Science.gov

Sample records for finite difference lattice

  1. Finite-difference lattice-Boltzmann methods for binary fluids.

    PubMed

    Xu, Aiguo

    2005-06-01

    We investigate two-fluid Bhatnagar-Gross-Krook (BGK) kinetic methods for binary fluids. The developed theory works for asymmetric as well as symmetric systems. For symmetric systems it recovers Sirovich's theory and is summarized in models A and B. For asymmetric systems it contributes models C, D, and E which are especially useful when the total masses and/or local temperatures of the two components are greatly different. The kinetic models are discretized based on an octagonal discrete velocity model. The discrete-velocity kinetic models and the continuous ones are required to describe the same hydrodynamic equations. The combination of a discrete-velocity kinetic model and an appropriate finite-difference scheme composes a finite-difference lattice Boltzmann method. The validity of the formulated methods is verified by investigating (i) uniform relaxation processes, (ii) isothermal Couette flow, and (iii) diffusion behavior. PMID:16089910

  2. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.

    PubMed

    Liu, Haihu; Valocchi, Albert J; Zhang, Yonghao; Kang, Qinjun

    2013-01-01

    A phase-field-based hybrid model that combines the lattice Boltzmann method with the finite difference method is proposed for simulating immiscible thermocapillary flows with variable fluid-property ratios. Using a phase field methodology, an interfacial force formula is analytically derived to model the interfacial tension force and the Marangoni stress. We present an improved lattice Boltzmann equation (LBE) method to capture the interface between different phases and solve the pressure and velocity fields, which can recover the correct Cahn-Hilliard equation (CHE) and Navier-Stokes equations. The LBE method allows not only use of variable mobility in the CHE, but also simulation of multiphase flows with high density ratio because a stable discretization scheme is used for calculating the derivative terms in forcing terms. An additional convection-diffusion equation is solved by the finite difference method for spatial discretization and the Runge-Kutta method for time marching to obtain the temperature field, which is coupled to the interfacial tension through an equation of state. The model is first validated against analytical solutions for the thermocapillary driven convection in two superimposed fluids at negligibly small Reynolds and Marangoni numbers. It is then used to simulate thermocapillary migration of a three-dimensional deformable droplet and bubble at various Marangoni numbers and density ratios, and satisfactory agreement is obtained between numerical results and theoretical predictions. PMID:23410429

  3. Finite-difference lattice Boltzmann simulation on acoustics-induced particle deposition

    NASA Astrophysics Data System (ADS)

    Fu, Sau-Chung; Yuen, Wai-Tung; Wu, Chili; Chao, Christopher Yu-Hang

    2015-10-01

    Particle manipulation by acoustics has been investigated for many years. By a proper design, particle deposition can be induced by the same principle. The use of acoustics can potentially be developed into an energy-efficient technique for particle removal or filtration system as the pressure drop due to acoustic effects is low and the flow velocity is not necessary to be high. Two nonlinear acoustic effects, acoustic streaming and acoustic radiation pressure, are important. Acoustic streaming introduces vortices and stagnation points on the surface of an air duct and removes the particles by deposition. Acoustic radiation pressure causes particles to form agglomerates and enhances inertial impaction and/or gravitational sedimentation. The objective of this paper is to develop a numerical model to investigate the particle deposition induced by acoustic effects. A three-step approach is adopted and lattice Boltzamnn technique is employed as the numerical method. This is because the lattice Boltzmann equation is hyperbolic and can be solved locally, explicitly, and efficiently on parallel computers. In the first step, the acoustic field and its mean square fluctuation values are calculated. Due to the advantage of the lattice Boltzmann technique, a simple, stable and fast lattice Boltzmann method is proposed and verified. The result of the first step is input into the second step to solve for acoustic streaming. Another finite difference lattice Boltzmann method, which has been validated by a number of flows and benchmark cases in the literature, is used. The third step consists in tracking the particle's motion by a Lagrangian approach where the acoustic radiation pressure is considered. The influence of the acoustics effects on particle deposition is explained. The numerical result matches with an experiment. The model is a useful tool for optimizing the design and helps to further develop the technique.

  4. Stochastic finite difference lattice Boltzmann method for steady incompressible viscous flows

    SciTech Connect

    Fu, S.C.; So, R.M.C.; Leung, W.W.F.

    2010-08-20

    With the advent of state-of-the-art computers and their rapid availability, the time is ripe for the development of efficient uncertainty quantification (UQ) methods to reduce the complexity of numerical models used to simulate complicated systems with incomplete knowledge and data. The spectral stochastic finite element method (SSFEM) which is one of the widely used UQ methods, regards uncertainty as generating a new dimension and the solution as dependent on this dimension. A convergent expansion along the new dimension is then sought in terms of the polynomial chaos system, and the coefficients in this representation are determined through a Galerkin approach. This approach provides an accurate representation even when only a small number of terms are used in the spectral expansion; consequently, saving in computational resource can be realized compared to the Monte Carlo (MC) scheme. Recent development of a finite difference lattice Boltzmann method (FDLBM) that provides a convenient algorithm for setting the boundary condition allows the flow of Newtonian and non-Newtonian fluids, with and without external body forces to be simulated with ease. Also, the inherent compressibility effect in the conventional lattice Boltzmann method, which might produce significant errors in some incompressible flow simulations, is eliminated. As such, the FDLBM together with an efficient UQ method can be used to treat incompressible flows with built in uncertainty, such as blood flow in stenosed arteries. The objective of this paper is to develop a stochastic numerical solver for steady incompressible viscous flows by combining the FDLBM with a SSFEM. Validation against MC solutions of channel/Couette, driven cavity, and sudden expansion flows are carried out.

  5. Hybrid Lattice Boltzmann/Finite Difference simulations of viscoelastic multicomponent flows in confined geometries

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Sbragaglia, M.; Scagliarini, A.

    2015-06-01

    We propose numerical simulations of viscoelastic fluids based on a hybrid algorithm combining Lattice-Boltzmann models (LBM) and Finite Differences (FD) schemes, the former used to model the macroscopic hydrodynamic equations, and the latter used to model the polymer dynamics. The kinetics of the polymers is introduced using constitutive equations for viscoelastic fluids with finitely extensible non-linear elastic dumbbells with Peterlin's closure (FENE-P). The numerical model is first benchmarked by characterizing the rheological behavior of dilute homogeneous solutions in various configurations, including steady shear, elongational flows, transient shear and oscillatory flows. As an upgrade of complexity, we study the model in presence of non-ideal multicomponent interfaces, where immiscibility is introduced in the LBM description using the "Shan-Chen" interaction model. The problem of a confined viscoelastic (Newtonian) droplet in a Newtonian (viscoelastic) matrix under simple shear is investigated and numerical results are compared with the predictions of various theoretical models. The proposed numerical simulations explore problems where the capabilities of LBM were never quantified before.

  6. High-accuracy approximation of high-rank derivatives: isotropic finite differences based on lattice-Boltzmann stencils.

    PubMed

    Mattila, Keijo Kalervo; Hegele Júnior, Luiz Adolfo; Philippi, Paulo Cesar

    2014-01-01

    We propose isotropic finite differences for high-accuracy approximation of high-rank derivatives. These finite differences are based on direct application of lattice-Boltzmann stencils. The presented finite-difference expressions are valid in any dimension, particularly in two and three dimensions, and any lattice-Boltzmann stencil isotropic enough can be utilized. A theoretical basis for the proposed utilization of lattice-Boltzmann stencils in the approximation of high-rank derivatives is established. In particular, the isotropy and accuracy properties of the proposed approximations are derived directly from this basis. Furthermore, in this formal development, we extend the theory of Hermite polynomial tensors in the case of discrete spaces and present expressions for the discrete inner products between monomials and Hermite polynomial tensors. In addition, we prove an equivalency between two approaches for constructing lattice-Boltzmann stencils. For the numerical verification of the presented finite differences, we introduce 5th-, 6th-, and 8th-order two-dimensional lattice-Boltzmann stencils. PMID:24688360

  7. High-Accuracy Approximation of High-Rank Derivatives: Isotropic Finite Differences Based on Lattice-Boltzmann Stencils

    PubMed Central

    Mattila, Keijo Kalervo; Hegele Júnior, Luiz Adolfo; Philippi, Paulo Cesar

    2014-01-01

    We propose isotropic finite differences for high-accuracy approximation of high-rank derivatives. These finite differences are based on direct application of lattice-Boltzmann stencils. The presented finite-difference expressions are valid in any dimension, particularly in two and three dimensions, and any lattice-Boltzmann stencil isotropic enough can be utilized. A theoretical basis for the proposed utilization of lattice-Boltzmann stencils in the approximation of high-rank derivatives is established. In particular, the isotropy and accuracy properties of the proposed approximations are derived directly from this basis. Furthermore, in this formal development, we extend the theory of Hermite polynomial tensors in the case of discrete spaces and present expressions for the discrete inner products between monomials and Hermite polynomial tensors. In addition, we prove an equivalency between two approaches for constructing lattice-Boltzmann stencils. For the numerical verification of the presented finite differences, we introduce 5th-, 6th-, and 8th-order two-dimensional lattice-Boltzmann stencils. PMID:24688360

  8. Hybrid lattice-Boltzmann and finite-difference simulation of electroosmotic flow in a microchannel

    NASA Astrophysics Data System (ADS)

    Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Rüde, Ulrich

    2011-04-01

    A three-dimensional (3D) transient mathematical model is developed to simulate electroosmotic flows (EOFs) in a homogeneous, square cross-section microchannel, with and without considering the effects of axial pressure gradients. The general governing equations for electroosmotic transport are incompressible Navier-Stokes equations for fluid flow and the nonlinear Poisson-Boltzmann (PB) equation for electric potential distribution within the channel. In the present numerical approach, the hydrodynamic equations are solved using a lattice-Boltzmann (LB) algorithm and the PB equation is solved using a finite-difference (FD) method. The hybrid LB-FD numerical scheme is implemented on an iterative framework solving the system of coupled time-dependent partial differential equations subjected to the pertinent boundary conditions. Transient behavior of the EOF and effects due to the variations of different physicochemical parameters on the electroosmotic velocity profile are investigated. Transport characteristics for the case of combined electroosmotic- and pressure-driven microflows are also examined with the present model. For the sake of comparison, the cases of both favorable and adverse pressure gradients are considered. EOF behaviors of the non-Newtonian fluid are studied through implementation of the power-law model in the 3D LB algorithm devised for the fluid flow analysis. Numerical simulations reveal that the rheological characteristic of the fluid changes the EOF pattern to a considerable extent and can have significant consequences in the design of electroosmotically actuated bio-microfluidic systems. To improve the performance of the numerical solver, the proposed algorithm is implemented for parallel computing architectures and the overall parallel performance is found to improve with the number of processors.

  9. LATTICE QCD AT FINITE DENSITY.

    SciTech Connect

    SCHMIDT, C.

    2006-07-23

    I discuss different approaches to finite density lattice QCD. In particular, I focus on the structure of the phase diagram and discuss attempts to determine the location of the critical end-point. Recent results on the transition line as function of the chemical potential (T{sub c}({mu}{sub q})) are reviewed. Along the transition line, hadronic fluctuations have been calculated; which can be used to characterize properties of the Quark Gluon plasma and eventually can also help to identify the location of the critical end-point in the QCD phase diagram on the lattice and in heavy ion experiments. Furthermore, I comment on the structure of the phase diagram at large {mu}{sub q}.

  10. LATTICE QCD AT FINITE TEMPERATURE AND DENSITY.

    SciTech Connect

    BLUM,T.; CREUTZ,M.; PETRECZKY,P.

    2004-02-24

    With the operation of the RHIC heavy ion program, the theoretical understanding of QCD at finite temperature and density has become increasingly important. Though QCD at finite temperature has been extensively studied using lattice Monte-Carlo simulations over the past twenty years, most physical questions relevant for RHIC (and future) heavy ion experiments remain open. In lattice QCD at finite temperature and density there have been at least two major advances in recent years. First, for the first time calculations of real time quantities, like meson spectral functions have become available. Second, the lattice study of the QCD phase diagram and equation of state have been extended to finite baryon density by several groups. Both issues were extensively discussed in the course of the workshop. A real highlight was the study of the QCD phase diagram in (T, {mu})-plane by Z. Fodor and S. Katz and the determination of the critical end-point for the physical value of the pion mass. This was the first time such lattice calculations at, the physical pion mass have been performed. Results by Z Fodor and S. Katz were obtained using a multi-parameter re-weighting method. Other determinations of the critical end point were also presented, in particular using a Taylor expansion around {mu} = 0 (Bielefeld group, Ejiri et al.) and using analytic continuation from imaginary chemical potential (Ph. de Forcrand and O. Philipsen). The result based on Taylor expansion agrees within errors with the new prediction of Z. Fodor and S. Katz, while methods based on analytic continuation still predict a higher value for the critical baryon density. Most of the thermodynamics studies in full QCD (including those presented at this workshop) have been performed using quite coarse lattices, a = 0.2-0.3 fm. Therefore one may worry about cutoff effects in different thermodynamic quantities, like the transition temperature T{sub tr}. At the workshop U. Heller presented a study of the transition

  11. Finite-Temperature Gauge Theory from the Transverse Lattice

    SciTech Connect

    Dalley, S.; Sande, B. van de

    2005-10-14

    Numerical computations are performed and analytic bounds are obtained on the excited spectrum of glueballs in SU({infinity}) gauge theory, by transverse lattice Hamiltonian methods. We find an exponential growth of the density of states, implying a finite critical (Hagedorn) temperature. It is argued that the Nambu-Goto string model lies in a different universality class.

  12. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method.

    PubMed

    Hejranfar, Kazem; Ezzatneshan, Eslam

    2015-11-01

    A high-order compact finite-difference lattice Boltzmann method (CFDLBM) is extended and applied to accurately simulate two-phase liquid-vapor flows with high density ratios. Herein, the He-Shan-Doolen-type lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting equations are discretized by using the fourth-order compact finite-difference scheme and the temporal term is discretized with the fourth-order Runge-Kutta scheme to provide an accurate and efficient two-phase flow solver. A high-order spectral-type low-pass compact nonlinear filter is used to regularize the numerical solution and remove spurious waves generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations in the interfacial region between the two phases. Three discontinuity-detecting sensors for properly switching between a second-order and a higher-order filter are applied and assessed. It is shown that the filtering technique used can be conveniently adopted to reduce the spurious numerical effects and improve the numerical stability of the CFDLBM implemented. A sensitivity study is also conducted to evaluate the effects of grid size and the filtering procedure implemented on the accuracy and performance of the solution. The accuracy and efficiency of the proposed solution procedure based on the compact finite-difference LBM are examined by solving different two-phase systems. Five test cases considered herein for validating the results of the two-phase flows are an equilibrium state of a planar interface in a liquid-vapor system, a droplet suspended in the gaseous phase, a liquid droplet located between two parallel wettable surfaces, the coalescence of two droplets, and a phase separation in a liquid-vapor system at different conditions. Numerical results are also presented for the coexistence curve and the verification of the Laplace law. Results obtained are in good agreement with the analytical solutions and also

  13. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Hejranfar, Kazem; Ezzatneshan, Eslam

    2015-11-01

    A high-order compact finite-difference lattice Boltzmann method (CFDLBM) is extended and applied to accurately simulate two-phase liquid-vapor flows with high density ratios. Herein, the He-Shan-Doolen-type lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting equations are discretized by using the fourth-order compact finite-difference scheme and the temporal term is discretized with the fourth-order Runge-Kutta scheme to provide an accurate and efficient two-phase flow solver. A high-order spectral-type low-pass compact nonlinear filter is used to regularize the numerical solution and remove spurious waves generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations in the interfacial region between the two phases. Three discontinuity-detecting sensors for properly switching between a second-order and a higher-order filter are applied and assessed. It is shown that the filtering technique used can be conveniently adopted to reduce the spurious numerical effects and improve the numerical stability of the CFDLBM implemented. A sensitivity study is also conducted to evaluate the effects of grid size and the filtering procedure implemented on the accuracy and performance of the solution. The accuracy and efficiency of the proposed solution procedure based on the compact finite-difference LBM are examined by solving different two-phase systems. Five test cases considered herein for validating the results of the two-phase flows are an equilibrium state of a planar interface in a liquid-vapor system, a droplet suspended in the gaseous phase, a liquid droplet located between two parallel wettable surfaces, the coalescence of two droplets, and a phase separation in a liquid-vapor system at different conditions. Numerical results are also presented for the coexistence curve and the verification of the Laplace law. Results obtained are in good agreement with the analytical solutions and also

  14. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  15. Recent progress in lattice QCD at finite temperature

    SciTech Connect

    Petreczky,P.

    2009-02-01

    I review recent progress in finite temperature lattice calculations,including the study of the nature of the deconfinement transition in QCD, equation of state, screening of static quarks and meson spectral functions.

  16. Nonstandard finite difference schemes

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.

    1995-01-01

    The major research activities of this proposal center on the construction and analysis of nonstandard finite-difference schemes for ordinary and partial differential equations. In particular, we investigate schemes that either have zero truncation errors (exact schemes) or possess other significant features of importance for numerical integration. Our eventual goal is to bring these methods to bear on problems that arise in the modeling of various physical, engineering, and technological systems. At present, these efforts are extended in the direction of understanding the exact nature of these nonstandard procedures and extending their use to more complicated model equations. Our presentation will give a listing (obtained to date) of the nonstandard rules, their application to a number of linear and nonlinear, ordinary and partial differential equations. In certain cases, numerical results will be presented.

  17. Finite-lattice form factors in free-fermion models

    NASA Astrophysics Data System (ADS)

    Iorgov, N.; Lisovyy, O.

    2011-04-01

    We consider the general {Z}_2 -symmetric free-fermion model on the finite periodic lattice, which includes as special cases the Ising model on the square and triangular lattices and the {Z}_n -symmetric BBS τ(2)-model with n = 2. Translating Kaufman's fermionic approach to diagonalization of Ising-like transfer matrices into the language of Grassmann integrals, we determine the transfer matrix eigenvectors and observe that they coincide with the eigenvectors of a square lattice Ising transfer matrix. This allows us to find exact finite-lattice form factors of spin operators for the statistical model and the associated finite-length quantum chains, of which the most general is equivalent to the XY chain in a transverse field.

  18. Mimetic finite difference method

    NASA Astrophysics Data System (ADS)

    Lipnikov, Konstantin; Manzini, Gianmarco; Shashkov, Mikhail

    2014-01-01

    The mimetic finite difference (MFD) method mimics fundamental properties of mathematical and physical systems including conservation laws, symmetry and positivity of solutions, duality and self-adjointness of differential operators, and exact mathematical identities of the vector and tensor calculus. This article is the first comprehensive review of the 50-year long history of the mimetic methodology and describes in a systematic way the major mimetic ideas and their relevance to academic and real-life problems. The supporting applications include diffusion, electromagnetics, fluid flow, and Lagrangian hydrodynamics problems. The article provides enough details to build various discrete operators on unstructured polygonal and polyhedral meshes and summarizes the major convergence results for the mimetic approximations. Most of these theoretical results, which are presented here as lemmas, propositions and theorems, are either original or an extension of existing results to a more general formulation using polyhedral meshes. Finally, flexibility and extensibility of the mimetic methodology are shown by deriving higher-order approximations, enforcing discrete maximum principles for diffusion problems, and ensuring the numerical stability for saddle-point systems.

  19. Phase transition in finite density and temperature lattice QCD

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Chen, Ying; Gong, Ming; Liu, Chuan; Liu, Yu-Bin; Liu, Zhao-Feng; Ma, Jian-Ping; Meng, Xiang-Fei; Zhang, Jian-Bo

    2015-06-01

    We investigate the behavior of the chiral condensate in lattice QCD at finite temperature and finite chemical potential. The study was done using two flavors of light quarks and with a series of β and ma at the lattice size 24 × 122 × 6. The calculation was done in the Taylor expansion formalism. We are able to calculate the first and second order derivatives of ≤ft< {\\bar{\\psi} \\psi } \\right> in both isoscalar and isovector channels. With the first derivatives being small, we find that the second derivatives are sizable close to the phase transition and that the magnitude of \\bar{\\psi} \\psi decreases under the influence of finite chemical potential in both channels. Supported by National Natural Science Foundation of China (11335001, 11105153, 11405178), Projects of International Cooperation and Exchanges NSFC (11261130311)

  20. Tensor network algorithm by coarse-graining tensor renormalization on finite periodic lattices

    NASA Astrophysics Data System (ADS)

    Zhao, Hui-Hai; Xie, Zhi-Yuan; Xiang, Tao; Imada, Masatoshi

    2016-03-01

    We develop coarse-graining tensor renormalization group algorithms to compute physical properties of two-dimensional lattice models on finite periodic lattices. Two different coarse-graining strategies, one based on the tensor renormalization group and the other based on the higher-order tensor renormalization group, are introduced. In order to optimize the tensor network model globally, a sweeping scheme is proposed to account for the renormalization effect from the environment tensors under the framework of second renormalization group. We demonstrate the algorithms by the classical Ising model on the square lattice and the Kitaev model on the honeycomb lattice, and show that the finite-size algorithms achieve substantially more accurate results than the corresponding infinite-size ones.

  1. Exponential Finite-Difference Technique

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1989-01-01

    Report discusses use of explicit exponential finite-difference technique to solve various diffusion-type partial differential equations. Study extends technique to transient-heat-transfer problems in one dimensional cylindrical coordinates and two and three dimensional Cartesian coordinates and to some nonlinear problems in one or two Cartesian coordinates.

  2. Reducing finite lattice spacing errors for staggered fermions

    NASA Astrophysics Data System (ADS)

    Luo, Yubing

    1998-12-01

    In this thesis we study on-shell-improved lattice QCD with staggered fermions using Symanzik's improvement program. We present a complete and detailed discussion of the finite lattice spacing corrections to staggered fermion matrix elements. Expanding upon arguments of Sharpe, we explicitly implement the Symanzik improvement program demonstrating the absence of order a terms in the on-shell-improved action. We propose a general program to improve fermion operators to remove all O(a) corrections from their matrix elements, and demonstrate this program for the examples of matrix elements of fermion bilinears and BK. We find the former does have O(a) corrections while the latter does not. Also, we give an explicit form of lattice currents which are accurate to order a2 at the tree-level. Furthermore, we find that there are as many as 15 independent lattice operators of dimension-6 (including both gauge and fermion operators) which must be added to the unimproved action to form an O(a2)-improved action. Among them, the total number of dimension-6 gauge operators and fermion bilinears is 5. The other ten terms are four- fermion operators. At the tree level and tadpole-improved tree level, all ten four-fermion operators are absent.

  3. Finite element and finite difference methods in electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Morgan, Michael A.

    Finite-difference and finite-element methods for the computational analysis of EM scattering phenomena are examined in chapters contributed by leading experts. Topics addressed include an FEM for composite scatterers, coupled finite- and boundary-element methods for EM scattering, absorbing boundary conditions for the direct solution PDEs arising in EM scattering problems, application of the control-region approximation to two-dimensional EM scattering, coupled potentials for EM fields in inhomogeneous media, the method of conforming boundary elements for transient electromagnetics, and the finite-difference time-domain method for numerical modeling of EM wave interactions with arbitrary structures. Extensive diagrams and graphs of typical results are provided.

  4. Finite size effects on the helical edge states on the Lieb lattice

    NASA Astrophysics Data System (ADS)

    Rui, Chen; Bin, Zhou

    2016-06-01

    For a two-dimensional Lieb lattice, that is, a line-centered square lattice, the inclusion of the intrinsic spin–orbit (ISO) coupling opens a topologically nontrivial gap, and gives rise to the quantum spin Hall (QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap. Generally, due to the finite size effect in QSH systems, the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum. In this paper, we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions, i.e., the straight, bearded and asymmetry edges. The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice. For a strip Lieb lattice with two straight edges, the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum. Moreover, it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice, and no gap is opened in the edge band. It is concluded that the finite size effect of QSH states is absent in the case with the straight edges. However, in the other two cases with the bearded and asymmetry edges, the energy gap induced by the finite size effect is still opened with decreasing the width of the strip. It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms. Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of the Higher Education of China (Grant No. 20134208110001).

  5. Magnetic susceptibility of QCD at zero and at finite temperature from the lattice

    NASA Astrophysics Data System (ADS)

    Bali, G. S.; Bruckmann, F.; Constantinou, M.; Costa, M.; Endrődi, G.; Katz, S. D.; Panagopoulos, H.; Schäfer, A.

    2012-11-01

    The response of the QCD vacuum to a constant external (electro)magnetic field is studied through the tensor polarization of the chiral condensate and the magnetic susceptibility at zero and at finite temperature. We determine these quantities using lattice configurations generated with the tree-level Symanzik improved gauge action and Nf=1+1+1 flavors of stout smeared staggered quarks with physical masses. We carry out the renormalization of the observables under study and perform the continuum limit both at T>0 and at T=0, using different lattice spacings. Finite size effects are studied by using various spatial lattice volumes. The magnetic susceptibilities χf reveal a spin-diamagnetic behavior; we obtain at zero temperature χu=-(2.08±0.08)GeV-2, χd=-(2.02±0.09)GeV-2 and χs=-(3.4±1.4)GeV-2 for the up, down and strange quarks, respectively, in the MS¯ scheme at a renormalization scale of 2 GeV. We also find the polarization to change smoothly with the temperature in the confinement phase and then to drastically reduce around the transition region.

  6. REMARKS ON THE MAXIMUM ENTROPY METHOD APPLIED TO FINITE TEMPERATURE LATTICE QCD.

    SciTech Connect

    UMEDA, T.; MATSUFURU, H.

    2005-07-25

    We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.

  7. Diquark mass differences from unquenched lattice QCD

    NASA Astrophysics Data System (ADS)

    Bi, Yujiang; Cai, Hao; Chen, Ying; Gong, Ming; Liu, Zhaofeng; Qiao, Hao-Xue; Yang, Yi-Bo

    2016-07-01

    We calculate diquark correlation functions in the Landau gauge on the lattice using overlap valence quarks and 2+1-flavor domain wall fermion configurations. Quark masses are extracted from the scalar part of quark propagators in the Landau gauge. The scalar diquark quark mass difference and axial vector scalar diquark mass difference are obtained for diquarks composed of two light quarks and of a strange and a light quark. The light sea quark mass dependence of the results is examined. Two lattice spacings are used to check the discretization effects. The coarse and fine lattices are of sizes 243 × 64 and 323 × 64 with inverse spacings 1/a = 1.75(4) GeV and 2.33(5) GeV, respectively. Supported by National Science Foundation of China (11575197, 10835002, 11405178, 11335001), joint funds of NSFC (U1232109), MG and ZL are partially supported by the Youth Innovation Promotion Association of CAS (2015013, 2011013), YC and ZL acknowledge support of NSFC and DFG (CRC110)

  8. Lattice Boltzmann simulations of liquid crystal particulate flow in a channel with finite anchoring boundary conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Roberts, Tyler; de Pablo, Juan; dePablo Team

    2014-11-01

    Liquid crystals (LC) posses anisotropic viscoelastic properties, and, as such, LC flow can be incredibly complicated. Here we employ a hybrid lattice Boltzmann method (pioneered by Deniston, Yeomans and Cates) to systematically study the hydrodynamics of nematic liquid crystals (LCs) with and without solid particles. This method evolves the velocity field through lattice Boltzmann and the LC-order parameter via a finite-difference solver of the Beris-Edwards equation. The evolution equation of the boundary points with finite anchoring is obtained through Poisson bracket formulation. Our method has been validated by matching the Ericksen-Leslie theory. We demonstrate two applications in the flow alignment regime. We first investigate a hybrid channel flow in which the top and bottom walls have different anchoring directions. By measuring the apparent shear viscosity in terms of Couette flow, we achieve a viscosity inhomogeneous system which may be applicable to nano particle processing. In the other example, we introduce a homeotropic spherical particle to the channel, and focus on the deformations of the defect ring due to anchorings and flow. The results are then compared to the molecular dynamics simulations of a colloid particle in an LC modeled by a Gay-Berne potential.

  9. Weighted Random Mixing and Exact Finite Lattice Descriptions of Molecular Aggregation Equilibria

    NASA Astrophysics Data System (ADS)

    Ben-Amotz, Dor

    2014-03-01

    Entropic and energetic contributions to a broad class of molecular aggregation and self-assembly processes are described by performing a mean field Boltzmann average over aggregate size distributions pertaining to an idealized random mixture. Predictions obtained using the resulting weighted random mixing (WRM) model are compared with exact finite lattice and fluid molecular dynamics simulation results for systems in which each aggregate resembles a central molecule with multiple ligand binding sites. Good agreement between the exact and WRM results is found for systems with interaction energies of various magnitudes (and signs), both in the large and small cohesive interaction energy regimes (or at low and high temperature, respectively). The latter two regimes are separated by a critical point on either side of which qualitatively different aggregation behavior is predicted and observed. More specifically, both the WRM model and exact finite lattice aggregation results reveal that when half the ligand binding sites are filled, the corresponding aggregate size distributions are bimodal below and unimodal above the corresponding critical temperature, whose value depends on the ligand-ligand interaction energy, but is independent of the binding energy of each ligand to the central molecule. This work was carried out in collaboration with Blake M. Rankin and B. Widom (at Cornell University), and was supported by NSF Grant Number CHE-1213338.

  10. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.

  11. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    The current and future potential of finite difference methods for solving real rotor problems which now rely largely on empiricism are demonstrated. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advanced-ratio flight. Comparisons are made with experimental pressure data.

  12. Finite Volume Dependence of Hadron Properties and Lattice QCD

    SciTech Connect

    Anthony W. Thomas; Jonathan D. Ashley; Derek B. Leinweber; Ross D. Young

    2005-02-01

    Because the time needed for a simulation in lattice QCD varies at a rate exceeding the fourth power of the lattice size, it is important to understand how small one can make a lattice without altering the physics beyond recognition. It is common to use a rule of thumb that the pion mass times the lattice size should be greater than (ideally much greater than) four (i.e., m{sub {pi}} L >> 4). By considering a relatively simple chiral quark model we are led to suggest that a more realistic constraint would be m{sub {pi}} (L - 2R) >> 4, where R is the radius of the confinement region, which for these purposes could be taken to be around 0.8-1.0 fm. Within the model we demonstrate that violating the second condition can lead to unphysical behavior of hadronic properties as a function of pion mass. In particular, the axial charge of the nucleon is found to decrease quite rapidly as the chiral limit is approached.

  13. Exact dynamics of finite Glauber-Fock photonic lattices

    SciTech Connect

    Rodriguez-Lara, B. M.

    2011-11-15

    The dynamics of Glauber-Fock lattice of size N is given through exact diagonalization of the corresponding Hamiltonian; the spectra {l_brace}{lambda}{sub k}{r_brace} is given as the roots of the Nth Hermite polynomial, H{sub N}({lambda}{sub k}/{radical}(2))=0, and the eigenstates are given in terms of Hermite polynomials evaluated at these roots. The exact dynamics is used to study coherent phenomena in discrete lattices. Due to the symmetry and spacing of the eigenvalues {l_brace}{lambda}{sub k}{r_brace}, oscillatory behavior is predicted with highly localized spectra, that is, near complete revivals of the photon number and partial recovery of the initial state at given waveguides.

  14. Infrared features of unquenched finite temperature lattice Landau gauge QCD

    SciTech Connect

    Furui, Sadataka; Nakajima, Hideo

    2007-09-01

    The color diagonal and color antisymmetric ghost propagators slightly above T{sub c} of N{sub f}=2 MILC 24{sup 3}x12 lattices are measured and compared with zero-temperature unquenched N{sub f}=2+1 MILC{sub c} 20{sup 3}x64 and MILC{sub f} 28{sup 3}x96 lattices and zero-temperature quenched 56{sup 4} {beta}=6.4 and 6.45 lattices. The expectation value of the color antisymmetric ghost propagator {phi}{sup c}(q) is zero, but its Binder cumulant, which is consistent with that of N{sub c}{sup 2}-1 dimensional Gaussian distribution below T{sub c}, decreases above T{sub c}. Although the color diagonal ghost propagator is temperature independent, the l{sup 1} norm of the color antisymmetric ghost propagator is temperature dependent. The expectation value of the ghost condensate observed at zero-temperature unquenched configuration is consistent with 0 in T>T{sub c}. We also measure transverse, magnetic, and electric gluon propagator and extract gluon screening masses. The running coupling measured from the product of the gluon dressing function and the ghost dressing function are almost temperature independent, but the effect of A{sup 2} condensate observed at zero temperature is consistent with 0 in T>T{sub c}. The transverse gluon dressing function at low temperature has a peak in the infrared at low temperature, but it becomes flatter at high temperature. The magnetic gluon propagator at high momentum depends on the temperature. These data imply that the magnetic gluon propagator and the color antisymmetric ghost propagator are affected by the presence of dynamical quarks, and there are strong nonperturbative effects through the temperature-dependent color antisymmetric ghost propagator.

  15. Numerical computation of transonic flows by finite-element and finite-difference methods

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  16. Finite-difference modelling of wavefield constituents

    NASA Astrophysics Data System (ADS)

    Robertsson, Johan O. A.; van Manen, Dirk-Jan; Schmelzbach, Cedric; Van Renterghem, Cederic; Amundsen, Lasse

    2015-11-01

    The finite-difference method is among the most popular methods for modelling seismic wave propagation. Although the method has enjoyed huge success for its ability to produce full wavefield seismograms in complex models, it has one major limitation which is of critical importance for many modelling applications; to naturally output up- and downgoing and P- and S-wave constituents of synthesized seismograms. In this paper, we show how such wavefield constituents can be isolated in finite-difference-computed synthetics in complex models with high numerical precision by means of a simple algorithm. The description focuses on up- and downgoing and P- and S-wave separation of data generated using an isotropic elastic finite-difference modelling method. However, the same principles can also be applied to acoustic, electromagnetic and other wave equations.

  17. Application of finite element, global polynomial, and kriging response surfaces in Progressive Lattice Sampling designs

    SciTech Connect

    ROMERO,VICENTE J.; SWILER,LAURA PAINTON; GIUNTA,ANTHONY A.

    2000-04-25

    This paper examines the modeling accuracy of finite element interpolation, kriging, and polynomial regression used in conjunction with the Progressive Lattice Sampling (PLS) incremental design-of-experiments approach. PLS is a paradigm for sampling a deterministic hypercubic parameter space by placing and incrementally adding samples in a manner intended to maximally reduce lack of knowledge in the parameter space. When combined with suitable interpolation methods, PLS is a formulation for progressive construction of response surface approximations (RSA) in which the RSA are efficiently upgradable, and upon upgrading, offer convergence information essential in estimating error introduced by the use of RSA in the problem. The three interpolation methods tried here are examined for performance in replicating an analytic test function as measured by several different indicators. The process described here provides a framework for future studies using other interpolation schemes, test functions, and measures of approximation quality.

  18. Applications of an exponential finite difference technique

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Keith, Theo G., Jr.

    1988-01-01

    An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.

  19. Percolation of randomly distributed growing clusters: Finite-size scaling and critical exponents for the square lattice

    NASA Astrophysics Data System (ADS)

    Tsakiris, N.; Maragakis, M.; Kosmidis, K.; Argyrakis, P.

    2010-10-01

    We study the percolation properties of the growing clusters model on a 2D square lattice. In this model, a number of seeds placed on random locations on the lattice are allowed to grow with a constant velocity to form clusters. When two or more clusters eventually touch each other they immediately stop their growth. The model exhibits a discontinuous transition for very low values of the seed concentration p and a second, nontrivial continuous phase transition for intermediate p values. Here we study in detail this continuous transition that separates a phase of finite clusters from a phase characterized by the presence of a giant component. Using finite size scaling and large scale Monte Carlo simulations we determine the value of the percolation threshold where the giant component first appears, and the critical exponents that characterize the transition. We find that the transition belongs to a different universality class from the standard percolation transition.

  20. On the wavelet optimized finite difference method

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1994-01-01

    When one considers the effect in the physical space, Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small scale structure exists. Adding a wavelet basis function at a given scale and location where one has a correspondingly large wavelet coefficient is, essentially, equivalent to adding a grid point, or two, at the same location and at a grid density which corresponds to the wavelet scale. This paper introduces a wavelet optimized finite difference method which is equivalent to a wavelet method in its multiresolution approach but which does not suffer from difficulties with nonlinear terms and boundary conditions, since all calculations are done in the physical space. With this method one can obtain an arbitrarily good approximation to a conservative difference method for solving nonlinear conservation laws.

  1. Finite-difference migration to zero offset

    SciTech Connect

    Li, Jianchao

    1992-07-01

    Migration to zero offset (MZO), also called dip moveout (DMO) or prestack partial migration, transforms prestack offset seismic data into approximate zero-offset data so as to remove reflection point smear and obtain quality stacked results over a range of reflector dips. MZO has become an important step in standard seismic data processing, and a variety of frequency-wavenumber (f-k) and integral MZO algorithms have been used in practice to date. Here, I present a finite-difference MZO algorithm applied to normal-moveout (NMO)-corrected, common-offset sections. This algorithm employs a traditional poststack 15-degree finite-difference migration algorithm and a special velocity function rather than the true migration velocity. This paper shows results of implementation of this MZO algorithm when velocity varies with depth, and discusses the possibility of applying this algorithm to cases where velocity varies with both depth and horizontal distance.

  2. Finite-difference migration to zero offset

    SciTech Connect

    Li, Jianchao.

    1992-01-01

    Migration to zero offset (MZO), also called dip moveout (DMO) or prestack partial migration, transforms prestack offset seismic data into approximate zero-offset data so as to remove reflection point smear and obtain quality stacked results over a range of reflector dips. MZO has become an important step in standard seismic data processing, and a variety of frequency-wavenumber (f-k) and integral MZO algorithms have been used in practice to date. Here, I present a finite-difference MZO algorithm applied to normal-moveout (NMO)-corrected, common-offset sections. This algorithm employs a traditional poststack 15-degree finite-difference migration algorithm and a special velocity function rather than the true migration velocity. This paper shows results of implementation of this MZO algorithm when velocity varies with depth, and discusses the possibility of applying this algorithm to cases where velocity varies with both depth and horizontal distance.

  3. Height probabilities in the Abelian sandpile model on the generalized finite Bethe lattice

    NASA Astrophysics Data System (ADS)

    Chen, Haiyan; Zhang, Fuji

    2013-08-01

    In this paper, we study the sandpile model on the generalized finite Bethe lattice with a particular boundary condition. Using a combinatorial method, we give the exact expressions for all single-site probabilities and some two-site joint probabilities. As a by-product, we prove that the height probabilities of bulk vertices are all the same for the Bethe lattice with certain given boundary condition, which was found from numerical evidence by Grassberger and Manna ["Some more sandpiles," J. Phys. (France) 51, 1077-1098 (1990)], 10.1051/jphys:0199000510110107700 but without a proof.

  4. Alternative exact method for random walks on finite and periodic lattices with traps

    NASA Astrophysics Data System (ADS)

    Soler, Jose M.

    1982-07-01

    An alternative general method for random walks in finite or periodic lattices with traps is presented. The method gives, in a straightforward manner and in very little computing time, the exact probability that a random walker, starting from a given site, will undergo n steps before trapping. Another version gives the probability that the walker is at any other given position after n steps. The expected walk lengths calculated for simple lattices agree exactly with those given by a previous exact method by Walsh and Kozak.

  5. Exact results for the site-dilute antiferromagnetic Ising model on finite triangular lattices

    NASA Astrophysics Data System (ADS)

    Farach, H. A.; Creswick, R. J.; Poole, C. P., Jr.

    1988-04-01

    Exact analytical and numerical results for the site-diluted antiferromagnetic Ising model on the triangular lattice (AFIT) are presented. For infinitesimal dilution the change in the free energy of the system is related to the distribution of local fields, and it is shown that for a frustrated system such as the AFIT, dilution lowers the entropy per spin. For lattices of finite size and dilution the transfer matrix for the partition function is evaluated numerically. The entropy per spin shows a marked minimum near a concentration of spins x=0.70, in some disagreement with earlier transfer-matrix results.

  6. Finite-volume effects in the muon anomalous magnetic moment on the lattice

    NASA Astrophysics Data System (ADS)

    Aubin, Christopher; Blum, Thomas; Chau, Peter; Golterman, Maarten; Peris, Santiago; Tu, Cheng

    2016-03-01

    We investigate finite-volume effects in the hadronic vacuum polarization, with an eye toward the corresponding systematic error in the muon anomalous magnetic moment. We consider both recent lattice data as well as lowest-order, finite-volume chiral perturbation theory, in order to get a quantitative understanding. Even though leading-order chiral perturbation theory does not provide a good description of the hadronic vacuum polarization, it turns out that it gives a good representation of finite-volume effects. We find that finite-volume effects cannot be ignored when the aim is a few percent level accuracy for the leading-order hadronic contribution to the muon anomalous magnetic moment, even when using ensembles with mπL ≳4 and mπ˜200 MeV .

  7. Formation of Vortex Lattices in Superfluid Bose Gases at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Arahata, E.; Nikuni, T.

    2016-05-01

    We study the dynamics of a rotating trapped Bose-Einstein condensate (BEC) at finite temperatures. Using the Zaremba-Nikuni-Griffin formalism, based on a generalized Gross-Pitaevskii equation for the condensate coupled to a semiclassical kinetic equation for a thermal cloud, we numerically simulate vortex lattice formation in the presence of a time-dependent rotating trap potential. At low rotation frequency, the thermal cloud undergoes rigid body rotation, while the condensate exhibits irrotational flow. Above a certain threshold rotation frequency, vortices penetrate into the condensate and form a vortex lattice. Our simulation result clearly indicates a crucial role for the thermal cloud, which triggers vortex lattice formation in the rotating BEC.

  8. Emergence of a Fermionic Finite-Temperature Critical Point in a Kondo Lattice

    NASA Astrophysics Data System (ADS)

    Chou, Po-Hao; Zhai, Liang-Jun; Chung, Chung-Hou; Mou, Chung-Yu; Lee, Ting-Kuo

    2016-04-01

    The underlying Dirac point is central to the profound physics manifested in a wide class of materials. However, it is often difficult to drive a system with Dirac points across the massless fermionic critical point. Here by exploiting screening of local moments under spin-orbit interactions in a Kondo lattice, we show that below the Kondo temperature, the Kondo lattice undergoes a topological transition from a strong topological insulator to a weak topological insulator at a finite temperature TD. At TD, massless Dirac points emerge and the Kondo lattice becomes a Dirac semimetal. Our analysis indicates that the emergent relativistic symmetry dictates nontrivial thermal responses over large parameter and temperature regimes. In particular, it yields critical scaling behaviors both in magnetic and transport responses near TD.

  9. Emergence of a Fermionic Finite-Temperature Critical Point in a Kondo Lattice.

    PubMed

    Chou, Po-Hao; Zhai, Liang-Jun; Chung, Chung-Hou; Mou, Chung-Yu; Lee, Ting-Kuo

    2016-04-29

    The underlying Dirac point is central to the profound physics manifested in a wide class of materials. However, it is often difficult to drive a system with Dirac points across the massless fermionic critical point. Here by exploiting screening of local moments under spin-orbit interactions in a Kondo lattice, we show that below the Kondo temperature, the Kondo lattice undergoes a topological transition from a strong topological insulator to a weak topological insulator at a finite temperature T_{D}. At T_{D}, massless Dirac points emerge and the Kondo lattice becomes a Dirac semimetal. Our analysis indicates that the emergent relativistic symmetry dictates nontrivial thermal responses over large parameter and temperature regimes. In particular, it yields critical scaling behaviors both in magnetic and transport responses near T_{D}. PMID:27176534

  10. Software suite for finite difference method models.

    PubMed

    Arola, T; Hannula, M; Narra, N; Malmivuo, J; Hyttinen, J

    2006-01-01

    We have developed a software suite for finite difference method (FDM) model construction, visualization and quasi-static simulation to be used in bioelectric field modeling. The aim of the software is to provide a full path from medical image data to simulation of bioelectric phenomena and results visualization. It is written in Java and can be run on various platforms while still supporting all features included. The software can be distributed across a network utilizing dedicated servers for calculation intensive tasks. Supported visualization modes are both two- and three-dimensional modes. PMID:17946057

  11. The Complex-Step-Finite-Difference method

    NASA Astrophysics Data System (ADS)

    Abreu, Rafael; Stich, Daniel; Morales, Jose

    2015-07-01

    We introduce the Complex-Step-Finite-Difference method (CSFDM) as a generalization of the well-known Finite-Difference method (FDM) for solving the acoustic and elastic wave equations. We have found a direct relationship between modelling the second-order wave equation by the FDM and the first-order wave equation by the CSFDM in 1-D, 2-D and 3-D acoustic media. We present the numerical methodology in order to apply the introduced CSFDM and show an example for wave propagation in simple homogeneous and heterogeneous models. The CSFDM may be implemented as an extension into pre-existing numerical techniques in order to obtain fourth- or sixth-order accurate results with compact three time-level stencils. We compare advantages of imposing various types of initial motion conditions of the CSFDM and demonstrate its higher-order accuracy under the same computational cost and dispersion-dissipation properties. The introduced method can be naturally extended to solve different partial differential equations arising in other fields of science and engineering.

  12. Domain decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation

    NASA Astrophysics Data System (ADS)

    Beilina, Larisa

    2016-08-01

    We present domain decomposition finite element/finite difference method for the solution of hyperbolic equation. The domain decomposition is performed such that finite elements and finite differences are used in different subdomains of the computational domain: finite difference method is used on the structured part of the computational domain and finite elements on the unstructured part of the domain. Explicit discretizations for both methods are constructed such that the finite element and the finite difference schemes coincide on the common structured overlapping layer between computational subdomains. Then the resulting approach can be considered as a pure finite element scheme which avoids instabilities at the interfaces. We derive an energy estimate for the underlying hyperbolic equation with absorbing boundary conditions and illustrate efficiency of the domain decomposition method on the reconstruction of the conductivity function in three dimensions.

  13. Efficient discretization in finite difference method

    NASA Astrophysics Data System (ADS)

    Rozos, Evangelos; Koussis, Antonis; Koutsoyiannis, Demetris

    2015-04-01

    Finite difference method (FDM) is a plausible and simple method for solving partial differential equations. The standard practice is to use an orthogonal discretization to form algebraic approximate formulations of the derivatives of the unknown function and a grid, much like raster maps, to represent the properties of the function domain. For example, for the solution of the groundwater flow equation, a raster map is required for the characterization of the discretization cells (flow cell, no-flow cell, boundary cell, etc.), and two raster maps are required for the hydraulic conductivity and the storage coefficient. Unfortunately, this simple approach to describe the topology comes along with the known disadvantages of the FDM (rough representation of the geometry of the boundaries, wasted computational resources in the unavoidable expansion of the grid refinement in all cells of the same column and row, etc.). To overcome these disadvantages, Hunt has suggested an alternative approach to describe the topology, the use of an array of neighbours. This limits the need for discretization nodes only for the representation of the boundary conditions and the flow domain. Furthermore, the geometry of the boundaries is described more accurately using a vector representation. Most importantly, graded meshes can be employed, which are capable of restricting grid refinement only in the areas of interest (e.g. regions where hydraulic head varies rapidly, locations of pumping wells, etc.). In this study, we test the Hunt approach against MODFLOW, a well established finite difference model, and the Finite Volume Method with Simplified Integration (FVMSI). The results of this comparison are examined and critically discussed.

  14. Lattice QCD at finite temperature and density in the phase-quenched approximation.

    SciTech Connect

    Kogut, J. B.; Sinclair, D. K.; High Energy Physics; Univ Maryland

    2008-06-01

    QCD at a finite quark-number chemical potential {mu} has a complex fermion determinant, which precludes its study by standard lattice QCD simulations. We therefore simulate lattice QCD at finite {mu} in the phase-quenched approximation, replacing the fermion determinant with its magnitude. (The phase-quenched approximation can be considered as simulating at finite isospin chemical potential 2{mu} for N{sub f}/2 u-type and N{sub F}/2 d-type quark flavors.) These simulations are used to study the finite-temperature transition for small {mu}, where there is some evidence that the position (and possibly the nature) of this transition is unchanged by this approximation. We look for the expected critical endpoint for 3-flavor QCD. Here, it has been argued that the critical point at zero {mu} would become the critical endpoint at small {mu}, for quark masses just above the critical mass. Our simulations indicate that this does not happen, and there is no such critical endpoint for small {mu}. We discuss how we might adapt techniques used for imaginary {mu} to improve the signal/noise ratio and strengthen our conclusions, using results from relatively low statistics studies.

  15. Lattice QCD at finite temperature and density in the phase-quenched approximation

    SciTech Connect

    Kogut, J. B.; Sinclair, D. K.

    2008-06-01

    QCD at a finite quark-number chemical potential {mu} has a complex fermion determinant, which precludes its study by standard lattice QCD simulations. We therefore simulate lattice QCD at finite {mu} in the phase-quenched approximation, replacing the fermion determinant with its magnitude. (The phase-quenched approximation can be considered as simulating at finite isospin chemical potential 2{mu} for N{sub f}/2 u-type and N{sub f}/2 d-type quark flavors.) These simulations are used to study the finite-temperature transition for small {mu}, where there is some evidence that the position (and possibly the nature) of this transition is unchanged by this approximation. We look for the expected critical endpoint for 3-flavor QCD. Here, it has been argued that the critical point at zero {mu} would become the critical endpoint at small {mu}, for quark masses just above the critical mass. Our simulations indicate that this does not happen, and there is no such critical endpoint for small {mu}. We discuss how we might adapt techniques used for imaginary {mu} to improve the signal/noise ratio and strengthen our conclusions, using results from relatively low statistics studies.

  16. Efficiency of encounter-controlled reaction between diffusing reactants in a finite lattice: Non-nearest-neighbor effects

    NASA Astrophysics Data System (ADS)

    Bentz, Jonathan L.; Kozak, John J.; Nicolis, Gregoire

    2005-08-01

    The influence of non-nearest-neighbor displacements on the efficiency of diffusion-reaction processes involving one and two mobile diffusing reactants is studied. An exact analytic result is given for dimension d=1 from which, for large lattices, one can recover the asymptotic estimate reported 30 years ago by Lakatos-Lindenberg and Shuler. For dimensions d=2,3 we present numerically exact values for the mean time to reaction, as gauged by the mean walklength before reactive encounter, obtained via the theory of finite Markov processes and supported by Monte Carlo simulations. Qualitatively different results are found between processes occurring on d=1 versus d>1 lattices, and between results obtained assuming nearest-neighbor (only) versus non-nearest-neighbor displacements.

  17. TUNED FINITE-DIFFERENCE DIFFUSION OPERATORS

    SciTech Connect

    Maron, Jason; Low, Mordecai-Mark Mac E-mail: mordecai@amnh.org

    2009-05-15

    Finite-difference simulations of fluid dynamics and magnetohydrodynamics generally require an explicit diffusion operator, either to maintain stability by attenuating grid-scale structure, or to implement physical diffusivities such as viscosity or resistivity. If the goal is stability only, the diffusion must act at the grid scale, but should affect structure at larger scales as little as possible. For physical diffusivities the diffusion scale depends on the problem, and diffusion may act at larger scales as well. Diffusivity can undesirably limit the computational time step in both cases. We construct tuned finite-difference diffusion operators that minimally limit the time step while acting as desired near the diffusion scale. Such operators reach peak values at the diffusion scale rather than at the grid scale, but behave as standard operators at larger scales. These operators will be useful for simulations with high magnetic diffusivity or kinematic viscosity such as in the simulation of astrophysical dynamos with magnetic Prandtl number far from unity, or for numerical stabilization using hyperdiffusivity.

  18. A comparative study of finite element and finite difference methods for Cauchy-Riemann type equations

    NASA Technical Reports Server (NTRS)

    Fix, G. J.; Rose, M. E.

    1983-01-01

    A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.

  19. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    SciTech Connect

    Kim, S.

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  20. Adaptive finite difference for seismic wavefield modelling in acoustic media.

    PubMed

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-01-01

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang's optimised finite difference scheme. PMID:27491333

  1. Adaptive finite difference for seismic wavefield modelling in acoustic media

    NASA Astrophysics Data System (ADS)

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-08-01

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang’s optimised finite difference scheme.

  2. Adaptive finite difference for seismic wavefield modelling in acoustic media

    PubMed Central

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-01-01

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang’s optimised finite difference scheme. PMID:27491333

  3. MCFET - A MICROSTRUCTURAL LATTICE MODEL FOR STRAIN ORIENTED PROBLEMS: A COMBINED MONTE CARLO FINITE ELEMENT TECHNIQUE

    NASA Technical Reports Server (NTRS)

    Gayda, J.

    1994-01-01

    A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, has been developed to simulate microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. Since many of the physical properties of materials are determined by microstructure, it is important to be able to predict and control microstructural development. MCFET uses a microstructural lattice model that can incorporate all relevant driving forces and kinetic considerations. Unlike molecular dynamics, this approach was developed specifically to predict macroscopic behavior, not atomistic behavior. In this approach, the microstructure is discretized into a fine lattice. Each element in the lattice is labeled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis has been validated by comparing this approach with a closed-form, analytical method for stress-assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analyses for multiparticle problems have also been run and, in general, the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperatures. This program is written in FORTRAN for use on a 370 series IBM mainframe. It has been implemented on an IBM 370 running VM/SP and an IBM 3084 running MVS. It requires the IMSL math library and 220K of RAM for execution. The standard distribution medium for this program is a 9-track 1600 BPI magnetic tape in EBCDIC format.

  4. Complex spectrum of finite-density lattice QCD with static quarks at strong coupling

    NASA Astrophysics Data System (ADS)

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    2016-05-01

    We calculate the spectrum of transfer matrix eigenvalues associated with Polyakov loops in finite-density lattice QCD with static quarks. These eigenvalues determine the spatial behavior of Polyakov loop correlation functions. Our results are valid for all values of the gauge coupling in 1 +1 dimensions and in the strong-coupling region for any number of dimensions. When the quark chemical potential μ is nonzero, the spatial transfer matrix Ts is non-Hermitian. The appearance of complex eigenvalues in Ts is a manifestation of the sign problem in finite-density QCD. The invariance of finite-density QCD under the combined action of charge conjugation C and complex conjugation K implies that the eigenvalues of Ts are either real or part of a complex pair. Calculation of the spectrum confirms the existence of complex pairs in much of the temperature-chemical potential plane. Many features of the spectrum for static quarks are determined by a particle-hole symmetry. For μ that is small compared to the quark mass M , we typically find real eigenvalues for the lowest-lying states. At somewhat larger values of μ , pairs of eigenvalues may form complex-conjugate pairs, leading to damped oscillatory behavior in Polyakov loop correlation functions. However, near μ =M , the low-lying spectrum becomes real again. This is a direct consequence of the approximate particle-hole symmetry at μ =M for heavy quarks. This behavior of the eigenvalues should be observable in lattice simulations and can be used as a test of lattice algorithms. Our results provide independent confirmation of results we have previously obtained in Polyakov-Nambu-Jona-Lasinio models using complex saddle points.

  5. Finite-size scaling tests for SU(3) lattice gauge theory with color sextet fermions

    SciTech Connect

    DeGrand, Thomas

    2009-12-01

    The observed slow running of the gauge coupling in SU(3) lattice gauge theory with two flavors of color sextet fermions naturally suggests it is a theory with one relevant coupling, the fermion mass, and that at zero mass correlation functions decay algebraically. I perform a finite-size scaling study on simulation data at two values of the bare gauge coupling with this assumption and observe a common exponent for the scaling of the correlation length with the fermion mass, y{sub m}{approx}1.5. An analysis of the scaling of valence Dirac eigenvalues at one of these bare couplings produces a similar number.

  6. Porous Substrate Effects on Thermal Flows Through a Rev-Scale Finite Volume Lattice Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Zarghami, Ahad; Francesco, Silvia Di; Biscarini, Chiara

    2014-09-01

    In this paper, fluid flows with enhanced heat transfer in porous channels are investigated through a stable finite volume (FV) formulation of the thermal lattice Boltzmann method (LBM). Temperature field is tracked through a double distribution function (DDF) model, while the porous media is modeled using Brinkman-Forchheimer assumptions. The method is tested against flows in channels partially filled with porous media and parametric studies are conducted to evaluate the effects of various parameters, highlighting their influence on the thermo-hydrodynamic behavior.

  7. Finite-temperature properties of strongly correlated fermions in the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Tang, Baoming; Paiva, Thereza; Khatami, Ehsan; Rigol, Marcos

    2013-09-01

    We study finite-temperature properties of strongly interacting fermions in the honeycomb lattice using numerical linked-cluster expansions and determinantal quantum Monte Carlo simulations. We analyze a number of thermodynamic quantities, including the entropy, the specific heat, uniform and staggered spin susceptibilities, short-range spin correlations, and the double occupancy at and away from half filling. We examine the viability of adiabatic cooling by increasing the interaction strength for homogeneous as well as for trapped systems. For the homogeneous case, this process is found to be more efficient at finite doping than at half filling. That, in turn, leads to an efficient adiabatic cooling in the presence of a trap, which, starting with even relatively high entropies, can drive the system to have a Mott insulating phase with substantial antiferromagnetic correlations.

  8. Lattice fractional diffusion equation in terms of a Riesz-Caputo difference

    NASA Astrophysics Data System (ADS)

    Wu, Guo-Cheng; Baleanu, Dumitru; Deng, Zhen-Guo; Zeng, Sheng-Da

    2015-11-01

    A fractional difference is defined by the use of the right and the left Caputo fractional differences. The definition is a two-sided operator of Riesz type and introduces back and forward memory effects in space difference. Then, a fractional difference equation method is suggested for anomalous diffusion in discrete finite domains. A lattice fractional diffusion equation is proposed and the numerical simulation of the diffusion process is discussed for various difference orders. The result shows that the Riesz difference model is particularly suitable for modeling complicated dynamical behaviors on discrete media.

  9. Slave-particle approach to the finite-temperature properties of ultracold Bose gases in optical lattices

    SciTech Connect

    Lu Xiancong; Yu Yue; Li Jinbin

    2006-04-15

    By using slave particle (slave boson and slave fermion) techniques on the Bose-Hubbard model, we study the finite temperature properties of ultracold Bose gases in optical lattices. The phase diagrams at finite temperature are depicted by including different types of slave particles and the effect of the finite types of slave particles is estimated. The superfluid density is evaluated using the Landau second order phase transition theory. The atom density, excitation spectrum, and dispersion curve are also computed at various temperatures, and how the Mott-insulator evolves as the temperature increases is demonstrated. For most quantities to be calculated, we find that there are no qualitative differences in using the slave boson or the slave fermion approaches. However, when studying the stability of the mean field state, we find that in contrast to the slave fermion approach, the slave boson mean field state is not stable. Although the slave boson mean field theory gives a qualitatively correct phase boundary, it corresponds to a local maximum of Landau free energy and cannot describe the second order phase transition because the coefficient a{sub 4} of the fourth order term is always negative in the free energy expansion.

  10. A conservative Dirichlet boundary treatment for the finite volume lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Chen, Leitao; Schaefer, Laura

    2014-11-01

    The finite volume lattice Boltzmann method (FVLBM) enables the model to use the exact body-fitting mesh in the flow problems that involve the complex boundaries. However, the development of proper boundary treatment for the FVLBM has been outpaced. The boundary treatments designed for the conventional lattice Boltzmann method (LBM) framework are still heavily applied to the FVLBM. The largest defect of using the old boundary treatment is that, on the Dirichlet boundaries, the macroscopic variables cannot be conserved. In another word, there exist nontrivial discrepancies between the macroscopic variables defined by the boundary conditions and those yield by the numerical solutions. The errors on the boundaries will contaminate the internal solutions and even cause instability, especially on the complex boundaries. To overcome such a shortcoming, a conservative boundary treatment for the Dirichlet hydrodynamic boundary conditions is developed for the FVLBM. Through the benchmark tests, it is shown that the macroscopic conservations on the Direchlet boundaries are up to machine accuracy and completely independent of the size of relaxation time, the type of lattice model, the level of mesh resolution, the shape of boundaries and the type of internal scheme.

  11. Stochastic finite-difference time-domain

    NASA Astrophysics Data System (ADS)

    Smith, Steven Michael

    2011-12-01

    This dissertation presents the derivation of an approximate method to determine the mean and the variance of electro-magnetic fields in the body using the Finite-Difference Time-Domain (FDTD) method. Unlike Monte Carlo analysis, which requires repeated FDTD simulations, this method directly computes the variance of the fields at every point in space at every sample of time in the simulation. This Stochastic FDTD simulation (S-FDTD) has at its root a new wave called the Variance wave, which is computed in the time domain along with the mean properties of the model space in the FDTD simulation. The Variance wave depends on the electro-magnetic fields, the reflections and transmission though the different dielectrics, and the variances of the electrical properties of the surrounding materials. Like the electro-magnetic fields, the Variance wave begins at zero (there is no variance before the source is turned on) and is computed in the time domain until all fields reach steady state. This process is performed in a fraction of the time of a Monte Carlo simulation and yields the first two statistical parameters (mean and variance). The mean of the field is computed using the traditional FDTD equations. Variance is computed by approximating the correlation coefficients between the constituitive properties and the use of the S-FDTD equations. The impetus for this work was the simulation time it takes to perform 3D Specific Absorption Rate (SAR) FDTD analysis of the human head model for cell phone power absorption in the human head due to the proximity of a cell phone being used. In many instances, Monte Carlo analysis is not performed due to the lengthy simulation times required. With the development of S-FDTD, these statistical analyses could be performed providing valuable statistical information with this information being provided in a small fraction of the time it would take to perform a Monte Carlo analysis.

  12. Finite Mathematics and Discrete Mathematics: Is There a Difference?

    ERIC Educational Resources Information Center

    Johnson, Marvin L.

    Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…

  13. High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains

    NASA Astrophysics Data System (ADS)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-11-01

    Nonlinear entropy stability is used to derive provably stable high-order finite difference operators including boundary closure stencils, for the compressible Navier-Stokes equations. A comparison technique is used to derive a new Entropy Stable Weighted Essentially Non-Oscillatory (SSWENO) finite difference method, appropriate for simulations of problems with shocks. Viscous terms are approximated using conservative, entropy stable, narrow-stencil finite difference operators. The efficacy of the new discrete operators is demonstrated using both smooth and discontinuous test cases.

  14. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    NASA Technical Reports Server (NTRS)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  15. Comparison of finite-difference and analytic microwave calculation methods

    SciTech Connect

    Friedlander, F.I.; Jackson, H.W.; Barmatz, M.; Wagner, P.

    1996-12-31

    Normal modes and power absorption distributions in microwave cavities containing lossy dielectric samples were calculated for problems of interest in materials processing. The calculations were performed both using a commercially available finite-difference electromagnetic solver and by numerical evaluation of exact analytic expressions. Results obtained by the two methods applied to identical physical situations were compared. The studies validate the accuracy of the finite-difference electromagnetic solver. Relative advantages of the analytic and finite-difference methods are discussed.

  16. Finite-size effects in lattice QCD with dynamical Wilson fermions

    SciTech Connect

    Orth, Boris; Lippert, Thomas; Schilling, Klaus

    2005-07-01

    As computing resources are limited, choosing the parameters for a full lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming to push unquenched simulations with the Wilson action towards the computationally expensive regime of small quark masses we address the question whether one can possibly save computing time by extrapolating results from small lattices to the infinite volume, prior to the usual chiral and continuum extrapolations. In the present work the systematic volume dependence of simulated pion and nucleon masses is investigated and compared with a long-standing analytic formula by Luescher and with results from chiral perturbation theory (ChPT). We analyze data from hybrid Monte Carlo simulations with the standard (unimproved) two-flavor Wilson action at two different lattice spacings of a{approx_equal}0.08 and 0.13 fm. The quark masses considered correspond to approximately 85% and 50% (at the smaller a) and 36% (at the larger a) of the strange quark mass. At each quark mass we study at least three different lattices with L/a=10 to 24 sites in the spatial directions (L=0.85-2.08 fm). We find that an exponential ansatz fits the volume dependence of the pion masses well, but with a coefficient about an order of magnitude larger than the theoretical leading-order prediction. In the case of the nucleon we observe a remarkably good agreement between our lattice data and a recent formula from relativistic baryon ChPT.

  17. Continuum behavior of lattice QED, discretized with one-sided lattice differences, in one-loop order

    SciTech Connect

    Sadooghi, N.; Rothe, H.J.

    1997-06-01

    A lattice action for QED is considered, where the derivatives in the Dirac operator are replaced by one-sided lattice differences. A systematic expansion in the lattice spacing of the one-loop contribution to the fermion self-energy, vacuum polarization tensor, and vertex function is carried out for an arbitrary choice of one-sided lattice differences. It is shown that only the vacuum polarization tensor possesses the correct continuum limit, while the fermion self-energy and vertex function receive noncovariant contributions. A lattice action, discretized with a fixed choice of one-sided lattice differences, therefore, does not define a renormalizable field theory. The noncovariant contributions can, however, be eliminated by averaging the expression over all possible choices of one-sided lattice differences. {copyright} {ital 1997} {ital The American Physical Society}

  18. A study on the optimization of finite volume effects of B K in lattice QCD by using the CUDA

    NASA Astrophysics Data System (ADS)

    Kim, Jangho; Cho, Kihyeon

    2015-07-01

    Lattice quantum chromodynamics (QCD) is the non-perturbative implementation of field theory to solve the QCD theory of quarks and gluons by using the Feynman path integral approach. We calculate the kaon CP (charge-parity) violation parameter B K generally arising in theories of physics beyond the Standard Model. Because lattice simulations are performed on finite volume lattices, the finite volume effects must be considered to exactly estimate the systematic error. The computational cost of numerical simulations may increase dramatically as the lattice spacing is decreased. Therefore, lattice QCD calculations must be optimized to account for the finite volume effects. The methodology used in this study was to develop an algorithm to parallelize the code by using a graphic processing unit (GPU) and to optimize the code to achieve as close to the theoretical peak performance as possible. The results revealed that the calculation speed of the newly-developed algorithm is significantly improved compared with that of the current algorithm for the finite volume effects.

  19. One-node coarse-mesh finite difference algorithm for fine-mesh finite difference operator

    SciTech Connect

    Shin, H.C.; Kim, Y.H.; Kim, Y.B.

    1999-07-01

    This paper is concerned with speeding up the convergence of the fine-mesh finite difference (FMFD) method for the neutron diffusion problem. The basic idea of the new algorithm originates from the two-node coarse-mesh finite difference (CMFD) schemes for nodal methods, where the low-order CMFD operator is iteratively corrected through a global-local iteration so that the final solution of the CMFD problem is equivalent to the high-order nodal solution. Unlike conventional CMFD methods, the new CMFD algorithm is based on one-node local problems, and the high-order solution over the local problem is determined by using the FMFD operator. Nonlinear coupling of CMFD and FMFD operators was previously studied by Aragones and Ahnert. But, in their work, the coarse-mesh operator is corrected by the so-called flux discontinuity factors, and the local problem is defined differently in the sense of boundary conditions and the core dissection scheme.

  20. Lefschetz thimble structure in one-dimensional lattice Thirring model at finite density

    NASA Astrophysics Data System (ADS)

    Fujii, Hirotsugu; Kamata, Syo; Kikukawa, Yoshio

    2015-11-01

    We investigate Lefschetz thimble structure of the complexified path-integration in the one-dimensional lattice massive Thirring model with finite chemical potential. The lattice model is formulated with staggered fermions and a compact auxiliary vector boson (a link field), and the whole set of the critical points (the complex saddle points) are sorted out, where each critical point turns out to be in a one-to-one correspondence with a singular point of the effective action (or a zero point of the fermion determinant). For a subset of critical point solutions in the uniform-field subspace, we examine the upward and downward cycles and the Stokes phenomenon with varying the chemical potential, and we identify the intersection numbers to determine the thimbles contributing to the path-integration of the partition function. We show that the original integration path becomes equivalent to a single Lefschetz thimble at small and large chemical potentials, while in the crossover region multiple thimbles must contribute to the path integration. Finally, reducing the model to a uniform field space, we study the relative importance of multi-thimble contributions and their behavior toward continuum and low-temperature limits quantitatively, and see how the rapid crossover behavior is recovered by adding the multi-thimble contributions at low temperatures. Those findings will be useful for performing Monte-Carlo simulations on the Lefschetz thimbles.

  1. Lattice gas and lattice Boltzmann computational physics

    SciTech Connect

    Chen, S.

    1993-05-01

    Recent developments of the lattice gas automata method and its extension to the lattice Boltzmann method have provided new computational schemes for solving a variety of partial differential equations and modeling different physics systems. The lattice gas method, regarded as the simplest microscopic and kinetic approach which generates meaningful macroscopic dynamics, is fully parallel and can be easily programmed on parallel machines. In this talk, the author will review basic principles of the lattice gas and lattice Boltzmann method, its mathematical foundation and its numerical implementation. A detailed comparison of the lattice Boltzmann method with the lattice gas technique and other traditional numerical schemes, including the finite-difference scheme and the pseudo-spectral method, for solving the Navier-Stokes hydrodynamic fluid flows, will be discussed. Recent achievements of the lattice gas and the the lattice Boltzmann method and their applications in surface phenomena, spinodal decomposition and pattern formation in chemical reaction-diffusion systems will be presented.

  2. Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh.

    PubMed

    Li, Yusong; LeBoeuf, Eugene J; Basu, P K

    2005-10-01

    A numerical model of the lattice Boltzmann method (LBM) utilizing least-squares finite-element method in space and the Crank-Nicolson method in time is developed. This method is able to solve fluid flow in domains that contain complex or irregular geometric boundaries by using the flexibility and numerical stability of a finite-element method, while employing accurate least-squares optimization. Fourth-order accuracy in space and second-order accuracy in time are derived for a pure advection equation on a uniform mesh; while high stability is implied from a von Neumann linearized stability analysis. Implemented on unstructured mesh through an innovative element-by-element approach, the proposed method requires fewer grid points and less memory compared to traditional LBM. Accurate numerical results are presented through two-dimensional incompressible Poiseuille flow, Couette flow, and flow past a circular cylinder. Finally, the proposed method is applied to estimate the permeability of a randomly generated porous media, which further demonstrates its inherent geometric flexibility. PMID:16383571

  3. Inflection points of microcanonical entropy: Monte Carlo simulation of q state Potts model on a finite square lattice

    SciTech Connect

    Praveen, E. Satyanarayana, S. V. M.

    2014-04-24

    Traditional definition of phase transition involves an infinitely large system in thermodynamic limit. Finite systems such as biological proteins exhibit cooperative behavior similar to phase transitions. We employ recently discovered analysis of inflection points of microcanonical entropy to estimate the transition temperature of the phase transition in q state Potts model on a finite two dimensional square lattice for q=3 (second order) and q=8 (first order). The difference of energy density of states (DOS) Δ ln g(E) = ln g(E+ ΔE) −ln g(E) exhibits a point of inflexion at a value corresponding to inverse transition temperature. This feature is common to systems exhibiting both first as well as second order transitions. While the difference of DOS registers a monotonic variation around the point of inflexion for systems exhibiting second order transition, it has an S-shape with a minimum and maximum around the point of inflexion for the case of first order transition.

  4. Finite-volume method with lattice Boltzmann flux scheme for incompressible porous media flow at the representative-elementary-volume scale.

    PubMed

    Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong

    2016-02-01

    Based on the Darcy-Brinkman-Forchheimer equation, a finite-volume computational model with lattice Boltzmann flux scheme is proposed for incompressible porous media flow in this paper. The fluxes across the cell interface are calculated by reconstructing the local solution of the generalized lattice Boltzmann equation for porous media flow. The time-scaled midpoint integration rule is adopted to discretize the governing equation, which makes the time step become limited by the Courant-Friedricks-Lewy condition. The force term which evaluates the effect of the porous medium is added to the discretized governing equation directly. The numerical simulations of the steady Poiseuille flow, the unsteady Womersley flow, the circular Couette flow, and the lid-driven flow are carried out to verify the present computational model. The obtained results show good agreement with the analytical, finite-difference, and/or previously published solutions. PMID:26986440

  5. Finite-volume method with lattice Boltzmann flux scheme for incompressible porous media flow at the representative-elementary-volume scale

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong

    2016-02-01

    Based on the Darcy-Brinkman-Forchheimer equation, a finite-volume computational model with lattice Boltzmann flux scheme is proposed for incompressible porous media flow in this paper. The fluxes across the cell interface are calculated by reconstructing the local solution of the generalized lattice Boltzmann equation for porous media flow. The time-scaled midpoint integration rule is adopted to discretize the governing equation, which makes the time step become limited by the Courant-Friedricks-Lewy condition. The force term which evaluates the effect of the porous medium is added to the discretized governing equation directly. The numerical simulations of the steady Poiseuille flow, the unsteady Womersley flow, the circular Couette flow, and the lid-driven flow are carried out to verify the present computational model. The obtained results show good agreement with the analytical, finite-difference, and/or previously published solutions.

  6. Comparison of truncation error of finite-difference and finite-volume formulations of convection terms

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.

    1992-01-01

    Judging by errors in the computational-fluid-dynamics literature in recent years, it is not generally well understood that (above first-order) there are significant differences in spatial truncation error between formulations of convection involving a finite-difference approximation of the first derivative, on the one hand, and a finite-volume model of flux differences across a control-volume cell, on the other. The difference between the two formulations involves a second-order truncation-error term (proportional to the third-derivative of the convected variable). Hence, for example, a third (or higher) order finite-difference approximation for the first-derivative convection term is only second-order accurate when written in conservative control-volume form as a finite-volume formulation, and vice versa.

  7. Computer-Oriented Calculus Courses Using Finite Differences.

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    The so-called discrete approach in calculus instruction involves introducing topics from the calculus of finite differences and finite sums, both for motivation and as useful tools for applications of the calculus. In particular, it provides an ideal setting in which to incorporate computers into calculus courses. This approach has been…

  8. Hybrid finite element-finite difference method for thermal analysis of blood vessels.

    PubMed

    Blanchard, C H; Gutierrez, G; White, J A; Roemer, R B

    2000-01-01

    A hybrid finite-difference/finite-element technique for the thermal analysis of blood vessels embedded in perfused tissue has been developed and evaluated. This method provides efficient and accurate solutions to the conjugated heat transfer problem of convection by blood coupled to conduction in the tissue. The technique uses a previously developed 3D automatic meshing method for creating a finite element mesh in the tissue surrounding the vessels, coupled iteratively with a 1-D marching finite difference method for the interior of the vessels. This hybrid technique retains the flexibility and ease of automated finite-element meshing techniques for modelling the complex geometry of blood vessels and irregularly shaped tissues, and speeds the solution time by using a simple finite-difference method to calculate the bulk mean temperatures within all blood vessels. The use of the 1D finite-difference technique in the blood vessels also eliminates the large computer memory requirements needed to accurately solve large vessel network problems when fine FE meshes are used in the interior of vessels. The accuracy of the hybrid technique has been verified against previously verified numerical solutions. In summary, the hybrid technique combines the accuracy and flexibility found in automated finite-element techniques, with the speed and reduction of computational memory requirements associated with the 1D finite-difference technique, something which has not been done before. This method, thus, has the potential to provide accurate, flexible and relatively fast solutions for the thermal analysis of coupled perfusion/blood vessel problems, and large vessel network problems. PMID:10949130

  9. Coupled finite-difference/finite-element approach for wing-body aeroelasticity

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    1992-01-01

    Computational methods using finite-difference approaches for fluids and finite-element approaches for structures have individually advanced to solve almost full-aircraft configurations. However, coupled approaches to solve fluid/structural interaction problems are still in their early stages of development, particularly for complex geometries using complete equations such as the Euler/Navier-Stokes equations. Earlier work demonstrated the success of coupling finite-difference and finite-element methods for simple wing configurations using the Euler/Navier-Stokes equations. In this paper, the same approach is extended for general wing-body configurations. The structural properties are represented by beam-type finite elements. The flow is modeled using the Euler/Navier-Stokes equations. A general procedure to fully couple structural finite-element boundary conditions with fluid finite-difference boundary conditions is developed for wing-body configurations. Computations are made using moving grids that adapt to wing-body structural deformations. Results are illustrated for a typical wing-body configuration.

  10. Techniques for correcting approximate finite difference solutions. [considering transonic flow

    NASA Technical Reports Server (NTRS)

    Nixon, D.

    1978-01-01

    A method of correcting finite-difference solutions for the effect of truncation error or the use of an approximate basic equation is presented. Applications to transonic flow problems are described and examples are given.

  11. Conservative properties of finite difference schemes for incompressible flow

    NASA Technical Reports Server (NTRS)

    Morinishi, Youhei

    1995-01-01

    The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). In this report, conservation properties of the continuity, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discretized equations. Existing finite difference schemes in staggered grid systems are checked for satisfaction of the requirements. Proper higher order accurate finite difference schemes in a staggered grid system are then proposed. Plane channel flow is simulated using the proposed fourth order accurate finite difference scheme and the results compared with those of the second order accurate Harlow and Welch algorithm.

  12. Finite-difference solutions of the 3-D eikonal equation

    SciTech Connect

    Fei, Tong; Fehler, M.C.; Hildebrand, S.T.

    1995-12-31

    Prestack Kirchhoff depth migration requires the computation of traveltimes from surface source and receiver locations to subsurface image locations. In 3-D problems, computational efficiency becomes important. Finite-difference solutions of the eikonal equation provide computationally efficient methods for generating the traveltime information. Here, a novel finite-difference solutions of the eikonal equation provide computationally efficient methods for generating the traveltime information. Here, a novel finite-difference method for computing the first arrival traveltime by solving the eikonal equation has been developed in Cartesian coordinates. The method, which is unconditionally stable and computationally efficient, can handle instabilities due to caustics and provide information about head waves. The comparison of finite-difference solutions of the acoustic wave equation with the traveltime solutions from the eikonal equation in various structure models demonstrate that the method developed here can provide correct first arrival traveltime information even in areas of complex velocity structure.

  13. Comparison of different precondtioners for nonsymmtric finite volume element methods

    SciTech Connect

    Mishev, I.D.

    1996-12-31

    We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.

  14. High-order lattice Boltzmann models for wall-bounded flows at finite Knudsen numbers

    NASA Astrophysics Data System (ADS)

    Feuchter, C.; Schleifenbaum, W.

    2016-07-01

    We analyze a large number of high-order discrete velocity models for solving the Boltzmann-Bhatnagar-Gross-Krook equation for finite Knudsen number flows. Using the Chapman-Enskog formalism, we prove for isothermal flows a relation identifying the resolved flow regimes for low Mach numbers. Although high-order lattice Boltzmann models recover flow regimes beyond the Navier-Stokes level, we observe for several models significant deviations from reference results. We found this to be caused by their inability to recover the Maxwell boundary condition exactly. By using supplementary conditions for the gas-surface interaction it is shown how to systematically generate discrete velocity models of any order with the inherent ability to fulfill the diffuse Maxwell boundary condition accurately. Both high-order quadratures and an exact representation of the boundary condition turn out to be crucial for achieving reliable results. For Poiseuille flow, we can reproduce the mass flow and slip velocity up to the Knudsen number of 1. Moreover, for small Knudsen numbers, the Knudsen layer behavior is recovered.

  15. Micro Blowing Simulations Using a Coupled Finite-Volume Lattice-Boltzman n L ES Approach

    NASA Technical Reports Server (NTRS)

    Menon, S.; Feiz, H.

    1990-01-01

    Three dimensional large-eddy simulations (LES) of single and multiple jet-in-cross-flow (JICF) are conducted using the 19-bit Lattice Boltzmann Equation (LBE) method coupled with a conventional finite-volume (FV) scheme. In this coupled LBE-FV approach, the LBE-LES is employed to simulate the flow inside the jet nozzles while the FV-LES is used to simulate the crossflow. The key application area is the use of this technique is to study the micro blowing technique (MBT) for drag control similar to the recent experiments at NASA/GRC. It is necessary to resolve the flow inside the micro-blowing and suction holes with high resolution without being restricted by the FV time-step restriction. The coupled LBE-FV-LES approach achieves this objectives in a computationally efficient manner. A single jet in crossflow case is used for validation purpose and the results are compared with experimental data and full LBE-LES simulation. Good agreement with data is obtained. Subsequently, MBT over a flat plate with porosity of 25% is simulated using 9 jets in a compressible cross flow at a Mach number of 0.4. It is shown that MBT suppresses the near-wall vortices and reduces the skin friction by up to 50 percent. This is in good agreement with experimental data.

  16. Simulation of flow in the microcirculation using a hybrid Lattice-Boltzman and Finite Element algorithm

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mancera, Andres; Gonzalez Cardenas, Diego

    2014-11-01

    Flow in the microcirculation is highly dependent on the mechanical properties of the cells suspended in the plasma. Red blood cells have to deform in order to pass through the smaller sections in the microcirculation. Certain deceases change the mechanical properties of red blood cells affecting its ability to deform and the rheological behaviour of blood. We developed a hybrid algorithm based on the Lattice-Boltzmann and Finite Element methods to simulate blood flow in small capillaries. Plasma was modeled as a Newtonian fluid and the red blood cells' membrane as a hyperelastic solid. The fluid-structure interaction was handled using the immersed boundary method. We simulated the flow of plasma with suspended red blood cells through cylindrical capillaries and measured the pressure drop as a function of the membrane's rigidity. We also simulated the flow through capillaries with a restriction and identify critical properties for which the suspended particles are unable to flow. The algorithm output was verified by reproducing certain common features of flow int he microcirculation such as the Fahraeus-Lindqvist effect.

  17. Numerical techniques in linear duct acoustics. [finite difference and finite element analyses

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1980-01-01

    Both finite difference and finite element analyses of small amplitude (linear) sound propagation in straight and variable area ducts with flow, as might be found in a typical turboject engine duct, muffler, or industrial ventilation system, are reviewed. Both steady state and transient theories are discussed. Emphasis is placed on the advantages and limitations associated with the various numerical techniques. Examples of practical problems are given for which the numerical techniques have been applied.

  18. Practical aspects of prestack depth migration with finite differences

    SciTech Connect

    Ober, C.C.; Oldfield, R.A.; Womble, D.E.; Romero, L.A.; Burch, C.C.

    1997-07-01

    Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatial parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.

  19. Effects of finite volume on the KL – KS mass difference

    DOE PAGESBeta

    Christ, N.  H.; Feng, X.; Martinelli, G.; Sachrajda, C.  T.

    2015-06-24

    Phenomena that involve two or more on-shell particles are particularly sensitive to the effects of finite volume and require special treatment when computed using lattice QCD. In this paper we generalize the results of Lüscher and Lellouch and Lüscher, which determine the leading-order effects of finite volume on the two-particle spectrum and two-particle decay amplitudes to determine the finite-volume effects in the second-order mixing of the K⁰ and K⁰⁻ states. We extend the methods of Kim, Sachrajda, and Sharpe to provide a direct, uniform treatment of these three, related, finite-volume corrections. In particular, the leading, finite-volume corrections to the KLmore » – KS mass difference ΔMK and the CP-violating parameter εK are determined, including the potentially large effects which can arise from the near degeneracy of the kaon mass and the energy of a finite-volume, two-pion state.« less

  20. Improved finite-difference vibration analysis of pretwisted, tapered beams

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1984-01-01

    An improved finite difference procedure based upon second order central differences is developed. Several difficulties encountered in earlier works with fictitious stations that arise in using second order central differences, are eliminated by developing certain recursive relations. The need for forward or backward differences at the beam boundaries or other similar procedures is eliminated in the present theory. By using this improved theory, the vibration characteristics of pretwisted and tapered blades are calculated. Results of the second order theory are compared with published theoretical and experimental results and are found to be in good agreement. The present method generally produces close lower bound solutions and shows fast convergence. Thus, extrapolation procedures that are customary with first order finite-difference methods are unnecessary. Furthermore, the computational time and effort needed for this improved method are almost the same as required for the conventional first order finite-difference approach.

  1. Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells

    NASA Astrophysics Data System (ADS)

    Deinega, Alexei; John, Sajeev

    2012-10-01

    We introduce a finite difference discretization of semiconductor drift-diffusion equations using cylindrical partial waves. It can be applied to describe the photo-generated current in radial pn-junction nanowire solar cells. We demonstrate that the cylindrically symmetric (l=0) partial wave accurately describes the electronic response of a square lattice of silicon nanowires at normal incidence. We investigate the accuracy of our discretization scheme by using different mesh resolution along the radial direction r and compare with 3D (x, y, z) discretization. We consider both straight nanowires and nanowires with radius modulation along the vertical axis. The charge carrier generation profile inside each nanowire is calculated using an independent finite-difference time-domain simulation.

  2. Finite-difference schemes for anisotropic diffusion

    SciTech Connect

    Es, Bram van; Koren, Barry; Blank, Hugo J. de

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  3. Finite-temperature properties of the triangular lattice t-J model and applications to NaxCoO2

    NASA Astrophysics Data System (ADS)

    Haerter, Jan O.; Peterson, Michael R.; Shastry, B. Sriram

    2006-12-01

    We present a finite temperature (T) study of the t-J model on the two-dimensional triangular lattice for the negative hopping t , as relevant for the electron-doped NaxCoO2 (NCO). We study several thermodynamic and transport properties in this study: the T -dependent chemical potential, specific heat, magnetic susceptibility, and the dynamic Hall coefficient across the entire doping range. We show systematically how this simplest model for strongly correlated electrons describes a crossover as function of doping (x) from a Pauli-like weakly spin-correlated metal close to the band limit (density n=2 ) to the Curie-Weiss metallic phase (1.5different energy scale, dominated by spin-interactions (J) emerges. It is apparent both in specific heat and susceptibility, and we identify an effective interaction Jeff(x) , valid across the entire doping range. This is in contrast to the formula by Anderson [J. Phys.: Condens. Matter 16, R755 (2004)] for the square lattice. NCO has t<0 , hence the opposite sign of the Nagaoka-ferromagnetic situation, this expression includes the subtle effect of weak kinetic AFM [Haerter and Shastry, Phys. Rev. Lett. 95, 087202 (2005)], as encountered in the infinitely correlated situation (U=∞) for electronic frustration. By explicit computation of the Kubo formulas, we address the question of practical relevance of the high-frequency expression for the Hall coefficient RH* [Shastry , Phys. Rev. Lett. 70, 2004 (1993)]. We hope to clarify some open questions concerning the applicability of the t-J model to real experimental situations through this study.

  4. Numerical investigation of non-Newtonian fluids in annular ducts with finite aspect ratio using lattice Boltzmann method.

    PubMed

    Khali, S; Nebbali, R; Ameziani, D E; Bouhadef, K

    2013-05-01

    In this work the instability of the Taylor-Couette flow for Newtonian and non-Newtonian fluids (dilatant and pseudoplastic fluids) is investigated for cases of finite aspect ratios. The study is conducted numerically using the lattice Boltzmann method (LBM). In many industrial applications, the apparatuses and installations drift away from the idealized case of an annulus of infinite length, and thus the end caps effect can no longer be ignored. The inner cylinder is rotating while the outer one and the end walls are maintained at rest. The lattice two-dimensional nine-velocity (D2Q9) Boltzmann model developed from the Bhatnagar-Gross-Krook approximation is used to obtain the flow field for fluids obeying the power-law model. The combined effects of the Reynolds number, the radius ratio, and the power-law index n on the flow characteristics are analyzed for an annular space of finite aspect ratio. Two flow modes are obtained: a primary Couette flow (CF) mode and a secondary Taylor vortex flow (TVF) mode. The flow structures so obtained are different from one mode to another. The critical Reynolds number Re(c) for the passage from the primary to the secondary mode exhibits the lowest value for the pseudoplastic fluids and the highest value for the dilatant fluids. The findings are useful for studies of the swirling flow of non-Newtonians fluids in axisymmetric geometries using LBM. The flow changes from the CF to TVF and its structure switches from the two-cells to four-cells regime for both Newtonian and dilatant fluids. Contrariwise for pseudoplastic fluids, the flow exhibits 2-4-2 structure passing from two-cells to four cells and switches again to the two-cells configuration. Furthermore, the critical Reynolds number presents a monotonic increase with the power-law index n of the non-Newtonian fluid, and as the radius ratio grows, the transition flow regimes tend to appear for higher critical Reynolds numbers. PMID:23767615

  5. Numerical investigation of non-Newtonian fluids in annular ducts with finite aspect ratio using lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Khali, S.; Nebbali, R.; Ameziani, D. E.; Bouhadef, K.

    2013-05-01

    In this work the instability of the Taylor-Couette flow for Newtonian and non-Newtonian fluids (dilatant and pseudoplastic fluids) is investigated for cases of finite aspect ratios. The study is conducted numerically using the lattice Boltzmann method (LBM). In many industrial applications, the apparatuses and installations drift away from the idealized case of an annulus of infinite length, and thus the end caps effect can no longer be ignored. The inner cylinder is rotating while the outer one and the end walls are maintained at rest. The lattice two-dimensional nine-velocity (D2Q9) Boltzmann model developed from the Bhatnagar-Gross-Krook approximation is used to obtain the flow field for fluids obeying the power-law model. The combined effects of the Reynolds number, the radius ratio, and the power-law index n on the flow characteristics are analyzed for an annular space of finite aspect ratio. Two flow modes are obtained: a primary Couette flow (CF) mode and a secondary Taylor vortex flow (TVF) mode. The flow structures so obtained are different from one mode to another. The critical Reynolds number Rec for the passage from the primary to the secondary mode exhibits the lowest value for the pseudoplastic fluids and the highest value for the dilatant fluids. The findings are useful for studies of the swirling flow of non-Newtonians fluids in axisymmetric geometries using LBM. The flow changes from the CF to TVF and its structure switches from the two-cells to four-cells regime for both Newtonian and dilatant fluids. Contrariwise for pseudoplastic fluids, the flow exhibits 2-4-2 structure passing from two-cells to four cells and switches again to the two-cells configuration. Furthermore, the critical Reynolds number presents a monotonic increase with the power-law index n of the non-Newtonian fluid, and as the radius ratio grows, the transition flow regimes tend to appear for higher critical Reynolds numbers.

  6. Compact finite difference method for American option pricing

    NASA Astrophysics Data System (ADS)

    Zhao, Jichao; Davison, Matt; Corless, Robert M.

    2007-09-01

    A compact finite difference method is designed to obtain quick and accurate solutions to partial differential equation problems. The problem of pricing an American option can be cast as a partial differential equation. Using the compact finite difference method this problem can be recast as an ordinary differential equation initial value problem. The complicating factor for American options is the existence of an optimal exercise boundary which is jointly determined with the value of the option. In this article we develop three ways of combining compact finite difference methods for American option price on a single asset with methods for dealing with this optimal exercise boundary. Compact finite difference method one uses the implicit condition that solutions of the transformed partial differential equation be nonnegative to detect the optimal exercise value. This method is very fast and accurate even when the spatial step size h is large (h[greater-or-equal, slanted]0.1). Compact difference method two must solve an algebraic nonlinear equation obtained by Pantazopoulos (1998) at every time step. This method can obtain second order accuracy for space x and requires a moderate amount of time comparable with that required by the Crank Nicolson projected successive over relaxation method. Compact finite difference method three refines the free boundary value by a method developed by Barone-Adesi and Lugano [The saga of the American put, 2003], and this method can obtain high accuracy for space x. The last two of these three methods are convergent, moreover all the three methods work for both short term and long term options. Through comparison with existing popular methods by numerical experiments, our work shows that compact finite difference methods provide an exciting new tool for American option pricing.

  7. A comparison of the finite difference and finite element methods for heat transfer calculations

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Mortazavi, H. R.

    1982-01-01

    The finite difference method and finite element method for heat transfer calculations are compared by describing their bases and their application to some common heat transfer problems. In general it is noted that neither method is clearly superior, and in many instances, the choice is quite arbitrary and depends more upon the codes available and upon the personal preference of the analyst than upon any well defined advantages of one method. Classes of problems for which one method or the other is better suited are defined.

  8. Finite difference modeling of rotor flows including wake effects

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Desopper, A.; Tung, C.

    1982-01-01

    Rotary wing finite difference methods are investigated. The main concern is the specification of boundary conditions to properly account for the effect of the wake on the blade. Examples are given of an approach where wake effects are introduced by specifying an equivalent angle of attack. An alternate approach is also given where discrete vortices are introduced into the finite difference grid. The resulting computations of hovering and high advance ratio cases compare well with experiment. Some consideration is also given to the modeling of low to moderate advance ratio flows.

  9. Finite-Difference Algorithms For Computing Sound Waves

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1993-01-01

    Governing equations considered as matrix system. Method variant of method described in "Scheme for Finite-Difference Computations of Waves" (ARC-12970). Present method begins with matrix-vector formulation of fundamental equations, involving first-order partial derivatives of primitive variables with respect to space and time. Particular matrix formulation places time and spatial coordinates on equal footing, so governing equations considered as matrix system and treated as unit. Spatial and temporal discretizations not treated separately as in other finite-difference methods, instead treated together by linking spatial-grid interval and time step via common scale factor related to speed of sound.

  10. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    NASA Technical Reports Server (NTRS)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.

  11. Generating meshes for finite-difference analysis using a solid modeler

    NASA Astrophysics Data System (ADS)

    Laguna, G. W.; White, W. T.; Cabral, B. K.

    1987-09-01

    One tool used by the Engineering Research Division of LLNL to help analyze the behavior of electronic systems in hostile environments is 3D finite-difference time-domain (FDTD) computation. FDTD codes solve Maxwell's equations,the differential equations of electromagnetism, on a uniform lattice of points. It is this uniform lattice, or mesh, that distinguishes finite-difference codes from other codes. The simple mesh makes FDTD codes computationally more efficient than other codes, which enables them to run larger problems and to run faster (up to thirty times faster than finite-element codes, for example). Therefore, within the Engineering Department at LLNL, Electronics Engineering (EE) has initiated a project to develop a mesh generator that will provide meshes suitable for FDTD analysis. This report describes the results of the first year of EE's FDTD Mesh Generation Project. During this year a preliminary version of an automated mesh generator was built and used to create a mesh of an object of interest to the High-Power Microwave Program, namely an electrically detonatable land mine. The code was verified by meshing basic solids such as spheres and cylinders. Because of the design of the code, there is no software limitation to the size of meshes that can be accommodated. The algorithm with a mesh space of approximately 500,000 cells has been demonstrated. The mesh generator can detect certain objects with walls that are thinner than the width of a cell. The code has internal graphics for viewing objects as they appear prior to being converted to a finite-difference representation. Additionally, via data files, the code is coupled to two external graphics packages for visually checking the meshes, namely TAURUS on the Cray and a new code, IMAGE, on the Silicon Graphics IRIS workstation.

  12. Generating meshes for finite-difference analysis using a solid modeler

    SciTech Connect

    Laguna, G.W.; White, W.T.; Cabral, B.K.

    1987-09-01

    One tool used by the Engineering Research Division of LLNL to help analyze the behavior of electronic systems in hostile environments is 3D finite-difference time-domain (FDTD) computation. FDTD codes solve Maxwell's equations,the differential equations of electromagnetism, on a uniform lattice of points. It is this uniform lattice, or ''mesh,'' that distinguishes finite-difference codes from other codes. The simple mesh makes FDTD codes computationally more efficient than other codes, which enables them to run larger problems and to run faster (up to thirty times faster than finite-element codes, for example). Therefore, within the Engineering Department at LLNL, Electronics Engineering (EE) has initiated a project to develop a mesh generator that will provide meshes suitable for FDTD analysis. This report describes the results of the first year of EE's FDTD Mesh Generation Project. During this year a preliminary version of an automated mesh generator was built and used to create a mesh of an object of interest to the High-Power Microwave Program, namely an electrically detonatable land mine. The code was verified by meshing basic solids such as spheres and cylinders. Because of the design of the code, there is no software limitation to the size of meshes that can be accommodated. The algorithm with a mesh space of approximately 500,000 cells has been demonstrated. The mesh generator can detect certain objects with walls that are thinner than the width of a cell. The code has internal graphics for viewing objects as they appear prior to being converted to a finite-difference representation. Additionally, via data files, the code is coupled to two external graphics packages for visually checking the meshes, namely TAURUS on the Cray and a new code, IMAGE, on the Silicon Graphics IRIS workstation.

  13. Selecting step sizes in sensitivity analysis by finite differences

    NASA Technical Reports Server (NTRS)

    Iott, J.; Haftka, R. T.; Adelman, H. M.

    1985-01-01

    This paper deals with methods for obtaining near-optimum step sizes for finite difference approximations to first derivatives with particular application to sensitivity analysis. A technique denoted the finite difference (FD) algorithm, previously described in the literature and applicable to one derivative at a time, is extended to the calculation of several simultaneously. Both the original and extended FD algorithms are applied to sensitivity analysis for a data-fitting problem in which derivatives of the coefficients of an interpolation polynomial are calculated with respect to uncertainties in the data. The methods are also applied to sensitivity analysis of the structural response of a finite-element-modeled swept wing. In a previous study, this sensitivity analysis of the swept wing required a time-consuming trial-and-error effort to obtain a suitable step size, but it proved to be a routine application for the extended FD algorithm herein.

  14. A new finite element and finite difference hybrid method for computing electrostatics of ionic solvated biomolecule

    NASA Astrophysics Data System (ADS)

    Ying, Jinyong; Xie, Dexuan

    2015-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.

  15. Modelling the core convection using finite element and finite difference methods

    NASA Astrophysics Data System (ADS)

    Chan, K. H.; Li, Ligang; Liao, Xinhao

    2006-08-01

    Applications of both parallel finite element and finite difference methods to thermal convection in a rotating spherical shell modelling the fluid dynamics of the Earth's outer core are presented. The numerical schemes are verified by reproducing the convection benchmark test by Christensen et al. [Christensen, U.R., Aubert, J., Cardin, P., Dormy, E., Gibbons, S., Glatzmaier, G.A., Grote, E., Honkura, Y., Jones, C., Kono, M., Matsushima, M., Sakuraba, A., Takahashi, F., Tilgner, A., Wilcht, J., Zhang, K., 2001. A numerical dynamo benchmark. Phys. Earth Planet. Interiors 128, 25-34.]. Both global average and local characteristics agree satisfactorily with the benchmark solution. With the element-by-element (EBE) parallelization technique, the finite element code demonstrates nearly optimal linear scalability in computational speed. The finite difference code is also efficient and scalable by utilizing a parallel library Aztec [Tuminaro, R.S., Heroux, M., Hutchinson, S.A., Shadid, J.N., 1999. Official AZTEC User's Guide: Version 2.1.].

  16. Comparison of finite difference and finite element solutions to the variably saturated flow equation

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Clement, T. P.

    2003-01-01

    Numerical solutions to the equation governing variably saturated flow are usually obtained using either the finite difference (FD) method or the finite element (FE) method. A detailed comparison of these methods shows that the main difference between them is in how the numerical schemes spatially average the variation of material properties. Further differences are also observed in the way that flux boundaries are represented in FE and FD methods. A modified finite element (MFE) algorithm is used to explore the significance of these differences. The MFE algorithm enables a direct comparison with a typical FD solution scheme, and explicitly demonstrates the differences between FE and FD methods. The MFE algorithm provides an improved approximation to the partial differential equation over the usual FD approach while being computationally simpler to implement than the standard FE solution. One of the main limitations of the MFE algorithm is that the algorithm was developed by imposing several restrictions upon the more general FE solution; however, the MFE is shown to be preferable over the usual FE and FD solutions for some of the test problems considered in this study. The comparison results show that the FE (or MFE) solution can avoid the erroneous results encountered in the FD solution for coarsely discretized problems. The improvement in the FE solution is attributed to the broader hydraulic conductivity averaging and differences in the representation of flux type boundaries.

  17. Scheme For Finite-Difference Computations Of Waves

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1992-01-01

    Compact algorithms generating and solving finite-difference approximations of partial differential equations for propagation of waves obtained by new method. Based on concept of discrete dispersion relation. Used in wave propagation to relate frequency to wavelength and is key measure of wave fidelity.

  18. Direct Finite-Difference Simulations Of Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Moin, Parviz

    1991-01-01

    Report discusses use of upwind-biased finite-difference numerical-integration scheme to simulate evolution of small disturbances and fully developed turbulence in three-dimensional flow of viscous, incompressible fluid in channel. Involves use of computational grid sufficiently fine to resolve motion of fluid at all relevant length scales.

  19. Using the Finite Difference Calculus to Sum Powers of Integers.

    ERIC Educational Resources Information Center

    Zia, Lee

    1991-01-01

    Summing powers of integers is presented as an example of finite differences and antidifferences in discrete mathematics. The interrelation between these concepts and their analogues in differential calculus, the derivative and integral, is illustrated and can form the groundwork for students' understanding of differential and integral calculus.…

  20. Finite difference methods for the solution of unsteady potential flows

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.

    1982-01-01

    Various problems which are confronted in the development of an unsteady finite difference potential code are reviewed mainly in the context of what is done for a typical small disturbance and full potential method. The issues discussed include choice of equations, linearization and conservation, differencing schemes, and algorithm development. A number of applications, including unsteady three dimensional rotor calculations, are demonstrated.

  1. Prediction of hydraulic and electrical transport properties of sandstone with multiscale lattice Boltzmann/finite element simulation on microtomographic images

    NASA Astrophysics Data System (ADS)

    Wong, T.; Sun, W.

    2012-12-01

    Microcomputed tomography can be used to characterize the geometry of the pore space of a sedimentary rock, with resolution that is sufficiently refined for the realistic simulation of physical properties based on the 3D image. Significant advances have been made on the characterization of pore size distribution and connectivity, development of techniques such as lattice Boltzmann method to simulate permeability, and its upscaling. Sun, Andrade and Rudnicki (2011) recently introduced a multiscale method that dynamically links these three aspects, which were often treated separately in previous computational schemes. In this study, we improve the efficiency of this multiscale method by introducing a flood-fill algorithm to determine connectivity of the pores, followed by a multiscale lattice Boltzmann/finite element calculation to obtain homogenized effective anisotropic permeability. The improved multiscale method also includes new capacity to consistently determine electrical conductivity and formation factor from CT images. Furthermore, we also introduce a level set based method that transforms pore geometry to finite element mesh and thus enables direct simulation of pore-scale flow with finite element method. When applied to the microCT data acquired by Lindquist et al. (2000) for four Fontainebleau sandstone samples with porosities ranging from 7.5% to 22%, this multiscale method has proved to be computationally efficient and our simulations has provided new insights into the relation among permeability, pore geometry and connectivity.

  2. Damping of condensate oscillations of a trapped Bose gas in a one-dimensional optical lattice at finite temperatures

    NASA Astrophysics Data System (ADS)

    Arahata, Emiko; Nikuni, Tetsuro

    2008-03-01

    We study damping of the dipole oscillation in a Bose-condensed gas in a combined cigar-shaped harmonic trap and one-dimensional (1D) optical lattice potential at finite temperatures. In order to include the effect of thermal excitations in the radial direction, we derive a quasi-1D model of the Gross-Pitaevskii equation and the Bogoliubov equations. We use the Popov approximation to calculate the temperature dependence of the condensate fraction with varying lattice depth. We then calculate the Landau damping rate of the dipole oscillation as a function of the lattice depth and temperature. The damping rate increases with increasing lattice depth, which is consistent with experimental observations. The magnitude of the damping rate is in reasonable agreement with experimental data. We also find that the damping rate has a strong temperature dependence, showing a sharp increase with increasing temperature. Finally, we emphasize the importance of the radial thermal excitations in both equilibrium properties and the Landau damping.

  3. Finite temperature topological phase transitions and emergence of Dirac semi-metallic phases in a Kondo lattice

    NASA Astrophysics Data System (ADS)

    Chou, Po-Hao; Zhai, Liang-Jun; Chung, Chung-Hou; Lee, Ting-Kuo; Mou, Chung-Yu

    The energy gap in Dirac materials controls the topology and critical behaviors of the quantum phase transition associated with the critical point when the gap vanishes. However, it is often difficult to access the critical point as it requires tunablity of electronic structures. Here by exploiting the many-body screening interaction of localized spins and conduction electrons in a Kondo lattice, we demonstrate that the electronic band structures in a Kondo lattice are tunable in temperature. When spin-orbit interactions are included, we find that below the Kondo temperature, the Kondo lattice is a strong topological insulator at low temperature and undergoes a topological transition to a weak topological insulator at a higher temperature TD. At TD, Dirac points emerge and the Kondo lattice becomes a Dirac semimetal. Our results indicate that the topological phase transition though a Dirac semi-metallic phase at finite temperatures also manifests profound physics and results in critical-like behavior both in magnetic and transport properties near TD. We acknowledge support from NCTS and Ministry of Science and Technology (MoST), Taiwan.

  4. Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Roberts, Tyler; Aranson, Igor S.; de Pablo, Juan J.

    2016-02-01

    Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices.

  5. Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring.

    PubMed

    Zhang, Rui; Roberts, Tyler; Aranson, Igor S; de Pablo, Juan J

    2016-02-28

    Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices. PMID:26931724

  6. A lattice Boltzmann-finite element model for two-dimensional fluid-structure interaction problems involving shallow waters

    NASA Astrophysics Data System (ADS)

    De Rosis, Alessandro

    2014-03-01

    In this paper, a numerical method for the modeling of shallow waters interacting with slender elastic structures is presented. The fluid domain is modeled through the lattice Boltzmann method, while the solid domain is idealized by corotational beam finite elements undergoing large displacements. Structure dynamics is predicted by using the time discontinuous Galerkin method and the fluid-structure interface conditions are handled by the Immersed Boundary method. An explicit coupling strategy to combine the adopted numerical methods is proposed and its effectiveness is tested by computing the error in terms of the energy that is artificially introduced at the fluid-solid interface.

  7. Experimentally constructing finite difference algorithms in numerical relativity

    NASA Astrophysics Data System (ADS)

    Anderson, Matthew; Neilsen, David; Matzner, Richard

    2002-04-01

    Computational studies of gravitational waves require numerical algorithms with long-term stability (necessary for convergence). However, constructing stable finite difference algorithms (FDA) for the ADM formulation of the Einstein equations, especially in multiple dimensions, has proven difficult. Most FDA's are constructed using rules of thumb gained from experience with simple model equations. To search for FDA's with improved stability, we adopt a brute-force approach, where we systematically test thousands of numerical schemes. We sort the spatial derivatives of the Einstein equations into groups, and parameterize each group by finite difference type (centered or upwind) and order. Furthermore, terms proportional to the constraints are added to the evolution equations with additional parameters. A spherically symmetric, excised Schwarzschild black hole (one dimension) and linearized waves in multiple dimensions are used as model systems to evaluate the different numerical schemes.

  8. Time dependent wave envelope finite difference analysis of sound propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1984-01-01

    A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.

  9. Finite element-finite difference thermal/structural analysis of large space truss structures

    NASA Technical Reports Server (NTRS)

    Warren, Andrew H.; Arelt, Joseph E.; Eskew, William F.; Rogers, Karen M.

    1992-01-01

    A technique of automated and efficient thermal-structural processing of truss structures that interfaces the finite element and finite difference method was developed. The thermal-structural analysis tasks include development of the thermal and structural math models, thermal analysis, development of an interface and data transfer between the models, and finally an evaluation of the thermal stresses and displacements in the structure. Consequently, the objective of the developed technique was to minimize the model development time, in order to assure an automatic transfer of data between the thermal and structural models as well as to minimize the computer resources needed for the analysis itself. The method and techniques described are illustrated on the thermal/structural analysis of the Space Station Freedom main truss.

  10. Algorithmic vs. finite difference Jacobians for infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; Gimeno García, Sebastián; Vasquez, Mayte; Xu, Jian

    2015-10-01

    Jacobians, i.e. partial derivatives of the radiance and transmission spectrum with respect to the atmospheric state parameters to be retrieved from remote sensing observations, are important for the iterative solution of the nonlinear inverse problem. Finite difference Jacobians are easy to implement, but computationally expensive and possibly of dubious quality; on the other hand, analytical Jacobians are accurate and efficient, but the implementation can be quite demanding. GARLIC, our "Generic Atmospheric Radiation Line-by-line Infrared Code", utilizes algorithmic differentiation (AD) techniques to implement derivatives w.r.t. atmospheric temperature and molecular concentrations. In this paper, we describe our approach for differentiation of the high resolution infrared and microwave spectra and provide an in-depth assessment of finite difference approximations using "exact" AD Jacobians as a reference. The results indicate that the "standard" two-point finite differences with 1 K and 1% perturbation for temperature and volume mixing ratio, respectively, can exhibit substantial errors, and central differences are significantly better. However, these deviations do not transfer into the truncated singular value decomposition solution of a least squares problem. Nevertheless, AD Jacobians are clearly recommended because of the superior speed and accuracy.

  11. Semianalytical computation of path lines for finite-difference models

    USGS Publications Warehouse

    Pollock, D.W.

    1988-01-01

    A semianalytical particle tracking method was developed for use with velocities generated from block-centered finite-difference ground-water flow models. Based on the assumption that each directional velocity component varies linearly within a grid cell in its own coordinate directions, the method allows an analytical expression to be obtained describing the flow path within an individual grid cell. Given the intitial position of a particle anywhere in a cell, the coordinates of any other point along its path line within the cell, and the time of travel between them, can be computed directly. For steady-state systems, the exit point for a particle entering a cell at any arbitrary location can be computed in a single step. By following the particle as it moves from cell to cell, this method can be used to trace the path of a particle through any multidimensional flow field generated from a block-centered finite-difference flow model. -Author

  12. Finite difference seismic modeling of axial magma chambers

    SciTech Connect

    Swift, S.A.; Dougherty, M.E.; Stephen, R.A. )

    1990-11-01

    The authors tested the feasibility of using finite difference methods to model seismic propagation at {approximately}10 Hx through a two-dimensional representation of an axial magma chamber with a thin, liquid lid. This technique produces time series of displacement or pressure at seafloor receivers to mimic a seismic refraction experiment and snapshots of P and S energy propagation. The results indicate that the implementation is stable for models with sharp velocity contrasts and complex geometries. The authors observe a high-energy, downward-traveling shear phase, observable only with borehole receivers, that would be useful in studying the nature and shape of magma chambers. The ability of finite difference methods to model high-order wave phenomena makes this method ideal for testing velocity models of spreading axes and for planning near-axis drilling of the East Pacific Rise in order to optimize the benefits from shear wave imaging of sub-axis structure.

  13. Calculation of sensitivity derivatives in thermal problems by finite differences

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Malkus, D. S.

    1981-01-01

    The optimum design of a structure subject to temperature constraints is considered. When mathematical optimization techniques are used, derivatives of the temperature constraints with respect to the design variables are usually required. In the case of large aerospace structures, such as the Space Shuttle, the computation of these derivatives can become prohibitively expensive. Analytical methods and a finite difference approach have been considered in studies conducted to improve the efficiency of the calculation of the derivatives. The present investigation explores two possibilities for enhancing the effectiveness of the finite difference approach. One procedure involves the simultaneous solution of temperatures and derivatives. The second procedure makes use of the optimum selection of the magnitude of the perturbations of the design variables to achieve maximum accuracy.

  14. Finite difference schemes for long-time integration

    NASA Technical Reports Server (NTRS)

    Haras, Zigo; Taasan, Shlomo

    1993-01-01

    Finite difference schemes for the evaluation of first and second derivatives are presented. These second order compact schemes were designed for long-time integration of evolution equations by solving a quadratic constrained minimization problem. The quadratic cost function measures the global truncation error while taking into account the initial data. The resulting schemes are applicable for integration times fourfold, or more, longer than similar previously studied schemes. A similar approach was used to obtain improved integration schemes.

  15. Dispersion-relation-preserving finite difference schemes for computational acoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Webb, Jay C.

    1993-01-01

    Time-marching dispersion-relation-preserving (DRP) schemes can be constructed by optimizing the finite difference approximations of the space and time derivatives in wave number and frequency space. A set of radiation and outflow boundary conditions compatible with the DRP schemes is constructed, and a sequence of numerical simulations is conducted to test the effectiveness of the DRP schemes and the radiation and outflow boundary conditions. Close agreement with the exact solutions is obtained.

  16. High Order Finite Difference Methods for Multiscale Complex Compressible Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, H. C.

    2002-01-01

    The classical way of analyzing finite difference schemes for hyperbolic problems is to investigate as many as possible of the following points: (1) Linear stability for constant coefficients; (2) Linear stability for variable coefficients; (3) Non-linear stability; and (4) Stability at discontinuities. We will build a new numerical method, which satisfies all types of stability, by dealing with each of the points above step by step.

  17. Calculating rotordynamic coefficients of seals by finite-difference techniques

    NASA Technical Reports Server (NTRS)

    Dietzen, F. J.; Nordmann, R.

    1987-01-01

    For modelling the turbulent flow in a seal the Navier-Stokes equations in connection with a turbulence (kappa-epsilon) model are solved by a finite-difference method. A motion of the shaft round the centered position is assumed. After calculating the corresponding flow field and the pressure distribution, the rotor-dynamic coefficients of the seal can be determined. These coefficients are compared with results obtained by using the bulk flow theory of Childs and with experimental results.

  18. Finite difference time domain grid generation from AMC helicopter models

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.

    1992-01-01

    A simple technique is presented which forms a cubic grid model of a helicopter from an Aircraft Modeling Code (AMC) input file. The AMC input file defines the helicopter fuselage as a series of polygonal cross sections. The cubic grid model is used as an input to a Finite Difference Time Domain (FDTD) code to obtain predictions of antenna performance on a generic helicopter model. The predictions compare reasonably well with measured data.

  19. Finite difference time domain calculations of antenna mutual coupling

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Finite Difference Time Domain (FDTD) technique was applied to a wide variety of electromagnetic analysis problems, including shielding and scattering. However, the method has not been exclusively applied to antennas. Here, calculations of self and mutual admittances between wire antennas are made using FDTD and compared with results obtained during the method of moments. The agreement is quite good, indicating the possibilities for FDTD application to antenna impedance and coupling.

  20. Finite difference time domain calculations of antenna mutual coupling

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Finite Difference Time Domain (FDTD) technique has been applied to a wide variety of electromagnetic analysis problems, including shielding and scattering. However, the method has not been extensively applied to antennas. In this short paper calculations of self and mutual admittances between wire antennas are made using FDTD and compared with results obtained using the Method of Moments. The agreement is quite good, indicating the possibilities for FDTD application to antenna impedance and coupling.

  1. Finite difference discretisation of a model for biological nerve conduction

    NASA Astrophysics Data System (ADS)

    Aderogba, A. A.; Chapwanya, M.; Jejeniwa, O. A.

    2016-06-01

    A nonstandard finite difference method is proposed for the discretisation of the semilinear FitzHugh-Nagumo reaction diffusion equation. The equation has been useful in describing, for example, population models, biological models, heat and mass transfer models, and many other applications. The proposed approach involves splitting the equation into the space independent and the time independent sub equation. Numerical simulations for the full equation are presented.

  2. Optimized Finite-Difference Coefficients for Hydroacoustic Modeling

    NASA Astrophysics Data System (ADS)

    Preston, L. A.

    2014-12-01

    Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Finite difference methods for the solution of unsteady potential flows

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.

    1985-01-01

    A brief review is presented of various problems which are confronted in the development of an unsteady finite difference potential code. This review is conducted mainly in the context of what is done for a typical small disturbance and full potential methods. The issues discussed include choice of equation, linearization and conservation, differencing schemes, and algorithm development. A number of applications including unsteady three-dimensional rotor calculation, are demonstrated.

  4. Introduction to finite-difference methods for numerical fluid dynamics

    SciTech Connect

    Scannapieco, E.; Harlow, F.H.

    1995-09-01

    This work is intended to be a beginner`s exercise book for the study of basic finite-difference techniques in computational fluid dynamics. It is written for a student level ranging from high-school senior to university senior. Equations are derived from basic principles using algebra. Some discussion of partial-differential equations is included, but knowledge of calculus is not essential. The student is expected, however, to have some familiarity with the FORTRAN computer language, as the syntax of the computer codes themselves is not discussed. Topics examined in this work include: one-dimensional heat flow, one-dimensional compressible fluid flow, two-dimensional compressible fluid flow, and two-dimensional incompressible fluid flow with additions of the equations of heat flow and the {Kappa}-{epsilon} model for turbulence transport. Emphasis is placed on numerical instabilities and methods by which they can be avoided, techniques that can be used to evaluate the accuracy of finite-difference approximations, and the writing of the finite-difference codes themselves. Concepts introduced in this work include: flux and conservation, implicit and explicit methods, Lagrangian and Eulerian methods, shocks and rarefactions, donor-cell and cell-centered advective fluxes, compressible and incompressible fluids, the Boussinesq approximation for heat flow, Cartesian tensor notation, the Boussinesq approximation for the Reynolds stress tensor, and the modeling of transport equations. A glossary is provided which defines these and other terms.

  5. Finite difference program for calculating hydride bed wall temperature profiles

    SciTech Connect

    Klein, J.E.

    1992-10-29

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis.

  6. Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes

    SciTech Connect

    Chen, Li; He, Ya-Ling; Kang, Qinjun; Tao, Wen-Quan

    2013-12-15

    A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of which obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.

  7. Fuzzy logic to improve efficiency of finite element and finite difference schemes

    SciTech Connect

    Garcia, M.D.; Heger, A.S.

    1994-05-01

    This paper explores possible applications of logic in the areas of finite element and finite difference methods applied to engineering design problems. The application of fuzzy logic to both front-end selection of computational options and within the numerical computation itself are proposed. Further, possible methods of overcoming these limitations through the application of methods are explored. Decision strategy is a fundamental limitation in performing finite element calculations, such as selecting the optimum coarseness of the grid, numerical integration algorithm, element type, implicit versus explicit schemes, and the like. This is particularly true of novice analysts who are confronted with a myriad of choices in performing a calculation. The advantage of having the myriad of options available to the analyst is, however, that it improves and optimizes the design process if the appropriate ones are selected. Unfortunately, the optimum choices are not always apparent and only through the process of elimination or prior extensive experience can the optimum choices or combination of choices be selected. The knowledge of expert analysts could be integrated into a fuzzy ``front-end`` rule-based package to optimize the design process. The use of logic to capture the heuristic and human knowledge for selecting optimum solution strategies sets the framework for these proposed strategies.

  8. An Analysis of Finite-Difference and Finite-Volume Formulations of Convervation Laws

    NASA Astrophysics Data System (ADS)

    Vinokur, Marcel

    1989-03-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations-potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  9. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Astrophysics Data System (ADS)

    Vinokur, Marcel

    1986-06-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  10. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1986-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  11. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1989-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations: potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  12. Fractional-order difference equations for physical lattices and some applications

    SciTech Connect

    Tarasov, Vasily E.

    2015-10-15

    Fractional-order operators for physical lattice models based on the Grünwald-Letnikov fractional differences are suggested. We use an approach based on the models of lattices with long-range particle interactions. The fractional-order operators of differentiation and integration on physical lattices are represented by kernels of lattice long-range interactions. In continuum limit, these discrete operators of non-integer orders give the fractional-order derivatives and integrals with respect to coordinates of the Grünwald-Letnikov types. As examples of the fractional-order difference equations for physical lattices, we give difference analogs of the fractional nonlocal Navier-Stokes equations and the fractional nonlocal Maxwell equations for lattices with long-range interactions. Continuum limits of these fractional-order difference equations are also suggested.

  13. Explicit Finite Difference Methods for the Delay Pseudoparabolic Equations

    PubMed Central

    Amirali, I.; Amiraliyev, G. M.; Cakir, M.; Cimen, E.

    2014-01-01

    Finite difference technique is applied to numerical solution of the initial-boundary value problem for the semilinear delay Sobolev or pseudoparabolic equation. By the method of integral identities two-level difference scheme is constructed. For the time integration the implicit rule is being used. Based on the method of energy estimates the fully discrete scheme is shown to be absolutely stable and convergent of order two in space and of order one in time. The error estimates are obtained in the discrete norm. Some numerical results confirming the expected behavior of the method are shown. PMID:24688392

  14. Explicit finite difference methods for the delay pseudoparabolic equations.

    PubMed

    Amirali, I; Amiraliyev, G M; Cakir, M; Cimen, E

    2014-01-01

    Finite difference technique is applied to numerical solution of the initial-boundary value problem for the semilinear delay Sobolev or pseudoparabolic equation. By the method of integral identities two-level difference scheme is constructed. For the time integration the implicit rule is being used. Based on the method of energy estimates the fully discrete scheme is shown to be absolutely stable and convergent of order two in space and of order one in time. The error estimates are obtained in the discrete norm. Some numerical results confirming the expected behavior of the method are shown. PMID:24688392

  15. Macroscopic traffic modeling with the finite difference method

    SciTech Connect

    Mughabghab, S.; Azarm, A.; Stock, D.

    1996-03-15

    A traffic congestion forecasting model (ATOP), developed in the present investigation, is described briefly. Several macroscopic models, based on the solution of the partial differential equation of conservation of vehicles by the finite difference method, were tested using actual traffic data. The functional form, as well as the parameters, of the equation of state which describes the relation between traffic speed and traffic density, were determined for a section of the Long Island Expressway. The Lax method and the forward difference technique were applied. The results of extensive tests showed that the Lax method, in addition to giving very good agreement with the traffic data, produces stable solutions.

  16. Exact finite-size corrections for the spanning-tree model under different boundary conditions

    NASA Astrophysics Data System (ADS)

    Izmailian, N. Sh.; Kenna, R.

    2015-02-01

    We express the partition functions of the spanning tree on finite square lattices under five different sets of boundary conditions in terms of a principal partition function with twisted-boundary conditions. Based on these expressions, we derive the exact asymptotic expansions of the logarithm of the partition function for each case. We have also established several groups of identities relating spanning-tree partition functions for the different boundary conditions. We also explain an apparent discrepancy between logarithmic correction terms in the free energy for a two-dimensional spanning-tree model with periodic and free-boundary conditions and conformal field theory predictions. We have obtained corner free energy for the spanning tree under free-boundary conditions in full agreement with conformal field theory predictions.

  17. RECENT LATTICE RESULTS ON FINITE TEMPERATURE AND DENSITY QCD, PART 1.

    SciTech Connect

    KARSCH,F.

    2007-07-09

    We discuss recent progress made studies of bulk thermodynamics of strongly interacting matter through lattice simulations of QCD with an almost physical light and strange quark mass spectrum. We present results on the QCD equation of state at vanishing and non-vanishing quark chemical potential and show first results on baryon number and strangeness fluctuations, which might be measured in event-by-event fluctuations in low energy runs at RHIC as well as at FAIR.

  18. Visibility of cold atomic gases in optical lattices for finite temperatures

    SciTech Connect

    Hoffmann, Alexander; Pelster, Axel

    2009-05-15

    In nearly all experiments with ultracold atoms time-of-flight pictures are the only data available. In this paper we present an analytical strong-coupling calculation for those time-of-flight pictures of bosons in a three-dimensional optical lattice in the Mott phase. This allows us to determine the visibility, which quantifies the contrast of peaks in the time-of-flight pictures, and we suggest how to use it as a thermometer.

  19. Ising antiferromagnet on a finite triangular lattice with free boundary conditions

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Yeon

    2015-11-01

    The exact integer values for the density of states of the Ising model on an equilateral triangular lattice with free boundary conditions are evaluated up to L = 24 spins on a side for the first time by using the microcanonical transfer matrix. The total number of states is 2 N s = 2300 ≈ 2.037 × 1090 for L = 24, where N s = L( L+1)/2 is the number of spins. Classifying all 2300 spin states according to their energy values is an enormous work. From the density of states, the exact partition function zeros in the complex temperature plane of the triangular-lattice Ising model are evaluated. Using the density of states and the partition function zeros, we investigate the properties of the triangularlattice Ising antiferromagnet. The scaling behavior of the ground-state entropy and the form of the correlation length at T = 0 are studied for the triangular-lattice Ising antiferromagnet with free boundary conditions. Also, the scaling behavior of the Fisher edge singularity is investigated.

  20. Seismic imaging using finite-differences and parallel computers

    SciTech Connect

    Ober, C.C.

    1997-12-31

    A key to reducing the risks and costs of associated with oil and gas exploration is the fast, accurate imaging of complex geologies, such as salt domes in the Gulf of Mexico and overthrust regions in US onshore regions. Prestack depth migration generally yields the most accurate images, and one approach to this is to solve the scalar wave equation using finite differences. As part of an ongoing ACTI project funded by the US Department of Energy, a finite difference, 3-D prestack, depth migration code has been developed. The goal of this work is to demonstrate that massively parallel computers can be used efficiently for seismic imaging, and that sufficient computing power exists (or soon will exist) to make finite difference, prestack, depth migration practical for oil and gas exploration. Several problems had to be addressed to get an efficient code for the Intel Paragon. These include efficient I/O, efficient parallel tridiagonal solves, and high single-node performance. Furthermore, to provide portable code the author has been restricted to the use of high-level programming languages (C and Fortran) and interprocessor communications using MPI. He has been using the SUNMOS operating system, which has affected many of his programming decisions. He will present images created from two verification datasets (the Marmousi Model and the SEG/EAEG 3D Salt Model). Also, he will show recent images from real datasets, and point out locations of improved imaging. Finally, he will discuss areas of current research which will hopefully improve the image quality and reduce computational costs.

  1. Finite difference time domain modeling of spiral antennas

    NASA Technical Reports Server (NTRS)

    Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.

    1992-01-01

    The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.

  2. Compact finite difference schemes with spectral-like resolution

    NASA Technical Reports Server (NTRS)

    Lele, Sanjiva K.

    1992-01-01

    The present finite-difference schemes for the evaluation of first-order, second-order, and higher-order derivatives yield improved representation of a range of scales and may be used on nonuniform meshes. Various boundary conditions may be invoked, and both accurate interpolation and spectral-like filtering can be accomplished by means of schemes for derivatives at mid-cell locations. This family of schemes reduces to the Pade schemes when the maximal formal accuracy constraint is imposed with a specific computational stencil. Attention is given to illustrative applications of these schemes in fluid dynamics.

  3. Application of a finite difference technique to thermal wave propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1975-01-01

    A finite difference formulation is presented for thermal wave propagation resulting from periodic heat sources. The numerical technique can handle complex problems that might result from variable thermal diffusivity, such as heat flow in the earth with ice and snow layers. In the numerical analysis, the continuous temperature field is represented by a series of grid points at which the temperature is separated into real and imaginary terms. Next, computer routines previously developed for acoustic wave propagation are utilized in the solution for the temperatures. The calculation procedure is illustrated for the case of thermal wave propagation in a uniform property semi-infinite medium.

  4. Application of a finite difference technique to thermal wave propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1975-01-01

    A finite difference formulation is presented for thermal wave propagation resulting from periodic heat sources. The numerical technique can handle complex problems that might result from variable thermal diffusivity, such as heat flow in the earth with ice and snow layers. In the numerical analysis, the continuous temperature field is represented by a series of grid points at which the temperature is separated into real and imaginary terms. Computer routines previously developed for acoustic wave propagation are utilized in the solution for the temperatures. The calculation procedure is illustrated for the case of thermal wave propagation in a uniform property semi-infinite medium.

  5. FDIPS: Finite Difference Iterative Potential-field Solver

    NASA Astrophysics Data System (ADS)

    Toth, Gabor; van der Holst, Bartholomeus; Huang, Zhenguang

    2016-06-01

    FDIPS is a finite difference iterative potential-field solver that can generate the 3D potential magnetic field solution based on a magnetogram. It is offered as an alternative to the spherical harmonics approach, as when the number of spherical harmonics is increased, using the raw magnetogram data given on a grid that is uniform in the sine of the latitude coordinate can result in inaccurate and unreliable results, especially in the polar regions close to the Sun. FDIPS is written in Fortran 90 and uses the MPI library for parallel execution.

  6. A finite difference approach to microstrip antenna design

    SciTech Connect

    Barth, M.J.; Bevensee, R.M.; Pennock, S.T.

    1986-12-01

    Microstrip antennas have received increased attention in recent years, due to their size and cost advantages. Analysis of the microstrip structure has proved difficult due to the presence of the dielectric substrate, particularly for complex geometries. One possible approach to a solution is the use of a finite difference computer code to model a proposed microstrip antenna design. The models are easily constructed and altered, and code versions are available which allow input impedance or far-field patterns to be calculated. Results for some simple antenna geometries will be presented.

  7. Pencil: Finite-difference Code for Compressible Hydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Dobler, Wolfgang

    2010-10-01

    The Pencil code is a high-order finite-difference code for compressible hydrodynamic flows with magnetic fields. It is highly modular and can easily be adapted to different types of problems. The code runs efficiently under MPI on massively parallel shared- or distributed-memory computers, like e.g. large Beowulf clusters. The Pencil code is primarily designed to deal with weakly compressible turbulent flows. To achieve good parallelization, explicit (as opposed to compact) finite differences are used. Typical scientific targets include driven MHD turbulence in a periodic box, convection in a slab with non-periodic upper and lower boundaries, a convective star embedded in a fully nonperiodic box, accretion disc turbulence in the shearing sheet approximation, self-gravity, non-local radiation transfer, dust particle evolution with feedback on the gas, etc. A range of artificial viscosity and diffusion schemes can be invoked to deal with supersonic flows. For direct simulations regular viscosity and diffusion is being used. The code is written in well-commented Fortran90.

  8. Electromagnetic Scattering of Finite and Infinite 3D Lattices in Polarizable Backgrounds

    SciTech Connect

    Gallinet, Benjamin; Martin, Olivier J. F.

    2009-10-07

    A novel method is elaborated for the electromagnetic scattering from periodical arrays of scatterers embedded in a polarizable background. A dyadic periodic Green's function is introduced to calculate the scattered electric field in a lattice of dielectric or metallic objects. The method exhibits strong advantages: discretization and computation of the field are restricted to the volume of the scatterers in the unit cell, open and periodic boundary conditions for the electric field are included in the Green's tensor, and finally both near and far-fields physics are directly revealed, without any additional computational effort. Promising applications include the design of periodic structures such as frequency-selective surfaces, photonic crystals and metamaterials.

  9. Large-eddy simulations of 3D Taylor-Green vortex: comparison of Smoothed Particle Hydrodynamics, Lattice Boltzmann and Finite Volume methods

    NASA Astrophysics Data System (ADS)

    Kajzer, A.; Pozorski, J.; Szewc, K.

    2014-08-01

    In the paper we present Large-eddy simulation (LES) results of 3D Taylor- Green vortex obtained by the three different computational approaches: Smoothed Particle Hydrodynamics (SPH), Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM). The Smagorinsky model was chosen as a subgrid-scale closure in LES for all considered methods and a selection of spatial resolutions have been investigated. The SPH and LBM computations have been carried out with the use of the in-house codes executed on GPU and compared, for validation purposes, with the FVM results obtained using the open-source CFD software OpenFOAM. A comparative study in terms of one-point statistics and turbulent energy spectra shows a good agreement of LES results for all methods. An analysis of the GPU code efficiency and implementation difficulties has been made. It is shown that both SPH and LBM may offer a significant advantage over mesh-based CFD methods.

  10. Correlation versus commensurability effects for finite bosonic systems in one-dimensional lattices

    SciTech Connect

    Brouzos, Ioannis; Schmelcher, Peter; Zoellner, Sascha

    2010-05-15

    We investigate few-boson systems in finite one-dimensional multiwell traps covering the full interaction crossover from uncorrelated to fermionized particles. Our treatment of the ground-state properties is based on the numerically exact multiconfigurational time-dependent Hartree method. For commensurate filling, we trace the fingerprints of localization as the interaction strength increases, in several observables like reduced-density matrices, fluctuations, and momentum distribution. For a filling factor larger than 1 we observe on-site repulsion effects in the densities and fragmentation of particles beyond the validity of the Bose-Hubbard model upon approaching the Tonks-Girardeau limit. The presence of an incommensurate fraction of particles induces incomplete localization and spatial modulations of the density profiles, taking into account the finite size of the system.

  11. Finite Temperature Properties of Three-Component Fermion Systems in Optical Lattice

    NASA Astrophysics Data System (ADS)

    Yanatori, Hiromasa; Koga, Akihisa

    2016-01-01

    We investigate finite temperature properties in the half-filled three-component (colors) fermion systems. It is clarified that a color density-wave (CDW) state is more stable than a color-selective "antiferromagnetic" (CSAF) state against thermal fluctuations. The reentrant behavior in the phase boundary for the CSAF state is found. We also address the maximum critical temperature of the translational symmetry breaking states in the multicomponent fermionic systems.

  12. Arrayed waveguide grating using the finite difference beam propagation method

    NASA Astrophysics Data System (ADS)

    Toledo, M. C. F.; Alayo, M. I.

    2013-03-01

    The purpose of this work is to analyze by simulation the coupling effects occurring in Arrayed Waveguide Grating (AWG) using the finite difference beam propagation method (FD-BPM). Conventional FD-BPM techniques do not immediately lend themselves to the analysis of large structures such as AWG. Cooper et al.1 introduced a description of the coupling between the interface of arrayed waveguides and star couplers using the numerically-assisted coupled-mode theory. However, when the arrayed waveguides are spatially close, such that, there is strong coupling between them, and coupled-mode theory is not adequate. On the other hand, Payne2 developed an exact eigenvalue equation for the super modes of a straight arrayed waveguide which involve a computational overhead. In this work, an integration of both methods is accomplished in order to describe the behavior of the propagation of light in guided curves. This new method is expected to reduce the necessary effort for simulation while also enabling the simulation of large and curved arrayed waveguides using a fully vectorial finite difference technique.

  13. Finite Difference Elastic Wave Field Simulation On GPU

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Zhang, W.

    2011-12-01

    Numerical modeling of seismic wave propagation is considered as a basic and important aspect in investigation of the Earth's structure, and earthquake phenomenon. Among various numerical methods, the finite-difference method is considered one of the most efficient tools for the wave field simulation. However, with the increment of computing scale, the power of computing has becoming a bottleneck. With the development of hardware, in recent years, GPU shows powerful computational ability and bright application prospects in scientific computing. Many works using GPU demonstrate that GPU is powerful . Recently, GPU has not be used widely in the simulation of wave field. In this work, we present forward finite difference simulation of acoustic and elastic seismic wave propagation in heterogeneous media on NVIDIA graphics cards with the CUDA programming language. We also implement perfectly matched layers on the graphics cards to efficiently absorb outgoing waves on the fictitious edges of the grid Simulations compared with the results on CPU platform shows reliable accuracy and remarkable efficiency. This work proves that GPU can be an effective platform for wave field simulation, and it can also be used as a practical tool for real-time strong ground motion simulation.

  14. Viscoelastic Finite Difference Modeling Using Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Fabien-Ouellet, G.; Gloaguen, E.; Giroux, B.

    2014-12-01

    Full waveform seismic modeling requires a huge amount of computing power that still challenges today's technology. This limits the applicability of powerful processing approaches in seismic exploration like full-waveform inversion. This paper explores the use of Graphics Processing Units (GPU) to compute a time based finite-difference solution to the viscoelastic wave equation. The aim is to investigate whether the adoption of the GPU technology is susceptible to reduce significantly the computing time of simulations. The code presented herein is based on the freely accessible software of Bohlen (2002) in 2D provided under a General Public License (GNU) licence. This implementation is based on a second order centred differences scheme to approximate time differences and staggered grid schemes with centred difference of order 2, 4, 6, 8, and 12 for spatial derivatives. The code is fully parallel and is written using the Message Passing Interface (MPI), and it thus supports simulations of vast seismic models on a cluster of CPUs. To port the code from Bohlen (2002) on GPUs, the OpenCl framework was chosen for its ability to work on both CPUs and GPUs and its adoption by most of GPU manufacturers. In our implementation, OpenCL works in conjunction with MPI, which allows computations on a cluster of GPU for large-scale model simulations. We tested our code for model sizes between 1002 and 60002 elements. Comparison shows a decrease in computation time of more than two orders of magnitude between the GPU implementation run on a AMD Radeon HD 7950 and the CPU implementation run on a 2.26 GHz Intel Xeon Quad-Core. The speed-up varies depending on the order of the finite difference approximation and generally increases for higher orders. Increasing speed-ups are also obtained for increasing model size, which can be explained by kernel overheads and delays introduced by memory transfers to and from the GPU through the PCI-E bus. Those tests indicate that the GPU memory size

  15. Effects of finite volume on the KL – KS mass difference

    SciTech Connect

    Christ, N.  H.; Feng, X.; Martinelli, G.; Sachrajda, C.  T.

    2015-06-24

    Phenomena that involve two or more on-shell particles are particularly sensitive to the effects of finite volume and require special treatment when computed using lattice QCD. In this paper we generalize the results of Lüscher and Lellouch and Lüscher, which determine the leading-order effects of finite volume on the two-particle spectrum and two-particle decay amplitudes to determine the finite-volume effects in the second-order mixing of the K⁰ and K⁰⁻ states. We extend the methods of Kim, Sachrajda, and Sharpe to provide a direct, uniform treatment of these three, related, finite-volume corrections. In particular, the leading, finite-volume corrections to the KL – KS mass difference ΔMK and the CP-violating parameter εK are determined, including the potentially large effects which can arise from the near degeneracy of the kaon mass and the energy of a finite-volume, two-pion state.

  16. Elastic finite-difference method for irregular grids

    SciTech Connect

    Oprsal, I.; Zahradnik, J.

    1999-01-01

    Finite-difference (FD) modeling of complicated structures requires simple algorithms. This paper presents a new elastic FD method for spatially irregular grids that is simple and, at the same time, saves considerable memory and computing time. Features like faults, low-velocity layers, cavities, and/or nonplanar surfaces are treated on a fine grid, while the remaining parts of the model are, with equal accuracy, represented on a coarse grid. No interpolation is needed between the fine and coarse parts due to the rectangular grid cells. Relatively abrupt transitions between the small and large grid steps produce no numerical artifacts in the present method. Planar or nonplanar free surfaces, including underground cavities, are treated in a way similar to internal grid points but with consideration of the zero-valued elastic parameters and density outside the free surface (vacuum formalism). A theoretical proof that vacuum formalism fulfills the free-surface conditions is given. Numerical validation is performed through comparison with independent methods, comparing FD with explicitly prescribed boundary conditions and finite elements. Memory and computing time needed in the studied models was only about 10 to 40% of that employing regular square grids of equal accuracy. A practical example of a synthetic seismic section, showing clear signatures of a coal seam and cavity, is presented. The method can be extended to three dimensions.

  17. Lattice Boltzmann Method of Different BGA Orientations on I-Type Dispensing Method

    PubMed Central

    Gan, Z. L.; Ishak, M. H. H.; Abdullah, M. Z.; Khor, Soon Fuat

    2016-01-01

    This paper studies the three dimensional (3D) simulation of fluid flows through the ball grid array (BGA) to replicate the real underfill encapsulation process. The effect of different solder bump arrangements of BGA on the flow front, pressure and velocity of the fluid is investigated. The flow front, pressure and velocity for different time intervals are determined and analyzed for potential problems relating to solder bump damage. The simulation results from Lattice Boltzmann Method (LBM) code will be validated with experimental findings as well as the conventional Finite Volume Method (FVM) code to ensure highly accurate simulation setup. Based on the findings, good agreement can be seen between LBM and FVM simulations as well as the experimental observations. It was shown that only LBM is capable of capturing the micro-voids formation. This study also shows an increasing trend in fluid filling time for BGA with perimeter, middle empty and full orientations. The perimeter orientation has a higher pressure fluid at the middle region of BGA surface compared to middle empty and full orientation. This research would shed new light for a highly accurate simulation of encapsulation process using LBM and help to further increase the reliability of the package produced. PMID:27454872

  18. Lattice Boltzmann Method of Different BGA Orientations on I-Type Dispensing Method.

    PubMed

    Abas, Aizat; Gan, Z L; Ishak, M H H; Abdullah, M Z; Khor, Soon Fuat

    2016-01-01

    This paper studies the three dimensional (3D) simulation of fluid flows through the ball grid array (BGA) to replicate the real underfill encapsulation process. The effect of different solder bump arrangements of BGA on the flow front, pressure and velocity of the fluid is investigated. The flow front, pressure and velocity for different time intervals are determined and analyzed for potential problems relating to solder bump damage. The simulation results from Lattice Boltzmann Method (LBM) code will be validated with experimental findings as well as the conventional Finite Volume Method (FVM) code to ensure highly accurate simulation setup. Based on the findings, good agreement can be seen between LBM and FVM simulations as well as the experimental observations. It was shown that only LBM is capable of capturing the micro-voids formation. This study also shows an increasing trend in fluid filling time for BGA with perimeter, middle empty and full orientations. The perimeter orientation has a higher pressure fluid at the middle region of BGA surface compared to middle empty and full orientation. This research would shed new light for a highly accurate simulation of encapsulation process using LBM and help to further increase the reliability of the package produced. PMID:27454872

  19. Finite difference time domain implementation of surface impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In the finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Here, two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a two dimensional demonstration. Extensions to three dimensions should be straightforward.

  20. An optimized finite-difference scheme for wave propagation problems

    NASA Technical Reports Server (NTRS)

    Zingg, D. W.; Lomax, H.; Jurgens, H.

    1993-01-01

    Two fully-discrete finite-difference schemes for wave propagation problems are presented, a maximum-order scheme and an optimized (or spectral-like) scheme. Both combine a seven-point spatial operator and an explicit six-stage time-march method. The maximum-order operator is fifth-order in space and is sixth-order in time for a linear problem with periodic boundary conditions. The phase and amplitude errors of the schemes obtained using Fourier analysis are given and compared with a second-order and a fourth-order method. Numerical experiments are presented which demonstrate the usefulness of the schemes for a range of problems. For some problems, the optimized scheme leads to a reduction in global error compared to the maximum-order scheme with no additional computational expense.

  1. Application of a new finite difference algorithm for computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1995-01-01

    Acoustic problems have become extremely important in recent years because of research efforts such as the High Speed Civil Transport program. Computational aeroacoustics (CAA) requires a faithful representation of wave propagation over long distances, and needs algorithms that are accurate and boundary conditions that are unobtrusive. This paper applies a new finite difference method and boundary algorithm to the Linearized Euler Equations (LEE). The results demonstrate the ability of a new fourth order propagation algorithm to accurately simulate the genuinely multidimensional wave dynamics of acoustic propagation in two space dimensions with the LEE. The results also show the ability of a new outflow boundary condition and fourth order algorithm to pass the evolving solution from the computational domain with no perceptible degradation of the solution remaining within the domain.

  2. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  3. Effects of sources on time-domain finite difference models.

    PubMed

    Botts, Jonathan; Savioja, Lauri

    2014-07-01

    Recent work on excitation mechanisms in acoustic finite difference models focuses primarily on physical interpretations of observed phenomena. This paper offers an alternative view by examining the properties of models from the perspectives of linear algebra and signal processing. Interpretation of a simulation as matrix exponentiation clarifies the separate roles of sources as boundaries and signals. Boundary conditions modify the matrix and thus its modal structure, and initial conditions or source signals shape the solution, but not the modal structure. Low-frequency artifacts are shown to follow from eigenvalues and eigenvectors of the matrix, and previously reported artifacts are predicted from eigenvalue estimates. The role of source signals is also briefly discussed. PMID:24993210

  4. Finite-difference modeling of commercial aircraft using TSAR

    SciTech Connect

    Pennock, S.T.; Poggio, A.J.

    1994-11-15

    Future aircraft may have systems controlled by fiber optic cables, to reduce susceptibility to electromagnetic interference. However, the digital systems associated with the fiber optic network could still experience upset due to powerful radio stations, radars, and other electromagnetic sources, with potentially serious consequences. We are modeling the electromagnetic behavior of commercial transport aircraft in support of the NASA Fly-by-Light/Power-by-Wire program, using the TSAR finite-difference time-domain code initially developed for the military. By comparing results obtained from TSAR with data taken on a Boeing 757 at the Air Force Phillips Lab., we hope to show that FDTD codes can serve as an important tool in the design and certification of U.S. commercial aircraft, helping American companies to produce safe, reliable air transportation.

  5. Visualization of elastic wavefields computed with a finite difference code

    SciTech Connect

    Larsen, S.; Harris, D.

    1994-11-15

    The authors have developed a finite difference elastic propagation model to simulate seismic wave propagation through geophysically complex regions. To facilitate debugging and to assist seismologists in interpreting the seismograms generated by the code, they have developed an X Windows interface that permits viewing of successive temporal snapshots of the (2D) wavefield as they are calculated. The authors present a brief video displaying the generation of seismic waves by an explosive source on a continent, which propagate to the edge of the continent then convert to two types of acoustic waves. This sample calculation was part of an effort to study the potential of offshore hydroacoustic systems to monitor seismic events occurring onshore.

  6. Parallelization of implicit finite difference schemes in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel

    1990-01-01

    Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.

  7. 3D finite-difference seismic migration with parallel computers

    SciTech Connect

    Ober, C.C.; Gjertsen, R.; Minkoff, S.; Womble, D.E.

    1998-11-01

    The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is essential for reducing the risk associated with oil exploration. Imaging these structures, however, is computationally expensive as datasets can be terabytes in size. Traditional ray-tracing migration methods cannot handle complex velocity variations commonly found near such salt structures. Instead the authors use the full 3D acoustic wave equation, discretized via a finite difference algorithm. They reduce the cost of solving the apraxial wave equation by a number of numerical techniques including the method of fractional steps and pipelining the tridiagonal solves. The imaging code, Salvo, uses both frequency parallelism (generally 90% efficient) and spatial parallelism (65% efficient). Salvo has been tested on synthetic and real data and produces clear images of the subsurface even beneath complicated salt structures.

  8. Finite difference modeling of Biot's poroelastic equations atseismic frequencies

    SciTech Connect

    Masson, Y.J.; Pride, S.R.; Nihei, K.T.

    2006-02-24

    Across the seismic band of frequencies (loosely defined as<10 kHz), a seismic wave propagating through a porous material willcreate flow in the pore space that is laminar; that is, in thislow-frequency "seismic limit," the development of viscous boundary layersin the pores need not be modeled. An explicit time steppingstaggered-grid finite difference scheme is presented for solving Biot'sequations of poroelasticity in this low-frequency limit. A key part ofthis work is the establishment of rigorous stability conditions. It isdemonstrated that over a wide range of porous material properties typicalof sedimentary rock and despite the presenceof fluid pressure diffusion(Biot slow waves), the usual Courant condition governs the stability asif the problem involved purely elastic waves. The accuracy of the methodis demonstrated by comparing to exact analytical solutions for both fastcompressional waves and slow waves. Additional numerical modelingexamples are also presented.

  9. A finite-difference method for transonic airfoil design.

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Klineberg, J. M.

    1972-01-01

    This paper describes an inverse method for designing transonic airfoil sections or for modifying existing profiles. Mixed finite-difference procedures are applied to the equations of transonic small disturbance theory to determine the airfoil shape corresponding to a given surface pressure distribution. The equations are solved for the velocity components in the physical domain and flows with embedded shock waves can be calculated. To facilitate airfoil design, the method allows alternating between inverse and direct calculations to obtain a profile shape that satisfies given geometric constraints. Examples are shown of the application of the technique to improve the performance of several lifting airfoil sections. The extension of the method to three dimensions for designing supercritical wings is also indicated.

  10. Improved finite difference schemes for transonic potential calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M.; Osher, S.; Whitlow, W., Jr.

    1984-01-01

    Engquist and Osher (1980) have introduced a finite difference scheme for solving the transonic small disturbance equation, taking into account cases in which only compression shocks are admitted. Osher et al. (1983) studied a class of schemes for the full potential equation. It is proved that these schemes satisfy a new discrete 'entropy inequality' which rules out expansion shocks. However, the conducted analysis is restricted to steady two-dimensional flows. The present investigation is concerned with the adoption of a heuristic approach. The full potential equation in conservation form is solved with the aid of a modified artificial density method, based on flux biasing. It is shown that, with the current scheme, expansion shocks are not possible.

  11. Optimizations on Designing High-Resolution Finite-Difference Schemes

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Koomullil, George; Kwak, Dochan (Technical Monitor)

    1994-01-01

    We describe a general optimization procedure for both maximizing the resolution characteristics of existing finite differencing schemes as well as designing finite difference schemes that will meet the error tolerance requirements of numerical solutions. The procedure is based on an optimization process. This is a generalization of the compact scheme introduced by Lele in which the resolution is improved for single, one-dimensional spatial derivative, whereas in the present approach the complete scheme, after spatial and temporal discretizations, is optimized on a range of parameters of the scheme and the governing equations. The approach is to linearize and Fourier analyze the discretized equations to check the resolving power of the scheme for various wave number ranges in the solution and optimize the resolution to satisfy the requirements of the problem. This represents a constrained nonlinear optimization problem which can be solved to obtain the nodal weights of discretization. An objective function is defined in the parametric space of wave numbers, Courant number, Mach number and other quantities of interest. Typical criterion for defining the objective function include the maximization of the resolution of high wave numbers for acoustic and electromagnetic wave propagations and turbulence calculations. The procedure is being tested on off-design conditions of non-uniform mesh, non-periodic boundary conditions, and non-constant wave speeds for scalar and system of equations. This includes the solution of wave equations and Euler equations using a conventional scheme with and without optimization and the design of an optimum scheme for the specified error tolerance.

  12. A comparison of finite-difference and finite-element methods for calculating free edge stresses in composites

    NASA Technical Reports Server (NTRS)

    Bauld, N. R., Jr.; Goree, J. G.; Tzeng, L.-S.

    1985-01-01

    It is pointed out that edge delamination is a serious failure mechanism for laminated composite materials. Various numerical methods have been utilized in attempts to calculate the interlaminar stress components which precede delamination in a laminate. There are, however, discrepancies regarding the results provided by different methods, taking into account a finite-difference procedure, a perturbation procedure, and finite element approaches. The present investigation has the objective to assess the capacity of a finite difference method to predict the character and magnitude of the interlaminar stress distributions near an interface corner. A second purpose of the investigation is to determine if predictions by finite element method in-plane, interlaminar stress components near an interface corner represent actual laminate behavior.

  13. Nonlinear wave propagation using three different finite difference schemes (category 2 application)

    NASA Technical Reports Server (NTRS)

    Pope, D. Stuart; Hardin, J. C.

    1995-01-01

    Three common finite difference schemes are used to examine the computation of one-dimensional nonlinear wave propagation. The schemes are studied for their responses to numerical parameters such as time step selection, boundary condition implementation, and discretization of governing equations. The performance of the schemes is compared and various numerical phenomena peculiar to each is discussed.

  14. Finite difference time domain analysis of chirped dielectric gratings

    NASA Technical Reports Server (NTRS)

    Hochmuth, Diane H.; Johnson, Eric G.

    1993-01-01

    The finite difference time domain (FDTD) method for solving Maxwell's time-dependent curl equations is accurate, computationally efficient, and straight-forward to implement. Since both time and space derivatives are employed, the propagation of an electromagnetic wave can be treated as an initial-value problem. Second-order central-difference approximations are applied to the space and time derivatives of the electric and magnetic fields providing a discretization of the fields in a volume of space, for a period of time. The solution to this system of equations is stepped through time, thus, simulating the propagation of the incident wave. If the simulation is continued until a steady-state is reached, an appropriate far-field transformation can be applied to the time-domain scattered fields to obtain reflected and transmitted powers. From this information diffraction efficiencies can also be determined. In analyzing the chirped structure, a mesh is applied only to the area immediately around the grating. The size of the mesh is then proportional to the electric size of the grating. Doing this, however, imposes an artificial boundary around the area of interest. An absorbing boundary condition must be applied along the artificial boundary so that the outgoing waves are absorbed as if the boundary were absent. Many such boundary conditions have been developed that give near-perfect absorption. In this analysis, the Mur absorbing boundary conditions are employed. Several grating structures were analyzed using the FDTD method.

  15. A finite difference model for free surface gravity drainage

    SciTech Connect

    Couri, F.R.; Ramey, H.J. Jr.

    1993-09-01

    The unconfined gravity flow of liquid with a free surface into a well is a classical well test problem which has not been well understood by either hydrologists or petroleum engineers. Paradigms have led many authors to treat an incompressible flow as compressible flow to justify the delayed yield behavior of a time-drawdown test. A finite-difference model has been developed to simulate the free surface gravity flow of an unconfined single phase, infinitely large reservoir into a well. The model was verified with experimental results in sandbox models in the literature and with classical methods applied to observation wells in the Groundwater literature. The simulator response was also compared with analytical Theis (1935) and Ramey et al. (1989) approaches for wellbore pressure at late producing times. The seepage face in the sandface and the delayed yield behavior were reproduced by the model considering a small liquid compressibility and incompressible porous medium. The potential buildup (recovery) simulated by the model evidenced a different- phenomenon from the drawdown, contrary to statements found in the Groundwater literature. Graphs of buildup potential vs time, buildup seepage face length vs time, and free surface head and sand bottom head radial profiles evidenced that the liquid refills the desaturating cone as a flat moving surface. The late time pseudo radial behavior was only approached after exaggerated long times.

  16. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  17. A hybrid finite-difference and analytic element groundwater model.

    PubMed

    Haitjema, H M; Feinstein, D T; Hunt, R J; Gusyev, M A

    2010-01-01

    Regional finite-difference models tend to have large cell sizes, often on the order of 1-2 km on a side. Although the regional flow patterns in deeper formations may be adequately represented by such a model, the intricate surface water and groundwater interactions in the shallower layers are not. Several stream reaches and nearby wells may occur in a single cell, precluding any meaningful modeling of the surface water and groundwater interactions between the individual features. We propose to replace the upper MODFLOW layer or layers, in which the surface water and groundwater interactions occur, by an analytic element model (GFLOW) that does not employ a model grid; instead, it represents wells and surface waters directly by the use of point-sinks and line-sinks. For many practical cases it suffices to provide GFLOW with the vertical leakage rates calculated in the original coarse MODFLOW model in order to obtain a good representation of surface water and groundwater interactions. However, when the combined transmissivities in the deeper (MODFLOW) layers dominate, the accuracy of the GFLOW solution diminishes. For those cases, an iterative coupling procedure, whereby the leakages between the GFLOW and MODFLOW model are updated, appreciably improves the overall solution, albeit at considerable computational cost. The coupled GFLOW-MODFLOW model is applicable to relatively large areas, in many cases to the entire model domain, thus forming an attractive alternative to local grid refinement or inset models. PMID:20132324

  18. Assessment of linear finite-difference Poisson-Boltzmann solvers.

    PubMed

    Wang, Jun; Luo, Ray

    2010-06-01

    CPU time and memory usage are two vital issues that any numerical solvers for the Poisson-Boltzmann equation have to face in biomolecular applications. In this study, we systematically analyzed the CPU time and memory usage of five commonly used finite-difference solvers with a large and diversified set of biomolecular structures. Our comparative analysis shows that modified incomplete Cholesky conjugate gradient and geometric multigrid are the most efficient in the diversified test set. For the two efficient solvers, our test shows that their CPU times increase approximately linearly with the numbers of grids. Their CPU times also increase almost linearly with the negative logarithm of the convergence criterion at very similar rate. Our comparison further shows that geometric multigrid performs better in the large set of tested biomolecules. However, modified incomplete Cholesky conjugate gradient is superior to geometric multigrid in molecular dynamics simulations of tested molecules. We also investigated other significant components in numerical solutions of the Poisson-Boltzmann equation. It turns out that the time-limiting step is the free boundary condition setup for the linear systems for the selected proteins if the electrostatic focusing is not used. Thus, development of future numerical solvers for the Poisson-Boltzmann equation should balance all aspects of the numerical procedures in realistic biomolecular applications. PMID:20063271

  19. Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers.

    PubMed

    Cai, Qin; Hsieh, Meng-Juei; Wang, Jun; Luo, Ray

    2010-01-12

    We implemented and optimized seven finite-difference solvers for the full nonlinear Poisson-Boltzmann equation in biomolecular applications, including four relaxation methods, one conjugate gradient method, and two inexact Newton methods. The performance of the seven solvers was extensively evaluated with a large number of nucleic acids and proteins. Worth noting is the inexact Newton method in our analysis. We investigated the role of linear solvers in its performance by incorporating the incomplete Cholesky conjugate gradient and the geometric multigrid into its inner linear loop. We tailored and optimized both linear solvers for faster convergence rate. In addition, we explored strategies to optimize the successive over-relaxation method to reduce its convergence failures without too much sacrifice in its convergence rate. Specifically we attempted to adaptively change the relaxation parameter and to utilize the damping strategy from the inexact Newton method to improve the successive over-relaxation method. Our analysis shows that the nonlinear methods accompanied with a functional-assisted strategy, such as the conjugate gradient method and the inexact Newton method, can guarantee convergence in the tested molecules. Especially the inexact Newton method exhibits impressive performance when it is combined with highly efficient linear solvers that are tailored for its special requirement. PMID:24723843

  20. Asymptotically Correct Finite Difference Schemes for Highly Oscillatory ODEs

    SciTech Connect

    Arnold, Anton; Geier, Jens

    2010-09-30

    We are concerned with the numerical integration of ODE-initial value problems of the form {epsilon}{sup 2{phi}}{sub xx}+a(x){phi} = 0 with given a(x){>=}a{sub 0}>0 in the highly oscillatory regime 0<{epsilon}(appearing as a stationary Schroedinger equation, e.g.). In two steps we derive an accurate finite difference scheme that does not need to resolve each oscillation: With a WKB-ansatz the dominant oscillations are ''transformed out'', yielding a much smoother ODE. For the resulting oscillatory integrals we devise an asymptotic expansion both in {epsilon} and h. The resulting scheme typically has a step size restriction of h = o({radical}({epsilon})). If the phase of the WKB-transformation can be computed explicitly, then the scheme is asymptotically correct with an error bound of the order o({epsilon}{sup 3}h{sup 2}). As an application we present simulations of a 1D-model for ballistic quantum transport in a MOSFET (metal oxide semiconductor field-effect transistor).

  1. Nonlinear triggered lightning models for use in finite difference calculations

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence; Perala, Rodney A.; Ng, Poh H.

    1989-01-01

    Two nonlinear triggered lightning models have been developed for use in finite difference calculations. Both are based on three species of air chemistry physics and couple nonlinearly calculated air conductivity to Maxwell's equations. The first model is suitable for use in three-dimensional modeling and has been applied to the analysis of triggered lightning on the NASA F106B Thunderstorm Research Aircraft. The model calculates number densities of positive ions, negative ions, and electrons as a function of time and space through continuity equations, including convective derivative terms. The set of equations is closed by using experimentally determined mobilities, and the mobilities are also used to determine the air conductivity. Results from the model's application to the F106B are shown. The second model is two-dimensional and incorporates an enhanced air chemistry formulation. Momentum conservation equations replace the mobility assumption of the first model. Energy conservation equations for neutrals, heavy ions, and electrons are also used. Energy transfer into molecular vibrational modes is accounted for. The purpose for the enhanced model is to include the effects of temperature into the air breakdown, a necessary step if the model is to simulate more than the very earliest stages of breakdown. Therefore, the model also incorporates a temperature-dependent electron avalanche rate. Results from the model's application to breakdown around a conducting ellipsoid placed in an electric field are shown.

  2. Contraction pre-conditioner in finite-difference electromagnetic modelling

    NASA Astrophysics Data System (ADS)

    Yavich, Nikolay; Zhdanov, Michael S.

    2016-09-01

    This paper introduces a novel approach to constructing an effective pre-conditioner for finite-difference (FD) electromagnetic modelling in geophysical applications. This approach is based on introducing an FD contraction operator, similar to one developed for integral equation formulation of Maxwell's equation. The properties of the FD contraction operator were established using an FD analogue of the energy equality for the anomalous electromagnetic field. A new pre-conditioner uses a discrete Green's function of a 1-D layered background conductivity. We also developed the formulae for an estimation of the condition number of the system of FD equations pre-conditioned with the introduced FD contraction operator. Based on this estimation, we have established that the condition number is bounded by the maximum conductivity contrast between the background conductivity and actual conductivity. When there are both resistive and conductive anomalies relative to the background, the new pre-conditioner is advantageous over using the 1-D discrete Green's function directly. In our numerical experiments with both resistive and conductive anomalies, for a land geoelectrical model with 1:10 contrast, the method accelerates convergence of an iterative method (BiCGStab) by factors of 2-2.5, and in a marine example with 1:50 contrast, by a factor of 4.6, compared to direct use of the discrete 1-D Green's function as a pre-conditioner.

  3. Assessment of Linear Finite-Difference Poisson-Boltzmann Solvers

    PubMed Central

    Wang, Jun; Luo, Ray

    2009-01-01

    CPU time and memory usage are two vital issues that any numerical solvers for the Poisson-Boltzmann equation have to face in biomolecular applications. In this study we systematically analyzed the CPU time and memory usage of five commonly used finite-difference solvers with a large and diversified set of biomolecular structures. Our comparative analysis shows that modified incomplete Cholesky conjugate gradient and geometric multigrid are the most efficient in the diversified test set. For the two efficient solvers, our test shows that their CPU times increase approximately linearly with the numbers of grids. Their CPU times also increase almost linearly with the negative logarithm of the convergence criterion at very similar rate. Our comparison further shows that geometric multigrid performs better in the large set of tested biomolecules. However, modified incomplete Cholesky conjugate gradient is superior to geometric multigrid in molecular dynamics simulations of tested molecules. We also investigated other significant components in numerical solutions of the Poisson-Boltzmann equation. It turns out that the time-limiting step is the free boundary condition setup for the linear systems for the selected proteins if the electrostatic focusing is not used. Thus, development of future numerical solvers for the Poisson-Boltzmann equation should balance all aspects of the numerical procedures in realistic biomolecular applications. PMID:20063271

  4. Static Aeroelastic and Longitudinal Trim Model of Flexible Wing Aircraft Using Finite-Element Vortex-Lattice Coupled Solution

    NASA Technical Reports Server (NTRS)

    Ting, Eric; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.

  5. Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method

    SciTech Connect

    Mishra, Subhash C. . E-mail: scm_iitg@yahoo.com; Roy, Hillol K.

    2007-04-10

    The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The finite volume method (FVM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the FVM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 1-D planar and 2-D rectangular geometries were considered. In order to establish the suitability of the LBM, the energy equations of the two problems were also solved using the FVM of the computational fluid dynamics. The FVM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FVM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the FVM for the radiative information, results were analyzed for the effects of various parameters such as the scattering albedo, the conduction-radiation parameter and the boundary emissivity. The results of the LBM-FVM combination were found to be in excellent agreement with the FVM-FVM combination. The number of iterations and CPU times in both the combinations were found comparable.

  6. Lattice gluon and ghost propagators and the strong coupling in pure SU(3) Yang-Mills theory: Finite lattice spacing and volume effects

    NASA Astrophysics Data System (ADS)

    Duarte, Anthony G.; Oliveira, Orlando; Silva, Paulo J.

    2016-07-01

    The dependence of the Landau gauge two-point gluon and ghost correlation functions on the lattice spacing and on the physical volume are investigated for pure SU(3) Yang-Mills theory in four dimensions using lattice simulations. We present data from very large lattices up to 1284 and for two lattice spacings 0.10 fm and 0.06 fm corresponding to volumes of ˜(13 fm )4 and ˜(8 fm )4 , respectively. Our results show that, for sufficiently large physical volumes, both propagators have a mild dependence on the lattice volume. On the other hand, the gluon and ghost propagators change with the lattice spacing a in the infrared region, with the gluon propagator having a stronger dependence on a compared to the ghost propagator. In what concerns the strong coupling constant αs(p2), as defined from gluon and ghost two-point functions, the simulations show a sizeable dependence on the lattice spacing for the infrared region and for momenta up to ˜1 GeV .

  7. Exact solution of the thermodynamics and size parameters of a polymer confined to a lattice of finite size: Large chain limit

    NASA Astrophysics Data System (ADS)

    Snyder, Chad R.; Guttman, Charles M.; Di Marzio, Edmund A.

    2014-01-01

    We extend the exact solutions of the Di Marzio-Rubin matrix method for the thermodynamic properties, including chain density, of a linear polymer molecule confined to walk on a lattice of finite size. Our extensions enable (a) the use of higher dimensions (explicit 2D and 3D lattices), (b) lattice boundaries of arbitrary shape, and (c) the flexibility to allow each monomer to have its own energy of attraction for each lattice site. In the case of the large chain limit, we demonstrate how periodic boundary conditions can also be employed to reduce computation time. Advantages to this method include easy definition of chemical and physical structure (or surface roughness) of the lattice and site-specific monomer-specific energetics, and straightforward relatively fast computations. We show the usefulness and ease of implementation of this extension by examining the effect of energy variation along the lattice walls of an infinite rectangular cylinder with the idea of studying the changes in properties caused by chemical inhomogeneities on the surface of the box. Herein, we look particularly at the polymer density profile as a function of temperature in the confined region for very long polymers. One particularly striking result is the shift in the critical condition for adsorption due to surface energy inhomogeneities and the length scale of the inhomogeneities; an observation that could have important implications for polymer chromatography. Our method should have applications to both copolymers and biopolymers of arbitrary molar mass.

  8. Exact solution of the thermodynamics and size parameters of a polymer confined to a lattice of finite size: Large chain limit

    SciTech Connect

    Snyder, Chad R. Guttman, Charles M.; Di Marzio, Edmund A.

    2014-01-21

    We extend the exact solutions of the Di Marzio-Rubin matrix method for the thermodynamic properties, including chain density, of a linear polymer molecule confined to walk on a lattice of finite size. Our extensions enable (a) the use of higher dimensions (explicit 2D and 3D lattices), (b) lattice boundaries of arbitrary shape, and (c) the flexibility to allow each monomer to have its own energy of attraction for each lattice site. In the case of the large chain limit, we demonstrate how periodic boundary conditions can also be employed to reduce computation time. Advantages to this method include easy definition of chemical and physical structure (or surface roughness) of the lattice and site-specific monomer-specific energetics, and straightforward relatively fast computations. We show the usefulness and ease of implementation of this extension by examining the effect of energy variation along the lattice walls of an infinite rectangular cylinder with the idea of studying the changes in properties caused by chemical inhomogeneities on the surface of the box. Herein, we look particularly at the polymer density profile as a function of temperature in the confined region for very long polymers. One particularly striking result is the shift in the critical condition for adsorption due to surface energy inhomogeneities and the length scale of the inhomogeneities; an observation that could have important implications for polymer chromatography. Our method should have applications to both copolymers and biopolymers of arbitrary molar mass.

  9. A finite-difference contrast source inversion method

    NASA Astrophysics Data System (ADS)

    Abubakar, A.; Hu, W.; van den Berg, P. M.; Habashy, T. M.

    2008-12-01

    We present a contrast source inversion (CSI) algorithm using a finite-difference (FD) approach as its backbone for reconstructing the unknown material properties of inhomogeneous objects embedded in a known inhomogeneous background medium. Unlike the CSI method using the integral equation (IE) approach, the FD-CSI method can readily employ an arbitrary inhomogeneous medium as its background. The ability to use an inhomogeneous background medium has made this algorithm very suitable to be used in through-wall imaging and time-lapse inversion applications. Similar to the IE-CSI algorithm the unknown contrast sources and contrast function are updated alternately to reconstruct the unknown objects without requiring the solution of the full forward problem at each iteration step in the optimization process. The FD solver is formulated in the frequency domain and it is equipped with a perfectly matched layer (PML) absorbing boundary condition. The FD operator used in the FD-CSI method is only dependent on the background medium and the frequency of operation, thus it does not change throughout the inversion process. Therefore, at least for the two-dimensional (2D) configurations, where the size of the stiffness matrix is manageable, the FD stiffness matrix can be inverted using a non-iterative inversion matrix approach such as a Gauss elimination method for the sparse matrix. In this case, an LU decomposition needs to be done only once and can then be reused for multiple source positions and in successive iterations of the inversion. Numerical experiments show that this FD-CSI algorithm has an excellent performance for inverting inhomogeneous objects embedded in an inhomogeneous background medium.

  10. Finite-difference-based dynamic modeling of MEMS bridge

    NASA Astrophysics Data System (ADS)

    Michael, Aron; Yu, Kevin; Kwok, Chee Yee

    2005-02-01

    In this paper, we present a finite difference based one-dimensional dynamic modeling, which includes electro-thermal coupled with thermo-mechanical behavior of a multi-layered micro-bridge. The electro-thermal model includes the heat transfer from the joule-heated layer to the other layers, and establishes the transient temperature gradient through the thickness of the bridge. The thermal moment and axial load resulting from the transient temperature gradient are used to couple electro-thermal with thermo-mechanical behavior. The dynamic modeling takes into account buckling, and damping effects, asymmetry residual stresses in the layers, and lateral movement at the support ends. The proposed model is applied to a tri-layer micro-bridge of 1000μm length, made of 2μm silicon dioxide sandwiched in between 2μm thick epi-silicon, and 2μm thick poly silicon, with four 400μm long legs, and springs at the four corners the bridge. The beam, and legs are 40μm, and 10μm wide respectively. Results demonstrate the bi-stability of the structure, and a large movement of 40μm between the up and down stable states can easily be obtained. Application of only 21mA electrical current for 15μs to the legs is required to switch buckled-up position to buckled-down position. An additional trapezoidal waveform electrical current of 100mA amplitude for 4μs, and 100μs falling time needs to be applied for the reverse actuation. The switching speed in both cases is less than 500μs.

  11. 3D Finite Difference Modelling of Basaltic Region

    NASA Astrophysics Data System (ADS)

    Engell-Sørensen, L.

    2003-04-01

    The main purpose of the work was to generate realistic data to be applied for testing of processing and migration tools for basaltic regions. The project is based on the three - dimensional finite difference code (FD), TIGER, made by Sintef. The FD code was optimized (parallelized) by the author, to run on parallel computers. The parallel code enables us to model large-scale realistic geological models and to apply traditional seismic and micro seismic sources. The parallel code uses multiple processors in order to manipulate subsets of large amounts of data simultaneously. The general anisotropic code uses 21 elastic coefficients. Eight independent coefficients are needed as input parameters for the general TI medium. In the FD code, the elastic wave field computation is implemented by a higher order FD solution to the elastic wave equation and the wave fields are computed on a staggered grid, shifted half a node in one or two directions. The geological model is a gridded basalt model, which covers from 24 km to 37 km of a real shot line in horizontal direction and from the water surface to the depth of 3.5 km. The 2frac {1}{2}D model has been constructed using the compound modeling software from Norsk Hydro. The vertical parameter distribution is obtained from observations in two wells. At The depth of between 1100 m to 1500 m, a basalt horizon covers the whole sub surface layers. We have shown that it is possible to simulate a line survey in realistic (3D) geological models in reasonable time by using high performance computers. The author would like to thank Norsk Hydro, Statoil, GEUS, and SINTEF for very helpful discussions and Parallab for being helpful with the new IBM, p690 Regatta system.

  12. Exact ground state for the four-electron problem in a 2D finite honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Trencsényi, Réka; Glukhov, Konstantin; Gulácsi, Zsolt

    2014-07-01

    Working in a subspace with dimensionality much smaller than the dimension of the full Hilbert space, we deduce exact four-particle ground states in 2D samples containing hexagonal repeat units and described by Hubbard type of models. The procedure identifies first a small subspace ? in which the ground state ? is placed, than deduces ? by exact diagonalization in ?. The small subspace is obtained by the repeated application of the Hamiltonian ? on a carefully chosen starting wave vector describing the most interacting particle configuration, and the wave vectors resulting from the application of ?, till the obtained system of equations closes in itself. The procedure which can be applied in principle at fixed but arbitrary system size and number of particles is interesting on its own since it provides exact information for the numerical approximation techniques which use a similar strategy, but apply non-complete basis for ?. The diagonalization inside ? provides an incomplete image of the low lying part of the excitation spectrum, but provides the exact ?. Once the exact ground state is obtained, its properties can be easily analysed. The ? is found always as a singlet state whose energy, interestingly, saturates in the ? limit. The unapproximated results show that the emergence probabilities of different particle configurations in the ground state presents 'Zittern' (trembling) characteristics which are absent in 2D square Hubbard systems. Consequently, the manifestation of the local Coulomb repulsion in 2D square and honeycomb types of systems presents differences, which can be a real source in the differences in the many-body behaviour.

  13. Physical symmetry and lattice symmetry in the lattice Boltzmann method

    SciTech Connect

    Cao, N.; Chen, S.; Jin, S.; Martinez, D.

    1997-01-01

    The lattice Boltzmann method (LBM) is regarded as a specific finite difference discretization for the kinetic equation of the discrete velocity distribution function. We argue that for finite sets of discrete velocity models, such as LBM, the physical symmetry is necessary for obtaining the correct macroscopic Navier-Stokes equations. In contrast, the lattice symmetry and the Lagrangian nature of the scheme, which is often used in the lattice gas automaton method and the existing lattice Boltzmann methods and directly associated with the property of particle dynamics, is not necessary for recovering the correct macroscopic dynamics. By relaxing the lattice symmetry constraint and introducing other numerical discretization, one can also obtain correct hydrodynamics. In addition, numerical simulations for applications, such as nonuniform meshes and thermohydrodynamics can be easily carried out and numerical stability can be ensured by the Courant-Friedricks-Lewey condition and using the semi-implicit collision scheme. {copyright} {ital 1997} {ital The American Physical Society}

  14. Finite-volume versus streaming-based lattice Boltzmann algorithm for fluid-dynamics simulations: A one-to-one accuracy and performance study.

    PubMed

    Shrestha, Kalyan; Mompean, Gilmar; Calzavarini, Enrico

    2016-02-01

    A finite-volume (FV) discretization method for the lattice Boltzmann (LB) equation, which combines high accuracy with limited computational cost is presented. In order to assess the performance of the FV method we carry out a systematic comparison, focused on accuracy and computational performances, with the standard streaming lattice Boltzmann equation algorithm. In particular we aim at clarifying whether and in which conditions the proposed algorithm, and more generally any FV algorithm, can be taken as the method of choice in fluid-dynamics LB simulations. For this reason the comparative analysis is further extended to the case of realistic flows, in particular thermally driven flows in turbulent conditions. We report the successful simulation of high-Rayleigh number convective flow performed by a lattice Boltzmann FV-based algorithm with wall grid refinement. PMID:26986438

  15. Finite-volume versus streaming-based lattice Boltzmann algorithm for fluid-dynamics simulations: A one-to-one accuracy and performance study

    NASA Astrophysics Data System (ADS)

    Shrestha, Kalyan; Mompean, Gilmar; Calzavarini, Enrico

    2016-02-01

    A finite-volume (FV) discretization method for the lattice Boltzmann (LB) equation, which combines high accuracy with limited computational cost is presented. In order to assess the performance of the FV method we carry out a systematic comparison, focused on accuracy and computational performances, with the standard streaming lattice Boltzmann equation algorithm. In particular we aim at clarifying whether and in which conditions the proposed algorithm, and more generally any FV algorithm, can be taken as the method of choice in fluid-dynamics LB simulations. For this reason the comparative analysis is further extended to the case of realistic flows, in particular thermally driven flows in turbulent conditions. We report the successful simulation of high-Rayleigh number convective flow performed by a lattice Boltzmann FV-based algorithm with wall grid refinement.

  16. A total variation diminishing finite difference algorithm for sonic boom propagation models

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.

    1993-01-01

    It is difficult to accurately model the rise phases of sonic boom waveforms with traditional finite difference algorithms because of finite difference phase dispersion. This paper introduces the concept of a total variation diminishing (TVD) finite difference method as a tool for accurately modeling the rise phases of sonic booms. A standard second order finite difference algorithm and its TVD modified counterpart are both applied to the one-way propagation of a square pulse. The TVD method clearly outperforms the non-TVD method, showing great potential as a new computational tool in the analysis of sonic boom propagation.

  17. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  18. A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization

    NASA Astrophysics Data System (ADS)

    Hallez, Hans; Vanrumste, Bart; Van Hese, Peter; D'Asseler, Yves; Lemahieu, Ignace; Van de Walle, Rik

    2005-08-01

    Many implementations of electroencephalogram (EEG) dipole source localization neglect the anisotropical conductivities inherent to brain tissues, such as the skull and white matter anisotropy. An examination of dipole localization errors is made in EEG source analysis, due to not incorporating the anisotropic properties of the conductivity of the skull and white matter. First, simulations were performed in a 5 shell spherical head model using the analytical formula. Test dipoles were placed in three orthogonal planes in the spherical head model. Neglecting the skull anisotropy results in a dipole localization error of, on average, 13.73 mm with a maximum of 24.51 mm. For white matter anisotropy these values are 11.21 mm and 26.3 mm, respectively. Next, a finite difference method (FDM), presented by Saleheen and Kwong (1997 IEEE Trans. Biomed. Eng. 44 800-9), is used to incorporate the anisotropy of the skull and white matter. The FDM method has been validated for EEG dipole source localization in head models with all compartments isotropic as well as in a head model with white matter anisotropy. In a head model with skull anisotropy the numerical method could only be validated if the 3D lattice was chosen very fine (grid size <=2 mm).

  19. An energy stable, hexagonal finite difference scheme for the 2D phase field crystal amplitude equations

    NASA Astrophysics Data System (ADS)

    Guan, Zhen; Heinonen, Vili; Lowengrub, John; Wang, Cheng; Wise, Steven M.

    2016-09-01

    In this paper we construct an energy stable finite difference scheme for the amplitude expansion equations for the two-dimensional phase field crystal (PFC) model. The equations are formulated in a periodic hexagonal domain with respect to the reciprocal lattice vectors to achieve a provably unconditionally energy stable and solvable scheme. To our knowledge, this is the first such energy stable scheme for the PFC amplitude equations. The convexity of each part in the amplitude equations is analyzed, in both the semi-discrete and fully-discrete cases. Energy stability is based on a careful convexity analysis for the energy (in both the spatially continuous and discrete cases). As a result, unique solvability and unconditional energy stability are available for the resulting scheme. Moreover, we show that the scheme is point-wise stable for any time and space step sizes. An efficient multigrid solver is devised to solve the scheme, and a few numerical experiments are presented, including grain rotation and shrinkage and grain growth studies, as examples of the strength and robustness of the proposed scheme and solver.

  20. Positivity-preserving, flux-limited finite-difference and finite-element methods for reactive transport

    NASA Astrophysics Data System (ADS)

    MacKinnon, Robert J.; Carey, Graham F.

    2003-01-01

    A new class of positivity-preserving, flux-limited finite-difference and Petrov-Galerkin (PG) finite-element methods are devised for reactive transport problems.The methods are similar to classical TVD flux-limited schemes with the main difference being that the flux-limiter constraint is designed to preserve positivity for problems involving diffusion and reaction. In the finite-element formulation, we also consider the effect of numerical quadrature in the lumped and consistent mass matrix forms on the positivity-preserving property. Analysis of the latter scheme shows that positivity-preserving solutions of the resulting difference equations can only be guaranteed if the flux-limited scheme is both implicit and satisfies an additional lower-bound condition on time-step size. We show that this condition also applies to standard Galerkin linear finite-element approximations to the linear diffusion equation. Numerical experiments are provided to demonstrate the behavior of the methods and confirm the theoretical conditions on time-step size, mesh spacing, and flux limiting for transport problems with and without nonlinear reaction.

  1. Finite difference identification of noisy distributed systems using scanning measurements

    NASA Technical Reports Server (NTRS)

    Hughes, R. O.

    1975-01-01

    Most of the present-day literature concerned with identification theory and techniques is directed toward lumped parameter systems, and many comprehensive surveys of the field are available. Relatively little has appeared in the literature concerning distributed identification, and even more noticeable is the scarcity of papers dealing with systems described by the one-dimensional wave equation. Perdeauville and Goodson were perhaps the first researchers with a workable but time consuming method for the identification of coefficients of the wave equation. Fairman and Shen, also considering the wave equation, used the technique of finite differencing to approximate spatial derivatives, and Poisson filter chains to approximate temporal derivatives.

  2. The Benard problem: A comparison of finite difference and spectral collocation eigen value solutions

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee; Mccaughan, Frances E.; Fitzmaurice, Nessan

    1995-01-01

    The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation formulation is described. The performance of the spectral scheme is compared with that of a 2nd order finite difference scheme. An exact solution to the Marangoni-Benard problem is used to evaluate the performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude smaller than finite difference error for a grid resolution of N = 15 (number of points used). The performance of the spectral formulation far exceeded the performance of the finite difference formulation for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order finite difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher order finite difference schemes.

  3. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  4. High-order cyclo-difference techniques: An alternative to finite differences

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Otto, John C.

    1993-01-01

    The summation-by-parts energy norm is used to establish a new class of high-order finite-difference techniques referred to here as 'cyclo-difference' techniques. These techniques are constructed cyclically from stable subelements, and require no numerical boundary conditions; when coupled with the simultaneous approximation term (SAT) boundary treatment, they are time asymptotically stable for an arbitrary hyperbolic system. These techniques are similar to spectral element techniques and are ideally suited for parallel implementation, but do not require special collocation points or orthogonal basis functions. The principal focus is on methods of sixth-order formal accuracy or less; however, these methods could be extended in principle to any arbitrary order of accuracy.

  5. Elimination of numerical dispersion in finite-difference modeling and migration by flux-corrected transport

    SciTech Connect

    Fei, T.; Larner, K.

    1995-11-01

    Finite-difference acoustic-wave modeling and reverse-time depth migration based on the full wave equation are general approaches that can take into account arbitrary variations in velocity and density and can handle turning waves as well. However, conventional finite-difference methods for solving the acoustic- or elastic-wave equation suffer from numerical dispersion when too few samples per wavelength are used. The flux-corrected transport (FCT) algorithm, adapted from hydrodynamics, reduces the numerical dispersion in finite-difference wavefield continuation. The flux-correction procedure endeavors to incorporate diffusion into the wavefield continuation process only where needed to suppress the numerical dispersion. Incorporating the flux-correction procedure in conventional finite-difference modeling or reverse-time migration can provide finite-difference solutions with no numerical dispersion even for impulsive sources. The FCT correction, which can be applied to finite-difference approximations of any order in space and time, is an efficient alternative to use for finite-difference approximations of increasing order. Through demonstrations of modeling and migration on both synthetic and field data, the authors show the benefits of the FCT algorithm, as well as its inability to fully recover resolution lost when the spatial sampling becomes too coarse.

  6. Parallel performance of a lattice-Boltzmann/finite element cellular blood flow solver on the IBM Blue Gene/P architecture

    NASA Astrophysics Data System (ADS)

    Clausen, Jonathan R.; Reasor, Daniel A.; Aidun, Cyrus K.

    2010-06-01

    We discuss the parallel implementation and scaling results of a hybrid lattice-Boltzmann/finite element code for suspension flow simulations. This code allows the direct numerical simulation of cellular blood flow, fully resolving the two-phase nature of blood and the deformation of the suspended phase. A brief introduction to the numerical methods employed is given followed by an outline of the code structure. Scaling results obtained on Argonne National Laboratories IBM Blue Gene/P ( BG/P) are presented. Details include performance characteristics on 512 to 65,536 processor cores.

  7. Wing-Body Aeroelasticity Using Finite-Difference Fluid/Finite-Element Structural Equations on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Byun, Chansup; Guruswamy, Guru P.

    1993-01-01

    This paper presents a procedure for computing the aeroelasticity of wing-body configurations on multiple-instruction, multiple-data (MIMD) parallel computers. In this procedure, fluids are modeled using Euler equations discretized by a finite difference method, and structures are modeled using finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. A parallel integration scheme is used to compute aeroelastic responses by solving the coupled fluid and structural equations concurrently while keeping modularity of each discipline. The present procedure is validated by computing the aeroelastic response of a wing and comparing with experiment. Aeroelastic computations are illustrated for a High Speed Civil Transport type wing-body configuration.

  8. Optimization of a finite difference method for nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Chen, Miaochao

    2013-07-01

    Wave equations have important fluid dynamics background, which are extensively used in many fields, such as aviation, meteorology, maritime, water conservancy, etc. This paper is devoted to the explicit difference method for nonlinear wave equations. Firstly, a three-level and explicit difference scheme is derived. It is shown that the explicit difference scheme is uniquely solvable and convergent. Moreover, a numerical experiment is conducted to illustrate the theoretical results of the presented method.

  9. Hybrid LBM-MRT model coupled with finite difference method for double-diffusive mixed convection in rectangular enclosure with insulated moving lid

    NASA Astrophysics Data System (ADS)

    Bettaibi, Soufiene; Kuznik, Frédéric; Sediki, Ezeddine

    2016-02-01

    This paper presents a numerical study of thermosolutal mixed convection in rectangular enclosure with sliding top lid. The fluid flow is solved by the multiple relaxation time (MRT) lattice Boltzmann method (LBM), whereas the temperature and concentration fields are computed by finite difference method (FDM). The main objective of this study is to investigate the accuracy and the effectiveness of such model to predict thermodynamics for heat and mass transfer in a driven cavity. This model is validated with different numerical methods in the current literature. A good agreement is obtained between our results and previous works. The different comparisons demonstrate the robustness and the accuracy of the proposed approach.

  10. Finite-difference evolution of a scattered laser pulse in ocean water

    NASA Astrophysics Data System (ADS)

    Tessendorf, J.; Piotrowski, C.; Kelly, R. L.

    1988-01-01

    The effects of absorption and scattering on the propagation of a finite-size laser pulse through ocean water are investigated theoretically, applying a finite-difference model based on the time-dependent radiative-transfer equation. The derivation of the finite-difference evolution algorithm is outlined; its FORTRAN numerical implementation is explained; and simulation results for simple test problems are presented in graphs. The method is shown to provide unconditional stability and physically correct propagation velocities in all directions. The need to eliminate or compensate for ray effects is indicated.

  11. Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Lisitsa, Vadim; Tcheverda, Vladimir; Botter, Charlotte

    2016-04-01

    We present an algorithm for the numerical simulation of seismic wave propagation in models with a complex near surface part and free surface topography. The approach is based on the combination of finite differences with the discontinuous Galerkin method. The discontinuous Galerkin method can be used on polyhedral meshes; thus, it is easy to handle the complex surfaces in the models. However, this approach is computationally intense in comparison with finite differences. Finite differences are computationally efficient, but in general, they require rectangular grids, leading to the stair-step approximation of the interfaces, which causes strong diffraction of the wavefield. In this research we present a hybrid algorithm where the discontinuous Galerkin method is used in a relatively small upper part of the model and finite differences are applied to the main part of the model.

  12. Finite-difference scheme for the numerical solution of the Schroedinger equation

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.; Ramadhani, Issa

    1992-01-01

    A finite-difference scheme for numerical integration of the Schroedinger equation is constructed. Asymptotically (r goes to infinity), the method gives the exact solution correct to terms of order r exp -2.

  13. APPLICATION OF A FINITE-DIFFERENCE TECHNIQUE TO THE HUMAN RADIOFREQUENCY DOSIMETRY PROBLEM

    EPA Science Inventory

    A powerful finite difference numerical technique has been applied to the human radiofrequency dosimetry problem. The method possesses inherent advantages over the method of moments approach in that its implementation requires much less computer memory. Consequently, it has the ca...

  14. Techniques for correcting approximate finite difference solutions. [applied to transonic flow

    NASA Technical Reports Server (NTRS)

    Nixon, D.

    1979-01-01

    A method of correcting finite-difference solutions for the effect of truncation error or the use of an approximate basic equation is presented. Applications to transonic flow problems are described and examples given.

  15. A non-linear constrained optimization technique for the mimetic finite difference method

    SciTech Connect

    Manzini, Gianmarco; Svyatskiy, Daniil; Bertolazzi, Enrico; Frego, Marco

    2014-09-30

    This is a strategy for the construction of monotone schemes in the framework of the mimetic finite difference method for the approximation of diffusion problems on unstructured polygonal and polyhedral meshes.

  16. Construction of stable explicit finite-difference schemes for Schroedinger type differential equations

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.

    1989-01-01

    A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.

  17. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources

    PubMed Central

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  18. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.

    PubMed

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  19. Choas and instabilities in finite difference approximations to nonlinear differential equations

    SciTech Connect

    Cloutman, L. D., LLNL

    1998-07-01

    The numerical solution of time-dependent ordinary and partial differential equations by finite difference techniques is a common task in computational physics and engineering The rate equations for chemical kinetics in combustion modeling are an important example. They not only are nonlinear, but they tend to be stiff, which makes their solution a challenge for transient problems. We show that one must be very careful how such equations are solved In addition to the danger of large time-marching errors, there can be unphysical chaotic solutions that remain numerically stable for a range of time steps that depends on the particular finite difference method used We point out that the solutions of the finite difference equations converge to those of the differential equations only in the limit as the time step approaches zero for stable and consistent finite difference approximations The chaotic behavior observed for finite time steps in some nonlinear difference equations is unrelated to solutions of the differential equations, but is connected with the onset of numerical instabilities of the finite difference equations This behavior suggests that the use of the theory of chaos in nonlinear iterated maps may be useful in stability anlaysis of finite difference approximations to nonlinear differential equations, providing more stringent time step limits than the formal linear stability analysis that tests only for unbounded solutions This observation implies that apparently stable numerical solutions of nonlinear differential equations by finite difference techniques may in fact be contaminated (if not dominated) by nonphysical chaotic parasitic solutions that degrade the accuracy of the numerical solution We demonstrate this phenomenon with some solutions of the logistic equation and a simple two-dimensional computational fluid dynamics example

  20. Exact finite difference schemes for the non-linear unidirectional wave equation

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1985-01-01

    Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.

  1. Wideband finite difference time domain implementation of surface impedance boundary conditions for good conductors

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.; Yee, Kane S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In a finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media, throughout the solution volume. A 1-D implementation for a surface impedance boundary condition for good conductors in the Finite Difference Time Domain (FDTD) technique.

  2. Local Outer Radiating Boundary Conditions for the Finite-Difference Time-Domain Method Applied to Maxwell's Equations.

    NASA Astrophysics Data System (ADS)

    Steich, David James

    1995-01-01

    The Finite Difference Time Domain (FDTD) method is a simple yet powerful method for numerically solving electromagnetic wave phenomenon on computers. The FDTD technique discretizes Maxwell's equations with finite difference equations. These finite difference equations, which approximate local field behavior, are applied to large spatial lattices allowing calculation of a vast array of electromagnetical phenomenon. The greatest strengths of the FDTD method are in its simplicity, efficiency, and diversity. FDTD is capable of modeling the scattering and coupling to lossy dielectrics, lossy magnetics, anisotropic media, dispersive media, and nonlinear materials for general geometric shapes. Wideband frequency information can be obtained using FDTD for both near and far field observation points in a single computational run. However, along with all of its benefits, the FDTD algorithm has some deficiencies. For most problems of interest, poor accuracy at geometry interfaces of differing media and at outer problem space boundarys where the spatial lattice must be truncated are the two largest error sources of the FDTD algorithm. Although most accuracy issues can be circumvented by expending large amounts of computer memory and cpu time, using excessive computer resources is not always possible and is never appealing. The purpose of this thesis is to generalize, analyze, and test various mainstream local Outer Radiating Boundary Conditions (ORBCs) for the FDTD method applied to Maxwell's equations in order to help gain a better understanding of present ORBC limitations. A common mathematical model is presented for the boundary conditions. Boundary conditions shown to fit the model include Mur, Superabsorption, Liao, Higdon, and Lindman ORBCs of varying orders. Simple operators are defined and then used to generate the final discretized equations for each of the boundary conditions, automatically, without requiring complicated high order equations. The procedure also allows

  3. Exploring the Effectiveness of Different Approaches to Teaching Finite Mathematics

    ERIC Educational Resources Information Center

    Smeal, Mary; Walker, Sandra; Carter, Jamye; Simmons-Johnson, Carolyn; Balam, Esenc

    2013-01-01

    Traditionally, mathematics has been taught using a very direct approach which the teacher explains the procedure to solve a problem and the students use pencil and paper to solve the problem. However, a variety of alternative approaches to mathematics have surfaced from a number of different directions. The purpose of this study was to examine the…

  4. Finite-difference methods for solving loaded parabolic equations

    NASA Astrophysics Data System (ADS)

    Abdullayev, V. M.; Aida-zade, K. R.

    2016-01-01

    Loaded partial differential equations are solved numerically. For illustrative purposes, a boundary value problem for a parabolic equation with various point loads is considered. By applying difference approximations, the problems are reduced to systems of algebraic equations of special structure, which are solved using a parametric representation involving solutions of auxiliary linear systems with tridiagonal matrices. Numerical results are presented and analyzed.

  5. Surface Diffusion Directed Growth of Anisotropic Graphene Domains on Different Copper Lattices

    PubMed Central

    Jung, Da Hee; Kang, Cheong; Nam, Ji Eun; Jeong, Heekyung; Lee, Jin Seok

    2016-01-01

    Anisotropic graphene domains are of significant interest since the electronic properties of pristine graphene strongly depend on its size, shape, and edge structures. In this work, considering that the growth of graphene domains is governable by the dynamics of the graphene-substrate interface during growth, we investigated the shape and defects of graphene domains grown on copper lattices with different indices by chemical vapor deposition of methane at either low pressure or atmospheric pressure. Computational modeling identified that the crystallographic orientation of copper strongly influences the shape of the graphene at low pressure, yet does not play a critical role at atmospheric pressure. Moreover, the defects that have been previously observed in the center of four-lobed graphene domains grown under low pressure conditions were demonstrated for the first time to be caused by a lattice mismatch between graphene and the copper substrate. PMID:26883174

  6. Vibrons in finite size molecular lattices: a route for high-fidelity quantum state transfer at room temperature.

    PubMed

    Pouthier, Vincent

    2012-11-01

    A communication protocol is proposed in which vibron-mediated quantum state transfer takes place in a molecular lattice. We consider two distant molecular groups grafted on each side of the lattice. These groups form two quantum computers where vibrational qubits are implemented and received. The lattice defines the communication channel along which a vibron delocalizes and interacts with a phonon bath. Using quasi-degenerate perturbation theory, vibron-phonon entanglement is taken into account through the effective Hamiltonian concept. A vibron is thus dressed by a virtual phonon cloud whereas a phonon is clothed by virtual vibronic transitions. It is shown that three quasi-degenerate dressed states define the relevant paths followed by a vibron to tunnel between the computers. When the coupling between the computers and the lattice is judiciously chosen, constructive interference takes place between these paths. Phonon-induced decoherence is minimized and a high-fidelity quantum state transfer occurs over a broad temperature range. PMID:23044492

  7. Viscous flow simulations in VTOL aerodynamics. [finite difference technique

    NASA Technical Reports Server (NTRS)

    Bower, W. W.

    1978-01-01

    The critical issues in viscous flow simulations, such as boundary-layer separation, entrainment, turbulence modeling, and compressibility, are discussed with regard to the ground effects problem for vertical-takeoff-and-landing (VTOL) aircraft. A simulation of the two-dimensional incompressible lift jet in ground proximity is based on solution of the Reynolds-averaged Navier-Stokes equations and a turbulence-model equation which are written in stream function-vorticity form and are solved using Hoffman's augmented-central-difference algorithm. The resulting equations and their shortcomings are discussed when the technique is extended to two-dimensional compressible and three-dimensional incompressible flows.

  8. Application of steady state finite element and transient finite difference theory to sound propagation in a variable area duct: A comparison with experiment

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Eversman, W.; Astley, R. J.; White, J. W.

    1981-01-01

    Sound propagation without flow in a rectangular duct with a converging-diverging area variation was studied experimentally and theoretically. The area variation was of sufficient magnitude to produce large reflections and induce modal scattering. The rms (root-mean-squared) pressure and phase angle on both the flat and curved surface were measured and tabulated. The steady state finite element theory and the transient finite difference theory are in good agreement with the data. It is concluded that numerical finite difference and finite element theories appear ideally suited for handling duct propagation problems which encounter large area variations.

  9. Spanning trees on graphs and lattices in d dimensions

    NASA Astrophysics Data System (ADS)

    Shrock, Robert; Wu, F. Y.

    2000-06-01

    The problem of enumerating spanning trees on graphs and lattices is considered. We obtain bounds on the number of spanning trees NST and establish inequalities relating the numbers of spanning trees of different graphs or lattices. A general formulation is presented for the enumeration of spanning trees on lattices in d≥2 dimensions, and is applied to the hypercubic, body-centred cubic, face-centred cubic and specific planar lattices including the kagomé, diced, 4-8-8 (bathroom-tile), Union Jack and 3-12-12 lattices. This leads to closed-form expressions for NST for these lattices of finite sizes. We prove a theorem concerning the classes of graphs and lattices →∞, where zL is a finite non-zero constant. This includes the bulk limit of lattices in any spatial dimension, and also sections of lattices whose lengths in some dimensions go to infinity while others are finite. We evaluate zL exactly for the lattices we consider, and discuss the dependence of zL on d and the lattice coordination number. We also establish a relation connecting zL to the free energy of the critical Ising model for planar lattices.

  10. Lattice Boltzmann morphodynamic model

    NASA Astrophysics Data System (ADS)

    Zhou, Jian Guo

    2014-08-01

    Morphological change due to sediment transport is a common natural phenomenon in real flows. It involves complex processes of erosion and deposition such as those along beaches and in river beds, imposing a strong strain on human beings. Studying and understanding morphodynamic evolution are essential to protect living environment. Although there are conventional numerical methods like finite difference method and finite volume method for forecast of morphological change by solving flow and morphodynamic equations, the methods are too complex/inefficient to be applied to a real large scale problem. To overcome this, a lattice Boltzmann method is developed to simulate morphological evolution under flows. It provides an alternative way of studying morphodynamics at the full advantages of the lattice Boltzmann methodology. The model is verified by applications to the evolution of one and two dimensional sand dunes under shallow water flows.