji

    2008-04-15

    Using holographic QCD based on D4-branes and D8-anti-D8-branes, we have computed couplings of glueballs to light mesons. We describe glueball decay by explicitly calculating its decay widths and branching ratios. Interestingly, while glueballs remain less well understood both theoretically and experimentally, our results are found to be consistent with the experimental data for the scalar glueball candidate f{sub 0}(1500). More generally, holographic QCD predicts that decay of any glueball to 4{pi}{sup 0} is suppressed, and that mixing of the lightest glueball with qq mesons is small.

  7. QCD: Challenges for the future

    SciTech Connect

    Burrows, P.; Dawson, S.; Orr, L.; Smith, W.H.

    1997-01-13

    Despite many experimental verifications of the correctness of our basic understanding of QCD, there remain numerous open questions in strong interaction physics and we focus on the role of future colliders in addressing these questions. We discuss possible advances in the measurement of {alpha}{sub s}, in the study of parton distribution functions, and in the understanding of low x physics at present colliders and potential new facilities. We also touch briefly on the role of spin physics in advancing our understanding of QCD.

  8. Nucleon Structure from Lattice QCD

    SciTech Connect

    David Richards

    2007-09-05

    Recent advances in lattice field theory, in computer technology and in chiral perturbation theory have enabled lattice QCD to emerge as a powerful quantitative tool in understanding hadron structure. I describe recent progress in the computation of the nucleon form factors and moments of parton distribution functions, before proceeding to describe lattice studies of the Generalized Parton Distributions (GPDs). In particular, I show how lattice studies of GPDs contribute to building a three-dimensional picture of the proton, I conclude by describing the prospects for studying the structure of resonances from lattice QCD.

  9. Finite-temperature second-order many-body perturbation and Hartree–Fock theories for one-dimensional solids: An application to Peierls and charge-density-wave transitions in conjugated polymers

    SciTech Connect

    He, Xiao; Ryu, Shinsei; Hirata, So

    2014-01-14

    Finite-temperature extensions of ab initio Gaussian-basis-set spin-restricted Hartree–Fock (HF) and second-order many-body perturbation (MP2) theories are implemented for infinitely extended, periodic, one-dimensional solids and applied to the Peierls and charge-density-wave (CDW) transitions in polyyne and all-trans polyacetylene. The HF theory predicts insulating CDW ground states for both systems in their equidistant structures at low temperatures. In the same structures, they turn metallic at high temperatures. Starting from the “dimerized” low-temperature equilibrium structures, the systems need even higher temperatures to undergo a Peierls transition, which is accompanied by geometric as well as electronic distortions from dimerized to non-dimerized forms. The conventional finite-temperature MP2 theory shows a sign of divergence in any phase at any nonzero temperature and is useless. The renormalized finite-temperature MP2 (MP2R) theory is divergent only near metallic electronic structures, but is well behaved elsewhere. MP2R also predicts CDW and Peierls transitions occurring at two different temperatures. The effect of electron correlation is primarily to lower the Peierls transition temperature.

  10. Macroscopic Universality: Why QCD in Matter is Subtle

    SciTech Connect

    Janik, R.A.; Nowak, M.A.; Papp, G.; Zahed, I. |||||

    1996-12-01

    We use a chiral random matrix model with 2{ital N}{sub {ital f}} flavors to mock up the QCD Dirac spectrum at finite chemical potential. We show that the 1/{ital N} approximation breaks down in the quenched state with spontaneously broken chiral symmetry. The breakdown condition is set by the divergence of a two-point function that is shown to follow the general lore of macroscopic universality. In this state, the fermionic fluctuations are not suppressed in the large {ital N} limit. {copyright} {ital 1996 The American Physical Society.}

  11. The K+ K+ scattering length from Lattice QCD

    SciTech Connect

    Silas Beane; Thomas Luu; Konstantinos Orginos; Assumpta Parreno; Martin Savage; Aaron Torok; Andre Walker-Loud

    2007-09-11

    The K+K+ scattering length is calculated in fully-dynamical lattice QCD with domain-wall valence quarks on the MILC asqtad-improved gauge configurations with fourth-rooted staggered sea quarks. Three-flavor mixed-action chiral perturbation theory at next-to-leading order, which includes the leading effects of the finite lattice spacing, is used to extrapolate the results of the lattice calculation to the physical value of mK + /fK + . We find mK^+ aK^+ K^+ = â~0.352 ± 0.016, where the statistical and systematic errors have been combined in quadrature.

  12. Transverse momentum distributions inside the nucleon from Lattice QCD

    SciTech Connect

    Bernhard Musch, Philipp Hagler, John Negele, Andreas Schafer

    2010-06-01

    We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities. We discuss the basic concepts of the method, including renormalization of the gauge link, and an extension to a more elaborate operator geometry that would allow us to analyze process-dependent TMDs such as the Sivers-function.

  13. Renormalization in Coulomb gauge QCD

    NASA Astrophysics Data System (ADS)

    Andraši, A.; Taylor, John C.

    2011-04-01

    In the Coulomb gauge of QCD, the Hamiltonian contains a non-linear Christ-Lee term, which may alternatively be derived from a careful treatment of ambiguous Feynman integrals at 2-loop order. We investigate how and if UV divergences from higher order graphs can be consistently absorbed by renormalization of the Christ-Lee term. We find that they cannot.

  14. QCD Phase Transitions, Volume 15

    SciTech Connect

    Schaefer, T.; Shuryak, E.

    1999-03-20

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  15. Basics of QCD perturbation theory

    SciTech Connect

    Soper, D.E.

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  16. Experimenting with Langevin lattice QCD

    SciTech Connect

    Gavai, R.V.; Potvin, J.; Sanielevici, S.

    1987-05-01

    We report on the status of our investigations of the effects of systematic errors upon the practical merits of Langevin updating in full lattice QCD. We formulate some rules for the safe use of this updating procedure and some observations on problems which may be common to all approximate fermion algorithms.

  17. Seven topics in perturbative QCD

    SciTech Connect

    Buras, A.J.

    1980-09-01

    The following topics of perturbative QCD are discussed: (1) deep inelastic scattering; (2) higher order corrections to e/sup +/e/sup -/ annihilation, to photon structure functions and to quarkonia decays; (3) higher order corrections to fragmentation functions and to various semi-inclusive processes; (4) higher twist contributions; (5) exclusive processes; (6) transverse momentum effects; (7) jet and photon physics.

  18. Formation of large-scale structures with sharp density gradient through Rayleigh-Taylor growth in a two-dimensional slab under the two-fluid and finite Larmor radius effects

    SciTech Connect

    Goto, R.; Hatori, T.; Miura, H. Ito, A.; Sato, M.

    2015-03-15

    Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low β-value. The two effects stabilize the unstable high wave number modes for a certain range of the β-value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. The formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability.

  19. The QCD equation of state with charm quarks from lattice QCD

    NASA Astrophysics Data System (ADS)

    Cheng, Michael

    Recently, there have been several calculations of the QCD equation of state (EoS) on the lattice. These calculations take into account the two light quarks and the strange quark, but have ignored the effects of the charm quark, assuming that the charm mass (mc ≈ 1300 MeV) is exponentially suppressed at the temperatures which are explored. However, future heavy ion collisions, such as those planned at the LHC, may well probe temperature regimes where the charm quarks play an important role in the dynamics of the QGP. We present a calculation of the charm quark contribution to the QCD EoS using p4-improved staggered fermions at Nt = 4, 6, 8. This calculation is done with a quenched charm quark, i.e. the relevant operators are measured using a valence charm quark mass on a 2+1 flavor gauge field background. The charm quark masses are determined by calculating charmonium masses (metac and mJ/Psi) and fixing these mesons to their physical masses. The interaction measure, pressure, energy density, and entropy density are calculated. We find that the charm contribution makes a significant contribution, even down to temperatures as low as the pseudo-critical temperature, Tc. However, there are significant scaling corrections at the lattice spacings that we use, preventing a reliable continuum extrapolation.

  20. Mapping between the Heisenberg XX Spin Chain and Low-Energy QCD

    NASA Astrophysics Data System (ADS)

    Pérez-García, David; Tierz, Miguel

    2014-04-01

    By using random matrix models, we uncover a connection between the low-energy sector of four-dimensional QCD at finite volume and the Heisenberg XX model in a 1D spin chain. This connection allows us to relate crucial properties of QCD with physically meaningful properties of the spin chain, establishing a dictionary between both worlds. For the spin chain, we predict a third-order phase transition and a Tracy-Widom law in the transition region. We also comment on possible numerical implications of the connection as well as on possible experimental implementations.

  1. PREFACE: Focus section on AdS/CFT applications to QCD matter Focus section on AdS/CFT applications to QCD matter

    NASA Astrophysics Data System (ADS)

    Bass, Steffan A.; Casalderrey-Solana, Jorge

    2012-04-01

    The gauge/gravity duality is a remarkable correspondence between a large class of non-abelian field theories and gravitational theories in a curved background. In its original form, as discovered by Maldacena in the late 1990s [1], the AdS/CFT correspondence relates Script N = 4 supersymmetric Yang-Mills (SYM) to type II B string theory in an AdS5 x S5 background; but since then, many other realizations of the duality have been explored. One of the features that makes this approach unique is the fact that it generically relates the strong coupling limit of a gauge theory to weakly coupled classical gravity. In this way, the correspondence provides a unique access to the dynamics of gauge theories at strong coupling, a regime of those theories which is hard to treat otherwise. This feature is, in part, responsible for the on-going very intense research on the gauge/gravity duality, which has become one of the most exciting fields of theoretical physics nowadays. While in the recent past the correspondence has been applied to many different fields, one of the areas where this new tool has had a larger impact is the description of non-perturbative aspects of QCD matter. The influence of this method is due, in part, to the experimental findings of the heavy ion programs of RHIC and the LHC, which indicate that deconfined QCD matter, the quark-gluon plasma, in the region of the phase diagram accessible to experiments does not behave like a weakly coupled gas of quarks and gluons but rather like a fluid in which the plasma constituents suffer significant interactions. In particular, phenomenological analyses of the strong collective effects found in those collisions show that the ratio of the shear viscosity to entropy density for this matter is very small, η/s ~ 0.08. This small value is remarkably close to the celebrated value for the same quantity in Script N = 4 SYM, η/s = 1/4 π obtained by Policastro et al in 2001 [2], making this computation one of the most

  2. An Anderson-like model of the QCD chiral transition

    NASA Astrophysics Data System (ADS)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-06-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  3. Quest for More Information from Lattice QCD Simulations

    NASA Astrophysics Data System (ADS)

    de Forcrand, P.; García Pérez, M.; Hashimoto, T.; Hioki, S.; Matsufuru, H.; Miyamura, O.; Umeda, T.; Nakamura, A.; Stamatescu, I.-O.; Tago, Y.; Takaishi, T.

    Lattice QCD is one of the most powerful tools to study the non-perturbative nature of the strong interaction. Although much information has been obtained so far to understand QCD, the computational cost becomes higher and higher as we calculate on finer lattices; simulations near the continuum are still far beyond. We report the progress on (1) renormalization group (RG) improved actions and (2) anisotropic lattice, which QCD-TARO group has developed and studied in order to get more information from the simulations on the present computers. RG improved actions were proposed and studied by Wilson and Iwasaki to remove discretization effects for long distance observables. We have studied 1× 1 + 1× 2 type actions, which includes Wilson, Symanzik and Iwasaki ones, by the strong and weak coupling expansions and Monte Carlo RG method. We have calculated RG flow and obtained a new effective β-function. Anisotropic lattice, where the temporal lattice spacing is smaller than that along the spatial one, makes us possible to perform finer resolution measurements in the temporal direction. This is especially useful at the finite temperature, where the temporal lattice size is limited. We have calculated meson pole and screening masses. We have found they behave in a different manner as a function of T.

  4. Vacuum fluctuation effects on the {rho}-meson mass and the one-{rho} exchange potential at finite temperature and density

    SciTech Connect

    Zhang, Yi-Jun; Gao, Song; Su, Ru-Keng Zhang, Yi-Jun Gao, Song Su, Ru-Keng

    1997-12-01

    Based on thermofield dynamics, the temperature- and density-dependent effective mass and screening mass of {rho} meson have been calculated. The effects of vacuum fluctuation corrections through effective nucleon mass are examined. We have shown that vacuum fluctuations give an important correction to the self-energy of the {rho} meson and lead to a reduction of the {rho}-meson mass in hot and dense matter. The temperature and density dependence of one-{rho}-meson exchange potential with vacuum fluctuation correction is also given. {copyright} {ital 1997} {ital The American Physical Society}

  5. Finite Earth

    NASA Astrophysics Data System (ADS)

    2015-10-01

    The world has agreed on 17 Sustainable Development Goals, to be adopted this week. This is great progress towards acknowledging that the planet's finite resources need to be managed carefully in the face of humanity's unlimited aspirations.

  6. Finite temperature and density depletion effects on persistent current state transitions and critical velocity of a toroidal Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Kumar, Avinash; Eckel, Stephen; Jendrzejewski, Fred; Campbell, Gretchen

    We study the decay of a persistent, quantized current state in a toroidal geometry. Our experiment involves trapping neutral 23Na atoms in an all optical ``target trap'' shaped potential. This potential consists of a disc surrounded by an annular potential. A current in a superfluid can be sustained only below a critical current. This critical current can be tuned by introducing a density perturbation which depletes the local density. The decay time of a persistent current state can also be controlled by enhancing fluctuations of the system thermally. We study the decay at four different temperatures between 30 nK and 190 nK. For each temperature we record the decay at four different perturbation strengths. We find that increasing the magnitude of the density depletion or the temperature leads to a faster decay, and have seen the decay constant change by over two orders of magnitude. We also studied the size of hysteresis loop between different current states as a function of temperature, allowing us to extract a critical velocity. We find that the discrepancies between the experimentally extracted critical velocity and theoretically calculated critical velocity (using local-density approximation) decreases as the temperature is decreased. Now at University of Heidelberg.

  7. Calculation of the nucleon axial charge in lattice QCD

    SciTech Connect

    D. B. Renner; R. G. Edwards; G. Fleming; Ph. Hagler; J. W. Negele; K. Orginos; A. V. Pochinsky; D. G. Richards; W. Schroers

    2006-09-01

    Protons and neutrons have a rich structure in terms of their constituents, the quarks and gluons. Understanding this structure requires solving Quantum Chromodynamics (QCD). However QCD is extremely complicated, so we must numerically solve the equations of QCD using a method known as lattice QCD. Here we describe a typical lattice QCD calculation by examining our recent computation of the nucleon axial charge.

  8. Deconfinement phase transition in a finite volume in the presence of massive particles

    SciTech Connect

    Ait El Djoudi, A.; Ghenam, L.

    2012-06-27

    We study the QCD deconfinement phase transition from a hadronic gas to a Quark-Gluon Plasma, in the presence of massive particles. Especially, the influence of some parameters as the finite volume, finite mass, flavors number N{sub f} on the transition point and on the order of the transition is investigated.

  9. Importance of imaginary chemical potential for determination of QCD phase diagram

    NASA Astrophysics Data System (ADS)

    Kashiwa, Kouji; Kouno, Hiroaki; Sakai, Yuji; Yahiro, Masanobu

    2009-10-01

    Lattice QCD (LQCD) calculations have the well-known sign problem at finite real chemical potential. One approach to circumvent the problem is the analytic continuation of LQCD data to real chemical potential from imaginary one. This approach, however, has some problems in moderate real chemical potential region. Therefore, we propose the new approach, Imaginary chemical potential matching approach, to quantitatively determine the QCD phase diagram by using a phenomenological model that reproduce LQCD data at imaginary chemical potential. In this approach, we fit the model parameter by LQCD data at imaginary chemical potential. At the imaginary chemical potential, the QCD partition function has the special periodicity called Roberge-Weiss (RW) periodicity. Therefore, an adopted model must have the RW periodicity. We reveal the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model has the RW periodicity. Moreover, we investigate the meson mass behavior and show that meson mass is useful for fitting the model parameters at imaginary chemical potential.

  10. Determination of the Chiral Condensate from (2+1)-Flavor Lattice QCD

    SciTech Connect

    Fukaya, H.; Aoki, S.; Hashimoto, S.; Kaneko, T.; Yamada, N.; Noaki, J.; Onogi, T.

    2010-03-26

    We perform a precise calculation of the chiral condensate in QCD using lattice QCD with 2+1 flavors of dynamical overlap quarks. Up and down quark masses cover a range between 3 and 100 MeV on a 16{sup 3}x48 lattice at a lattice spacing {approx}0.11 fm. At the lightest sea quark mass, the finite volume system on the lattice is in the {epsilon} regime. By matching the low-lying eigenvalue spectrum of the Dirac operator with the prediction of chiral perturbation theory at the next-to-leading order, we determine the chiral condensate in (2+1)-flavor QCD with strange quark mass fixed at its physical value as {Sigma}{sup MS}(2 GeV)=[242(04)((+19/-18)) MeV]{sup 3} where the errors are statistical and systematic, respectively.

  11. anQCD: Fortran programs for couplings at complex momenta in various analytic QCD models

    NASA Astrophysics Data System (ADS)

    Ayala, César; Cvetič, Gorazd

    2016-02-01

    We provide three Fortran programs which evaluate the QCD analytic (holomorphic) couplings Aν(Q2) for complex or real squared momenta Q2. These couplings are holomorphic analogs of the powers a(Q2)ν of the underlying perturbative QCD (pQCD) coupling a(Q2) ≡αs(Q2) / π, in three analytic QCD models (anQCD): Fractional Analytic Perturbation Theory (FAPT), Two-delta analytic QCD (2 δanQCD), and Massive Perturbation Theory (MPT). The index ν can be noninteger. The provided programs do basically the same job as the Mathematica package anQCD.m published by us previously (Ayala and Cvetič, 2015), but are now written in Fortran.

  12. Domain wall QCD with physical quark masses

    NASA Astrophysics Data System (ADS)

    Blum, T.; Boyle, P. A.; Christ, N. H.; Frison, J.; Garron, N.; Hudspith, R. J.; Izubuchi, T.; Janowski, T.; Jung, C.; Jüttner, A.; Kelly, C.; Kenway, R. D.; Lehner, C.; Marinkovic, M.; Mawhinney, R. D.; McGlynn, G.; Murphy, D. J.; Ohta, S.; Portelli, A.; Sachrajda, C. T.; Soni, A.; Rbc; Ukqcd Collaborations

    2016-04-01

    We present results for several light hadronic quantities (fπ , fK, BK, mu d, ms, t01 /2, w0) obtained from simulations of 2 +1 flavor domain wall lattice QCD with large physical volumes and nearly physical pion masses at two lattice spacings. We perform a short, O (3 )%, extrapolation in pion mass to the physical values by combining our new data in a simultaneous chiral/continuum "global fit" with a number of other ensembles with heavier pion masses. We use the physical values of mπ, mK and mΩ to determine the two quark masses and the scale—all other quantities are outputs from our simulations. We obtain results with subpercent statistical errors and negligible chiral and finite-volume systematics for these light hadronic quantities, including fπ=130.2 (9 ) MeV ; fK=155.5 (8 ) MeV ; the average up/down quark mass and strange quark mass in the MS ¯ scheme at 3 GeV, 2.997(49) and 81.64(1.17) MeV respectively; and the neutral kaon mixing parameter, BK, in the renormalization group invariant scheme, 0.750(15) and the MS ¯ scheme at 3 GeV, 0.530(11).

  13. Dual QCD thermodynamics and quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Chandola, H. C.; Punetha, Garima; Dehnen, H.

    2016-01-01

    Using grand canonical ensemble formulation of a multi-particle statistical system, the thermodynamical description of dual QCD based on magnetic symmetry has been presented and analyzed for the quark-gluon plasma phase of hadronic matter. The dual QCD based bag construction has been shown to lead to the radial pressure on bag surface in terms of the vector glueball masses of magnetically condensed QCD vacuum. Constructing the grand canonical partition function, the energy density and plasma pressure have been derived and used to compute the critical temperatures for QGP-hadron phase transition along with its dynamics. A comparison of the values of critical temperatures for QGP-hadron phase transition with those obtained for the deconfinement-phase transition, has been shown to lead to either the relaxation of the system via a mixed phase of QGP and hot hadron gas or go through a crossover. The associated profiles of the normalized energy density and specific heat have been shown to lead to a large latent heat generation and indicate the onset of a first-order QGP phase transition which turns into a rapid crossover for the case of temperature dependent bag parameter. The squared speed of sound has been shown to act as a physical measure of large thermodynamical fluctuations near transition point. The possible implications of trace anomaly and conformal measure on QGP formation have also been discussed.

  14. Form factors from lattice QCD

    SciTech Connect

    Dru Renner

    2012-04-01

    Precision computation of hadronic physics with lattice QCD is becoming feasible. The last decade has seen precent-level calculations of many simple properties of mesons, and the last few years have seen calculations of baryon masses, including the nucleon mass, accurate to a few percent. As computational power increases and algorithms advance, the precise calculation of a variety of more demanding hadronic properties will become realistic. With this in mind, I discuss the current lattice QCD calculations of generalized parton distributions with an emphasis on the prospects for well-controlled calculations for these observables as well. I will do this by way of several examples: the pion and nucleon form factors and moments of the nucleon parton and generalized-parton distributions.

  15. Innovations in Lattice QCD Algorithms

    SciTech Connect

    Konstantinos Orginos

    2006-06-25

    Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today.

  16. Sudakov safety in perturbative QCD

    NASA Astrophysics Data System (ADS)

    Larkoski, Andrew J.; Marzani, Simone; Thaler, Jesse

    2015-06-01

    Traditional calculations in perturbative quantum chromodynamics (pQCD) are based on an order-by-order expansion in the strong coupling αs. Observables that are calculable in this way are known as "safe." Recently, a class of unsafe observables was discovered that do not have a valid αs expansion but are nevertheless calculable in pQCD using all-orders resummation. These observables are called "Sudakov safe" since singularities at each αs order are regulated by an all-orders Sudakov form factor. In this paper, we give a concrete definition of Sudakov safety based on conditional probability distributions, and we study a one-parameter family of momentum sharing observables that interpolate between the safe and unsafe regimes. The boundary between these regimes is particularly interesting, as the resulting distribution can be understood as the ultraviolet fixed point of a generalized fragmentation function, yielding a leading behavior that is independent of αs.

  17. Finite density of states in a mixed state of a d{sub x{sup 2}{minus}y{sup 2}}+id{sub xy} superconductor

    SciTech Connect

    Mao, W.; Balatsky, A.V.

    1999-03-01

    We have calculated the density of states of quasiparticles in a d{sub x{sup 2}{minus}y{sup 2}}+id{sub xy} superconductor, and show that in the mixed state the quasiparticle spectrum remains gapless because of the Doppler shift by superflow. It was found that if the d{sub xy} order gap {Delta}{sub 1}{proportional_to}{radical} (H) as suggested by experiments, then thermal conductivity {kappa}{proportional_to}{radical} (H) in accord with experimental data at lowest temperatures. {copyright} {ital 1999} {ital The American Physical Society}

  18. The QCD phase transitions: From mechanism to observables

    SciTech Connect

    Shuryak, E.V.

    1997-09-22

    This paper contains viewgraphs on quantum chromodynamic phase transformations during heavy ion collisions. Some topics briefly described are: finite T transitions of I molecule pairs; finite density transitions of diquarks polymers; and the softtest point of the equation of state as a source of discontinuous behavior as a function of collision energy or centrality.

  19. Recent QCD results from CDF

    SciTech Connect

    Huston, J. |; CDF Collaboration

    1994-01-01

    CDF has recently concluded a very successful 1992--93 data run in which an integrated luminosity of 21.3 pb {sup {minus}1} was written to tape. The large data sample allows for a greater discovery potential for new phenomena and for better statistical and systematic precision in analysis of conventional physics. This paper summarizes some of the new results from QCD analyses for this run.

  20. ADS/CFT and QCD

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U. /SLAC

    2007-02-21

    The AdS/CFT correspondence between string theory in AdS space and conformal .eld theories in physical spacetime leads to an analytic, semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. Although QCD is not conformally invariant, one can nevertheless use the mathematical representation of the conformal group in five-dimensional anti-de Sitter space to construct a first approximation to the theory. The AdS/CFT correspondence also provides insights into the inherently non-perturbative aspects of QCD, such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of AdS space z and a specific impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which encode hadron properties and allow the computation of decay constants, form factors, and other exclusive scattering amplitudes. New relativistic lightfront equations in ordinary space-time are found which reproduce the results obtained using the 5-dimensional theory. The effective light-front equations possess remarkable algebraic structures and integrability properties. Since they are complete and orthonormal, the AdS/CFT model wavefunctions can also be used as a basis for the diagonalization of the full light-front QCD Hamiltonian, thus systematically improving the AdS/CFT approximation.

  1. Berry Phase in Lattice QCD.

    PubMed

    Yamamoto, Arata

    2016-07-29

    We propose the lattice QCD calculation of the Berry phase, which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation. PMID:27517766

  2. Lattice gauge theory for QCD

    SciTech Connect

    DeGrand, T.

    1997-06-01

    These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.

  3. Localization and chiral symmetry in three flavor domain wall QCD

    SciTech Connect

    Antonio, David J.; Bowler, Kenneth C.; Boyle, Peter A.; Hart, Alistair; Kenway, Richard D.; Tweedie, Robert J.; Christ, Norman H.; Cohen, Saul D.; Li, Shu; Lin, Meifeng; Mawhinney, Robert D.; Clark, Michael A.; Dawson, Chris; Joo, Balint; Jung, Chulwoo; Maynard, Christopher M.; Ohta, Shigemi; Yamaguchi, Azusa

    2008-01-01

    We present results for the dependence of the residual mass of domain wall fermions on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding Hermitian Wilson Dirac operator in three flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a 16{sup 3}x32 space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking, and the rate of topology change can be acceptable for inverse lattice spacings a{sup -1}{>=}1.6 GeV, enabling a programme of simulations of 2+1 flavor QCD to be conducted safely in this region of parameter space.

  4. Axion cosmology, lattice QCD and the dilute instanton gas

    NASA Astrophysics Data System (ADS)

    Borsanyi, Sz.; Dierigl, M.; Fodor, Z.; Katz, S. D.; Mages, S. W.; Nogradi, D.; Redondo, J.; Ringwald, A.; Szabo, K. K.

    2016-01-01

    Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ (T) of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ (T) in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.

  5. Light-Front Holographic QCD

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    The relation between the hadronic short-distance constituent quark and gluon particle limit and the long-range confining domain is yet one of the most challenging aspects of particle physics due to the strong coupling nature of Quantum Chromodynamics, the fundamental theory of the strong interactions. The central question is how one can compute hadronic properties from first principles; i.e., directly from the QCD Lagrangian. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time. Lattice numerical results follow from computation of frame-dependent moments of distributions in Euclidean space and dynamical observables in Minkowski spacetime, such as the time-like hadronic form factors, are not amenable to Euclidean lattice computations. The Dyson-Schwinger methods have led to many important insights, such as the infrared fixed point behavior of the strong coupling constant, but in practice, the analyses are limited to ladder approximation in Landau gauge. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. New theoretical tools are thus of primary interest for the interpretation of the results expected at the new mass scale and kinematic regions accessible to the JLab 12 GeV Upgrade Project. The AdS/CFT correspondence between gravity or string theory on a higher-dimensional anti-de Sitter (AdS) space and conformal field theories in physical space-time has led to a semiclassical approximation for strongly-coupled QCD, which provides physical insights into its nonperturbative dynamics. The correspondence is holographic in the sense that it determines a duality between theories in different number of space-time dimensions. This geometric approach leads in fact to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light

  6. FermiQCD: A tool kit for parallel lattice QCD applications

    SciTech Connect

    Di Pierro, M.

    2002-03-01

    We present here the most recent version of FermiQCD, a collection of C++ classes, functions and parallel algorithms for lattice QCD, based on Matrix Distributed Processing. FermiQCD allows fast development of parallel lattice applications and includes some SSE2 optimizations for clusters of Pentium 4 PCs.

  7. QCD for Postgraduates (2/5)

    ScienceCinema

    None

    2011-10-06

    Modern QCD - Lecture 2 We will start discussing the matter content of the theory and revisit the experimental measurements that led to the discovery of quarks. We will then consider a classic QCD observable, the R-ratio, and use it to illustrate the appearance of UV divergences and the need to renormalize the coupling constant of QCD. We will then discuss asymptotic freedom and confinement. Finally, we will examine a case where soft and collinear infrared divergences appear, will discuss the soft approximation in QCD and will introduce the concept of infrared safe jets.

  8. Cosmological implications of light sterile neutrinos produced after the QCD phase transition

    NASA Astrophysics Data System (ADS)

    Lello, Louis; Boyanovsky, Daniel

    2015-03-01

    We study the production of sterile neutrinos in the early Universe from π →l νs shortly after the QCD phase transition in the absence of a lepton asymmetry, while including finite-temperature corrections to the π mass and decay constant fπ. Sterile neutrinos with masses ≲1 MeV produced via this mechanism freeze out at Tf≃10 MeV with a distribution function that is highly nonthermal and that features a sharp enhancement at low momentum, thereby making this species cold even for very light masses. Dark matter abundance constraints from the cosmic microwave background and phase space density constraints from the most dark-matter-dominated dwarf spheroidal galaxies provide upper and lower bounds, respectively, on combinations of mass and mixing angles. For π →μ νs, the bounds lead to a narrow region of compatibility with the latest results from the 3.55-keV line. The nonthermal distribution function leads to free-streaming lengths (today) in the range of a few kpc, consistent with the observation of cores in dwarf galaxies. For sterile neutrinos with mass ≲1 eV that are produced by this reaction, the most recent accelerator and astrophysical bounds on Ul s combined with the nonthermal distribution function suggests a substantial contribution from these sterile neutrinos to Neff .

  9. Dark Energy from graviton-mediated interactions in the QCD vacuum

    SciTech Connect

    Pasechnik, Roman; Beylin, Vitaly; Vereshkov, Grigory E-mail: vbey@rambler.ru

    2013-06-01

    Adopting the hypothesis about the exact cancellation of vacuum condensates contributions to the ground state energy in particle physics to the leading order in graviton-mediated interactions, we argue that the observable cosmological constant can be dynamically induced by an uncompensated quantum gravity correction to them after the QCD phase transition epoch. To start with, we demonstrate a possible cancellation of the quark-gluon condensate contribution to the total vacuum energy density of the Universe at temperatures T < 100 MeV without taking into account the graviton-mediated effects. In order to incorporate the latter, we then calculate the leading-order quantum correction to the classical Einstein equations due to metric fluctuations induced by the non-perturbative vacuum fluctuations of the gluon and quark fields in the quasiclassical approximation. It has been demonstrated that such a correction to the vacuum energy density has a form ε{sub Λ} ∼ GΛ{sub QCD}{sup 6}, where G is the gravitational constant, and Λ{sub QCD} is the QCD scale parameter. We analyze capabilities of this approach based on the synthesis between quantum gravity in quasiclassical approximation and theory of non-perturbative QCD vacuum for quantitative explanation of the observed Dark Energy density.

  10. Quantum Chromodynamics and nuclear physics at extreme energy density. Progress report, May 1992--April 1993

    SciTech Connect

    Mueller, B.

    1993-05-15

    This report discusses research in the following topics: Hadron structure physics; relativistic heavy ion collisions; finite- temperature QCD; real-time lattice gauge theory; and studies in quantum field theory.

  11. Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree-Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves.

    PubMed

    Hermes, Matthew R; Hirata, So

    2015-09-14

    One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree-Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree-Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard-Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga-Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids. PMID:26374011

  12. Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree–Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves

    SciTech Connect

    Hermes, Matthew R.; Hirata, So

    2015-09-14

    One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree–Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree–Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard–Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga–Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.

  13. A finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically- reactive single-species solute transport

    USGS Publications Warehouse

    Voss, C.I.

    1984-01-01

    SUTRA (Saturated-Unsaturated Transport) is a computer program which can be used to simulate the movement of fluid and the transport of either energy or dissolved substances in a subsurface environment. The model employs a two-dimensional hybrid finite-element and integrated-finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated by SUTRA: (1) fluid density-dependent saturated or unsaturated groundwater flow, and either (2a) transport of a solute in the groundwater, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay, or, (2b) transport of thermal energy in the groundwater and solid matrix of the aquifer. SUTRA provides, as the primary calculated results, fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA may also be used to simulate simpler subsets of the above process. SUTRA may be employed for areal and cross-sectional models of saturated groundwater flow systems, and for cross-sectional models of unsaturated zone flow. Solute transport simulation using SUTRA may be used to simulate natural or man-induced chemical transport, solute sorption, production and decay. SUTRA may be used for simulation of variable density leachate movement, and for cross-sectional simulation of salt-water intrusion in aquifers at near-well or regional scales, with either dispersed or relatively sharp transition zones between fresh water and salt water. SUTRA energy transport simulation may be employed to model thermal regimes in aquifers, subsurface heat conduction, aquifer thermal energy storage systems, geothermal reservoirs, thermal pollution of aquifers, and natural hydrogeologic convection systems. (USGS)

  14. Collective string interactions in AdS/QCD and high multiplicity p A collisions

    NASA Astrophysics Data System (ADS)

    Iatrakis, Ioannis; Ramamurti, Adith; Shuryak, Edward

    2015-07-01

    QCD strings originate from high-energy scattering in the form of Reggeons and Pomerons, and have been studied in some detail in lattice numerical simulations. Production of multiple strings, with their subsequent breaking, is now a mainstream model of high-energy p p and p A collisions. Recent LHC experiments revealed that the high multiplicity ends of such collisions show interesting collective effects. This ignited an interest in the interaction of QCD strings and multistring dynamics. Holographic models, collectively known as AdS/QCD, developed in the last decade, describe both hadronic spectroscopy and basic thermodynamics, but so far no studies of the QCD strings have been done in this context. The subject of this paper is to do this. First, we study in more detail the scalar sector of hadronic spectroscopy, identifying "glueballs" and "scalar mesons," and calculate the degree of their mixing. The QCD strings, holographic images of the fundamental strings, thus have a "gluonic core" and a "sigma cloud." The latter generates σ exchanges and collectivization of the strings, affecting, at a certain density, the chiral condensate and even the minimum of the effective string potential, responsible for the very existence of the QCD strings. Finally, we run dynamical simulations of the multistring systems, in the "spaghetti" setting approximating central p A collisions, and specify conditions for their collectivization into a black hole, or the dual quark gluon plasma fireball.

  15. O(2)-scaling in finite and infinite volume

    NASA Astrophysics Data System (ADS)

    Springer, Paul; Klein, Bertram

    2015-10-01

    The exact nature of the chiral crossover in QCD is still under investigation. In N_f=2 and N_f=(2+1) lattice simulations with staggered fermions the expected O( N)-scaling behavior was observed. However, it is still not clear whether this behavior falls into the O(2) or O(4) universality class. To resolve this issue, a careful scaling and finite-size scaling analysis of the lattice results are needed. We use a functional renormalization group to perform a new investigation of the finite-size scaling regions in O(2)- and O(4)-models. We also investigate the behavior of the critical fluctuations by means of the 4th-order Binder cumulant. The finite-size analysis of this quantity provides an additional way for determining the universality class of the chiral transition in lattice QCD.

  16. Multiple adsorption of molecular oxygen on small Au/Pd cationic clusters at finite temperature. A van der Waals density functional study

    NASA Astrophysics Data System (ADS)

    Fernández, Eva María; Balbás, Luis Carlos

    2016-06-01

    The adsorption of molecular oxygen on cationic bimetallic palladium/gold clusters, Au n Pdm + (n + m ≤ 5), is studied by means of self-consistent density functional calculations including long range van der Waals non-local interactions. A single O2 molecule is adsorbed preferably on top of Pd sites for m = 0, 1, but bridge or hollow locations between Pd atoms are preferred for m ≥ 2. In the later cases, both the O2 electronic charge and the O-O distance increase as compared with the values for free O2, leading to negatively charged O2 superoxo species which facilitates the CO oxidation. Multiple sequential adsorption of several O2 is considered for the n + m ≤ 3 clusters, which occurs with decreasing adsorption energy, except when severe distortion of the bimetallic support appears. The Gibbs free energy of Au n Pd2 - n + O 2 x complexes with n = 1-2 and x = 1-5 is computed at temperatures 0 K, 50 K, 150 K, and 300 K. We obtain that Pd 2+ (PdAu+) can adsorb 5 (4) oxygen molecules at ambient temperature; however, Au 2+ can adsorb up to three O2 molecules when the temperature is lower than 150 K.

  17. COLLINEAR SPLITTING, PARTON EVOLUTION AND THE STRANGE-QUARK ASYMMETRY OF THE NUCLEON IN NNLO QCD.

    SciTech Connect

    RODRIGO,G.CATANI,S.DE FLORIAN, D.VOGELSANG,W.

    2004-04-25

    We consider the collinear limit of QCD amplitudes at one-loop order, and their factorization properties directly in color space. These results apply to the multiple collinear limit of an arbitrary number of QCD partons, and are a basic ingredient in many higher-order computations. In particular, we discuss the triple collinear limit and its relation to flavor asymmetries in the QCD evolution of parton densities at three loops. As a phenomenological consequence of this new effect, and of the fact that the nucleon has non-vanishing quark valence densities, we study the perturbative generation of a strange-antistrange asymmetry s(x)-{bar s}(x) in the nucleon's sea.

  18. Chiral-symmetry breaking in continuum two-dimensional QCD by an infrared method

    SciTech Connect

    Grandou, T.; Cho, H.; Fried, H.M.

    1988-02-15

    Estimates of in the quenched approximation for two-dimensional QCD (QCD/sub 2/) are obtained, based upon a continuum, infrared approximation previously developed for QED/sub 2/. Nontrivial gauge-invariant extensions are devised for general SU(N), and computations are carried out for finite N( = 2,3) and in the large-N limit. Specifically non-Abelian structure appears for finite N, while the large-N limit displays an ''effective Abelian'' simplification. A nonzero value of is found in the chiral limit for all N; in the limit N..-->..infinity, approx.-gN/sup 3/2/, independently of the value g. (This generalized a previous result of Zhitnitsky, who found a similar combination in the planar limit, with gN/sup 1/2/ fixed.)

  19. Update of axion CDM energy density

    SciTech Connect

    Huh, Ji-Haeng

    2008-11-23

    We update cosmological bound on axion model. The contribution from the anharmonic effect and the newly introduced initial overshoot correction are considered. We present an explicit formula for the axion relic density in terms of the QCD scale {lambda}{sub QCD}, the current quark masses m{sub q}'s and the Peccei-Quinn scale F{sub a}, including firstly introduced 1.85 factor which is from the initial overshoot.

  20. Subsonic and Supersonic Flutter Analysis of a Highly Tapered Swept-Wing Planform, Including Effects of Density Variation and Finite Wing Thickness, and Comparison with Experiments

    NASA Technical Reports Server (NTRS)

    Yates, Carson, Jr.

    1967-01-01

    The flutter characteristics of several wings with an aspect-ratio of 4.0, a taper ratio of 0.2, and a quarter-chord sweepback of 45 deg. have been investigated analytically for Mach numbers up to 2.0. The calculations were based on the modified-strip-analysis method, the subsonic-kernel-function method, piston theory, and quasi-steady second-order theory. Results of t h e analysis and comparisons with experiment indicated that: (1) Flutter speeds were accurately predicted by the modified strip analysis, although accuracy at t h e highest Mach numbers required the use of nonlinear aerodynamic theory (which accounts for effects of wing thickness) for the calculation of the aerodynamic parameters. (2) An abrupt increase of flutter-speed coefficient with increasing Mach number, observed experimentally in the transonic range, was also indicated by the modified strip analysis. (3) In the low supersonic range for some densities, a discontinuous variation of flutter frequency with Mach number was indicated by the modified strip analysis. An abrupt change of frequency appeared experimentally in the transonic range. (4) Differences in flutter-speed-coefficient levels obtained from tests at low supersonic Mach numbers in two wind tunnels were also predicted by the modified strip analysis and were shown to be caused primarily by differences in mass ratio. (5) Flutter speeds calculated by the subsonic-kernel-function method were in good agreement with experiment and with the results of the modified strip analysis. (6) Flutter speed obtained from piston theory and from quasi-steady second-order theory were higher than experimental values by at least 38 percent.

  1. QCD with two flavors of Wilson fermions: The QCD vacuum, the Aoki vacuum, and other vacua

    SciTech Connect

    Azcoiti, V.; Vaquero, A.; Di Carlo, G.

    2009-01-01

    We discuss the vacuum structure of QCD with two flavors of Wilson fermions. We derive two possible scenarios: (i) If the spectral density {rho}{sub U}({lambda},{kappa}) of the overlap Hamiltonian in a fixed background gauge field is not symmetric in {lambda}, Hermiticity is violated and Hermiticity violation effects could influence numerical determinations of the {eta} meson mass if we are not near enough to the continuum limit, where Hermiticity should be recovered; (ii) otherwise we argue that, under certain assumptions, new phases appear beside the Aoki phase, which can be characterized by a nonvanishing vacuum expectation value of i{psi}{sub u}{gamma}{sub 5}{psi}{sub u}+i{psi}{sub d}{gamma}{sub 5}{psi}{sub d}, and with vacuum states that cannot be connected with the Aoki vacua by parity-flavor symmetry transformations. Quenched numerical simulations suggest that the second scenario is more likely realized.

  2. Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: Determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Niemi, H.; Eskola, K. J.; Paatelainen, R.

    2016-02-01

    We introduce an event-by-event perturbative-QCD + saturation + hydro ("EKRT") framework for ultrarelativistic heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading-order perturbative QCD using a saturation conjecture to control soft-particle production and describe the space-time evolution of the QCD matter with dissipative fluid dynamics, event by event. We perform a simultaneous comparison of the centrality dependence of hadronic multiplicities, transverse momentum spectra, and flow coefficients of the azimuth-angle asymmetries against the LHC and RHIC measurements. We compare also the computed event-by-event probability distributions of relative fluctuations of elliptic flow and event-plane angle correlations with the experimental data from Pb +Pb collisions at the LHC. We show how such a systematic multienergy and multiobservable analysis tests the initial-state calculation and the applicability region of hydrodynamics and, in particular, how it constrains the temperature dependence of the shear viscosity-to-entropy ratio of QCD matter in its different phases in a remarkably consistent manner.

  3. QCD tests in electron-positron scattering

    SciTech Connect

    Maruyama, T.

    1995-11-01

    Recent results on QCD tests at the Z{sup o} resonance are described. Measurements of Color factor ratios, and studies of final state photon radiation are performed by the LEP experiments. QCD tests using a longitudinally polarized beam are reported by the SLD experiment.

  4. Quantum properties of QCD string fragmentation

    NASA Astrophysics Data System (ADS)

    Todorova-Nová, Šárka

    2016-07-01

    A simple quantization concept for a 3-dim QCD string is used to derive properties of QCD flux tube from the mass spectrum of light mesons and to predict observable quantum effects in correlations between adjacent hadrons. The quantized fragmentation model is presented and compared with experimental observations.

  5. Solvable models and hidden symmetries in QCD

    SciTech Connect

    Yepez-Martinez, Tochtli; Hess, P. O.; Civitarese, O.; Lerma H., S.

    2010-12-23

    We show that QCD Hamiltonians at low energy exhibit an SU(2) structure, when only few orbital levels are considered. In case many orbital levels are taken into account we also find a semi-analytic solution for the energy levels of the dominant part of the QCD Hamiltonian. The findings are important to propose the structure of phenomenological models.

  6. Insights into the Quark-Gluon Vertex from Lattice QCD and Meson Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rojas, E.; El-Bennich, B.; de Melo, J. P. B. C.; Paracha, M. Ali.

    2015-09-01

    By comparing successful quark-gluon vertex interaction models with the corresponding interaction extracted from lattice-QCD data on the quark's propagator, we identify common qualitative features which could be important to tune future interaction models beyond the rainbow ladder approximation. Clearly, a quantitative comparison is conceptually not simple, but qualitatively the results suggest that a realistic interaction should be relatively broad with a strong support at about 0.4-0.6 GeV and infrared-finite.

  7. Thermodynamics of lattice QCD with 2 quark flavours : chiral symmetry and topology.

    SciTech Connect

    Lagae, J.-F.

    1998-06-09

    We have studied the restoration of chiral symmetry in lattice QCD at the finite temperature transition from hadronic matter to a quark-gluon plasma. By measuring the screening masses of flavour singlet and non-singlet meson excitations, we have seen evidence that, although flavour chiral symmetry is restored at this transition, flavour singlet (U(1)) axial symmetry is not. We conclude that this indicates that instantons continue to play an important role in the quark-gluon plasma phase.

  8. The microsecond old universe — Relics of QCD phase transition

    NASA Astrophysics Data System (ADS)

    Sinha, Bikash

    2014-07-01

    It is entirely plausible under reasonable conditions, that a first-order QCD phase transition occurred from quarks to hadrons when the universe was about a microsecond old. Relics, if there be any, after the quark-hadron phase transition are the most deciding signatures of the phase transition. It is shown in this paper that quark nuggets, the possible relics of first-order QCD phase transitions with baryon number larger than 1043 will survive the entire history of the universe up to now and can be considered as a candidate for the cold dark matter. The spin down core of the neutron star on the high density low temperature end of the QCD phase diagram initiates transition from hadrons to quarks. As the star spins down, the size of the core goes on increasing. Recently discovered massive Pulsar PSRJ 1614-2230 with a mass of 1.97 ± 0.04M⊙ most likely has a strongly interacting core. What possible observables can there be from these neutron stars?

  9. Dark-matter QCD-axion searches.

    PubMed

    Rosenberg, Leslie J

    2015-10-01

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments

  10. Dark-matter QCD-axion searches

    PubMed Central

    Rosenberg, Leslie J

    2015-01-01

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10−(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and

  11. QCD Collisional Energy Loss Reexamined

    NASA Astrophysics Data System (ADS)

    Peshier, A.

    2006-11-01

    It is shown that at a large temperature and E→∞ the QCD collisional energy loss reads dE/dx˜α(mD2)T2. Compared to previous approaches, which led to dEB/dx˜α2T2ln⁡(ET/mD2) similar to the Bethe-Bloch formula in QED, we take into account the running of the strong coupling. As one significant consequence, due to asymptotic freedom, dE/dx becomes E independent for large parton energies. Some implications with regard to heavy ion collisions are pointed out.

  12. QCD collisional energy loss reexamined.

    PubMed

    Peshier, A

    2006-11-24

    It is shown that at a large temperature and E --> infinity the QCD collisional energy loss reads dE/dx approximately alpha(m(D)2)T2. Compared to previous approaches, which led to dE(B)/dx approximately alpha2 T2 ln(ET/m(D)2) similar to the Bethe-Bloch formula in QED, we take into account the running of the strong coupling. As one significant consequence, due to asymptotic freedom, dE/dx becomes E independent for large parton energies. Some implications with regard to heavy ion collisions are pointed out. PMID:17155739

  13. "Quantum Field Theory and QCD"

    SciTech Connect

    Jaffe, Arthur M.

    2006-02-25

    This grant partially funded a meeting, "QFT & QCD: Past, Present and Future" held at Harvard University, Cambridge, MA on March 18-19, 2005. The participants ranged from senior scientists (including at least 9 Nobel Prize winners, and 1 Fields medalist) to graduate students and undergraduates. There were several hundred persons in attendance at each lecture. The lectures ranged from superlative reviews of past progress, lists of important, unsolved questions, to provocative hypotheses for future discovery. The project generated a great deal of interest on the internet, raising awareness and interest in the open questions of theoretical physics.

  14. Nucleon Structure from Lattice QCD

    SciTech Connect

    Haegler, Philipp

    2011-10-24

    Hadron structure calculations in lattice QCD have seen substantial progress during recent years. We illustrate the achievements that have been made by discussing latest lattice results for a limited number of important observables related to nucleon form factors and generalized parton distributions. A particular focus is placed on the decomposition of the nucleon spin 1/2 in terms of quark spin and orbital angular momentum contributions. Results and limitations of the necessary chiral extrapolations based on ChPT will be briefly discussed.

  15. Nuclear Physics from Lattice QCD

    SciTech Connect

    William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage

    2011-01-01

    We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.

  16. Single transverse-spin asymmetry in QCD

    NASA Astrophysics Data System (ADS)

    Koike, Yuji

    2014-09-01

    So far large single transverse-spin asymmetries (SSA) have been observed in many high-energy processes such as semi-inclusive deep inelastic scattering and proton-proton collisions. Since the conventional parton model and perturbative QCD can not accomodate such large SSAs, the framework for QCD hard processes had to be extended to understand the mechanism of SSA. In this extended frameworks of QCD, intrinsic transverse momentum of partons and the multi-parton (quark-gluon and pure-gluonic) correlations in the hadrons, which were absent in the conventional framework, play a crucial role to cause SSAs, and well-defined formulation of these effects has been a big challenge for QCD theorists. Study on these effects has greatly promoted our understanding on QCD dynamics and hadron structure. In this talk, I will present an overview on these theoretical activity, emphasizing the important role of the Drell-Yan process.

  17. QCD studies in ep collisions

    SciTech Connect

    Smith, W.H.

    1997-06-01

    These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low and high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.

  18. Unconstrained Hamiltonian formulation of low energy QCD

    NASA Astrophysics Data System (ADS)

    Pavel, Hans-Peter

    2014-04-01

    Using a generalized polar decomposition of the gauge fields into gaugerotation and gauge-invariant parts, which Abelianises the Non-Abelian Gauss-law constraints to be implemented, a Hamiltonian formulation of QCD in terms of gauge invariant dynamical variables can be achieved. The exact implementation of the Gauss laws reduces the colored spin-1 gluons and spin-1/2 quarks to unconstrained colorless spin-0, spin-1, spin-2 and spin-3 glueball fields and colorless Rarita-Schwinger fields respectively. The obtained physical Hamiltonian naturally admits a systematic strongcoupling expansion in powers of λ = g-2/3, equivalent to an expansion in the number of spatial derivatives. The leading-order term corresponds to non-interacting hybridglueballs, whose low-lying spectrum can be calculated with high accuracy by solving the Schrödinger-equation of the Dirac-Yang-Mills quantum mechanics of spatially constant fields (at the moment only for the 2-color case). The discrete glueball excitation spectrum shows a universal string-like behaviour with practically all excitation energy going in to the increase of the strengths of merely two fields, the "constant Abelian fields" corresponding to the zero-energy valleys of the chromomagnetic potential. Inclusion of the fermionic degrees of freedom significantly lowers the spectrum and allows for the study of the sigma meson. Higher-order terms in λ lead to interactions between the hybridglueballs and can be taken into account systematically using perturbation theory in λ, allowing for the study of IR-renormalisation and Lorentz invarianz. The existence of the generalized polar decomposition used, the position of the zeros of the corresponding Jacobian (Gribov horizons), and the ranges of the physical variables can be investigated by solving a system of algebraic equations. Its exact solution for the case of one spatial dimension and first numerical solutions for two and three spatial dimensions indicate that there is a finite

  19. Correlations and discreteness in nonlinear QCD evolution

    SciTech Connect

    Armesto, N.; Milhano, J.

    2006-06-01

    We consider modifications of the standard nonlinear QCD evolution in an attempt to account for some of the missing ingredients discussed recently, such as correlations, discreteness in gluon emission and Pomeron loops. The evolution is numerically performed using the Balitsky-Kovchegov equation on individual configurations defined by a given initial value of the saturation scale, for reduced rapidities y=({alpha}{sub s}N{sub c}/{pi})Y<10. We consider the effects of averaging over configurations as a way to implement correlations, using three types of Gaussian averaging around a mean saturation scale. Further, we heuristically mimic discreteness in gluon emission by considering a modified evolution in which the tails of the gluon distributions are cut off. The approach to scaling and the behavior of the saturation scale with rapidity in these modified evolutions are studied and compared with the standard mean-field results. For the large but finite values of rapidity explored, no strong quantitative difference in scaling for transverse momenta around the saturation scale is observed. At larger transverse momenta, the influence of the modifications in the evolution seems most noticeable in the first steps of the evolution. No influence on the rapidity behavior of the saturation scale due to the averaging procedure is found. In the cutoff evolution the rapidity evolution of the saturation scale is slowed down and strongly depends on the value of the cutoff. Our results stress the need to go beyond simple modifications of evolution by developing proper theoretical tools that implement such recently discussed ingredients.

  20. Exploring quark transverse momentum distributions with lattice QCD

    SciTech Connect

    Bernhard U. Musch, Philipp Hagler, John W. Negele, Andreas Schafer

    2011-05-01

    We discuss in detail a method to study transverse momentum dependent parton distribution functions (TMDs) using lattice QCD. To develop the formalism and to obtain first numerical results, we directly implement a bi-local quark-quark operator connected by a straight Wilson line, allowing us to study T-even, "process-independent" TMDs. Beyond results for x-integrated TMDs and quark densities, we present a study of correlations in x and transverse momentum. Our calculations are based on domain wall valence quark propagators by the LHP collaboration calculated on top of gauge configurations provided by MILC with 2+1 flavors of asqtad-improved staggered sea quarks.

  1. Phase diagram of QCD with four degenerate quarks

    SciTech Connect

    Cea, Paolo; Cosmai, Leonardo; D'Elia, Massimo; Papa, Alessandro

    2010-05-01

    We revisit the determination of the pseudocritical line of QCD with four degenerate quarks at nonzero temperature and baryon density by the method of analytic continuation. We determine the pseudocritical couplings at imaginary chemical potentials by high-statistics Monte Carlo simulations and reveal deviations from the simple quadratic dependence on the chemical potential visible in earlier works on the same subject. Finally, we discuss the implications of our findings for the shape of the pseudocritical line at real chemical potential, comparing different possible extrapolations.

  2. The perturbative QCD gradient flow to three loops

    NASA Astrophysics Data System (ADS)

    Harlander, Robert V.; Neumann, Tobias

    2016-06-01

    The gradient flow in QCD is treated perturbatively through next-to-next-to-leading order in the strong coupling constant. The evaluation of the relevant momentum and flow-time integrals is described, including various means of validation. For the vacuum expectation value of the action density, which turns out to be a useful quantity in lattice calculations, we find a very well-behaved perturbative series through NNLO. Quark mass effects are taken into account through NLO. The theoretical uncertainty due to renormalization-scale variation is significantly reduced with respect to LO and NLO, as long as the flow time is smaller than about 0.1 fm.

  3. Transport coefficients in Yang-Mills theory and QCD.

    PubMed

    Christiansen, Nicolai; Haas, Michael; Pawlowski, Jan M; Strodthoff, Nils

    2015-09-11

    We calculate the shear-viscosity-over-entropy-density ratio η/s in Yang-Mills theory from the Kubo formula using an exact diagrammatic representation in terms of full propagators and vertices using gluon spectral functions as external input. We provide an analytic fit formula for the temperature dependence of η/s over the whole temperature range from a glueball resonance gas at low temperatures, to a high-temperature regime consistent with perturbative results. Subsequently, we provide a first estimate for η/s in QCD. PMID:26406822

  4. Indication of divergent baryon-number susceptibility in QCD matter

    SciTech Connect

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.

    2010-01-15

    The baryon-number density formed in relativistic nuclear collisions versus the chemical potential of the freeze-out states is systematically studied on the basis of existing measurements. A remarkable power-law behavior of the baryon-number susceptibility is found at the CERN Super Proton Synchrotron, consistent with the existence of a QCD critical point at mu{sub B,c}approx =222 MeV, T{sub c}approx =155 MeV. The equation of state in different asymptotic regimes of the critical region is also examined and confronted with freeze-out states in these experiments.

  5. Viscous quark-gluon plasma model through fluid QCD approach

    SciTech Connect

    Djun, T. P.; Soegijono, B.; Mart, T.; Handoko, L. T. E-mail: Laksana.tri.handoko@lipi.go.id

    2014-09-25

    A Lagrangian density for viscous quark-gluon plasma has been constructed within the fluid-like QCD framework. Gauge symmetry is preserved for all terms inside the Lagrangian, except for the viscous term. The transition mechanism from point particle field to fluid field, and vice versa, are discussed. The energy momentum tensor that is relevant to the gluonic plasma having the nature of fluid bulk of gluon sea is derived within the model. By imposing conservation law in the energy momentum tensor, shear viscosity appears as extractable from the equation.

  6. QCD and the BlueGene

    SciTech Connect

    Vranas, P

    2007-06-18

    Quantum Chromodynamics is the theory of nuclear and sub-nuclear physics. It is a celebrated theory and one of its inventors, F. Wilczek, has termed it as '... our most perfect physical theory'. Part of this is related to the fact that QCD can be numerically simulated from first principles using the methods of lattice gauge theory. The computational demands of QCD are enormous and have not only played a role in the history of supercomputers but are also helping define their future. Here I will discuss the intimate relation of QCD and massively parallel supercomputers with focus on the Blue Gene supercomputer and QCD thermodynamics. I will present results on the performance of QCD on the Blue Gene as well as physics simulation results of QCD at temperatures high enough that sub-nuclear matter transitions to a plasma state of elementary particles, the quark gluon plasma. This state of matter is thought to have existed at around 10 microseconds after the big bang. Current heavy ion experiments are in the quest of reproducing it for the first time since then. And numerical simulations of QCD on the Blue Gene systems are calculating the theoretical values of fundamental parameters so that comparisons of experiment and theory can be made.

  7. Transverse structure of the QCD string

    SciTech Connect

    Meyer, Harvey B.

    2010-11-15

    The characterization of the transverse structure of the QCD string is discussed. We formulate a conjecture as to how the stress-energy tensor of the underlying gauge theory couples to the string degrees of freedom. A consequence of the conjecture is that the energy density and the longitudinal-stress operators measure the distribution of the transverse position of the string, to leading order in the string fluctuations, whereas the transverse-stress operator does not. We interpret recent numerical measurements of the transverse size of the confining string and show that the difference of the energy and longitudinal-stress operators is a particularly natural probe at next-to-leading order. Second, we derive the constraints imposed by open-closed string duality on the transverse structure of the string. We show that a total of three independent ''gravitational'' form factors characterize the transverse profile of the closed string, and obtain the interpretation of recent effective string theory calculations: the square radius of a closed string of length {beta} defined from the slope of its gravitational form factor, is given by (d-1/2{pi}{sigma})log({beta}/4r{sub 0}) in d space dimensions. This is to be compared with the well-known result that the width of the open string at midpoint grows as (d-1/2{pi}{sigma})log(r/r{sub 0}). We also obtain predictions for transition form factors among closed-string states.

  8. An analysis of the nucleon spectrum from lattice partially-quenched QCD

    SciTech Connect

    W. Armour; Allton, C. R.; Leinweber, Derek B.; Thomas, Anthony W.; Young, Ross D.

    2010-09-01

    The chiral extrapolation of the nucleon mass, Mn, is investigated using data coming from 2-flavour partially-quenched lattice simulations. The leading one-loop corrections to the nucleon mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. The extrapolation is studied using finite range regularised chiral perturbation theory. The analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of Mn in agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are less encouraging.

  9. Axion phenomenology and θ-dependence from N f = 2 + 1 lattice QCD

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; D'Elia, Massimo; Mariti, Marco; Martinelli, Guido; Mesiti, Michele; Negro, Francesco; Sanfilippo, Francesco; Villadoro, Giovanni

    2016-03-01

    We investigate the topological properties of N f = 2 + 1 QCD with physical quark masses, both at zero and finite temperature. We adopt stout improved staggered fermions and explore a range of lattice spacings a ˜ 0 .05 - 0 .12 fm. At zero temperature we estimate both finite size and finite cut-off effects, comparing our continuum extrapolated results for the topological susceptibility χ with predictions from chiral perturbation theory. At finite temperature, we explore a region going from T c up to around 4 T c , where we provide continuum extrapolated results for the topological susceptibility and for the fourth moment of the topological charge distribution. While the latter converges to the dilute instanton gas prediction the former differs strongly both in the size and in the temperature dependence. This results in a shift of the axion dark matter window of almost one order of magnitude with respect to the instanton computation.

  10. The effective QCD phase diagram and the critical end point

    NASA Astrophysics Data System (ADS)

    Ayala, Alejandro; Bashir, Adnan; Cobos-Martínez, J. J.; Hernández-Ortiz, Saúl; Raya, Alfredo

    2015-08-01

    We study the QCD phase diagram on the temperature T and quark chemical potential μ plane, modeling the strong interactions with the linear sigma model coupled to quarks. The phase transition line is found from the effective potential at finite T and μ taking into account the plasma screening effects. We find the location of the critical end point (CEP) to be (μCEP /Tc, TCEP /Tc) ∼ (1.2, 0.8), where Tc is the (pseudo)critical temperature for the crossover phase transition at vanishing μ. This location lies within the region found by lattice inspired calculations. The results show that in the linear sigma model, the CEP's location in the phase diagram is expectedly determined solely through chiral symmetry breaking. The same is likely to be true for all other models which do not exhibit confinement, provided the proper treatment of the plasma infrared properties for the description of chiral symmetry restoration is implemented. Similarly, we also expect these corrections to be substantially relevant in the QCD phase diagram.

  11. Chiral symmetry restoration and scalar-pseudoscalar partners in QCD

    NASA Astrophysics Data System (ADS)

    Gómez Nicola, A.; Ruiz de Elvira, J.; Torres Andrés, R.

    2013-10-01

    We describe scalar-pseudoscalar partner degeneration at the QCD chiral transition in terms of the dominant low-energy physical states for the light quark sector. First, we obtain within model-independent one-loop chiral perturbation theory that the QCD pseudoscalar susceptibility is proportional to the quark condensate at low T. Next, we show that this chiral-restoring behavior for χP is compatible with recent lattice results for screening masses and gives rise to degeneration between the scalar and pseudoscalar susceptibilities (χS,χP) around the transition point, consistently with an O(4)-like current restoration pattern. This scenario is clearly confirmed by lattice data when we compare χS(T) with the quark condensate, expected to scale as χP(T). Finally, we show that saturating χS with the σ/f0(500) broad resonance observed in pion scattering and including its finite temperature dependence, allows us to describe the peak structure of χS(T) in lattice data and the associated critical temperature. This is carried out within a unitarized chiral perturbation theory scheme which generates the resonant state dynamically and is also consistent with partner degeneration.

  12. Excited light isoscalar mesons from lattice QCD

    SciTech Connect

    Christopher Thomas

    2011-07-01

    I report a recent lattice QCD calculation of an excited spectrum of light isoscalar mesons, something that has up to now proved challenging for lattice QCD. With novel techniques we extract an extensive spectrum with high statistical precision, including spin-four states and, for the first time, light isoscalars with exotic quantum numbers. In addition, the hidden flavour content of these mesons is determined, providing a window on annihilation dynamics in QCD. I comment on future prospects including applications to the study of resonances.

  13. QCD thermodynamics and missing hadron states

    NASA Astrophysics Data System (ADS)

    Petreczky, Peter

    2016-03-01

    Equation of State and fluctuations of conserved charges in hot strongly interacting matter are being calculated with increasing accuracy in lattice QCD, and continuum results at physical quark masses become available. At sufficiently low temperature the thermodynamic quantities can be understood in terms of hadron resonance gas model that includes known hadrons and hadronic resonances from Particle Data Book. However, for some quantities it is necessary to include undiscovered hadronic resonances (missing states) that are, however, predicted by quark model and lattice QCD study of hadron spectrum. Thus, QCD thermodynamics can provide indications for the existence of yet undiscovered hadron states.

  14. Death to perturbative QCD in exclusive processes?

    SciTech Connect

    Eckardt, R.; Hansper, J.; Gari, M.F.

    1994-04-01

    The authors discuss the question of whether perturbative QCD is applicable in calculations of exclusive processes at available momentum transfers. They show that the currently used method of determining hadronic quark distribution amplitudes from QCD sum rules yields wave functions which are completely undetermined because the polynomial expansion diverges. Because of the indeterminacy of the wave functions no statement can be made at present as to whether perturbative QCD is valid. The authors emphasize the necessity of a rigorous discussion of the subject and the importance of experimental data in the range of interest.

  15. Shape of mesons in holographic QCD

    SciTech Connect

    Torabian, Mahdi; Yee, Ho-Ung

    2009-10-15

    Based on the expectation that the constituent quark model may capture the right physics in the large N limit, we point out that the orbital angular momentum of the quark-antiquark pair inside light mesons of low spins in the constituent quark model may provide a clue for the holographic dual string model of large N QCD. Our discussion, relying on a few suggestive assumptions, leads to a necessity of world-sheet fermions in the bulk of dual strings that can incorporate intrinsic spins of fundamental QCD degrees of freedom. We also comment on the interesting issue of the size of mesons in holographic QCD.

  16. Dyons near the transition temperature in lattice QCD

    NASA Astrophysics Data System (ADS)

    Bornyakov, V. G.; Ilgenfritz, E.-M.; Martemyanov, B. V.; Müller-Preussker, M.

    2016-04-01

    We study the topological structure of QCD by cluster analysis. The fermionic topological charge density is constructed from low-lying modes of the overlap Dirac operator for three types of temporal boundary conditions for the fermion field. This provides the possibility of marking all three dyon constituents of Kraan-van Baal-Lee-Lu (KvBLL) calorons in the gluonic fields. The gluonic topological charge density appears in the overimproved gradient flow process stopped at the moment when it maximally matches the fermionic topological charge density. This corresponds to the smearing of gluonic fields up to the scale set by dyon size. The timelike Abelian monopoles and specific KvBLL pattern of the Polyakov line are correlated with topological clusters.

  17. Quarkonium at finite temperature: towards realistic phenomenology from first principles

    NASA Astrophysics Data System (ADS)

    Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander

    2015-12-01

    We present the finite temperature spectra of both bottomonium and charmonium, obtained from a consistent lattice QCD based potential picture. Starting point is the complex in-medium potential extracted on full QCD lattices with dynamical u,d and s quarks, generated by the HotQCD collaboration. Using the generalized Gauss law approach, vetted in a previous study on quenched QCD, we fit Re[ V] with a single temperature dependent parameter m D , the Debye screening mass, and confirm the up to now tentative values of Im[ V]. The obtained analytic expression for the complex potential allows us to compute quarkonium spectral functions by solving an appropriate Schrödinger equation. These spectra exhibit thermal widths, which are free from the resolution artifacts that plague direct reconstructions from Euclidean correlators using Bayesian methods. In the present adiabatic setting, we find clear evidence for sequential melting and derive melting temperatures for the different bound states. Quarkonium is gradually weakened by both screening (Re[ V]) and scattering (Im[ V]) effects that in combination lead to a shift of their in-medium spectral features to smaller frequencies, contrary to the mass gain of elementary particles at finite temperature.

  18. New representation of the Adler function for lattice QCD

    NASA Astrophysics Data System (ADS)

    Francis, Anthony; Jäger, Benjamin; Meyer, Harvey B.; Wittig, Hartmut

    2013-09-01

    We address several aspects of lattice QCD calculations of the hadronic vacuum polarization and the associated Adler function. We implement a representation derived previously which allows one to access these phenomenologically important functions for a continuous set of virtualities, irrespective of the flavor structure of the current. Secondly, we present a theoretical analysis of the finite-size effects on our particular representation of the Adler function, based on the operator product expansion at large momenta and on the spectral representation of the Euclidean correlator at small momenta. Finally, an analysis of the flavor structure of the electromagnetic current correlator is performed, where a recent theoretical estimate of the Wick-disconnected diagram contributions is rederived independently and confirmed.

  19. Kaon B-parameter from quenched domain-wall QCD

    SciTech Connect

    Aoki, Y.; Blum, T.; Christ, N.H.; Mawhinney, R.D.

    2006-05-01

    We present numerical results for the kaon B-parameter, B{sub K}, determined in the quenched approximation of lattice QCD. Our simulations are performed using domain-wall fermions and the renormalization group improved, DBW2 gauge action which combine to give quarks with good chiral symmetry at finite lattice spacing. Operators are renormalized nonperturbatively using the RI/MOM scheme. We study scaling by performing the simulation on two different lattices with a{sup -1}=1.982(30) and 2.914(54) GeV. We combine this quenched scaling study with an earlier calculation of B{sub K} using two flavors of dynamical, domain-wall quarks at a single lattice spacing to obtain B{sub K}{sup MSNDR}({mu}=2 GeV)=0.563(21)(39)(30), were the first error is statistical, the second systematic (without quenching errors) and the third estimates the error due to quenching.

  20. Vertex Sensitivity in the Schwinger-Dyson Equations of QCD

    SciTech Connect

    David J. Wilson, Michael R. Pennington

    2012-01-01

    The nonperturbative gluon and ghost propagators in Landau gauge QCD are obtained using the Schwinger-Dyson equation approach. The propagator equations are solved in Euclidean space using Landau gauge with a range of vertex inputs. Initially we solve for the ghost alone, using a model gluon input, which leads us to favour a finite ghost dressing in the nonperturbative region. In order to then solve the gluon and ghost equations simultaneously, we find that non-trivial vertices are required, particularly for the gluon propagator in the small momentum limit. We focus on the properties of a number vertices and how these differences influence the final solutions. The self-consistent solutions we obtain are all qualitatively similar and contain a mass-like term in the gluon propagator dressing in agreement with related studies, supporting the long-held proposal of Cornwall.

  1. QCD tests with polarized beams

    SciTech Connect

    Maruyama, Takashi; SLD Collaboration

    1996-09-01

    The authors present three QCD studies performed by the SLD experiment at SLAC, utilizing the highly polarized SLC electron beam. They examined particle production differences in light quark and antiquark hemispheres, and observed more high momentum baryons and K{sup {minus}}`s than antibaryons and K{sup +}`s in quark hemispheres, consistent with the leading particle hypothesis. They performed a search for jet handedness in light q- and {anti q}-jets. Assuming Standard Model values of quark polarization in Z{sup 0} decays, they have set an improved upper limit on the analyzing power of the handedness method. They studied the correlation between the Z{sup 0} spin and the event-plane orientation in polarized Z{sup 0} decays into three jets.

  2. Gluonic transversity from lattice QCD

    NASA Astrophysics Data System (ADS)

    Detmold, W.; Shanahan, P. E.

    2016-07-01

    We present an exploratory study of the gluonic structure of the ϕ meson using lattice QCD (LQCD). This includes the first investigation of gluonic transversity via the leading moment of the twist-2 double-helicity-flip gluonic structure function Δ (x ,Q2). This structure function only exists for targets of spin J ≥1 and does not mix with quark distributions at leading twist, thereby providing a particularly clean probe of gluonic degrees of freedom. We also explore the gluonic analogue of the Soffer bound which relates the helicity flip and nonflip gluonic distributions, finding it to be saturated at the level of 80%. This work sets the stage for more complex LQCD studies of gluonic structure in the nucleon and in light nuclei where Δ (x ,Q2) is an "exotic glue" observable probing gluons in a nucleus not associated with individual nucleons.

  3. Lattice QCD Beyond Ground States

    SciTech Connect

    Huey-Wen Lin; Saul D. Cohen

    2007-09-11

    In this work, we apply black box methods (methods not requiring input) to find excited-state energies. A variety of such methods for lattice QCD were introduced at the 3rd iteration of the numerical workshop series. We first review a selection of approaches that have been used in lattice calculations to determine multiple energy states: multiple correlator fits, the variational method and Bayesian fitting. In the second half, we will focus on a black box method, the multi-effective mass. We demonstrate the approach on a toy model, as well as on real lattice data, extracting multiple states from single correlators. Without complicated operator construction or specialized fitting programs, the black box method shows good consistency with the traditional approaches.

  4. Nuclear Force from Lattice QCD

    SciTech Connect

    Ishii, N.; Aoki, S.; Hatsuda, T.

    2007-07-13

    The nucleon-nucleon (NN) potential is studied by lattice QCD simulations in the quenched approximation, using the plaquette gauge action and the Wilson quark action on a 32{sup 4} [{approx_equal}(4.4 fm){sup 4}] lattice. A NN potential V{sub NN}(r) is defined from the equal-time Bethe-Salpeter amplitude with a local interpolating operator for the nucleon. By studying the NN interaction in the {sup 1}S{sub 0} and {sup 3}S{sub 1} channels, we show that the central part of V{sub NN}(r) has a strong repulsive core of a few hundred MeV at short distances (r < or approx. 0.5 fm) surrounded by an attractive well at medium and long distances. These features are consistent with the known phenomenological features of the nuclear force.

  5. Nuclear force from lattice QCD.

    PubMed

    Ishii, N; Aoki, S; Hatsuda, T

    2007-07-13

    The nucleon-nucleon (NN) potential is studied by lattice QCD simulations in the quenched approximation, using the plaquette gauge action and the Wilson quark action on a 32(4) [approximately (4.4 fm)(4)] lattice. A NN potential V(NN)(r) is defined from the equal-time Bethe-Salpeter amplitude with a local interpolating operator for the nucleon. By studying the NN interaction in the (1)S(0) and (3)S(1) channels, we show that the central part of V(NN)(r) has a strong repulsive core of a few hundred MeV at short distances (r approximately < 0.5 fm) surrounded by an attractive well at medium and long distances. These features are consistent with the known phenomenological features of the nuclear force. PMID:17678213

  6. Sivers Asymmetry with QCD Evolution

    NASA Astrophysics Data System (ADS)

    Echevarria, Miguel G.; Idilbi, Ahmad; Kang, Zhong-Bo; Vitev, Ivan

    2015-02-01

    We analyze the Sivers asymmetry in both Drell-Yan (DY) production and semi-inclusive deep inelastic scattering (SIDIS), while considering properly defined transverse momentum dependent parton distribution and fragmentation functions and their QCD evolution. After finding a universal non-perturbative spin-independent Sudakov factor that can describe reasonably well the world's data of SIDIS, DY lepton pair and W/Z production in unpolarized scatterings, we perform a global fitting of all the experimental data on the Sivers asymmetry in SIDIS from HERMES, COMPASS and Jefferson Lab. Then we make predictions for the asymmetry in DY lepton pair and W boson production, which could be compared to the future experimental data in order to test the sign change of the Sivers function.

  7. Electroweak symmetry breaking via QCD.

    PubMed

    Kubo, Jisuke; Lim, Kher Sham; Lindner, Manfred

    2014-08-29

    We propose a new mechanism to generate the electroweak scale within the framework of QCD, which is extended to include conformally invariant scalar degrees of freedom belonging to a larger irreducible representation of SU(3)c. The electroweak symmetry breaking is triggered dynamically via the Higgs portal by the condensation of the colored scalar field around 1 TeV. The mass of the colored boson is restricted to be 350  GeV≲mS≲3  TeV, with the upper bound obtained from perturbative renormalization group evolution. This implies that the colored boson can be produced at the LHC. If the colored boson is electrically charged, the branching fraction of the Higgs boson decaying into two photons can slightly increase, and moreover, it can be produced at future linear colliders. Our idea of nonperturbative electroweak scale generation can serve as a new starting point for more realistic model building in solving the hierarchy problem. PMID:25215976

  8. Pion breather states in QCD

    SciTech Connect

    Hormuzdiar, J.N.; Hsu, S.D.

    1999-02-01

    We describe a class of pionic breather solutions (PBS) which appear in the chiral Lagrangian description of low-energy QCD. These configurations are long lived, with lifetimes greater than 10{sup 3} fm/c, and could arise as remnants of disoriented chiral condensate (DCC) formation at RHIC. We show that the chiral Lagrangian equations of motion for a uniformly isospin-polarized domain reduce to those of the sine-Gordon model. Consequently, our solutions are directly related to the breather solutions of sine-Gordon theory in 3+1 dimensions. We investigate the possibility of PBS formation from multiple domains of DCC, and show that the probability of formation is non-negligible. {copyright} {ital 1999} {ital The American Physical Society}

  9. Modeling QCD for Hadron Physics

    NASA Astrophysics Data System (ADS)

    Tandy, P. C.

    2011-10-01

    We review the approach to modeling soft hadron physics observables based on the Dyson-Schwinger equations of QCD. The focus is on light quark mesons and in particular the pseudoscalar and vector ground states, their decays and electromagnetic couplings. We detail the wide variety of observables that can be correlated by a ladder-rainbow kernel with one infrared parameter fixed to the chiral quark condensate. A recently proposed novel perspective in which the quark condensate is contained within hadrons and not the vacuum is mentioned. The valence quark parton distributions, in the pion and kaon, as measured in the Drell Yan process, are investigated with the same ladder-rainbow truncation of the Dyson-Schwinger and Bethe-Salpeter equations.

  10. Modeling QCD for Hadron Physics

    SciTech Connect

    Tandy, P. C.

    2011-10-24

    We review the approach to modeling soft hadron physics observables based on the Dyson-Schwinger equations of QCD. The focus is on light quark mesons and in particular the pseudoscalar and vector ground states, their decays and electromagnetic couplings. We detail the wide variety of observables that can be correlated by a ladder-rainbow kernel with one infrared parameter fixed to the chiral quark condensate. A recently proposed novel perspective in which the quark condensate is contained within hadrons and not the vacuum is mentioned. The valence quark parton distributions, in the pion and kaon, as measured in the Drell Yan process, are investigated with the same ladder-rainbow truncation of the Dyson-Schwinger and Bethe-Salpeter equations.

  11. Testing the QCD string at large Nc from the thermodynamics of the hadronic phase

    NASA Astrophysics Data System (ADS)

    Cohen, Thomas D.

    2007-02-01

    It is generally believed that in the limit of a large number of colors (Nc) the description of confinement via flux tubes becomes valid and QCD can be modeled accurately via a hadronic string theory—at least for highly excited states. QCD at large Nc also has a well-defined deconfinement transition at a temperature Tc. In this talk it is shown how the thermodyanmics of the metastable hadronic phase of QCD (above Tc) at large NC can be related directly to properties of the effective QCD string. The key points in the derivation is the weakly interacting nature of hadrons at large Nc and the existence of a Hagedorn temperature TH for the effective string theory. From this it can be seen at large Nc and near TH, the energy density and pressure of the hadronic phase scale as E ˜ (TH - T)-(D⊥-6)/2 (for D⊥ < 6) and P ˜ (TH - T)-(D⊥-4)/2 (for D⊥ < 4) where D⊥ is the effective number of transverse dimensions of the string theory. This behavior for D⊥ < 6 is qualitatively different from typical models in statistical mechanics and if observed on the lattice would provide a direct test of the stringy nature of large Nc QCD. However since it can be seen that TH > Tc this behavior is of relevance only to the metastable phase. The prospect of using this result to extract D⊥ via lattice simulations of the metastable hadronic phase at moderately large Nc is discussed.

  12. Parton distributions from lattice QCD: an update

    SciTech Connect

    Detmold, W; Melnitchouk, W; Thomas, A W

    2004-04-01

    We review the extraction of parton distributions from their moments calculated in lattice QCD, focusing in particular on their extrapolation to the physical region. As examples, we consider both the unpolarized and polarized isovector parton distributions of the nucleon.

  13. Opportunities, challenges, and fantasies in lattice QCD

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    2003-05-01

    Some important problems in quantitative QCD will certainly yield to hard work and adequate investment of resources, others appear difficult but may be accessible, and still others will require essentially new ideas. Here I identify several examples in each class.

  14. Heavy Quarks, QCD, and Effective Field Theory

    SciTech Connect

    Thomas Mehen

    2012-10-09

    The research supported by this OJI award is in the area of heavy quark and quarkonium production, especially the application Soft-Collinear E ective Theory (SCET) to the hadronic production of quarkonia. SCET is an e ffective theory which allows one to derive factorization theorems and perform all order resummations for QCD processes. Factorization theorems allow one to separate the various scales entering a QCD process, and in particular, separate perturbative scales from nonperturbative scales. The perturbative physics can then be calculated using QCD perturbation theory. Universal functions with precise fi eld theoretic de nitions describe the nonperturbative physics. In addition, higher order perturbative QCD corrections that are enhanced by large logarithms can be resummed using the renormalization group equations of SCET. The applies SCET to the physics of heavy quarks, heavy quarkonium, and similar particles.

  15. QCD for Postgraduates (4/5)

    ScienceCinema

    None

    2011-10-06

    Modern QCD - Lecture 4 We will consider some processes of interest at the LHC and will discuss the main elements of their cross-section calculations. We will also summarize the current status of higher order calculations.

  16. Strange Baryon Physics in Full Lattice QCD

    SciTech Connect

    Huey-Wen Lin

    2007-11-01

    Strange baryon spectra and form factors are key probes to study excited nuclear matter. The use of lattice QCD allows us to test the strength of the Standard Model by calculating strange baryon quantities from first principles.

  17. Excited light meson spectroscopy from lattice QCD

    SciTech Connect

    Christopher Thomas, Hadron Spectrum Collaboration

    2012-04-01

    I report on recent progress in calculating excited meson spectra using lattice QCD, emphasizing results and phenomenology. With novel techniques we can now extract extensive spectra of excited mesons with high statistical precision, including spin-four states and those with exotic quantum numbers. As well as isovector meson spectra, I will present new calculations of the spectrum of excited light isoscalar mesons, something that has up to now been a challenge for lattice QCD. I show determinations of the flavor content of these mesons, including the eta-eta' mixing angle, providing a window on annihilation dynamics in QCD. I will also discuss recent work on using lattice QCD to map out the energy-dependent phase shift in pi-pi scattering and future applications of the methodology to the study of resonances and decays.

  18. Simplifying Multi-Jet QCD Computation

    SciTech Connect

    Peskin, Michael E.; /SLAC

    2011-11-04

    These lectures give a pedagogical discussion of the computation of QCD tree amplitudes for collider physics. The tools reviewed are spinor products, color ordering, MHV amplitudes, and the Britto-Cachazo-Feng-Witten recursion formula.

  19. QCD mechanisms for heavy particle production

    SciTech Connect

    Brodsky, S.J.

    1985-09-01

    For very large pair mass, the production of heavy quarks and supersymmetric particles is expected to be governed by ACD fusion subprocesses. At lower mass scales other QCD mechanisms such as prebinding distortion and intrinsic heavy particle Fock states can become important, possibly accounting for the anomalies observed for charm hadroproduction. We emphasize the importance of final-state Coulomb interactions at low relative velocity in QCD and predict the existence of heavy narrow four quark resonances (c c-bar u u-bar) and (cc c-bar c-bar) in ..gamma gamma.. reactions. Coherent QCD contributions are discussed as a contribution to the non-additivity of nuclear structure functions and heavy particle production cross sections. We also predict a new type of amplitude zero for exclusive heavy meson pair production which follows from the tree-graph structure of QCD. 35 refs., 8 figs., 1 tab.

  20. Recent QCD Studies at the Tevatron

    SciTech Connect

    Group, Robert Craig

    2008-04-01

    Since the beginning of Run II at the Fermilab Tevatron the QCD physics groups of the CDF and D0 experiments have worked to reach unprecedented levels of precision for many QCD observables. Thanks to the large dataset--over 3 fb{sup -1} of integrated luminosity recorded by each experiment--important new measurements have recently been made public and will be summarized in this paper.

  1. QCD and hard diffraction at the LHC

    SciTech Connect

    Albrow, Michael G.; /Fermilab

    2005-09-01

    As an introduction to QCD at the LHC the author gives an overview of QCD at the Tevatron, emphasizing the high Q{sup 2} frontier which will be taken over by the LHC. After describing briefly the LHC detectors the author discusses high mass diffraction, in particular central exclusive production of Higgs and vector boson pairs. The author introduces the FP420 project to measure the scattered protons 420m downstream of ATLAS and CMS.

  2. Novel QCD effects in nuclear collisions

    SciTech Connect

    Brodsky, S.J.

    1991-12-01

    Heavy ion collisions can provide a novel environment for testing fundamental dynamical processes in QCD, including minijet formation and interactions, formation zone phenomena, color filtering, coherent co-mover interactions, and new higher twist mechanisms which could account for the observed excess production and anomalous nuclear target dependence of heavy flavor production. The possibility of using light-cone thermodynamics and a corresponding covariant temperature to describe the QCD phases of the nuclear fragmentation region is also briefly discussed.

  3. Lattice and Phase Diagram in QCD

    SciTech Connect

    Lombardo, Maria Paola

    2008-10-13

    Model calculations have produced a number of very interesting expectations for the QCD Phase Diagram, and the task of a lattice calculations is to put these studies on a quantitative grounds. I will give an overview of the current status of the lattice analysis of the QCD phase diagram, from the quantitative results of mature calculations at zero and small baryochemical potential, to the exploratory studies of the colder, denser phase.

  4. Precision lattice QCD: challenges and prospects

    NASA Astrophysics Data System (ADS)

    Hashimoto, Shoji

    2013-04-01

    With Peta-flops scale computational resources, lattice QCD simulation has recently reached one of its primary goals, i.e. reproducing the low-lying hadron spectrum starting from the QCD Lagrangian. Applications to various other phenomenological quantities, for which no other way of precise theoretical calculation is available, would become the next milestone. In this talk I will provide a brief overview of the field and summarize the remaining problems to be solved before achieving the precision calculations.

  5. Random walk through recent CDF QCD results

    SciTech Connect

    C. Mesropian

    2003-04-09

    We present recent results on jet fragmentation, jet evolution in jet and minimum bias events, and underlying event studies. The results presented in this talk address significant questions relevant to QCD and, in particular, to jet studies. One topic discussed is jet fragmentation and the possibility of describing it down to very small momentum scales in terms of pQCD. Another topic is the studies of underlying event energy originating from fragmentation of partons not associated with the hard scattering.

  6. Soft and hard contributions to QCD processes

    SciTech Connect

    Slavnov, D.A.; Bakulina, E.N.

    1995-06-01

    QCD corrections of order {alpha}{sub s} for deep inelastic lepton scattering and the Drell-Yan process are considered. The common soft part of these corrections is found. This result makes it possible to determine the modified parton distribution functions unambiguously beyond the leading logarithmic approximation. These distribution functions are used to obtain QCD corrections that are free of infrared and collinear ambiguities. 6 refs., 2 figs.

  7. Some new/old approaches to QCD

    SciTech Connect

    Gross, D.J.

    1992-11-01

    In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.

  8. Some New/Old Approaches to QCD

    DOE R&D Accomplishments Database

    Gross, D. J.

    1992-11-01

    In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.

  9. Lattice QCD and the Jefferson Laboratory Program

    SciTech Connect

    Jozef Dudek, Robert Edwards, David Richards, Konstantinos Orginos

    2011-06-01

    Lattice gauge theory provides our only means of performing \\textit{ab initio} calculations in the non-perturbative regime. It has thus become an increasing important component of the Jefferson Laboratory physics program. In this paper, we describe the contributions of lattice QCD to our understanding of hadronic and nuclear physics, focusing on the structure of hadrons, the calculation of the spectrum and properties of resonances, and finally on deriving an understanding of the QCD origin of nuclear forces.

  10. QCD: results from lattice quantum chromodynamics

    SciTech Connect

    Kronfeld, Andreas S.; /Fermilab

    2006-10-01

    Quantum chromodynamics (QCD) is the modern theory of the strong force. In this theory, the main objects are quarks and gluons, which are bound by the strong force into protons, neutrons, and other particles called hadrons. In the framework of QCD, the strong nuclear force binding protons and neutrons together into nuclei is actually only a residue of the much stronger forces acting between quarks and gluons. In fact, inside the proton, even the concept of force is not very useful. Within all hadrons they have a swirl of gluons being exchanged back and forth as a manifestation of the strong force. To make matters worse, gluons can split into two, and then rejoin, or they can split into a quark-antiquark pair. Even the simplest hadron is a complex system hosting constantly interacting components. Despite this complexity, QCD is well established experimentally. This is because at short distances (or high energies), the coupling between the particles is effectively small and particles move around with relative freedom. This is called asymptotic freedom and QCD is amenable to the traditional methods of quantum field theory in this regime. High-energy experiments have tested and confirmed QCD in this realm, which led to the 2004 Nobel Prize in Physics for Drs. David Gross, David Politzer, and Frank Wilczek, the theorists who provided the theory for short-range QCD and asymptotic freedom.

  11. Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD project. Proceedings of RIKEN BNL Research Center workshop: Volume 13

    SciTech Connect

    1998-10-16

    A workshop was held at the RIKEN-BNL Research Center on October 16, 1998, as part of the first anniversary celebration for the center. This meeting brought together the physicists from RIKEN-BNL, BNL and Columbia who are using the QCDSP (Quantum Chromodynamics on Digital Signal Processors) computer at the RIKEN-BNL Research Center for studies of QCD. Many of the talks in the workshop were devoted to domain wall fermions, a discretization of the continuum description of fermions which preserves the global symmetries of the continuum, even at finite lattice spacing. This formulation has been the subject of analytic investigation for some time and has reached the stage where large-scale simulations in QCD seem very promising. With the computational power available from the QCDSP computers, scientists are looking forward to an exciting time for numerical simulations of QCD.

  12. The QCD/SM Working Group: Summary Report

    SciTech Connect

    M. Dobbs et al.

    2004-08-05

    synopsis of it is included here as the first contribution to this report. This report reflects the hard and creative work by the many contributors which took place in the working group. After the MC guide description, the next contributions report on progress in describing multiple interactions, important for the LHC, and underlying events. An announcement of a Monte Carlo database, under construction, is followed by a number of contributions improving parton shower descriptions. Subsequently, a large number of contributions address resummations in various forms, after which follow studies of QCD effects in pion pair, top quark pair and photon pair plus jet production. After a study of electroweak corrections to hadronic precision observables, the report ends by presenting recent progress in methods to compute finite order corrections at one-loop with many legs, and at two-loop.

  13. The QCD/SM working group: Summary report

    SciTech Connect

    Dobbs, Matt; Frixione, S.; Laenen, E.; De Roeck, A.; Tollefson, K.; Andersen, J.; Balazs, C.; Banfi, A.; Bernreuther, W.; Binoth, T.; Brandenburg, A.; Buttar, C.; Cao, C-H.; Cruz, A.; Dawson, I.; DelDuca, V.; Drollinger, V.; Dudko, L.; Eynck, T.; Field, R.; Grazzini, M.; Guillet, J.P.; Heinrich, G.; Huston, J.; Kauer, N.; Kidonakis, N.; Kulesza, A.; Lassila-Perini, K.; Magnea, L.; Mahmoudi, F.; Maina, E.; Maltoni, F.; Nolten, M.; Moraes, A.; Moretti, S.; Mrenna, S.; Nagy, Z.; Olness, F.; Puljak, I.; Ross, D.A.; Sabio-Vera, A.; Salam, G.P.; Sherstnev, A.; Si, Z.G.; Sjostrand, T.; Skands, P.; Thome, E.; Trocsanyi, Z.; Uwer, P.; Weinzierl, S.; Yuan, C.P.; Zanderighi,G.; Zanderighi, G.

    2004-04-09

    synopsis of it is included here as the first contribution to this report. This report reflects the hard and creative work by the many contributors which took place in the working group. After the MC guide description, the next contributions report on progress in describing multiple interactions, important for the LHC, and underlying events. An announcement of a Monte Carlo database, under construction, is followed by a number of contributions improving parton shower descriptions. Subsequently, a large number of contributions address resummations in various forms, after which follow studies of QCD effects in pion pair, top quark pair and photon pair plus jet production. After a study of electroweak corrections to hadronic precision observables, the report ends by presenting recent progress in methods to compute finite order corrections at one-loop with many legs, and at two-loop.

  14. Exploring the nature of chiral phase transition in two-flavor QCD using extra heavy quarks

    NASA Astrophysics Data System (ADS)

    Ejiri, Shinji; Iwami, Ryo; Yamada, Norikazu

    2016-03-01

    Chiral phase transition of two-flavor QCD at finite quark masses is known to be a crossover except near the chiral limit, but it can turn to a first order transition when adding many extra flavors. This property is used to explore the nature of the phase transition of massless two-flavor QCD using lattice numerical simulations. The extra heavy flavors being incorporated in the form of the hopping parameter expansion through the reweighting, the number of the extra flavors and their masses appear only in a single parameter, defined by h . We determine the critical value of h , at which the first order and the crossover regions are separated, and examine its dependence on the two-flavor mass. The lattice calculations are carried out at Nt=4 , and show that the critical value of h does not depend on the two-flavor mass in the range we have studied (0.46 ≤mπ/mρ≤0.66 ) and appears to remain finite and positive in the chiral limit, suggesting that the phase transition of massless two-flavor QCD is of second order.

  15. Massive photons: An infrared regularization scheme for lattice QCD+QED

    DOE PAGESBeta

    Endres, Michael G.; Shindler, Andrea; Tiburzi, Brian C.; Walker-Loud, Andre

    2016-08-10

    The commonly adopted approach for including electromagnetic interactions in lattice QCD simulations relies on using finite volume as the infrared regularization for QED. The long-range nature of the electromagnetic interaction, however, implies that physical quantities are susceptible to power-law finite volume corrections, which must be removed by performing costly simulations at multiple lattice volumes, followed by an extrapolation to the infinite volume limit. In this work, we introduce a photon mass as an alternative means for gaining control over infrared effects associated with electromagnetic interactions. We present findings for hadron mass shifts due to electromagnetic interactions (i.e., for the proton,more » neutron, charged and neutral kaon) and corresponding mass splittings, and compare the results with those obtained from conventional QCD+QED calculations. Results are reported for numerical studies of three flavor electroquenched QCD using ensembles corresponding to 800 MeV pions, ensuring that the only appreciable volume corrections arise from QED effects. The calculations are performed with three lattice volumes with spatial extents ranging from 3.4 - 6.7 fm. As a result, we find that for equal computing time (not including the generation of the lattice configurations), the electromagnetic mass shifts can be extracted from computations on a single (our smallest) lattice volume with comparable or better precision than the conventional approach.« less

  16. Large-N reduction in QCD-like theories with massive adjoint fermions

    SciTech Connect

    Azeyanagi, Tatsuo; Hanada, Masanori; Unsal, Mithat; Yacoby, Ran; /Weizmann Inst.

    2010-08-26

    Large-N QCD with heavy adjoint fermions emulates pure Yang-Mills theory at long distances. We study this theory on a four- and three-torus, and analytically argue the existence of a large-small volume equivalence. For any finite mass, center symmetry unbroken phase exists at sufficiently small volume and this phase can be used to study the large-volume limit through the Eguchi-Kawai equivalence. A finite temperature version of volume independence implies that thermodynamics on R3 x S1 can be studied via a unitary matrix quantum mechanics on S1, by varying the temperature. To confirm this non-perturbatively, we numerically study both zero- and one-dimensional theories by using Monte-Carlo simulation. Order of finite-N corrections turns out to be 1/N. We introduce various twisted versions of the reduced QCD which systematically suppress finite-N corrections. Using a twisted model, we observe the confinement/deconfinement transition on a 1{sup 3} x 2-lattice. The result agrees with large volume simulations of Yang-Mills theory. We also comment that the twisted model can serve as a non-perturbative formulation of the non-commutative Yang-Mills theory.

  17. QCD structure of nuclear interactions

    NASA Astrophysics Data System (ADS)

    Granados, Carlos G.

    The research presented in this dissertation investigated selected processes involving baryons and nuclei in hard scattering reactions. These processes are characterized by the production of particles with large energies and transverse momenta. Through these processes, this work explored both, the constituent (quark) structure of baryons (specifically nucleons and Delta-Isobars), and the mechanisms through which the interactions between these constituents ultimately control the selected reactions. The first of such reactions is the hard nucleon-nucleon elastic scattering, which was studied here considering the quark exchange between the nucleons to be the dominant mechanism of interaction in the constituent picture. In particular, it was found that an angular asymmetry exhibited by proton-neutron elastic scattering data is explained within this framework if a quark-diquark picture dominates the nucleon's structure instead of a more traditional SU(6) three quarks picture. The latter yields an asymmetry around 90o center of mass scattering with a sign opposite to what is experimentally observed. The second process is the hard breakup by a photon of a nucleon-nucleon system in light nuclei. Proton-proton (pp) and proton-neutron (pn) breakup in 3He, and DeltaDelta-isobars production in deuteron breakup were analyzed in the hard rescattering model (HRM), which in conjunction with the quark interchange mechanism provides a Quantum Chromodynamics (QCD) description of the reaction. Through the HRM, cross sections for both channels in 3He photodisintegration were computed without the need of a fitting parameter. The results presented here for pp breakup show excellent agreement with recent experimental data. In DeltaDelta-isobars production in deuteron breakup, HRM angular distributions for the two DeltaDelta channels were compared to the pn channel and to each other. An important prediction fromthis study is that the Delta++Delta- channel consistently dominates Delta+Delta0

  18. Simple analytic QCD model with perturbative QCD behavior at high momenta

    SciTech Connect

    Contreras, Carlos; Espinosa, Olivier; Cvetic, Gorazd; Martinez, Hector E.

    2010-10-01

    Analytic QCD models are those where the QCD running coupling has the physically correct analytic behavior, i.e., no Landau singularities in the Euclidean regime. We present a simple analytic QCD model in which the discontinuity function of the running coupling at high momentum scales is the same as in perturbative QCD (just like in the analytic QCD model of Shirkov and Solovtsov), but at low scales it is replaced by a delta function which parametrizes the unknown behavior there. We require that the running coupling agree to a high degree with the perturbative coupling at high energies, which reduces the number of free parameters of the model from four to one. The remaining parameter is fixed by requiring the reproduction of the correct value of the semihadronic tau decay ratio.

  19. Neutron and proton electric dipole moments from Nf=2+1 domain-wall fermion lattice QCD

    DOE PAGESBeta

    Shintani, Eigo; Blum, Thomas; Izubuchi, Taku; Soni, Amarjit

    2016-05-05

    We present a lattice calculation of the neutron and proton electric dipole moments (EDM’s) with Nf = 2 + 1 flavors of domain-wall fermions. The neutron and proton EDM form factors are extracted from three-point functions at the next-to-leading order in the θ vacuum of QCD. In this computation, we use pion masses 330 and 420 MeV and 2.7 fm3 lattices with Iwasaki gauge action and a 170 MeV pion and 4.6 fm3 lattice with I-DSDR gauge action, all generated by the RBC and UKQCD collaborations. The all-mode-averaging technique enables an efficient, high statistics calculation; however the statistical errors onmore » our results are still relatively large, so we investigate a new direction to reduce them, reweighting with the local topological charge density which appears promising. Furthermore, we discuss the chiral behavior and finite size effects of the EDM’s in the context of baryon chiral perturbation theory.« less

  20. Transport Processes in High Temperature QCD Plasmas

    NASA Astrophysics Data System (ADS)

    Hong, Juhee

    The transport properties of high temperature QCD plasmas can be described by kinetic theory based on the Boltzmann equation. At a leading-log approximation, the Boltzmann equation is reformulated as a Fokker-Planck equation. First, we compute the spectral densities of Tµν and Jµ by perturbing the system with weak gravitational and electromagnetic fields. The spectral densities exhibit a smooth transition from free-streaming quasi-particles to hydrodynamics. This transition is analyzed with hydrodynamics and diffusion equation up to second order. We determine all of the first and second order transport coefficients which characterize the linear response in the hydrodynamic regime. Second, we simulate the wake of a heavy quark moving through the plasmas. At long distances, the energy density and flux distributions show sound waves and a diffusion wake. The kinetic theory calculations based on the Boltzmann equation at weak coupling are compared to the strong coupling results given by the AdS/CFT correspondence. By using the hard-thermal-loop effective theory, we determine the photon emission rate at next-to-leading order (NLO), i.e., at order g2mD /T. There are three mechanisms which contribute to the leading-order photon emission: (2 ↔ 2) elastic scatterings, (1 ↔ 2) collinear bremsstrahlung, and (1 ↔ 1) quark-photon conversion due to soft fermion exchange. At NLO, these three mechanisms are not completely independent. When the transverse momentum between quark and photon becomes soft, the Compton scattering with a soft gluon reduces to wide-angle bremsstrahlung. Similarly, bremsstrahlung reduces to the quark-photon conversion process when the photon carries most of the incoming momentum. Therefore, the rates should be matched to determine the wide-angle NLO correction. Collinear bremsstrahlung can be accounted for by solving an integral

  1. Phase structure, collective modes, and the axial anomaly in dense QCD

    SciTech Connect

    Yamamoto, Naoki; Hatsuda, Tetsuo; Tachibana, Motoi; Baym, Gordon

    2007-10-01

    Using a general Ginzburg-Landau effective Lagrangian, we study the topological structure and low-lying collective modes of dense QCD having both chiral and diquark condensates, for two and three massless flavors. As we found earlier, the QCD axial anomaly acts as an external field applied to the chiral condensate in a color superconductor and, as a new critical point emerges, leads to a crossover between the broken chiral symmetry and color superconducting phases. At intermediate densities where both chiral and diquark condensates are present, we derive a generalized Gell-Mann-Oakes-Renner relation between the masses of pseudoscalar bosons and the magnitude of the chiral and diquark condensates. We show explicitly the continuity of the ordinary pion at low densities to a generalized pion at high densities.

  2. Dominant mixed QCD-electroweak O (αs α) corrections to Drell-Yan processes in the resonance region

    NASA Astrophysics Data System (ADS)

    Dittmaier, Stefan; Huss, Alexander; Schwinn, Christian

    2016-03-01

    A precise theoretical description of W- and Z-boson production in the resonance region is essential for the correct interpretation of high-precision measurements of the W-boson mass and the effective weak mixing angle. Currently, the largest unknown fixed-order contribution is given by the mixed QCD-electroweak corrections of O (αs α) . We argue, using the framework of the pole expansion for the NNLO QCD-electroweak corrections established in a previous paper, that the numerically dominant corrections arise from the combination of large QCD corrections to the production with the large electroweak corrections to the decay of the W / Z boson. We calculate these so-called factorizable corrections of "initial-final" type and estimate the impact on the W-boson mass extraction. We compare our results to simpler approximate combinations of electroweak and QCD corrections in terms of naive products of NLO QCD and electroweak correction factors and using leading-logarithmic approximations for QED final-state radiation as provided by the structure-function approach or QED parton-shower programs. We also compute corrections of "final-final" type, which are given by finite counterterms to the leptonic vector-boson decays and are found to be numerically negligible.

  3. Quantiles for Finite Mixtures of Normal Distributions

    ERIC Educational Resources Information Center

    Rahman, Mezbahur; Rahman, Rumanur; Pearson, Larry M.

    2006-01-01

    Quantiles for finite mixtures of normal distributions are computed. The difference between a linear combination of independent normal random variables and a linear combination of independent normal densities is emphasized. (Contains 3 tables and 1 figure.)

  4. QCD as a topologically ordered system

    SciTech Connect

    Zhitnitsky, Ariel R.

    2013-09-15

    We argue that QCD belongs to a topologically ordered phase similar to many well-known condensed matter systems with a gap such as topological insulators or superconductors. Our arguments are based on an analysis of the so-called “deformed QCD” which is a weakly coupled gauge theory, but nevertheless preserves all the crucial elements of strongly interacting QCD, including confinement, nontrivial θ dependence, degeneracy of the topological sectors, etc. Specifically, we construct the so-called topological “BF” action which reproduces the well known infrared features of the theory such as non-dispersive contribution to the topological susceptibility which cannot be associated with any propagating degrees of freedom. Furthermore, we interpret the well known resolution of the celebrated U(1){sub A} problem where the would be η{sup ′} Goldstone boson generates its mass as a result of mixing of the Goldstone field with a topological auxiliary field characterizing the system. We then identify the non-propagating auxiliary topological field of the BF formulation in deformed QCD with the Veneziano ghost (which plays the crucial role in resolution of the U(1){sub A} problem). Finally, we elaborate on relation between “string-net” condensation in topologically ordered condensed matter systems and long range coherent configurations, the “skeletons”, studied in QCD lattice simulations. -- Highlights: •QCD may belong to a topologically ordered phase similar to condensed matter (CM) systems. •We identify the non-propagating topological field in deformed QCD with the Veneziano ghost. •Relation between “string-net” condensates in CM systems and the “skeletons” in QCD lattice simulations is studied.

  5. Hadronic and nuclear interactions in QCD

    SciTech Connect

    Not Available

    1982-01-01

    Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is the analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics.

  6. Windows on the axion. [quantum chromodynamics (QCD)

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1989-01-01

    Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the theta vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10(-12)eV is approx. less than m(a) which is approx. less than 10(6)eV, some 18 orders-of-magnitude. Laboratory experiments have excluded masses greater than 10(4)eV, leaving unprobed some 16 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producting detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10(-6)eV is approx. less than m(a) is approx. less than 10(-3)eV and 1eV is approx. less than m(a) is approx. less than 5eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve heavenly axions, are being planned or are underway.

  7. Estimate of the charmed 0{sup --} hybrid meson spectrum from quenched lattice QCD

    SciTech Connect

    Liu Yan; Luo Xiangqian

    2006-03-01

    We compute from quenched lattice QCD the ground state masses of the charmed hybrid mesons ccg, with exotic quantum numbers J{sup PC}=1{sup -+}, 0{sup +-} and 0{sup --}. The 0{sup --} hybrid meson spectrum has never been provided by lattice simulations due to the difficulties to extract high gluonic excitations from noise. We employ improved gauge and fermion actions on the anisotropic lattice, which reduce greatly the lattice artifacts, and lead to very good signals. The data are extrapolated to the continuum limit, with finite size effects under well control. For 1{sup -+} and 0{sup +-} hybrid mesons, the ground state masses are 4.405(38) GeV and 4.714(52) GeV. We predict for the first time from lattice QCD, the ground state mass of 0{sup --} to be 5.883(146) GeV.

  8. Thermodynamics of (2+1)-flavor QCD: Confronting models with lattice studies

    SciTech Connect

    Schaefer, B.-J.; Wagner, M.; Wambach, J.

    2010-04-01

    The Polyakov-quark-meson model, which combines chiral as well as deconfinement aspects of strongly interacting matter, is introduced for three light quark flavors. An analysis of the chiral and deconfinement phase transition of the model and its thermodynamics at finite temperatures is given. Three different forms of the effective Polyakov-loop potential are considered. The findings of the 2+1 flavor model investigations are compared to corresponding recent QCD lattice simulations of the RBC-Bielefeld, HotQCD and Wuppertal-Budapest collaborations. The influence of the heavier quark masses, which are used in the lattice calculations, is taken into account. In the transition region the bulk thermodynamics of the Polyakov-quark-meson model agrees well with the lattice data.

  9. The phase-shift of isospin-2 pi-pi scattering from lattice QCD

    SciTech Connect

    Jozef J. Dudek, Robert G. Edwards, Michael J. Peardon, David G. Richards, Christopher E. Thomas

    2011-04-01

    Finite-volume lattice QCD calculations offer the possibility of extracting resonance parameters from the energy-dependent elastic phase-shift computed using the L\\"uscher technique. In this letter, as a trial of the method, we report on the extraction of the non-resonant phase-shift for $S$ and $D$-wave $\\pi\\pi$ isospin-2 scattering from dynamical lattice QCD computations. We define a variational basis of operators resembling pairs of pions of definite relative momentum and extract a spectrum of excited states that maps to phase-shifts at a set of discrete scattering momenta. Computations are performed with pion masses between $400$ and $520$ MeV on multiple spatial volumes. We observe no significant quark mass dependence in the phase-shifts extracted which are in reasonable agreement with the available experimental data at low momentum.

  10. Phase shift of isospin-2 {pi}{pi} scattering from lattice QCD

    SciTech Connect

    Dudek, Jozef J.; Edwards, Robert G.; Richards, David G.; Thomas, Christopher E.; Peardon, Michael J.

    2011-04-01

    Finite-volume lattice QCD calculations offer the possibility of extracting resonance parameters from the energy-dependent elastic phase-shift computed using the Luescher technique. In this letter, as a trial of the method, we report on the extraction of the nonresonant phase-shift for S and D-wave {pi}{pi} isospin-2 scattering from dynamical lattice QCD computations. We define a variational basis of operators resembling pairs of pions of definite relative momentum and extract a spectrum of excited states that maps to phase-shifts at a set of discrete scattering momenta. Computations are performed with pion masses between 400 and 520 MeV on multiple spatial volumes. We observe no significant quark mass dependence in the phase-shifts extracted which are in reasonable agreement with the available experimental data at low momentum.

  11. The Area Law in Matrix Models for Large N QCD Strings

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, K. N.; Bietenholz, W.; Nishimura, J.

    We study the question whether matrix models obtained in the zero volume limit of 4d Yang-Mills theories can describe large N QCD strings. The matrix model we use is a variant of the Eguchi-Kawai model in terms of Hermitian matrices, but without any twists or quenching. This model was originally proposed as a toy model of the IIB matrix model. In contrast to common expectations, we do observe the area law for Wilson loops in a significant range of scale of the loop area. Numerical simulations show that this range is stable as N increases up to 768, which strongly suggests that it persists in the large N limit. Hence the equivalence to QCD strings may hold for length scales inside a finite regime.

  12. R evolution: Improving perturbative QCD

    SciTech Connect

    Hoang, Andre H.; Jain, Ambar; Stewart, Iain W.; Scimemi, Ignazio

    2010-07-01

    Perturbative QCD results in the MS scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the ''MSR scheme'' which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS. Results in MSR depend on a cutoff parameter R, in addition to the {mu} of MS. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like {mu} in MS). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q{approx}1 GeV, and power corrections are reduced compared to MS.

  13. R evolution: Improving perturbative QCD

    NASA Astrophysics Data System (ADS)

    Hoang, André H.; Jain, Ambar; Scimemi, Ignazio; Stewart, Iain W.

    2010-07-01

    Perturbative QCD results in the MS¯ scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the “MSR scheme” which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS¯. Results in MSR depend on a cutoff parameter R, in addition to the μ of MS¯. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like μ in MS¯). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q˜1GeV, and power corrections are reduced compared to MS¯.

  14. Jet quenching from QCD evolution

    NASA Astrophysics Data System (ADS)

    Chien, Yang-Ting; Emerman, Alexander; Kang, Zhong-Bo; Ovanesyan, Grigory; Vitev, Ivan

    2016-04-01

    Recent advances in soft-collinear effective theory with Glauber gluons have led to the development of a new method that gives a unified description of inclusive hadron production in reactions with nucleons and heavy nuclei. We show how this approach, based on the generalization of the DGLAP evolution equations to include final-state medium-induced parton shower corrections for large Q2 processes, can be combined with initial-state effects for applications to jet quenching phenomenology. We demonstrate that the traditional parton energy loss calculations can be regarded as a special soft-gluon emission limit of the general QCD evolution framework. We present phenomenological comparison of the SCETG -based results on the suppression of inclusive charged hadron and neutral pion production in √{sNN }=2.76 TeV lead-lead collisions at the Large Hadron Collider to experimental data. We also show theoretical predictions for the upcoming √{sNN }≃5.1 TeV Pb +Pb run at the LHC.

  15. Pseudo-scalar form factors at three loops in QCD

    NASA Astrophysics Data System (ADS)

    Ahmed, Taushif; Gehrmann, Thomas; Mathews, Prakash; Rana, Narayan; Ravindran, V.

    2015-11-01

    The coupling of a pseudo-scalar Higgs boson to gluons is mediated through a heavy quark loop. In the limit of large quark mass, it is described by an effective Lagrangian that only admits light degrees of freedom. In this effective theory, we compute the three-loop massless QCD corrections to the form factor that describes the coupling of a pseudo-scalar Higgs boson to gluons. Due to the axial anomaly, the pseudo-scalar operator for the gluonic field strength mixes with the divergence of the axial vector current. Working in dimensional regularization and using the 't Hooft-Veltman prescription for the axial vector current, we compute the three-loop pseudo-scalar form factors for massless quarks and gluons. Using the universal infrared factorization properties, we independently derive the three-loop operator mixing and finite operator renormalisation from the renormalisation group equation for the form factors, thereby confirming recent results in the operator product expansion. The finite part of the three-loop form factor is an important ingredient to the precise prediction of the pseudo-scalar Higgs boson production cross section at hadron colliders. We discuss potential applications and derive the hard matching coefficient in soft-collinear effective theory.

  16. Holographic models and the QCD trace anomaly

    SciTech Connect

    Jose L. Goity, Roberto C. Trinchero

    2012-08-01

    Five dimensional dilaton models are considered as possible holographic duals of the pure gauge QCD vacuum. In the framework of these models, the QCD trace anomaly equation is considered. Each quantity appearing in that equation is computed by holographic means. Two exact solutions for different dilaton potentials corresponding to perturbative and non-perturbative {beta}-functions are studied. It is shown that in the perturbative case, where the {beta}-function is the QCD one at leading order, the resulting space is not asymptotically AdS. In the non-perturbative case, the model considered presents confinement of static quarks and leads to a non-vanishing gluon condensate, although it does not correspond to an asymptotically free theory. In both cases analyses based on the trace anomaly and on Wilson loops are carried out.

  17. QCD sign problem for small chemical potential

    SciTech Connect

    Splittorff, K.; Verbaarschot, J. J. M.

    2007-06-01

    The expectation value of the complex phase factor of the fermion determinant is computed in the microscopic domain of QCD at nonzero chemical potential. We find that the average phase factor is nonvanishing below a critical value of the chemical potential equal to half the pion mass and vanishes exponentially in the volume for larger values of the chemical potential. This holds for QCD with dynamical quarks as well as for quenched and phase quenched QCD. The average phase factor has an essential singularity for zero chemical potential and cannot be obtained by analytic continuation from imaginary chemical potential or by means of a Taylor expansion. The leading order correction in the p-expansion of the chiral Lagrangian is calculated as well.

  18. Quarkonium states in an anisotropic QCD plasma

    SciTech Connect

    Dumitru, Adrian; Guo Yun; Mocsy, Agnes; Strickland, Michael

    2009-03-01

    We consider quarkonium in a hot quantum chromodynamics (QCD) plasma which, due to expansion and nonzero viscosity, exhibits a local anisotropy in momentum space. At short distances the heavy-quark potential is known at tree level from the hard-thermal loop resummed gluon propagator in anisotropic perturbative QCD. The potential at long distances is modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is nonzero and inversely proportional to the temperature. We obtain numerical solutions of the three-dimensional Schroedinger equation for this potential. We find that quarkonium binding is stronger at nonvanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states.

  19. Spinodal density enhancements in nuclear collisions at the CBM experiment

    NASA Astrophysics Data System (ADS)

    Steinheimer, J.; Koch, V.; Randrup, J.; Bleicher, M.

    2015-04-01

    We discuss a novel approach to describe the evolution of a fireball, created in a high-energy nuclear collision, experiencing spinodal instabilities due to the first-order deconfinement phase transition of quantum chromo dynamics (QCD). We show that initial density fluctuations in these collisions are enhanced in the mechanically unstable region of the QCD phase diagram. In our study we find that the most favorable energy range for observing these density enhancements is at the lower end of the SIS100 accelerator at FAIR, currently under construction. Furthermore we discuss how one can distinguish and constrain different types of QCD phase transitions, one of hadron-quark type and one of liquid-gas type, leading to strong differences in the dynamical evolution of the QCD medium.

  20. QCD and Light-Front Dynamics

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.

    2011-01-10

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  1. Contact term, its holographic description in QCD and dark energy

    NASA Astrophysics Data System (ADS)

    Zhitnitsky, Ariel R.

    2012-08-01

    In this work we study the well-known contact term, which is the key element in resolving the so-called U(1)A problem in QCD. We study this term using the dual holographic description. We argue that in the dual picture the contact term is saturated by the D2-branes which can be interpreted as the tunneling events in Minkowski space-time. We quote a number of direct lattice results supporting this identification. We also argue that the contact term receives a Casimir-like correction ˜(ΛQCDR)-1 rather than the naively expected exp⁡(-ΛQCDR) when the Minkowski space-time R3,1 is replaced by a large but finite manifold with a size R. Such a behavior is consistent with other quantum field theory (QFT)-based computations when powerlike corrections are due to nontrivial properties of topological sectors of the theory. In holographic description, such a behavior is due to a massless Ramond-Ramond (RR) field living in the bulk of multidimensional space when powerlike corrections is a natural outcome of a massless RR field. In many respects, the phenomenon is similar to the Aharonov-Casher effect when the “modular electric field” can penetrate into a superconductor where the electric field is exponentially screened. The role of “modular operator” from the Aharonov-Casher effect is played by a large-gauge transformation operator T in four-dimensional QCD, resulting in the transparency of the system to topologically nontrivial pure gauge configurations. We discuss some profound consequences of our findings. In particular, we speculate that a slow variation of the contact term in expanding universe might be the main source of the observed dark energy.

  2. Veneziano amplitudes, spin chains and Abelian reduction of QCD

    NASA Astrophysics Data System (ADS)

    Kholodenko, Arkady

    2009-05-01

    Although QCD can be treated perturbatively in the high energy limit, lower energies require uses of nonperturbative methods such as ADS/CFT and/or Abelian reduction. These methods are not equivalent. While the first is restricted to supersymmetric Yang-Mills model with number of colors going to infinity, the second is not restricted by requirements of supersymmetry and is designed to work in the physically realistic limit of a finite number of colors. In this paper we provide arguments in favor of the Abelian reduction methods. This is achieved by further developing results of our recent works re-analyzing Veneziano and Veneziano-like amplitudes and the models associated with these amplitudes. It is shown, that the obtained new partition function for these amplitudes can be mapped exactly into that for the Polychronakos-Frahm (P-F) spin chain model recoverable from the Richardon-Gaudin (R-G) XXX spin chain model originally designed for treatments of the BCS-type superconductivity. Because of this, it is demonstrated that the obtained mapping is compatible with the method of Abelian reduction. The R-G model is recovered from the asymptotic (WKB-type) solutions of the rational Knizhnik-Zamolodchikov (K-Z) equation. Linear independence of these solutions is controlled by determinants whose explicit form (up to a constant) coincides with Veneziano (or Veneziano-like) amplitudes. In the simplest case, the determinantal conditions coincide with those discovered by Kummer in the 19th century. Kummer's results admit physical interpretation by relating determinantal formula(s) to Veneziano-like amplitudes. Furthermore, these amplitudes can be interpreted as Poisson-Dirichlet distributions playing a central role in the stochastic theory of random coagulation-fragmentation processes. Such an interpretation is complementary to that known for the Lund model widely used for the description of coagulation-fragmentation processes in QCD.

  3. QCD unitarity constraints on Reggeon Field Theory

    NASA Astrophysics Data System (ADS)

    Kovner, Alex; Levin, Eugene; Lublinsky, Michael

    2016-08-01

    We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun's Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a "black disk limit" as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.

  4. QCD subgroup on diffractive and forward physics

    SciTech Connect

    Albrow, M.G.; Baker, W.; Bhatti, A.

    1997-09-01

    Over the last few years, there has been a resurgence of interest in small-x or diffractive physics. This has been due to the realization that perturbative QCD techniques may be applicable to what was previously thought of as a non-perturbative problem and to the opening up of new energy regimes at HERA and the Tevatron collider. The goal is to understand the pomeron, and hence the behavior of total cross sections, elastic scattering and diffractive excitation, in terms of the underlying theory, QCD. This paper is divided into experiments of hadron-hadron colliders and electron-proton colliders.

  5. Experimental Study of Nucleon Structure and QCD

    SciTech Connect

    Jian-Ping Chen

    2012-03-01

    Overview of Experimental Study of Nucleon Structure and QCD, with focus on the spin structure. Nucleon (spin) Structure provides valuable information on QCD dynamics. A decade of experiments from JLab yields these exciting results: (1) valence spin structure, duality; (2) spin sum rules and polarizabilities; (3) precision measurements of g{sub 2} - high-twist; and (4) first neutron transverse spin results - Collins/Sivers/A{sub LT}. There is a bright future as the 12 GeV Upgrade will greatly enhance our capability: (1) Precision determination of the valence quark spin structure flavor separation; and (2) Precision extraction of transversity/tensor charge/TMDs.

  6. Exclusive hadronic and nuclear processes in QCD

    SciTech Connect

    Brodsky, S.J.

    1985-12-01

    Hadronic and nuclear processes are covered, in which all final particles are measured at large invariant masses compared with each other, i.e., large momentum transfer exclusive reactions. Hadronic wave functions in QCD and QCD sum rule constraints on hadron wave functions are discussed. The question of the range of applicability of the factorization formula and perturbation theory for exclusive processes is considered. Some consequences of quark and gluon degrees of freedom in nuclei are discussed which are outside the usual domain of traditional nuclear physics. 44 refs., 7 figs. (LEW)

  7. QCD resummation for hadronic final states

    NASA Astrophysics Data System (ADS)

    Luisoni, Gionata; Marzani, Simone

    2015-10-01

    We review the basic concepts of all-order calculations in quantum chromodynamics (QCD) and their application to collider phenomenology. We start by discussing the factorization properties of QCD amplitudes and cross-sections in the soft and collinear limits and their resulting all-order exponentiation. We then discuss several applications of this formalism to observables which are of great interest at particle colliders. In this context, we describe the all-order resummation of event-shape distributions, as well as observables that probe the internal structure of hadronic jets.

  8. String breaking in four dimensional lattice QCD

    SciTech Connect

    Duncan, A.; Eichten, E.; Thacker, H.

    2001-06-01

    Virtual quark pair screening leads to breaking of the string between fundamental representation quarks in QCD. For unquenched four dimensional lattice QCD, this (so far elusive) phenomenon is studied using the recently developed truncated determinant algorithm (TDA). The dynamical configurations were generated on a 650 MHz PC. Quark eigenmodes up to 420 MeV are included exactly in these TDA studies performed at low quark mass on large coarse [but O(a{sup 2}) improved] lattices. A study of Wilson line correlators in Coulomb gauge extracted from an ensemble of 1000 two-flavor dynamical configurations reveals evidence for flattening of the string tension at distances R{approx}>1 fm.

  9. Light-like Wilson line in QCD without path ordering

    NASA Astrophysics Data System (ADS)

    Nayak, Gouranga C.

    2016-07-01

    Unlike the Wilson line in QED the Wilson line in QCD contains path ordering. In this paper we get rid of the path ordering in the light-like Wilson line in QCD by simplifying all the infinite number of noncommuting terms in the SU(3) pure gauge. We prove that the light-like Wilson line in QCD naturally emerges when path integral formulation of QCD is used to prove factorization of soft and collinear divergences at all order in coupling constant in QCD processes at high energy colliders.

  10. Leading order hadronic contribution to g-2 from twisted mass QCD

    SciTech Connect

    Dru B Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2010-06-01

    We calculate the leading order hadronic contribution to the muon anomalous magnetic moment using twisted mass lattice QCD. The pion masses range from 330 MeV to 650 MeV. We use two lattice spacings, a=0.079 fm and 0.063 fm, to study lattice artifacts. Finite-size effects are studied for two values of the pion mass, and we calculate the disconnected contributions for four ensembles. Particular attention is paid to the dominant contributions of the vector mesons, both phenomenologically and from our lattice calculation.

  11. Axial couplings of heavy hadrons from domain-wall lattice QCD

    SciTech Connect

    W. Detmold, C.J.D. Lin, S. Meinel

    2011-12-01

    We calculate matrix elements of the axial current for static-light mesons and baryons in lattice QCD with dynamical domain wall fermions. We use partially quenched heavy hadron chiral perturbation theory in a finite volume to extract the axial couplings g{sub 1}, g{sub 2}, and g{sub 3} from the data. These axial couplings allow the prediction of strong decay rates and enter chiral extrapolations of most lattice results in the b sector. Our calculations are performed with two lattice spacings and with pion masses down to 227 MeV.

  12. Chiral transition and deconfinement transition in QCD with the highly improved staggered quark (HISQ) action

    SciTech Connect

    Petreczky P.; Bazavov, A.

    2011-10-11

    We report preliminary results on the chiral and deconfinement aspects of the QCD transition at finite temperature using the Highly Improved Staggered Quark (HISQ) action on lattices with temporal extent of N{sub {tau}} = 6 and 8. The chiral aspects of the transition are studied in terms of quark condensates and the disconnected chiral susceptibility. We study the deconfinement transition in terms of the strange quark number susceptibility and the renormalized Polyakov loop. We made continuum estimates for some quantities and find reasonably good agreement between our results and the recent continuum extrapolated results obtained with the stout staggered quark action.

  13. Leading-order hadronic contribution to g-2 from lattice QCD

    SciTech Connect

    Dru Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2011-03-01

    We calculate the leading-order hadronic correction to the anomalous magnetic moments of each of the three charged leptons in the Standard Model: the electron, muon and tau. Working in two-flavor lattice QCD, we address essentially all sources of systematic error: lattice artifacts, finite-size effects, quark-mass extrapolation, momentum extrapolation and disconnected diagrams. The only remaining significant systematic error, the exclusion of the strange and charm quark contributions, will be addressed in our four-flavor calculation. We achieve a statistical accuracy of 2% or better for the physical values for each of the three leptons and the systematic errors are at most comparable.

  14. Transient anomalous charge production in strong-field QCD

    NASA Astrophysics Data System (ADS)

    Tanji, Naoto; Mueller, Niklas; Berges, Jürgen

    2016-04-01

    We investigate axial charge production in two-color QCD out of equilibrium. We compute the real-time evolution starting with spatially homogeneous strong gauge fields, while the fermions are in vacuum. The idealized class of initial conditions is motivated by glasma flux tubes in the context of heavy-ion collisions. We focus on axial charge production at early times, where important aspects of the anomalous dynamics can be derived analytically. This is compared to real-time lattice simulations. Quark production at early times leading to anomalous charge generation is investigated using Wilson fermions. Our results indicate that coherent gauge fields can transiently produce significant amounts of axial charge density, while part of the induced charges persist to be present even well beyond characteristic decoherence times. The comparisons to analytic results provide stringent tests of real-time representations of the axial anomaly on the lattice.

  15. QCD Evolution of Helicity and Transversity TMDs

    SciTech Connect

    Prokudin, Alexei

    2014-01-01

    We examine the QCD evolution of the helicity and transversity parton distribution functions when including also their dependence on transverse momentum. Using an appropriate definition of these polarized transverse momentum distributions (TMDs), we describe their dependence on the factorization scale and rapidity cutoff, which is essential for phenomenological applications.

  16. QCD Physics at the Tevatron Collider

    SciTech Connect

    Messina, Andrea

    2005-10-12

    In this contribution some of the prominent QCD physics results from CDF and D0 experiments in Run II are presented. The cross sections and the properties of jets are discussed for both the inclusive and the b-jet production. Results on the associate production of light and heavy flavour jets together with vector bosons are also reported.

  17. Large Scale Commodity Clusters for Lattice QCD

    SciTech Connect

    A. Pochinsky; W. Akers; R. Brower; J. Chen; P. Dreher; R. Edwards; S. Gottlieb; D. Holmgren; P. Mackenzie; J. Negele; D. Richards; J. Simone; W. Watson

    2002-06-01

    We describe the construction of large scale clusters for lattice QCD computing being developed under the umbrella of the U.S. DoE SciDAC initiative. We discuss the study of floating point and network performance that drove the design of the cluster, and present our plans for future multi-Terascale facilities.

  18. BRST invariance in Coulomb gauge QCD

    NASA Astrophysics Data System (ADS)

    Andraši, A.; Taylor, J. C.

    2015-12-01

    In the Coulomb gauge, the Hamiltonian of QCD contains terms of order ħ2, identified by Christ and Lee, which are non-local but instantaneous. The question is addressed how do these terms fit in with BRST invariance. Our discussion is confined to the simplest, O(g4) , example.

  19. Toward lattice QCD simulation on AP1000

    NASA Astrophysics Data System (ADS)

    Ohta, Shigemi

    AP1000 is Fujitsu Laboratory's experimental parallel computer consisting of up to 1024 microcomputers called cells. It is found that each AP1000 cell can sustain two to three megaflops computational speed for full QCD lattice numerical simulations in IEEE 64-bit floating point format

  20. QCD PHASE TRANSITIONS-VOLUME 15.

    SciTech Connect

    SCHAFER,T.

    1998-11-04

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some. efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.