Science.gov

Sample records for finite difference space

  1. Finite element-finite difference thermal/structural analysis of large space truss structures

    NASA Technical Reports Server (NTRS)

    Warren, Andrew H.; Arelt, Joseph E.; Eskew, William F.; Rogers, Karen M.

    1992-01-01

    A technique of automated and efficient thermal-structural processing of truss structures that interfaces the finite element and finite difference method was developed. The thermal-structural analysis tasks include development of the thermal and structural math models, thermal analysis, development of an interface and data transfer between the models, and finally an evaluation of the thermal stresses and displacements in the structure. Consequently, the objective of the developed technique was to minimize the model development time, in order to assure an automatic transfer of data between the thermal and structural models as well as to minimize the computer resources needed for the analysis itself. The method and techniques described are illustrated on the thermal/structural analysis of the Space Station Freedom main truss.

  2. On discontinuous Galerkin for time integration in option pricing problems with adaptive finite differences in space

    NASA Astrophysics Data System (ADS)

    von Sydow, Lina

    2013-10-01

    The discontinuous Galerkin method for time integration of the Black-Scholes partial differential equation for option pricing problems is studied and compared with more standard time-integrators. In space an adaptive finite difference discretization is employed. The results show that the dG method are in most cases at least comparable to standard time-integrators and in some cases superior to them. Together with adaptive spatial grids the suggested pricing method shows great qualities.

  3. Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions

    NASA Astrophysics Data System (ADS)

    Jia, Jinhong; Wang, Hong

    2015-07-01

    Numerical methods for space-fractional diffusion equations often generate dense or even full stiffness matrices. Traditionally, these methods were solved via Gaussian type direct solvers, which requires O (N3) of computational work per time step and O (N2) of memory to store where N is the number of spatial grid points in the discretization. In this paper we develop a preconditioned fast Krylov subspace iterative method for the efficient and faithful solution of finite difference methods (both steady-state and time-dependent) space-fractional diffusion equations with fractional derivative boundary conditions in one space dimension. The method requires O (N) of memory and O (Nlog ⁡ N) of operations per iteration. Due to the application of effective preconditioners, significantly reduced numbers of iterations were achieved that further reduces the computational cost of the fast method. Numerical results are presented to show the utility of the method.

  4. Single-cone real-space finite difference scheme for the time-dependent Dirac equation

    NASA Astrophysics Data System (ADS)

    Hammer, René; Pötz, Walter; Arnold, Anton

    2014-05-01

    A finite difference scheme for the numerical treatment of the (3+1)D Dirac equation is presented. Its staggered-grid intertwined discretization treats space and time coordinates on equal footing, thereby avoiding the notorious fermion doubling problem. This explicit scheme operates entirely in real space and leads to optimal linear scaling behavior for the computational effort per space-time grid-point. It allows for an easy and efficient parallelization. A functional for a norm on the grid is identified. It can be interpreted as probability density and is proved to be conserved by the scheme. The single-cone dispersion relation is shown and exact stability conditions are derived. Finally, a single-cone scheme for the two-component (2+1)D Dirac equation, its properties, and a simulation of scattering at a Klein step are presented.

  5. ATLAS: A real-space finite-difference implementation of orbital-free density functional theory

    NASA Astrophysics Data System (ADS)

    Mi, Wenhui; Shao, Xuecheng; Su, Chuanxun; Zhou, Yuanyuan; Zhang, Shoutao; Li, Quan; Wang, Hui; Zhang, Lijun; Miao, Maosheng; Wang, Yanchao; Ma, Yanming

    2016-03-01

    Orbital-free density functional theory (OF-DFT) is a promising method for large-scale quantum mechanics simulation as it provides a good balance of accuracy and computational cost. Its applicability to large-scale simulations has been aided by progress in constructing kinetic energy functionals and local pseudopotentials. However, the widespread adoption of OF-DFT requires further improvement in its efficiency and robustly implemented software. Here we develop a real-space finite-difference (FD) method for the numerical solution of OF-DFT in periodic systems. Instead of the traditional self-consistent method, a powerful scheme for energy minimization is introduced to solve the Euler-Lagrange equation. Our approach engages both the real-space finite-difference method and a direct energy-minimization scheme for the OF-DFT calculations. The method is coded into the ATLAS software package and benchmarked using periodic systems of solid Mg, Al, and Al3Mg. The test results show that our implementation can achieve high accuracy, efficiency, and numerical stability for large-scale simulations.

  6. Real-space finite difference scheme for the von Neumann equation with the Dirac Hamiltonian

    NASA Astrophysics Data System (ADS)

    Schreilechner, Magdalena; Pötz, Walter

    2016-07-01

    A finite difference scheme for the numerical treatment of the von Neumann equation for the (2+1)D Dirac Hamiltonian is presented. It is based on a sequential left-right (ket-bra) application of a staggered space-time scheme for the pure-state Dirac equation and offers a numerical treatment of the general mixed-state dynamics of an isolated quantum system within the von Neumann equation. Thereby this direct scheme inherits all the favorable features of the finite-difference scheme for the pure-state Dirac equation, such as the single-cone energy-momentum dispersion, convergence conditions, and scaling behavior. A conserved functional is identified. Moreover this scheme is shown to conserve both Hermiticity and positivity. Numerical tests comprise a numerical analysis of stability, as well as the simulation of a mixed-state time-evolution of Gaussian wave functions, illustrating Zitterbewegung and transverse current oscillations. Imaginary-potential absorbing boundary conditions and parameters which pertain to topological insulator surface states were used in the numerical simulations.

  7. Experimental validation of a new space marching finite difference algorithm for the inverse heat conduction problem

    NASA Astrophysics Data System (ADS)

    Raynaud, M.; Bransier, J.

    A space-marching finite difference algorithm is developed for solving the one-dimensional inverse heat conduction problem. The method is easy to apply, stable, and as accurate as the most efficient existing methods. An experimental set-up made of a rectangular parallelepiped polymerized around a woof of thermocouples has been designed especially to validate the method. The thermal conductivity of the test specimen was previously determined with the same set-up, and the specific heat is estimated during the experiments. The estimated surface heat flux is in very good agreement with the heat flux measured by a foil heat flux gage, regardless of the sensor locations. These results show that the method remains effective in spite of the cumulated effects of the errors due to the data acquisition system, to the location and calibration of the sensors, and to the simultaneous estimation of the specific heat.

  8. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  9. An Adaptive Finite Difference Method for Hyperbolic Systems in OneSpace Dimension

    SciTech Connect

    Bolstad, John H.

    1982-06-01

    Many problems of physical interest have solutions which are generally quite smooth in a large portion of the region of interest, but have local phenomena such as shocks, discontinuities or large gradients which require much more accurate approximations or finer grids for reasonable accuracy. Examples are atmospheric fronts, ocean currents, and geological discontinuities. In this thesis we develop and partially analyze an adaptive finite difference mesh refinement algorithm for the initial boundary value problem for hyperbolic systems in one space dimension. The method uses clusters of uniform grids which can ''move'' along with pulses or steep gradients appearing in the calculation, and which are superimposed over a uniform coarse grid. Such refinements are created, destroyed, merged, separated, recursively nested or moved based on estimates of the local truncation error. We use a four-way linked tree and sequentially allocated deques (double-ended queues) to perform these operations efficiently. The local truncation error in the interior of the region is estimated using a three-step Richardson extrapolation procedure, which can also be considered a deferred correction method. At the boundaries we employ differences to estimate the error. Our algorithm was implemented using a portable, extensible Fortran preprocessor, to which we added records and pointers. The method is applied to three model problems: the first order wave equation, the second order wave equation, and the inviscid Burgers equation. For the first two model problems our algorithm is shown to be three to five times more efficient (in computing time) than the use of a uniform coarse mesh, for the same accuracy. Furthermore, to our knowledge, our algorithm is the only one which adaptively treats time-dependent boundary conditions for hyperbolic systems.

  10. Evaluation of stress distribution of implant-retained mandibular overdenture with different vertical restorative spaces: A finite element analysis

    PubMed Central

    Ebadian, Behnaz; Farzin, Mahmoud; Talebi, Saeid; Khodaeian, Niloufar

    2012-01-01

    Background: Available restorative space and bar height is an important factor in stress distribution of implant-supported overdentures. The purpose of this study was to evaluate the effect of different vertical restorative spaces and different bar heights on the stress distribution around implants by 3D finite element analysis. Materials and Methods: 3D finite element models were developed from mandibular overdentures with two implants in the interforaminal region. In these models, four different bar heights from gingival crest (0.5, 1, 1.5, 2 mm) with 15 mm occlusal plane height and three different occlusal plane heights from gingival crest (9, 12, 15 mm) with 2 mm bar height were analyzed. A vertical unilateral and a bilateral load of 150 N were applied to the central occlusal fossa of the first molar and the stress of bone around implant was analyzed by finite element analysis. Results: By increasing vertical restorative space, the maximum stress values around implants were found to be decreased in unilateral loading models but slightly increased in bilateral loading cases. By increasing bar height from gingival crest, the maximum stress values around implants were found to be increased in unilateral loading models but slightly decreased in bilateral loading cases. In unilateral loading models, maximum stress was found in a model with 9 mm occlusal plane height and 1.5 mm bar height (6.254 MPa), but in bilateral loading cases, maximum stress was found in a model with 15 mm occlusal plane height and 0.5 mm bar height (3.482 MPa). Conclusion: The reduction of bar height and increase in the thickness of acrylic resin base in implant-supported overdentures are biomechanically favorable and may result in less stress in periimplant bone. PMID:23559952

  11. 3D acoustic wave modelling with time-space domain dispersion-relation-based finite-difference schemes and hybrid absorbing boundary conditions

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Sen, Mrinal K.

    2011-09-01

    Most conventional finite-difference methods adopt second-order temporal and (2M)th-order spatial finite-difference stencils to solve the 3D acoustic wave equation. When spatial finite-difference stencils devised from the time-space domain dispersion relation are used to replace these conventional spatial finite-difference stencils devised from the space domain dispersion relation, the accuracy of modelling can be increased from second-order along any directions to (2M)th-order along 48 directions. In addition, the conventional high-order spatial finite-difference modelling accuracy can be improved by using a truncated finite-difference scheme. In this paper, we combine the time-space domain dispersion-relation-based finite difference scheme and the truncated finite-difference scheme to obtain optimised spatial finite-difference coefficients and thus to significantly improve the modelling accuracy without increasing computational cost, compared with the conventional space domain dispersion-relation-based finite difference scheme. We developed absorbing boundary conditions for the 3D acoustic wave equation, based on predicting wavefield values in a transition area by weighing wavefield values from wave equations and one-way wave equations. Dispersion analyses demonstrate that high-order spatial finite-difference stencils have greater accuracy than low-order spatial finite-difference stencils for high frequency components of wavefields, and spatial finite-difference stencils devised in the time-space domain have greater precision than those devised in the space domain under the same discretisation. The modelling accuracy can be improved further by using the truncated spatial finite-difference stencils. Stability analyses show that spatial finite-difference stencils devised in the time-space domain have better stability condition. Numerical modelling experiments for homogeneous, horizontally layered and Society of Exploration Geophysicists/European Association of

  12. Insights of finite difference models of the wave equation and Maxwell's equations into the geometry of space-time

    NASA Astrophysics Data System (ADS)

    Cole, James B.

    2014-09-01

    The finite difference time domain (FDTD) algorithm is a popular tool for photonics design and simulations, but it also can yield deep insights into the fundamental nature of light and - more speculatively - into the discretization and connectivity and geometry of space-time. The CFL stability limit in FDTD can be interpreted as a limit on the speed of light. It depends not only on the dimensionality of space-time, but also on its connectivity. Thus the speed of light not only tells us something about the dimensionality of space-time but also about its connectivity. The computational molecule in conventional 2-D FDTD is (х +/- h,y)-(x,+/- y h)-(x-y), where h= triangle x = triangle y . It yields the CFL stability limit ctriangle/h<= t/h 1 √2 . Including diagonal nodes (x+/- h, y +/- h) in the computational molecule changes the connectivity of the space and changes the CFL limit. The FDTD model also predicts precursor signals (which physically exist). The Green's function of the FDTD model, which differs from that of the wave equation, may tell us something about underlying periodicities in space-time. It may be possible to experimentally observe effects of space-time discretization and connectivity in optics experiments.

  13. Lightning Threat Analysis for the Space Shuttle Launch Pad and the Payload Changeout Room Using Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Collier, Richard S.

    1997-01-01

    This report describes finite difference computer calculations for the Space Shuttle Launch Pad which predict lightning induced electric currents and electric and magnetic fields caused by a lightning strike to the Lightning Protection System caternary wire. Description of possible lightning threats to Shuttle Payload components together with specifications for protection of these components, result from the calculation of lightning induced electric and magnetic fields inside and outside the during a lightning event. These fields also induce currents and voltages on cables and circuits which may be connected to, or a part of, shuttle payload components. These currents and voltages are also calculated. These threat levels are intended as a guide for designers of payload equipment to specify any shielding and/or lightning protection mitigation which may be required for payload components which are in the process of preparation or being transferred into the Shuttle Orbiter.

  14. Nonstandard finite difference schemes

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.

    1995-01-01

    The major research activities of this proposal center on the construction and analysis of nonstandard finite-difference schemes for ordinary and partial differential equations. In particular, we investigate schemes that either have zero truncation errors (exact schemes) or possess other significant features of importance for numerical integration. Our eventual goal is to bring these methods to bear on problems that arise in the modeling of various physical, engineering, and technological systems. At present, these efforts are extended in the direction of understanding the exact nature of these nonstandard procedures and extending their use to more complicated model equations. Our presentation will give a listing (obtained to date) of the nonstandard rules, their application to a number of linear and nonlinear, ordinary and partial differential equations. In certain cases, numerical results will be presented.

  15. Numerical computation of transonic flows by finite-element and finite-difference methods

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  16. A staggered-grid finite-difference scheme optimized in the time-space domain for modeling scalar-wave propagation in geophysical problems

    NASA Astrophysics Data System (ADS)

    Tan, Sirui; Huang, Lianjie

    2014-11-01

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within a given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.

  17. A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

    SciTech Connect

    Tan, Sirui; Huang, Lianjie

    2014-11-01

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within a given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.

  18. Mimetic finite difference method

    NASA Astrophysics Data System (ADS)

    Lipnikov, Konstantin; Manzini, Gianmarco; Shashkov, Mikhail

    2014-01-01

    The mimetic finite difference (MFD) method mimics fundamental properties of mathematical and physical systems including conservation laws, symmetry and positivity of solutions, duality and self-adjointness of differential operators, and exact mathematical identities of the vector and tensor calculus. This article is the first comprehensive review of the 50-year long history of the mimetic methodology and describes in a systematic way the major mimetic ideas and their relevance to academic and real-life problems. The supporting applications include diffusion, electromagnetics, fluid flow, and Lagrangian hydrodynamics problems. The article provides enough details to build various discrete operators on unstructured polygonal and polyhedral meshes and summarizes the major convergence results for the mimetic approximations. Most of these theoretical results, which are presented here as lemmas, propositions and theorems, are either original or an extension of existing results to a more general formulation using polyhedral meshes. Finally, flexibility and extensibility of the mimetic methodology are shown by deriving higher-order approximations, enforcing discrete maximum principles for diffusion problems, and ensuring the numerical stability for saddle-point systems.

  19. 3-D thermal analysis using finite difference technique with finite element model for improved design of components of rocket engine turbomachines for Space Shuttle Main Engine SSME

    NASA Technical Reports Server (NTRS)

    Sohn, Kiho D.; Ip, Shek-Se P.

    1988-01-01

    Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.

  20. PARMELA_B: a new version of PARMELA with coherent synchrotron radiation effects and a finite difference space charge routine

    NASA Astrophysics Data System (ADS)

    Koltenbah, Benjamin E. C.; Parazzoli, Claudio G.; Greegor, Robert B.; Dowell, David H.

    2002-07-01

    Recent interest in advanced laser light sources has stimulated development of accelerator systems of intermediate beam energy, 100-200 MeV, and high charge, 1-10 nC, for high power FEL applications and high energy, 1-2 GeV, high charge, SASE-FEL applications. The current generation of beam transport codes which were developed for high-energy, low-charge beams with low self-fields are inadequate to address this energy and charge regime, and better computational tools are required to accurately calculate self-fields. To that end, we have developed a new version of PARMELA, named PARMELA_B and written in Fortran 95, which includes a coherent synchrotron radiation (CSR) routine and an improved, generalized space charge (SC) routine. An electron bunch is simulated by a collection of macro-particles, which traverses a series of beam line elements. At each time step through the calculation, the momentum of each particle is updated due to the presence of external and self-fields. The self-fields are due to CSR and SC. For the CSR calculations, the macro-particles are further combined into macro-particle-bins that follow the central trajectory of the bend. The energy change through the time step is calculated from expressions derived from the Liénard-Wiechart formulae, and from this energy change the particle's momentum is updated. For the SC calculations, we maintain the same rest-frame-electrostatic approach of the original PARMELA; however, we employ a finite difference Poisson equation solver instead of the symmetrical ring algorithm of the original code. In this way, we relax the symmetry assumptions in the original code. This method is based upon standard numerical procedures and conserves momentum to first order. The SC computational grid is adaptive and conforms to the size of the pulse as it evolves through the calculation. We provide descriptions of these two algorithms, validation comparisons with other CSR and SC methods, and a limited comparison with

  1. Finite Topological Spaces as a Pedagogical Tool

    ERIC Educational Resources Information Center

    Helmstutler, Randall D.; Higginbottom, Ryan S.

    2012-01-01

    We propose the use of finite topological spaces as examples in a point-set topology class especially suited to help students transition into abstract mathematics. We describe how carefully chosen examples involving finite spaces may be used to reinforce concepts, highlight pathologies, and develop students' non-Euclidean intuition. We end with a…

  2. Exponential Finite-Difference Technique

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1989-01-01

    Report discusses use of explicit exponential finite-difference technique to solve various diffusion-type partial differential equations. Study extends technique to transient-heat-transfer problems in one dimensional cylindrical coordinates and two and three dimensional Cartesian coordinates and to some nonlinear problems in one or two Cartesian coordinates.

  3. On the wavelet optimized finite difference method

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1994-01-01

    When one considers the effect in the physical space, Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small scale structure exists. Adding a wavelet basis function at a given scale and location where one has a correspondingly large wavelet coefficient is, essentially, equivalent to adding a grid point, or two, at the same location and at a grid density which corresponds to the wavelet scale. This paper introduces a wavelet optimized finite difference method which is equivalent to a wavelet method in its multiresolution approach but which does not suffer from difficulties with nonlinear terms and boundary conditions, since all calculations are done in the physical space. With this method one can obtain an arbitrarily good approximation to a conservative difference method for solving nonlinear conservation laws.

  4. Nonstandard Finite Difference Schemes: Relations Between Time and Space Step-Sizes in Numerical Schemes for PDE's That Follow from Positivity Condition

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.

    1996-01-01

    A large class of physical phenomena can be modeled by evolution and wave type Partial Differential Equations (PDE). Few of these equations have known explicit exact solutions. Finite-difference techniques are a popular method for constructing discrete representations of these equations for the purpose of numerical integration. However, the solutions to the difference equations often contain so called numerical instabilities; these are solutions to the difference equations that do not correspond to any solution of the PDE's. For explicit schemes, the elimination of this behavior requires functional relations to exist between the time and space steps-sizes. We show that such functional relations can be obtained for certain PDE's by use of a positivity condition. The PDE's studied are the Burgers, Fisher, and linearized Euler equations.

  5. Adaptive finite difference for seismic wavefield modelling in acoustic media.

    PubMed

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-01-01

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang's optimised finite difference scheme. PMID:27491333

  6. Adaptive finite difference for seismic wavefield modelling in acoustic media

    NASA Astrophysics Data System (ADS)

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-08-01

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang’s optimised finite difference scheme.

  7. Adaptive finite difference for seismic wavefield modelling in acoustic media

    PubMed Central

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-01-01

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang’s optimised finite difference scheme. PMID:27491333

  8. Finite element and finite difference methods in electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Morgan, Michael A.

    Finite-difference and finite-element methods for the computational analysis of EM scattering phenomena are examined in chapters contributed by leading experts. Topics addressed include an FEM for composite scatterers, coupled finite- and boundary-element methods for EM scattering, absorbing boundary conditions for the direct solution PDEs arising in EM scattering problems, application of the control-region approximation to two-dimensional EM scattering, coupled potentials for EM fields in inhomogeneous media, the method of conforming boundary elements for transient electromagnetics, and the finite-difference time-domain method for numerical modeling of EM wave interactions with arbitrary structures. Extensive diagrams and graphs of typical results are provided.

  9. An efficient finite-difference method with high-order accuracy in both time and space domains for modelling scalar-wave propagation

    NASA Astrophysics Data System (ADS)

    Tan, Sirui; Huang, Lianjie

    2014-05-01

    For modelling large-scale 3-D scalar-wave propagation, the finite-difference (FD) method with high-order accuracy in space but second-order accuracy in time is widely used because of its relatively low requirements of computer memory. We develop a novel staggered-grid (SG) FD method with high-order accuracy not only in space, but also in time, for solving 2- and 3-D scalar-wave equations. We determine the coefficients of the FD operator in the joint time-space domain to achieve high-order accuracy in time while preserving high-order accuracy in space. Our new FD scheme is based on a stencil that contains a few more grid points than the standard stencil. It is 2M-th-order accurate in space and fourth-order accurate in time when using 2M grid points along each axis and wavefields at one time step as the standard SGFD method. We validate the accuracy and efficiency of our new FD scheme using dispersion analysis and numerical modelling of scalar-wave propagation in 2- and 3-D complex models with a wide range of velocity contrasts. For media with a velocity contrast up to five, our new FD scheme is approximately two times more computationally efficient than the standard SGFD scheme with almost the same computer-memory requirement as the latter. Further numerical experiments demonstrate that our new FD scheme loses its advantages over the standard SGFD scheme if the velocity contrast is 10. However, for most large-scale geophysical applications, the velocity contrasts often range approximately from 1 to 3. Our new method is thus particularly useful for large-scale 3-D scalar-wave modelling and full-waveform inversion.

  10. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.

  11. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    The current and future potential of finite difference methods for solving real rotor problems which now rely largely on empiricism are demonstrated. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advanced-ratio flight. Comparisons are made with experimental pressure data.

  12. Stochastic finite-difference time-domain

    NASA Astrophysics Data System (ADS)

    Smith, Steven Michael

    2011-12-01

    This dissertation presents the derivation of an approximate method to determine the mean and the variance of electro-magnetic fields in the body using the Finite-Difference Time-Domain (FDTD) method. Unlike Monte Carlo analysis, which requires repeated FDTD simulations, this method directly computes the variance of the fields at every point in space at every sample of time in the simulation. This Stochastic FDTD simulation (S-FDTD) has at its root a new wave called the Variance wave, which is computed in the time domain along with the mean properties of the model space in the FDTD simulation. The Variance wave depends on the electro-magnetic fields, the reflections and transmission though the different dielectrics, and the variances of the electrical properties of the surrounding materials. Like the electro-magnetic fields, the Variance wave begins at zero (there is no variance before the source is turned on) and is computed in the time domain until all fields reach steady state. This process is performed in a fraction of the time of a Monte Carlo simulation and yields the first two statistical parameters (mean and variance). The mean of the field is computed using the traditional FDTD equations. Variance is computed by approximating the correlation coefficients between the constituitive properties and the use of the S-FDTD equations. The impetus for this work was the simulation time it takes to perform 3D Specific Absorption Rate (SAR) FDTD analysis of the human head model for cell phone power absorption in the human head due to the proximity of a cell phone being used. In many instances, Monte Carlo analysis is not performed due to the lengthy simulation times required. With the development of S-FDTD, these statistical analyses could be performed providing valuable statistical information with this information being provided in a small fraction of the time it would take to perform a Monte Carlo analysis.

  13. Finite-difference modelling of wavefield constituents

    NASA Astrophysics Data System (ADS)

    Robertsson, Johan O. A.; van Manen, Dirk-Jan; Schmelzbach, Cedric; Van Renterghem, Cederic; Amundsen, Lasse

    2015-11-01

    The finite-difference method is among the most popular methods for modelling seismic wave propagation. Although the method has enjoyed huge success for its ability to produce full wavefield seismograms in complex models, it has one major limitation which is of critical importance for many modelling applications; to naturally output up- and downgoing and P- and S-wave constituents of synthesized seismograms. In this paper, we show how such wavefield constituents can be isolated in finite-difference-computed synthetics in complex models with high numerical precision by means of a simple algorithm. The description focuses on up- and downgoing and P- and S-wave separation of data generated using an isotropic elastic finite-difference modelling method. However, the same principles can also be applied to acoustic, electromagnetic and other wave equations.

  14. Applications of an exponential finite difference technique

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Keith, Theo G., Jr.

    1988-01-01

    An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.

  15. Finite-difference fluid dynamics computer mathematical models for the design and interpretation of experiments for space flight. [atmospheric general circulation experiment, convection in a float zone, and the Bridgman-Stockbarger crystal growing system

    NASA Technical Reports Server (NTRS)

    Roberts, G. O.; Fowlis, W. W.; Miller, T. L.

    1984-01-01

    Numerical methods are used to design a spherical baroclinic flow model experiment of the large scale atmosphere flow for Spacelab. The dielectric simulation of radial gravity is only dominant in a low gravity environment. Computer codes are developed to study the processes at work in crystal growing systems which are also candidates for space flight. Crystalline materials rarely achieve their potential properties because of imperfections and component concentration variations. Thermosolutal convection in the liquid melt can be the cause of these imperfections. Such convection is suppressed in a low gravity environment. Two and three dimensional finite difference codes are being used for this work. Nonuniform meshes and implicit iterative methods are used. The iterative method for steady solutions is based on time stepping but has the options of different time steps for velocity and temperature and of a time step varying smoothly with position according to specified powers of the mesh spacings. This allows for more rapid convergence. The code being developed for the crystal growth studies allows for growth of the crystal as the solid-liquid interface. The moving interface is followed using finite differences; shape variations are permitted. For convenience in applying finite differences in the solid and liquid, a time dependent coordinate transformation is used to make this interface a coordinate surface.

  16. Dispersion-relation-preserving finite difference schemes for computational acoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Webb, Jay C.

    1993-01-01

    Time-marching dispersion-relation-preserving (DRP) schemes can be constructed by optimizing the finite difference approximations of the space and time derivatives in wave number and frequency space. A set of radiation and outflow boundary conditions compatible with the DRP schemes is constructed, and a sequence of numerical simulations is conducted to test the effectiveness of the DRP schemes and the radiation and outflow boundary conditions. Close agreement with the exact solutions is obtained.

  17. Finite-Difference Algorithms For Computing Sound Waves

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1993-01-01

    Governing equations considered as matrix system. Method variant of method described in "Scheme for Finite-Difference Computations of Waves" (ARC-12970). Present method begins with matrix-vector formulation of fundamental equations, involving first-order partial derivatives of primitive variables with respect to space and time. Particular matrix formulation places time and spatial coordinates on equal footing, so governing equations considered as matrix system and treated as unit. Spatial and temporal discretizations not treated separately as in other finite-difference methods, instead treated together by linking spatial-grid interval and time step via common scale factor related to speed of sound.

  18. Verifying continuous-variable entanglement in finite spaces

    SciTech Connect

    Sperling, J.; Vogel, W.

    2009-05-15

    Starting from arbitrary Hilbert spaces, we reduce the problem to verify entanglement of any bipartite quantum state to finite-dimensional subspaces. Entanglement can be fully characterized as a finite-dimensional property, even though in general the truncation of the Hilbert space may cause fake nonclassicality. A generalization for multipartite quantum states is also given.

  19. Compact finite difference method for American option pricing

    NASA Astrophysics Data System (ADS)

    Zhao, Jichao; Davison, Matt; Corless, Robert M.

    2007-09-01

    A compact finite difference method is designed to obtain quick and accurate solutions to partial differential equation problems. The problem of pricing an American option can be cast as a partial differential equation. Using the compact finite difference method this problem can be recast as an ordinary differential equation initial value problem. The complicating factor for American options is the existence of an optimal exercise boundary which is jointly determined with the value of the option. In this article we develop three ways of combining compact finite difference methods for American option price on a single asset with methods for dealing with this optimal exercise boundary. Compact finite difference method one uses the implicit condition that solutions of the transformed partial differential equation be nonnegative to detect the optimal exercise value. This method is very fast and accurate even when the spatial step size h is large (h[greater-or-equal, slanted]0.1). Compact difference method two must solve an algebraic nonlinear equation obtained by Pantazopoulos (1998) at every time step. This method can obtain second order accuracy for space x and requires a moderate amount of time comparable with that required by the Crank Nicolson projected successive over relaxation method. Compact finite difference method three refines the free boundary value by a method developed by Barone-Adesi and Lugano [The saga of the American put, 2003], and this method can obtain high accuracy for space x. The last two of these three methods are convergent, moreover all the three methods work for both short term and long term options. Through comparison with existing popular methods by numerical experiments, our work shows that compact finite difference methods provide an exciting new tool for American option pricing.

  20. Finite-difference migration to zero offset

    SciTech Connect

    Li, Jianchao

    1992-07-01

    Migration to zero offset (MZO), also called dip moveout (DMO) or prestack partial migration, transforms prestack offset seismic data into approximate zero-offset data so as to remove reflection point smear and obtain quality stacked results over a range of reflector dips. MZO has become an important step in standard seismic data processing, and a variety of frequency-wavenumber (f-k) and integral MZO algorithms have been used in practice to date. Here, I present a finite-difference MZO algorithm applied to normal-moveout (NMO)-corrected, common-offset sections. This algorithm employs a traditional poststack 15-degree finite-difference migration algorithm and a special velocity function rather than the true migration velocity. This paper shows results of implementation of this MZO algorithm when velocity varies with depth, and discusses the possibility of applying this algorithm to cases where velocity varies with both depth and horizontal distance.

  1. Finite-difference migration to zero offset

    SciTech Connect

    Li, Jianchao.

    1992-01-01

    Migration to zero offset (MZO), also called dip moveout (DMO) or prestack partial migration, transforms prestack offset seismic data into approximate zero-offset data so as to remove reflection point smear and obtain quality stacked results over a range of reflector dips. MZO has become an important step in standard seismic data processing, and a variety of frequency-wavenumber (f-k) and integral MZO algorithms have been used in practice to date. Here, I present a finite-difference MZO algorithm applied to normal-moveout (NMO)-corrected, common-offset sections. This algorithm employs a traditional poststack 15-degree finite-difference migration algorithm and a special velocity function rather than the true migration velocity. This paper shows results of implementation of this MZO algorithm when velocity varies with depth, and discusses the possibility of applying this algorithm to cases where velocity varies with both depth and horizontal distance.

  2. Simulating Space Capsule Water Landing with Explicit Finite Element Method

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Lyle, Karen H.

    2007-01-01

    A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.

  3. Spectral differences in real-space electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Jordan, D. K.; Mazziotti, D. A.

    2004-01-01

    Real-space grids for electronic structure calculations are efficient because the potential is diagonal while the second derivative in the kinetic energy may be sparsely evaluated with finite differences or finite elements. In applications to vibrational problems in chemical physics a family of methods known as spectral differences has improved finite differences by several orders of magnitude. In this paper the use of spectral differences for electronic structure is studied. Spectral differences are implemented in two electronic structure programs PARSEC and HARES which currently employ finite differences. Applications to silicon clusters and lattices indicate that spectral differences achieve the same accuracy as finite differences with less computational work.

  4. Finite difference discretisation of a model for biological nerve conduction

    NASA Astrophysics Data System (ADS)

    Aderogba, A. A.; Chapwanya, M.; Jejeniwa, O. A.

    2016-06-01

    A nonstandard finite difference method is proposed for the discretisation of the semilinear FitzHugh-Nagumo reaction diffusion equation. The equation has been useful in describing, for example, population models, biological models, heat and mass transfer models, and many other applications. The proposed approach involves splitting the equation into the space independent and the time independent sub equation. Numerical simulations for the full equation are presented.

  5. Software suite for finite difference method models.

    PubMed

    Arola, T; Hannula, M; Narra, N; Malmivuo, J; Hyttinen, J

    2006-01-01

    We have developed a software suite for finite difference method (FDM) model construction, visualization and quasi-static simulation to be used in bioelectric field modeling. The aim of the software is to provide a full path from medical image data to simulation of bioelectric phenomena and results visualization. It is written in Java and can be run on various platforms while still supporting all features included. The software can be distributed across a network utilizing dedicated servers for calculation intensive tasks. Supported visualization modes are both two- and three-dimensional modes. PMID:17946057

  6. The Complex-Step-Finite-Difference method

    NASA Astrophysics Data System (ADS)

    Abreu, Rafael; Stich, Daniel; Morales, Jose

    2015-07-01

    We introduce the Complex-Step-Finite-Difference method (CSFDM) as a generalization of the well-known Finite-Difference method (FDM) for solving the acoustic and elastic wave equations. We have found a direct relationship between modelling the second-order wave equation by the FDM and the first-order wave equation by the CSFDM in 1-D, 2-D and 3-D acoustic media. We present the numerical methodology in order to apply the introduced CSFDM and show an example for wave propagation in simple homogeneous and heterogeneous models. The CSFDM may be implemented as an extension into pre-existing numerical techniques in order to obtain fourth- or sixth-order accurate results with compact three time-level stencils. We compare advantages of imposing various types of initial motion conditions of the CSFDM and demonstrate its higher-order accuracy under the same computational cost and dispersion-dissipation properties. The introduced method can be naturally extended to solve different partial differential equations arising in other fields of science and engineering.

  7. Domain decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation

    NASA Astrophysics Data System (ADS)

    Beilina, Larisa

    2016-08-01

    We present domain decomposition finite element/finite difference method for the solution of hyperbolic equation. The domain decomposition is performed such that finite elements and finite differences are used in different subdomains of the computational domain: finite difference method is used on the structured part of the computational domain and finite elements on the unstructured part of the domain. Explicit discretizations for both methods are constructed such that the finite element and the finite difference schemes coincide on the common structured overlapping layer between computational subdomains. Then the resulting approach can be considered as a pure finite element scheme which avoids instabilities at the interfaces. We derive an energy estimate for the underlying hyperbolic equation with absorbing boundary conditions and illustrate efficiency of the domain decomposition method on the reconstruction of the conductivity function in three dimensions.

  8. Efficient discretization in finite difference method

    NASA Astrophysics Data System (ADS)

    Rozos, Evangelos; Koussis, Antonis; Koutsoyiannis, Demetris

    2015-04-01

    Finite difference method (FDM) is a plausible and simple method for solving partial differential equations. The standard practice is to use an orthogonal discretization to form algebraic approximate formulations of the derivatives of the unknown function and a grid, much like raster maps, to represent the properties of the function domain. For example, for the solution of the groundwater flow equation, a raster map is required for the characterization of the discretization cells (flow cell, no-flow cell, boundary cell, etc.), and two raster maps are required for the hydraulic conductivity and the storage coefficient. Unfortunately, this simple approach to describe the topology comes along with the known disadvantages of the FDM (rough representation of the geometry of the boundaries, wasted computational resources in the unavoidable expansion of the grid refinement in all cells of the same column and row, etc.). To overcome these disadvantages, Hunt has suggested an alternative approach to describe the topology, the use of an array of neighbours. This limits the need for discretization nodes only for the representation of the boundary conditions and the flow domain. Furthermore, the geometry of the boundaries is described more accurately using a vector representation. Most importantly, graded meshes can be employed, which are capable of restricting grid refinement only in the areas of interest (e.g. regions where hydraulic head varies rapidly, locations of pumping wells, etc.). In this study, we test the Hunt approach against MODFLOW, a well established finite difference model, and the Finite Volume Method with Simplified Integration (FVMSI). The results of this comparison are examined and critically discussed.

  9. TUNED FINITE-DIFFERENCE DIFFUSION OPERATORS

    SciTech Connect

    Maron, Jason; Low, Mordecai-Mark Mac E-mail: mordecai@amnh.org

    2009-05-15

    Finite-difference simulations of fluid dynamics and magnetohydrodynamics generally require an explicit diffusion operator, either to maintain stability by attenuating grid-scale structure, or to implement physical diffusivities such as viscosity or resistivity. If the goal is stability only, the diffusion must act at the grid scale, but should affect structure at larger scales as little as possible. For physical diffusivities the diffusion scale depends on the problem, and diffusion may act at larger scales as well. Diffusivity can undesirably limit the computational time step in both cases. We construct tuned finite-difference diffusion operators that minimally limit the time step while acting as desired near the diffusion scale. Such operators reach peak values at the diffusion scale rather than at the grid scale, but behave as standard operators at larger scales. These operators will be useful for simulations with high magnetic diffusivity or kinematic viscosity such as in the simulation of astrophysical dynamos with magnetic Prandtl number far from unity, or for numerical stabilization using hyperdiffusivity.

  10. Calculation of sensitivity derivatives in thermal problems by finite differences

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Malkus, D. S.

    1981-01-01

    The optimum design of a structure subject to temperature constraints is considered. When mathematical optimization techniques are used, derivatives of the temperature constraints with respect to the design variables are usually required. In the case of large aerospace structures, such as the Space Shuttle, the computation of these derivatives can become prohibitively expensive. Analytical methods and a finite difference approach have been considered in studies conducted to improve the efficiency of the calculation of the derivatives. The present investigation explores two possibilities for enhancing the effectiveness of the finite difference approach. One procedure involves the simultaneous solution of temperatures and derivatives. The second procedure makes use of the optimum selection of the magnitude of the perturbations of the design variables to achieve maximum accuracy.

  11. Explicit Finite Difference Methods for the Delay Pseudoparabolic Equations

    PubMed Central

    Amirali, I.; Amiraliyev, G. M.; Cakir, M.; Cimen, E.

    2014-01-01

    Finite difference technique is applied to numerical solution of the initial-boundary value problem for the semilinear delay Sobolev or pseudoparabolic equation. By the method of integral identities two-level difference scheme is constructed. For the time integration the implicit rule is being used. Based on the method of energy estimates the fully discrete scheme is shown to be absolutely stable and convergent of order two in space and of order one in time. The error estimates are obtained in the discrete norm. Some numerical results confirming the expected behavior of the method are shown. PMID:24688392

  12. Explicit finite difference methods for the delay pseudoparabolic equations.

    PubMed

    Amirali, I; Amiraliyev, G M; Cakir, M; Cimen, E

    2014-01-01

    Finite difference technique is applied to numerical solution of the initial-boundary value problem for the semilinear delay Sobolev or pseudoparabolic equation. By the method of integral identities two-level difference scheme is constructed. For the time integration the implicit rule is being used. Based on the method of energy estimates the fully discrete scheme is shown to be absolutely stable and convergent of order two in space and of order one in time. The error estimates are obtained in the discrete norm. Some numerical results confirming the expected behavior of the method are shown. PMID:24688392

  13. A comparative study of finite element and finite difference methods for Cauchy-Riemann type equations

    NASA Technical Reports Server (NTRS)

    Fix, G. J.; Rose, M. E.

    1983-01-01

    A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.

  14. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    SciTech Connect

    Kim, S.

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  15. Finite Mathematics and Discrete Mathematics: Is There a Difference?

    ERIC Educational Resources Information Center

    Johnson, Marvin L.

    Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…

  16. High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains

    NASA Astrophysics Data System (ADS)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-11-01

    Nonlinear entropy stability is used to derive provably stable high-order finite difference operators including boundary closure stencils, for the compressible Navier-Stokes equations. A comparison technique is used to derive a new Entropy Stable Weighted Essentially Non-Oscillatory (SSWENO) finite difference method, appropriate for simulations of problems with shocks. Viscous terms are approximated using conservative, entropy stable, narrow-stencil finite difference operators. The efficacy of the new discrete operators is demonstrated using both smooth and discontinuous test cases.

  17. Finite element analysis of a deployable space structure

    NASA Technical Reports Server (NTRS)

    Hutton, D. V.

    1982-01-01

    To assess the dynamic characteristics of a deployable space truss, a finite element model of the Scientific Applications Space Platform (SASP) truss has been formulated. The model incorporates all additional degrees of freedom associated with the pin-jointed members. Comparison of results with SPAR models of the truss show that the joints of the deployable truss significantly affect the vibrational modes of the structure only if the truss is relatively short.

  18. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    NASA Technical Reports Server (NTRS)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  19. Geometrical Series and Phase Space in a Finite Oscillatory Motion

    ERIC Educational Resources Information Center

    Mareco, H. R. Olmedo

    2006-01-01

    This article discusses some interesting physical properties of oscillatory motion of a particle on two joined inclined planes. The geometrical series demonstrates that the particle will oscillate during a finite time. Another detail is the converging path to the origin of the phase space. Due to its simplicity, this motion may be used as a…

  20. Quantum mechanics in finite-dimensional Hilbert space

    NASA Astrophysics Data System (ADS)

    de la Torre, A. C.; Goyeneche, D.

    2003-01-01

    The quantum mechanical formalism for the position and momentum of a particle on a one-dimensional lattice is developed. Some mathematical features characteristic of finite-dimensional Hilbert spaces are compared with the infinite-dimensional case. The construction of an unbiased basis for state determination is discussed.

  1. Comparison of finite-difference and analytic microwave calculation methods

    SciTech Connect

    Friedlander, F.I.; Jackson, H.W.; Barmatz, M.; Wagner, P.

    1996-12-31

    Normal modes and power absorption distributions in microwave cavities containing lossy dielectric samples were calculated for problems of interest in materials processing. The calculations were performed both using a commercially available finite-difference electromagnetic solver and by numerical evaluation of exact analytic expressions. Results obtained by the two methods applied to identical physical situations were compared. The studies validate the accuracy of the finite-difference electromagnetic solver. Relative advantages of the analytic and finite-difference methods are discussed.

  2. Finite element models of the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Muller, G. R.

    1980-01-01

    Finite element models were developed as input to dynamic simulations of the high pressure fuel turbopump (HPFTP), the high pressure oxidizer turbopump (HPOTP), and the space shuttle main engine (SSME). Descriptions are provided for the five basic finite element models: HPFTP rotor, HPFTP case, HPOTP rotor, HPOTP case, and SSME (excluding turbopumps). Modal results are presented for the HPFTP rotor, HPFTP case, HPOTP rotor, coupled HPFTP rotor and case, HPOTP case, coupled HPOTP rotor and case, SSME (excluding turbopumps), and SSME (including turbopumps). Results for the SSME (including turbopumps) model are compared to data from a SSME HPOTP modal survey.

  3. One-node coarse-mesh finite difference algorithm for fine-mesh finite difference operator

    SciTech Connect

    Shin, H.C.; Kim, Y.H.; Kim, Y.B.

    1999-07-01

    This paper is concerned with speeding up the convergence of the fine-mesh finite difference (FMFD) method for the neutron diffusion problem. The basic idea of the new algorithm originates from the two-node coarse-mesh finite difference (CMFD) schemes for nodal methods, where the low-order CMFD operator is iteratively corrected through a global-local iteration so that the final solution of the CMFD problem is equivalent to the high-order nodal solution. Unlike conventional CMFD methods, the new CMFD algorithm is based on one-node local problems, and the high-order solution over the local problem is determined by using the FMFD operator. Nonlinear coupling of CMFD and FMFD operators was previously studied by Aragones and Ahnert. But, in their work, the coarse-mesh operator is corrected by the so-called flux discontinuity factors, and the local problem is defined differently in the sense of boundary conditions and the core dissection scheme.

  4. Finite-element reentry heat-transfer analysis of space shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Quinn, Robert D.; Gong, Leslie

    1986-01-01

    A structural performance and resizing (SPAR) finite-element thermal analysis computer program was used in the heat-transfer analysis of the space shuttle orbiter subjected to reentry aerodynamic heating. Three wing cross sections and one midfuselage cross section were selected for the thermal analysis. The predicted thermal protection system temperatures were found to agree well with flight-measured temperatures. The calculated aluminum structural temperatures also agreed reasonably well with the flight data from reentry to touchdown. The effects of internal radiation and of internal convection were found to be significant. The SPAR finite-element solutions agreed reasonably well with those obtained from the conventional finite-difference method.

  5. Finite difference time domain analysis of chirped dielectric gratings

    NASA Technical Reports Server (NTRS)

    Hochmuth, Diane H.; Johnson, Eric G.

    1993-01-01

    The finite difference time domain (FDTD) method for solving Maxwell's time-dependent curl equations is accurate, computationally efficient, and straight-forward to implement. Since both time and space derivatives are employed, the propagation of an electromagnetic wave can be treated as an initial-value problem. Second-order central-difference approximations are applied to the space and time derivatives of the electric and magnetic fields providing a discretization of the fields in a volume of space, for a period of time. The solution to this system of equations is stepped through time, thus, simulating the propagation of the incident wave. If the simulation is continued until a steady-state is reached, an appropriate far-field transformation can be applied to the time-domain scattered fields to obtain reflected and transmitted powers. From this information diffraction efficiencies can also be determined. In analyzing the chirped structure, a mesh is applied only to the area immediately around the grating. The size of the mesh is then proportional to the electric size of the grating. Doing this, however, imposes an artificial boundary around the area of interest. An absorbing boundary condition must be applied along the artificial boundary so that the outgoing waves are absorbed as if the boundary were absent. Many such boundary conditions have been developed that give near-perfect absorption. In this analysis, the Mur absorbing boundary conditions are employed. Several grating structures were analyzed using the FDTD method.

  6. Space-time formulation for finite element modeling of superconductors

    SciTech Connect

    Ashworth, Stephen P; Grilli, Francesco; Sirois, Frederic; Laforest, Marc

    2008-01-01

    In this paper we present a new model for computing the current density and field distributions in superconductors by means of a periodic space-time formulation for finite elements (FE). By considering a space dimension as time, we can use a static model to solve a time dependent problem. This allows overcoming one of the major problems of FE modeling of superconductors: the length of simulations, even for relatively simple cases. We present our first results and compare them to those obtained with a 'standard' time-dependent method and with analytical solutions.

  7. An optimized finite-difference scheme for wave propagation problems

    NASA Technical Reports Server (NTRS)

    Zingg, D. W.; Lomax, H.; Jurgens, H.

    1993-01-01

    Two fully-discrete finite-difference schemes for wave propagation problems are presented, a maximum-order scheme and an optimized (or spectral-like) scheme. Both combine a seven-point spatial operator and an explicit six-stage time-march method. The maximum-order operator is fifth-order in space and is sixth-order in time for a linear problem with periodic boundary conditions. The phase and amplitude errors of the schemes obtained using Fourier analysis are given and compared with a second-order and a fourth-order method. Numerical experiments are presented which demonstrate the usefulness of the schemes for a range of problems. For some problems, the optimized scheme leads to a reduction in global error compared to the maximum-order scheme with no additional computational expense.

  8. Application of a new finite difference algorithm for computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1995-01-01

    Acoustic problems have become extremely important in recent years because of research efforts such as the High Speed Civil Transport program. Computational aeroacoustics (CAA) requires a faithful representation of wave propagation over long distances, and needs algorithms that are accurate and boundary conditions that are unobtrusive. This paper applies a new finite difference method and boundary algorithm to the Linearized Euler Equations (LEE). The results demonstrate the ability of a new fourth order propagation algorithm to accurately simulate the genuinely multidimensional wave dynamics of acoustic propagation in two space dimensions with the LEE. The results also show the ability of a new outflow boundary condition and fourth order algorithm to pass the evolving solution from the computational domain with no perceptible degradation of the solution remaining within the domain.

  9. Finite difference modeling of Biot's poroelastic equations atseismic frequencies

    SciTech Connect

    Masson, Y.J.; Pride, S.R.; Nihei, K.T.

    2006-02-24

    Across the seismic band of frequencies (loosely defined as<10 kHz), a seismic wave propagating through a porous material willcreate flow in the pore space that is laminar; that is, in thislow-frequency "seismic limit," the development of viscous boundary layersin the pores need not be modeled. An explicit time steppingstaggered-grid finite difference scheme is presented for solving Biot'sequations of poroelasticity in this low-frequency limit. A key part ofthis work is the establishment of rigorous stability conditions. It isdemonstrated that over a wide range of porous material properties typicalof sedimentary rock and despite the presenceof fluid pressure diffusion(Biot slow waves), the usual Courant condition governs the stability asif the problem involved purely elastic waves. The accuracy of the methodis demonstrated by comparing to exact analytical solutions for both fastcompressional waves and slow waves. Additional numerical modelingexamples are also presented.

  10. Comparison of truncation error of finite-difference and finite-volume formulations of convection terms

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.

    1992-01-01

    Judging by errors in the computational-fluid-dynamics literature in recent years, it is not generally well understood that (above first-order) there are significant differences in spatial truncation error between formulations of convection involving a finite-difference approximation of the first derivative, on the one hand, and a finite-volume model of flux differences across a control-volume cell, on the other. The difference between the two formulations involves a second-order truncation-error term (proportional to the third-derivative of the convected variable). Hence, for example, a third (or higher) order finite-difference approximation for the first-derivative convection term is only second-order accurate when written in conservative control-volume form as a finite-volume formulation, and vice versa.

  11. Computer-Oriented Calculus Courses Using Finite Differences.

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    The so-called discrete approach in calculus instruction involves introducing topics from the calculus of finite differences and finite sums, both for motivation and as useful tools for applications of the calculus. In particular, it provides an ideal setting in which to incorporate computers into calculus courses. This approach has been…

  12. Hybrid finite element-finite difference method for thermal analysis of blood vessels.

    PubMed

    Blanchard, C H; Gutierrez, G; White, J A; Roemer, R B

    2000-01-01

    A hybrid finite-difference/finite-element technique for the thermal analysis of blood vessels embedded in perfused tissue has been developed and evaluated. This method provides efficient and accurate solutions to the conjugated heat transfer problem of convection by blood coupled to conduction in the tissue. The technique uses a previously developed 3D automatic meshing method for creating a finite element mesh in the tissue surrounding the vessels, coupled iteratively with a 1-D marching finite difference method for the interior of the vessels. This hybrid technique retains the flexibility and ease of automated finite-element meshing techniques for modelling the complex geometry of blood vessels and irregularly shaped tissues, and speeds the solution time by using a simple finite-difference method to calculate the bulk mean temperatures within all blood vessels. The use of the 1D finite-difference technique in the blood vessels also eliminates the large computer memory requirements needed to accurately solve large vessel network problems when fine FE meshes are used in the interior of vessels. The accuracy of the hybrid technique has been verified against previously verified numerical solutions. In summary, the hybrid technique combines the accuracy and flexibility found in automated finite-element techniques, with the speed and reduction of computational memory requirements associated with the 1D finite-difference technique, something which has not been done before. This method, thus, has the potential to provide accurate, flexible and relatively fast solutions for the thermal analysis of coupled perfusion/blood vessel problems, and large vessel network problems. PMID:10949130

  13. Coupled finite-difference/finite-element approach for wing-body aeroelasticity

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    1992-01-01

    Computational methods using finite-difference approaches for fluids and finite-element approaches for structures have individually advanced to solve almost full-aircraft configurations. However, coupled approaches to solve fluid/structural interaction problems are still in their early stages of development, particularly for complex geometries using complete equations such as the Euler/Navier-Stokes equations. Earlier work demonstrated the success of coupling finite-difference and finite-element methods for simple wing configurations using the Euler/Navier-Stokes equations. In this paper, the same approach is extended for general wing-body configurations. The structural properties are represented by beam-type finite elements. The flow is modeled using the Euler/Navier-Stokes equations. A general procedure to fully couple structural finite-element boundary conditions with fluid finite-difference boundary conditions is developed for wing-body configurations. Computations are made using moving grids that adapt to wing-body structural deformations. Results are illustrated for a typical wing-body configuration.

  14. Techniques for correcting approximate finite difference solutions. [considering transonic flow

    NASA Technical Reports Server (NTRS)

    Nixon, D.

    1978-01-01

    A method of correcting finite-difference solutions for the effect of truncation error or the use of an approximate basic equation is presented. Applications to transonic flow problems are described and examples are given.

  15. Conservative properties of finite difference schemes for incompressible flow

    NASA Technical Reports Server (NTRS)

    Morinishi, Youhei

    1995-01-01

    The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). In this report, conservation properties of the continuity, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discretized equations. Existing finite difference schemes in staggered grid systems are checked for satisfaction of the requirements. Proper higher order accurate finite difference schemes in a staggered grid system are then proposed. Plane channel flow is simulated using the proposed fourth order accurate finite difference scheme and the results compared with those of the second order accurate Harlow and Welch algorithm.

  16. Finite-difference solutions of the 3-D eikonal equation

    SciTech Connect

    Fei, Tong; Fehler, M.C.; Hildebrand, S.T.

    1995-12-31

    Prestack Kirchhoff depth migration requires the computation of traveltimes from surface source and receiver locations to subsurface image locations. In 3-D problems, computational efficiency becomes important. Finite-difference solutions of the eikonal equation provide computationally efficient methods for generating the traveltime information. Here, a novel finite-difference solutions of the eikonal equation provide computationally efficient methods for generating the traveltime information. Here, a novel finite-difference method for computing the first arrival traveltime by solving the eikonal equation has been developed in Cartesian coordinates. The method, which is unconditionally stable and computationally efficient, can handle instabilities due to caustics and provide information about head waves. The comparison of finite-difference solutions of the acoustic wave equation with the traveltime solutions from the eikonal equation in various structure models demonstrate that the method developed here can provide correct first arrival traveltime information even in areas of complex velocity structure.

  17. Comparison of different precondtioners for nonsymmtric finite volume element methods

    SciTech Connect

    Mishev, I.D.

    1996-12-31

    We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.

  18. Numerical techniques in linear duct acoustics. [finite difference and finite element analyses

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1980-01-01

    Both finite difference and finite element analyses of small amplitude (linear) sound propagation in straight and variable area ducts with flow, as might be found in a typical turboject engine duct, muffler, or industrial ventilation system, are reviewed. Both steady state and transient theories are discussed. Emphasis is placed on the advantages and limitations associated with the various numerical techniques. Examples of practical problems are given for which the numerical techniques have been applied.

  19. Practical aspects of prestack depth migration with finite differences

    SciTech Connect

    Ober, C.C.; Oldfield, R.A.; Womble, D.E.; Romero, L.A.; Burch, C.C.

    1997-07-01

    Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatial parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.

  20. Elimination of numerical dispersion in finite-difference modeling and migration by flux-corrected transport

    SciTech Connect

    Fei, T.; Larner, K.

    1995-11-01

    Finite-difference acoustic-wave modeling and reverse-time depth migration based on the full wave equation are general approaches that can take into account arbitrary variations in velocity and density and can handle turning waves as well. However, conventional finite-difference methods for solving the acoustic- or elastic-wave equation suffer from numerical dispersion when too few samples per wavelength are used. The flux-corrected transport (FCT) algorithm, adapted from hydrodynamics, reduces the numerical dispersion in finite-difference wavefield continuation. The flux-correction procedure endeavors to incorporate diffusion into the wavefield continuation process only where needed to suppress the numerical dispersion. Incorporating the flux-correction procedure in conventional finite-difference modeling or reverse-time migration can provide finite-difference solutions with no numerical dispersion even for impulsive sources. The FCT correction, which can be applied to finite-difference approximations of any order in space and time, is an efficient alternative to use for finite-difference approximations of increasing order. Through demonstrations of modeling and migration on both synthetic and field data, the authors show the benefits of the FCT algorithm, as well as its inability to fully recover resolution lost when the spatial sampling becomes too coarse.

  1. Decomposition of Fuzzy Soft Sets with Finite Value Spaces

    PubMed Central

    Jun, Young Bae

    2014-01-01

    The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter. PMID:24558342

  2. Decomposition of fuzzy soft sets with finite value spaces.

    PubMed

    Feng, Feng; Fujita, Hamido; Jun, Young Bae; Khan, Madad

    2014-01-01

    The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter. PMID:24558342

  3. Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector

    NASA Technical Reports Server (NTRS)

    Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)

    2001-01-01

    Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.

  4. Optimizations on Designing High-Resolution Finite-Difference Schemes

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Koomullil, George; Kwak, Dochan (Technical Monitor)

    1994-01-01

    We describe a general optimization procedure for both maximizing the resolution characteristics of existing finite differencing schemes as well as designing finite difference schemes that will meet the error tolerance requirements of numerical solutions. The procedure is based on an optimization process. This is a generalization of the compact scheme introduced by Lele in which the resolution is improved for single, one-dimensional spatial derivative, whereas in the present approach the complete scheme, after spatial and temporal discretizations, is optimized on a range of parameters of the scheme and the governing equations. The approach is to linearize and Fourier analyze the discretized equations to check the resolving power of the scheme for various wave number ranges in the solution and optimize the resolution to satisfy the requirements of the problem. This represents a constrained nonlinear optimization problem which can be solved to obtain the nodal weights of discretization. An objective function is defined in the parametric space of wave numbers, Courant number, Mach number and other quantities of interest. Typical criterion for defining the objective function include the maximization of the resolution of high wave numbers for acoustic and electromagnetic wave propagations and turbulence calculations. The procedure is being tested on off-design conditions of non-uniform mesh, non-periodic boundary conditions, and non-constant wave speeds for scalar and system of equations. This includes the solution of wave equations and Euler equations using a conventional scheme with and without optimization and the design of an optimum scheme for the specified error tolerance.

  5. Improved finite-difference vibration analysis of pretwisted, tapered beams

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1984-01-01

    An improved finite difference procedure based upon second order central differences is developed. Several difficulties encountered in earlier works with fictitious stations that arise in using second order central differences, are eliminated by developing certain recursive relations. The need for forward or backward differences at the beam boundaries or other similar procedures is eliminated in the present theory. By using this improved theory, the vibration characteristics of pretwisted and tapered blades are calculated. Results of the second order theory are compared with published theoretical and experimental results and are found to be in good agreement. The present method generally produces close lower bound solutions and shows fast convergence. Thus, extrapolation procedures that are customary with first order finite-difference methods are unnecessary. Furthermore, the computational time and effort needed for this improved method are almost the same as required for the conventional first order finite-difference approach.

  6. Positivity-preserving, flux-limited finite-difference and finite-element methods for reactive transport

    NASA Astrophysics Data System (ADS)

    MacKinnon, Robert J.; Carey, Graham F.

    2003-01-01

    A new class of positivity-preserving, flux-limited finite-difference and Petrov-Galerkin (PG) finite-element methods are devised for reactive transport problems.The methods are similar to classical TVD flux-limited schemes with the main difference being that the flux-limiter constraint is designed to preserve positivity for problems involving diffusion and reaction. In the finite-element formulation, we also consider the effect of numerical quadrature in the lumped and consistent mass matrix forms on the positivity-preserving property. Analysis of the latter scheme shows that positivity-preserving solutions of the resulting difference equations can only be guaranteed if the flux-limited scheme is both implicit and satisfies an additional lower-bound condition on time-step size. We show that this condition also applies to standard Galerkin linear finite-element approximations to the linear diffusion equation. Numerical experiments are provided to demonstrate the behavior of the methods and confirm the theoretical conditions on time-step size, mesh spacing, and flux limiting for transport problems with and without nonlinear reaction.

  7. Finite-difference schemes for anisotropic diffusion

    SciTech Connect

    Es, Bram van; Koren, Barry; Blank, Hugo J. de

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  8. Thermal finite-element analysis of space shuttle main engine turbine blade

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Tong, Michael T.; Kaufman, Albert

    1987-01-01

    Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.

  9. Thermal finite-element analysis of space shuttle main engine turbine blade

    SciTech Connect

    Abdul-Aziz, A.; Tong, M.T.; Kaufman, A.

    1987-10-01

    Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.

  10. Nonlinear triggered lightning models for use in finite difference calculations

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence; Perala, Rodney A.; Ng, Poh H.

    1989-01-01

    Two nonlinear triggered lightning models have been developed for use in finite difference calculations. Both are based on three species of air chemistry physics and couple nonlinearly calculated air conductivity to Maxwell's equations. The first model is suitable for use in three-dimensional modeling and has been applied to the analysis of triggered lightning on the NASA F106B Thunderstorm Research Aircraft. The model calculates number densities of positive ions, negative ions, and electrons as a function of time and space through continuity equations, including convective derivative terms. The set of equations is closed by using experimentally determined mobilities, and the mobilities are also used to determine the air conductivity. Results from the model's application to the F106B are shown. The second model is two-dimensional and incorporates an enhanced air chemistry formulation. Momentum conservation equations replace the mobility assumption of the first model. Energy conservation equations for neutrals, heavy ions, and electrons are also used. Energy transfer into molecular vibrational modes is accounted for. The purpose for the enhanced model is to include the effects of temperature into the air breakdown, a necessary step if the model is to simulate more than the very earliest stages of breakdown. Therefore, the model also incorporates a temperature-dependent electron avalanche rate. Results from the model's application to breakdown around a conducting ellipsoid placed in an electric field are shown.

  11. Incoherent systems and coverings in finite dimensional Banach spaces

    SciTech Connect

    Temlyakov, V N

    2014-05-31

    We discuss the construction of coverings of the unit ball of a finite dimensional Banach space. There is a well-known technique based on comparing volumes which gives upper and lower bounds on covering numbers. However, this technique does not provide a method for constructing good coverings. Here we study incoherent systems and apply them to construct good coverings. We use the following strategy. First, we build a good covering using balls with a radius close to one. Second, we iterate this construction to obtain a good covering for any radius. We shall concentrate mainly on the first step of this strategy. Bibliography: 14 titles.

  12. All-electron Kohn–Sham density functional theory on hierarchic finite element spaces

    SciTech Connect

    Schauer, Volker; Linder, Christian

    2013-10-01

    In this work, a real space formulation of the Kohn–Sham equations is developed, making use of the hierarchy of finite element spaces from different polynomial order. The focus is laid on all-electron calculations, having the highest requirement onto the basis set, which must be able to represent the orthogonal eigenfunctions as well as the electrostatic potential. A careful numerical analysis is performed, which points out the numerical intricacies originating from the singularity of the nuclei and the necessity for approximations in the numerical setting, with the ambition to enable solutions within a predefined accuracy. In this context the influence of counter-charges in the Poisson equation, the requirement of a finite domain size, numerical quadratures and the mesh refinement are examined as well as the representation of the electrostatic potential in a high order finite element space. The performance and accuracy of the method is demonstrated in computations on noble gases. In addition the finite element basis proves its flexibility in the calculation of the bond-length as well as the dipole moment of the carbon monoxide molecule.

  13. A comparison of the finite difference and finite element methods for heat transfer calculations

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Mortazavi, H. R.

    1982-01-01

    The finite difference method and finite element method for heat transfer calculations are compared by describing their bases and their application to some common heat transfer problems. In general it is noted that neither method is clearly superior, and in many instances, the choice is quite arbitrary and depends more upon the codes available and upon the personal preference of the analyst than upon any well defined advantages of one method. Classes of problems for which one method or the other is better suited are defined.

  14. Finite difference modeling of rotor flows including wake effects

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Desopper, A.; Tung, C.

    1982-01-01

    Rotary wing finite difference methods are investigated. The main concern is the specification of boundary conditions to properly account for the effect of the wake on the blade. Examples are given of an approach where wake effects are introduced by specifying an equivalent angle of attack. An alternate approach is also given where discrete vortices are introduced into the finite difference grid. The resulting computations of hovering and high advance ratio cases compare well with experiment. Some consideration is also given to the modeling of low to moderate advance ratio flows.

  15. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    NASA Technical Reports Server (NTRS)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.

  16. Selecting step sizes in sensitivity analysis by finite differences

    NASA Technical Reports Server (NTRS)

    Iott, J.; Haftka, R. T.; Adelman, H. M.

    1985-01-01

    This paper deals with methods for obtaining near-optimum step sizes for finite difference approximations to first derivatives with particular application to sensitivity analysis. A technique denoted the finite difference (FD) algorithm, previously described in the literature and applicable to one derivative at a time, is extended to the calculation of several simultaneously. Both the original and extended FD algorithms are applied to sensitivity analysis for a data-fitting problem in which derivatives of the coefficients of an interpolation polynomial are calculated with respect to uncertainties in the data. The methods are also applied to sensitivity analysis of the structural response of a finite-element-modeled swept wing. In a previous study, this sensitivity analysis of the swept wing required a time-consuming trial-and-error effort to obtain a suitable step size, but it proved to be a routine application for the extended FD algorithm herein.

  17. Minimal moment equations for stochastic models of biochemical reaction networks with partially finite state space

    NASA Astrophysics Data System (ADS)

    Ruess, Jakob

    2015-12-01

    Many stochastic models of biochemical reaction networks contain some chemical species for which the number of molecules that are present in the system can only be finite (for instance due to conservation laws), but also other species that can be present in arbitrarily large amounts. The prime example of such networks are models of gene expression, which typically contain a small and finite number of possible states for the promoter but an infinite number of possible states for the amount of mRNA and protein. One of the main approaches to analyze such models is through the use of equations for the time evolution of moments of the chemical species. Recently, a new approach based on conditional moments of the species with infinite state space given all the different possible states of the finite species has been proposed. It was argued that this approach allows one to capture more details about the full underlying probability distribution with a smaller number of equations. Here, I show that the result that less moments provide more information can only stem from an unnecessarily complicated description of the system in the classical formulation. The foundation of this argument will be the derivation of moment equations that describe the complete probability distribution over the finite state space but only low-order moments over the infinite state space. I will show that the number of equations that is needed is always less than what was previously claimed and always less than the number of conditional moment equations up to the same order. To support these arguments, a symbolic algorithm is provided that can be used to derive minimal systems of unconditional moment equations for models with partially finite state space.

  18. Minimal moment equations for stochastic models of biochemical reaction networks with partially finite state space.

    PubMed

    Ruess, Jakob

    2015-12-28

    Many stochastic models of biochemical reaction networks contain some chemical species for which the number of molecules that are present in the system can only be finite (for instance due to conservation laws), but also other species that can be present in arbitrarily large amounts. The prime example of such networks are models of gene expression, which typically contain a small and finite number of possible states for the promoter but an infinite number of possible states for the amount of mRNA and protein. One of the main approaches to analyze such models is through the use of equations for the time evolution of moments of the chemical species. Recently, a new approach based on conditional moments of the species with infinite state space given all the different possible states of the finite species has been proposed. It was argued that this approach allows one to capture more details about the full underlying probability distribution with a smaller number of equations. Here, I show that the result that less moments provide more information can only stem from an unnecessarily complicated description of the system in the classical formulation. The foundation of this argument will be the derivation of moment equations that describe the complete probability distribution over the finite state space but only low-order moments over the infinite state space. I will show that the number of equations that is needed is always less than what was previously claimed and always less than the number of conditional moment equations up to the same order. To support these arguments, a symbolic algorithm is provided that can be used to derive minimal systems of unconditional moment equations for models with partially finite state space. PMID:26723647

  19. A new finite element and finite difference hybrid method for computing electrostatics of ionic solvated biomolecule

    NASA Astrophysics Data System (ADS)

    Ying, Jinyong; Xie, Dexuan

    2015-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.

  20. Modelling the core convection using finite element and finite difference methods

    NASA Astrophysics Data System (ADS)

    Chan, K. H.; Li, Ligang; Liao, Xinhao

    2006-08-01

    Applications of both parallel finite element and finite difference methods to thermal convection in a rotating spherical shell modelling the fluid dynamics of the Earth's outer core are presented. The numerical schemes are verified by reproducing the convection benchmark test by Christensen et al. [Christensen, U.R., Aubert, J., Cardin, P., Dormy, E., Gibbons, S., Glatzmaier, G.A., Grote, E., Honkura, Y., Jones, C., Kono, M., Matsushima, M., Sakuraba, A., Takahashi, F., Tilgner, A., Wilcht, J., Zhang, K., 2001. A numerical dynamo benchmark. Phys. Earth Planet. Interiors 128, 25-34.]. Both global average and local characteristics agree satisfactorily with the benchmark solution. With the element-by-element (EBE) parallelization technique, the finite element code demonstrates nearly optimal linear scalability in computational speed. The finite difference code is also efficient and scalable by utilizing a parallel library Aztec [Tuminaro, R.S., Heroux, M., Hutchinson, S.A., Shadid, J.N., 1999. Official AZTEC User's Guide: Version 2.1.].

  1. Comparison of finite difference and finite element solutions to the variably saturated flow equation

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Clement, T. P.

    2003-01-01

    Numerical solutions to the equation governing variably saturated flow are usually obtained using either the finite difference (FD) method or the finite element (FE) method. A detailed comparison of these methods shows that the main difference between them is in how the numerical schemes spatially average the variation of material properties. Further differences are also observed in the way that flux boundaries are represented in FE and FD methods. A modified finite element (MFE) algorithm is used to explore the significance of these differences. The MFE algorithm enables a direct comparison with a typical FD solution scheme, and explicitly demonstrates the differences between FE and FD methods. The MFE algorithm provides an improved approximation to the partial differential equation over the usual FD approach while being computationally simpler to implement than the standard FE solution. One of the main limitations of the MFE algorithm is that the algorithm was developed by imposing several restrictions upon the more general FE solution; however, the MFE is shown to be preferable over the usual FE and FD solutions for some of the test problems considered in this study. The comparison results show that the FE (or MFE) solution can avoid the erroneous results encountered in the FD solution for coarsely discretized problems. The improvement in the FE solution is attributed to the broader hydraulic conductivity averaging and differences in the representation of flux type boundaries.

  2. Scheme For Finite-Difference Computations Of Waves

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1992-01-01

    Compact algorithms generating and solving finite-difference approximations of partial differential equations for propagation of waves obtained by new method. Based on concept of discrete dispersion relation. Used in wave propagation to relate frequency to wavelength and is key measure of wave fidelity.

  3. Direct Finite-Difference Simulations Of Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Moin, Parviz

    1991-01-01

    Report discusses use of upwind-biased finite-difference numerical-integration scheme to simulate evolution of small disturbances and fully developed turbulence in three-dimensional flow of viscous, incompressible fluid in channel. Involves use of computational grid sufficiently fine to resolve motion of fluid at all relevant length scales.

  4. Using the Finite Difference Calculus to Sum Powers of Integers.

    ERIC Educational Resources Information Center

    Zia, Lee

    1991-01-01

    Summing powers of integers is presented as an example of finite differences and antidifferences in discrete mathematics. The interrelation between these concepts and their analogues in differential calculus, the derivative and integral, is illustrated and can form the groundwork for students' understanding of differential and integral calculus.…

  5. Finite difference methods for the solution of unsteady potential flows

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.

    1982-01-01

    Various problems which are confronted in the development of an unsteady finite difference potential code are reviewed mainly in the context of what is done for a typical small disturbance and full potential method. The issues discussed include choice of equations, linearization and conservation, differencing schemes, and algorithm development. A number of applications, including unsteady three dimensional rotor calculations, are demonstrated.

  6. Numerical solution of a diffusion problem by exponentially fitted finite difference methods.

    PubMed

    D'Ambrosio, Raffaele; Paternoster, Beatrice

    2014-01-01

    This paper is focused on the accurate and efficient solution of partial differential differential equations modelling a diffusion problem by means of exponentially fitted finite difference numerical methods. After constructing and analysing special purpose finite differences for the approximation of second order partial derivatives, we employed them in the numerical solution of a diffusion equation with mixed boundary conditions. Numerical experiments reveal that a special purpose integration, both in space and in time, is more accurate and efficient than that gained by employing a general purpose solver. PMID:26034665

  7. Reducing finite lattice spacing errors for staggered fermions

    NASA Astrophysics Data System (ADS)

    Luo, Yubing

    1998-12-01

    In this thesis we study on-shell-improved lattice QCD with staggered fermions using Symanzik's improvement program. We present a complete and detailed discussion of the finite lattice spacing corrections to staggered fermion matrix elements. Expanding upon arguments of Sharpe, we explicitly implement the Symanzik improvement program demonstrating the absence of order a terms in the on-shell-improved action. We propose a general program to improve fermion operators to remove all O(a) corrections from their matrix elements, and demonstrate this program for the examples of matrix elements of fermion bilinears and BK. We find the former does have O(a) corrections while the latter does not. Also, we give an explicit form of lattice currents which are accurate to order a2 at the tree-level. Furthermore, we find that there are as many as 15 independent lattice operators of dimension-6 (including both gauge and fermion operators) which must be added to the unimproved action to form an O(a2)-improved action. Among them, the total number of dimension-6 gauge operators and fermion bilinears is 5. The other ten terms are four- fermion operators. At the tree level and tadpole-improved tree level, all ten four-fermion operators are absent.

  8. Hamiltonian General Relativity in Finite Space and Cosmological Potential Perturbations

    NASA Astrophysics Data System (ADS)

    Barbashov, B. M.; Pervushin, V. N.; Zakharov, A. F.; Zinchuk, V. A.

    The Hamiltonian formulation of general relativity is considered in finite space-time and a specific reference frame given by the diffeo-invariant components of the Fock simplex in terms of the Dirac-ADM variables. The evolution parameter and energy invariant with respect to the time-coordinate transformations are constructed by the separation of the cosmological scale factor a(x0) and its identification with the spatial averaging of the metric determinant, so that the dimension of the kinemetric group of diffeomorphisms coincides with the dimension of a set of variables whose velocities are removed by the Gauss-type constraints in accordance with the second Nöther theorem. This coincidence allows us to solve the energy constraint, fulfil Dirac's Hamiltonian reduction, and to describe the potential perturbations in terms of the Lichnerowicz scale-invariant variables distinguished by the absence of the time derivatives of the spatial metric determinant. It was shown that the Hamiltonian version of the cosmological perturbation theory acquires attributes of the theory of superfluid liquid, and it leads to a generalization of the Schwarzschild solution. The astrophysical application of this approach to general relativity is considered under supposition that the Dirac-ADM Hamiltonian frame is identified with that of the Cosmic Microwave Background radiation distinguished by its dipole component in the frame of an Earth observer.

  9. Finite-difference lattice-Boltzmann methods for binary fluids.

    PubMed

    Xu, Aiguo

    2005-06-01

    We investigate two-fluid Bhatnagar-Gross-Krook (BGK) kinetic methods for binary fluids. The developed theory works for asymmetric as well as symmetric systems. For symmetric systems it recovers Sirovich's theory and is summarized in models A and B. For asymmetric systems it contributes models C, D, and E which are especially useful when the total masses and/or local temperatures of the two components are greatly different. The kinetic models are discretized based on an octagonal discrete velocity model. The discrete-velocity kinetic models and the continuous ones are required to describe the same hydrodynamic equations. The combination of a discrete-velocity kinetic model and an appropriate finite-difference scheme composes a finite-difference lattice Boltzmann method. The validity of the formulated methods is verified by investigating (i) uniform relaxation processes, (ii) isothermal Couette flow, and (iii) diffusion behavior. PMID:16089910

  10. Experimentally constructing finite difference algorithms in numerical relativity

    NASA Astrophysics Data System (ADS)

    Anderson, Matthew; Neilsen, David; Matzner, Richard

    2002-04-01

    Computational studies of gravitational waves require numerical algorithms with long-term stability (necessary for convergence). However, constructing stable finite difference algorithms (FDA) for the ADM formulation of the Einstein equations, especially in multiple dimensions, has proven difficult. Most FDA's are constructed using rules of thumb gained from experience with simple model equations. To search for FDA's with improved stability, we adopt a brute-force approach, where we systematically test thousands of numerical schemes. We sort the spatial derivatives of the Einstein equations into groups, and parameterize each group by finite difference type (centered or upwind) and order. Furthermore, terms proportional to the constraints are added to the evolution equations with additional parameters. A spherically symmetric, excised Schwarzschild black hole (one dimension) and linearized waves in multiple dimensions are used as model systems to evaluate the different numerical schemes.

  11. Time dependent wave envelope finite difference analysis of sound propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1984-01-01

    A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.

  12. A conservative implicit finite difference algorithm for the unsteady transonic full potential equation

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Caradonna, F. X.

    1980-01-01

    An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.

  13. Elimination of numerical dispersion in finite-difference modeling and migration by flux-corrected transport

    SciTech Connect

    Fei, Tong; Larner, K.

    1993-11-01

    Finite-difference acoustic-wave modeling and reverse-time depth migration based on the full wave equation are general approaches that can take into account arbitary variations in velocity and density, and can handle turning waves well. However, conventional finite-difference methods for solving the acousticwave equation suffer from numerical dispersion when too few samples per wavelength are used. Here, we present two flux-corrected transport (FCT) algorithms, one based the second-order equation and the other based on first-order wave equations derived from the second-order one. Combining the FCT technique with conventional finite-difference modeling or reverse-time wave extrapolation can ensure finite-difference solutions without numerical dispersion even for shock waves and impulsive sources. Computed two-dimensional migration images show accurate positioning of reflectors with greater than 90-degree dip. Moreover, application to real data shows no indication of numerical dispersion. The FCT correction, which can be applied to finite-difference approximations of any order in space and time, is an efficient alternative to use of approximations of increasing order.

  14. Algorithmic vs. finite difference Jacobians for infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; Gimeno García, Sebastián; Vasquez, Mayte; Xu, Jian

    2015-10-01

    Jacobians, i.e. partial derivatives of the radiance and transmission spectrum with respect to the atmospheric state parameters to be retrieved from remote sensing observations, are important for the iterative solution of the nonlinear inverse problem. Finite difference Jacobians are easy to implement, but computationally expensive and possibly of dubious quality; on the other hand, analytical Jacobians are accurate and efficient, but the implementation can be quite demanding. GARLIC, our "Generic Atmospheric Radiation Line-by-line Infrared Code", utilizes algorithmic differentiation (AD) techniques to implement derivatives w.r.t. atmospheric temperature and molecular concentrations. In this paper, we describe our approach for differentiation of the high resolution infrared and microwave spectra and provide an in-depth assessment of finite difference approximations using "exact" AD Jacobians as a reference. The results indicate that the "standard" two-point finite differences with 1 K and 1% perturbation for temperature and volume mixing ratio, respectively, can exhibit substantial errors, and central differences are significantly better. However, these deviations do not transfer into the truncated singular value decomposition solution of a least squares problem. Nevertheless, AD Jacobians are clearly recommended because of the superior speed and accuracy.

  15. Semianalytical computation of path lines for finite-difference models

    USGS Publications Warehouse

    Pollock, D.W.

    1988-01-01

    A semianalytical particle tracking method was developed for use with velocities generated from block-centered finite-difference ground-water flow models. Based on the assumption that each directional velocity component varies linearly within a grid cell in its own coordinate directions, the method allows an analytical expression to be obtained describing the flow path within an individual grid cell. Given the intitial position of a particle anywhere in a cell, the coordinates of any other point along its path line within the cell, and the time of travel between them, can be computed directly. For steady-state systems, the exit point for a particle entering a cell at any arbitrary location can be computed in a single step. By following the particle as it moves from cell to cell, this method can be used to trace the path of a particle through any multidimensional flow field generated from a block-centered finite-difference flow model. -Author

  16. Finite difference seismic modeling of axial magma chambers

    SciTech Connect

    Swift, S.A.; Dougherty, M.E.; Stephen, R.A. )

    1990-11-01

    The authors tested the feasibility of using finite difference methods to model seismic propagation at {approximately}10 Hx through a two-dimensional representation of an axial magma chamber with a thin, liquid lid. This technique produces time series of displacement or pressure at seafloor receivers to mimic a seismic refraction experiment and snapshots of P and S energy propagation. The results indicate that the implementation is stable for models with sharp velocity contrasts and complex geometries. The authors observe a high-energy, downward-traveling shear phase, observable only with borehole receivers, that would be useful in studying the nature and shape of magma chambers. The ability of finite difference methods to model high-order wave phenomena makes this method ideal for testing velocity models of spreading axes and for planning near-axis drilling of the East Pacific Rise in order to optimize the benefits from shear wave imaging of sub-axis structure.

  17. Finite difference schemes for long-time integration

    NASA Technical Reports Server (NTRS)

    Haras, Zigo; Taasan, Shlomo

    1993-01-01

    Finite difference schemes for the evaluation of first and second derivatives are presented. These second order compact schemes were designed for long-time integration of evolution equations by solving a quadratic constrained minimization problem. The quadratic cost function measures the global truncation error while taking into account the initial data. The resulting schemes are applicable for integration times fourfold, or more, longer than similar previously studied schemes. A similar approach was used to obtain improved integration schemes.

  18. High Order Finite Difference Methods for Multiscale Complex Compressible Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, H. C.

    2002-01-01

    The classical way of analyzing finite difference schemes for hyperbolic problems is to investigate as many as possible of the following points: (1) Linear stability for constant coefficients; (2) Linear stability for variable coefficients; (3) Non-linear stability; and (4) Stability at discontinuities. We will build a new numerical method, which satisfies all types of stability, by dealing with each of the points above step by step.

  19. Calculating rotordynamic coefficients of seals by finite-difference techniques

    NASA Technical Reports Server (NTRS)

    Dietzen, F. J.; Nordmann, R.

    1987-01-01

    For modelling the turbulent flow in a seal the Navier-Stokes equations in connection with a turbulence (kappa-epsilon) model are solved by a finite-difference method. A motion of the shaft round the centered position is assumed. After calculating the corresponding flow field and the pressure distribution, the rotor-dynamic coefficients of the seal can be determined. These coefficients are compared with results obtained by using the bulk flow theory of Childs and with experimental results.

  20. Finite difference time domain grid generation from AMC helicopter models

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.

    1992-01-01

    A simple technique is presented which forms a cubic grid model of a helicopter from an Aircraft Modeling Code (AMC) input file. The AMC input file defines the helicopter fuselage as a series of polygonal cross sections. The cubic grid model is used as an input to a Finite Difference Time Domain (FDTD) code to obtain predictions of antenna performance on a generic helicopter model. The predictions compare reasonably well with measured data.

  1. Finite difference time domain calculations of antenna mutual coupling

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Finite Difference Time Domain (FDTD) technique was applied to a wide variety of electromagnetic analysis problems, including shielding and scattering. However, the method has not been exclusively applied to antennas. Here, calculations of self and mutual admittances between wire antennas are made using FDTD and compared with results obtained during the method of moments. The agreement is quite good, indicating the possibilities for FDTD application to antenna impedance and coupling.

  2. Finite difference time domain calculations of antenna mutual coupling

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Finite Difference Time Domain (FDTD) technique has been applied to a wide variety of electromagnetic analysis problems, including shielding and scattering. However, the method has not been extensively applied to antennas. In this short paper calculations of self and mutual admittances between wire antennas are made using FDTD and compared with results obtained using the Method of Moments. The agreement is quite good, indicating the possibilities for FDTD application to antenna impedance and coupling.

  3. Optimized Finite-Difference Coefficients for Hydroacoustic Modeling

    NASA Astrophysics Data System (ADS)

    Preston, L. A.

    2014-12-01

    Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Finite difference methods for the solution of unsteady potential flows

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.

    1985-01-01

    A brief review is presented of various problems which are confronted in the development of an unsteady finite difference potential code. This review is conducted mainly in the context of what is done for a typical small disturbance and full potential methods. The issues discussed include choice of equation, linearization and conservation, differencing schemes, and algorithm development. A number of applications including unsteady three-dimensional rotor calculation, are demonstrated.

  5. A comparison of finite difference methods for solving Laplace's equation on curvilinear coordinate systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mccoy, M. J.

    1980-01-01

    Various finite difference techniques used to solve Laplace's equation are compared. Curvilinear coordinate systems are used on two dimensional regions with irregular boundaries, specifically, regions around circles and airfoils. Truncation errors are analyzed for three different finite difference methods. The false boundary method and two point and three point extrapolation schemes, used when having the Neumann boundary condition are considered and the effects of spacing and nonorthogonality in the coordinate systems are studied.

  6. Introduction to finite-difference methods for numerical fluid dynamics

    SciTech Connect

    Scannapieco, E.; Harlow, F.H.

    1995-09-01

    This work is intended to be a beginner`s exercise book for the study of basic finite-difference techniques in computational fluid dynamics. It is written for a student level ranging from high-school senior to university senior. Equations are derived from basic principles using algebra. Some discussion of partial-differential equations is included, but knowledge of calculus is not essential. The student is expected, however, to have some familiarity with the FORTRAN computer language, as the syntax of the computer codes themselves is not discussed. Topics examined in this work include: one-dimensional heat flow, one-dimensional compressible fluid flow, two-dimensional compressible fluid flow, and two-dimensional incompressible fluid flow with additions of the equations of heat flow and the {Kappa}-{epsilon} model for turbulence transport. Emphasis is placed on numerical instabilities and methods by which they can be avoided, techniques that can be used to evaluate the accuracy of finite-difference approximations, and the writing of the finite-difference codes themselves. Concepts introduced in this work include: flux and conservation, implicit and explicit methods, Lagrangian and Eulerian methods, shocks and rarefactions, donor-cell and cell-centered advective fluxes, compressible and incompressible fluids, the Boussinesq approximation for heat flow, Cartesian tensor notation, the Boussinesq approximation for the Reynolds stress tensor, and the modeling of transport equations. A glossary is provided which defines these and other terms.

  7. Finite difference program for calculating hydride bed wall temperature profiles

    SciTech Connect

    Klein, J.E.

    1992-10-29

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis.

  8. Fuzzy logic to improve efficiency of finite element and finite difference schemes

    SciTech Connect

    Garcia, M.D.; Heger, A.S.

    1994-05-01

    This paper explores possible applications of logic in the areas of finite element and finite difference methods applied to engineering design problems. The application of fuzzy logic to both front-end selection of computational options and within the numerical computation itself are proposed. Further, possible methods of overcoming these limitations through the application of methods are explored. Decision strategy is a fundamental limitation in performing finite element calculations, such as selecting the optimum coarseness of the grid, numerical integration algorithm, element type, implicit versus explicit schemes, and the like. This is particularly true of novice analysts who are confronted with a myriad of choices in performing a calculation. The advantage of having the myriad of options available to the analyst is, however, that it improves and optimizes the design process if the appropriate ones are selected. Unfortunately, the optimum choices are not always apparent and only through the process of elimination or prior extensive experience can the optimum choices or combination of choices be selected. The knowledge of expert analysts could be integrated into a fuzzy ``front-end`` rule-based package to optimize the design process. The use of logic to capture the heuristic and human knowledge for selecting optimum solution strategies sets the framework for these proposed strategies.

  9. An Analysis of Finite-Difference and Finite-Volume Formulations of Convervation Laws

    NASA Astrophysics Data System (ADS)

    Vinokur, Marcel

    1989-03-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations-potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  10. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Astrophysics Data System (ADS)

    Vinokur, Marcel

    1986-06-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  11. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1986-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  12. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1989-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations: potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  13. Macroscopic traffic modeling with the finite difference method

    SciTech Connect

    Mughabghab, S.; Azarm, A.; Stock, D.

    1996-03-15

    A traffic congestion forecasting model (ATOP), developed in the present investigation, is described briefly. Several macroscopic models, based on the solution of the partial differential equation of conservation of vehicles by the finite difference method, were tested using actual traffic data. The functional form, as well as the parameters, of the equation of state which describes the relation between traffic speed and traffic density, were determined for a section of the Long Island Expressway. The Lax method and the forward difference technique were applied. The results of extensive tests showed that the Lax method, in addition to giving very good agreement with the traffic data, produces stable solutions.

  14. Finite element thermal-structural analysis of cable-stiffened space structues

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Pandey, A. K.

    1984-01-01

    Finite element thermal-structural analyses of large, cable-stiffened space structures are presented. A computational scheme for the calculation of prestresses in the cable-stiffened structures is also described. The determination of thermal loads on orbiting space structures due to environment heating is discussed briefly. Three finite element structural analysis techniques are presented for the analysis of prestressed structures. Linear, stress stiffening, and large displacement analysis techniques were investigated. These three techniques were employed for analysis of prestressed cable structures at different prestress levels. The analyses produced similar results at small prestress, but at higher prestress, differences between the results became significant. For the cable-stiffened structures studied, the linear analysis technique may not provide acceptable results. The stress stiffening analysis technique may yield results of acceptable accuracy depending upon the level of prestress. The large displacement analysis technique produced accurate results over a wide range of prestress and is recommended as a general analysis technique for thermal-structural analysis of cable-stiffened space structures.

  15. Seismic imaging using finite-differences and parallel computers

    SciTech Connect

    Ober, C.C.

    1997-12-31

    A key to reducing the risks and costs of associated with oil and gas exploration is the fast, accurate imaging of complex geologies, such as salt domes in the Gulf of Mexico and overthrust regions in US onshore regions. Prestack depth migration generally yields the most accurate images, and one approach to this is to solve the scalar wave equation using finite differences. As part of an ongoing ACTI project funded by the US Department of Energy, a finite difference, 3-D prestack, depth migration code has been developed. The goal of this work is to demonstrate that massively parallel computers can be used efficiently for seismic imaging, and that sufficient computing power exists (or soon will exist) to make finite difference, prestack, depth migration practical for oil and gas exploration. Several problems had to be addressed to get an efficient code for the Intel Paragon. These include efficient I/O, efficient parallel tridiagonal solves, and high single-node performance. Furthermore, to provide portable code the author has been restricted to the use of high-level programming languages (C and Fortran) and interprocessor communications using MPI. He has been using the SUNMOS operating system, which has affected many of his programming decisions. He will present images created from two verification datasets (the Marmousi Model and the SEG/EAEG 3D Salt Model). Also, he will show recent images from real datasets, and point out locations of improved imaging. Finally, he will discuss areas of current research which will hopefully improve the image quality and reduce computational costs.

  16. Finite difference time domain modeling of spiral antennas

    NASA Technical Reports Server (NTRS)

    Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.

    1992-01-01

    The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.

  17. Compact finite difference schemes with spectral-like resolution

    NASA Technical Reports Server (NTRS)

    Lele, Sanjiva K.

    1992-01-01

    The present finite-difference schemes for the evaluation of first-order, second-order, and higher-order derivatives yield improved representation of a range of scales and may be used on nonuniform meshes. Various boundary conditions may be invoked, and both accurate interpolation and spectral-like filtering can be accomplished by means of schemes for derivatives at mid-cell locations. This family of schemes reduces to the Pade schemes when the maximal formal accuracy constraint is imposed with a specific computational stencil. Attention is given to illustrative applications of these schemes in fluid dynamics.

  18. Application of a finite difference technique to thermal wave propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1975-01-01

    A finite difference formulation is presented for thermal wave propagation resulting from periodic heat sources. The numerical technique can handle complex problems that might result from variable thermal diffusivity, such as heat flow in the earth with ice and snow layers. In the numerical analysis, the continuous temperature field is represented by a series of grid points at which the temperature is separated into real and imaginary terms. Next, computer routines previously developed for acoustic wave propagation are utilized in the solution for the temperatures. The calculation procedure is illustrated for the case of thermal wave propagation in a uniform property semi-infinite medium.

  19. Application of a finite difference technique to thermal wave propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1975-01-01

    A finite difference formulation is presented for thermal wave propagation resulting from periodic heat sources. The numerical technique can handle complex problems that might result from variable thermal diffusivity, such as heat flow in the earth with ice and snow layers. In the numerical analysis, the continuous temperature field is represented by a series of grid points at which the temperature is separated into real and imaginary terms. Computer routines previously developed for acoustic wave propagation are utilized in the solution for the temperatures. The calculation procedure is illustrated for the case of thermal wave propagation in a uniform property semi-infinite medium.

  20. FDIPS: Finite Difference Iterative Potential-field Solver

    NASA Astrophysics Data System (ADS)

    Toth, Gabor; van der Holst, Bartholomeus; Huang, Zhenguang

    2016-06-01

    FDIPS is a finite difference iterative potential-field solver that can generate the 3D potential magnetic field solution based on a magnetogram. It is offered as an alternative to the spherical harmonics approach, as when the number of spherical harmonics is increased, using the raw magnetogram data given on a grid that is uniform in the sine of the latitude coordinate can result in inaccurate and unreliable results, especially in the polar regions close to the Sun. FDIPS is written in Fortran 90 and uses the MPI library for parallel execution.

  1. A finite difference approach to microstrip antenna design

    SciTech Connect

    Barth, M.J.; Bevensee, R.M.; Pennock, S.T.

    1986-12-01

    Microstrip antennas have received increased attention in recent years, due to their size and cost advantages. Analysis of the microstrip structure has proved difficult due to the presence of the dielectric substrate, particularly for complex geometries. One possible approach to a solution is the use of a finite difference computer code to model a proposed microstrip antenna design. The models are easily constructed and altered, and code versions are available which allow input impedance or far-field patterns to be calculated. Results for some simple antenna geometries will be presented.

  2. A multigrid algorithm for the cell-centered finite difference scheme

    NASA Technical Reports Server (NTRS)

    Ewing, Richard E.; Shen, Jian

    1993-01-01

    In this article, we discuss a non-variational V-cycle multigrid algorithm based on the cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous coefficients. Due to the poor approximation property of piecewise constant spaces and the non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle multigrid scheme may fail to be a contraction. Again, because of the simple structure of the piecewise constant spaces, prolongation and restriction are trivial; we save significant computation time with very promising computational results.

  3. Pencil: Finite-difference Code for Compressible Hydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Dobler, Wolfgang

    2010-10-01

    The Pencil code is a high-order finite-difference code for compressible hydrodynamic flows with magnetic fields. It is highly modular and can easily be adapted to different types of problems. The code runs efficiently under MPI on massively parallel shared- or distributed-memory computers, like e.g. large Beowulf clusters. The Pencil code is primarily designed to deal with weakly compressible turbulent flows. To achieve good parallelization, explicit (as opposed to compact) finite differences are used. Typical scientific targets include driven MHD turbulence in a periodic box, convection in a slab with non-periodic upper and lower boundaries, a convective star embedded in a fully nonperiodic box, accretion disc turbulence in the shearing sheet approximation, self-gravity, non-local radiation transfer, dust particle evolution with feedback on the gas, etc. A range of artificial viscosity and diffusion schemes can be invoked to deal with supersonic flows. For direct simulations regular viscosity and diffusion is being used. The code is written in well-commented Fortran90.

  4. Numerical stability of an explicit finite difference scheme for the solution of transient conduction in composite media

    NASA Technical Reports Server (NTRS)

    Campbell, W.

    1981-01-01

    A theoretical evaluation of the stability of an explicit finite difference solution of the transient temperature field in a composite medium is presented. The grid points of the field are assumed uniformly spaced, and media interfaces are either vertical or horizontal and pass through grid points. In addition, perfect contact between different media (infinite interfacial conductance) is assumed. A finite difference form of the conduction equation is not valid at media interfaces; therefore, heat balance forms are derived. These equations were subjected to stability analysis, and a computer graphics code was developed that permitted determination of a maximum time step for a given grid spacing.

  5. Arrayed waveguide grating using the finite difference beam propagation method

    NASA Astrophysics Data System (ADS)

    Toledo, M. C. F.; Alayo, M. I.

    2013-03-01

    The purpose of this work is to analyze by simulation the coupling effects occurring in Arrayed Waveguide Grating (AWG) using the finite difference beam propagation method (FD-BPM). Conventional FD-BPM techniques do not immediately lend themselves to the analysis of large structures such as AWG. Cooper et al.1 introduced a description of the coupling between the interface of arrayed waveguides and star couplers using the numerically-assisted coupled-mode theory. However, when the arrayed waveguides are spatially close, such that, there is strong coupling between them, and coupled-mode theory is not adequate. On the other hand, Payne2 developed an exact eigenvalue equation for the super modes of a straight arrayed waveguide which involve a computational overhead. In this work, an integration of both methods is accomplished in order to describe the behavior of the propagation of light in guided curves. This new method is expected to reduce the necessary effort for simulation while also enabling the simulation of large and curved arrayed waveguides using a fully vectorial finite difference technique.

  6. Finite Difference Elastic Wave Field Simulation On GPU

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Zhang, W.

    2011-12-01

    Numerical modeling of seismic wave propagation is considered as a basic and important aspect in investigation of the Earth's structure, and earthquake phenomenon. Among various numerical methods, the finite-difference method is considered one of the most efficient tools for the wave field simulation. However, with the increment of computing scale, the power of computing has becoming a bottleneck. With the development of hardware, in recent years, GPU shows powerful computational ability and bright application prospects in scientific computing. Many works using GPU demonstrate that GPU is powerful . Recently, GPU has not be used widely in the simulation of wave field. In this work, we present forward finite difference simulation of acoustic and elastic seismic wave propagation in heterogeneous media on NVIDIA graphics cards with the CUDA programming language. We also implement perfectly matched layers on the graphics cards to efficiently absorb outgoing waves on the fictitious edges of the grid Simulations compared with the results on CPU platform shows reliable accuracy and remarkable efficiency. This work proves that GPU can be an effective platform for wave field simulation, and it can also be used as a practical tool for real-time strong ground motion simulation.

  7. Viscoelastic Finite Difference Modeling Using Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Fabien-Ouellet, G.; Gloaguen, E.; Giroux, B.

    2014-12-01

    Full waveform seismic modeling requires a huge amount of computing power that still challenges today's technology. This limits the applicability of powerful processing approaches in seismic exploration like full-waveform inversion. This paper explores the use of Graphics Processing Units (GPU) to compute a time based finite-difference solution to the viscoelastic wave equation. The aim is to investigate whether the adoption of the GPU technology is susceptible to reduce significantly the computing time of simulations. The code presented herein is based on the freely accessible software of Bohlen (2002) in 2D provided under a General Public License (GNU) licence. This implementation is based on a second order centred differences scheme to approximate time differences and staggered grid schemes with centred difference of order 2, 4, 6, 8, and 12 for spatial derivatives. The code is fully parallel and is written using the Message Passing Interface (MPI), and it thus supports simulations of vast seismic models on a cluster of CPUs. To port the code from Bohlen (2002) on GPUs, the OpenCl framework was chosen for its ability to work on both CPUs and GPUs and its adoption by most of GPU manufacturers. In our implementation, OpenCL works in conjunction with MPI, which allows computations on a cluster of GPU for large-scale model simulations. We tested our code for model sizes between 1002 and 60002 elements. Comparison shows a decrease in computation time of more than two orders of magnitude between the GPU implementation run on a AMD Radeon HD 7950 and the CPU implementation run on a 2.26 GHz Intel Xeon Quad-Core. The speed-up varies depending on the order of the finite difference approximation and generally increases for higher orders. Increasing speed-ups are also obtained for increasing model size, which can be explained by kernel overheads and delays introduced by memory transfers to and from the GPU through the PCI-E bus. Those tests indicate that the GPU memory size

  8. Natural convection within a vertical finite-length channel in free space

    SciTech Connect

    Lin, S.C.; Chang, K.P.; Hung, Y.H. )

    1994-04-01

    Natural convection within a vertical finite length channel in free space is studied in this article to remove assumptions that need to be made on velocity and temperature profiles at the channel entrance. For small channel aspect ratios and low Rayleigh numbers, significant deviations of the Nusselt number and temperature distributions exist due to the effects of vertical thermal diffusion and free space stratification in the channel. A new correlation was proposed on induced Reynolds number for vertical finite length channel. 8 refs.

  9. Spatial parallelism of a 3D finite difference, velocity-stress elastic wave propagation code

    SciTech Connect

    Minkoff, S.E.

    1999-12-01

    Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately, finite difference simulations for 3D elastic wave propagation are expensive. The authors model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MPI library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speedup. Because I/O is handled largely outside of the time-step loop (the most expensive part of the simulation) the authors have opted for straight-forward broadcast and reduce operations to handle I/O. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ghost cells. When this communication is balanced against computation by allocating subdomains of reasonable size, they observe excellent scaled speedup. Allocating subdomains of size 25 x 25 x 25 on each node, they achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.

  10. Spatial Parallelism of a 3D Finite Difference, Velocity-Stress Elastic Wave Propagation Code

    SciTech Connect

    MINKOFF,SUSAN E.

    1999-12-09

    Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately. finite difference simulations for 3D elastic wave propagation are expensive. We model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MP1 library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speed up. Because i/o is handled largely outside of the time-step loop (the most expensive part of the simulation) we have opted for straight-forward broadcast and reduce operations to handle i/o. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ''ghost cells''. When this communication is balanced against computation by allocating subdomains of reasonable size, we observe excellent scaled speed up. Allocating subdomains of size 25 x 25 x 25 on each node, we achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.

  11. Modeling and analysis of the space shuttle nose-gear tire with semianalytic finite elements

    NASA Technical Reports Server (NTRS)

    Kim, Kyun O.; Noor, Ahmed K.; Tanner, John A.

    1990-01-01

    A computational procedure is presented for the geometrically nonlinear analysis of aircraft tires. The Space Shuttle Orbiter nose gear tire was modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The four key elements of the procedure are: (1) semianalytic finite elements in which the shell variables are represented by Fourier series in the circumferential direction and piecewise polynominals in the meridional direction; (2) a mixed formulation with the fundamental unknowns consisting of strain parameters, stress-resultant parameters, and generalized displacements; (3) multilevel operator splitting to effect successive simplifications, and to uncouple the equations associated with different Fourier harmonics; and (4) multilevel iterative procedures and reduction techniques to generate the response of the shell. Numerical results of the Space Shuttle Orbiter nose gear tire model are compared with experimental measurements of the tire subjected to inflation loading.

  12. Elastic finite-difference method for irregular grids

    SciTech Connect

    Oprsal, I.; Zahradnik, J.

    1999-01-01

    Finite-difference (FD) modeling of complicated structures requires simple algorithms. This paper presents a new elastic FD method for spatially irregular grids that is simple and, at the same time, saves considerable memory and computing time. Features like faults, low-velocity layers, cavities, and/or nonplanar surfaces are treated on a fine grid, while the remaining parts of the model are, with equal accuracy, represented on a coarse grid. No interpolation is needed between the fine and coarse parts due to the rectangular grid cells. Relatively abrupt transitions between the small and large grid steps produce no numerical artifacts in the present method. Planar or nonplanar free surfaces, including underground cavities, are treated in a way similar to internal grid points but with consideration of the zero-valued elastic parameters and density outside the free surface (vacuum formalism). A theoretical proof that vacuum formalism fulfills the free-surface conditions is given. Numerical validation is performed through comparison with independent methods, comparing FD with explicitly prescribed boundary conditions and finite elements. Memory and computing time needed in the studied models was only about 10 to 40% of that employing regular square grids of equal accuracy. A practical example of a synthetic seismic section, showing clear signatures of a coal seam and cavity, is presented. The method can be extended to three dimensions.

  13. Some Classes of Imperfect Information Finite State-Space Stochastic Games with Finite-Dimensional Solutions

    SciTech Connect

    McEneaney, William M.

    2004-08-15

    Stochastic games under imperfect information are typically computationally intractable even in the discrete-time/discrete-state case considered here. We consider a problem where one player has perfect information.A function of a conditional probability distribution is proposed as an information state.In the problem form here, the payoff is only a function of the terminal state of the system,and the initial information state is either linear ora sum of max-plus delta functions.When the initial information state belongs to these classes, its propagation is finite-dimensional.The state feedback value function is also finite-dimensional,and obtained via dynamic programming,but has a nonstandard form due to the necessity of an expanded state variable.Under a saddle point assumption,Certainty Equivalence is obtained and the proposed function is indeed an information state.

  14. Phase-space finite elements in a least-squares solution of the transport equation

    SciTech Connect

    Drumm, C.; Fan, W.; Pautz, S.

    2013-07-01

    The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshing tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)

  15. Finite difference time domain implementation of surface impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In the finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Here, two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a two dimensional demonstration. Extensions to three dimensions should be straightforward.

  16. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  17. Effects of sources on time-domain finite difference models.

    PubMed

    Botts, Jonathan; Savioja, Lauri

    2014-07-01

    Recent work on excitation mechanisms in acoustic finite difference models focuses primarily on physical interpretations of observed phenomena. This paper offers an alternative view by examining the properties of models from the perspectives of linear algebra and signal processing. Interpretation of a simulation as matrix exponentiation clarifies the separate roles of sources as boundaries and signals. Boundary conditions modify the matrix and thus its modal structure, and initial conditions or source signals shape the solution, but not the modal structure. Low-frequency artifacts are shown to follow from eigenvalues and eigenvectors of the matrix, and previously reported artifacts are predicted from eigenvalue estimates. The role of source signals is also briefly discussed. PMID:24993210

  18. Finite-difference modeling of commercial aircraft using TSAR

    SciTech Connect

    Pennock, S.T.; Poggio, A.J.

    1994-11-15

    Future aircraft may have systems controlled by fiber optic cables, to reduce susceptibility to electromagnetic interference. However, the digital systems associated with the fiber optic network could still experience upset due to powerful radio stations, radars, and other electromagnetic sources, with potentially serious consequences. We are modeling the electromagnetic behavior of commercial transport aircraft in support of the NASA Fly-by-Light/Power-by-Wire program, using the TSAR finite-difference time-domain code initially developed for the military. By comparing results obtained from TSAR with data taken on a Boeing 757 at the Air Force Phillips Lab., we hope to show that FDTD codes can serve as an important tool in the design and certification of U.S. commercial aircraft, helping American companies to produce safe, reliable air transportation.

  19. Visualization of elastic wavefields computed with a finite difference code

    SciTech Connect

    Larsen, S.; Harris, D.

    1994-11-15

    The authors have developed a finite difference elastic propagation model to simulate seismic wave propagation through geophysically complex regions. To facilitate debugging and to assist seismologists in interpreting the seismograms generated by the code, they have developed an X Windows interface that permits viewing of successive temporal snapshots of the (2D) wavefield as they are calculated. The authors present a brief video displaying the generation of seismic waves by an explosive source on a continent, which propagate to the edge of the continent then convert to two types of acoustic waves. This sample calculation was part of an effort to study the potential of offshore hydroacoustic systems to monitor seismic events occurring onshore.

  20. Parallelization of implicit finite difference schemes in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel

    1990-01-01

    Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.

  1. 3D finite-difference seismic migration with parallel computers

    SciTech Connect

    Ober, C.C.; Gjertsen, R.; Minkoff, S.; Womble, D.E.

    1998-11-01

    The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is essential for reducing the risk associated with oil exploration. Imaging these structures, however, is computationally expensive as datasets can be terabytes in size. Traditional ray-tracing migration methods cannot handle complex velocity variations commonly found near such salt structures. Instead the authors use the full 3D acoustic wave equation, discretized via a finite difference algorithm. They reduce the cost of solving the apraxial wave equation by a number of numerical techniques including the method of fractional steps and pipelining the tridiagonal solves. The imaging code, Salvo, uses both frequency parallelism (generally 90% efficient) and spatial parallelism (65% efficient). Salvo has been tested on synthetic and real data and produces clear images of the subsurface even beneath complicated salt structures.

  2. A finite-difference method for transonic airfoil design.

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Klineberg, J. M.

    1972-01-01

    This paper describes an inverse method for designing transonic airfoil sections or for modifying existing profiles. Mixed finite-difference procedures are applied to the equations of transonic small disturbance theory to determine the airfoil shape corresponding to a given surface pressure distribution. The equations are solved for the velocity components in the physical domain and flows with embedded shock waves can be calculated. To facilitate airfoil design, the method allows alternating between inverse and direct calculations to obtain a profile shape that satisfies given geometric constraints. Examples are shown of the application of the technique to improve the performance of several lifting airfoil sections. The extension of the method to three dimensions for designing supercritical wings is also indicated.

  3. Improved finite difference schemes for transonic potential calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M.; Osher, S.; Whitlow, W., Jr.

    1984-01-01

    Engquist and Osher (1980) have introduced a finite difference scheme for solving the transonic small disturbance equation, taking into account cases in which only compression shocks are admitted. Osher et al. (1983) studied a class of schemes for the full potential equation. It is proved that these schemes satisfy a new discrete 'entropy inequality' which rules out expansion shocks. However, the conducted analysis is restricted to steady two-dimensional flows. The present investigation is concerned with the adoption of a heuristic approach. The full potential equation in conservation form is solved with the aid of a modified artificial density method, based on flux biasing. It is shown that, with the current scheme, expansion shocks are not possible.

  4. A mimetic finite difference method for the Stokes problem with elected edge bubbles

    SciTech Connect

    Lipnikov, K; Berirao, L

    2009-01-01

    A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this article is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.

  5. A comparison of finite-difference and finite-element methods for calculating free edge stresses in composites

    NASA Technical Reports Server (NTRS)

    Bauld, N. R., Jr.; Goree, J. G.; Tzeng, L.-S.

    1985-01-01

    It is pointed out that edge delamination is a serious failure mechanism for laminated composite materials. Various numerical methods have been utilized in attempts to calculate the interlaminar stress components which precede delamination in a laminate. There are, however, discrepancies regarding the results provided by different methods, taking into account a finite-difference procedure, a perturbation procedure, and finite element approaches. The present investigation has the objective to assess the capacity of a finite difference method to predict the character and magnitude of the interlaminar stress distributions near an interface corner. A second purpose of the investigation is to determine if predictions by finite element method in-plane, interlaminar stress components near an interface corner represent actual laminate behavior.

  6. Domain decomposition methods for nonconforming finite element spaces of Lagrange-type

    NASA Technical Reports Server (NTRS)

    Cowsar, Lawrence C.

    1993-01-01

    In this article, we consider the application of three popular domain decomposition methods to Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order elliptic equations. The additive Schwarz method of Dryja and Widlund, the vertex space method of Smith, and the balancing method of Mandel applied to nonconforming elements are shown to converge at a rate no worse than their applications to the standard conforming piecewise linear Galerkin discretization. Essentially, the theory for the nonconforming elements is inherited from the existing theory for the conforming elements with only modest modification by constructing an isomorphism between the nonconforming finite element space and a space of continuous piecewise linear functions.

  7. A finite difference solution for the propagation of sound in near sonic flows

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Lester, H. C.

    1983-01-01

    An explicit time/space finite difference procedure is used to model the propagation of sound in a quasi one-dimensional duct containing high Mach number subsonic flow. Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equations about a steady, compressible mean flow. The governing difference relations are based on a fourth-order, two-step (predictor-corrector) MacCormack scheme. The solution algorithm functions by switching on a time harmonic source and allowing the difference equations to iterate to a steady state. The principal effect of the non-linearities was to shift acoustical energy to higher harmonics. With increased source strengths, wave steepening was observed. This phenomenon suggests that the acoustical response may approach a shock behavior at at higher sound pressure level as the throat Mach number aproaches unity. On a peak level basis, good agreement between the nonlinear finite difference and linear finite element solutions was observed, even through a peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear steady state waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic theory.

  8. Higher-order finite-difference formulation of periodic Orbital-free Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Ghosh, Swarnava; Suryanarayana, Phanish

    2016-02-01

    We present a real-space formulation and higher-order finite-difference implementation of periodic Orbital-free Density Functional Theory (OF-DFT). Specifically, utilizing a local reformulation of the electrostatic and kernel terms, we develop a generalized framework for performing OF-DFT simulations with different variants of the electronic kinetic energy. In particular, we propose a self-consistent field (SCF) type fixed-point method for calculations involving linear-response kinetic energy functionals. In this framework, evaluation of both the electronic ground-state and forces on the nuclei are amenable to computations that scale linearly with the number of atoms. We develop a parallel implementation of this formulation using the finite-difference discretization. We demonstrate that higher-order finite-differences can achieve relatively large convergence rates with respect to mesh-size in both the energies and forces. Additionally, we establish that the fixed-point iteration converges rapidly, and that it can be further accelerated using extrapolation techniques like Anderson's mixing. We validate the accuracy of the results by comparing the energies and forces with plane-wave methods for selected examples, including the vacancy formation energy in Aluminum. Overall, the suitability of the proposed formulation for scalable high performance computing makes it an attractive choice for large-scale OF-DFT calculations consisting of thousands of atoms.

  9. AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode

    SciTech Connect

    Toomey, Aoife

    2005-01-06

    This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.

  10. Nonlinear wave propagation using three different finite difference schemes (category 2 application)

    NASA Technical Reports Server (NTRS)

    Pope, D. Stuart; Hardin, J. C.

    1995-01-01

    Three common finite difference schemes are used to examine the computation of one-dimensional nonlinear wave propagation. The schemes are studied for their responses to numerical parameters such as time step selection, boundary condition implementation, and discretization of governing equations. The performance of the schemes is compared and various numerical phenomena peculiar to each is discussed.

  11. A finite difference model for free surface gravity drainage

    SciTech Connect

    Couri, F.R.; Ramey, H.J. Jr.

    1993-09-01

    The unconfined gravity flow of liquid with a free surface into a well is a classical well test problem which has not been well understood by either hydrologists or petroleum engineers. Paradigms have led many authors to treat an incompressible flow as compressible flow to justify the delayed yield behavior of a time-drawdown test. A finite-difference model has been developed to simulate the free surface gravity flow of an unconfined single phase, infinitely large reservoir into a well. The model was verified with experimental results in sandbox models in the literature and with classical methods applied to observation wells in the Groundwater literature. The simulator response was also compared with analytical Theis (1935) and Ramey et al. (1989) approaches for wellbore pressure at late producing times. The seepage face in the sandface and the delayed yield behavior were reproduced by the model considering a small liquid compressibility and incompressible porous medium. The potential buildup (recovery) simulated by the model evidenced a different- phenomenon from the drawdown, contrary to statements found in the Groundwater literature. Graphs of buildup potential vs time, buildup seepage face length vs time, and free surface head and sand bottom head radial profiles evidenced that the liquid refills the desaturating cone as a flat moving surface. The late time pseudo radial behavior was only approached after exaggerated long times.

  12. An adaptive-mesh finite-difference solution method for the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Luchini, Paolo

    1987-02-01

    An adjustable variable-spacing grid is presented which permits the addition or deletion of single points during iterative solutions of the Navier-Stokes equations by finite difference methods. The grid is designed for application to two-dimensional steady-flow problems which can be described by partial differential equations whose second derivatives are constrained to the Laplacian operator. An explicit Navier-Stokes equations solution technique defined for use with the grid incorporates a hybrid form of the convective terms. Three methods are developed for automatic modifications of the mesh during calculations.

  13. Finite Element Analysis of a Deployable Space Structure

    NASA Technical Reports Server (NTRS)

    Weeks, G. E.

    1983-01-01

    The dynamic characteristics of the Solar Array Flight Experiment (SAFE) structure during deployment and retraction are investigated. The SAFE structure consists of a deployable mast with an attached solar blanket designed with accordion type folds to permit packaging in a small volume. The planar form of the blanket geometry during deployment is maintained by a blanket tension/guidewire system. Structurally, the mast is modeled as an Euler beam column with inplane and out of plane bending and finite torsional stiffness. For out of plane motion, the blanket is modeled as a distributed mass uniformly supported by the three guidewires. For inplane motion the blanket displacements are assumed to vary linearly from the mast base to the mast tip. The mathematical model uses a virtual work formulation, required because the axial loading on the mast is nonconservative, combined with assumed beam modes to derive the differential equations of motion. Consideration of the time dependent boundary conditions results in an infinite set of ODE with time dependent coefficients. Finally, correlation of mast tip accelerations to mast base bending moments for specified modal motions are indicated.

  14. A hybrid finite-difference and analytic element groundwater model.

    PubMed

    Haitjema, H M; Feinstein, D T; Hunt, R J; Gusyev, M A

    2010-01-01

    Regional finite-difference models tend to have large cell sizes, often on the order of 1-2 km on a side. Although the regional flow patterns in deeper formations may be adequately represented by such a model, the intricate surface water and groundwater interactions in the shallower layers are not. Several stream reaches and nearby wells may occur in a single cell, precluding any meaningful modeling of the surface water and groundwater interactions between the individual features. We propose to replace the upper MODFLOW layer or layers, in which the surface water and groundwater interactions occur, by an analytic element model (GFLOW) that does not employ a model grid; instead, it represents wells and surface waters directly by the use of point-sinks and line-sinks. For many practical cases it suffices to provide GFLOW with the vertical leakage rates calculated in the original coarse MODFLOW model in order to obtain a good representation of surface water and groundwater interactions. However, when the combined transmissivities in the deeper (MODFLOW) layers dominate, the accuracy of the GFLOW solution diminishes. For those cases, an iterative coupling procedure, whereby the leakages between the GFLOW and MODFLOW model are updated, appreciably improves the overall solution, albeit at considerable computational cost. The coupled GFLOW-MODFLOW model is applicable to relatively large areas, in many cases to the entire model domain, thus forming an attractive alternative to local grid refinement or inset models. PMID:20132324

  15. Assessment of linear finite-difference Poisson-Boltzmann solvers.

    PubMed

    Wang, Jun; Luo, Ray

    2010-06-01

    CPU time and memory usage are two vital issues that any numerical solvers for the Poisson-Boltzmann equation have to face in biomolecular applications. In this study, we systematically analyzed the CPU time and memory usage of five commonly used finite-difference solvers with a large and diversified set of biomolecular structures. Our comparative analysis shows that modified incomplete Cholesky conjugate gradient and geometric multigrid are the most efficient in the diversified test set. For the two efficient solvers, our test shows that their CPU times increase approximately linearly with the numbers of grids. Their CPU times also increase almost linearly with the negative logarithm of the convergence criterion at very similar rate. Our comparison further shows that geometric multigrid performs better in the large set of tested biomolecules. However, modified incomplete Cholesky conjugate gradient is superior to geometric multigrid in molecular dynamics simulations of tested molecules. We also investigated other significant components in numerical solutions of the Poisson-Boltzmann equation. It turns out that the time-limiting step is the free boundary condition setup for the linear systems for the selected proteins if the electrostatic focusing is not used. Thus, development of future numerical solvers for the Poisson-Boltzmann equation should balance all aspects of the numerical procedures in realistic biomolecular applications. PMID:20063271

  16. Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers.

    PubMed

    Cai, Qin; Hsieh, Meng-Juei; Wang, Jun; Luo, Ray

    2010-01-12

    We implemented and optimized seven finite-difference solvers for the full nonlinear Poisson-Boltzmann equation in biomolecular applications, including four relaxation methods, one conjugate gradient method, and two inexact Newton methods. The performance of the seven solvers was extensively evaluated with a large number of nucleic acids and proteins. Worth noting is the inexact Newton method in our analysis. We investigated the role of linear solvers in its performance by incorporating the incomplete Cholesky conjugate gradient and the geometric multigrid into its inner linear loop. We tailored and optimized both linear solvers for faster convergence rate. In addition, we explored strategies to optimize the successive over-relaxation method to reduce its convergence failures without too much sacrifice in its convergence rate. Specifically we attempted to adaptively change the relaxation parameter and to utilize the damping strategy from the inexact Newton method to improve the successive over-relaxation method. Our analysis shows that the nonlinear methods accompanied with a functional-assisted strategy, such as the conjugate gradient method and the inexact Newton method, can guarantee convergence in the tested molecules. Especially the inexact Newton method exhibits impressive performance when it is combined with highly efficient linear solvers that are tailored for its special requirement. PMID:24723843

  17. Asymptotically Correct Finite Difference Schemes for Highly Oscillatory ODEs

    SciTech Connect

    Arnold, Anton; Geier, Jens

    2010-09-30

    We are concerned with the numerical integration of ODE-initial value problems of the form {epsilon}{sup 2{phi}}{sub xx}+a(x){phi} = 0 with given a(x){>=}a{sub 0}>0 in the highly oscillatory regime 0<{epsilon}(appearing as a stationary Schroedinger equation, e.g.). In two steps we derive an accurate finite difference scheme that does not need to resolve each oscillation: With a WKB-ansatz the dominant oscillations are ''transformed out'', yielding a much smoother ODE. For the resulting oscillatory integrals we devise an asymptotic expansion both in {epsilon} and h. The resulting scheme typically has a step size restriction of h = o({radical}({epsilon})). If the phase of the WKB-transformation can be computed explicitly, then the scheme is asymptotically correct with an error bound of the order o({epsilon}{sup 3}h{sup 2}). As an application we present simulations of a 1D-model for ballistic quantum transport in a MOSFET (metal oxide semiconductor field-effect transistor).

  18. Contraction pre-conditioner in finite-difference electromagnetic modelling

    NASA Astrophysics Data System (ADS)

    Yavich, Nikolay; Zhdanov, Michael S.

    2016-09-01

    This paper introduces a novel approach to constructing an effective pre-conditioner for finite-difference (FD) electromagnetic modelling in geophysical applications. This approach is based on introducing an FD contraction operator, similar to one developed for integral equation formulation of Maxwell's equation. The properties of the FD contraction operator were established using an FD analogue of the energy equality for the anomalous electromagnetic field. A new pre-conditioner uses a discrete Green's function of a 1-D layered background conductivity. We also developed the formulae for an estimation of the condition number of the system of FD equations pre-conditioned with the introduced FD contraction operator. Based on this estimation, we have established that the condition number is bounded by the maximum conductivity contrast between the background conductivity and actual conductivity. When there are both resistive and conductive anomalies relative to the background, the new pre-conditioner is advantageous over using the 1-D discrete Green's function directly. In our numerical experiments with both resistive and conductive anomalies, for a land geoelectrical model with 1:10 contrast, the method accelerates convergence of an iterative method (BiCGStab) by factors of 2-2.5, and in a marine example with 1:50 contrast, by a factor of 4.6, compared to direct use of the discrete 1-D Green's function as a pre-conditioner.

  19. Assessment of Linear Finite-Difference Poisson-Boltzmann Solvers

    PubMed Central

    Wang, Jun; Luo, Ray

    2009-01-01

    CPU time and memory usage are two vital issues that any numerical solvers for the Poisson-Boltzmann equation have to face in biomolecular applications. In this study we systematically analyzed the CPU time and memory usage of five commonly used finite-difference solvers with a large and diversified set of biomolecular structures. Our comparative analysis shows that modified incomplete Cholesky conjugate gradient and geometric multigrid are the most efficient in the diversified test set. For the two efficient solvers, our test shows that their CPU times increase approximately linearly with the numbers of grids. Their CPU times also increase almost linearly with the negative logarithm of the convergence criterion at very similar rate. Our comparison further shows that geometric multigrid performs better in the large set of tested biomolecules. However, modified incomplete Cholesky conjugate gradient is superior to geometric multigrid in molecular dynamics simulations of tested molecules. We also investigated other significant components in numerical solutions of the Poisson-Boltzmann equation. It turns out that the time-limiting step is the free boundary condition setup for the linear systems for the selected proteins if the electrostatic focusing is not used. Thus, development of future numerical solvers for the Poisson-Boltzmann equation should balance all aspects of the numerical procedures in realistic biomolecular applications. PMID:20063271

  20. Generating meshes for finite-difference analysis using a solid modeler

    NASA Astrophysics Data System (ADS)

    Laguna, G. W.; White, W. T.; Cabral, B. K.

    1987-09-01

    One tool used by the Engineering Research Division of LLNL to help analyze the behavior of electronic systems in hostile environments is 3D finite-difference time-domain (FDTD) computation. FDTD codes solve Maxwell's equations,the differential equations of electromagnetism, on a uniform lattice of points. It is this uniform lattice, or mesh, that distinguishes finite-difference codes from other codes. The simple mesh makes FDTD codes computationally more efficient than other codes, which enables them to run larger problems and to run faster (up to thirty times faster than finite-element codes, for example). Therefore, within the Engineering Department at LLNL, Electronics Engineering (EE) has initiated a project to develop a mesh generator that will provide meshes suitable for FDTD analysis. This report describes the results of the first year of EE's FDTD Mesh Generation Project. During this year a preliminary version of an automated mesh generator was built and used to create a mesh of an object of interest to the High-Power Microwave Program, namely an electrically detonatable land mine. The code was verified by meshing basic solids such as spheres and cylinders. Because of the design of the code, there is no software limitation to the size of meshes that can be accommodated. The algorithm with a mesh space of approximately 500,000 cells has been demonstrated. The mesh generator can detect certain objects with walls that are thinner than the width of a cell. The code has internal graphics for viewing objects as they appear prior to being converted to a finite-difference representation. Additionally, via data files, the code is coupled to two external graphics packages for visually checking the meshes, namely TAURUS on the Cray and a new code, IMAGE, on the Silicon Graphics IRIS workstation.

  1. Generating meshes for finite-difference analysis using a solid modeler

    SciTech Connect

    Laguna, G.W.; White, W.T.; Cabral, B.K.

    1987-09-01

    One tool used by the Engineering Research Division of LLNL to help analyze the behavior of electronic systems in hostile environments is 3D finite-difference time-domain (FDTD) computation. FDTD codes solve Maxwell's equations,the differential equations of electromagnetism, on a uniform lattice of points. It is this uniform lattice, or ''mesh,'' that distinguishes finite-difference codes from other codes. The simple mesh makes FDTD codes computationally more efficient than other codes, which enables them to run larger problems and to run faster (up to thirty times faster than finite-element codes, for example). Therefore, within the Engineering Department at LLNL, Electronics Engineering (EE) has initiated a project to develop a mesh generator that will provide meshes suitable for FDTD analysis. This report describes the results of the first year of EE's FDTD Mesh Generation Project. During this year a preliminary version of an automated mesh generator was built and used to create a mesh of an object of interest to the High-Power Microwave Program, namely an electrically detonatable land mine. The code was verified by meshing basic solids such as spheres and cylinders. Because of the design of the code, there is no software limitation to the size of meshes that can be accommodated. The algorithm with a mesh space of approximately 500,000 cells has been demonstrated. The mesh generator can detect certain objects with walls that are thinner than the width of a cell. The code has internal graphics for viewing objects as they appear prior to being converted to a finite-difference representation. Additionally, via data files, the code is coupled to two external graphics packages for visually checking the meshes, namely TAURUS on the Cray and a new code, IMAGE, on the Silicon Graphics IRIS workstation.

  2. Boiling Fluids Behave Quite Differently in Space

    NASA Video Gallery

    The boiling process is really different in space, since the vapor phase of a boiling liquid does not rise via buoyancy. Spacecraft and Earth-based systems use boiling to efficiently remove large am...

  3. Application of laser-based methods and finite element analysis to bond verfication of space shuttle tiles

    NASA Astrophysics Data System (ADS)

    Moslehy, Faissal A.; Mueller, Steven A.; Davis, Richard M.

    1993-10-01

    This paper describes a novel application of a laser-based vibration measuring system and finite element modeling to evaluate the bond condition of Space Shuttle thermal protection system tiles. This application is based on characterizing the vibrational response of tiles when excited by an audible acoustic energy. Finite element models for tile assemblies which are comprised of tiles, SIP, and RTV layers attached to the Orbiter aluminum skin are first developed. The mathematical model considered the actual orthotropic material properties, different geometrical configurations as well as different bond conditions. The tiles' natural frequencies and mode shapes are then determined and their frequency responses due to simulated sound pressure are computed. The computed frequency response of a tile having a disbond indicates a decrease in its natural frequencies. This can be used to quickly identify the disbonded tiles. However, the exact size and location of the disbond are determined from the computed rigid- body vibrational modes. The finite element results are compared with experimentally determined frequency responses of a 17-tile test panel, where a rapid scan laser system was employed. An excellent degree of correlation between the mathematical simulation and experimental results is realized. The paper also reports on laser-based modal and shearographic testing performed on tiles of Space Shuttle Columbia. Again, the results demonstrate that experimental modal analysis, when combined with finite element modeling, can be successfully used as a reliable nondestructive, non-contact technique for tile bond verification.

  4. A finite-difference contrast source inversion method

    NASA Astrophysics Data System (ADS)

    Abubakar, A.; Hu, W.; van den Berg, P. M.; Habashy, T. M.

    2008-12-01

    We present a contrast source inversion (CSI) algorithm using a finite-difference (FD) approach as its backbone for reconstructing the unknown material properties of inhomogeneous objects embedded in a known inhomogeneous background medium. Unlike the CSI method using the integral equation (IE) approach, the FD-CSI method can readily employ an arbitrary inhomogeneous medium as its background. The ability to use an inhomogeneous background medium has made this algorithm very suitable to be used in through-wall imaging and time-lapse inversion applications. Similar to the IE-CSI algorithm the unknown contrast sources and contrast function are updated alternately to reconstruct the unknown objects without requiring the solution of the full forward problem at each iteration step in the optimization process. The FD solver is formulated in the frequency domain and it is equipped with a perfectly matched layer (PML) absorbing boundary condition. The FD operator used in the FD-CSI method is only dependent on the background medium and the frequency of operation, thus it does not change throughout the inversion process. Therefore, at least for the two-dimensional (2D) configurations, where the size of the stiffness matrix is manageable, the FD stiffness matrix can be inverted using a non-iterative inversion matrix approach such as a Gauss elimination method for the sparse matrix. In this case, an LU decomposition needs to be done only once and can then be reused for multiple source positions and in successive iterations of the inversion. Numerical experiments show that this FD-CSI algorithm has an excellent performance for inverting inhomogeneous objects embedded in an inhomogeneous background medium.

  5. Finite-difference-based dynamic modeling of MEMS bridge

    NASA Astrophysics Data System (ADS)

    Michael, Aron; Yu, Kevin; Kwok, Chee Yee

    2005-02-01

    In this paper, we present a finite difference based one-dimensional dynamic modeling, which includes electro-thermal coupled with thermo-mechanical behavior of a multi-layered micro-bridge. The electro-thermal model includes the heat transfer from the joule-heated layer to the other layers, and establishes the transient temperature gradient through the thickness of the bridge. The thermal moment and axial load resulting from the transient temperature gradient are used to couple electro-thermal with thermo-mechanical behavior. The dynamic modeling takes into account buckling, and damping effects, asymmetry residual stresses in the layers, and lateral movement at the support ends. The proposed model is applied to a tri-layer micro-bridge of 1000μm length, made of 2μm silicon dioxide sandwiched in between 2μm thick epi-silicon, and 2μm thick poly silicon, with four 400μm long legs, and springs at the four corners the bridge. The beam, and legs are 40μm, and 10μm wide respectively. Results demonstrate the bi-stability of the structure, and a large movement of 40μm between the up and down stable states can easily be obtained. Application of only 21mA electrical current for 15μs to the legs is required to switch buckled-up position to buckled-down position. An additional trapezoidal waveform electrical current of 100mA amplitude for 4μs, and 100μs falling time needs to be applied for the reverse actuation. The switching speed in both cases is less than 500μs.

  6. 3D Finite Difference Modelling of Basaltic Region

    NASA Astrophysics Data System (ADS)

    Engell-Sørensen, L.

    2003-04-01

    The main purpose of the work was to generate realistic data to be applied for testing of processing and migration tools for basaltic regions. The project is based on the three - dimensional finite difference code (FD), TIGER, made by Sintef. The FD code was optimized (parallelized) by the author, to run on parallel computers. The parallel code enables us to model large-scale realistic geological models and to apply traditional seismic and micro seismic sources. The parallel code uses multiple processors in order to manipulate subsets of large amounts of data simultaneously. The general anisotropic code uses 21 elastic coefficients. Eight independent coefficients are needed as input parameters for the general TI medium. In the FD code, the elastic wave field computation is implemented by a higher order FD solution to the elastic wave equation and the wave fields are computed on a staggered grid, shifted half a node in one or two directions. The geological model is a gridded basalt model, which covers from 24 km to 37 km of a real shot line in horizontal direction and from the water surface to the depth of 3.5 km. The 2frac {1}{2}D model has been constructed using the compound modeling software from Norsk Hydro. The vertical parameter distribution is obtained from observations in two wells. At The depth of between 1100 m to 1500 m, a basalt horizon covers the whole sub surface layers. We have shown that it is possible to simulate a line survey in realistic (3D) geological models in reasonable time by using high performance computers. The author would like to thank Norsk Hydro, Statoil, GEUS, and SINTEF for very helpful discussions and Parallab for being helpful with the new IBM, p690 Regatta system.

  7. High order finite difference methods with subcell resolution for advection equations with stiff source terms

    SciTech Connect

    Wang, Wei; Shu, Chi-Wang; Yee, H.C.; Sjögreen, Björn

    2012-01-01

    A new high order finite-difference method utilizing the idea of Harten ENO subcell resolution method is proposed for chemical reactive flows and combustion. In reaction problems, when the reaction time scale is very small, e.g., orders of magnitude smaller than the fluid dynamics time scales, the governing equations will become very stiff. Wrong propagation speed of discontinuity may occur due to the underresolved numerical solution in both space and time. The present proposed method is a modified fractional step method which solves the convection step and reaction step separately. In the convection step, any high order shock-capturing method can be used. In the reaction step, an ODE solver is applied but with the computed flow variables in the shock region modified by the Harten subcell resolution idea. For numerical experiments, a fifth-order finite-difference WENO scheme and its anti-diffusion WENO variant are considered. A wide range of 1D and 2D scalar and Euler system test cases are investigated. Studies indicate that for the considered test cases, the new method maintains high order accuracy in space for smooth flows, and for stiff source terms with discontinuities, it can capture the correct propagation speed of discontinuities in very coarse meshes with reasonable CFL numbers.

  8. Fast quasi-explicit finite difference simulation of electrochemical responses initiated by a discontinuous perturbation

    SciTech Connect

    Feldberg, S.W.

    1991-01-01

    Commencing in the early 60s the application of explicit finite difference (EFD) methods to the analysis of electrochemical problems paralleled the development and availability of fast, main-frame, digital computers. The appeal of the EFD method has been its simplicity of principle and of application. EFD algorithms, however, are notoriously inefficient for solving certain types of stiff problems (e.g., problems involving a wide dynamic range of time constants). In this presentation the author discusses the principles and some applications of a fast quasi-explicit finite difference (FQEFD) method in which the computational speed is enhanced, by many orders of magnitude in some cases, without compromising the user friendliness which has popularized the EFD method. The method is designed to treat electrochemical responses to a discontinuous (e.g, chronoamperometric) perturbation and utilizes the DuFort-Frankel algorithm (1) with exponentially expanding space (2) and exponentially expanding time grids. (A previously published version of the FQEFD method (3,4) was designed to treat electrochemical responses to a continuous (e.g., cyclic voltammetric) perturbation and utilizes the DuFort-Frankel (3) algorithm in conjunction with an exponentially expanding space grid and a uniform time grid. The development of the basic FQEFD equations was presented there). The protocol for introducing the expanding time grid is straightforward and is discussed. 7 refs., 1 fig. 1 tab.

  9. Finite difference solution for transient radiative cooling of a conducting semitransparent square region

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Molls, F. B.

    1992-01-01

    Transient solutions were obtained for a square region of heat conducting semitransparent material cooling by thermal radiation. The region is in a vacuum environment, so energy is dissipated only by radiation from within the medium leaving through its boundaries. The effect of heat conduction during the transient is to partially equalize the internal temperature distribution. As the optical thickness of the region is increased, the temperature gradients increase near the boundaries and corners, unless heat conduction is large. The solution procedure must provide accurate temperature distributions in these regions to prevent error in the calculated radiation losses. Two-dimensional numerical Gaussian integration is used to obtain the local radiative source term. A finite difference procedure with variable space and time increments is used to solve the transient energy equation. Variable spacing was used to concentrate grid points in regions with large temperature gradients.

  10. Evaluation of a thin-slot formalism for finite-difference time-domain electromagnetics codes

    SciTech Connect

    Turner, C.D.; Bacon, L.D.

    1987-03-01

    A thin-slot formalism for use with finite-difference time-domain (FDTD) electromagnetics codes has been evaluated in both two and three dimensions. This formalism allows narrow slots to be modeled in the wall of a scatterer without reducing the space grid size to the gap width. In two dimensions, the evaluation involves the calculation of the total fields near two infinitesimally thin coplanar strips separated by a gap. A method-of-moments (MoM) solution of the same problem is used as a benchmark for comparison. Results in two dimensions show that up to 10% error can be expected in total electric and magnetic fields both near (lambda/40) and far (1 lambda) from the slot. In three dimensions, the evaluation is similar. The finite-length slot is placed in a finite plate and an MoM surface patch solution is used for the benchmark. These results, although less extensive than those in two dimensions, show that slightly larger errors can be expected. Considering the approximations made near the slot in incorporating the formalism, the results are very promising. Possibilities also exist for applying this formalism to walls of arbitrary thickness and to other types of slots, such as overlapping joints. 11 refs., 25 figs., 6 tabs.

  11. Space weather at different planetary environments

    NASA Astrophysics Data System (ADS)

    Plainaki, Christina; Milillo, Anna; Andriopoulou, Maria; Dandouras, Iannis; Radioti, Aikaterini; Lilensten, Jean; Coustenis, Athena; Nordheim, Tom; Orsini, Stefano; Mura, Alessandro; Mangano, Valeria

    2015-04-01

    Different aspects of the conditions in the Sun, solar wind and magnetospheric plasmas, at various planetary systems of our Solar System, can influence the performance and reliability of space-borne technological systems. The science study of the so-called Planetary Space Weather considers different cross-disciplinary issues, including: - the interaction of solar wind/magnetospheric plasmas with planetary/satellite surfaces, ionospheres and thick (e.g. at Jupiter, Saturn, Uranus, Mars, Venus, Titan) or tenuous (e.g. Ganymede, Europa, Mercury, our Moon) atmospheres, including the generation of auroras - the satellite interactions with their neutral environments and dust - the variability of the magnetospheric regions under different solar wind conditions - radiation belts, and their interactions with atmospheres/satellites/rings, in different planetary environments - the inter-comparisons of space weather conditions in different planetary environments In this paper, a brief review of theoretical and data analysis studies regarding planetary space weather in different bodies of our Solar System is presented. The importance of such studies for the in-situ data interpretations as well as for the preparation of future space missions is outlined.

  12. A fast finite volume method for conservative space-fractional diffusion equations in convex domains

    NASA Astrophysics Data System (ADS)

    Jia, Jinhong; Wang, Hong

    2016-04-01

    We develop a fast finite volume method for variable-coefficient, conservative space-fractional diffusion equations in convex domains via a volume-penalization approach. The method has an optimal storage and an almost linear computational complexity. The method retains second-order accuracy without requiring a Richardson extrapolation. Numerical results are presented to show the utility of the method.

  13. A total variation diminishing finite difference algorithm for sonic boom propagation models

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.

    1993-01-01

    It is difficult to accurately model the rise phases of sonic boom waveforms with traditional finite difference algorithms because of finite difference phase dispersion. This paper introduces the concept of a total variation diminishing (TVD) finite difference method as a tool for accurately modeling the rise phases of sonic booms. A standard second order finite difference algorithm and its TVD modified counterpart are both applied to the one-way propagation of a square pulse. The TVD method clearly outperforms the non-TVD method, showing great potential as a new computational tool in the analysis of sonic boom propagation.

  14. Analysis of developing laminar flows in circular pipes using a higher-order finite-difference technique

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Ko, Ching L.; Boddy, Douglas E.

    1995-01-01

    A higher-order finite-difference technique is developed to calculate the developing-flow field of steady incompressible laminar flows in the entrance regions of circular pipes. Navier-Stokes equations governing the motion of such a flow field are solved by using this new finite-difference scheme. This new technique can increase the accuracy of the finite-difference approximation, while also providing the option of using unevenly spaced clustered nodes for computation such that relatively fine grids can be adopted for regions with large velocity gradients. The velocity profile at the entrance of the pipe is assumed to be uniform for the computation. The velocity distribution and the surface pressure drop of the developing flow then are calculated and compared to existing experimental measurements reported in the literature. Computational results obtained are found to be in good agreement with existing experimental correlations and therefore, the reliability of the new technique has been successfully tested.

  15. A Unified Topological Layer for Finite Element Space Discretization

    NASA Astrophysics Data System (ADS)

    Stimpfl, Franz; Weinbub, Josef; Heinzl, René; Schwaha, Philipp; Selberherr, Siegfried

    2010-09-01

    A unified topological layer for mesh generation has been created to benefit from current development, to reuse existing, well tested and reliable methods, such as the Delaunay or the Advancing Front mesh generation approach, and to combine them to be able to interchange these methods, without taking a detour using file formats. In addition, by modularizing existing meshing kernels, this approach allows to not only have one meshing interface for arbitrary dimensions, but also to have the possibility at hand to independently combine different meshing strategies.

  16. Composite scheme using localized relaxation with non-standard finite difference method for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Kumar, Vivek; Raghurama Rao, S. V.

    2008-04-01

    Non-standard finite difference methods (NSFDM) introduced by Mickens [ Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791-797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250-2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235-276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter ( λ) is chosen locally

  17. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  18. Simulation of planar integrated photonics devices with the LLNL time- domain finite-difference code suite

    SciTech Connect

    McLeod, R.; Hawkins, R.J.; Kallman, J.S.

    1991-04-01

    Interest has recently grown in applying microwave modeling techniques to optical circuit modeling. One of the simplest, yet most powerful, microwave simulation techniques is the finite-difference time-domain algorithm (FDTD). In this technique, the differential form of the time-domain Maxwell's equations are discretized and all derivatives are approximated as differences. Minor algebraic manipulations on the resulting equations produces a set of update equations that produce fields at a given time step from fields at the previous time step. The FDTD algorithm, then, is quite simple. Source fields are launched into the discrete grid by some means. The FDTD equations advance these fields in time. At the boundaries of the grid, special update equations called radiation conditions are applied that approximate a continuing, infinite space. Because virtually no assumptions are made in the development of the FDTD method, the algorithm is able to represent a wide-range of physical effects. Waves can propagate in any direction, multiple reflections within structures can cause resonances, multiple modes of various polarizations can be launched, each of which may generate within the device an infinite spectrum of bound and radiation modes. The ability to model these types of general physical effects is what makes the FDTD method interesting to the field of optics. In this paper, we discuss the application of the finite-difference time-domain technique to integrated optics. Animations will be shown of the simulations of a TE coupler, TM grating, and a TE integrated detector. 3 refs., 1 fig.

  19. Improved finite-difference computation of the van der Waals force: One-dimensional case

    SciTech Connect

    Pinto, Fabrizio

    2009-10-15

    We present an improved demonstration of the calculation of Casimir forces in one-dimensional systems based on the recently proposed numerical imaginary frequency Green's function computation approach. The dispersion force on two thick lossy dielectric slabs separated by an empty gap and placed within a perfectly conducting cavity is obtained from the Green's function of the modified Helmholtz equation by means of an ordinary finite-difference method. In order to demonstrate the possibility to develop algorithms to explore complex geometries in two and three dimensions to higher order in the mesh spacing, we generalize existing classical electromagnetism algebraic methods to generate the difference equations for dielectric boundaries not coinciding with any grid points. Diagnostic tests are presented to monitor the accuracy of our implementation of the method and follow-up applications in higher dimensions are introduced.

  20. Dynamic and thermal response finite element models of multi-body space structural configurations

    NASA Technical Reports Server (NTRS)

    Edighoffer, Harold H.

    1987-01-01

    Presented is structural dynamics modeling of two multibody space structural configurations. The first configuration is a generic space station model of a cylindrical habitation module, two solar array panels, radiator panel, and central connecting tube. The second is a 15-m hoop-column antenna. Discussed is the special joint elimination sequence used for these large finite element models, so that eigenvalues could be extracted. The generic space station model aided test configuration design and analysis/test data correlation. The model consisted of six finite element models, one of each substructure and one of all substructures as a system. Static analysis and tests at the substructure level fine-tuned the finite element models. The 15-m hoop-column antenna is a truss column and structural ring interconnected with tension stabilizing cables. To the cables, pretensioned mesh membrane elements were attached to form four parabolic shaped antennae, one per quadrant. Imposing thermal preloads in the cables and mesh elements produced pretension in the finite element model. Thermal preload variation in the 96 control cables was adjusted to maintain antenna shape within the required tolerance and to give pointing accuracy.

  1. A formula for the weight of a minimal filling of a finite metric space

    SciTech Connect

    Eremin, A Yu

    2013-09-30

    We consider the problem of finding a minimal filling for a finite metric space, that is, a weighted graph of minimal weight joining a given finite metric space. We obtain a minimax formula for the weight of the minimal filling, which we use to prove various properties of minimal fillings. Bibliography: 10 titles.

  2. Finite element analysis of the Space Shuttle 2.5-inch frangible nut

    NASA Technical Reports Server (NTRS)

    McKinnis, Darin N.

    1994-01-01

    Finite element analysis of the Space Shuttle 2.5-inch frangible nut was conducted to improve understanding of the current design and proposed design changes to this explosively-actuated nut. The 2.5-inch frangible nut is used in two places to attach the aft end of the Space Shuttle Orbiter to the External Tank. Both 2.5-inch frangible nuts must function to complete safe separation. The 2.5-inch frangible nut contains two explosive boosters containing RDX explosive each capable of splitting the nut in half, on command from the Orbiter computers. To ensure separation, the boosters are designed to be redundant. The detonation of one booster is sufficient to split the nut in half. However, beginning in 1987 some production lots of 2.5-inch frangible nuts have demonstrated an inability to separate using only a single booster. The cause of the failure has been attributed to differences in the material properties and response of the Inconel 718 from which the 2.5-inch frangible nut is manufactured. Subsequent tests have resulted in design modifications of the boosters and frangible nut. Model development and initial analysis was conducted by Sandia National Laboratories (SNL) under funding from NASA Lyndon B. Johnson Space Center (NASA-JSC) starting in 1992. Modeling codes previously developed by SNL were transferred to NASA-JSC for further analysis on this and other devices. An explosive bolt with NASA Standard Detonator (NSD) charge, a 3/4-inch frangible nut, and the Super*Zip linear separation system are being modeled by NASA-JSC.

  3. Finite difference identification of noisy distributed systems using scanning measurements

    NASA Technical Reports Server (NTRS)

    Hughes, R. O.

    1975-01-01

    Most of the present-day literature concerned with identification theory and techniques is directed toward lumped parameter systems, and many comprehensive surveys of the field are available. Relatively little has appeared in the literature concerning distributed identification, and even more noticeable is the scarcity of papers dealing with systems described by the one-dimensional wave equation. Perdeauville and Goodson were perhaps the first researchers with a workable but time consuming method for the identification of coefficients of the wave equation. Fairman and Shen, also considering the wave equation, used the technique of finite differencing to approximate spatial derivatives, and Poisson filter chains to approximate temporal derivatives.

  4. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for Aircraft Acoustic Nacelle Design

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  5. Rasterizing geological models for parallel finite difference simulation using seismic simulation as an example

    NASA Astrophysics Data System (ADS)

    Zehner, Björn; Hellwig, Olaf; Linke, Maik; Görz, Ines; Buske, Stefan

    2016-01-01

    3D geological underground models are often presented by vector data, such as triangulated networks representing boundaries of geological bodies and geological structures. Since models are to be used for numerical simulations based on the finite difference method, they have to be converted into a representation discretizing the full volume of the model into hexahedral cells. Often the simulations require a high grid resolution and are done using parallel computing. The storage of such a high-resolution raster model would require a large amount of storage space and it is difficult to create such a model using the standard geomodelling packages. Since the raster representation is only required for the calculation, but not for the geometry description, we present an algorithm and concept for rasterizing geological models on the fly for the use in finite difference codes that are parallelized by domain decomposition. As a proof of concept we implemented a rasterizer library and integrated it into seismic simulation software that is run as parallel code on a UNIX cluster using the Message Passing Interface. We can thus run the simulation with realistic and complicated surface-based geological models that are created using 3D geomodelling software, instead of using a simplified representation of the geological subsurface using mathematical functions or geometric primitives. We tested this set-up using an example model that we provide along with the implemented library.

  6. 2D time-domain finite-difference modeling for viscoelastic seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing

    2016-07-01

    Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a tradeoff between accuracy and computational costs to incorporate Q into 2D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second-order in time and fourth-order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.

  7. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for the Convective Wave Equation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Kreider, K. L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in ducts. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  8. The Benard problem: A comparison of finite difference and spectral collocation eigen value solutions

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee; Mccaughan, Frances E.; Fitzmaurice, Nessan

    1995-01-01

    The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation formulation is described. The performance of the spectral scheme is compared with that of a 2nd order finite difference scheme. An exact solution to the Marangoni-Benard problem is used to evaluate the performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude smaller than finite difference error for a grid resolution of N = 15 (number of points used). The performance of the spectral formulation far exceeded the performance of the finite difference formulation for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order finite difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher order finite difference schemes.

  9. DAO's Next Generation Physical-Space/Finite-Volume Data Assimilation System: Formulation and Initial Evaluation

    NASA Technical Reports Server (NTRS)

    daSilva, A.; Lin. S.-J.; Dee, D.; Joiner, J.; Atlas, Robert (Technical Monitor)

    2001-01-01

    The Physical-space/Finite-volume Data Assimilation System (fvDAS) is the next generation global atmospheric data assimilation system in development at the Data Assimilation Office at NASA's Goddard Space Flight Center. It is based on a new finite-volume general circulation model jointly developed by NASA and NCAR, and on the Physical-Space Statistical Analysis System (PSAS) developed at the DAO. In this talk we will describe the general system formulation, the adaptive quality control and general aspects of the error covariance modeling. The NASA-NCAR GCM is a completely new model which replaces the CEOs GCM used in the previous GEOS-1/2/3 Data Assimilation systems. A particular configuration of adaptive Statistical Quality Control and the Physical-space Statistical Analysis System (PSAS) are currently implemented in DAO's operational Data Assimilation System. However, the unique finite-volume formulation of the NASA-NCAR GCM, combined with the generality of the observation-space formulation of PSAS, provides for a very simple and accurate model-analysis interface. The system assimilates a variety of conventional and satellite observations. In particular, TOVS Level 1B radiances are assimilated using a 1-D variational scheme, both in clear sky and cloudy conditions. Computationally, the fvDAS runs approximately 10 times faster than the operational GEOS-Terra system. We will show that the next-generation fvDAS has much improved observation-minus-6hr forecast (O-F) statistics, as well as 5-day forecast skills. Top of the atmosphere radiation fields are in closer agreement with CERES measurements, with realistic precipitation and moisture fields. We will also show that the finite-volume formulation of the fvDAS produce assimilated fields which are more suitable for driving constituent transport models.

  10. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  11. Finite difference solution for transient cooling of a radiating-conducting semitransparent layer

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1992-01-01

    Transient solutions were obtained for cooling a semitransparent material by radiation and conduction. The layer is in a vacuum environment so the only means for heat dissipation is by radiation from within the medium leaving through the boundaries. Heat conduction serves only to partially equalize temperatures across the layer. As the optical thickness is increased, steep temperature gradients exist near the boundaries when conduction is relatively small. A solution procedure is required that will provide accurate temperature distributions adjacent to the boundaries, or radiative heat losses will be in error. The approach utilized numerical Gaussian integration to obtain the local radiative source term, and a finite difference procedure with variable space and time increments to solve the transient energy equation.

  12. Black-Scholes finite difference modeling in forecasting of call warrant prices in Bursa Malaysia

    NASA Astrophysics Data System (ADS)

    Mansor, Nur Jariah; Jaffar, Maheran Mohd

    2014-07-01

    Call warrant is a type of structured warrant in Bursa Malaysia. It gives the holder the right to buy the underlying share at a specified price within a limited period of time. The issuer of the structured warrants usually uses European style to exercise the call warrant on the maturity date. Warrant is very similar to an option. Usually, practitioners of the financial field use Black-Scholes model to value the option. The Black-Scholes equation is hard to solve analytically. Therefore the finite difference approach is applied to approximate the value of the call warrant prices. The central in time and central in space scheme is produced to approximate the value of the call warrant prices. It allows the warrant holder to forecast the value of the call warrant prices before the expiry date.

  13. Multi-Dimensional High Order Essentially Non-Oscillatory Finite Difference Methods in Generalized Coordinates

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1998-01-01

    This project is about the development of high order, non-oscillatory type schemes for computational fluid dynamics. Algorithm analysis, implementation, and applications are performed. Collaborations with NASA scientists have been carried out to ensure that the research is relevant to NASA objectives. The combination of ENO finite difference method with spectral method in two space dimension is considered, jointly with Cai [3]. The resulting scheme behaves nicely for the two dimensional test problems with or without shocks. Jointly with Cai and Gottlieb, we have also considered one-sided filters for spectral approximations to discontinuous functions [2]. We proved theoretically the existence of filters to recover spectral accuracy up to the discontinuity. We also constructed such filters for practical calculations.

  14. Finite-dimensional representations of difference operators and the identification of remarkable matrices

    NASA Astrophysics Data System (ADS)

    Calogero, Francesco

    2015-03-01

    Two square matrices of (arbitrary) order N are introduced. They are defined in terms of N arbitrary numbers zn, and of an arbitrary additional parameter (a respectively q), and provide finite-dimensional representations of the two operators acting on a function f(z) as follows: [f(z + a) - f(z)]/a respectively [f(qz) - f(z)]/[(q - 1) z]. These representations are exact—in a sense explained in the paper—when the function f(z) is a polynomial in z of degree less than N. This formalism allows to transform difference equations valid in the space of polynomials of degree less than N into corresponding matrix-vector equations. As an application of this technique, several remarkable square matrices of order N are identified, which feature explicitly N arbitrary numbers zn, or the N zeros of polynomials belonging to the Askey and q-Askey schemes. Several of these findings have a Diophantine character.

  15. Finite-difference simulation and visualization of elastodynamics in time-evolving generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K. (Inventor)

    2009-01-01

    Modeling and simulation of free and forced structural vibrations is essential to an overall structural health monitoring capability. In the various embodiments, a first principles finite-difference approach is adopted in modeling a structural subsystem such as a mechanical gear by solving elastodynamic equations in generalized curvilinear coordinates. Such a capability to generate a dynamic structural response is widely applicable in a variety of structural health monitoring systems. This capability (1) will lead to an understanding of the dynamic behavior of a structural system and hence its improved design, (2) will generate a sufficiently large space of normal and damage solutions that can be used by machine learning algorithms to detect anomalous system behavior and achieve a system design optimization and (3) will lead to an optimal sensor placement strategy, based on the identification of local stress maxima all over the domain.

  16. A New 2-Dimensional Millimeter Wave Radiation Imaging System Based on Finite Difference Regularization

    NASA Astrophysics Data System (ADS)

    Zhu, Lu; Liu, Yuanyuan; Chen, Suhua; Hu, Fei; Chen, Zhizhang (David)

    2015-04-01

    Synthetic aperture imaging radiometer (SAIR) has the potential to meet the spatial resolution requirement of passive millimeter remote sensing from space. A new two-dimensional (2-D) imaging radiometer at millimeter wave (MMW) band is described in this paper; it uses a one-dimensional (1-D) synthetic aperture digital radiometer (SADR) to obtain an image on one dimension and a rotary platform to provide a scan on the second dimension. Due to the ill-posed inverse problem of SADR, we proposed a new reconstruction algorithm based on Finite Difference (FD) regularization to improve brightness temperature images. Experimental results show that the proposed 2-D MMW radiometer can give the brightness temperature images of natural scenes and the FD regularization reconstruction algorithm is able to improve the quality of brightness temperature images.

  17. Study of two-dimensional transient cavity fields using the finite-difference time-domain technique

    SciTech Connect

    Crisp, J.L.

    1988-06-01

    This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs.

  18. High-order cyclo-difference techniques: An alternative to finite differences

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Otto, John C.

    1993-01-01

    The summation-by-parts energy norm is used to establish a new class of high-order finite-difference techniques referred to here as 'cyclo-difference' techniques. These techniques are constructed cyclically from stable subelements, and require no numerical boundary conditions; when coupled with the simultaneous approximation term (SAT) boundary treatment, they are time asymptotically stable for an arbitrary hyperbolic system. These techniques are similar to spectral element techniques and are ideally suited for parallel implementation, but do not require special collocation points or orthogonal basis functions. The principal focus is on methods of sixth-order formal accuracy or less; however, these methods could be extended in principle to any arbitrary order of accuracy.

  19. Higher-Order, Space-Time Adaptive Finite Volume Methods: Algorithms, Analysis and Applications

    SciTech Connect

    Minion, Michael

    2014-04-29

    The four main goals outlined in the proposal for this project were: 1. Investigate the use of higher-order (in space and time) finite-volume methods for fluid flow problems. 2. Explore the embedding of iterative temporal methods within traditional block-structured AMR algorithms. 3. Develop parallel in time methods for ODEs and PDEs. 4. Work collaboratively with the Center for Computational Sciences and Engineering (CCSE) at Lawrence Berkeley National Lab towards incorporating new algorithms within existing DOE application codes.

  20. Comparison of Retention of Clasps Made of Different Materials Using Three-Dimensional Finite Element Analysis

    PubMed Central

    Reddy, Jaggari Chandrakanth; Srikakula, Naveen Kumar; Juturu, Rajesh Kumar Reddy; Paidi, Shameen Kumar; Tedlapu, Satyendra Kumar; Mannava, Padmakanth; Khatoon, Rukhaiya

    2016-01-01

    Introduction Retention and esthetics are believed to play a crucial role in deciding the success of removable partial dentures. Aim To compare retention of acetal resin and cobalt–chromium clasps. Materials and Methods A finite element model was designed with an edentulous space between mandibular right second premolar and second molar. Occlusal rests were placed on distal fossa of the second premolar and mesial fossa of second molar. An undercut depth of 0.01inch was created on the mesiobuccal surface of the premolar and distobuccal surface of second molar. Three dimensional finite element model of clasp assembly was designed and assigned with the properties of two different materials namely acetal resin and cobalt–chromium in successive steps. A horizontal bar was constructed between the occlusal rests of the prosthesis. Later, variable amount of dislodging force, in increasing order, was applied at the centre of the horizontal bar and the force at which the clasp arm gets dislodged was noted with respect to each of the material. The obtained values were noted and then subsequently analyzed. Results The amount of force required to dislodge acetal resin and cobalt–chromium clasps was found to be 0.02N and 2N respectively. Conclusion The results obtained suggested that acetal resin clasp exhibited less retentive force than cobalt–chromium clasps. PMID:27437346

  1. Finite element analysis of space debris removal by high-power lasers

    NASA Astrophysics Data System (ADS)

    Xue, Li; Jiang, Guanlei; Yu, Shuang; Li, Ming

    2015-08-01

    With the development of space station technologies, irradiation of space debris by space-based high-power lasers, can locally generate high-temperature plasmas and micro momentum, which may achieve the removal of debris through tracking down. Considered typical square-shaped space debris of material Ti with 5cm×5cm size, whose thermal conductivity, density, specific heat capacity and emissivity are 7.62W/(m·°C), 4500kg/m3, 0.52J/(kg·°C) and 0.3,respectively, based on the finite element analysis of ANSYS, each irradiation of space debris by high-power lasers with power density 106W/m2 and weapons-grade lasers with power density 3000W/m2 are simulated under space environment, and the temperature curves due to laser thermal irradiation are obtained and compared. Results show only 2s is needed for high-power lasers to make the debris temperature reach to about 10000K, which is the threshold temperature for plasmas-state conversion. While for weapons-grade lasers, it is 13min needed. Using two line elements (TLE), and combined with the coordinate transformation from celestial coordinate system to site coordinate system, the visible period of space debris is calculated as 5-10min. That is, in order to remove space debris by laser plasmas, the laser power density should be further improved. The article provides an intuitive and visual feasibility analysis method of space debris removal, and the debris material and shape, laser power density and spot characteristics are adjustable. This finite element analysis method is low-cost, repeatable and adaptable, which has an engineering-prospective applications.

  2. High-stability Finite-Length Silicon Nanowires: A Real Space Theoretical Study

    NASA Astrophysics Data System (ADS)

    Koukaras, E. N.; Zdetsis, A. D.; Garoufalis, C. S.

    2007-12-01

    We demonstrate by real-space density functional calculations that unreconstructed low-stability finite size hydrogenated silicon nanowires could bend through relaxation under the influence of internal strains, contrary to high-stability "magic" nanowires. The strains and the resulting bending depend on the distribution and orientation of silicon dihydrides on the nanowire's surface. This and other related effects cannot be accounted for by the usual k-space supercell techniques. We also demonstrate that reconstructed (2×1) nanowires, although bend they are practically as stable as the "magic" unreconstructed nanowires. Our calculations are in full agreement with the experimental work of Ma et al. [Science 299, 1874, (2003)].

  3. Wing-Body Aeroelasticity Using Finite-Difference Fluid/Finite-Element Structural Equations on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Byun, Chansup; Guruswamy, Guru P.

    1993-01-01

    This paper presents a procedure for computing the aeroelasticity of wing-body configurations on multiple-instruction, multiple-data (MIMD) parallel computers. In this procedure, fluids are modeled using Euler equations discretized by a finite difference method, and structures are modeled using finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. A parallel integration scheme is used to compute aeroelastic responses by solving the coupled fluid and structural equations concurrently while keeping modularity of each discipline. The present procedure is validated by computing the aeroelastic response of a wing and comparing with experiment. Aeroelastic computations are illustrated for a High Speed Civil Transport type wing-body configuration.

  4. High-accuracy approximation of high-rank derivatives: isotropic finite differences based on lattice-Boltzmann stencils.

    PubMed

    Mattila, Keijo Kalervo; Hegele Júnior, Luiz Adolfo; Philippi, Paulo Cesar

    2014-01-01

    We propose isotropic finite differences for high-accuracy approximation of high-rank derivatives. These finite differences are based on direct application of lattice-Boltzmann stencils. The presented finite-difference expressions are valid in any dimension, particularly in two and three dimensions, and any lattice-Boltzmann stencil isotropic enough can be utilized. A theoretical basis for the proposed utilization of lattice-Boltzmann stencils in the approximation of high-rank derivatives is established. In particular, the isotropy and accuracy properties of the proposed approximations are derived directly from this basis. Furthermore, in this formal development, we extend the theory of Hermite polynomial tensors in the case of discrete spaces and present expressions for the discrete inner products between monomials and Hermite polynomial tensors. In addition, we prove an equivalency between two approaches for constructing lattice-Boltzmann stencils. For the numerical verification of the presented finite differences, we introduce 5th-, 6th-, and 8th-order two-dimensional lattice-Boltzmann stencils. PMID:24688360

  5. High-Accuracy Approximation of High-Rank Derivatives: Isotropic Finite Differences Based on Lattice-Boltzmann Stencils

    PubMed Central

    Mattila, Keijo Kalervo; Hegele Júnior, Luiz Adolfo; Philippi, Paulo Cesar

    2014-01-01

    We propose isotropic finite differences for high-accuracy approximation of high-rank derivatives. These finite differences are based on direct application of lattice-Boltzmann stencils. The presented finite-difference expressions are valid in any dimension, particularly in two and three dimensions, and any lattice-Boltzmann stencil isotropic enough can be utilized. A theoretical basis for the proposed utilization of lattice-Boltzmann stencils in the approximation of high-rank derivatives is established. In particular, the isotropy and accuracy properties of the proposed approximations are derived directly from this basis. Furthermore, in this formal development, we extend the theory of Hermite polynomial tensors in the case of discrete spaces and present expressions for the discrete inner products between monomials and Hermite polynomial tensors. In addition, we prove an equivalency between two approaches for constructing lattice-Boltzmann stencils. For the numerical verification of the presented finite differences, we introduce 5th-, 6th-, and 8th-order two-dimensional lattice-Boltzmann stencils. PMID:24688360

  6. An extended pressure finite element space for two-phase incompressible flows with surface tension

    NASA Astrophysics Data System (ADS)

    Groß, Sven; Reusken, Arnold

    2007-05-01

    We consider a standard model for incompressible two-phase flows in which a localized force at the interface describes the effect of surface tension. If a level set (or VOF) method is applied then the interface, which is implicitly given by the zero level of the level set function, is in general not aligned with the triangulation that is used in the discretization of the flow problem. This non-alignment causes severe difficulties w.r.t. the discretization of the localized surface tension force and the discretization of the flow variables. In cases with large surface tension forces the pressure has a large jump across the interface. In standard finite element spaces, due to the non-alignment, the functions are continuous across the interface and thus not appropriate for the approximation of the discontinuous pressure. In many simulations these effects cause large oscillations of the velocity close to the interface, so-called spurious velocities. In this paper, for a simplified model problem, we give an analysis that explains why known (standard) methods for discretization of the localized force term and for discretization of the pressure variable often yield large spurious velocities. In the paper [S. Groß, A. Reusken, Finite element discretization error analysis of a surface tension force in two-phase incompressible flows, Preprint 262, IGPM, RWTH Aachen, SIAM J. Numer. Anal. (accepted for publication)], we introduce a new and accurate method for approximation of the surface tension force. In the present paper, we use the extended finite element space (XFEM), presented in [N. Moes, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Meth. Eng. 46 (1999) 131-150; T. Belytschko, N. Moes, S. Usui, C. Parimi, Arbitrary discontinuities in finite elements, Int. J. Numer. Meth. Eng. 50 (2001) 993-1013], for the discretization of the pressure. We show that the size of spurious velocities is reduced substantially, provided we

  7. Optimization of a finite difference method for nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Chen, Miaochao

    2013-07-01

    Wave equations have important fluid dynamics background, which are extensively used in many fields, such as aviation, meteorology, maritime, water conservancy, etc. This paper is devoted to the explicit difference method for nonlinear wave equations. Firstly, a three-level and explicit difference scheme is derived. It is shown that the explicit difference scheme is uniquely solvable and convergent. Moreover, a numerical experiment is conducted to illustrate the theoretical results of the presented method.

  8. Finite-difference evolution of a scattered laser pulse in ocean water

    NASA Astrophysics Data System (ADS)

    Tessendorf, J.; Piotrowski, C.; Kelly, R. L.

    1988-01-01

    The effects of absorption and scattering on the propagation of a finite-size laser pulse through ocean water are investigated theoretically, applying a finite-difference model based on the time-dependent radiative-transfer equation. The derivation of the finite-difference evolution algorithm is outlined; its FORTRAN numerical implementation is explained; and simulation results for simple test problems are presented in graphs. The method is shown to provide unconditional stability and physically correct propagation velocities in all directions. The need to eliminate or compensate for ray effects is indicated.

  9. Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Lisitsa, Vadim; Tcheverda, Vladimir; Botter, Charlotte

    2016-04-01

    We present an algorithm for the numerical simulation of seismic wave propagation in models with a complex near surface part and free surface topography. The approach is based on the combination of finite differences with the discontinuous Galerkin method. The discontinuous Galerkin method can be used on polyhedral meshes; thus, it is easy to handle the complex surfaces in the models. However, this approach is computationally intense in comparison with finite differences. Finite differences are computationally efficient, but in general, they require rectangular grids, leading to the stair-step approximation of the interfaces, which causes strong diffraction of the wavefield. In this research we present a hybrid algorithm where the discontinuous Galerkin method is used in a relatively small upper part of the model and finite differences are applied to the main part of the model.

  10. Finite-difference scheme for the numerical solution of the Schroedinger equation

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.; Ramadhani, Issa

    1992-01-01

    A finite-difference scheme for numerical integration of the Schroedinger equation is constructed. Asymptotically (r goes to infinity), the method gives the exact solution correct to terms of order r exp -2.

  11. APPLICATION OF A FINITE-DIFFERENCE TECHNIQUE TO THE HUMAN RADIOFREQUENCY DOSIMETRY PROBLEM

    EPA Science Inventory

    A powerful finite difference numerical technique has been applied to the human radiofrequency dosimetry problem. The method possesses inherent advantages over the method of moments approach in that its implementation requires much less computer memory. Consequently, it has the ca...

  12. Techniques for correcting approximate finite difference solutions. [applied to transonic flow

    NASA Technical Reports Server (NTRS)

    Nixon, D.

    1979-01-01

    A method of correcting finite-difference solutions for the effect of truncation error or the use of an approximate basic equation is presented. Applications to transonic flow problems are described and examples given.

  13. A non-linear constrained optimization technique for the mimetic finite difference method

    SciTech Connect

    Manzini, Gianmarco; Svyatskiy, Daniil; Bertolazzi, Enrico; Frego, Marco

    2014-09-30

    This is a strategy for the construction of monotone schemes in the framework of the mimetic finite difference method for the approximation of diffusion problems on unstructured polygonal and polyhedral meshes.

  14. Construction of stable explicit finite-difference schemes for Schroedinger type differential equations

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.

    1989-01-01

    A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.

  15. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources

    PubMed Central

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  16. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.

    PubMed

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  17. Coupled finite-element/state-space modeling of turbogenerators in the ABC frame of reference -- The no-load case

    SciTech Connect

    Chaudhry, S.R.; Ahmed-Zaid, S.; Demerdash, N.A.

    1995-03-01

    This first of two companion papers centers on applying a coupled finite-element/state-space technique to the determination of self and mutual winding inductances of a 733-MVA turbogenerator and computing its open-circuit characteristic, in the natural ABC frame of reference. In this method, the apparent self anti-mutual inductance profiles of the armature and field windings, expressed as functions of rotor position angle, are computed from a series of magnetic field solutions performed at uniformly-distributed samples of rotor positions covering the entire 360{degree} electrical cycle, using the energy perturbation method. These inductances, which are obtained at no-load for three different excitation levels, include the full effect of space harmonics introduced by the magnetic circuit geometry, winding layouts and magnetic circuit saturation. The ABC-frame/finite-element computed open-circuit characteristic is in excellent agreement with the test results. This computed no-load set of parameters forms the initial data for simulation of the full-load performance given in the companion paper, including the full impact of space harmonics and saturation on the flux linkage, current and voltage waveforms, and other performance parameters.

  18. Zeta-function regularization approach to finite temperature effects in Kaluza-Klein space-times

    SciTech Connect

    Bytsenko, A.A. ); Vanzo, L.; Zerbini, S. )

    1992-09-21

    In the framework of heat-kernel approach to zeta-function regularization, in this paper the one-loop effective potential at finite temperature for scalar and spinor fields on Kaluza-Klein space-time of the form M[sup p] [times] M[sub c][sup n], where M[sup p] is p-dimensional Minkowski space-time is evaluated. In particular, when the compact manifold is M[sub c][sup n] = H[sup n]/[Gamma], the Selberg tracer formula associated with discrete torsion-free group [Gamma] of the n-dimensional Lobachevsky space H[sup n] is used. An explicit representation for the thermodynamic potential valid for arbitrary temperature is found. As a result a complete high temperature expansion is presented and the roles of zero modes and topological contributions is discussed.

  19. Choas and instabilities in finite difference approximations to nonlinear differential equations

    SciTech Connect

    Cloutman, L. D., LLNL

    1998-07-01

    The numerical solution of time-dependent ordinary and partial differential equations by finite difference techniques is a common task in computational physics and engineering The rate equations for chemical kinetics in combustion modeling are an important example. They not only are nonlinear, but they tend to be stiff, which makes their solution a challenge for transient problems. We show that one must be very careful how such equations are solved In addition to the danger of large time-marching errors, there can be unphysical chaotic solutions that remain numerically stable for a range of time steps that depends on the particular finite difference method used We point out that the solutions of the finite difference equations converge to those of the differential equations only in the limit as the time step approaches zero for stable and consistent finite difference approximations The chaotic behavior observed for finite time steps in some nonlinear difference equations is unrelated to solutions of the differential equations, but is connected with the onset of numerical instabilities of the finite difference equations This behavior suggests that the use of the theory of chaos in nonlinear iterated maps may be useful in stability anlaysis of finite difference approximations to nonlinear differential equations, providing more stringent time step limits than the formal linear stability analysis that tests only for unbounded solutions This observation implies that apparently stable numerical solutions of nonlinear differential equations by finite difference techniques may in fact be contaminated (if not dominated) by nonphysical chaotic parasitic solutions that degrade the accuracy of the numerical solution We demonstrate this phenomenon with some solutions of the logistic equation and a simple two-dimensional computational fluid dynamics example

  20. Exact finite difference schemes for the non-linear unidirectional wave equation

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1985-01-01

    Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.

  1. Wideband finite difference time domain implementation of surface impedance boundary conditions for good conductors

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.; Yee, Kane S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In a finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media, throughout the solution volume. A 1-D implementation for a surface impedance boundary condition for good conductors in the Finite Difference Time Domain (FDTD) technique.

  2. Fully discrete energy stable high order finite difference methods for hyperbolic problems in deforming domains

    NASA Astrophysics Data System (ADS)

    Nikkar, Samira; Nordström, Jan

    2015-06-01

    A time-dependent coordinate transformation of a constant coefficient hyperbolic system of equations which results in a variable coefficient system of equations is considered. By applying the energy method, well-posed boundary conditions for the continuous problem are derived. Summation-by-Parts (SBP) operators for the space and time discretization, together with a weak imposition of boundary and initial conditions using Simultaneously Approximation Terms (SATs) lead to a provable fully-discrete energy-stable conservative finite difference scheme. We show how to construct a time-dependent SAT formulation that automatically imposes boundary conditions, when and where they are required. We also prove that a uniform flow field is preserved, i.e. the Numerical Geometric Conservation Law (NGCL) holds automatically by using SBP-SAT in time and space. The developed technique is illustrated by considering an application using the linearized Euler equations: the sound generated by moving boundaries. Numerical calculations corroborate the stability and accuracy of the new fully discrete approximations.

  3. Accurate 3-D finite difference computation of traveltimes in strongly heterogeneous media

    NASA Astrophysics Data System (ADS)

    Noble, M.; Gesret, A.; Belayouni, N.

    2014-12-01

    Seismic traveltimes and their spatial derivatives are the basis of many imaging methods such as pre-stack depth migration and tomography. A common approach to compute these quantities is to solve the eikonal equation with a finite-difference scheme. If many recently published algorithms for resolving the eikonal equation do now yield fairly accurate traveltimes for most applications, the spatial derivatives of traveltimes remain very approximate. To address this accuracy issue, we develop a new hybrid eikonal solver that combines a spherical approximation when close to the source and a plane wave approximation when far away. This algorithm reproduces properly the spherical behaviour of wave fronts in the vicinity of the source. We implement a combination of 16 local operators that enables us to handle velocity models with sharp vertical and horizontal velocity contrasts. We associate to these local operators a global fast sweeping method to take into account all possible directions of wave propagation. Our formulation allows us to introduce a variable grid spacing in all three directions of space. We demonstrate the efficiency of this algorithm in terms of computational time and the gain in accuracy of the computed traveltimes and their derivatives on several numerical examples.

  4. Exploring the Effectiveness of Different Approaches to Teaching Finite Mathematics

    ERIC Educational Resources Information Center

    Smeal, Mary; Walker, Sandra; Carter, Jamye; Simmons-Johnson, Carolyn; Balam, Esenc

    2013-01-01

    Traditionally, mathematics has been taught using a very direct approach which the teacher explains the procedure to solve a problem and the students use pencil and paper to solve the problem. However, a variety of alternative approaches to mathematics have surfaced from a number of different directions. The purpose of this study was to examine the…

  5. Finite-difference methods for solving loaded parabolic equations

    NASA Astrophysics Data System (ADS)

    Abdullayev, V. M.; Aida-zade, K. R.

    2016-01-01

    Loaded partial differential equations are solved numerically. For illustrative purposes, a boundary value problem for a parabolic equation with various point loads is considered. By applying difference approximations, the problems are reduced to systems of algebraic equations of special structure, which are solved using a parametric representation involving solutions of auxiliary linear systems with tridiagonal matrices. Numerical results are presented and analyzed.

  6. Viscous flow simulations in VTOL aerodynamics. [finite difference technique

    NASA Technical Reports Server (NTRS)

    Bower, W. W.

    1978-01-01

    The critical issues in viscous flow simulations, such as boundary-layer separation, entrainment, turbulence modeling, and compressibility, are discussed with regard to the ground effects problem for vertical-takeoff-and-landing (VTOL) aircraft. A simulation of the two-dimensional incompressible lift jet in ground proximity is based on solution of the Reynolds-averaged Navier-Stokes equations and a turbulence-model equation which are written in stream function-vorticity form and are solved using Hoffman's augmented-central-difference algorithm. The resulting equations and their shortcomings are discussed when the technique is extended to two-dimensional compressible and three-dimensional incompressible flows.

  7. Application of steady state finite element and transient finite difference theory to sound propagation in a variable area duct: A comparison with experiment

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Eversman, W.; Astley, R. J.; White, J. W.

    1981-01-01

    Sound propagation without flow in a rectangular duct with a converging-diverging area variation was studied experimentally and theoretically. The area variation was of sufficient magnitude to produce large reflections and induce modal scattering. The rms (root-mean-squared) pressure and phase angle on both the flat and curved surface were measured and tabulated. The steady state finite element theory and the transient finite difference theory are in good agreement with the data. It is concluded that numerical finite difference and finite element theories appear ideally suited for handling duct propagation problems which encounter large area variations.

  8. Finite Formulation for Modeling Guided Wave Structures Embedded in a Lossy Half-Space

    NASA Astrophysics Data System (ADS)

    Heshmatzadeh, Maryam; Bridges, Greg E.

    2010-04-01

    A Finite Formulation technique, the Cell Method, is applied to a transmission line embedded in a complex medium. Cell Method is a Finite Formulation numerical technique that uses a primal-dual cell complex and global (integral) variables instead of field variables (densities). A new time-harmonic finite formulation using a non-orthogonal dual mesh is presented that is based on choosing incenters of primal triangles as an alternative to barycentric dual points. In the incentric formulation, diagonal constitutive matrices are obtained and an eigenvalue problem is solved in the first step (zero-order approximation). A minimization procedure is then utilized to efficiently improve the accuracy of the zero-order solution. In this paper the effect of the non-perfectly conducting earth on the propagation constant is investigated as the location of a bare (or insulated) conductor passes through the interface of a lossy half space. It is observed that the propagation constant depends on the burial depth when it is less than the skin depth in the earth. It is shown that analytical (thin wire-based) approximations for the above-ground and buried cases fail when the conductor is close to or partially embedded in the interface.

  9. Wave force on double cylindrical piles: a comparison between exact and finite difference solutions

    NASA Astrophysics Data System (ADS)

    Ali, Lotfollahi-Yaghin Mohammad; Mehdi, Moosavi Sayyid; Amin, Lotfollahi-Yaghin

    2011-03-01

    The wave force exerted on vertical piles of offshore structures is the main criterion in designing them. In structures with more than one large pile, the influence of piles on each other is one of the most important issues being concerned in past researches. An efficient method for determining the interaction of piles is introduced in present research. First the wave force is calculated by the exact method using the diffraction theory, then in the finite difference numerical method the force is calculated by adding the velocity potentials of each pile and integration of pressure on their surface. The results showed that the ratio of the wave force on each of the double piles to a single pile has a damped oscillation around unity in which the amplitude of oscillation decreases with the increase in the spacing parameter. Also different wave incident directions and diffraction parameters were used and the results showed that the numerical solution has acceptable accuracy when the diffraction parameter is larger than unity.

  10. Analytic State Space Model for an Unsteady Finite-Span Wing

    NASA Astrophysics Data System (ADS)

    Izraelevitz, Jacob; Zhu, Qiang; Triantafyllou, Michael

    2015-11-01

    Real-time control of unsteady flows, such as force control in flapping wings, requires simple wake models that easily translate into robust control designs. We analytically derive a state-space model for the unsteady trailing vortex system behind a finite aspect-ratio flapping wing. Contrary to prior models, the downwash and lift distributions over the span can be arbitrary, including tip effects. The wake vorticity is assumed to be a fully unsteady distribution, with the exception of quasi-steady (no rollup) geometry. Each discretization along the span has one to four states to represent the local unsteady wake-induced downwash, lift, and circulation. The model supports independently time-varying velocity, heave, and twist along the span. We validate this state-space model through comparison with existing analytic solutions for elliptic wings and an unsteady inviscid panel method.