Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1987-01-01
Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-01-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Slave finite elements: The temporal element approach to nonlinear analysis
NASA Technical Reports Server (NTRS)
Gellin, S.
1984-01-01
A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.
A finite element approach for prediction of aerothermal loads
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Vemaganti, G.
1986-01-01
A Taylor-Galerkin finite element approach is presented for analysis of high speed viscous flows with an emphasis on predicting heating rates. Five computational issues relevant to the computation of steady flows are examined. Numerical results for supersonic and hypersonic problems address the computational issues and demonstrate the validity for the approach for analysis of high speed flows.
A tensor artificial viscosity using a finite element approach
NASA Astrophysics Data System (ADS)
Kolev, Tz. V.; Rieben, R. N.
2009-12-01
We derive a tensor artificial viscosity suitable for use in a 2D or 3D unstructured arbitrary Lagrangian-Eulerian (ALE) hydrodynamics code. This work is similar in nature to that of Campbell and Shashkov [1]; however, our approach is based on a finite element discretization that is fundamentally different from the mimetic finite difference framework. The finite element point of view leads to novel insights as well as improved numerical results. We begin with a generalized tensor version of the Von Neumann-Richtmyer artificial viscosity, then convert it to a variational formulation and apply a Galerkin discretization process using high order Gaussian quadrature to obtain a generalized nodal force term and corresponding zonal heating (or shock entropy) term. This technique is modular and is therefore suitable for coupling to a traditional staggered grid discretization of the momentum and energy conservation laws; however, we motivate the use of such finite element approaches for discretizing each term in the Euler equations. We review the key properties that any artificial viscosity must possess and use these to formulate specific constraints on the total artificial viscosity force term as well as the artificial viscosity coefficient. We also show, that under certain simplifying assumptions, the two-dimensional scheme from [1] can be viewed as an under-integrated version of our finite element method. This equivalence holds on general distorted quadrilateral grids. Finally, we present computational results on some standard shock hydro test problems, as well as some more challenging problems, indicating the advantages of the new approach with respect to symmetry preservation for shock wave propagation over general grids.
Coupled finite-difference/finite-element approach for wing-body aeroelasticity
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
1992-01-01
Computational methods using finite-difference approaches for fluids and finite-element approaches for structures have individually advanced to solve almost full-aircraft configurations. However, coupled approaches to solve fluid/structural interaction problems are still in their early stages of development, particularly for complex geometries using complete equations such as the Euler/Navier-Stokes equations. Earlier work demonstrated the success of coupling finite-difference and finite-element methods for simple wing configurations using the Euler/Navier-Stokes equations. In this paper, the same approach is extended for general wing-body configurations. The structural properties are represented by beam-type finite elements. The flow is modeled using the Euler/Navier-Stokes equations. A general procedure to fully couple structural finite-element boundary conditions with fluid finite-difference boundary conditions is developed for wing-body configurations. Computations are made using moving grids that adapt to wing-body structural deformations. Results are illustrated for a typical wing-body configuration.
Finite Element Model Calibration Approach for Ares I-X
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Lazor, Daniel R.; Gaspar, James L.; Parks, Russel A.; Bartolotta, Paul A.
2010-01-01
Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of nonconventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pre-test predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.
Finite Element Model Calibration Approach for Area I-X
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Gaspar, James L.; Lazor, Daniel R.; Parks, Russell A.; Bartolotta, Paul A.
2010-01-01
Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of non-conventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pretest predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.
Fluid structure interaction in electrohydraulic servovalve: a finite element approach
NASA Astrophysics Data System (ADS)
Hiremath, Somashekhar S.; Singaperumal, M.
2010-01-01
Electrohydraulic servovalves (EHSV) promise unique application opportunities and high performance, unmatched by other drive technologies. Typical applications include aerospace, robotic manipulators, motion simulators, injection molding, CNC machines and material testing machines. EHSV available are either a flapper/nozzle type or a jet pipe type. In the present paper an attempt has been made to study the dynamics of jet pipe EHSV with built-in mechanical feedback using Finite Element Method (FEM). In jet pipe EHSV, the dynamics of spool greatly depends on pressure recovery and hence the fluid flow at spool ends. The effect of pressure recovery on spool dynamics is studied using FEM by creating the fluid-structure-interaction. The mechanical parts were created using general purpose finite elements like shell, beam, and solid elements while fluid cavities were created using hydrostatic fluid elements. The analysis was carried out using the commercially available FE code ABAQUS. The jet pipe and spool dynamics are presented in the paper.
Fluid structure interaction in electrohydraulic servovalve: a finite element approach
NASA Astrophysics Data System (ADS)
Hiremath, Somashekhar S.; Singaperumal, M.
2009-12-01
Electrohydraulic servovalves (EHSV) promise unique application opportunities and high performance, unmatched by other drive technologies. Typical applications include aerospace, robotic manipulators, motion simulators, injection molding, CNC machines and material testing machines. EHSV available are either a flapper/nozzle type or a jet pipe type. In the present paper an attempt has been made to study the dynamics of jet pipe EHSV with built-in mechanical feedback using Finite Element Method (FEM). In jet pipe EHSV, the dynamics of spool greatly depends on pressure recovery and hence the fluid flow at spool ends. The effect of pressure recovery on spool dynamics is studied using FEM by creating the fluid-structure-interaction. The mechanical parts were created using general purpose finite elements like shell, beam, and solid elements while fluid cavities were created using hydrostatic fluid elements. The analysis was carried out using the commercially available FE code ABAQUS. The jet pipe and spool dynamics are presented in the paper.
A mixed finite element/finite volume approach for solving biodegradation transport in groundwater
NASA Astrophysics Data System (ADS)
Gallo, Claudio; Manzini, Gianmarco
1998-03-01
A numerical model for the simulation of flow and transport of organic compounds undergoing bacterial oxygen- and nitrate-based respiration is presented. General assumptions regarding microbial population, bacteria metabolism and effects of oxygen, nitrogen and nutrient concentration on organic substrate rate of consumption are briefly described. The numerical solution techniques for solving both the flow and the transport are presented. The saturated flow equation is discretized using a high-order mixed finite element scheme, which provides a highly accurate estimation of the velocity field. The transport equation for a sorbing porous medium is approximated using a finite volume scheme enclosing an upwind TVD shock-capturing technique for capturing concentration-unsteady steep fronts. The performance and capabilities of the present approach in a bio-remediation context are assessed by considering a set of test problems. The reliability of the numerical results concerning solution accuracy and the computational efficiency in terms of cost and memory requirements are also estimated.
Finite element meshing approached as a global minimization process
WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.; LEUNG,VITUS J.
2000-03-01
The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested
A nonlinear dynamic finite element approach for simulating muscular hydrostats.
Vavourakis, V; Kazakidi, A; Tsakiris, D P; Ekaterinaris, J A
2014-01-01
An implicit nonlinear finite element model for simulating biological muscle mechanics is developed. The numerical method is suitable for dynamic simulations of three-dimensional, nonlinear, nearly incompressible, hyperelastic materials that undergo large deformations. These features characterise biological muscles, which consist of fibres and connective tissues. It can be assumed that the stress distribution inside the muscles is the superposition of stresses along the fibres and the connective tissues. The mechanical behaviour of the surrounding tissues is determined by adopting a Mooney-Rivlin constitutive model, while the mechanical description of fibres is considered to be the sum of active and passive stresses. Due to the nonlinear nature of the problem, evaluation of the Jacobian matrix is carried out in order to subsequently utilise the standard Newton-Raphson iterative procedure and to carry out time integration with an implicit scheme. The proposed methodology is implemented into our in-house, open source, finite element software, which is validated by comparing numerical results with experimental measurements and other numerical results. Finally, the numerical procedure is utilised to simulate primitive octopus arm manoeuvres, such as bending and reaching. PMID:23025686
A CAD Approach to Integrating NDE With Finite Element
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Downey, James; Ghosn, Louis J.; Baaklini, George Y.
2004-01-01
Nondestructive evaluation (NDE) is one of several technologies applied at NASA Glenn Research Center to determine atypical deformities, cracks, and other anomalies experienced by structural components. NDE consists of applying high-quality imaging techniques (such as x-ray imaging and computed tomography (CT)) to discover hidden manufactured flaws in a structure. Efforts are in progress to integrate NDE with the finite element (FE) computational method to perform detailed structural analysis of a given component. This report presents the core outlines for an in-house technical procedure that incorporates this combined NDE-FE interrelation. An example is presented to demonstrate the applicability of this analytical procedure. FE analysis of a test specimen is performed, and the resulting von Mises stresses and the stress concentrations near the anomalies are observed, which indicates the fidelity of the procedure. Additional information elaborating on the steps needed to perform such an analysis is clearly presented in the form of mini step-by-step guidelines.
A finite element approach for modeling photon transport in tissue.
Arridge, S R; Schweiger, M; Hiraoka, M; Delpy, D T
1993-01-01
The use of optical radiation in medical physics is important in several fields for both treatment and diagnosis. In all cases an analytic and computable model of the propagation of radiation in tissue is essential for a meaningful interpretation of the procedures. A finite element method (FEM) for deriving photon density inside an object, and photon flux at its boundary, assuming that the photon transport model is the diffusion approximation to the radiative transfer equation, is introduced herein. Results from the model for a particular case are given: the calculation of the boundary flux as a function of time resulting from a delta-function input to a two-dimensional circle (equivalent to a line source in an infinite cylinder) with homogeneous scattering and absorption properties. This models the temporal point spread function of interest in near infrared spectroscopy and imaging. The convergence of the FEM results are demonstrated, as the resolution of the mesh is increased, to the analytical expression for the Green's function for this system. The diffusion approximation is very commonly adopted as appropriate for cases which are scattering dominated, i.e., where mu s > mu a, and results from other workers have compared it to alternative models. In this article a high degree of agreement with a Monte Carlo method is demonstrated. The principle advantage of the FE method is its speed. It is in all ways as flexible as Monte Carlo methods and in addition can produce photon density everywhere, as well as flux on the boundary. One disadvantage is that there is no means of deriving individual photon histories. PMID:8497214
NASA Astrophysics Data System (ADS)
Arbatani, Siamak; Callejo, Alfonso; Kövecses, József; Kalantari, Masoud; Marchand, Nick R.; Dargahi, Javad
2016-03-01
Directional drilling is a popular technique for oil well drilling. Accurate prediction of the directional performance is critical in order to achieve the desired well profile. Simplified geometry methods are, to date, the industry standard for predicting directional performance. A comprehensive, high-fidelity method for the simulation of directional drilling is presented here. It consists of a detailed discretization of the actual geometry and a rigorous application of two modeling techniques: the finite element and the finite segment methods. By doing so, the dynamic problem is addressed from two different yet complementary perspectives: structural mechanics and rigid-body motion. Collision detection and contact dynamics algorithms are also presented. Results show that both methods agree in terms of the dynamic response, and that the build rate estimations are consistent with available experimental data. Owing to the framework efficiency and physics-based nature, the presented tools are very well-suited for design engineering and real-time simulation.
NASA Astrophysics Data System (ADS)
Arbatani, Siamak; Callejo, Alfonso; Kövecses, József; Kalantari, Masoud; Marchand, Nick R.; Dargahi, Javad
2016-06-01
Directional drilling is a popular technique for oil well drilling. Accurate prediction of the directional performance is critical in order to achieve the desired well profile. Simplified geometry methods are, to date, the industry standard for predicting directional performance. A comprehensive, high-fidelity method for the simulation of directional drilling is presented here. It consists of a detailed discretization of the actual geometry and a rigorous application of two modeling techniques: the finite element and the finite segment methods. By doing so, the dynamic problem is addressed from two different yet complementary perspectives: structural mechanics and rigid-body motion. Collision detection and contact dynamics algorithms are also presented. Results show that both methods agree in terms of the dynamic response, and that the build rate estimations are consistent with available experimental data. Owing to the framework efficiency and physics-based nature, the presented tools are very well-suited for design engineering and real-time simulation.
Brigham, John C.; Aquino, Wilkins; Aguilo, Miguel A.; Diamessis, Peter J.
2010-01-01
An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number. PMID:21461402
Brigham, John C; Aquino, Wilkins; Aguilo, Miguel A; Diamessis, Peter J
2011-01-15
An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number. PMID:21461402
Coupled thermomechanical behavior of graphene using the spring-based finite element approach
NASA Astrophysics Data System (ADS)
Georgantzinos, S. K.; Giannopoulos, G. I.; Anifantis, N. K.
2016-07-01
The prediction of the thermomechanical behavior of graphene using a new coupled thermomechanical spring-based finite element approach is the aim of this work. Graphene sheets are modeled in nanoscale according to their atomistic structure. Based on molecular theory, the potential energy is defined as a function of temperature, describing the interatomic interactions in different temperature environments. The force field is approached by suitable straight spring finite elements. Springs simulate the interatomic interactions and interconnect nodes located at the atomic positions. Their stiffness matrix is expressed as a function of temperature. By using appropriate boundary conditions, various different graphene configurations are analyzed and their thermo-mechanical response is approached using conventional finite element procedures. A complete parametric study with respect to the geometric characteristics of graphene is performed, and the temperature dependency of the elastic material properties is finally predicted. Comparisons with available published works found in the literature demonstrate the accuracy of the proposed method.
NASA Technical Reports Server (NTRS)
Bey, K. S.; Thornton, E. A.; Dechaumphai, P.; Ramakrishnan, R.
1985-01-01
Recent progress in the development of finite element methodology for the prediction of aerothermal loads is described. Two dimensional, inviscid computations are presented, but emphasis is placed on development of an approach extendable to three dimensional viscous flows. Research progress is described for: (1) utilization of a commerically available program to construct flow solution domains and display computational results, (2) development of an explicit Taylor-Galerkin solution algorithm, (3) closed form evaluation of finite element matrices, (4) vector computer programming strategies, and (5) validation of solutions. Two test problems of interest to NASA Langley aerothermal research are studied. Comparisons of finite element solutions for Mach 6 flow with other solution methods and experimental data validate fundamental capabilities of the approach for analyzing high speed inviscid compressible flows.
Finite Elements approach for Density Functional Theory calculations on locally refined meshes
Fattebert, J; Hornung, R D; Wissink, A M
2006-03-27
We present a quadratic Finite Elements approach to discretize the Kohn-Sham equations on structured non-uniform meshes. A multigrid FAC preconditioner is proposed to iteratively solve the equations by an accelerated steepest descent scheme. The method was implemented using SAMRAI, a parallel software infrastructure for general AMR applications. Examples of applications to small nanoclusters calculations are presented.
Finite Element approach for Density Functional Theory calculations on locally refined meshes
Fattebert, J; Hornung, R D; Wissink, A M
2007-02-23
We present a quadratic Finite Element approach to discretize the Kohn-Sham equations on structured non-uniform meshes. A multigrid FAC preconditioner is proposed to iteratively solve the equations by an accelerated steepest descent scheme. The method was implemented using SAMRAI, a parallel software infrastructure for general AMR applications. Examples of applications to small nanoclusters calculations are presented.
Inversion of Robin coefficient by a spectral stochastic finite element approach
Jin Bangti Zou Jun
2008-03-01
This paper investigates a variational approach to the nonlinear stochastic inverse problem of probabilistically calibrating the Robin coefficient from boundary measurements for the steady-state heat conduction. The problem is formulated into an optimization problem, and mathematical properties relevant to its numerical computations are investigated. The spectral stochastic finite element method using polynomial chaos is utilized for the discretization of the optimization problem, and its convergence is analyzed. The nonlinear conjugate gradient method is derived for the optimization system. Numerical results for several two-dimensional problems are presented to illustrate the accuracy and efficiency of the stochastic finite element method.
NASA Astrophysics Data System (ADS)
Fan, Y.; Collet, M.; Ichchou, M.; Li, L.; Bareille, O.; Dimitrijevic, Z.
2016-01-01
This paper presents a rapid and accurate numerical tool for the energy flow evaluation in a periodic substructure from the near-field to the far-field domain. Here we suppose that the near-field part contains a point source characterized by the injected power in the structure. The near-field part is then modeled by Finite Element Method (FEM) while the periodic structure and the far-field part are regarded as waveguides and modeled by an enhanced Wave and Finite Element Method (WFEM). Enhancements are made on the eigenvalue scheme, the condensation of the unit cell and the consideration of a reduced wave basis. Efforts are made to adapt substructures modeled by different strategies in a multi-scale manner such that the final matrices dimensions of the built-up structure are largely reduced. The method is then validated numerically and theoretically. An application is presented, where a structural dynamical system coupled with periodic resistive piezoelectric shunts is discussed.
Approaches to the automatic generation and control of finite element meshes
NASA Technical Reports Server (NTRS)
Shephard, Mark S.
1987-01-01
The algorithmic approaches being taken to the development of finite element mesh generators capable of automatically discretizing general domains without the need for user intervention are discussed. It is demonstrated that because of the modeling demands placed on a automatic mesh generator, all the approaches taken to date produce unstructured meshes. Consideration is also given to both a priori and a posteriori mesh control devices for automatic mesh generators as well as their integration with geometric modeling and adaptive analysis procedures.
An Efficient Finite Element Approach for Modeling Fibrotic Clefts in the Heart
Costa, Caroline Mendonca; Campos, Fernando O.; Prassl, Anton J.; dos Santos, Rodrigo Weber; Sánchez-Quintana, Damián; Ahammer, Helmut; Hofer, Ernst; Plank, Gernot
2014-01-01
Advanced medical imaging technologies provide a wealth of information on cardiac anatomy and structure at a paracellular resolution, allowing to identify micro-structural discontinuities which disrupt the intracellular matrix. Current state-of-the-art computer models built upon such datasets account for increasingly finer anatomical details, however, structural discontinuities at the paracellular level are typically discarded in the model generation process, owing to the significant costs which incur when using high resolutions for explicit representation. In this study, a novel discontinuous finite element (dFE) approach for discretizing the bidomain equations is presented, which accounts for fine-scale structures in a computer model without the need to increase spatial resolution. In the dFE method this is achieved by imposing infinitely thin lines of electrical insulation along edges of finite elements which approximate the geometry of discontinuities in the intracellular matrix. Simulation results demonstrate that the dFE approach accounts for effects induced by microscopic size scale discontinuities, such as the formation of microscopic virtual electrodes, with vast computational savings as compared to high resolution continuous finite element models. Moreover, the method can be implemented in any standard continuous finite element code with minor effort. PMID:24557691
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, Gerald W.; Mahadevan, L.
1987-01-01
A hybrid stress finite element method is developed for accurate stress and vibration analysis of problems in linear anisotropic elasticity. A modified form of the Hellinger-Reissner principle is formulated for dynamic analysis and an algorithm for the determination of the anisotropic elastic and compliance constants from experimental data is developed. These schemes were implemented in a finite element program for static and dynamic analysis of linear anisotropic two dimensional elasticity problems. Specific numerical examples are considered to verify the accuracy of the hybrid stress approach and compare it with that of the standard displacement method, especially for highly anisotropic materials. It is that the hybrid stress approach gives much better results than the displacement method. Preliminary work on extensions of this method to three dimensional elasticity is discussed, and the stress shape functions necessary for this extension are included.
Lehtovaara, Lauri; Havu, Ville; Puska, Martti
2011-10-21
We present an all-electron method for time-dependent density functional theory which employs hierarchical nonuniform finite-element bases and the time-propagation approach. The method is capable of treating linear and nonlinear response of valence and core electrons to an external field. We also introduce (i) a preconditioner for the propagation equation, (ii) a stable way to implement absorbing boundary conditions, and (iii) a new kind of absorbing boundary condition inspired by perfectly matched layers. PMID:22029294
2.5D Finite/infinite Element Approach for Simulating Train-Induced Ground Vibrations
NASA Astrophysics Data System (ADS)
Yang, Y. B.; Hung, H. H.; Kao, J. C.
2010-05-01
The 2.5D finite/infinite element approach for simulating the ground vibrations by surface or underground moving trains will be briefly summarized in this paper. By assuming the soils to be uniform along the direction of the railway, only a two-dimensional profile of the soil perpendicular to the railway need be considered in the modeling. Besides the two in-plane degrees of freedom (DOFs) per node conventionally used for plane strain elements, an extra DOF is introduced to account for the out-of-plane wave transmission. The profile of the half-space is divided into a near field and a semi-infinite far field. The near field containing the train loads and irregular structures is simulated by the finite elements, while the far field covering the soils with infinite boundary by the infinite elements, by which due account is taken of the radiation effects for the moving loads. Enhanced by the automated mesh expansion procedure proposed previously by the writers, the far field impedances for all the lower frequencies are generated repetitively from the mesh created for the highest frequency considered. Finally, incorporated with a proposed load generation mechanism that takes the rail irregularity and dynamic properties of trains into account, an illustrative case study was performed. This paper investigates the vibration isolation effect of the elastic foundation that separates the concrete slab track from the underlying soil or tunnel structure. In addition, the advantage of the 2.5D approach was clearly demonstrated in that the three-dimensional wave propagation effect can be virtually captured using a two-dimensional finite/infinite element mesh. Compared with the conventional 3D approach, the present approach appears to be simple, efficient and generally accurate.
Use of adjoint methods in the probabilistic finite element approach to fracture mechanics
NASA Technical Reports Server (NTRS)
Liu, Wing Kam; Besterfield, Glen; Lawrence, Mark; Belytschko, Ted
1988-01-01
The adjoint method approach to probabilistic finite element methods (PFEM) is presented. When the number of objective functions is small compared to the number of random variables, the adjoint method is far superior to the direct method in evaluating the objective function derivatives with respect to the random variables. The PFEM is extended to probabilistic fracture mechanics (PFM) using an element which has the near crack-tip singular strain field embedded. Since only two objective functions (i.e., mode I and II stress intensity factors) are needed for PFM, the adjoint method is well suited.
A knowledge-based approach to the adaptive finite element analysis
Haghighi, K.; Kang, E.
1995-12-31
An automatic and knowledge-based finite element mesh generator (INTELMESH), which makes extensive use of interactive computer graphics techniques, has been developed. INTELMESH is designed for planar domains and axisymmetric 3-D structures of elasticity and heat transfer subjected to mechanical and thermal loading. It intelligently identifies the critical regions/points in the problem domain and utilizes the new concepts of substructuring and wave propagation to choose the proper mesh size for them. INTELMESH generates well-shaped triangular elements by applying triangulation and Laplacian smoothing procedures. The adaptive analysis involves the initial finite element analysis and an efficient a-posteriori error analysis and estimation. Once a problem is defined, the system automatically builds a finite element model and analyzes the problem through an automatic iterative process until the error reaches a desired level. It has been shown that the proposed approach which initiates the process with an a-priori, and near optimum mesh of the object, converges to the desired accuracy in less time and at less cost.
A fictitious domain approach for the Stokes problem based on the extended finite element method
NASA Astrophysics Data System (ADS)
Court, Sébastien; Fournié, Michel; Lozinski, Alexei
2014-01-01
In the present work, we propose to extend to the Stokes problem a fictitious domain approach inspired by eXtended Finite Element Method and studied for Poisson problem in [Renard]. The method allows computations in domains whose boundaries do not match. A mixed finite element method is used for fluid flow. The interface between the fluid and the structure is localized by a level-set function. Dirichlet boundary conditions are taken into account using Lagrange multiplier. A stabilization term is introduced to improve the approximation of the normal trace of the Cauchy stress tensor at the interface and avoid the inf-sup condition between the spaces for velocity and the Lagrange multiplier. Convergence analysis is given and several numerical tests are performed to illustrate the capabilities of the method.
Optimization of acoustic liners by the hybrid finite element-integral approach
NASA Technical Reports Server (NTRS)
Sigman, R. K.; Horowitz, S. J.; Zinn, B. T.
1983-01-01
An iterative solution technique for predicting the sound field radiated from a turbofan inlet is used to predict the optimum inlet acoustic liner. The analytical approach divides the sound field into two regions: the sound field within and near the inlet which is computed using the finite element method and the radiation field beyond the inlet which is calculated using an integral solution technique. A continuous solution is obtained by matching the finite element and integral solutions at the interface between the two regions. Using a trial and error scheme, this analytical procedure is used to calculate the impedance value of the duct liner which will produce a minimum sound pressure level in the far field. Several examples of straight and non-uniform ducts with and without flow are presented.
NASA Astrophysics Data System (ADS)
Gupta, Swapnil Sheelkumar
Paper variants such as paper napkins, tissue paper are manufactured by a process called as creping during which a paper adhesively bonded to a rotating drum is continuously scraped off by a blade. Resulting low density paper provides critical attributes such as fluid absorbency, softness, and stretchiness to the final paper product. The macroscopic effect of creping is the formation of fine ridges called as " crepes". The quality of the final product is characterized by the length of the crepes. The process of creping has been hypothesized to be a periodic sequence of delamination, buckling and post-buckling compression of paper. A quasi-static comparison of a two dimensional finite element model implementing surface based cohesive zone theory and a critical stress criteria based fracture model is presented. The adhesive being a critical part of creping is represented by a zero thickness cohesive layer in the cohesive model . A comparison of a 1-D analytical model implementing an energy release rate approach and a Virtual Crack Closure Technique (VCCT) quasi-static finite element model is presented. An experimental investigation to quantitatively determine the adhesive fracture toughness during creping is conducted by an energy based approach. The influence of drum speed and adhesive concentration on the adhesive fracture energy is analyzed and comparison with a dynamic finite element model is obtained.
A NURBS enhanced extended finite element approach for unfitted CAD analysis
NASA Astrophysics Data System (ADS)
Legrain, Grégory
2013-10-01
A NURBS enhanced extended finite element approach is proposed for the unfitted simulation of structures defined by means of CAD parametric surfaces. In contrast to classical X-FEM that uses levelsets to define the geometry of the computational domain, exact CAD description is considered here. Following the ideas developed in the context of the NURBS-enhanced finite element method, NURBS-enhanced subelements are defined to take into account the exact geometry of the interface inside an element. In addition, a high-order approximation is considered to allow for large elements compared to the size of the geometrical details (without loss of accuracy). Finally, a geometrically implicit/explicit approach is proposed for efficiency purpose in the context of fracture mechanics. In this paper, only 2D examples are considered: It is shown that optimal rates of convergence are obtained without the need to consider shape functions defined in the physical space. Moreover, thanks to the flexibility given by the Partition of Unity, it is possible to recover optimal convergence rates in the case of re-entrant corners, cracks and embedded material interfaces.
Balima, O.; Favennec, Y.; Rousse, D.
2013-10-15
Highlights: •New strategies to improve the accuracy of the reconstruction through mesh and finite element parameterization. •Use of gradient filtering through an alternative inner product within the adjoint method. •An integral form of the cost function is used to make the reconstruction compatible with all finite element formulations, continuous and discontinuous. •Gradient-based algorithm with the adjoint method is used for the reconstruction. -- Abstract: Optical tomography is mathematically treated as a non-linear inverse problem where the optical properties of the probed medium are recovered through the minimization of the errors between the experimental measurements and their predictions with a numerical model at the locations of the detectors. According to the ill-posed behavior of the inverse problem, some regularization tools must be performed and the Tikhonov penalization type is the most commonly used in optical tomography applications. This paper introduces an optimized approach for optical tomography reconstruction with the finite element method. An integral form of the cost function is used to take into account the surfaces of the detectors and make the reconstruction compatible with all finite element formulations, continuous and discontinuous. Through a gradient-based algorithm where the adjoint method is used to compute the gradient of the cost function, an alternative inner product is employed for preconditioning the reconstruction algorithm. Moreover, appropriate re-parameterization of the optical properties is performed. These regularization strategies are compared with the classical Tikhonov penalization one. It is shown that both the re-parameterization and the use of the Sobolev cost function gradient are efficient for solving such an ill-posed inverse problem.
NASA Technical Reports Server (NTRS)
Sawyer, P. L.
1980-01-01
The paper describes the simulation approach for the finite element machine (FEM), a special-purpose computer for structural analysis calculations under development at the NASA-Langley Research Center. The FEM consists of an array (1000 or more) of general-purpose microcomputers performing structural analysis in an asychronous parallel manner. A simulator of sufficient flexibility to model the behavior of the FEM on many levels has been designed and coded, and verification has begun using the experimental FEM hardware. The structure of the simulator is described, and preliminary simulation results are presented.
Probabilistic fracture finite elements
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Lua, Y. J.
1991-01-01
The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.
Free and forced vibrations of a tyre using a wave/finite element approach
NASA Astrophysics Data System (ADS)
Waki, Y.; Mace, B. R.; Brennan, M. J.
2009-06-01
Free and forced vibrations of a tyre are predicted using a wave/finite element (WFE) approach. A short circumferential segment of the tyre is modelled using conventional finite element (FE) methods, a periodicity condition applied and the mass and stiffness matrices post-processed to yield wave properties. Since conventional FE methods are used, commercial FE packages and existing element libraries can be utilised. An eigenvalue problem is formulated in terms of the transfer matrix of the segment. Zhong's method is used to improve numerical conditioning. The eigenvalues and eigenvectors give the wavenumbers and wave mode shapes, which in turn define transformations between the physical and wave domains. A method is described by which the frequency dependent material properties of the rubber components of the tyre can be included without the need to remesh the structure. Expressions for the forced response are developed which are numerically well-conditioned. Numerical results for a smooth tyre are presented. Dispersion curves for real, imaginary and complex wavenumbers are shown. The propagating waves are associated with various forms of motion of the tread supported by the stiffness of the side wall. Various dispersion phenomena are observed, including curve veering, non-zero cut-off and waves for which the phase velocity and the group velocity have opposite signs. Results for the forced response are compared with experimental measurements and good agreement is seen. The forced response is numerically determined for both finite area and point excitations. It is seen that the size of area of the excitation is particularly important at high frequencies. When the size of the excitation area is small enough compared to the tread thickness, the response at high frequencies becomes stiffness-like (reactive) and the effect of shear stiffness becomes important.
Automatic finite element generators
NASA Technical Reports Server (NTRS)
Wang, P. S.
1984-01-01
The design and implementation of a software system for generating finite elements and related computations are described. Exact symbolic computational techniques are employed to derive strain-displacement matrices and element stiffness matrices. Methods for dealing with the excessive growth of symbolic expressions are discussed. Automatic FORTRAN code generation is described with emphasis on improving the efficiency of the resultant code.
Rheological Changes After Stenting of a Cerebral Aneurysm: A Finite Element Modeling Approach
Ohta, Makoto; Wetzel, Stephan G. Dantan, Philippe; Bachelet, Caroline; Lovblad, Karl O.; Yilmaz, Hasan; Flaud, Patrice; Ruefenacht, Daniel A.
2005-12-15
Hemodynamic changes in intracranial aneurysms after stent placement include the appearance of areas with stagnant flow and low shear rates. We investigated the influence of stent placement on blood flow velocity and wall shear stress of an intracranial aneurysm using a finite element modeling approach. To assess viscosity changes induced by stent placement, the rheology of blood as non-Newtonian fluid was taken into account in this model. A two-dimensional model with a parent artery, a smaller branching artery, and an aneurysm located at the bifurcation, before and after stent placement, was used for simulation. Flow velocity plots and wall shear stress before and after stent placement was calculated over the entire cardiac circle. Values for dynamic viscosity were calculated with a constitutive equation that was based on experimental studies and yielded a viscosity, which decreases as the shear rate increases. Stent placement lowered peak velocities in the main vortex of the aneurysm by a factor of at least 4 compared to peak velocities in the main artery, and it considerably decreased the wall shear stress of the aneurysm. Dynamic viscosity increases after stent placement persisted over a major part of the cardiac cycle, with a factor of up to 10, most pronounced near the dome of the aneurysm. Finite element modeling can offer insight into rheological changes induced by stent treatment of aneurysms and allows visualizing dynamic viscosity changes induced by stent placement.
An Approach for Assessing Delamination Propagation Capabilities in Commercial Finite Element Codes
NASA Technical Reports Server (NTRS)
Krueger, Ronald
2007-01-01
An approach to assessing the delamination propagation capabilities in commercial finite element codes is presented and demonstrated for one code. For this investigation, the Double Cantilever Beam (DCB) specimen and the Single Leg Bending (SLB) specimen were chosen for full three-dimensional finite element simulations. First, benchmark results were created for both specimens. Second, starting from an initially straight front, the delamination was allowed to propagate. Good agreement between the load-displacement relationship obtained from the propagation analysis results and the benchmark results could be achieved by selecting the appropriate input parameters. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Qualitatively, the delamination front computed for the DCB specimen did not take the shape of a curved front as expected. However, the analysis of the SLB specimen yielded a curved front as may be expected from the distribution of the energy release rate and the failure index across the width of the specimen. Overall, the results are encouraging but further assessment on a structural level is required.
NASA Technical Reports Server (NTRS)
Krueger, Ronald
2008-01-01
An approach for assessing the delamination propagation simulation capabilities in commercial finite element codes is presented and demonstrated. For this investigation, the Double Cantilever Beam (DCB) specimen and the Single Leg Bending (SLB) specimen were chosen for full three-dimensional finite element simulations. First, benchmark results were created for both specimens. Second, starting from an initially straight front, the delamination was allowed to propagate. The load-displacement relationship and the total strain energy obtained from the propagation analysis results and the benchmark results were compared and good agreements could be achieved by selecting the appropriate input parameters. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Qualitatively, the delamination front computed for the DCB specimen did not take the shape of a curved front as expected. However, the analysis of the SLB specimen yielded a curved front as was expected from the distribution of the energy release rate and the failure index across the width of the specimen. Overall, the results are encouraging but further assessment on a structural level is required.
An Approach for Assessing Delamination Propagation Capabilities in Commercial Finite Element Codes
NASA Technical Reports Server (NTRS)
Krueger, Ronald
2007-01-01
An approach for assessing the delamination propagation capabilities in commercial finite element codes is presented and demonstrated for one code. For this investigation, the Double Cantilever Beam (DCB) specimen and the Single Leg Bending (SLB) specimen were chosen for full three-dimensional finite element simulations. First, benchmark results were created for both specimens. Second, starting from an initially straight front, the delamination was allowed to propagate. Good agreement between the load-displacement relationship obtained from the propagation analysis results and the benchmark results could be achieved by selecting the appropriate input parameters. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Qualitatively, the delamination front computed for the DCB specimen did not take the shape of a curved front as expected. However, the analysis of the SLB specimen yielded a curved front as may be expected from the distribution of the energy release rate and the failure index across the width of the specimen. Overall, the results are encouraging but further assessment on a structural level is required.
Probabilistic Finite Element: Variational Theory
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.
1985-01-01
The goal of this research is to provide techniques which are cost-effective and enable the engineer to evaluate the effect of uncertainties in complex finite element models. Embedding the probabilistic aspects in a variational formulation is a natural approach. In addition, a variational approach to probabilistic finite elements enables it to be incorporated within standard finite element methodologies. Therefore, once the procedures are developed, they can easily be adapted to existing general purpose programs. Furthermore, the variational basis for these methods enables them to be adapted to a wide variety of structural elements and to provide a consistent basis for incorporating probabilistic features in many aspects of the structural problem. Tasks concluded include the theoretical development of probabilistic variational equations for structural dynamics, the development of efficient numerical algorithms for probabilistic sensitivity displacement and stress analysis, and integration of methodologies into a pilot computer code.
Simulations of singularity dynamics in liquid crystal flows: A C finite element approach
Lin Ping . E-mail: matlinp@nus.edu.sg; Liu Chun . E-mail: liu@math.psu.edu
2006-06-10
In this paper, we present a C finite element method for a 2a hydrodynamic liquid crystal model which is simpler than existing C {sup 1} element methods and mixed element formulation. The energy law is formally justified and the energy decay is used as a validation tool for our numerical computation. A splitting method combined with only a few fixed point iteration for the penalty term of the director field is applied to reduce the size of the stiffness matrix and to keep the stiffness matrix time-independent. The latter avoids solving a linear system at every time step and largely reduces the computational time, especially when direct linear system solvers are used. Our approach is verified by comparing its computational results with those obtained by C {sup 1} elements and by mixed formulation. Through numerical experiments of a few other splittings and explicit-implicit strategies, we recommend a fast and reliable algorithm for this model. A number of examples are computed to demonstrate the algorithm.
Chillara, Vamshi Krishna; Ren, Baiyang; Lissenden, Cliff J
2016-04-01
This article describes the use of the frequency domain finite element (FDFE) technique for guided wave mode selection in inhomogeneous waveguides. Problems with Rayleigh-Lamb and Shear-Horizontal mode excitation in isotropic homogeneous plates are first studied to demonstrate the application of the approach. Then, two specific cases of inhomogeneous waveguides are studied using FDFE. Finally, an example of guided wave mode selection for inspecting disbonds in composites is presented. Identification of sensitive and insensitive modes for defect inspection is demonstrated. As the discretization parameters affect the accuracy of the results obtained from FDFE, effect of spatial discretization and the length of the domain used for the spatial fast Fourier transform are studied. Some recommendations with regard to the choice of the above parameters are provided. PMID:26746160
Finite-element blunt-crack propagation: a modified J-integral approach. [LMFBR
Pan, Y.C.; Marchertas, A.H.; Kennedy, J.M.
1983-01-01
In assessing the safety of a liquid metal fast breeder reactor (LMFBR), a major concern is the behavior of concrete structures subjected to high temperatures. The potential of concrete cracking is an important parameter which could significantly influence the safety assessment of thermally attacked concrete. A new modified J-integral approach for the blunt crack model has been derived to provide a general procedure to accurately predict the direction of crack growth. This formulation has been incorporated into the coupled heat transfer-stress analysis finite element code TEMP-STRESS. A description of the formulation is presented in this paper. Results for the problems of a Mode I and mixed mode crack in a plate using regular and slanted meshes subjected to uniaxial and shear loading are presented.
A new multi-objective approach to finite element model updating
NASA Astrophysics Data System (ADS)
Jin, Seung-Seop; Cho, Soojin; Jung, Hyung-Jo; Lee, Jong-Jae; Yun, Chung-Bang
2014-05-01
The single objective function (SOF) has been employed for the optimization process in the conventional finite element (FE) model updating. The SOF balances the residual of multiple properties (e.g., modal properties) using weighting factors, but the weighting factors are hard to determine before the run of model updating. Therefore, the trial-and-error strategy is taken to find the most preferred model among alternative updated models resulted from varying weighting factors. In this study, a new approach to the FE model updating using the multi-objective function (MOF) is proposed to get the most preferred model in a single run of updating without trial-and-error. For the optimization using the MOF, non-dominated sorting genetic algorithm-II (NSGA-II) is employed to find the Pareto optimal front. The bend angle related to the trade-off relationship of objective functions is used to select the most preferred model among the solutions on the Pareto optimal front. To validate the proposed approach, a highway bridge is selected as a test-bed and the modal properties of the bridge are obtained from the ambient vibration test. The initial FE model of the bridge is built using SAP2000. The model is updated using the identified modal properties by the SOF approach with varying the weighting factors and the proposed MOF approach. The most preferred model is selected using the bend angle of the Pareto optimal front, and compared with the results from the SOF approach using varying the weighting factors. The comparison shows that the proposed MOF approach is superior to the SOF approach using varying the weighting factors in getting smaller objective function values, estimating better updated parameters, and taking less computational time.
NASA Astrophysics Data System (ADS)
Yang, Weizhu; Yue, Zhufeng; Li, Lei; Wang, Peiyan
2016-01-01
An optimization procedure combining an automated finite element modelling (AFEM) technique with a ground structure approach (GSA) is proposed for structural layout and sizing design of aircraft wings. The AFEM technique, based on CATIA VBA scripting and PCL programming, is used to generate models automatically considering the arrangement of inner systems. GSA is used for local structural topology optimization. The design procedure is applied to a high-aspect-ratio wing. The arrangement of the integral fuel tank, landing gear and control surfaces is considered. For the landing gear region, a non-conventional initial structural layout is adopted. The positions of components, the number of ribs and local topology in the wing box and landing gear region are optimized to obtain a minimum structural weight. Constraints include tank volume, strength, buckling and aeroelastic parameters. The results show that the combined approach leads to a greater weight saving, i.e. 26.5%, compared with three additional optimizations based on individual design approaches.
A Statistical Approach for the Concurrent Coupling of Molecular Dynamics and Finite Element Methods
NASA Technical Reports Server (NTRS)
Saether, E.; Yamakov, V.; Glaessgen, E.
2007-01-01
Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, increasing the size of the MD domain quickly presents intractable computational demands. A robust approach to surmount this computational limitation has been to unite continuum modeling procedures such as the finite element method (FEM) with MD analyses thereby reducing the region of atomic scale refinement. The challenging problem is to seamlessly connect the two inherently different simulation techniques at their interface. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the typical boundary value problem used to define a coupled domain. The method uses statistical averaging of the atomistic MD domain to provide displacement interface boundary conditions to the surrounding continuum FEM region, which, in return, generates interface reaction forces applied as piecewise constant traction boundary conditions to the MD domain. The two systems are computationally disconnected and communicate only through a continuous update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM) as opposed to a direct coupling method where interface atoms and FEM nodes are individually related. The methodology is inherently applicable to three-dimensional domains, avoids discretization of the continuum model down to atomic scales, and permits arbitrary temperatures to be applied.
NASA Astrophysics Data System (ADS)
Borovkov, Alexei I.; Misnik, Yuri Y.
1999-05-01
This paper presents new approach to the fracture analysis of laminated composite structures (laminates). The first part of the paper is devoted to the general algorithm, which allows to obtain critical stresses for any structure considering only the strip made from the same laminate. The algorithm is based on the computation of the energy release rates for all three crack modes and allows to obtain macro-failure parameters such as critical stresses through the micro-fracture characteristics. The developed algorithm is also based on the locality principle in mechanics of composite structures and sequential heterogenization method. The algorithm can be applied both for classical models of laminates with homogenous layers and new 3D finite element (FE) models of interfacial cracks in multidirectional composite structures. The results of multilevel, multimodel and multivariant analysis of 3D delamination problems with detailed microstructure in the crack tip zone are presented.
A finite element approach to model and analyze photostrictive optical actuators
NASA Astrophysics Data System (ADS)
Rahman, Mosfequr
Photostrictive materials, called PLZT, exhibit large photostriction under uniform illumination of high-energy light. These materials are of interest for future generation wireless remote control photo-actuators, micro-actuators, and micro-sensors applications. The photostrictive effect is a superposition phenomenon of bulk photovoltaic effect and converse piezoelectric effect. In this present research photostrictive thin films are analyzed to evaluate their use as actuators in a future MEMS gyroscope. The finite element method is used for accurate analysis of photostrictive thin films. Four-node isoparametric quadrilateral plane stress elements are used to model photostrictive thin film and eight-node nonconforming brick elements are used to model a silicon wafer under the photostrictive thin film. A numerical finite element code, BAMAFEM, has been modified by introducing photostrictive material modeling capability. For generation of program code the FORTRAN90 language is used. Established analytical solutions have been used to verify the BAMAFEM finite element results. Comparison of BAMAFEM results and MATLAB results of 2-D displacements indicate that BAMAFEM results almost match with the theoretical results. For the verification of the finite element formulation of the photostrictive element and the BAMAFEM program code, a steel simply supported beam with one PLZT actuator bonded on top of the beam is studied. The BAMAFEM result for transverse deflection matches the analytical result within a small difference (1.7%). Using the valid and verified modified BAMAFEM finite element program code, static analysis has been done to calculate transverse deflection for a silicon cantilever beam with a PLZT actuator bonded on the whole top surface of the beam. BAMAFEM output of transverse deflection matched the analytical result of the same with a percent error of 1%.
Finite element analysis of an extended end-plate connection using the T-stub approach
Muresan, Ioana Cristina; Balc, Roxana
2015-03-10
Beam-to-column end-plate bolted connections are usually used as moment-resistant connections in steel framed structures. For this joint type, the deformability is governed by the deformation capacity of the column flange and end-plate under tension and elongation of the bolts. All these elements around the beam tension flange form the tension region of the joint, which can be modeled by means of equivalent T-stubs. In this paper a beam-to-column end-plate bolted connection is substituted with a T-stub of appropriate effective length and it is analyzed using the commercially available finite element software ABAQUS. The performance of the model is validated by comparing the behavior of the T-stub from the numerical simulation with the behavior of the connection as a whole. The moment-rotation curve of the T-stub obtained from the numerical simulation is compared with the behavior of the whole extended end-plate connection, obtained by numerical simulation, experimental tests and analytical approach.
An approach to probabilistic finite element analysis using a mixed-iterative formulation
NASA Technical Reports Server (NTRS)
Dias, J. B.; Nakazawa, S.
1988-01-01
An efficient algorithm for computing the response sensitivity of finite element problems based on a mixed-iterative formulation is proposed. This method does not involve explicit differentiation of the tangent stiffness array and can be used with formulations for which a consistent tangent stiffness is not readily available. The method has been successfully applied to probabilistic finite element analysis of problems using the proposed mixed formulation, and this exercise has provided valuable insights regarding the extension of the method to a more general class of problems to include material and geometric nonlinearities.
A new approach to finite element modeling, analysis and post-processing
NASA Technical Reports Server (NTRS)
White, Gil
1987-01-01
Recent advances in both hardware and software have opened the door to a new generation of finite element modeling systems. INTERGRAPH CORP has combined an innovative programming concept with a stand alone workstation hardware platform to produce a new standard in finite element modeling called I/FEM. The system offers the COSMIC NASTRAN user full integration between design and analysis. I/FEM not only addresses the needs of the NASTRAN user of today, it also provides for continued evolution of the COSMIC NASTRAN product.
Finite elements: Theory and application
NASA Technical Reports Server (NTRS)
Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)
1988-01-01
Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.
A unidirectional approach for d-dimensional finite element methods for higher order on sparse grids
Bungartz, H.J.
1996-12-31
In the last years, sparse grids have turned out to be a very interesting approach for the efficient iterative numerical solution of elliptic boundary value problems. In comparison to standard (full grid) discretization schemes, the number of grid points can be reduced significantly from O(N{sup d}) to O(N(log{sub 2}(N)){sup d-1}) in the d-dimensional case, whereas the accuracy of the approximation to the finite element solution is only slightly deteriorated: For piecewise d-linear basis functions, e. g., an accuracy of the order O(N{sup - 2}(log{sub 2}(N)){sup d-1}) with respect to the L{sub 2}-norm and of the order O(N{sup -1}) with respect to the energy norm has been shown. Furthermore, regular sparse grids can be extended in a very simple and natural manner to adaptive ones, which makes the hierarchical sparse grid concept applicable to problems that require adaptive grid refinement, too. An approach is presented for the Laplacian on a uinit domain in this paper.
Energy Science and Technology Software Center (ESTSC)
2006-03-08
MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operationmore » of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.« less
A Stimulating Approach To Teaching, Learning and Assessing Finite Element Methods: A Case Study.
ERIC Educational Resources Information Center
Karadelis, J. N.
1998-01-01
Examines the benefits of introducing finite element methods into the curriculum of undergraduate courses. Analyzes the structure of the computer-assisted-design module and the extent to which it fulfills its main objectives. Discusses the efficiency of modern teaching and learning techniques used to develop skills for solving engineering problems;…
Finite Element Analysis of the Cingulata Jaw: An Ecomorphological Approach to Armadillo’s Diets
Serrano-Fochs, Sílvia; De Esteban-Trivigno, Soledad; Marcé-Nogué, Jordi; Fortuny, Josep; Fariña, Richard A.
2015-01-01
Finite element analyses (FEA) were applied to assess the lower jaw biomechanics of cingulate xenarthrans: 14 species of armadillos as well as one Pleistocene pampathere (11 extant taxa and the extinct forms Vassallia, Eutatus and Macroeuphractus). The principal goal of this work is to comparatively assess the biomechanical capabilities of the mandible based on FEA and to relate the obtained stress patterns with diet preferences and variability, in extant and extinct species through an ecomorphology approach. The results of FEA showed that omnivorous species have stronger mandibles than insectivorous species. Moreover, this latter group of species showed high variability, including some similar biomechanical features of the insectivorous Tolypeutes matacus and Chlamyphorus truncatus to those of omnivorous species, in agreement with reported diets that include items other than insects. It remains unclear the reasons behind the stronger than expected lower jaw of Dasypus kappleri. On the other hand, the very strong mandible of the fossil taxon Vassallia maxima agrees well with the proposed herbivorous diet. Moreover, Eutatus seguini yielded a stress pattern similar to Vassalia in the posterior part of the lower jaw, but resembling that of the stoutly built Macroeuphractus outesi in the anterior part. The results highlight the need for more detailed studies on the natural history of extant armadillos. FEA proved a powerful tool for biomechanical studies in a comparative framework. PMID:25919313
Finite Element Analysis of the Cingulata Jaw: An Ecomorphological Approach to Armadillo's Diets.
Serrano-Fochs, Sílvia; De Esteban-Trivigno, Soledad; Marcé-Nogué, Jordi; Fortuny, Josep; Fariña, Richard A
2014-01-01
Finite element analyses (FEA) were applied to assess the lower jaw biomechanics of cingulate xenarthrans: 14 species of armadillos as well as one Pleistocene pampathere (11 extant taxa and the extinct forms Vassallia, Eutatus and Macroeuphractus). The principal goal of this work is to comparatively assess the biomechanical capabilities of the mandible based on FEA and to relate the obtained stress patterns with diet preferences and variability, in extant and extinct species through an ecomorphology approach. The results of FEA showed that omnivorous species have stronger mandibles than insectivorous species. Moreover, this latter group of species showed high variability, including some similar biomechanical features of the insectivorous Tolypeutes matacus and Chlamyphorus truncatus to those of omnivorous species, in agreement with reported diets that include items other than insects. It remains unclear the reasons behind the stronger than expected lower jaw of Dasypus kappleri. On the other hand, the very strong mandible of the fossil taxon Vassallia maxima agrees well with the proposed herbivorous diet. Moreover, Eutatus seguini yielded a stress pattern similar to Vassalia in the posterior part of the lower jaw, but resembling that of the stoutly built Macroeuphractus outesi in the anterior part. The results highlight the need for more detailed studies on the natural history of extant armadillos. FEA proved a powerful tool for biomechanical studies in a comparative framework. PMID:25919313
Electron scattering from large molecules: a 3d finite element R-matrix approach
NASA Astrophysics Data System (ADS)
Tonzani, Stefano; Greene, Chris H.
2005-05-01
To solve the Schr"odinger equation for scattering of a low energy electron from a molecule, we present a three-dimensional finite element R-matrix method [S. Tonzani and C. H. Greene, J. Chem. Phys. 122 01411, (2005)]. Using the static exchange and local density approximations, we can use directly the molecular potentials extracted from ab initio codes (GAUSSIAN 98 in the work described here). A local polarization potential based on density functional theory [F. A. Gianturco and A. Rodriguez-Ruiz, Phys. Rev. A 47, 1075 (1993)] approximately describes the long range attraction to the molecular target induced by the scattering electron without adjustable parameters. We have used this approach successfully in calculations of cross sections for small and medium sized molecules (like SF6, XeF6, C60 and Uracil). This method will be useful to treat the electron-induced dynamics of extended molecular systems, possibly of biological interest, where oth er more complex ab initio methods are difficult to apply.
A finite element approach for the dynamic analysis of joint-dominated structures
NASA Technical Reports Server (NTRS)
Chang, Che-Wei; Wu, Shih-Chin
1991-01-01
A finite element method to model dynamic structural systems undergoing large rotations is presented. The dynamic systems are composed of rigid joint bodies and flexible beam elements. The configurations of these systems are subject to change due to the relative motion in the joints among interconnected elastic beams. A body fixed reference is defined for each joint body to describe the joint body's displacements. Using the finite element method and the kinematic relations between each flexible element and its corotational reference, the total displacement field of an element, which contains gross rigid as well as elastic effects, can be derived in terms of the translational and rotational displacements of the two end nodes. If one end of an element is hinged to a joint body, the joint body's displacements and the hinge degree of freedom at the end are used to represent the nodal displacements. This results in a highly coupled system of differential equations written in terms of hinge degrees of freedom as well as the rotational and translational displacements of joint bodies and element nodes.
A finite element approach for large motion dynamic analysis of multibody structures in space
NASA Technical Reports Server (NTRS)
Chang, Che-Wei
1989-01-01
A three-dimensional finite element formulation for modeling the transient dynamics of constrained multibody space sructures with truss-like configurations is presented. Convected coordinate systems are used to define rigid-body motion of individual elements in the system. These systems are located at one end of each element and are oriented such that one axis passes through the other end of the element. Deformation of each element, relative to its convected coordinate system, is defined by cubic flexural shape functions as used in finite element methods of structural analysis. The formulation is oriented toward joint dominated structures and places the generalized coordinates at the joint. A transformation matrix is derived to integrate joint degree-of-freedom into the equations of motion of the element. Based on the derivation, a general-purpose code LATDYN (Large Angle Transient DYNamics) was developed. Two examples are presented to illustrate the application of the code. For the spin-up of a flexible beam, results are compared with existing solutions available in the literature. For the deployment of one bay of a deployable space truss (the Minimast), results are verified by the geometric knowledge of the system and converged solution of a successively refined model.
Lin, Yi-Tsung; Wu, James Shih-Shyn; Chen, Jian-Horng
2016-07-01
An acetabular cup with larger abduction angles is able to affect the normal function of the cup seriously that may cause early failure of the total hip replacement (THR). Complexity of the finite element (FE) simulation in the wear analysis of the THR is usually concerned with the contact status, the computational effort, and the possible divergence of results, which become more difficult on THRs with larger cup abduction angles. In the study, we propose a FE approach with contact transformation that offers less computational effort. Related procedures, such as Lagrangian Multiplier, partitioned matrix inversion, detection of contact forces, continuity of contact surface, nodal area estimation, etc. are explained in this report. Through the transformed methodology, the computer round-off error is tremendously reduced and the embedded repetitive procedure can be processed precisely and quickly. Here, wear behaviors of THR with various abduction angles are investigated. The most commonly used combination, i.e., metal-on-polyethylene, is adopted in the current study where a cobalt-chromium femoral head is paired with an Ultra High Molecular Weight Polyethylene (UHMWPE) cup. In all illustrations, wear coefficients are estimated by self-averaging strategy with available experimental datum reported elsewhere. The results reveal that the THR with larger abduction angles may produce deeper depth of wear but the volume of wear presents an opposite tendency; these results are comparable with clinical and experimental reports. The current approach can be widely applied easily to fields such as the study of the wear behaviors on ante-version, impingement, and time-dependent behaviors of prostheses etc. PMID:27265055
MODELING OF HIGH SPEED FRICTION STIR SPOT WELDING USING A LAGRANGIAN FINITE ELEMENT APPROACH
Miles, Michael; Karki, U.; Woodward, C.; Hovanski, Yuri
2013-09-03
Friction stir spot welding (FSSW) has been shown to be capable of joining steels of very high strength, while also being very flexible in terms of controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding (RSW) if tool life is sufficiently high, and if machine spindle loads are sufficiently low so that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work tool speeds of 3000 rpm and higher were employed, in order to generate heat more quickly and to reduce welding loads to acceptable levels. The FSSW process was modeled using a finite element approach with the Forge® software package. An updated Lagrangian scheme with explicit time integration was employed to model the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate [3]. The modeling approach can be described as two-dimensional, axisymmetric, but with an aspect of three dimensions in terms of thermal boundary conditions. Material flow was calculated from a velocity field which was two dimensional, but heat generated by friction was computed using a virtual rotational velocity component from the tool surface. An isotropic, viscoplastic Norton-Hoff law was used to model the evolution of material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures and the movement of the joint interface with reasonable accuracy for the welding of a dual phase 980 steel.
Energy Science and Technology Software Center (ESTSC)
2005-05-07
CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases intomore » a single database which makes it easier to postprocess the results data.« less
Energy Science and Technology Software Center (ESTSC)
2005-06-26
Exotxt is an analysis code that reads finite element results data stored in an exodusII file and generates a file in a structured text format. The text file can be edited or modified via a number of text formatting tools. Exotxt is used by analysis to translate data from the binary exodusII format into a structured text format which can then be edited or modified and then either translated back to exodusII format or tomore » another format.« less
An Integrated Magnetic Circuit Model and Finite Element Model Approach to Magnetic Bearing Design
NASA Technical Reports Server (NTRS)
Provenza, Andrew J.; Kenny, Andrew; Palazzolo, Alan B.
2003-01-01
A code for designing magnetic bearings is described. The code generates curves from magnetic circuit equations relating important bearing performance parameters. Bearing parameters selected from the curves by a designer to meet the requirements of a particular application are input directly by the code into a three-dimensional finite element analysis preprocessor. This means that a three-dimensional computer model of the bearing being developed is immediately available for viewing. The finite element model solution can be used to show areas of magnetic saturation and make more accurate predictions of the bearing load capacity, current stiffness, position stiffness, and inductance than the magnetic circuit equations did at the start of the design process. In summary, the code combines one-dimensional and three-dimensional modeling methods for designing magnetic bearings.
A hybrid finite element approach to modeling sound radiation from circular and rectangular ducts.
Duan, Wenbo; Kirby, Ray
2012-05-01
A numerical model based on a hybrid finite element method is developed that seeks to join sound pressure fields in interior and exterior regions. The hybrid method is applied to the analysis of sound radiation from open pipes, or ducts, and uses mode matching to couple a finite element discretization of the region surrounding the open end of the duct to wave based modal expansions for adjoining interior and exterior regions. The hybrid method facilitates the analysis of ducts of arbitrary but uniform cross section as well the study of conical flanges and here a modal expansion based on spherical harmonics is applied. Predictions are benchmarked against analytic solutions for the limiting cases of flanged and unflanged circular ducts and excellent agreement between the two methods is observed. Predictions are also presented for flanged and unflanged rectangular ducts, and because the hybrid method retains the sparse banded and symmetric matrices of the traditional finite element method, it is shown that predictions can be obtained within an acceptable time frame even for a three dimensional problem. PMID:22559341
Numerical computation of transonic flows by finite-element and finite-difference methods
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
Li, H.; Li, G.
2014-08-28
An accelerated Finite Element Contact Block Reduction (FECBR) approach is presented for computational analysis of ballistic transport in nanoscale electronic devices with arbitrary geometry and unstructured mesh. Finite element formulation is developed for the theoretical CBR/Poisson model. The FECBR approach is accelerated through eigen-pair reduction, lead mode space projection, and component mode synthesis techniques. The accelerated FECBR is applied to perform quantum mechanical ballistic transport analysis of a DG-MOSFET with taper-shaped extensions and a DG-MOSFET with Si/SiO{sub 2} interface roughness. The computed electrical transport properties of the devices obtained from the accelerated FECBR approach and associated computational cost as a function of system degrees of freedom are compared with those obtained from the original CBR and direct inversion methods. The performance of the accelerated FECBR in both its accuracy and efficiency is demonstrated.
NASA Astrophysics Data System (ADS)
Li, H.; Li, G.
2014-08-01
An accelerated Finite Element Contact Block Reduction (FECBR) approach is presented for computational analysis of ballistic transport in nanoscale electronic devices with arbitrary geometry and unstructured mesh. Finite element formulation is developed for the theoretical CBR/Poisson model. The FECBR approach is accelerated through eigen-pair reduction, lead mode space projection, and component mode synthesis techniques. The accelerated FECBR is applied to perform quantum mechanical ballistic transport analysis of a DG-MOSFET with taper-shaped extensions and a DG-MOSFET with Si/SiO2 interface roughness. The computed electrical transport properties of the devices obtained from the accelerated FECBR approach and associated computational cost as a function of system degrees of freedom are compared with those obtained from the original CBR and direct inversion methods. The performance of the accelerated FECBR in both its accuracy and efficiency is demonstrated.
Grosland, Nicole M.; Shivanna, Kiran H.; Magnotta, Vincent A.; Kallemeyn, Nicole A.; DeVries, Nicole A.; Tadepalli, Srinivas C.; Lisle, Curtis
2009-01-01
Finite element (FE) analysis is a valuable tool in musculoskeletal research. The demands associated with mesh development, however, often prove daunting. In an effort to facilitate anatomic FE model development we have developed an open source software toolkit (IA-FEMesh). IA-FEMesh employs a multiblock meshing scheme aimed at hexahedral mesh generation. An emphasis has been placed on making the tools interactive, in an effort to create a user friendly environment. The goal is to provide an efficient and reliable method for model development, visualization, and mesh quality evaluation. While these tools have been developed, initially, in the context of skeletal structures they can be applied to countless applications. PMID:19157630
NASA Astrophysics Data System (ADS)
Karmakar, Amit; Kishimoto, Kikuo
In this paper a finite element method is presented to study the effects of delamination on free vibration characteristics of graphite-epoxy composite pretwisted rotating shells. Lagrange’s equation of motion is used to derive the dynamic equilibrium equation and moderate rotational speeds are considered wherein the Coriolis effect is negligible. An eight noded isoparametric plate bending element is employed in the formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin’s theory. To satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front, a multipoint constraint algorithm is incorporated which leads to unsymmetric stiffness matrices. Parametric studies are performed in respect of location of delamination, fibre orientation, rotational speed and twist angle on natural frequencies of cylindrical shallow shells. Numerical results obtained for symmetric and unsymmetric laminates are the first known non-dimensional frequencies for the analyses carried out here.
NASA Astrophysics Data System (ADS)
Kumar, Anuruddh; Sharma, Anshul; Kumar, Rajeev; Vaish, Rahul; Chauhan, Vishal S.; Bowen, C. R.
2015-03-01
This paper examines the selection and performance evaluation of a variety of piezoelectric materials for cantilever-based sensor applications. The finite element analysis method is implemented to evaluate the relative importance of materials properties such as Young's Modulus (E), piezoelectric stress constants (e31), dielectric constant (ɛ) and Poisson's ratio (υ) for cantilever-based sensor applications. An analytic hierarchy process (AHP) is used to assign weights to the properties that are studied for the sensor structure under study. A technique for order preference by similarity to ideal solution (TOPSIS) is used to rank the performance of the piezoelectric materials in the context of sensor voltage outputs. The ranking achieved by the TOPSIS analysis is in good agreement with the results obtained from finite element method simulation. The numerical simulations show that K0.5Na0.5NbO3-LiSbO3 (KNN-LS) materials family is important for sensor application. Young's modulus (E) is most influencing material's property followed by piezoelectric constant (e31), dielectric constant (ɛ) and Poisson's ratio (υ) for cantilever-based piezoelectric sensor applications.
Johannesson, G; Glaser, R E; Lee, C L; Nitao, J J; Hanley, W G
2005-02-07
Estimating unknown system configurations/parameters by combining system knowledge gained from a computer simulation model on one hand and from observed data on the other hand is challenging. An example of such inverse problem is detecting and localizing potential flaws or changes in a structure by using a finite-element model and measured vibration/displacement data. We propose a probabilistic approach based on Bayesian methodology. This approach does not only yield a single best-guess solution, but a posterior probability distribution over the parameter space. In addition, the Bayesian approach provides a natural framework to accommodate prior knowledge. A Markov chain Monte Carlo (MCMC) procedure is proposed to generate samples from the posterior distribution (an ensemble of likely system configurations given the data). The MCMC procedure proposed explores the parameter space at different resolutions (scales), resulting in a more robust and efficient procedure. The large-scale exploration steps are carried out using coarser-resolution finite-element models, yielding a considerable decrease in computational time, which can be a crucial for large finite-element models. An application is given using synthetic displacement data from a simple cantilever beam with MCMC exploration carried out at three different resolutions.
NASA Technical Reports Server (NTRS)
Baskharone, E. A.; Hensel, S. J.
1991-01-01
The vibrational characteristics of a rotor that is in contact with a fluid in an annular clearance gap are investigated. The disturbance under consideration involves the axis of rotation, and includes a virtual lateral eccentricity, together with a whirling motion around the housing centerline. The fluid reaction components arise from infinitesimally small deformations with varied magnitudes which are experienced by an assembly of finite elements in the rotor-to-housing gap. A perturbation model is presented in which the perturbation equations emerge from the flow-governing equations in their discrete finite-element form. It is concluded that restrictions on the rotor-to-housing gap geometry, or the manner in which the rotor virtual eccentricity occurs are practically nonexisting. This model is used to compute the rotordynamic coefficients of an annular seal. The rotordynamic behavior of a hydraulic seal with a clearance gap depth/length ratio of 0.01 is analyzed under a cylindrical type of rotor whirl and several running speeds.
Quevedo González, Fernando José; Nuño, Natalia
2016-06-01
The mechanical properties of well-ordered porous materials are related to their geometrical parameters at the mesoscale. Finite element (FE) analysis is a powerful tool to design well-ordered porous materials by analysing the mechanical behaviour. However, FE models are often computationally expensive. This article aims to develop a cost-effective FE model to simulate well-ordered porous metallic materials for orthopaedic applications. Solid and beam FE modelling approaches are compared, using finite size and infinite media models considering cubic unit cell geometry. The model is then applied to compare two unit cell geometries: cubic and diamond. Models having finite size provide similar results than the infinite media model approach for large sample sizes. In addition, these finite size models also capture the influence of the boundary conditions on the mechanical response for small sample sizes. The beam FE modelling approach showed little computational cost and similar results to the solid FE modelling approach. Diamond unit cell geometry appeared to be more suitable for orthopaedic applications than the cubic unit cell geometry. PMID:26260268
Wong, J.; Göktepe, S.; Kuhl, E.
2014-01-01
Summary Computational modeling of the human heart allows us to predict how chemical, electrical, and mechanical fields interact throughout a cardiac cycle. Pharmacological treatment of cardiac disease has advanced significantly over the past decades, yet it remains unclear how the local biochemistry of an individual heart cell translates into global cardiac function. Here we propose a novel, unified strategy to simulate excitable biological systems across three biological scales. To discretize the governing chemical, electrical, and mechanical equations in space, we propose a monolithic finite element scheme. We apply a highly efficient and inherently modular global-local split, in which the deformation and the transmembrane potential are introduced globally as nodal degrees of freedom, while the chemical state variables are treated locally as internal variables. To ensure unconditional algorithmic stability, we apply an implicit backward Euler finite difference scheme to discretize the resulting system in time. To increase algorithmic robustness and guarantee optimal quadratic convergence, we suggest an incremental iterative Newton-Raphson scheme. The proposed algorithm allows us to simulate the interaction of chemical, electrical, and mechanical fields during a representative cardiac cycle on a patient-specific geometry, robust and stable, with calculation times on the order of four days on a standard desktop computer. PMID:23798328
NASA Astrophysics Data System (ADS)
Saada, Mohamed M.; Arafa, Mustafa H.; Nassef, Ashraf O.
2013-06-01
The use of vibration-based techniques in damage identification has recently received considerable attention in many engineering disciplines. While various damage indicators have been proposed in the literature, those relying only on changes in the natural frequencies are quite appealing since these quantities can conveniently be acquired. Nevertheless, the use of natural frequencies in damage identification is faced with many obstacles, including insensitivity and non-uniqueness issues. The aim of this article is to develop a viable damage identification scheme based only on changes in the natural frequencies and to attempt to overcome the challenges typically encountered. The proposed methodology relies on building a finite element model (FEM) of the structure under investigation. An improved particle swarm optimization algorithm is proposed to facilitate updating the FEM in accordance with experimentally determined natural frequencies in order to predict the damage location and extent. The method is tested on beam structures and was shown to be an effective tool for damage identification.
Finite element approach analysis for characteristics of electromagnetic acoustic Lamb wave
NASA Astrophysics Data System (ADS)
Chen, Xiaoming; Li, Songsong
2016-04-01
The electromagnetic acoustic Lamb wave, with the advantages of quickly detecting the defect and sensitivity to the defects, is widely used in non-destructive testing of thin sheet. In this paper, the directivity of sound field, Phase velocity, group velocity and particle displacement amplitude of Lamb wave are study based on finite element analysis method. The results show that, for 1mm aluminum, when the excitation frequency 0.64MHz, the displacement amplitude of A0 mode is minimum, and the displacement amplitude S0 mode is largest. Appropriate to increase the displacement amplitude of a mode, while reducing displacement amplitude of another mode, to achieve the excitation of a single mode Lamb wave. It is helpful to the Optimization of transducer parameters, the choice of Lamb wave modes and providing optimal excitation frequency.
A Finite-Element Approach for Modeling Inviscid and Viscous Compressible Flows using Prismatic Grids
NASA Technical Reports Server (NTRS)
Pandya, S. A.; Hefez, M.
2000-01-01
The Galerkin finite-element method is used to solve the Euler and Navier-Stokes equations on prismatic meshes. It is shown that the prismatic grid is advantageous for correctly and efficiently capturing the boundary layers in high Reynolds number flows. It can be captured accurately because of the ability to cluster grid points normal to the body. The efficiency derives from the implicit treatment of the normal direction. To treat the normal direction implicitly, a semi-implicit Runge-Kutta time stepping scheme is developed. The semi-implicit algorithm is validated on simple geometries for inviscid and viscous flows and its convergence history is compared to that of the explicit Runge-Kutta scheme. The semi-implicit scheme is shown to be a factor of 3 to 4 faster in terms of CPU time to convergence.
Finite Element Approach for the Study of Thermoregulation in Human Head Exposed to Cold Environment
NASA Astrophysics Data System (ADS)
Khanday, M. A.; Saxena, V. P.
2009-07-01
The temperature of outer parts of human head exposed to cold environment shows large variations. In this paper a theoretical model has been envisaged for the comprehensive analysis of thermoregulation in human head which is taken as a divided heterogeneous medium surrounded by natural tissue layers. The model incorporates biochemical reactions concerning heat generation, blood circulation and other biophysical activities. The model obtained in terms of partial differential equations has been treated with the help of finite element method. This results in the estimation of temperature distribution under the influence of (i) atmospheric conditions (ii) cerebral blood circulation with fluctuating flow in scalp. This study leads to the estimation of risk factor analysis in cold environment.
Implant platform switching: biomechanical approach using two-dimensional finite element analysis.
Tabata, Lucas Fernando; Assunção, Wirley Gonçalves; Adelino Ricardo Barão, Valentim; de Sousa, Edson Antonio Capello; Gomes, Erica Alves; Delben, Juliana Aparecida
2010-01-01
In implant therapy, a peri-implant bone resorption has been noticed mainly in the first year after prosthesis insertion. This bone remodeling can sometimes jeopardize the outcome of the treatment, especially in areas in which short implants are used and also in aesthetic cases. To avoid this occurrence, the use of platform switching (PS) has been used. This study aimed to evaluate the biomechanical concept of PS with relation to stress distribution using two-dimensional finite element analysis. A regular matching diameter connection of abutment-implant (regular platform group [RPG]) and a PS connection (PS group [PSG]) were simulated by 2 two-dimensional finite element models that reproduced a 2-piece implant system with peri-implant bone tissue. A regular implant (prosthetic platform of 4.1 mm) and a wide implant (prosthetic platform of 5.0 mm) were used to represent the RPG and PSG, respectively, in which a regular prosthetic component of 4.1 mm was connected to represent the crown. A load of 100 N was applied on the models using ANSYS software. The RPG spreads the stress over a wider area in the peri-implant bone tissue (159 MPa) and the implant (1610 MPa), whereas the PSG seems to diminish the stress distribution on bone tissue (34 MPa) and implant (649 MPa). Within the limitation of the study, the PS presented better biomechanical behavior in relation to stress distribution on the implant but especially in the bone tissue (80% less). However, in the crown and retention screw, an increase in stress concentration was observed. PMID:20098182
NASA Astrophysics Data System (ADS)
Pasquariello, Vito; Hammerl, Georg; Örley, Felix; Hickel, Stefan; Danowski, Caroline; Popp, Alexander; Wall, Wolfgang A.; Adams, Nikolaus A.
2016-02-01
We present a loosely coupled approach for the solution of fluid-structure interaction problems between a compressible flow and a deformable structure. The method is based on staggered Dirichlet-Neumann partitioning. The interface motion in the Eulerian frame is accounted for by a conservative cut-cell Immersed Boundary method. The present approach enables sub-cell resolution by considering individual cut-elements within a single fluid cell, which guarantees an accurate representation of the time-varying solid interface. The cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special treatment. A Mortar method is chosen in order to obtain a conservative and consistent load transfer. We validate our method by investigating two-dimensional test cases comprising a shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we propose a three-dimensional fluid-structure interaction test case of a flexible inflated thin shell interacting with a shock wave involving large and complex structural deformations.
Edge-based finite element approach to the simulation of geoelectromagnetic induction in a 3-D sphere
NASA Astrophysics Data System (ADS)
Yoshimura, Ryokei; Oshiman, Naoto
2002-02-01
We present a new simulator based on an edge-based finite element method (FEM) for computing the global-scale electromagnetic (EM) induction responses in a 3-D conducting sphere excited by an external source current for a variety of frequencies. The formulation is in terms of the magnetic vector potential. The edge-element approach assigns the degrees of freedom to the edges rather than to the nodes of the element. This edge-element strictly satisfies the discontinuity of the normal boundary conditions without considering the enforced normal boundary conditions that are usually practiced in a node-based FEM. To verify our simulation code, we compare our results with those of other solvers for two test computations, corresponding to azimuthally symmetric and asymmetric models. The results are in good agreement with one another.
Finite-Element Modeling For Structural Analysis
NASA Technical Reports Server (NTRS)
Min, J. B.; Androlake, S. G.
1995-01-01
Report presents study of finite-element mathematical modeling as used in analyzing stresses and strains at joints between thin, shell-like components (e.g., ducts) and thicker components (e.g., flanges or engine blocks). First approach uses global/local model to evaluate system. Provides correct total response and correct representation of stresses away from any discontinuities. Second approach involves development of special transition finite elements to model transitions between shells and thicker structural components.
A hybrid finite element - statistical energy analysis approach to robust sound transmission modeling
NASA Astrophysics Data System (ADS)
Reynders, Edwin; Langley, Robin S.; Dijckmans, Arne; Vermeir, Gerrit
2014-09-01
When considering the sound transmission through a wall in between two rooms, in an important part of the audio frequency range, the local response of the rooms is highly sensitive to uncertainty in spatial variations in geometry, material properties and boundary conditions, which have a wave scattering effect, while the local response of the wall is rather insensitive to such uncertainty. For this mid-frequency range, a computationally efficient modeling strategy is adopted that accounts for this uncertainty. The partitioning wall is modeled deterministically, e.g. with finite elements. The rooms are modeled in a very efficient, nonparametric stochastic way, as in statistical energy analysis. All components are coupled by means of a rigorous power balance. This hybrid strategy is extended so that the mean and variance of the sound transmission loss can be computed as well as the transition frequency that loosely marks the boundary between low- and high-frequency behavior of a vibro-acoustic component. The method is first validated in a simulation study, and then applied for predicting the airborne sound insulation of a series of partition walls of increasing complexity: a thin plastic plate, a wall consisting of gypsum blocks, a thicker masonry wall and a double glazing. It is found that the uncertainty caused by random scattering is important except at very high frequencies, where the modal overlap of the rooms is very high. The results are compared with laboratory measurements, and both are found to agree within the prediction uncertainty in the considered frequency range.
Finite element computational fluid mechanics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
NASA Astrophysics Data System (ADS)
Naber, R. R.; Bahai, H.; Jones, B. E.
2006-05-01
The ability to model acoustic emission (AE) plays an important role in advancing the reliability of AE source characterisation. In this paper, an efficient numerical approach is proposed for modelling AE waves in isotropic solids. The approach is based on evaluating the reciprocal band-limited Green's functions using the finite element (FE) method. In the first section, known analytical solutions of the Green's function for an elastic isotropic infinite plate subjected to point monopole surface loading are used to validate the approach. Then, a study investigating the effects of the spatial resolution of the FE model on the accuracy of the numerical solutions is presented. Furthermore, comparisons between numerical calculations and experimental measurements are presented for a glass plate subjected to two known AE sources (pencil lead break and ball impact). Finally, the reciprocal relation between the source and the receiver is confirmed using numerical simulations of a plane stress model of an elastic isotropic plate.
Toward automatic finite element analysis
NASA Technical Reports Server (NTRS)
Kela, Ajay; Perucchio, Renato; Voelcker, Herbert
1987-01-01
Two problems must be solved if the finite element method is to become a reliable and affordable blackbox engineering tool. Finite element meshes must be generated automatically from computer aided design databases and mesh analysis must be made self-adaptive. The experimental system described solves both problems in 2-D through spatial and analytical substructuring techniques that are now being extended into 3-D.
NASA Technical Reports Server (NTRS)
Contreras, Michael T.; Peng, Chia-Yen; Wang, Dongdong; Chen, Jiun-Shyan
2012-01-01
A wheel experiencing sinkage and slippage events poses a high risk to rover missions as evidenced by recent mobility challenges on the Mars Exploration Rover (MER) project. Because several factors contribute to wheel sinkage and slippage conditions such as soil composition, large deformation soil behavior, wheel geometry, nonlinear contact forces, terrain irregularity, etc., there are significant benefits to modeling these events to a sufficient degree of complexity. For the purposes of modeling wheel sinkage and slippage at an engineering scale, meshfree finite element approaches enable simulations that capture sufficient detail of wheel-soil interaction while remaining computationally feasible. This study demonstrates some of the large deformation modeling capability of meshfree methods and the realistic solutions obtained by accounting for the soil material properties. A benchmark wheel-soil interaction problem is developed and analyzed using a specific class of meshfree methods called Reproducing Kernel Particle Method (RKPM). The benchmark problem is also analyzed using a commercially available finite element approach with Lagrangian meshing for comparison. RKPM results are comparable to classical pressure-sinkage terramechanics relationships proposed by Bekker-Wong. Pending experimental calibration by future work, the meshfree modeling technique will be a viable simulation tool for trade studies assisting rover wheel design.
Second order tensor finite element
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
Robust and scalable 3-D geo-electromagnetic modelling approach using the finite element method
NASA Astrophysics Data System (ADS)
Grayver, Alexander V.; Bürg, Markus
2014-07-01
We present a robust and scalable solver for time-harmonic Maxwell's equations for problems with large conductivity contrasts, wide range of frequencies, stretched grids and locally refined meshes. The solver is part of the fully distributed adaptive 3-D electromagnetic modelling scheme which employs the finite element method and unstructured non-conforming hexahedral meshes for spatial discretization using the open-source software deal.II. We use the complex-valued electric field formulation and split it into two real-valued equations for which we utilize an optimal block-diagonal pre-conditioner. Application of this pre-conditioner requires the solution of two smaller real-valued symmetric problems. We solve them by using either a direct solver or the conjugate gradient method pre-conditioned with the recently introduced auxiliary space technique. The auxiliary space pre-conditioner reformulates the original problem in form of several simpler ones, which are then solved using highly efficient algebraic multigrid methods. In this paper, we consider the magnetotelluric case and verify our numerical scheme by using COMMEMI 3-D models. Afterwards, we run a series of numerical experiments and demonstrate that the solver converges in a small number of iterations for a wide frequency range and variable problem sizes. The number of iterations is independent of the problem size, but exhibits a mild dependency on frequency. To test the stability of the method on locally refined meshes, we have implemented a residual-based a posteriori error estimator and compared it with uniform mesh refinement for problems up to 200 million unknowns. We test the scalability of the most time consuming parts of our code and show that they fulfill the strong scaling assumption as long as each MPI process possesses enough degrees of freedom to alleviate communication overburden. Finally, we refer back to a direct solver-based pre-conditioner and analyse its complexity in time. The results show
NASA Astrophysics Data System (ADS)
Kou, Wenjun; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.
2015-11-01
This work extends a fiber-based immersed boundary (IB) model of esophageal transport by incorporating a continuum model of the deformable esophageal wall. The continuum-based esophagus model adopts finite element approach that is capable of describing more complex and realistic material properties and geometries. The leakage from mismatch between Lagrangian and Eulerian meshes resulting from large deformations of the esophageal wall is avoided by careful choice of interaction points. The esophagus model, which is described as a multi-layered, fiber-reinforced nonlinear elastic material, is coupled to bolus and muscle-activation models using the IB approach to form the esophageal transport model. Cases of esophageal transport with different esophagus models are studied. Results on the transport characteristics, including pressure field and esophageal wall kinematics and stress, are analyzed and compared. Support from NIH grant R01 DK56033 and R01 DK079902 is gratefully acknowledged. BEG is supported by NSF award ACI 1460334.
NASA Astrophysics Data System (ADS)
Cervone, A.; Manservisi, S.; Scardovelli, R.
2010-09-01
A multilevel VOF approach has been coupled to an accurate finite element Navier-Stokes solver in axisymmetric geometry for the simulation of incompressible liquid jets with high density ratios. The representation of the color function over a fine grid has been introduced to reduce the discontinuity of the interface at the cell boundary. In the refined grid the automatic breakup and coalescence occur at a spatial scale much smaller than the coarse grid spacing. To reduce memory requirements, we have implemented on the fine grid a compact storage scheme which memorizes the color function data only in the mixed cells. The capillary force is computed by using the Laplace-Beltrami operator and a volumetric approach for the two principal curvatures. Several simulations of axisymmetric jets have been performed to show the accuracy and robustness of the proposed scheme.
NASA Astrophysics Data System (ADS)
Bhuiyan, Yeasin; Shen, Yanfeng; Giurgiutiu, Victor
2016-04-01
Ultrasonic inspection of multiple-rivet-hole lap joint cracks has been introduced using combined analytical and finite element approach (CAFA). Finite element analyses have been performed on local damage area in spite of the whole large structure and transfer function based analytical model is used to analyze the full structure. "Scattered cube" of complex valued wave damage interaction coefficient (WDIC) that involves scattering and mode conversion of Lamb waves around the damage is used as coupling between analytical and FEM simulation. WDIC is captured for multiple angles of incident Lamb mode (S0 and A0) over the frequency domain to analyze the cracks of multiple-rivet-hole lap joint. By analyzing the scattered cube of WDICs over the frequency domain and azimuthal angles the optimum parameters can be determined for each angle of incidence and the most sensitive signals are obtained using WaveformRevealer2D (WFR2D). These sensitive signals confirm the detection of the butterfly cracks in rivet holes through the installment of the transmitting and sensing PWASs in the proper locations and selecting the right frequency of excitation.
The NESSUS finite element code
NASA Technical Reports Server (NTRS)
Dias, J. B.; Nagiegaal, J. C.; Nakazawa, S.
1987-01-01
The objective of this development is to provide a new analysis tool which integrates the structural modeling versatility of a modern finite element code with the latest advances in the area of probabilistic modeling and structural reliability. Version 2.0 of the NESSUS finite element code was released last February, and is currently being exercised on a set of problems which are representative of typical Space Shuttle Main Engine (SSME) applications. NESSUS 2.0 allows linear elastostatic and eigenvalue analysis of structures with uncertain geometry, material properties and boundary conditions, which are subjected to a random mechanical and thermal loading environment. The NESSUS finite element code is a key component in a broader software system consisting of five major modules. NESSUS/EXPERT is an expert system under development at Southwest Research Institute, with the objective of centralizing all component-specific knowledge useful for conducting probabilistic analysis of typical Space Shuttle Main Engine (SSME) components. NESSUS/FEM contains the finite element code used for the structural analysis and parameter sensitivity evaluation of these components. The task of parametrizing a finite element mesh in terms of the random variables present is facilitated with the use of the probabilistic data preprocessor in NESSUS/PRE. An external database file is used for managing the bulk of the data generated by NESSUS/FEM.
NASA Astrophysics Data System (ADS)
Laura, P. A. A.; Grossi, R. O.; Ficcadenti, G. M.; Sanchez Sarmiento, G.
1981-02-01
The study deals with the determination of the natural frequencies of vibration of a cardioidal membrane using (1) the conformal mapping variational approach and (2) a finite element algorithm based on a standard triangular element discretization of the domain with linear interpolation of the modal function. Calculations are performed on the domains of 'exotic' boundary shape which are of interest in several technological applications: acoustic and electromagnetic waveguides, solid propellant rocket cross-sections, printed circuit boards, etc. It is shown that the finite element method yields results which are in very good agreement with values determined by means of an analytical approach for the case of a membrane of a cardioidal shape.
Sadeghi-Goughari, Moslem; Mojra, Afsaneh
2015-10-01
Intraoperative Thermal Imaging (ITI) is a novel neuroimaging method that can potentially locate tissue abnormalities and hence improves surgeon's diagnostic ability. In the present study, thermography technique coupled with artificial tactile sensing method called "haptic thermography" is utilized to investigate the presence of an abnormal object as a tumor with an elevated temperature relative to the normal tissue in the brain. The brain tissue is characterized as a hyper-viscoelastic material to be descriptive of mechanical behavior of the brain tissue during tactile palpation. Based on a finite element approach, Magnetic Resonance Imaging (MRI) data of a patient diagnosed to have a brain tumor is utilized to simulate and analyze the capability of haptic thermography in detection and localization of brain tumor. Steady-state thermal results prove that temperature distribution is an appropriate outcome of haptic thermography for the superficial tumors while heat flux distribution can be used as an extra thermal result for deeply located tumors. PMID:26590456
NASA Astrophysics Data System (ADS)
Bian, Xuecheng; Chen, Yunmin; Hu, Ting
2008-06-01
An efficient 2.5D finite element numerical modeling approach was developed to simulate wave motions generated in ground by high-speed train passages. Fourier transform with respect to the coordinate in the track direction was applied to reducing the three-dimensional dynamic problem to a plane strain problem which has been solved in a section perpendicular to the track direction. In this study, the track structure and supporting ballast layer were simplified as a composite Euler beam resting on the ground surface, while the ground with complicated geometry and physical properties was modeled by 2.5D quadrilateral elements. Wave dissipation into the far field was dealt with the transmitting boundary constructed with frequency-dependent dashpots. Three-dimensional responses of track structure and ground were obtained from the wavenumber expansion in the track direction. The simulated wave motions in ground were interpreted for train moving loads traveling at speeds below or above the critical velocity of a specific track-ground system. It is found that, in the soft ground area, the high-speed train operations can enter the transonic range, which can lead to resonances of the track structure and the supporting ground. The strong vibration will endanger the safe operations of high-speed train and accelerate the deterioration of railway structure.
FEBio: finite elements for biomechanics.
Maas, Steve A; Ellis, Benjamin J; Ateshian, Gerard A; Weiss, Jeffrey A
2012-01-01
In the field of computational biomechanics, investigators have primarily used commercial software that is neither geared toward biological applications nor sufficiently flexible to follow the latest developments in the field. This lack of a tailored software environment has hampered research progress, as well as dissemination of models and results. To address these issues, we developed the FEBio software suite (http://mrl.sci.utah.edu/software/febio), a nonlinear implicit finite element (FE) framework, designed specifically for analysis in computational solid biomechanics. This paper provides an overview of the theoretical basis of FEBio and its main features. FEBio offers modeling scenarios, constitutive models, and boundary conditions, which are relevant to numerous applications in biomechanics. The open-source FEBio software is written in C++, with particular attention to scalar and parallel performance on modern computer architectures. Software verification is a large part of the development and maintenance of FEBio, and to demonstrate the general approach, the description and results of several problems from the FEBio Verification Suite are presented and compared to analytical solutions or results from other established and verified FE codes. An additional simulation is described that illustrates the application of FEBio to a research problem in biomechanics. Together with the pre- and postprocessing software PREVIEW and POSTVIEW, FEBio provides a tailored solution for research and development in computational biomechanics. PMID:22482660
NASA Astrophysics Data System (ADS)
Arshadi, Amir
Image-based simulation of complex materials is a very important tool for understanding their mechanical behavior and an effective tool for successful design of composite materials. In this thesis an image-based multi-scale finite element approach is developed to predict the mechanical properties of asphalt mixtures. In this approach the "up-scaling" and homogenization of each scale to the next is critically designed to improve accuracy. In addition to this multi-scale efficiency, this study introduces an approach for consideration of particle contacts at each of the scales in which mineral particles exist. One of the most important pavement distresses which seriously affects the pavement performance is fatigue cracking. As this cracking generally takes place in the binder phase of the asphalt mixture, the binder fatigue behavior is assumed to be one of the main factors influencing the overall pavement fatigue performance. It is also known that aggregate gradation, mixture volumetric properties, and filler type and concentration can affect damage initiation and progression in the asphalt mixtures. This study was conducted to develop a tool to characterize the damage properties of the asphalt mixtures at all scales. In the present study the Viscoelastic continuum damage model is implemented into the well-known finite element software ABAQUS via the user material subroutine (UMAT) in order to simulate the state of damage in the binder phase under the repeated uniaxial sinusoidal loading. The inputs are based on the experimentally derived measurements for the binder properties. For the scales of mastic and mortar, the artificially 2-Dimensional images of mastic and mortar scales were generated and used to characterize the properties of those scales. Finally, the 2D scanned images of asphalt mixtures are used to study the asphalt mixture fatigue behavior under loading. In order to validate the proposed model, the experimental test results and the simulation results were
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analyses is presented. New thermal finite elements which yield exact nodal and element temperature for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal-structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
Equivalent-bodyforce Approach on Modeling Elastic Dislocation Problem Using Finite Element Method
NASA Astrophysics Data System (ADS)
Zhang, B.; Zhang, H.; Shi, Y.
2015-12-01
Dislocation theory is well applied to calculate coseismic and postseismic effects. A key signature of the theory is that the solution of displacement is discontinuous. Various numerical methods can handle such discontinuous problems using a mesh which includes the discontinuous plane explicitly. However, generating such a mesh could be challenging and time consuming. We introduce an equivalent-bodyforce approach to handle discontinuities appearing in elastic dislocation theory. This approach gets rid of meshing the fault plane explicitly and simplifies the FEM modeling process. Based on Burridge and Knopoff's work, we deduced a close-formed formula representing equivalent-bodyforce in FEM framework. Then compared our numerical results with Okada's analytical solution in a test case in order to check the correctness of our formula and codes. At last, the 2011 Mw9.0 Tohoku-Oki earthquake was studied. We compared our numerical results with GPS observations to check the correctness of our formula and codes again, and discussed the co-seismic effects in North China of this earthquake. In the test case, our numerical results differ from Okada's analytical solution less than 3% in most computing regions. In modelling co-seismic effects of the 2011 Mw9.0 Tohoku-Oki earthquake, our numerical results of displacement field agree well with GPS observations in both direction and magnitude. The co-seismic stress changes in North China are in east-west tension with a magnitude about 1kPa. The north-south compression is one order of magnitude lower. The coulomb failure stress changes on active faults in North China are negative which indicates more stable, except at the north end of the Tanlu fault zone where the coulomb failure stress change is about 100Pa. Equivalent-bodyforce approach is applicable and accurate in FEM modeling. The 2011 Mw9.0 Tohoku-Oki earthquake makes faults in North China more stable except the north end of the Tanlu fault zone.
NASA Astrophysics Data System (ADS)
Mansur, Ali; Nganbe, Michel
2015-03-01
The ballistic impact was numerically modeled for AISI 450 steel struck by a 17.3 g ogive nose WC-Co projectile using Abaqus/Explicit. The model was validated using experimental results and data for different projectiles and metal targets. The Abaqus ductile-shear, local principal strain to fracture, and absorbed strain energy at failure criteria were investigated. Due to the highly dynamic nature of ballistic impacts, the absorbed strain energy approach posed serious challenges in estimating the effective deformation volume and yielded the largest critical plate thicknesses for through-thickness penetration (failure). In contrast, the principal strain criterion yielded the lowest critical thicknesses and provided the best agreement with experimental ballistic test data with errors between 0 and 30%. This better accuracy was due to early failure definition when the very first mesh at the target back side reached the strain to fracture, which compensated for the overall model overestimation. The ductile-shear criterion yielded intermediate results between those of the two comparative approaches. In contrast to the ductile-shear criterion, the principal strain criterion requires only basic data readily available for practically all materials. Therefore, it is a viable alternative for an initial assessment of the ballistic performance and pre-screening of a large number of new candidate materials as well as for supporting the development of novel armor systems.
Equivalent-bodyforce approach on modeling elastic dislocation problem using finite element method
NASA Astrophysics Data System (ADS)
Zhang, Bei; Zhang, Huai; Shi, Yaolin
2016-04-01
Dislocation theory is well applied to calculate coseismic and postseismic effects. A key signature of the theory is that the solution of displacement is discontinuous. Various numerical methods can handle such discontinuous problems using a mesh which includes the discontinuous plane as boundary between cells. However, generating such a mesh could be challenging and time consuming. We introduce an equivalent-bodyforce approach to handle discontinuities appearing in elastic dislocation theory. This approach gets rid of meshing the fault plane explicitly and simplifies the FEM modeling process. Based on Burridge and Knopoff's work, we deduced a close-formed formula representing equivalent-bodyforce in FEM framework. Then compared our numerical results with Okada's analytical solution in a test case in order to check the correctness of our formula and codes. At last, the 2011 Mw9.0 Tohoku-Oki earthquake was studied. We compared our numerical results with GPS observations to check the correctness of our formula and codes again, and discussed the co-seismic effects in North China of this earthquake. In the test case, our numerical results differ from Okada's analytical solution less than 3% in most computing regions. In modelling co-seismic effects of the 2011 Mw9.0 Tohoku-Oki earthquake, our numerical results of displacement field agree well with GPS observations in both direction and magnitude. The co-seismic stress changes in North China are in east-west tension with a magnitude about 1kPa. The north-south compression is one order of magnitude lower. The coulomb failure stress changes on active faults in North China are negative which indicates more stable, except at the north end of the Tanlu fault zone where the coulomb failure stress change is about 100Pa. Equivalent-bodyforce approach is applicable and accurate in FEM modeling. The 2011 Mw9.0 Tohoku-Oki earthquake makes faults in North China more stable except the north end of the Tanlu fault zone.
NASA Astrophysics Data System (ADS)
Ricoeur, Andreas; Lange, Stephan; Avakian, Artjom
2015-04-01
Magnetoelectric (ME) coupling is an inherent property of only a few crystals exhibiting very low coupling coefficients at low temperatures. On the other hand, these materials are desirable due to many promising applications, e.g. as efficient data storage devices or medical or geophysical sensors. Efficient coupling of magnetic and electric fields in materials can only be achieved in composite structures. Here, ferromagnetic (FM) and ferroelectric (FE) phases are combined e.g. including FM particles in a FE matrix or embedding fibers of the one phase into a matrix of the other. The ME coupling is then accomplished indirectly via strain fields exploiting magnetostrictive and piezoelectric effects. This requires a poling of the composite, where the structure is exposed to both large magnetic and electric fields. The efficiency of ME coupling will strongly depend on the poling process. Besides the alignment of local polarization and magnetization, it is going along with cracking, also being decisive for the coupling properties. Nonlinear ferroelectric and ferromagnetic constitutive equations have been developed and implemented within the framework of a multifield, two-scale FE approach. The models are microphysically motivated, accounting for domain and Bloch wall motions. A second, so called condensed approach is presented which doesn't require the implementation of a spatial discretisation scheme, however still considering grain interactions and residual stresses. A micromechanically motivated continuum damage model is established to simulate degradation processes. The goal of the simulation tools is to predict the different constitutive behaviors, ME coupling properties and lifetime of smart magnetoelectric devices.
NASA Astrophysics Data System (ADS)
Uma, B.; Swaminathan, T. N.; Ayyaswamy, P. S.; Eckmann, D. M.; Radhakrishnan, R.
2011-09-01
A direct numerical simulation (DNS) procedure is employed to study the thermal motion of a nanoparticle in an incompressible Newtonian stationary fluid medium with the generalized Langevin approach. We consider both the Markovian (white noise) and non-Markovian (Ornstein-Uhlenbeck noise and Mittag-Leffler noise) processes. Initial locations of the particle are at various distances from the bounding wall to delineate wall effects. At thermal equilibrium, the numerical results are validated by comparing the calculated translational and rotational temperatures of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation functions and mean square displacements with analytical results. Numerical predictions of wall interactions with the particle in terms of mean square displacements are compared with analytical results. In the non-Markovian Langevin approach, an appropriate choice of colored noise is required to satisfy the power-law decay in the velocity autocorrelation function at long times. The results obtained by using non-Markovian Mittag-Leffler noise simultaneously satisfy the equipartition theorem and the long-time behavior of the hydrodynamic correlations for a range of memory correlation times. The Ornstein-Uhlenbeck process does not provide the appropriate hydrodynamic correlations. Comparing our DNS results to the solution of an one-dimensional generalized Langevin equation, it is observed that where the thermostat adheres to the equipartition theorem, the characteristic memory time in the noise is consistent with the inherent time scale of the memory kernel. The performance of the thermostat with respect to equilibrium and dynamic properties for various noise schemes is discussed.
Su, Yukun; Kluess, Daniel; Mittelmeier, Wolfram; van Rienen, Ursula; Bader, Rainer
2016-09-01
The dielectric properties of human bone are one of the most essential inputs required by electromagnetic stimulation for improved bone regeneration. Measuring the electric properties of bone is a difficult task because of the complexity of the bone structure. Therefore, an automatic approach is presented to calibrate the electric properties of bone. The numerical method consists of three steps: generating input from experimental data, performing the numerical simulation, and calibrating the bone dielectric properties. As an example, the dielectric properties at 20 Hz of a rabbit distal femur were calibrated. The calibration process was considered as an optimization process with the aim of finding the optimum dielectric bone properties that match most of the numerically calculated simulation and experimentally measured data sets. The optimization was carried out automatically by the optimization software tool iSIGHT in combination with the finite-element solver COMSOL Multiphysics. As a result, the optimum conductivity and relative permittivity of the rabbit distal femur at 20 Hz were found to be 0.09615 S/m and 19522 for cortical bone and 0.14913 S/m and 1561507 for cancellous bone, respectively. The proposed method is a potential tool for the identification of realistic dielectric properties of the entire bone volume. The presented approach combining iSIGHT with COMSOL is applicable to, amongst others, designing implantable electro-stimulative devices or the optimization of electrical stimulation parameters for improved bone regeneration. PMID:26777343
Nonlinear, finite deformation, finite element analysis
NASA Astrophysics Data System (ADS)
Nguyen, Nhung; Waas, Anthony M.
2016-06-01
The roles of the consistent Jacobian matrix and the material tangent moduli, which are used in nonlinear incremental finite deformation mechanics problems solved using the finite element method, are emphasized in this paper, and demonstrated using the commercial software ABAQUS standard. In doing so, the necessity for correctly employing user material subroutines to solve nonlinear problems involving large deformation and/or large rotation is clarified. Starting with the rate form of the principle of virtual work, the derivations of the material tangent moduli, the consistent Jacobian matrix, the stress/strain measures, and the objective stress rates are discussed and clarified. The difference between the consistent Jacobian matrix (which, in the ABAQUS UMAT user material subroutine is referred to as DDSDDE) and the material tangent moduli ( C e ) needed for the stress update is pointed out and emphasized in this paper. While the former is derived based on the Jaumann rate of the Kirchhoff stress, the latter is derived using the Jaumann rate of the Cauchy stress. Understanding the difference between these two objective stress rates is crucial for correctly implementing a constitutive model, especially a rate form constitutive relation, and for ensuring fast convergence. Specifically, the implementation requires the stresses to be updated correctly. For this, the strains must be computed directly from the deformation gradient and corresponding strain measure (for a total form model). Alternatively, the material tangent moduli derived from the corresponding Jaumann rate of the Cauchy stress of the constitutive relation (for a rate form model) should be used. Given that this requirement is satisfied, the consistent Jacobian matrix only influences the rate of convergence. Its derivation should be based on the Jaumann rate of the Kirchhoff stress to ensure fast convergence; however, the use of a different objective stress rate may also be possible. The error associated
Knecht, Sven; Luechinger, Roger; Boesiger, Peter; Stüssi, Edgar
2008-12-01
The mechanical property of articular cartilage determines to a great extent the functionality of diarthrodial joints. Consequently, the early detection of mechanical and, thus, functional changes of cartilage is crucial for preventive measures to maintain the mobility and the quality of life of individuals. An alternative to conventional mechanical testing is the inverse finite element approach, enabling non-destructive testing of the tissue. We evaluated a method for the assessment of the equilibrium material properties of the patellar cartilage based on magnetic resonance imaging during patellofemoral compression. We performed ex vivo testing of two equine patellas with healthy cartilage, one with superficial defects, and one with synthetically degenerated cartilage to simulate a pre-osteoarthritic stage. Static compression with 400 N for 2 h resulted in morphological changes comparable to physiological in vivo deformations in humans. We observed a decrease of the equilibrium Young's modulus of the degenerated cartilage by -59%, which was in the range of the results from indentation (-74%) and confined compression tests (-58%). With the reported accuracy of magnetic resonance imaging and its reproducibility, the results indicate the potential to measure differences in Young's modulus with regard to cartilage degeneration and consequently to distinguish between healthy and pre-osteoarthritic cartilage. PMID:19037871
ANSYS duplicate finite-element checker routine
NASA Technical Reports Server (NTRS)
Ortega, R.
1995-01-01
An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.
NASA Astrophysics Data System (ADS)
Meier, Christoph; Popp, Alexander; Wall, Wolfgang A.
2016-08-01
The objective of this work is the development of a novel finite element formulation describing the contact interaction of slender beams in complex 3D configurations involving arbitrary beam-to-beam orientations. It is shown in a mathematically concise manner that standard beam contact models based on a point-wise contact force fail to describe a considerable range of configurations, which are, however, likely to occur in practical applications. On the contrary, the formulation proposed here models beam-to-beam contact by means of distributed line forces, a procedure that is shown to be applicable for arbitrary geometrical configurations. The proposed formulation is based on a Gauss-point-to-segment type contact discretization and a penalty regularization of the contact constraint. By means of detailed theoretical and numerical investigations, it is shown that this approach is more suitable for beam contact than possible alternatives based on mortar type contact discretizations or constraint enforcement by means of Lagrange multipliers. The proposed formulation is enhanced by a consistently linearized integration interval segmentation avoiding numerical integration across strong discontinuities. In combination with a smoothed contact force law and the employed C1-continuous beam elements, this procedure drastically reduces the numerical integration error, an essential prerequisite for optimal spatial convergence rates. The resulting line-to-line contact algorithm is supplemented by contact contributions of the beam endpoints, which represent boundary minima of the underlying minimal distance problem. Finally, a series of numerical test cases is analyzed in order to investigate the accuracy and consistency of the proposed formulation regarding integration error, spatial convergence behavior and resulting contact force distributions.
Infinite Possibilities for the Finite Element.
ERIC Educational Resources Information Center
Finlayson, Bruce A.
1981-01-01
Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)
NASA Astrophysics Data System (ADS)
Beilina, Larisa
2016-08-01
We present domain decomposition finite element/finite difference method for the solution of hyperbolic equation. The domain decomposition is performed such that finite elements and finite differences are used in different subdomains of the computational domain: finite difference method is used on the structured part of the computational domain and finite elements on the unstructured part of the domain. Explicit discretizations for both methods are constructed such that the finite element and the finite difference schemes coincide on the common structured overlapping layer between computational subdomains. Then the resulting approach can be considered as a pure finite element scheme which avoids instabilities at the interfaces. We derive an energy estimate for the underlying hyperbolic equation with absorbing boundary conditions and illustrate efficiency of the domain decomposition method on the reconstruction of the conductivity function in three dimensions.
Peridynamic Multiscale Finite Element Methods
Costa, Timothy; Bond, Stephen D.; Littlewood, David John; Moore, Stan Gerald
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
On Hybrid and mixed finite element methods
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1981-01-01
Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.
Du, Chengfei; Mo, Zhongjun; Tian, Shan; Wang, Lizhen; Fan, Jie; Liu, Songyang; Fan, Yubo
2014-11-01
The aim of this study is to investigate the dynamic response of a multi-segment model of the thoracolumbar spine and determine how the sitting posture affects the response under the impact of ejection. A nonlinear finite element model of the thoracolumbar-pelvis complex (T9-S1) was developed and validated. A multi-body dynamic model of a pilot was also constructed so an ejection seat restraint system could be incorporated into the finite element model. The distribution of trunk mass on each vertebra was also considered in the model. Dynamics analysis showed that ejection impact induced obvious axial compression and anterior flexion of the spine, which may contribute to spinal injuries. Compared with a normal posture, the relaxed posture led to an increase in stress on the cortical wall, endplate, and intradiscal pressure of 43%, 10%, 13%, respectively, and accordingly increased the risk of inducing spinal injuries. PMID:24827805
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Dunn, Patrick
1995-01-01
A comparison is presented between the predictions of the finite-element analysis and a recently developed higher-order theory for functionally graded materials subjected to a thorough-thickness temperature gradient. In contrast to existing micromechanical theories that utilize classical (i.e., uncoupled) homogenization schemes to calculate micro-level and macro-level stress and displacement fields in materials with uniform or nonuniform fiber spacing (i.e., functionally graded materials), the new theory explicitly couples the microstructural details with the macrostructure of the composite. Previous thermo-elastic analysis has demonstrated that such coupling is necessary when: the temperature gradient is large with respect to the dimension of the reinforcement; the characteristic dimension of the reinforcement is large relative to the global dimensions of the composite and the number of reinforcing fibers or inclusions is small. In these circumstances, the standard micromechanical analyses based on the concept of the representative volume element used to determine average composite properties produce questionable results. The comparison between the predictions of the finite-element method and the higher-order theory presented herein establish the theory's accuracy in predicting thermal and stress fields within composites with a finite number of fibers in the thickness direction subjected to a thorough-thickness thermal gradient.
NASA Astrophysics Data System (ADS)
Pietropaoli, Elisa; Riccio, Aniello
2011-04-01
This paper addresses the prediction of intralaminar and interlaminar damage onset and evolution in composite structures through the use of a finite element based procedure. This procedure joins methodologies whose credibility has been already assessed in literature such as the Virtual Crack Closure Technique (for delamination) and the ply discount approach (for matrix/fiber failures). In order to establish the reliability of the procedure developed, comparisons with literature experimental results on a stiffened panel with an embedded delamination are illustrated. The methodology proposed, implemented in ANSYS as post-processing routines, is combined with a finite element model of the panel, built by adopting both shell and solid elements within the frame of an embedded global/local approach to connect differently modelled substructures.
Aagaard, B.T.; Knepley, M.G.; Williams, C.A.
2013-01-01
We employ a domain decomposition approach with Lagrange multipliers to implement fault slip in a finite-element code, PyLith, for use in both quasi-static and dynamic crustal deformation applications. This integrated approach to solving both quasi-static and dynamic simulations leverages common finite-element data structures and implementations of various boundary conditions, discretization schemes, and bulk and fault rheologies. We have developed a custom preconditioner for the Lagrange multiplier portion of the system of equations that provides excellent scalability with problem size compared to conventional additive Schwarz methods. We demonstrate application of this approach using benchmarks for both quasi-static viscoelastic deformation and dynamic spontaneous rupture propagation that verify the numerical implementation in PyLith.
Armas-Pérez, Julio C; Hernández-Ortiz, Juan P; de Pablo, Juan J
2015-12-28
A theoretically informed Monte Carlo method is proposed for Monte Carlo simulation of liquid crystals on the basis of theoretical representations in terms of coarse-grained free energy functionals. The free energy functional is described in the framework of the Landau-de Gennes formalism. A piecewise finite element discretization is used to approximate the alignment field, thereby providing an excellent geometrical representation of curved interfaces and accurate integration of the free energy. The method is suitable for situations where the free energy functional includes highly non-linear terms, including chirality or high-order deformation modes. The validity of the method is established by comparing the results of Monte Carlo simulations to traditional Ginzburg-Landau minimizations of the free energy using a finite difference scheme, and its usefulness is demonstrated in the context of simulations of chiral liquid crystal droplets with and without nanoparticle inclusions. PMID:26723642
NASA Astrophysics Data System (ADS)
Armas-Pérez, Julio C.; Hernández-Ortiz, Juan P.; de Pablo, Juan J.
2015-12-01
A theoretically informed Monte Carlo method is proposed for Monte Carlo simulation of liquid crystals on the basis of theoretical representations in terms of coarse-grained free energy functionals. The free energy functional is described in the framework of the Landau-de Gennes formalism. A piecewise finite element discretization is used to approximate the alignment field, thereby providing an excellent geometrical representation of curved interfaces and accurate integration of the free energy. The method is suitable for situations where the free energy functional includes highly non-linear terms, including chirality or high-order deformation modes. The validity of the method is established by comparing the results of Monte Carlo simulations to traditional Ginzburg-Landau minimizations of the free energy using a finite difference scheme, and its usefulness is demonstrated in the context of simulations of chiral liquid crystal droplets with and without nanoparticle inclusions.
NASA Astrophysics Data System (ADS)
Tanaka, Yoshiyuki; Klemann, Volker; Martinec, Zdenek
2010-05-01
A physical model of a postglacial rebound has an important role to derive information about the mantle rheology and viscosity from observed data. In previous studies, the influence of material compressibility has been often neglected for the mantle rheology. This is due to the fact that for present-day time changes the influence of the compressibility mainly appears in the flexural rigidity of the elastic lithosphere, whereas the viscous mantle is assumed to relax to an incompressible reference state. Another reason is that a compressible fluid is much more difficult to handle in a numerical model, where in addition to the usual relaxation modes also infinite sets of compressible modes appear due to the improper chosen reference state. In this study, a spectral finite-element approach is presented to investigate the effect of compressibility. This approach is a useful method when interpreting displacement rates and gravity fields in a global scale, because it allows us to consider strong lateral heterogeneities in viscosity and the self-gravitation effect of a spherical model is studied in a natural manner, which has been already applied to an incompressible case. A mathematical formulation of how to include the effect of compressibility is shown in a transparent way. Computational results are validated with results obtained by an independent method for a 1-D viscosity model. The load Love numbers calculated by both the methods agree with each other within 2%, which indicates that the presented method is set up correctly and valid for a compressible model. In order to assess the influence of material compressibility on GIA, the present time rates are modeled induced by Peltier's (2004) ICE5G/VM2 earth-model/glaciation-history combination for a compressible and an incompressible structure, respectively, with the sea-level equation of Hagedoorn et al. (2006). The result shows that the influence on the vertical displacement and the geoid is almost negligible. In
Finite element methods in numerical relativity.
NASA Astrophysics Data System (ADS)
Mann, P. J.
The finite element method is very successful in Newtonian fluid simulations, and can be extended to relativitstic fluid flows. This paper describes the general method, and then outlines some preliminary results for spherically symmetric geometries. The mixed finite element - finite difference scheme is introduced, and used for the description of spherically symmetric collapse. Baker's (Newtonian) shock modelling method and Miller's moving finite element method are also mentioned. Collapse in double-null coordinates requires non-constant time slicing, so the full finite element method in space and time is described.
Diagonal multisoliton matrix elements in finite volume
NASA Astrophysics Data System (ADS)
Pálmai, T.; Takács, G.
2013-02-01
We consider diagonal matrix elements of local operators between multisoliton states in finite volume in the sine-Gordon model and formulate a conjecture regarding their finite size dependence which is valid up to corrections exponential in the volume. This conjecture extends the results of Pozsgay and Takács which were only valid for diagonal scattering. In order to test the conjecture, we implement a numerical renormalization group improved truncated conformal space approach. The numerical comparisons confirm the conjecture, which is expected to be valid for general integrable field theories. The conjectured formula can be used to evaluate finite temperature one-point and two-point functions using recently developed methods.
NASA Astrophysics Data System (ADS)
Yang, B. J.; Shin, H.; Lee, H. K.; Kim, H.
2013-12-01
We introduce a multiscale framework based on molecular dynamic (MD) simulation, micromechanics, and finite element method (FEM). A micromechanical model, which considers influences of the interface properties, nanoparticle (NP) size, and microcracks, is developed. Then, we perform MD simulations to characterize the mechanical properties of the nanocomposite system (silica/nylon 6) with varying volume fraction and size of NPs. By comparing the MD with micromechanics results, intrinsic physical properties at interfacial region are derived. Finally, we implement the developed model in the FEM code with the derived interfacial parameters, and predict the mechanical behavior of the nanocomposite at the macroscopic scale.
Finite element and finite difference methods in electromagnetic scattering
NASA Astrophysics Data System (ADS)
Morgan, Michael A.
Finite-difference and finite-element methods for the computational analysis of EM scattering phenomena are examined in chapters contributed by leading experts. Topics addressed include an FEM for composite scatterers, coupled finite- and boundary-element methods for EM scattering, absorbing boundary conditions for the direct solution PDEs arising in EM scattering problems, application of the control-region approximation to two-dimensional EM scattering, coupled potentials for EM fields in inhomogeneous media, the method of conforming boundary elements for transient electromagnetics, and the finite-difference time-domain method for numerical modeling of EM wave interactions with arbitrary structures. Extensive diagrams and graphs of typical results are provided.
Finite element analysis in a minicomputer/mainframe environment
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Murphy, R. C.
1978-01-01
Design considerations were evaluated for general purpose finite element systems to maximize performance when installed on distributed computer hardware/software systems. It is shown how the features of current minicomputers complement those of a modular implementation of the finite element method for increasing the control, speed, and visibility (interactive graphics) in solving structural problems at reduced cost. The approach used is to implement a finite element system in a distributed computer environment to solve structural problems and to explore alternatives in distributing finite element computations.
Probabilistic finite element analysis of a craniofacial finite element model.
Berthaume, Michael A; Dechow, Paul C; Iriarte-Diaz, Jose; Ross, Callum F; Strait, David S; Wang, Qian; Grosse, Ian R
2012-05-01
We employed a probabilistic finite element analysis (FEA) method to determine how variability in material property values affects stress and strain values in a finite model of a Macaca fascicularis cranium. The material behavior of cortical bone varied in three ways: isotropic homogeneous, isotropic non-homogeneous, and orthotropic non-homogeneous. The material behavior of the trabecular bone and teeth was always treated as isotropic and homogeneous. All material property values for the cranium were randomized with a Gaussian distribution with either coefficients of variation (CVs) of 0.2 or with CVs calculated from empirical data. Latin hypercube sampling was used to determine the values of the material properties used in the finite element models. In total, four hundred and twenty six separate deterministic FE simulations were executed. We tested four hypotheses in this study: (1) uncertainty in material property values will have an insignificant effect on high stresses and a significant effect on high strains for homogeneous isotropic models; (2) the effect of variability in material property values on the stress state will increase as non-homogeneity and anisotropy increase; (3) variation in the in vivo shear strain values reported by Strait et al. (2005) and Ross et al. (2011) is not only due to variations in muscle forces and cranial morphology, but also due to variation in material property values; (4) the assumption of a uniform coefficient of variation for the material property values will result in the same trend in how moderate-to-high stresses and moderate-to-high strains vary with respect to the degree of non-homogeneity and anisotropy as the trend found when the coefficients of variation for material property values are calculated from empirical data. Our results supported the first three hypotheses and falsified the fourth. When material properties were varied with a constant CV, as non-homogeneity and anisotropy increased the level of variability in
Domain decomposition methods for mortar finite elements
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
NASA Technical Reports Server (NTRS)
Melis, Matthew E.
2003-01-01
Explicit finite element techniques employing an Arbitrary Lagrangian-Eulerian (ALE) methodology, within the transient dynamic code LS-DYNA, are used to predict splashdown loads on a proposed replacement/upgrade of the hydrazine tanks on the thrust vector control system housed within the aft skirt of a Space Shuttle Solid Rocket Booster. Two preliminary studies are performed prior to the full aft skirt analysis: An analysis of the proposed tank impacting water without supporting aft skirt structure, and an analysis of space capsule water drop tests conducted at NASA's Langley Research Center. Results from the preliminary studies provide confidence that useful predictions can be made by applying the ALE methodology to a detailed analysis of a 26-degree section of the skirt with proposed tank attached. Results for all three studies are presented and compared to limited experimental data. The challenges of using the LS-DYNA ALE capability for this type of analysis are discussed.
NASA Astrophysics Data System (ADS)
Melis, Matthew E.
2003-01-01
Explicit finite element techniques employing an Arbitrary Lagrangian-Eulerian (ALE) methodology, within the transient dynamic code LS-DYNA, are used to predict splashdown loads on a proposed replacement/upgrade of the hydrazine tanks on the thrust vector control system housed within the aft skirt of a Space Shuttle Solid Rocket Booster. Two preliminary studies are performed prior to the full aft skirt analysis: An analysis of the proposed tank impacting water without supporting aft skirt structure, and an analysis of space capsule water drop tests conducted at NASA's Langley Research Center. Results from the preliminary studies provide confidence that useful predictions can be made by applying the ALE methodology to a detailed analysis of a 26-degree section of the skirt with proposed tank attached. Results for all three studies are presented and compared to limited experimental data. The challenges of using the LS-DYNA ALE capability for this type of analysis are discussed.
Finite element coiled cochlea model
NASA Astrophysics Data System (ADS)
Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad
2015-12-01
Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.
Shape optimization including finite element grid adaptation
NASA Technical Reports Server (NTRS)
Kikuchi, N.; Taylor, J. E.
1984-01-01
The prediction of optimal shape design for structures depends on having a sufficient level of precision in the computation of structural response. These requirements become critical in situations where the region to be designed includes stress concentrations or unilateral contact surfaces, for example. In the approach to shape optimization discussed here, a means to obtain grid adaptation is incorporated into the finite element procedures. This facility makes it possible to maintain a level of quality in the computational estimate of response that is surely adequate for the shape design problem.
Element-topology-independent preconditioners for parallel finite element computations
NASA Technical Reports Server (NTRS)
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Graphics for Finite-Element Analysis
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Sawyer, L. M.
1982-01-01
ELPLOT program is a passive computer graphics system that could be utilized for display of models and responses of general finite-element analyses. Program includes: Wide range of view-orientation selections, number of alternative data-input formats, extensive family of finite-element types, and capabilities for both static and dynamic-response displays.
Finite element analysis of helicopter structures
NASA Technical Reports Server (NTRS)
Rich, M. J.
1978-01-01
Application of the finite element analysis is now being expanded to three dimensional analysis of mechanical components. Examples are presented for airframe, mechanical components, and composite structure calculations. Data are detailed on the increase of model size, computer usage, and the effect on reducing stress analysis costs. Future applications for use of finite element analysis for helicopter structures are projected.
Finite-Element Composite-Analysis Program
NASA Technical Reports Server (NTRS)
Bowles, David E.
1990-01-01
Finite Element Composite Analysis Program, FECAP, special-purpose finite-element program for analyzing behavior of composite material with microcomputer. Procedure leads to set of linear simultaneous equations relating unknown nodal displacement to applied loads. Written in HP BASIC 3.0.
3-D Finite Element Code Postprocessor
Energy Science and Technology Software Center (ESTSC)
1996-07-15
TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.
Soons, Joris; Herrel, Anthony; Genbrugge, Annelies; Adriaens, Dominique; Aerts, Peter; Dirckx, Joris
2012-01-01
Bird beaks are layered structures, which contain a bony core and an outer keratin layer. The elastic moduli of this bone and keratin were obtained in a previous study. However, the mechanical role and interaction of both materials in stress dissipation during seed crushing remain unknown. In this paper, a multi-layered finite-element (FE) model of the Java finch's upper beak (Padda oryzivora) is established. Validation measurements are conducted using in vivo bite forces and by comparing the displacements with those obtained by digital speckle pattern interferometry. Next, the Young modulus of bone and keratin in this FE model was optimized in order to obtain the smallest peak von Mises stress in the upper beak. To do so, we created a surrogate model, which also allows us to study the impact of changing material properties of both tissues on the peak stresses. The theoretically best values for both moduli in the Java finch are retrieved and correspond well with previous experimentally obtained values, suggesting that material properties are tuned to the mechanical demands imposed during seed crushing. PMID:22337628
NASA Astrophysics Data System (ADS)
Becker, P.; Idelsohn, S. R.; Oñate, E.
2015-06-01
This paper describes a strategy to solve multi-fluid and fluid-structure interaction (FSI) problems using Lagrangian particles combined with a fixed finite element (FE) mesh. Our approach is an extension of the fluid-only PFEM-2 (Idelsohn et al., Eng Comput 30(2):2-2, 2013; Idelsohn et al., J Numer Methods Fluids, 2014) which uses explicit integration over the streamlines to improve accuracy. As a result, the convective term does not appear in the set of equations solved on the fixed mesh. Enrichments in the pressure field are used to improve the description of the interface between phases.
Will Finite Elements Replace Structural Mechanics?
NASA Astrophysics Data System (ADS)
Ojalvo, I. U.
1984-01-01
This paper presents a personal view regarding the need for a continued interest and activity in structural methods in general, while viewing finite elements and the computer as simply two specific tools for assisting in this endeavor. An attempt is made to provide some insight as to why finite element methods seem to have "won the war," and to give examples of their more (and less) intelligent use. Items addressed include a highlight of unnecessary limitations of many existing standard finite element codes and where it is felt that further development work is needed.
The finite element method in thermomechanics
Hsu, T.
1986-01-01
Thermal stress analysis is critical in the design and operation of energy-efficient power plant components and engines as well as in nuclear and aerospace systems. The Finite Element Method in Thermomechanics attempts to embrace a wide range of topics in the nonlinear thermomechanical analysis. The book covers the basic principles of the finite element method: the formulations for the base thermomechanical analysis, including thermoelastic-plastic-creep stress analysis; the use of Fourier series for nonaxisymmetric loadings, and stress waves in solids in thermal environments; and the base finite element code called TEPSAC.
Assignment Of Finite Elements To Parallel Processors
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.
1990-01-01
Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.
Wai-Chi Wong, Duo; Wang, Yan; Zhang, Ming; Kam-Lun Leung, Aaron
2015-09-18
First metatarsocuneiform arthrodesis is one of the surgical interventions to correct hallux valgus, especially those with hypermobile first ray. There is lacking of biomechanical investigations to assess this operation. The objective of this study was to explore the functional restoration and the risk of non-union after the surgery via finite element analysis. A three-dimensional foot model was constructed from a female aged 28 via magnetic resonance imaging. Thirty bones and encapsulated bulk tissue were modeled. Walking stance was simulated by the gait analysis data of the same participant. Parts of the first metatarsal and cuneiform were resected and the bone graft was assigned with the same stiffness as adjacent bones to resemble the surgery of first metatarsocuneiform arthrodesis. The third principal stress of the first metatarsal at midstance (25% stance) and push off (60% stance) was increased by 76% and 139% respectively after the operation, while that of the second metatarsal was decreased by 14% and 66%. The operation reduced the medial deviation of the first metatarsal head by about 3.5mm during initial push off (60% stance). Besides, the bone graft could experience tensile stress inferiorly (26.51MPa). In conclusion, the increase of stress on the first metatarsal and the reduced medial excursion of the first metatarsal head after the simulated operation reflected that metatarsocuneiform arthrodesis could restore the load-bearing function of the first ray. However, inter-fragmentary compression could not be guaranteed. The appropriate course of hardware and non-weight-bearing protocol should be noted and further investigated. PMID:26243661
Teklemariam, A.; Hodson-Tole, E. F.; Reeves, N. D.; Costen, N. P.; Cooper, G.
2016-01-01
Introduction Surface electromyography (sEMG) is the measurement of the electrical activity of the skeletal muscle tissue detected at the skin’s surface. Typically, a bipolar electrode configuration is used. Most muscles have pennate and/or curved fibres, meaning it is not always feasible to align the bipolar electrodes along the fibres direction. Hence, there is a need to explore how different electrode designs can affect sEMG measurements. Method A three layer finite element (skin, fat, muscle) muscle model was used to explore different electrode designs. The implemented model used as source signal an experimentally recorded intramuscular EMG taken from the biceps brachii muscle of one healthy male. A wavelet based intensity analysis of the simulated sEMG signal was performed to analyze the power of the signal in the time and frequency domain. Results The model showed muscle tissue causing a bandwidth reduction (to 20-92- Hz). The inter-electrode distance (IED) and the electrode orientation relative to the fibres affected the total power but not the frequency filtering response. The effect of significant misalignment between the electrodes and the fibres (60°- 90°) could be reduced by increasing the IED (25–30 mm), which attenuates signal cancellation. When modelling pennated fibres, the muscle tissue started to act as a low pass filter. The effect of different IED seems to be enhanced in the pennated model, while the filtering response is changed considerably only when the electrodes are close to the signal termination within the model. For pennation angle greater than 20°, more than 50% of the source signal was attenuated, which can be compensated by increasing the IED to 25 mm. Conclusion Differences in tissue filtering properties, shown in our model, indicates that different electrode designs should be considered for muscle with different geometric properties (i.e. pennated muscles). PMID:26886908
Quality assessment and control of finite element solutions
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Babuska, Ivo
1987-01-01
Status and some recent developments in the techniques for assessing the reliability of finite element solutions are summarized. Discussion focuses on a number of aspects including: the major types of errors in the finite element solutions; techniques used for a posteriori error estimation and the reliability of these estimators; the feedback and adaptive strategies for improving the finite element solutions; and postprocessing approaches used for improving the accuracy of stresses and other important engineering data. Also, future directions for research needed to make error estimation and adaptive movement practical are identified.
Adaptive Finite Element Methods in Geodynamics
NASA Astrophysics Data System (ADS)
Davies, R.; Davies, H.; Hassan, O.; Morgan, K.; Nithiarasu, P.
2006-12-01
Adaptive finite element methods are presented for improving the quality of solutions to two-dimensional (2D) and three-dimensional (3D) convection dominated problems in geodynamics. The methods demonstrate the application of existing technology in the engineering community to problems within the `solid' Earth sciences. Two-Dimensional `Adaptive Remeshing': The `remeshing' strategy introduced in 2D adapts the mesh automatically around regions of high solution gradient, yielding enhanced resolution of the associated flow features. The approach requires the coupling of an automatic mesh generator, a finite element flow solver and an error estimator. In this study, the procedure is implemented in conjunction with the well-known geodynamical finite element code `ConMan'. An unstructured quadrilateral mesh generator is utilised, with mesh adaptation accomplished through regeneration. This regeneration employs information provided by an interpolation based local error estimator, obtained from the computed solution on an existing mesh. The technique is validated by solving thermal and thermo-chemical problems with known benchmark solutions. In a purely thermal context, results illustrate that the method is highly successful, improving solution accuracy whilst increasing computational efficiency. For thermo-chemical simulations the same conclusions can be drawn. However, results also demonstrate that the grid based methods employed for simulating the compositional field are not competitive with the other methods (tracer particle and marker chain) currently employed in this field, even at the higher spatial resolutions allowed by the adaptive grid strategies. Three-Dimensional Adaptive Multigrid: We extend the ideas from our 2D work into the 3D realm in the context of a pre-existing 3D-spherical mantle dynamics code, `TERRA'. In its original format, `TERRA' is computationally highly efficient since it employs a multigrid solver that depends upon a grid utilizing a clever
Finite element analysis of multilayer coextrusion.
Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A.; Mrozek, Randy A.; Lenhart, Joseph Ludlow; Rao, Rekha Ranjana; Collins, Robert; Mondy, Lisa Ann
2011-09-01
Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.
Visualization of higher order finite elements.
Thompson, David C.; Pebay, Philippe Pierre; Crawford, Richard H.; Khardekar, Rahul Vinay
2004-04-01
Finite element meshes are used to approximate the solution to some differential equation when no exact solution exists. A finite element mesh consists of many small (but finite, not infinitesimal or differential) regions of space that partition the problem domain, {Omega}. Each region, or element, or cell has an associated polynomial map, {Phi}, that converts the coordinates of any point, x = ( x y z ), in the element into another value, f(x), that is an approximate solution to the differential equation, as in Figure 1(a). This representation works quite well for axis-aligned regions of space, but when there are curved boundaries on the problem domain, {Omega}, it becomes algorithmically much more difficult to define {Phi} in terms of x. Rather, we define an archetypal element in a new coordinate space, r = ( r s t ), which has a simple, axis-aligned boundary (see Figure 1(b)) and place two maps onto our archetypal element:
A survey of mixed finite element methods
NASA Technical Reports Server (NTRS)
Brezzi, F.
1987-01-01
This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.
Finite element modeling of the human pelvis
Carlson, B.
1995-11-01
A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.
Integration of geometric modeling and advanced finite element preprocessing
NASA Technical Reports Server (NTRS)
Shephard, Mark S.; Finnigan, Peter M.
1987-01-01
The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.
Finite element analysis of flexible, rotating blades
NASA Technical Reports Server (NTRS)
Mcgee, Oliver G.
1987-01-01
A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.
NASA Technical Reports Server (NTRS)
1976-01-01
The development of two new shell finite elements for applications to large deflection problems is considered. The elements in question are doubly curved and of triangular and quadrilateral planform. They are restricted to small strains of elastic materials, and can accommodate large rotations. The elements described, which are based on relatively simple linear elements, make use of a new displacement function approach specifically designed for strongly nonlinear problems. The displacement function development for nonlinear applications is based on certain beam element formulations, and the strain-displacement equations are of a shallow shell type. Additional terms were included in these equations in an attempt to avoid the large errors characteristic of shallow shell elements in certain types of problems. An incremental nonlinear solution procedure specifically adopted to the element formulation was developed. The solution procedure is of combined incremental and total Lagrangian type, and uses a new updating scheme. A computer program was written to evaluate the developed formulations. This program can accommodate small element groups in arbitrary arrangements. Two simple programs were successfully solved. The results indicate that this new type of element has definite promise and should be a fruitful area for further research.
Finite Element Interface to Linear Solvers
Williams, Alan
2005-03-18
Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on the problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.
Fuzzy finite element analysis of smart structures
NASA Astrophysics Data System (ADS)
Akpan, Unyime O.; Koko, Tamunoiyala S.; Orisamolu, Irewole R.; Gallant, B. Keith
2000-06-01
A fuzzy finite element based approach is developed for modelling smart structures with vague or imprecise uncertainties. Fuzzy sets are used to represent the uncertainties present in the piezoelectric, mechanical, thermal, and physical properties of the smart structure. In order to facilitate efficient computation, a sensitivity analysis procedure is used to streamline the number of input fuzzy variables, and the vertex fuzzy analysis technique is then used to compute the possibility distributions of the responses of the smart structural system. The methodology has been developed within the framework of the SMARTCOM computational tool for the design/analysis of smart composite structures. The methodology developed is found to be accurate and computationally efficient for solution of practical problems.
Abyaneh, M H; Wildman, R D; Ashcroft, I A; Ruiz, P D
2013-11-01
An analysis of the material properties of porcine corneas has been performed. A simple stress relaxation test was performed to determine the viscoelastic properties and a rheological model was built based on the Generalized Maxwell (GM) approach. A validation experiment using nano-indentation showed that an isotropic GM model was insufficient for describing the corneal material behaviour when exposed to a complex stress state. A new technique was proposed for determining the properties, using a combination of nano-indentation experiment, an isotropic and orthotropic GM model and inverse finite element method. The good agreement using this method suggests that this is a promising technique for measuring material properties in vivo and further work should focus on the reliability of the approach in practice. PMID:23816808
Finite element analysis enhancement of cryogenic testing
NASA Astrophysics Data System (ADS)
Thiem, Clare D.; Norton, Douglas A.
1991-12-01
Finite element analysis (FEA) of large space optics enhances cryogenic testing by providing an analytical method by which to ensure that a test article survives proposed testing. The analyses presented in this paper were concerned with determining the reliability of a half meter mirror in an environment where the exact environmental profile was unknown. FEA allows the interaction between the test object and the environment to be simulated to detect potential problems prior to actual testing. These analyses examined worse case scenerios related to cooling the mirror, its structural integrity for the proposed test environment, and deformation of the reflective surface. The FEA was conducted in-house on the System's Reliability Division's VAX 11-750 and Decstation 3100 using Engineering Mechanics Research Corporation's numerically integrated elements for systems analysis finite element software. The results of the analyses showed that it would take at least 48 hours to cool the mirror to its desired testing temperature. It was also determined that the proposed mirror mount would not cause critical concentrated thermal stresses that would fracture the mirror. FEA and actual measurements of the front reflective face were compared and good agreement between computer simulation and physical tests were seen. Space deployment of large optics requires lightweight mirrors which can perform under the harsh conditions of space. The physical characteristics of these mirrors must be well understood in order that their deployment and operation are successful. Evaluating design approaches by analytical simulation, like FEA, verifies the reliability and structural integrity of a space optic during design prior to prototyping and testing. Eliminating an optic's poor design early in its life saves money, materials, and human resources while ensuring performance.
Azimuthally-dependent Finite Element Solution to the Cylindrical Resonator
NASA Technical Reports Server (NTRS)
Osegueda, R.; Pierluissi, J.; Gil, L.; Revilla, A.; Villalva, G.; Dick, G.; Wang, D. SantiagoR.
1994-01-01
The cylindrical cavity resonator loaded with an anisotropic dielectric is analyzed as a two-dimensional problem using a finite element approach that assumes sinusoidal dependence in azimuth. This methodology allows the first finite element treatment of the technically important case of a resonator containing a sapphire element with a cylindrically aligned c axis. Second order trial functions together with quadrilateral elements are adopted in the calculations. The method was validated through comparisons with the analytical solutions for the hollow metal cavity and a coaxial cavity, as well as through measurements on a shielded sapphire resonator.
Quadrilateral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Benzley, Steven E
2012-10-16
Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.
Finite-element models of continental extension
NASA Technical Reports Server (NTRS)
Lynch, H. David; Morgan, Paul
1990-01-01
Numerical models of the initial deformation of extending continental lithosphere, computed to investigate the control of preexisting thermal and mechanical heterogeneities on the style of deformation, are presented. The finite element method is used to calculate deformation with a viscoelastic-plastic model for the lithosphere. Comparisons of the results of analytic models and finite-element models using this method show that good results may be obtained by the numerical technique, even with elements containing both brittle and viscoelastic sampling points. It is shown that the gross style of initial extensional deformation is controlled by the depth and width of the initial heterogeneity which localizes deformation.
Asymmetric quadrilateral shell elements for finite strains
NASA Astrophysics Data System (ADS)
Areias, P.; Dias-da-Costa, D.; Pires, E. B.; Van Goethem, N.
2013-07-01
Very good results in infinitesimal and finite strain analysis of shells are achieved by combining either the enhanced-metric technique or the selective-reduced integration for the in-plane shear energy and an assumed natural strain technique (ANS) in a non-symmetric Petrov-Galerkin arrangement which complies with the patch-test. A recovery of the original Wilson incompatible mode element is shown for the trial functions in the in-plane components. As a beneficial side-effect, Newton-Raphson convergence behavior for non-linear problems is improved with respect to symmetric formulations. Transverse-shear and in-plane patch tests are satisfied while distorted-mesh accuracy is higher than with symmetric formulations. Classical test functions with assumed-metric components are required for compatibility reasons. Verification tests are performed with advantageous comparisons being observed in all of them. Applications to large displacement elasticity and finite strain plasticity are shown with both low sensitivity to mesh distortion and (relatively) high accuracy. A equilibrium-consistent (and consistently linearized) updated-Lagrangian algorithm is proposed and tested. Concerning the time-step dependency, it was found that the consistent updated-Lagrangian algorithm is nearly time-step independent and can replace the multiplicative plasticity approach if only moderate elastic strains are present, as is the case of most metals.
NASA Astrophysics Data System (ADS)
Baqersad, Javad
Health monitoring of rotating structures such as wind turbines and helicopter rotors is generally performed using conventional sensors that provide a limited set of data at discrete locations near or on the hub. These sensors usually provide no data on the blades or interior locations where failures may occur. Within this work, an unique expansion algorithm was extended and combined with finite element (FE) modeling and an optical measurement technique to identify the dynamic strain in rotating structures. The merit of the approach is shown by using the approach to predict the dynamic strain on a small non-rotating and rotating wind turbine. A three-bladed wind turbine having 2.3-meter long blades was placed in a semi-built-in boundary condition using a hub, a machining chuck, and a steel block. A finite element model of the three wind turbine blades assembled to the hub was created and used to extract resonant frequencies and mode shapes. The FE model was validated and updated using experimental modal tests. For the non-rotating optical test, the turbine was excited using a sinusoidal excitation, a pluck test, arbitrary impacts on three blades, and random force excitations with a mechanical shaker. The response of the structure to the excitations was measured using three-dimensional point tracking. A pair of high-speed cameras was used to measure the displacement of optical targets on the structure when the blades were vibrating. The measured displacements at discrete locations were expanded and applied to the finite element model of the structure to extract the full-field dynamic strain. The results of the work show an excellent correlation between the strain predicted using the proposed approach and the strain measured with strain-gages for all of the three loading conditions. Similar to the non-rotating case, optical measurements were also preformed on a rotating wind turbine. The point tracking technique measured both rigid body displacement and flexible
Higher-Order Finite Elements for Computing Thermal Radiation
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2004-01-01
Two variants of the finite-element method have been developed for use in computational simulations of radiative transfers of heat among diffuse gray surfaces. Both variants involve the use of higher-order finite elements, across which temperatures and radiative quantities are assumed to vary according to certain approximations. In this and other applications, higher-order finite elements are used to increase (relative to classical finite elements, which are assumed to be isothermal) the accuracies of final numerical results without having to refine computational meshes excessively and thereby incur excessive computation times. One of the variants is termed the radiation sub-element (RSE) method, which, itself, is subject to a number of variations. This is the simplest and most straightforward approach to representation of spatially variable surface radiation. Any computer code that, heretofore, could model surface-to-surface radiation can incorporate the RSE method without major modifications. In the basic form of the RSE method, each finite element selected for use in computing radiative heat transfer is considered to be a parent element and is divided into sub-elements for the purpose of solving the surface-to-surface radiation-exchange problem. The sub-elements are then treated as classical finite elements; that is, they are assumed to be isothermal, and their view factors and absorbed heat fluxes are calculated accordingly. The heat fluxes absorbed by the sub-elements are then transferred back to the parent element to obtain a radiative heat flux that varies spatially across the parent element. Variants of the RSE method involve the use of polynomials to interpolate and/or extrapolate to approximate spatial variations of physical quantities. The other variant of the finite-element method is termed the integration method (IM). Unlike in the RSE methods, the parent finite elements are not subdivided into smaller elements, and neither isothermality nor other
Verification of Orthogrid Finite Element Modeling Techniques
NASA Technical Reports Server (NTRS)
Steeve, B. E.
1996-01-01
The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.
Coskunses, Fatih Mehmet; Kocyigit, Ismail Doruk; Atil, Fethi; Tekin, Umut; Suer, Berkay Tolga; Tuz, Hakan Hifzi; Ozgul, Ozkan; Yagiz, Ayberk
2015-07-01
The mandible is the largest facial bone as well as the most commonly fractured bone in the maxillofacial region. Despite numerous studies conducted to identify optimal treatment modalities and plates configurations for intraoral and transoral approaches, no definitive conclusion has been reached. This study used finite element analysis (FEA) to assess 4 scenarios for treatment of an angle fracture (6-hole noncompression miniplate; 6-hole single plate/Champy's technique, 3D strut plate; 2 parallel 4-hole noncompression miniplates). Analysis included segmental displacement and Von Mises Stress evaluations of a 3D reconstruction of a human mandible. Von Mises Stress values for plates did not vary significantly among treatment groups. Moreover, no significant differences were observed in cumulative displacement of segments subjected to vertical and horizontal loads, with all treatment configurations demonstrating clinical acceptability. PMID:26091053
NASA Astrophysics Data System (ADS)
Regueiro, R. A.; Yu, S.
2010-12-01
The paper models grain-scale micro-cracking in shale at grain-matrix interfaces, assuming constituents are composed of quart silt grains and compacted clay matrix for a typical shale. The influence of grain-matrix-grain interaction on micro-crack patterns is investigated. Elasto-plastic pressure-sensitive cohesive-surface models are inserted at grain-matrix interfaces and intra-clay-matrix finite element facets, while a bulk elasto-plasticity model with bifurcation is employed for the clay matrix to compare to the intra-clay-matrix cohesive-surface model. Numerical examples are presented under two-dimensional plane strain condition at small strains. A procedure is proposed to upscale grain-scale micro-cracking to predict macro-fracture nucleation and propagation in shale and other bound particulate materials. It is shown that using cohesive surface elements (CSEs) at all finite element facets in the clay matrix mesh to simulate micro-cracking in the clay matrix leads to mesh-dependent results. Using CSEs at grain-clay-matrix interfaces is physical and not mesh dependent. We also considered using bulk pressure-sensitive elasto-plasticity with bifurcation condition within the clay matrix to attempt to predict onset of localization around grains in the simulations. It was encouraging to see that for both the single grain and multiple grain simulations, the finite element region in the clay matrix meshes where bifurcation was first detected around the grains was nearly the same. This gives us confidence that once a proper post-bifurcation constitutive model is implemented within an embedded discontinuity formulation, micro-cracking nucleation and propagation at the grain-scale in shale can be properly simulated, which will provide the basis for up-scaling to macro-cracks within a multiscale method for fracture in shale. Other items to address in future research are: (i) include transverse isotropy (elastic and plastic) for the bulk clay matrix elasto-plasticity model
Visualizing higher order finite elements. Final report
Thompson, David C; Pebay, Philippe Pierre
2005-11-01
This report contains an algorithm for decomposing higher-order finite elements into regions appropriate for isosurfacing and proves the conditions under which the algorithm will terminate. Finite elements are used to create piecewise polynomial approximants to the solution of partial differential equations for which no analytical solution exists. These polynomials represent fields such as pressure, stress, and momentum. In the past, these polynomials have been linear in each parametric coordinate. Each polynomial coefficient must be uniquely determined by a simulation, and these coefficients are called degrees of freedom. When there are not enough degrees of freedom, simulations will typically fail to produce a valid approximation to the solution. Recent work has shown that increasing the number of degrees of freedom by increasing the order of the polynomial approximation (instead of increasing the number of finite elements, each of which has its own set of coefficients) can allow some types of simulations to produce a valid approximation with many fewer degrees of freedom than increasing the number of finite elements alone. However, once the simulation has determined the values of all the coefficients in a higher-order approximant, tools do not exist for visual inspection of the solution. This report focuses on a technique for the visual inspection of higher-order finite element simulation results based on decomposing each finite element into simplicial regions where existing visualization algorithms such as isosurfacing will work. The requirements of the isosurfacing algorithm are enumerated and related to the places where the partial derivatives of the polynomial become zero. The original isosurfacing algorithm is then applied to each of these regions in turn.
Finite element radiation transport in one dimension
Painter, J.F.
1997-05-09
A new physics package solves radiation transport equations in one space dimension, multiple energy groups and directions. A discontinuous finite element method discretizes radiation intensity with respect to space and angle, and a continuous finite element method discretizes electron temperature `in space. A splitting method solves the resulting linear equations. This is a one-dimensional analog of Kershaw and Harte`s two-dimensional package. This package has been installed in a two-dimensional inertial confinement fusion code, and has given excellent results for both thermal waves and highly directional radiation. In contrast, the traditional discrete ordinate and spherical harmonic methods show less accurate results in both cases.
Spectral finite-element methods for parametric constrained optimization problems.
Anitescu, M.; Mathematics and Computer Science
2009-01-01
We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem is solvable because it is feasible for a sufficiently large degree of the polynomial approximation and has an objective function with bounded level sets. In addition, the solutions of the finite-dimensional problems converge for an increasing degree of the polynomials considered, provided that the solutions exhibit a sufficiently large and uniform degree of smoothness. Our approach solves, in the case of optimization problems with uncertain parameters, the most computationally intensive part of stochastic finite-element approaches. We demonstrate that our framework is applicable to parametric eigenvalue problems.
Studies of finite element analysis of composite material structures
NASA Technical Reports Server (NTRS)
Douglas, D. O.; Holzmacher, D. E.; Lane, Z. C.; Thornton, E. A.
1975-01-01
Research in the area of finite element analysis is summarized. Topics discussed include finite element analysis of a picture frame shear test, BANSAP (a bandwidth reduction program for SAP IV), FEMESH (a finite element mesh generation program based on isoparametric zones), and finite element analysis of a composite bolted joint specimens.
Integrated finite element model of composite materials
NASA Astrophysics Data System (ADS)
Teply, Jan L.; Herbein, William C.
1989-05-01
Two problems traditionally addressed in the area of micromechanics of composite materials can be briefly summarized as follows: (1) for a macroscopically uniform volume of composite material, which is subjected to macroscopically uniform boundary tractions, displacements or heat influx, find overall thermomechanical properties in terms of the thermomechanical properties of the individual constituents; and (2) for the same material volume and boundary conditions as above, find the local stress, strain, and temperature fields in the constituents and on the interfaces. Two different types of micromechanical models are usually applied to the solutions of these two types of problems. For linear elastic materials, the micromechanical models to solve problem (1) offer simple solutions of overall thermomechanical properties either in terms of bound which are derived from periodic or random microstructures, or in terms of single estimates, which are derived from a solution of an isolated inclusion. The finite element variational approaches are applied to integrate the solutions of problems (1) and (2) into one model. The application of displacement and equilibrium variational approaches to the calculation of overall elastic-plastic properties, are extended to the solution of the second problem. The integrated model is then applied to calculate the overall properties and local stress and strain fields of boron-aluminum composites subjected to transverse tension, in-plane shear and bending.
Finite element modeling of nonisothermal polymer flows
NASA Technical Reports Server (NTRS)
Roylance, D.
1981-01-01
A finite element formulation designed to simulate polymer melt flows in which both conductive and convective heat transfer are important is described, and the numerical model is illustrated by means of computer experiments using extruder drag flow and entry flow as trial problems. Fluid incompressibility is enforced by a penalty treatment of the element pressures, and the thermal convective transport is modeled by conventional Galerkin and optimal upwind treatments.
Evolution of assumed stress hybrid finite element
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1984-01-01
Early versions of the assumed stress hybrid finite elements were based on the a priori satisifaction of stress equilibrium conditions. In the new version such conditions are relaxed but are introduced through additional internal displacement functions as Lagrange multipliers. A rational procedure is to choose the displacement terms such that the resulting strains are now of complete polynomials up to the same degree as that of the assumed stresses. Several example problems indicate that optimal element properties are resulted by this method.
A multidimensional finite element method for CFD
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.
1991-01-01
A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.
Quadrilateral/hexahedral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E
2012-10-16
A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.
Finite Element Simulation of Smart Structures
NASA Technical Reports Server (NTRS)
Cui, Y. Lawrence; Panahandeh, M.
1996-01-01
Finite element equations representing the behavior of piezoelectric materials when bounded to a typical structure and used as sensors and actuators were developed. Emphasis was placed on generating sensor output equations of piezoelectric sensors and responses of a typical structure bonded with piezoelectric sensors and actuators on the basis of finite element formulation. The model can predict not only structural responses due to both mechanical and electrical loading but also electrical potential due to mechanical or thermal effects. The resulted finite element equations were then used for simple control design and performance evaluation. In the control algorithm, voltages coming out from piezoelectric sensors, which are proportional to strains at sensing locations, are taken as input. The voltages applied to the piezoelectric actuators are used as output. The feasibility of integrating control algorithm with the element routine developed herein and FEAP was demonstrated. In particular, optimal independent modal space control was implemented in a software package on the basis of finite element formulation. A rudimentary finite element-control algorithm package was also developed to evaluate the performance of candidate control laws. A few numerical simulations using the software package developed herein were given. The integrated software package will provide a design tool to address issues such as how adaptive smart systems will scale to a full size aircraft, the amount of piezoelectric materials and the powers needed to actuate it for desired performance. It will also provide a viable new structural control design concept for practical applications in large flexible structures such as aerospace vehicles and aircraft.
User's Guide for ENSAERO_FE Parallel Finite Element Solver
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Guruswamy, Guru P.
1999-01-01
A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.
Finite element displacement analysis of a lung.
NASA Technical Reports Server (NTRS)
Matthews, F. L.; West, J. B.
1972-01-01
A method is given based on the technique of finite elements which determines theoretically the mechanical behavior of a lung-shaped body loaded by its own weight. The results of this theoretical analysis have been compared with actual measurements of alveolar size and pleural pressures in animal lungs.
Animation of finite element models and results
NASA Technical Reports Server (NTRS)
Lipman, Robert R.
1992-01-01
This is not intended as a complete review of computer hardware and software that can be used for animation of finite element models and results, but is instead a demonstration of the benefits of visualization using selected hardware and software. The role of raw computational power, graphics speed, and the use of videotape are discussed.
NASA Astrophysics Data System (ADS)
Kluczyk, K.; Jacak, W.
2016-01-01
We investigate metal nano-particle size influence on plasmon resonance within theoretical and numerical approaches and compare results with available experimental data in order to improve resolution of optical identification of metallic nano-particle size and shape. The developed microscopic approach is the quantum random phase approximation model of plasmons in metallic nano-particles including plasmon damping by electron scattering and by radiative losses (i.e., by the so-called Lorentz friction). The numerical approach is by the finite element method solution of Maxwell equations for incident planar wave in spherical (also nano-rod, spheroid) geometry upon the system COMSOL and Mie treatment, supplemented with phenomenologically modeled dielectric function of metallic nano-particle. Comparison with experimental data for light extinction in Au and Ag nano-particle colloidal solutions with different particle sizes is presented. The crucial role of the Lorentz friction in the size effect of plasmon resonance in large (e.g., 20-60 nm for Au in vacuum) metallic nanoparticles is evidenced.
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, F. B.
1995-01-01
A combined finite element method/method of moments (FEM/MoM) approach is used to analyze the electromagnetic scattering properties of a three-dimensional-cavity-backed aperture in an infinite ground plane. The FEM is used to formulate the fields inside the cavity, and the MoM (with subdomain bases) in both spectral and spatial domains is used to formulate the fields above the ground plane. Fields in the aperture and the cavity are solved using a system of equations resulting from the combination of the FEM and the MoM. By virtue of the FEM, this combined approach is applicable to all arbitrarily shaped cavities with inhomogeneous material fillings, and because of the subdomain bases used in the MoM, the apertures can be of any arbitrary shape. This approach leads to a partly sparse and partly full symmetric matrix, which is efficiently solved using a biconjugate gradient algorithm. Numerical results are presented to validate the analysis.
Kleban, Alexander
2015-01-01
Study Design Retrospective controlled cohort study comparing the in-brace correction of two samples of scoliosis patients with braces of different computer aided design (CAD). Purpose In-brace correction and compliance correlate with outcome. The more standardized CAD braces that are available should enable improved in-brace correction and outcome. This study compared recent CAD brace developments with respect to in-brace corrections. Overview of Literature A 2013 randomized controlled trial demonstrated that 72% of a population complying to Scoliosis Research Society inclusion criteria on bracing did not progress using braces (mainly Boston braces) used in the United States and Canada with moderate corrective effect. Methods In-brace corrections achieved in a sample of patients fulfilling the inclusion criteria for studies on bracing using the classification based approach (CBA) were compared to the recent individual CAD/computer aided manufacturing bracing based on finite element modelling approach (FEMA). Results In-brace corrections using the different approaches differed widely. CBA in-brace corrections were 66% of the initial value. FEMA in-brace correction was 42% of the initial value. Conclusions Considering the fact that in-brace correction (and compliance) determines the end result of bracing in the treatment of scoliosis, scoliosis braces based on CBA are superior to the FEMA and the standard plaster based brace applications. PMID:26435781
Finite element computation with parallel VLSI
NASA Technical Reports Server (NTRS)
Mcgregor, J.; Salama, M.
1983-01-01
This paper describes a parallel processing computer consisting of a 16-bit microcomputer as a master processor which controls and coordinates the activities of 8086/8087 VLSI chip set slave processors working in parallel. The hardware is inexpensive and can be flexibly configured and programmed to perform various functions. This makes it a useful research tool for the development of, and experimentation with parallel mathematical algorithms. Application of the hardware to computational tasks involved in the finite element analysis method is demonstrated by the generation and assembly of beam finite element stiffness matrices. A number of possible schemes for the implementation of N-elements on N- or n-processors (N is greater than n) are described, and the speedup factors of their time consumption are determined as a function of the number of available parallel processors.
Revolution in Orthodontics: Finite element analysis
Singh, Johar Rajvinder; Kambalyal, Prabhuraj; Jain, Megha; Khandelwal, Piyush
2016-01-01
Engineering has not only developed in the field of medicine but has also become quite established in the field of dentistry, especially Orthodontics. Finite element analysis (FEA) is a computational procedure to calculate the stress in an element, which performs a model solution. This structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the finite element method (FEM) to view a variety of parameters, and to fully identify implications of the analysis. This is a review to show the applications of FEM in Orthodontics. It is extremely important to verify what the purpose of the study is in order to correctly apply FEM. PMID:27114948
Finite Element Interface to Linear Solvers
Energy Science and Technology Software Center (ESTSC)
2005-03-18
Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on themore » problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.« less
Finite Element Modeling of the Buckling Response of Sandwich Panels
NASA Technical Reports Server (NTRS)
Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.
2002-01-01
A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.
Modal Substructuring of Geometrically Nonlinear Finite-Element Models
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
2016-02-01
The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying amore » series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.« less
Finite Element Heat & Mass Transfer Code
Energy Science and Technology Software Center (ESTSC)
1996-10-10
FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; andmore » double porosity and double porosity/double permeability capabilities.« less
Towards parallel I/O in finite element simulations
NASA Technical Reports Server (NTRS)
Farhat, Charbel; Pramono, Eddy; Felippa, Carlos
1989-01-01
I/O issues in finite element analysis on parallel processors are addressed. Viable solutions for both local and shared memory multiprocessors are presented. The approach is simple but limited by currently available hardware and software systems. Implementation is carried out on a CRAY-2 system. Performance results are reported.
Boundary control of parabolic systems - Finite-element approximation
NASA Technical Reports Server (NTRS)
Lasiecka, I.
1980-01-01
The finite element approximation of a Dirichlet type boundary control problem for parabolic systems is considered. An approach based on the direct approximation of an input-output semigroup formula is applied. Error estimates are derived for optimal state and optimal control, and it is noted that these estimates are actually optimal with respect to the approximation theoretic properties.
Krittian, Sebastian B.S.; Lamata, Pablo; Michler, Christian; Nordsletten, David A.; Bock, Jelena; Bradley, Chris P.; Pitcher, Alex; Kilner, Philip J.; Markl, Michael; Smith, Nic P.
2012-01-01
The evaluation of cardiovascular velocities, their changes through the cardiac cycle and the consequent pressure gradients has the capacity to improve understanding of subject-specific blood flow in relation to adjacent soft tissue movements. Magnetic resonance time-resolved 3D phase contrast velocity acquisitions (4D flow) represent an emerging technology capable of measuring the cyclic changes of large scale, multi-directional, subject-specific blood flow. A subsequent evaluation of pressure differences in enclosed vascular compartments is a further step which is currently not directly available from such data. The focus of this work is to address this deficiency through the development of a novel simulation workflow for the direct computation of relative cardiovascular pressure fields. Input information is provided by enhanced 4D flow data and derived MR domain masking. The underlying methodology shows numerical advantages in terms of robustness, global domain composition, the isolation of local fluid compartments and a treatment of boundary conditions. This approach is demonstrated across a range of validation examples which are compared with analytic solutions. Four subject-specific test cases are subsequently run, showing good agreement with previously published calculations of intra-vascular pressure differences. The computational engine presented in this work contributes to non-invasive access to relative pressure fields, incorporates the effects of both blood flow acceleration and viscous dissipation, and enables enhanced evaluation of cardiovascular blood flow. PMID:22626833
Finite element method for eigenvalue problems in electromagnetics
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, Fred B.
1994-01-01
Finite element method (FEM) has been a very powerful tool to solve many complex problems in electromagnetics. The goal of the current research at the Langley Research Center is to develop a combined FEM/method of moments approach to three-dimensional scattering/radiation problem for objects with arbitrary shape and filled with complex materials. As a first step toward that goal, an exercise is taken to establish the power of FEM, through closed boundary problems. This paper demonstrates the developed of FEM tools for two- and three-dimensional eigenvalue problems in electromagnetics. In section 2, both the scalar and vector finite elements have been used for various waveguide problems to demonstrate the flexibility of FEM. In section 3, vector finite element method has been extended to three-dimensional eigenvalue problems.
Finite-size scaling for quantum criticality using the finite-element method.
Antillon, Edwin; Wehefritz-Kaufmann, Birgit; Kais, Sabre
2012-03-01
Finite size scaling for the Schrödinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite-element method was shown to be a powerful numerical method for ab initio electronic-structure calculations with a variable real-space resolution. In this work, we demonstrate how to obtain quantum critical parameters by combining the finite-element method (FEM) with finite size scaling (FSS) using different ab initio approximations and exact formulations. The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and external fields for stability of atomic, molecular systems and quantum phase transitions of extended systems. To illustrate the effectiveness of this approach we provide detailed calculations of applying FEM to approximate solutions for the two-electron atom with varying nuclear charge; these include Hartree-Fock, local density approximation, and an "exact" formulation using FEM. We then use the FSS approach to determine its critical nuclear charge for stability; here, the size of the system is related to the number of elements used in the calculations. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that it is possible to combine finite size scaling with the finite-element method by using ab initio calculations to obtain quantum critical parameters. The combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems. PMID:22587208
Finite-size scaling for quantum criticality using the finite-element method
NASA Astrophysics Data System (ADS)
Antillon, Edwin; Wehefritz-Kaufmann, Birgit; Kais, Sabre
2012-03-01
Finite size scaling for the Schrödinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite-element method was shown to be a powerful numerical method for ab initio electronic-structure calculations with a variable real-space resolution. In this work, we demonstrate how to obtain quantum critical parameters by combining the finite-element method (FEM) with finite size scaling (FSS) using different ab initio approximations and exact formulations. The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and external fields for stability of atomic, molecular systems and quantum phase transitions of extended systems. To illustrate the effectiveness of this approach we provide detailed calculations of applying FEM to approximate solutions for the two-electron atom with varying nuclear charge; these include Hartree-Fock, local density approximation, and an “exact” formulation using FEM. We then use the FSS approach to determine its critical nuclear charge for stability; here, the size of the system is related to the number of elements used in the calculations. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that it is possible to combine finite size scaling with the finite-element method by using ab initio calculations to obtain quantum critical parameters. The combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems.
Non-conforming finite element methods for transmission eigenvalue problem
NASA Astrophysics Data System (ADS)
Yang, Yidu; Han, Jiayu; Bi, Hai
2016-08-01
The transmission eigenvalue problem is an important and challenging topic arising in the inverse scattering theory. In this paper, for the Helmholtz transmission eigenvalue problem, we give a weak formulation which is a nonselfadjoint linear eigenvalue problem. Based on the weak formulation, we first discuss the non-conforming finite element approximation, and prove the error estimates of the discrete eigenvalues obtained by the Adini element, Morley-Zienkiewicz element, modified-Zienkiewicz element et. al. And we report some numerical examples to validate the efficiency of our approach for solving transmission eigenvalue problem.
Plasticity - Theory and finite element applications.
NASA Technical Reports Server (NTRS)
Armen, H., Jr.; Levine, H. S.
1972-01-01
A unified presentation is given of the development and distinctions associated with various incremental solution procedures used to solve the equations governing the nonlinear behavior of structures, and this is discussed within the framework of the finite-element method. Although the primary emphasis here is on material nonlinearities, consideration is also given to geometric nonlinearities acting separately or in combination with nonlinear material behavior. The methods discussed here are applicable to a broad spectrum of structures, ranging from simple beams to general three-dimensional bodies. The finite-element analysis methods for material nonlinearity are general in the sense that any of the available plasticity theories can be incorporated to treat strain hardening or ideally plastic behavior.
Finite element analysis of human joints
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.
2-d Finite Element Code Postprocessor
Energy Science and Technology Software Center (ESTSC)
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less
Finite Element Analysis of Honeycomb Impact Attenuator
NASA Astrophysics Data System (ADS)
Yang, Seung-Yong; Choi, Seung-Kyu; Kim, Nohyu
To participate in Student Formula Society of Automotive Engineers (SAE) competitions, it is necessary to build an impact attenuator that would give an average deceleration not to exceed 20g when it runs into a rigid wall. Students can use numerical simulations or experimental test data to show that their car satisfies this safety requirement. A student group to study formula cars at the Korea University of Technology and Education has designed a vehicle to take part in a SAE competition, and a honeycomb structure was adopted as the impact attenuator. In this paper, finite element calculations were carried out to investigate the dynamic behavior of the honeycomb attenuator. Deceleration and deformation behaviors were studied. Effect of the yield strength was checked by comparing the numerical results. ABAQUS/Explicit finite element code was used.
Oakley, Emily; Wrazen, Brian; Bellnier, David A; Syed, Yusef; Arshad, Hassan; Shafirstein, Gal
2014-01-01
Background and Objectives: Several clinical studies suggest that interstitial photodynamic therapy (I-PDT) may benefit patients with locally advanced head and neck cancer (LAHNC). For I-PDT, the therapeutic light is delivered through optical fibers inserted into the target tumor. The complex anatomy of the head and neck requires careful planning of fiber insertions. Often the fibers’ location and tumor optical properties may vary from the original plan therefore pretreatment planning needs near real-time updating to account for any changes. The purpose of this work was to develop a finite element analysis (FEA) approach for near real-time simulation of light propagation in LAHNC. Methods: Our previously developed FEA for modeling light propagation in skin tissue was modified to simulate light propagation from interstitial optical fibers. The modified model was validated by comparing the calculations with measurements in a phantom mimicking tumor optical properties. We investigated the impact of mesh element size and growth rate on the computation time, and defined optimal settings for the FEA. We demonstrated how the optimized FEA can be used for simulating light propagation in two cases of LAHNC amenable to I-PDT, as proof-of-concept. Results: The modified FEA was in agreement with the measurements (P=0.0271). The optimal maximum mesh size and growth rate were 0.005-0.02 m and 2-2.5 m/m, respectively. Using these settings the computation time for simulating light propagation in LAHNC was reduced from 25.9 to 3.7 min in one case, and 10.1 to 4 minutes in another case. There were minor differences (1.62%, 1.13%) between the radiant exposures calculated with either mesh in both cases. Conclusions: Our FEA approach can be used to model light propagation from diffused optical fibers in complex heterogeneous geometries representing LAHNC. There is a range of maximum element size (MES) and maximum element growth rate (MEGR) that can be used to minimize the computation
Finite Element Analysis of Reverberation Chambers
NASA Technical Reports Server (NTRS)
Bunting, Charles F.; Nguyen, Duc T.
2000-01-01
The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.
Finite element analysis of wrinkling membranes
NASA Technical Reports Server (NTRS)
Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.
1984-01-01
The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.
ExodusII Finite Element Data Model
Energy Science and Technology Software Center (ESTSC)
2005-05-14
EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface. (exodus II is based on netcdf)
Finite element based electric motor design optimization
NASA Technical Reports Server (NTRS)
Campbell, C. Warren
1993-01-01
The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.
Finite Element Results Visualization for Unstructured Grids
Speck, Douglas E.; Dovey, Donald J.
1996-07-15
GRIZ is a general-purpose post-processing application supporting interactive visualization of finite element analysis results on unstructured grids. In addition to basic pseudocolor renderings of state variables over the mesh surface, GRIZ provides modern visualization techniques such as isocontours and isosurfaces, cutting planes, vector field display, and particle traces. GRIZ accepts both command-line and mouse-driven input, and is portable to virtually any UNIX platform which provides Motif and OpenGl libraries.
Finite element model of needle electrode sensitivity
NASA Astrophysics Data System (ADS)
Høyum, P.; Kalvøy, H.; Martinsen, Ø. G.; Grimnes, S.
2010-04-01
We used the Finite Element (FE) Method to estimate the sensitivity of a needle electrode for bioimpedance measurement. This current conducting needle with insulated shaft was inserted in a saline solution and current was measured at the neutral electrode. FE model resistance and reactance were calculated and successfully compared with measurements on a laboratory model. The sensitivity field was described graphically based on these FE simulations.
FESDIF -- Finite Element Scalar Diffraction theory code
Kraus, H.G.
1992-09-01
This document describes the theory and use of a powerful scalar diffraction theory based computer code for calculation of intensity fields due to diffraction of optical waves by two-dimensional planar apertures and lenses. This code is called FESDIF (Finite Element Scalar Diffraction). It is based upon both Fraunhofer and Kirchhoff scalar diffraction theories. Simplified routines for circular apertures are included. However, the real power of the code comes from its basis in finite element methods. These methods allow the diffracting aperture to be virtually any geometric shape, including the various secondary aperture obstructions present in telescope systems. Aperture functions, with virtually any phase and amplitude variations, are allowed in the aperture openings. Step change aperture functions are accommodated. The incident waves are considered to be monochromatic. Plane waves, spherical waves, or Gaussian laser beams may be incident upon the apertures. Both area and line integral transformations were developed for the finite element based diffraction transformations. There is some loss of aperture function generality in the line integral transformations which are typically many times more computationally efficient than the area integral transformations when applicable to a particular problem.
Enhancements to modal testing using finite elements
NASA Astrophysics Data System (ADS)
Jarvis, Brian
In calculating the natural frequencies and mode shapes from a finite element analysis, there are generally many more degrees of freedom than can be handled for the eigensolution. A reduction process is employed to reduce the number to a master set and chosen so that the modes of interest are well defined. By choosing those freedoms where the inertia terms are high or the stiffness terms are low then an automatic procedure for selecting the best freedoms can be defined. For modal testing, these master freedoms also indicate the best transducer locations for optimum low order mode identification. Having carried out the modal test, the mode shapes obtained can be forced onto the finite element model giving greatly enhanced results. By examining terms in all mode shapes from the finite element model in the frequency range of interest, the best reference or excitation position can be found. An example of the use of this technique to study the modal properties of an aero-engine compressor blade is given.
Finite element neural networks for electromagnetic inverse problems
NASA Astrophysics Data System (ADS)
Ramuhalli, P.; Udpa, L.; Udpa, S.
2002-05-01
Iterative approaches using numerical forward models are commonly used for solving inverse problems in nondestructive evaluation. The drawbacks of these approaches include their high computational cost and the difficulty in computing gradients for updating defect profiles. This paper proposes a finite element neural network (FENN) that embeds finite element models into a neural network format. This approach enables fast and accurate solution of the forward problem. The FENN can then be used as the forward model in an iterative approach to solve the inverse problem. Gradient-based optimization methods are easily applied since the FENN provides an explicit functional mapping between the defect profile and the measured signal. Results of applying the FENN to several simple electromagnetic forward and inverse problems are presented.
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Hasegawa, T.; Tsuruoka, H.; Klemann, V.; Martinec, Z.
2015-01-01
Global navigation satellite systems (GNSSs) have revealed that a mega-thrust earthquake that occurs in an island-arc trench system causes post-seismic crustal deformation. Such crustal deformation data have been interpreted by combining three mechanisms: afterslip, poroelastic rebound and viscoelastic relaxation. It is seismologically important to determine the contribution of each mechanism because it provides frictional properties between the plate boundaries and viscosity estimates in the asthenosphere which are necessary to evaluate the stress behaviour during earthquake cycles. However, the observation sites of GNSS are mostly deployed over land and can detect only a small part of the large-scale deformation, which precludes a clear separation of the mechanisms. To extend the spatial coverage of the deformation area, recent studies started to use satellite gravity data that can detect long-wavelength deformations over the ocean. To date, compared with theoretical models for calculating the post-seismic crustal deformation, a few models have been proposed to interpret the corresponding gravity variations. Previous approaches have adopted approximations for the effects of compressibility, sphericity and self-gravitation when computing gravity changes. In this study, a new spectral-finite element approach is presented to consider the effects of material compressibility for Burgers viscoelastic earth model with a laterally heterogeneous viscosity distribution. After the basic principles are explained, it is applied to the 2004 Sumatra-Andaman earthquake. For this event, post-seismic deformation mechanisms are still a controversial topic. Using the developed approach, it is shown that the spatial patterns of gravity change generated by the above three mechanisms clearly differ from one another. A comparison of the theoretical simulation results with the satellite gravity data obtained from the Gravity Recovery and Climate Experiment reveals that both afterslip and
Traction free finite elements with the assumed stress hybrid model. M.S. Thesis, 1981
NASA Technical Reports Server (NTRS)
Kafie, Kurosh
1991-01-01
An effective approach in the finite element analysis of the stress field at the traction free boundary of a solid continuum was studied. Conventional displacement and assumed stress finite elements were used in the determination of stress concentrations around circular and elliptical holes. Specialized hybrid elements were then developed to improve the satisfaction of prescribed traction boundary conditions. Results of the stress analysis indicated that finite elements which exactly satisfy the free stress boundary conditions are the most accurate and efficient in such problems. A general approach for hybrid finite elements which incorporate traction free boundaries of arbitrary geometry was formulated.
A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1998-01-01
Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.
Three-dimensional finite element modeling of liquid crystal devices
NASA Astrophysics Data System (ADS)
Vanbrabant, Pieter J. M.; James, Richard; Beeckman, Jeroen; Neyts, Kristiaan; Willman, Eero; Fernandez, F. Anibal
2011-03-01
A finite element framework is presented to combine advanced three-dimensional liquid crystal director calculations with a full-vector beam propagation analysis. This approach becomes especially valuable to analyze and design structures in which disclinations or diffraction effects play an important role. The wide applicability of the approach is illustrated in our overview from several examples including small pixel LCOS microdisplays with homeotropic alignment.
Finite Element analyses of soil bioengineered slopes
NASA Astrophysics Data System (ADS)
Tamagnini, Roberto; Switala, Barbara Maria; Sudan Acharya, Madhu; Wu, Wei; Graf, Frank; Auer, Michael; te Kamp, Lothar
2014-05-01
Soil Bioengineering methods are not only effective from an economical point of view, but they are also interesting as fully ecological solutions. The presented project is aimed to define a numerical model which includes the impact of vegetation on slope stability, considering both mechanical and hydrological effects. In this project, a constitutive model has been developed that accounts for the multi-phase nature of the soil, namely the partly saturated condition and it also includes the effects of a biological component. The constitutive equation is implemented in the Finite Element (FE) software Comes-Geo with an implicit integration scheme that accounts for the collapse of the soils structure due to wetting. The mathematical formulation of the constitutive equations is introduced by means of thermodynamics and it simulates the growth of the biological system during the time. The numerical code is then applied in the analysis of an ideal rainfall induced landslide. The slope is analyzed for vegetated and non-vegetated conditions. The final results allow to quantitatively assessing the impact of vegetation on slope stability. This allows drawing conclusions and choosing whenever it is worthful to use soil bioengineering methods in slope stabilization instead of traditional approaches. The application of the FE methods show some advantages with respect to the commonly used limit equilibrium analyses, because it can account for the real coupled strain-diffusion nature of the problem. The mechanical strength of roots is in fact influenced by the stress evolution into the slope. Moreover, FE method does not need a pre-definition of any failure surface. FE method can also be used in monitoring the progressive failure of the soil bio-engineered system as it calculates the amount of displacements and strains of the model slope. The preliminary study results show that the formulated equations can be useful for analysis and evaluation of different soil bio
Nondestructive Evaluation Correlated with Finite Element Analysis
NASA Technical Reports Server (NTRS)
Abdul-Azid, Ali; Baaklini, George Y.
1999-01-01
Advanced materials are being developed for use in high-temperature gas turbine applications. For these new materials to be fully utilized, their deformation properties, their nondestructive evaluation (NDE) quality and material durability, and their creep and fatigue fracture characteristics need to be determined by suitable experiments. The experimental findings must be analyzed, characterized, modeled and translated into constitutive equations for stress analysis and life prediction. Only when these ingredients - together with the appropriate computational tools - are available, can durability analysis be performed in the design stage, long before the component is built. One of the many structural components being evaluated by the NDE group at the NASA Lewis Research Center is the flywheel system. It is being considered as an energy storage device for advanced space vehicles. Such devices offer advantages over electrochemical batteries in situations demanding high power delivery and high energy storage per unit weight. In addition, flywheels have potentially higher efficiency and longer lifetimes with proper motor-generator and rotor design. Flywheels made of fiber-reinforced polymer composite material show great promise for energy applications because of the high energy and power densities that they can achieve along with a burst failure mode that is relatively benign in comparison to those of flywheels made of metallic materials Therefore, to help improve durability and reduce structural uncertainties, we are developing a comprehensive analytical approach to predict the reliability and life of these components under these harsh loading conditions. The combination of NDE and two- and three-dimensional finite element analyses (e.g., stress analyses and fracture mechanics) is expected to set a standardized procedure to accurately assess the applicability of using various composite materials to design a suitable rotor/flywheel assembly.
Finite element modeling of frictionally restrained composite interfaces
NASA Technical Reports Server (NTRS)
Ballarini, Roberto; Ahmed, Shamim
1989-01-01
The use of special interface finite elements to model frictional restraint in composite interfaces is described. These elements simulate Coulomb friction at the interface, and are incorporated into a standard finite element analysis of a two-dimensional isolated fiber pullout test. Various interfacial characteristics, such as the distribution of stresses at the interface, the extent of slip and delamination, load diffusion from fiber to matrix, and the amount of fiber extraction or depression are studied for different friction coefficients. The results are compared to those obtained analytically using a singular integral equation approach, and those obtained by assuming a constant interface shear strength. The usefulness of these elements in micromechanical modeling of fiber-reinforced composite materials is highlighted.
Rapid mesh generation for finite element analysis of investment castings
Lober, R.R.; Bohnhoff, W.J.; Meyers, R.J.
1992-11-01
FASTCAST is a Sandia National Laboratories program to produce investment cast prototypical hardware faster by integrating experimental and computational technologies into the casting process. FASTCAST uses the finite element method to characterize the metal flow and solidification processes to reduce uncertainty in the mold design. For the casting process to benefit from finite element analysis, analysis results must be available in a very short time frame. By focusing on the bottleneck of finite element model creation, automated mesh generation can drastically reduce the time span between geometry definition (design) and accurate analysis results. The increased availability of analysis results will diminish the need for trial and error approaches to acquiring production worthy mold and gating systems for investment casting. The CUBIT meshing tool kit is being developed to address the need for rapid mesh generation. CUBIT is being designed to effectively automate the generation of quadrilateral and hexahedral elements. It is a solid-modeler based, two- and three-dimensional preprocessor that prepares solid models for finite element analysis. CUBIT contains several meshing algorithms including two- and three-dimensional mapping, two- and three-dimensional paving (patented), and a general two and one-half dimensional sweeper based upon the plastering algorithm. This paper describes progress in the development of the CUBIT meshing toolkit.
Rapid mesh generation for finite element analysis of investment castings
Lober, R.R.; Bohnhoff, W.J.; Meyers, R.J.
1992-01-01
FASTCAST is a Sandia National Laboratories program to produce investment cast prototypical hardware faster by integrating experimental and computational technologies into the casting process. FASTCAST uses the finite element method to characterize the metal flow and solidification processes to reduce uncertainty in the mold design. For the casting process to benefit from finite element analysis, analysis results must be available in a very short time frame. By focusing on the bottleneck of finite element model creation, automated mesh generation can drastically reduce the time span between geometry definition (design) and accurate analysis results. The increased availability of analysis results will diminish the need for trial and error approaches to acquiring production worthy mold and gating systems for investment casting. The CUBIT meshing tool kit is being developed to address the need for rapid mesh generation. CUBIT is being designed to effectively automate the generation of quadrilateral and hexahedral elements. It is a solid-modeler based, two- and three-dimensional preprocessor that prepares solid models for finite element analysis. CUBIT contains several meshing algorithms including two- and three-dimensional mapping, two- and three-dimensional paving (patented), and a general two and one-half dimensional sweeper based upon the plastering algorithm. This paper describes progress in the development of the CUBIT meshing toolkit.
Experimental validation of a finite-element model updating procedure
NASA Astrophysics Data System (ADS)
Kanev, S.; Weber, F.; Verhaegen, M.
2007-02-01
This paper validates an approach to damage detection and localization based on finite-element model updating (FEMU). The approach has the advantage over other existing methods to FEMU that it simultaneously updates all three finite-element model matrices at the same time preserving their structure (connectivity), symmetry and positive-definiteness. The approach is tested in this paper on an experimental setup consisting of a steel cable, where local mass changes and global change in the tension of the cable are introduced. The new algorithm is applied to identify the size and location of different changes in the structural parameters (mass, stiffness and damping). The obtained results clearly indicate that even small structural changes can be detected and localized with the new method. Additionally, a comparison with many other FEMU-based methods has been performed to show the superiority of the considered method.
Mixed Finite Element Method for Melt Migration
NASA Astrophysics Data System (ADS)
Taicher, A. L.; Hesse, M. A.; Arbogast, T.
2012-12-01
Multi-phase flow arises during partial melting in the earth mantle, where the porosity is small and material has the characteristics of a compacting porous medium. The equations governing multi-phase flow have been specialized to partially molten materials by McKenzie and Fowler. Their model, also called a Darcy-Stokes system, is highly coupled and non-linear. Melt flow is governed by Darcy's Law while the high temperature, ductile creep of the solid matrix is modeled using viscous non-Newtonian Stokes rheology. In addition, the melt and solid pressures are related through a compaction relation. This nearly elliptic mechanical problem is then coupled with both solute transport and thermal evolution according to the enthalpy method developed by Katz. A suitable numerical method must solve the Darcy-Stokes problem in a manner compatible with the transport problem. Moreover, unlike most porous media problems, partially molten materials transition dynamically from non-porous solid to porous medium. Therefore, a numerical method must also carefully account for the limit of zero porosity. The Darcy-Stokes system for modeling partial melting in the mantle is a novel problem. As far as we know, there currently does not exist a finite element solution in the literature solving these coupled equations. The finite element framework provides support for additional analysis of error and convergence. Moreover, both mesh refinement and anisotropy are naturally incorporated into finite elements. In particular, the mixed finite element method presents a good candidate because it works in both limiting cases: Darcy and incompressible Stokes flow. Mixed methods also produce discretely conservative fluxes that are required for the transport problem to remains stable without violating conservation of mass. Based preliminary investigations in 1D and derived energy estimates, we present a mixed formulation for the Darcy-Stokes system. Next, using novel elements of lowest order and
Modelling bucket excavation by finite element
NASA Astrophysics Data System (ADS)
Pecingina, O. M.
2015-11-01
Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the
NASA Astrophysics Data System (ADS)
Xue, Cheng; Tang, Fuk-Hay
2014-03-01
A patient specific registration model based on finite element method was investigated in this study. Image registration of Positron Emission Tomography (PET) and Magnetic Resonance imaging (MRI) has been studied a lot. Surface-based registration is extensively applied in medical imaging. We develop and evaluate a registration method combine surface-based registration with biomechanical modeling. .Four sample cases of patients with PET and MRI breast scans performed within 30 days were collected from hospital. K-means clustering algorithm was used to segment images into two parts, which is fat tissue and neoplasm [2]. Instead of placing extrinsic landmarks on patients' body which may be invasive, we proposed a new boundary condition to simulate breast deformation during two screening. Then a three dimensional model with meshes was built. Material properties were assigned to this model according to previous studies. The whole registration was based on a biomechanical finite element model, which could simulate deformation of breast under pressure.
Poulard, David; Kent, Richard W; Kindig, Matthew; Li, Zuoping; Subit, Damien
2015-05-01
Current finite element human thoracic models are typically evaluated against a limited set of loading conditions; this is believed to limit their capability to predict accurate responses. In this study, a 50th-percentile male finite element model (GHBMC v4.1) was assessed under various loading environments (antero-posterior rib bending, point loading of the denuded ribcage, omnidirectional pendulum impact and table top) through a correlation metric tool (CORA) based on linearly independent signals. The load cases were simulated with the GHBMC model and response corridors were developed from published experimental data. The model was found to be in close agreement with the experimental data both qualitatively and quantitatively (CORA ratings above 0.75) and the response of the thorax was overall deemed biofidelic. This study also provides relevant corridors and an objective rating framework that can be used for future evaluation of thoracic models. PMID:25681717
Visualization of transient finite element analyses on large unstructured grids
Dovey, D.
1995-03-22
Three-dimensional transient finite element analysis is performed on unstructured grids. A trend toward running larger analysis problems, combined with a desire for interactive animation of analysis results, demands efficient visualization techniques. This paper discusses a set of data structures and algorithms for visualizing transient analysis results on unstructured grids and introduces some modifications in order to better support large grids. In particular, an element grouping approach is used to reduce the amount of memory needed for external surface determination and to speed up ``point in element`` tests. The techniques described lend themselves to visualization of analyses carried out in parallel on a massively parallel computer (MPC).
Algebraic surface design and finite element meshes
NASA Technical Reports Server (NTRS)
Bajaj, Chandrajit L.
1992-01-01
Some of the techniques are summarized which are used in constructing C sup 0 and C sup 1 continuous meshes of low degree, implicitly defined, algebraic surface patches in three dimensional space. These meshes of low degree algebraic surface patches are used to construct accurate computer models of physical objects. These meshes are also used in the finite element simulation of physical phenomena (e.g., heat dissipation, stress/strain distributions, fluid flow characteristics) required in the computer prototyping of both the manufacturability and functionality of the geometric design.
Finite element methods in probabilistic mechanics
NASA Technical Reports Server (NTRS)
Liu, Wing Kam; Mani, A.; Belytschko, Ted
1987-01-01
Probabilistic methods, synthesizing the power of finite element methods with second-order perturbation techniques, are formulated for linear and nonlinear problems. Random material, geometric properties and loads can be incorporated in these methods, in terms of their fundamental statistics. By construction, these methods are applicable when the scale of randomness is not too large and when the probabilistic density functions have decaying tails. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. Applications showing the effects of combined random fields and cyclic loading/stress reversal are studied and compared with Monte Carlo simulation results.
Chemorheology of reactive systems: Finite element analysis
NASA Technical Reports Server (NTRS)
Douglas, C.; Roylance, D.
1982-01-01
The equations which govern the nonisothermal flow of reactive fluids are outlined, and the means by which finite element analysis is used to solve these equations for the sort of arbitrary boundary conditions encountered in industrial practice are described. The performance of the computer code is illustrated by several trial problems, selected more for their value in providing insight to polymer processing flows than as practical production problems. Although a good deal remains to be learned as to the performance and proper use of this numerical technique, it is undeniably useful in providing better understanding of today's complicated polymer processing problems.
Finite element solutions of free surface flows
NASA Technical Reports Server (NTRS)
Zarda, P. R.; Marcus, M. S.
1977-01-01
A procedure is presented for using NASTRAN to determine the flow field about arbitrarily shaped bodies in the presence of a free surface. The fundamental unknown of the problem is the velocity potential which must satisfy Laplace's equation in the fluid region. Boundary conditions on the free surface may involve second order derivatives in space and time. In cases involving infinite domains either a tractable radiation condition is applied at a truncated boundary or a series expansion is used and matched to the local finite elements. Solutions are presented for harmonic, transient, and steady state problems and compared to either exact solutions or other numerical solutions.
System software for the finite element machine
NASA Technical Reports Server (NTRS)
Crockett, T. W.; Knott, J. D.
1985-01-01
The Finite Element Machine is an experimental parallel computer developed at Langley Research Center to investigate the application of concurrent processing to structural engineering analysis. This report describes system-level software which has been developed to facilitate use of the machine by applications researchers. The overall software design is outlined, and several important parallel processing issues are discussed in detail, including processor management, communication, synchronization, and input/output. Based on experience using the system, the hardware architecture and software design are critiqued, and areas for further work are suggested.
NASA Technical Reports Server (NTRS)
Gelinas, R. J.; Doss, S. K.; Vajk, J. P.; Djomehri, J.; Miller, K.
1983-01-01
The mathematical background regarding the moving finite element (MFE) method of Miller and Miller (1981) is discussed, taking into account a general system of partial differential equations (PDE) and the amenability of the MFE method in two dimensions to code modularization and to semiautomatic user-construction of numerous PDE systems for both Dirichlet and zero-Neumann boundary conditions. A description of test problem results is presented, giving attention to aspects of single square wave propagation, and a solution of the heat equation.
2-D Finite Element Heat Conduction
Energy Science and Technology Software Center (ESTSC)
1989-10-30
AYER is a finite element program which implicitly solves the general two-dimensional equation of thermal conduction for plane or axisymmetric bodies. AYER takes into account the effects of time (transient problems), in-plane anisotropic thermal conductivity, a three-dimensional velocity distribution, and interface thermal contact resistance. Geometry and material distributions are arbitrary, and input is via subroutines provided by the user. As a result, boundary conditions, material properties, velocity distributions, and internal power generation may be mademore » functions of, e.g., time, temperature, location, and heat flux.« less
Iterative methods for mixed finite element equations
NASA Technical Reports Server (NTRS)
Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.
1985-01-01
Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.
Dynamic analysis of mechanisms by finite elements
Botsali, F.M.; Uenuevar, A.
1996-11-01
The need to increase productivity in order to decrease manufacturing costs lead to an increase in the working speeds of machines and mechanical systems used in manufacturing. A method is presented for investigating the dynamics of mechanisms with elastic links. Finite element method is used in the formulation of the dynamic problem. Modal transformation is used in order to reduce the number of equations of motion. Using the presented technique, elastic and rigid body motions of mechanism links are solved simultaneously. The presented method may be applied to spatial and open loop mechanisms including robot manipulators as well.
Kang, Kyoung-Tak; Kim, Sung-Hwan; Son, Juhyun; Lee, Young Han; Chun, Heoung-Jae
2015-12-01
The material properties of in vivo meniscal attachments were evaluated using a probabilistic finite element (FE) model and magnetic resonance imaging (MRI). MRI scans of five subjects were collected at full extension and 30°, 60°, and 90° flexion. One subject with radiographic evidence of no knee injury and four subjects with Kellgren-Lawrence score of 1 or 2 (two each) were recruited. Isovoxel sagittal three-dimensional cube sequences of the knee were acquired in extension and flexion. Menisci movement in flexion was investigated using sensitivity analysis based on the Monte Carlo method in order to generate a subject-specific FE model to evaluate significant factors. The material properties of horn attachment in the five-subject FE model were optimized to minimize the differences between meniscal movements in the FE model and MR images in flexion. We found no significant difference between normal and patient knees in flexion with regard to movement of anterior, posterior, medial, and lateral menisci or changes in height morphology. At 90° flexion, menisci movement was primarily influenced by posterior horn stiffness, followed by anterior horn stiffness, the transverse ligament, and posterior cruciate ligament. The optimized material properties model predictions for menisci motion were more accurate than the initial material properties model. The results of this approach suggest that the material properties of horn attachment, which affects the mobile characteristics of menisci, could be determined in vivo. Thus, this study establishes a basis for a future design method of attachment for tissue-engineered replacement menisci. PMID:26402397
Finite element modelling for materials with size effect
NASA Astrophysics Data System (ADS)
Swaddiwudhipong, S.; Hua, J.; Tho, K. K.; Liu, Z. S.
2006-10-01
This paper involves the formulation of the C0 finite elements incorporating the conventional mechanism-based strain gradient plasticity theory. Higher-order variables and consequently higher-order continuity conditions are not required allowing the direct applications of conventional plasticity algorithms in the existing finite element package. Implementation of the model whether analytically or computationally is efficient and straightforward as the strain gradient effect is confined in the material constitutive relation. The accuracy of the proposed elements in simulating the response of materials with strong size effect is verified through several numerical examples. The approach is applicable and valid to any materials with non-uniform plastic deformation larger than about 100 nm onwards. The proposed model becomes imperative when the deformation is less than 10 µm as classical plasticity is unable to describe the phenomenon comprehensively at this low level of deformation.
Finite element modeling of piezoelectric elements with complex electrode configuration
NASA Astrophysics Data System (ADS)
Paradies, R.; Schläpfer, B.
2009-02-01
It is well known that the material properties of piezoelectric materials strongly depend on the state of polarization of the individual element. While an unpolarized material exhibits mechanically isotropic material properties in the absence of global piezoelectric capabilities, the piezoelectric material properties become transversally isotropic with respect to the polarization direction after polarization. Therefore, for evaluating piezoelectric elements the material properties, including the coupling between the mechanical and the electromechanical behavior, should be addressed correctly. This is of special importance for the micromechanical description of piezoelectric elements with interdigitated electrodes (IDEs). The best known representatives of this group are active fiber composites (AFCs), macro fiber composites (MFCs) and the radial field diaphragm (RFD), respectively. While the material properties are available for a piezoelectric wafer with a homogeneous polarization perpendicular to its plane as postulated in the so-called uniform field model (UFM), the same information is missing for piezoelectric elements with more complex electrode configurations like the above-mentioned ones with IDEs. This is due to the inhomogeneous field distribution which does not automatically allow for the correct assignment of the material, i.e. orientation and property. A variation of the material orientation as well as the material properties can be accomplished by including the polarization process of the piezoelectric transducer in the finite element (FE) simulation prior to the actual load case to be investigated. A corresponding procedure is presented which automatically assigns the piezoelectric material properties, e.g. elasticity matrix, permittivity, and charge vector, for finite element models (FEMs) describing piezoelectric transducers according to the electric field distribution (field orientation and strength) in the structure. A corresponding code has been
NASA Technical Reports Server (NTRS)
Mei, Chuh; Pates, Carl S., III
1994-01-01
A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.
Finite element solution of transient fluid-structure interaction problems
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.
1991-01-01
A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.
Cyclic creep analysis from elastic finite-element solutions
NASA Technical Reports Server (NTRS)
Kaufman, A.; Hwang, S. Y.
1986-01-01
A uniaxial approach was developed for calculating cyclic creep and stress relaxation at the critical location of a structure subjected to cyclic thermomechanical loading. This approach was incorporated into a simplified analytical procedure for predicting the stress-strain history at a crack initiation site for life prediction purposes. An elastic finite-element solution for the problem was used as input for the simplified procedure. The creep analysis includes a self-adaptive time incrementing scheme. Cumulative creep is the sum of the initial creep, the recovery from the stress relaxation and the incremental creep. The simplified analysis was exercised for four cases involving a benchmark notched plate problem. Comparisons were made with elastic-plastic-creep solutions for these cases using the MARC nonlinear finite-element computer code.
Quantum algorithms and the finite element method
NASA Astrophysics Data System (ADS)
Montanaro, Ashley; Pallister, Sam
2016-03-01
The finite element method is used to approximately solve boundary value problems for differential equations. The method discretizes the parameter space and finds an approximate solution by solving a large system of linear equations. Here we investigate the extent to which the finite element method can be accelerated using an efficient quantum algorithm for solving linear equations. We consider the representative general question of approximately computing a linear functional of the solution to a boundary value problem and compare the quantum algorithm's theoretical performance with that of a standard classical algorithm—the conjugate gradient method. Prior work claimed that the quantum algorithm could be exponentially faster but did not determine the overall classical and quantum run times required to achieve a predetermined solution accuracy. Taking this into account, we find that the quantum algorithm can achieve a polynomial speedup, the extent of which grows with the dimension of the partial differential equation. In addition, we give evidence that no improvement of the quantum algorithm can lead to a superpolynomial speedup when the dimension is fixed and the solution satisfies certain smoothness properties.
Impeller deflection and modal finite element analysis.
Spencer, Nathan A.
2013-10-01
Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.
A finite element model for ultrasonic cutting.
Lucas, Margaret; MacBeath, Alan; McCulloch, Euan; Cardoni, Andrea
2006-12-22
Using a single-blade ultrasonic cutting device, a study of ultrasonic cutting of three very different materials is conducted using specimens of cheese, polyurethane foam and epoxy resin. Initial finite element models are created, based on the assumption that the ultrasonic blade causes a crack to propagate in a controlled mode 1 opening, and these are validated against experimental data from three point bend fracture tests and ultrasonic cutting experiments on the materials. Subsequently, the finite element model is developed to represent ultrasonic cutting of a multi-layered material. Materials are chosen whose properties allow a model to be developed that could represent a multi-layer food product or biological structure, to enable ultrasonic cutting systems to be designed for applications both in the field of food processing and surgical procedures. The model incorporates an estimation of the friction condition between the cutting blade and the material to be cut and allows adjustment of the frequency, cutting amplitude and cutting speed. PMID:16814351
Overcoming element erosion limitations within Lagrangian finite element codes
NASA Astrophysics Data System (ADS)
Vignjevic, Rade; Hughes, Kevin; Walker, Andrew; Taylor, Emma A.
2001-10-01
Lagrangian finite element methods have been used extensively in the past to study the non-linear transient behaviour of materials, ranging from crash test of cars to simulating bird strikes on planes.... However, as this type of space discretization does not allow for motion of the material through the mesh when modelling extremely large deformations, the mesh becomes highly distorted. This paper describes some limitations and applicability of this type of analysis for high velocity impacts. A method for dealing with this problem is by the erosion of elements is proposed where the main issue is the deformation of element failure strains. Results were compared with empirical perforation results and were found to be in good agreement. The results were then used to simulate high velocity impacts upon a multi-layered aluminium target, in order to predict a ballistic limit curve. LS-DYNA3D was used as the FE solver for all simulations. Meshes were generated with Truegrid.
Parallel finite element simulation of large ram-air parachutes
NASA Astrophysics Data System (ADS)
Kalro, V.; Aliabadi, S.; Garrard, W.; Tezduyar, T.; Mittal, S.; Stein, K.
1997-06-01
In the near future, large ram-air parachutes are expected to provide the capability of delivering 21 ton payloads from altitudes as high as 25,000 ft. In development and test and evaluation of these parachutes the size of the parachute needed and the deployment stages involved make high-performance computing (HPC) simulations a desirable alternative to costly airdrop tests. Although computational simulations based on realistic, 3D, time-dependent models will continue to be a major computational challenge, advanced finite element simulation techniques recently developed for this purpose and the execution of these techniques on HPC platforms are significant steps in the direction to meet this challenge. In this paper, two approaches for analysis of the inflation and gliding of ram-air parachutes are presented. In one of the approaches the point mass flight mechanics equations are solved with the time-varying drag and lift areas obtained from empirical data. This approach is limited to parachutes with similar configurations to those for which data are available. The other approach is 3D finite element computations based on the Navier-Stokes equations governing the airflow around the parachute canopy and Newtons law of motion governing the 3D dynamics of the canopy, with the forces acting on the canopy calculated from the simulated flow field. At the earlier stages of canopy inflation the parachute is modelled as an expanding box, whereas at the later stages, as it expands, the box transforms to a parafoil and glides. These finite element computations are carried out on the massively parallel supercomputers CRAY T3D and Thinking Machines CM-5, typically with millions of coupled, non-linear finite element equations solved simultaneously at every time step or pseudo-time step of the simulation.
A multigrid solution method for mixed hybrid finite elements
Schmid, W.
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
The finite element method: Is weighted volume integration essential?
NASA Astrophysics Data System (ADS)
Narasimhan, T. N.
In developing finite element equations for steady state and transient diffusion-type processes, weighted volume integration is generally assumed to be an intrinsic requirement. It is shown that such finite element equations can be developed directly and with ease on the basis of the elementary notion of a surface integral. Although weighted volume integration is mathematically correct, the algebraic equations stemming from it are no more informative than those derived directly on the basis of a surface integral. An interesting upshot is that the derivation based on surface integration does not require knowledge of a partial differential equation but yet is logically rigorous. It is commonly stated that weighted volume integration of the differential equation helps one carry out analyses of errors, convergence and existence, and therefore, weighted volume integration is preferable. It is suggested that because the direct derivation is logically consistent, numerical solutions emanating from it must be testable for accuracy and internal consistency in ways that the style of which may differ from the classical procedures of error- and convergence-analysis. In addition to simplifying the teaching of the finite element method, the thoughts presented in this paper may lead to establishing the finite element method independently in its own right, rather than it being a surrogate of the differential equation. The purpose of this paper is not to espouse any one particular way of formulating the finite element equations. Rather, it is one of introspection. The desire is to critically examine our traditional way of doing things and inquire whether alternate approaches may reveal to us new and interesting insights.
Elbow stress indices using finite element analysis
NASA Astrophysics Data System (ADS)
Yu, Lixin
Section III of the ASME Boiler and Pressure Vessel Code (the Code) specifies rules for the design of nuclear power plant components. NB-3600 of the Code presents a simplified design method using stress indices---Scalar Coefficients used the modify straight pipe stress equations so that they can be applied to elbows, tees and other piping components. The stress indices of piping components are allowed to be determined both analytically and experimentally. This study concentrates on the determination of B2 stress indices for elbow components using finite element analysis (FEA). First, the previous theoretical, numerical and experimental investigations on elbow behavior were comprehensively reviewed, as was the philosophy behind the use of stress indices. The areas of further research was defined. Then, a comprehensive investigation was carried out to determine how the finite element method should be used to correctly simulate an elbow's structural behavior. This investigation included choice of element type, convergence of mesh density, use of boundary restraint and a reconciliation study between FEA and laboratory experiments or other theoretical formulations in both elastic and elasto-plastic domain. Results from different computer programs were also compared. Reasonably good reconciliation was obtained. Appendix II of the Code describes the experimental method to determine B2 stress indices based on load-deflection curves. This procedure was used to compute the B2 stress indices for various loading modes on one particular elbow configuration. The B2 stress indices thus determined were found to be about half of the value calculated from the Code equation. Then the effect on B2 stress indices of those factors such as internal pressure and flange attachments were studied. Finally, the investigation was extended to other configurations of elbow components. A parametric study was conducted on different elbow sizes and schedules. Regression analysis was then used to
Mixed Finite Element Methods for Melt Migration
NASA Astrophysics Data System (ADS)
Taicher, A. L.
2013-12-01
Multi-phase flow arises during partial melting in the earth mantle, where the porosity is small and material has the characteristics of a compacting porous medium. The equations governing multi-phase flow have been specialized to partially molten materials by McKenzie and Fowler. Their model, also called a Darcy-Stokes system, is highly coupled and non-linear. Melt flow is governed by Darcy's Law while the high temperature, ductile creep of the solid matrix is modeled using viscous non-Newtonian Stokes rheology. In addition, the melt and solid pressures are related through a compaction relation. This nearly elliptic mechanical problem is then coupled with both solute transport and thermal evolution according to the enthalpy method developed by Katz. A suitable numerical method must solve the Darcy-Stokes problem in a manner compatible with the transport problem. Moreover, unlike most porous media problems, partially molten materials transition dynamically from non-porous solid to porous medium so must carefully account for the limit of zero porosity. The Darcy-Stokes system for modeling partial melting in the mantle is a novel problem. As far as we know, there currently does not exist a finite element solution in the literature solving these coupled equations. In particular, the mixed finite element method presents a good candidate because it works in both limiting cases: Darcy and incompressible Stokes flow. We present a mixed formulation for the Darcy-Stokes system. Next, we present novel elements of lowest order and compatible with both Darcy and Stokes flow Finally, we present our 2D mixed FEM code result for solving Stokes and Darcy flow as well as the coupled Darcy-Stokes system the mid-ocean ridge or corner flow problem.
Assessing performance and validating finite element simulations using probabilistic knowledge
Dolin, Ronald M.; Rodriguez, E. A.
2002-01-01
Two probabilistic approaches for assessing performance are presented. The first approach assesses probability of failure by simultaneously modeling all likely events. The probability each event causes failure along with the event's likelihood of occurrence contribute to the overall probability of failure. The second assessment method is based on stochastic sampling using an influence diagram. Latin-hypercube sampling is used to stochastically assess events. The overall probability of failure is taken as the maximum probability of failure of all the events. The Likelihood of Occurrence simulation suggests failure does not occur while the Stochastic Sampling approach predicts failure. The Likelihood of Occurrence results are used to validate finite element predictions.
North Atlantic Finite Element Ocean Modeling
NASA Astrophysics Data System (ADS)
Veluthedathekuzhiyil, Praveen
This thesis presents a modified version of the Finite Element Ocean Model (FEOM) developed at Alfred Wegener Institute for Polar and Marine Research (AWI) for the North Atlantic Ocean. A reasonable North Atlantic Ocean simulation is obtained against the observational data sets in a Control simulation (CS) where the surface boundary conditions are relaxed to a climatology. The vertical mixing in the model was tuned to represent convection in the model, also the horizontal mixing and diffusion coefficients to represent the changes in the resolution of the model’s unstructured grid. In addition, the open boundaries in the model are treated with a sponge layer where tracers are relaxed to climatology. The model is then further modified to accept the atmospheric flux forcing at the surface boundary with an added net heat flux correction and freshwater forcing from major rivers that are flowing into the North Atlantic Ocean. The impact of this boundary condition on the simulation results is then analyzed and shows many improvements albeit the drift in tracer properties around the Gulf Stream region remains as that of the CS case. However a comparison of the vertical sections at Cape Desolation and Cape Farewell with the available observational data sets shows many improvements in this simulation compared to that of the CS case. But the freshwater content in the Labrador Sea interior shows a continued drift as that of the CS case with an improvement towards the 10th model year. A detailed analysis of the boundary currents around the Labrador Sea shows the weak offshore transport of freshwater from the West Greenland Current (WGC) as one of the causes. To further improve the model and reasonably represent the boundary currents and associated sub-grid scale eddies in the model, a modified sub-grid scale parameterization based on Gent and McWilliams, (1990) is adopted. The sensitivity of using various approaches in the thickness diffusion parameter ( Kgm) for this
A Viscoelastic Hybrid Shell Finite Element
NASA Technical Reports Server (NTRS)
Johnson, Arthur
1999-01-01
An elastic large displacement thick-shell hybrid finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at he element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses in included in the mixed variational functional. Nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to numerically simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.
Recent advances in hybrid/mixed finite elements
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1985-01-01
In formulations of Hybrid/Mixed finite element methods respectively by the Hellinger-Reissner principle and the Hu-Washizu principle, the stress equilibrium equations are brought in as conditions of constraint through the introduction of additional internal displacement parameters. These two approaches are more flexible and have better computing efficiencies. A procedure for the choice of assumed stress terms for 3-D solids is suggested. Example solutions are given for plates and shells using the present formulations and the idea of semiloof elements.
Continuation finite element analysis of viscoelastic fluids
NASA Astrophysics Data System (ADS)
Chow, Tai-Whang
A finite element procedure using a mixed formulation and a predictor-corrector type continuation algorithm for the analysis of two dimensional steady state flows of viscoelastic fluids is described. As a simple but nontrivial test example, radial flow immenating from a line by the numerical discretization and believed to be the cause for previous numerical failures, are shown and branch solution paths are followed by step length adjustment and by convergent tolerance relaxation. A technique for jumping over bifurcation points is presented and used to increase the Weissenberg number with no apparent limit for the radial flow problem. A second example related to extrusion of viscoelastic material is also analyzed. Steady state velocity fields, deviatoric stress distributions and pressure distributions for several different Weissenberg numbers are presented with bifurcation points and turning points noted.
Quality management of finite element analysis
NASA Astrophysics Data System (ADS)
Barlow, John
1991-09-01
A quality management system covering the use of finite element analysis is described. The main topics are as follows: acquisition, development and verification of software (including the software suppliers software quality control system), support, documentation, error control, internal software, software acceptance and release; development and qualification of analysis methods, including software evaluation, analysis procedure qualification and documentation, procedure quality checks, control of analysis procedure errors; product design and integrity analysis, including project quality assurance and analysis planning, task specification and allocation, analysis, execution, results checking and analysis records. Other issues include the commercial and business advantages of quality systems, project and technical management and the training and experience of personnel. The items are correlated with the requirements of International Standard Organization 9001.
Finite-element modeling of nanoindentation
Knapp, J.A.; Follstaedt, D.M.; Myers, S.M.; Barbour, J.C.; Friedmann, T.A.
1999-02-01
Procedures have been developed based on finite-element modeling of nanoindentation data to obtain the mechanical properties of thin films and ion-beam-modified layers independently of the properties of the underlying substrates. These procedures accurately deduce the yield strength, Young{close_quote}s elastic modulus, and layer hardness from indentations as deep as 50{percent} of the layer thickness or more. We have used these procedures to evaluate materials ranging from ion implanted metals to deposited, diamond-like carbon layers. The technique increases the applicability of indentation testing to very thin layers, composite layers, and modulated compositions. This article presents an overview of the procedures involved and illustrates them with selected examples. {copyright} {ital 1999 American Institute of Physics.}
3-D Finite Element Heat Transfer
Energy Science and Technology Software Center (ESTSC)
1992-02-01
TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less
Finite element analysis: A boon to dentistry
Trivedi, Shilpa
2014-01-01
The finite element analysis (FEA) is an upcoming and significant research tool for biomechanical analyses in biological research. It is an ultimate method for modeling complex structures and analyzing their mechanical properties. In Implantology, FEA has been used to study the stress patterns in various implant components and also in the peri-implant bone. It is also useful for studying the biomechanical properties of implants as well as for predicting the success of implants in clinical condition. FEA of simulated traumatic loads can be used to understand the biomechanics of fracture. FEA has various advantages compared with studies on real models. The experiments are repeatable, there are no ethical considerations and the study designs may be modified and changed as per the requirement. There are certain limitations of FEA too. It is a computerized in vitro study in which clinical condition may not be completely replicated. So, further FEA research should be supplemented with clinical evaluation. PMID:25737944
Finite element simulation of pipe dynamic response
Slagis, G.C.; Litton, R.W.
1996-12-01
Nonlinear finite element dynamic analyses of the response of a pipe span to controlled-displacement, sinusoidal vibration have been performed. The objective of this preliminary study is to compare strain and acceleration response data to those generated by Beaney in the Berkeley Nuclear Laboratories experiments. Results for an unpressurized, 5 Hz, carbon steel pipe are in good agreement with the experiments. Hence, it appears that analytical simulation will be useful to assess seismic margins. Recommendations for additional studies are provided. The analyses confirm the test results--dynamic response is greatly attenuated by material plasticity. Analytical strains and accelerations are about 30% higher than test data. There are several possible explanations for the differences. To assess the effect of frequency on response, the length of the pipe span was increased. Analysis of the longer, 2 Hz, pipe span shows significantly greater cyclic strains than the 5 Hz span at the same input excitation levels.
Finite-element solutions for geothermal systems
NASA Technical Reports Server (NTRS)
Chen, J. C.; Conel, J. E.
1977-01-01
Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.
Optimizing electroslag cladding with finite element modeling
Li, M.V.; Atteridge, D.G.; Meekisho, L.
1996-12-31
Electroslag cladding of nickel alloys onto carbon steel propeller shafts was optimized in terms of interpass temperatures. A two dimensional finite element model was used in this study to analyze the heat transfer induced by multipass electroslag cladding. Changes of interpass temperatures during a cladding experiment with uniform initial temperature distribution on a section of shaft were first simulated. It was concluded that uniform initial temperature distribution would lead to interpass temperatures out of the optimal range if continuous cladding is expected. The difference in the cooling conditions among experimental and full size shafts and its impact on interpass temperatures during the cladding were discussed. Electroslag cladding onto a much longer shaft, virtually an semi infinite long shaft, was analyzed with specific reference to the practical applications of electroslag cladding. Optimal initial preheating temperature distribution was obtained for continuous cladding on full size shafts which would keep the interpass temperatures within the required range.
Finite element or Galerkin type semidiscrete schemes
NASA Technical Reports Server (NTRS)
Durgun, K.
1983-01-01
A finite element of Galerkin type semidiscrete method is proposed for numerical solution of a linear hyperbolic partial differential equation. The question of stability is reduced to the stability of a system of ordinary differential equations for which Dahlquist theory applied. Results of separating the part of numerical solution which causes the spurious oscillation near shock-like response of semidiscrete scheme to a step function initial condition are presented. In general all methods produce such oscillatory overshoots on either side of shocks. This overshoot pathology, which displays a behavior similar to Gibb's phenomena of Fourier series, is explained on the basis of dispersion of separated Fourier components which relies on linearized theory to be satisfactory. Expository results represented.
Boundary element and finite element coupling for aeroacoustics simulations
NASA Astrophysics Data System (ADS)
Balin, Nolwenn; Casenave, Fabien; Dubois, François; Duceau, Eric; Duprey, Stefan; Terrasse, Isabelle
2015-08-01
We consider the scattering of acoustic perturbations in the presence of a flow. We suppose that the space can be split into a zone where the flow is uniform and a zone where the flow is potential. In the first zone, we apply a Prandtl-Glauert transformation to recover the Helmholtz equation. The well-known setting of boundary element method for the Helmholtz equation is available. In the second zone, the flow quantities are space dependent, we have to consider a local resolution, namely the finite element method. Herein, we carry out the coupling of these two methods and present various applications and validation test cases. The source term is given through the decomposition of an incident acoustic field on a section of the computational domain's boundary. Validations against analytic, another numerical method and measurements on different test cases are presented.
Finite element analyses of CCAT preliminary design
NASA Astrophysics Data System (ADS)
Sarawit, Andrew T.; Kan, Frank W.
2014-07-01
This paper describes the development of the CCAT telescope finite element model (FEM) and the analyses performed to support the preliminary design work. CCAT will be a 25 m diameter telescope operating in the 0.2 to 2 mm wavelength range. It will be located at an elevation of 5600 m on Cerro Chajnantor in Northern Chile, near ALMA. The telescope will be equipped with wide-field cameras and spectrometers mounted at the two Nasmyth foci. The telescope will be inside an enclosure to protect it from wind buffeting, direct solar heating, and bad weather. The main structures of the telescope include a steel Mount and a carbon-fiber-reinforced-plastic (CFRP) primary truss. The finite element model developed in this study was used to perform modal, frequency response, seismic response spectrum, stress, and deflection analyses of telescope. Modal analyses of telescope were performed to compute the structure natural frequencies and mode shapes and to obtain reduced order modal output at selected locations in the telescope structure to support the design of the Mount control system. Modal frequency response analyses were also performed to compute transfer functions at these selected locations. Seismic response spectrum analyses of the telescope subject to the Maximum Likely Earthquake were performed to compute peak accelerations and seismic demand stresses. Stress analyses were performed for gravity load to obtain gravity demand stresses. Deflection analyses for gravity load, thermal load, and differential elevation drive torque were performed so that the CCAT Observatory can verify that the structures meet the stringent telescope surface and pointing error requirements.
Crystal level simulations using Eulerian finite element methods
Becker, R; Barton, N R; Benson, D J
2004-02-06
Over the last several years, significant progress has been made in the use of crystal level material models in simulations of forming operations. However, in Lagrangian finite element approaches simulation capabilities are limited in many cases by mesh distortion associated with deformation heterogeneity. Contexts in which such large distortions arise include: bulk deformation to strains approaching or exceeding unity, especially in highly anisotropic or multiphase materials; shear band formation and intersection of shear bands; and indentation with sharp indenters. Investigators have in the past used Eulerian finite element methods with material response determined from crystal aggregates to study steady state forming processes. However, Eulerian and Arbitrary Lagrangian-Eulerian (ALE) finite element methods have not been widely utilized for simulation of transient deformation processes at the crystal level. The advection schemes used in Eulerian and ALE codes control mesh distortion and allow for simulation of much larger total deformations. We will discuss material state representation issues related to advection and will present results from ALE simulations.
NASA Astrophysics Data System (ADS)
Goyal, Sunil; Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Mathew, M. D.
2011-08-01
Creep studies were carried out on 2.25Cr-1Mo steel base metal and its fusion-welded weldments at 823 K over the stress range 100-240 MPa. The weldment possessed lower creep rupture strength than the base metal due to type IV failure at the outer edge of the heat-affected zone (HAZ). Premature failure of the weldment was associated with pronounced creep cavitation accompanied with localized creep deformation in the soft intercritical region of the HAZ that was sandwiched between relatively higher creep deformation-resistant microstructural regions. The cavitation was associated with coarse intergranular precipitates in the intercritical region of the HAZ. The type IV cracking in the intercritical region of the HAZ was found to initiate deep inside the weldment and propagate towards the specimen surface. Finite element analysis of stress and strain distributions across the weldment was carried out considering the micro-mechanical strength inhomogeneity across it to explain the observed features of type IV cracking. The estimated higher von-Mises and principal stresses deep inside the intercritical region of the HAZ of the weldment led to the localized creep deformation and preferential cavity nucleation and growth, resulting in type IV failure of the weldment. The role of intergranular precipitate particles in the intercritical region of the HAZ in facilitating creep cavity nucleation by the exhaustion of creep ductility of the material close to the precipitate was corroborated from finite element analysis of stress and strain distribution around the precipitates.
Finite element structural redesign by large admissible perturbations
NASA Technical Reports Server (NTRS)
Bernitsas, Michael M.; Beyko, E.; Rim, C. W.; Alzahabi, B.
1991-01-01
In structural redesign, two structural states are involved; the baseline (known) State S1 with unacceptable performance, and the objective (unknown) State S2 with given performance specifications. The difference between the two states in performance and design variables may be as high as 100 percent or more depending on the scale of the structure. A Perturbation Approach to Redesign (PAR) is presented to relate any two structural states S1 and S2 that are modeled by the same finite element model and represented by different values of the design variables. General perturbation equations are derived expressing implicitly the natural frequencies, dynamic modes, static deflections, static stresses, Euler buckling loads, and buckling modes of the objective S2 in terms of its performance specifications, and S1 data and Finite Element Analysis (FEA) results. Large Admissible Perturbation (LEAP) algorithms are implemented in code RESTRUCT to define the objective S2 incrementally without trial and error by postprocessing FEA results of S1 with no additional FEAs. Systematic numerical applications in redesign of a 10 element 48 degree of freedom (dof) beam, a 104 element 192 dof offshore tower, a 64 element 216 dof plate, and a 144 element 896 dof cylindrical shell show the accuracy, efficiency, and potential of PAR to find an objective state that may differ 100 percent from the baseline design.
Finite-element time evolution operator for the anharmonic oscillator
NASA Technical Reports Server (NTRS)
Milton, Kimball A.
1995-01-01
The finite-element approach to lattice field theory is both highly accurate (relative errors approximately 1/N(exp 2), where N is the number of lattice points) and exactly unitary (in the sense that canonical commutation relations are exactly preserved at the lattice sites). In this talk I construct matrix elements for dynamical variables and for the time evolution operator for the anharmonic oscillator, for which the continuum Hamiltonian is H = p(exp 2)/2 + lambda q(exp 4)/4. Construction of such matrix elements does not require solving the implicit equations of motion. Low order approximations turn out to be extremely accurate. For example, the matrix element of the time evolution operator in the harmonic oscillator ground state gives a results for the anharmonic oscillator ground state energy accurate to better than 1 percent, while a two-state approximation reduces the error to less than 0.1 percent.
Finite-element simulation of thermoemission electron guns
NASA Astrophysics Data System (ADS)
Greenfield, D.
2006-05-01
The peculiarity of the numeric simulation of the thermoemission electron guns consists in the principal necessity of taking into account the contribution of the electrons' charge into the potential distribution in the beam formation region. Ths fact makes the mathematical model essentially nonlinear especially in the high-perveance operation mode. Moreover, the charge density is extremely high in the vicinity of emitting surfaces, rising infinitely in the limit of zero initial velocities. A special semi-analytical approach has been applied to deal with the charge singularity. Being combined with traditional finite-element numerical techniques, this approach provides an efficient way to simulate thermoemission electron guns.
NASA Technical Reports Server (NTRS)
Namburu, Raju R.; Tamma, Kumar K.
1993-01-01
An integrated finite element approach is presented for interdisciplinary thermal-structural problems. Of the various numerical approaches, finite element methods with direct time integration procedures are most widely used for these nonlinear problems. Traditionally, combined thermal-structural analysis is performed sequentially by transferring data between thermal and structural analysis. This approach is generally effective and routinely used. However, to solve the combined thermal-structural problems, this approach results in cumbersome data transfer, incompatible algorithmic representations, and different discretized element formulations. The integrated approach discussed in this paper effectively combines thermal and structural fields, thus overcoming the above major shortcomings. The approach follows Lax-Wendroff type finite element formulations with flux and stress based representations. As a consequence, this integrated approach uses common algorithmic representations and element formulations. Illustrative test examples show that the approach is effective for integrated thermal-structural problems.
Impact of new computing systems on finite element computations
NASA Technical Reports Server (NTRS)
Noor, A. K.; Storassili, O. O.; Fulton, R. E.
1983-01-01
Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified.
Improved finite-element methods for rotorcraft structures
NASA Technical Reports Server (NTRS)
Hinnant, Howard E.
1991-01-01
An overview of the research directed at improving finite-element methods for rotorcraft airframes is presented. The development of a modification to the finite element method which eliminates interelement discontinuities is covered. The following subject areas are discussed: geometric entities, interelement continuity, dependent rotational degrees of freedom, and adaptive numerical integration. This new methodology is being implemented as an anisotropic, curvilinear, p-version, beam, shell, and brick finite element program.
NASA Technical Reports Server (NTRS)
Fix, G. J.; Rose, M. E.
1983-01-01
A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.
A multi-microprocessor system for finite element structural analysis
NASA Technical Reports Server (NTRS)
Jordan, H. F.; Sawyer, P. L.
1978-01-01
During the last few years, advances in microprocessor technology have spurred a renewed interest in special-purpose computers. The microprocessor has become small, inexpensive, and powerful enough to be considered as a building block for special-purpose hardware. A description is presented of the architecture of a prototype 'finite element machine' currently being built. Attention is given to details regarding the finite element analysis problem, the arrangement of the processors as finite element nodes in the structural model, the influence of the architecture on the solution algorithm, interprocessor communication primitives, and the performance of the finite element machine.
Ablative Thermal Response Analysis Using the Finite Element Method
NASA Technical Reports Server (NTRS)
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
Kim, S.
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.
1986-01-01
The space shuttle main engine (SSME) has extremely complex internal flow structure. The geometry of the flow domain is three-dimensional with complicated topology. The flow is compressible, viscous, and turbulent with large gradients in flow quantities and regions of recirculations. The analysis of the flow field in SSME involves several tedious steps. One is the geometrical modeling of the particular zone of the SSME being studied. Accessing the geometry definition, digitalizing it, and developing surface interpolations suitable for an interior grid generator require considerable amount of manual labor. There are several types of grid generators available with some general-purpose finite element programs. An efficient and robust computational scheme for solving 3D Navier-Stokes equations has to be implemented. Post processing software has to be adapted to visualize and analyze the computed 3D flow field. The progress made in a project to develop software for the analysis of the flow is discussed. The technical approach to the development of the finite element scheme and the relaxation procedure are discussed. The three dimensional finite element code for the compressible Navier-Stokes equations is listed.
Evaluation of a Kinematically-Driven Finite Element Footstrike Model.
Hannah, Iain; Harland, Andy; Price, Dan; Schlarb, Heiko; Lucas, Tim
2016-06-01
A dynamic finite element model of a shod running footstrike was developed and driven with 6 degree of freedom foot segment kinematics determined from a motion capture running trial. Quadratic tetrahedral elements were used to mesh the footwear components with material models determined from appropriate mechanical tests. Model outputs were compared with experimental high-speed video (HSV) footage, vertical ground reaction force (GRF), and center of pressure (COP) excursion to determine whether such an approach is appropriate for the development of athletic footwear. Although unquantified, good visual agreement to the HSV footage was observed but significant discrepancies were found between the model and experimental GRF and COP readings (9% and 61% of model readings outside of the mean experimental reading ± 2 standard deviations, respectively). Model output was also found to be highly sensitive to input kinematics with a 120% increase in maximum GRF observed when translating the force platform 2 mm vertically. While representing an alternative approach to existing dynamic finite element footstrike models, loading highly representative of an experimental trial was not found to be achievable when employing exclusively kinematic boundary conditions. This significantly limits the usefulness of employing such an approach in the footwear development process. PMID:26671721
Use of edge-based finite elements for solving three dimensional scattering problems
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Jin, J. M.; Volakis, John L.
1991-01-01
Edge based finite elements are free from drawbacks associated with node based vectorial finite elements and are, therefore, ideal for solving 3-D scattering problems. The finite element discretization using edge elements is checked by solving for the resonant frequencies of a closed inhomogeneously filled metallic cavity. Great improvements in accuracy are observed when compared to the classical node based approach with no penalty in terms of computational time and with the expected absence of spurious modes. A performance comparison between the edge based tetrahedra and rectangular brick elements is carried out and tetrahedral elements are found to be more accurate than rectangular bricks for a given storage intensity. A detailed formulation for the scattering problem with various approaches for terminating the finite element mesh is also presented.
Liu, Yanhui; Zhang, Peihua
2016-09-01
This paper presents a study of the compression behaviors of fully covered biodegradable polydioxanone biliary stents (FCBPBs) developed for human body by finite element method. To investigate the relationship between the compression force and structure parameter (monofilament diameter and braid-pin number), nine numerical models based on actual biliary stent were established, the simulation and experimental results are in good agreement with each other when calculating the compression force derived from both experiment and simulation results, indicating that the simulation results can be provided a useful reference to the investigation of biliary stents. The stress distribution on FCBPBSs was studied to optimize the structure of FCBPBSs. In addition, the plastic dissipation analysis and plastic strain of FCBPBSs were obtained via the compression simulation, revealing the structure parameter effect on the tolerance. PMID:27183432
Massively parallel computation of RCS with finite elements
NASA Technical Reports Server (NTRS)
Parker, Jay
1993-01-01
One of the promising combinations of finite element approaches for scattering problems uses Whitney edge elements, spherical vector wave-absorbing boundary conditions, and bi-conjugate gradient solution for the frequency-domain near field. Each of these approaches may be criticized. Low-order elements require high mesh density, but also result in fast, reliable iterative convergence. Spherical wave-absorbing boundary conditions require additional space to be meshed beyond the most minimal near-space region, but result in fully sparse, symmetric matrices which keep storage and solution times low. Iterative solution is somewhat unpredictable and unfriendly to multiple right-hand sides, yet we find it to be uniformly fast on large problems to date, given the other two approaches. Implementation of these approaches on a distributed memory, message passing machine yields huge dividends, as full scalability to the largest machines appears assured and iterative solution times are well-behaved for large problems. We present times and solutions for computed RCS for a conducting cube and composite permeability/conducting sphere on the Intel ipsc860 with up to 16 processors solving over 200,000 unknowns. We estimate problems of approximately 10 million unknowns, encompassing 1000 cubic wavelengths, may be attempted on a currently available 512 processor machine, but would be exceedingly tedious to prepare. The most severe bottlenecks are due to the slow rate of mesh generation on non-parallel machines and the large transfer time from such a machine to the parallel processor. One solution, in progress, is to create and then distribute a coarse mesh among the processors, followed by systematic refinement within each processor. Elimination of redundant node definitions at the mesh-partition surfaces, snap-to-surface post processing of the resulting mesh for good modelling of curved surfaces, and load-balancing redistribution of new elements after the refinement are auxiliary
Laterally displaced pipelines: Finite element analysis
Altaee, A.; Boivin, R.
1995-12-31
The rate effect of lateral soil movement against buried pipes in clay soils is investigated in finite element analyzes using two different computer programs, AGAC and CRISP. Rapid and slow ground movements are considered in ideal undrained and ideal drained analysis, respectively, which represent the two extreme boundaries with respect to rate of loading (rate of ground movement). The analyses address a typical full-scale buried pipe as described by Rizkalla et al. (1992). The pipe considered for the analysis has a diameter of 0.914 m and is placed in a backfilled 2.0 m wide and 1.8 m deep excavation. Results from both AGAC and CRISP analyzes are similar in terms of total lateral force versus lateral pipe movement. For example, both programs indicate the same clear difference in the resulting pipe movement for cases of rapid and slow ground movement, especially at large movement. When the ground movement is rapid, the pipe moves both laterally and upward. One the other hand, when the ground movement is slow, the pipe experiences only lateral movement and no noticeable vertical movement. The total force acting on the pipe (and stresses and strains within the pipe) is larger for the slow rate of loading. The results of analyzes presented herein agree with results of tests on a 5.5 m beam centrifuge performed by the Center for Cold Oceans Resources Engineering.
Finite element modeling of retinal prosthesis mechanics
NASA Astrophysics Data System (ADS)
Basinger, B. C.; Rowley, A. P.; Chen, K.; Humayun, M. S.; Weiland, J. D.
2009-10-01
Epiretinal prostheses used to treat degenerative retina diseases apply stimulus via an electrode array fixed to the ganglion cell side of the retina. Mechanical pressure applied by these arrays to the retina, both during initial insertion and throughout chronic use, could cause sufficient retinal damage to reduce the device's effectiveness. In order to understand and minimize potential mechanical damage, we have used finite element analysis to model mechanical interactions between an electrode array and the retina in both acute and chronic loading configurations. Modeling indicates that an acute tacking force distributes stress primarily underneath the tack site and heel edge of the array, while more moderate chronic stresses are distributed more evenly underneath the array. Retinal damage in a canine model chronically implanted with a similar array occurred in correlating locations, and model predictions correlate well with benchtop eyewall compression tests. This model provides retinal prosthesis researchers with a tool to optimize the mechanical electrode array design, but the techniques used here represent a unique effort to combine a modifiable device and soft biological tissues in the same model and those techniques could be extended to other devices that come into mechanical contact with soft neural tissues.
Finite Element Modeling of Human Placental Tissue
Yu, Mao; Manoogian, Sarah; Duma, Stefan M.; Stitzel, Joel D.
2009-01-01
Motor vehicle crashes account for a large portion of placental abruption and fetal losses. To better understand the material properties of the human placenta, a Finite Element (FE) model of human placenta tissue was created and verified using data from uniaxial tension tests. Sixty-four tensile tests at three different strain rates of 7% strain/s, 70% strain/s, and 700% strain/s from six whole human placentas were used for model development. Nominal stresses were calculated by dividing forces at the grips by the original cross-sectional area. Nominal strains were calculated by dividing cross-head displacement by the original gauge length. A detailed methodology for interpreting experimental data for application to material model development is presented. A model of the tension coupon was created in LS-DYNA and stretched in the same manner as the uniaxial tension tests. The behavior of the material was optimized to the uniaxial tension test using a multi-island genetic algorithm. The results demonstrate good correlation between experiments and the model, with an average difference of 2% between the optimized FE and experimental first principal stress at the termination state. The material parameters found in this study can be utilized in FE models of placental tissues for behavior under dynamic loading. PMID:20184849
TACO: a finite element heat transfer code
Mason, W.E. Jr.
1980-02-01
TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code.
Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms
NASA Technical Reports Server (NTRS)
Prosser, W. H.; Hamstad, M. A.; Gary, J.; OGallagher, A.
1998-01-01
A comparison was made between two approaches to predict acoustic emission waveforms in thin plates. A normal mode solution method for Mindlin plate theory was used to predict the response of the flexural plate mode to a point source, step-function load, applied on the plate surface. The second approach used a dynamic finite element method to model the problem using equations of motion based on exact linear elasticity. Calculations were made using properties for both isotropic (aluminum) and anisotropic (unidirectional graphite/epoxy composite) materials. For simulations of anisotropic plates, propagation along multiple directions was evaluated. In general, agreement between the two theoretical approaches was good. Discrepancies in the waveforms at longer times were caused by differences in reflections from the lateral plate boundaries. These differences resulted from the fact that the two methods used different boundary conditions. At shorter times in the signals, before reflections, the slight discrepancies in the waveforms were attributed to limitations of Mindlin plate theory, which is an approximate plate theory. The advantages of the finite element method are that it used the exact linear elasticity solutions, and that it can be used to model real source conditions and complicated, finite specimen geometries as well as thick plates. These advantages come at a cost of increased computational difficulty, requiring lengthy calculations on workstations or supercomputers. The Mindlin plate theory solutions, meanwhile, can be quickly generated on personal computers. Specimens with finite geometry can also be modeled. However, only limited simple geometries such as circular or rectangular plates can easily be accommodated with the normal mode solution technique. Likewise, very limited source configurations can be modeled and plate theory is applicable only to thin plates.
Finite Element Analysis (FEA) in Design and Production.
ERIC Educational Resources Information Center
Waggoner, Todd C.; And Others
1995-01-01
Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)
3D finite element simulations of high velocity projectile impact
NASA Astrophysics Data System (ADS)
Ožbolt, Joško; İrhan, Barış; Ruta, Daniela
2015-09-01
An explicit three-dimensional (3D) finite element (FE) code is developed for the simulation of high velocity impact and fragmentation events. The rate sensitive microplane material model, which accounts for large deformations and rate effects, is used as a constitutive law. In the code large deformation frictional contact is treated by forward incremental Lagrange multiplier method. To handle highly distorted and damaged elements the approach based on the element deletion is employed. The code is then used in 3D FE simulations of high velocity projectile impact. The results of the numerical simulations are evaluated and compared with experimental results. It is shown that it realistically predicts failure mode and exit velocities for different geometries of plain concrete slab. Moreover, the importance of some relevant parameters, such as contact friction, rate sensitivity, bulk viscosity and deletion criteria are addressed.
A triangular thin shell finite element: Nonlinear analysis. [structural analysis
NASA Technical Reports Server (NTRS)
Thomas, G. R.; Gallagher, R. H.
1975-01-01
Aspects of the formulation of a triangular thin shell finite element which pertain to geometrically nonlinear (small strain, finite displacement) behavior are described. The procedure for solution of the resulting nonlinear algebraic equations combines a one-step incremental (tangent stiffness) approach with one iteration in the Newton-Raphson mode. A method is presented which permits a rational estimation of step size in this procedure. Limit points are calculated by means of a superposition scheme coupled to the incremental side of the solution procedure while bifurcation points are calculated through a process of interpolation of the determinants of the tangent-stiffness matrix. Numerical results are obtained for a flat plate and two curved shell problems and are compared with alternative solutions.
Finite-element numerical modeling of atmospheric turbulent boundary layer
NASA Technical Reports Server (NTRS)
Lee, H. N.; Kao, S. K.
1979-01-01
A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.
Galerkin finite-element simulation of a geothermal reservoir
Mercer, J.W., Jr.; Pinder, G.F.
1973-01-01
The equations describing fluid flow and energy transport in a porous medium can be used to formulate a mathematical model capable of simulating the transient response of a hot-water geothermal reservoir. The resulting equations can be solved accurately and efficiently using a numerical scheme which combines the finite element approach with the Galerkin method of approximation. Application of this numerical model to the Wairakei geothermal field demonstrates that hot-water geothermal fields can be simulated using numerical techniques currently available and under development. ?? 1973.
Symbolic derivation of material property matrices in finite element analysis
NASA Technical Reports Server (NTRS)
Tan, H. Q.
1988-01-01
The principles and operation of MMAX, a symbolic-computation program which automates the process of generating property matrices for structural materials, are briefly described and illustrated with sample analyses of a rubberlike material and an elastoplastic material. MMAX is written in LISP under the symbolic finite-element generator FINGER and the general symbolic manipulator MACSYMA; it first derives the formulas required by mathematical manipulation, and then translates the formulas into FORTRAN code, adapted to the particular type of machine to be used for the numerical calculations. This approach is shown to combine efficiently the advantages of symbolic and numerical computation for engineering applications.
FINITE-ELEMENT ANALYSIS OF MULTIPHASE IMMISCIBLE FLOW THROUGH SOILS
A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equation...
A computer graphics program for general finite element analyses
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Sawyer, L. M.
1978-01-01
Documentation for a computer graphics program for displays from general finite element analyses is presented. A general description of display options and detailed user instructions are given. Several plots made in structural, thermal and fluid finite element analyses are included to illustrate program options. Sample data files are given to illustrate use of the program.
Solution-adaptive finite element method in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1993-01-01
Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.
Finite element meshing of ANSYS (trademark) solid models
NASA Technical Reports Server (NTRS)
Kelley, F. S.
1987-01-01
A large scale, general purpose finite element computer program, ANSYS, developed and marketed by Swanson Analysis Systems, Inc. is discussed. ANSYS was perhaps the first commercially available program to offer truly interactive finite element model generation. ANSYS's purpose is for solid modeling. This application is briefly discussed and illustrated.
Modular Finite Element Methods Library Version: 1.0
Energy Science and Technology Software Center (ESTSC)
2010-06-22
MFEM is a general, modular library for finite element methods. It provides a variety of finite element spaces and bilinear/linear forms in 2D and 3D. MFEM also includes classes for dealing with various types of meshes and their refinement.
A Method of Modeling Fabric Shear using Finite Element Analysis
NASA Astrophysics Data System (ADS)
Chichani, Swapnil; Guha, Anirban
2015-04-01
Fabric modeling may be attempted by modeling fibres or yarns or small fabric units. The first is computationally intensive while the third does not allow relationships between the fabric's structure and its mechanical properties to be predicted. The second approach has been the most widely used so far. Out of the various ways in which this has been attempted, the finite element approach offers high flexibility while allowing the procedure to be relatively simple because of the availability of user-friendly softwares. This work explores a two-step finite element approach for modeling in-plane fabric shear. A major innovation of the modeling process was that the path of yarns in the fabric was allowed to evolve through the modeling process rather than being pre-defined. The relationship between shear angle and shear stress predicted by this model was compared with that obtained from a picture frame shear experiment. It was found that modeling the yarn with a set of anisotropic properties, gave very good correlation with experimental results.
Turner, C. David; Kotulski, Joseph Daniel; Pasik, Michael Francis
2005-12-01
This report investigates the feasibility of applying Adaptive Mesh Refinement (AMR) techniques to a vector finite element formulation for the wave equation in three dimensions. Possible error estimators are considered first. Next, approaches for refining tetrahedral elements are reviewed. AMR capabilities within the Nevada framework are then evaluated. We summarize our conclusions on the feasibility of AMR for time-domain vector finite elements and identify a path forward.
Advances in 3D electromagnetic finite element modeling
Nelson, E.M.
1997-08-01
Numerous advances in electromagnetic finite element analysis (FEA) have been made in recent years. The maturity of frequency domain and eigenmode calculations, and the growth of time domain applications is briefly reviewed. A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will also be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis is also discussed.
Bourke, Jason; Wroe, Stephen; Moreno, Karen; McHenry, Colin; Clausen, Philip
2008-01-01
Models of the mammalian jaw have predicted that bite force is intimately linked to jaw gape and to tooth position. Despite widespread use, few empirical studies have provided evidence to validate these models in non-human mammals and none have considered the influence of gape angle on the distribution of stress. Here using a multi-property finite element (FE) model of Canis lupus dingo, we examined the influence of gape angle and bite point on both bite force and cranial stress. Bite force data in relation to jaw gape and along the tooth row, are in broad agreement with previously reported results. However stress data showed that the skull of C. l. dingo is mechanically suited to withstand stresses at wide gapes; a result that agreed well with previously held views regarding carnivoran evolution. Stress data, combined with bite force information, suggested that there is an optimal bite angle of between 25 degrees and 35 degrees in C. l. dingo. The function of these rather small bite angles remains unclear. PMID:18493603
NASA Astrophysics Data System (ADS)
Li, Zhe; Leduc, Julien; Nunez-Ramirez, Jorge; Combescure, Alain; Marongiu, Jean-Christophe
2015-04-01
We propose a non-intrusive numerical coupling method for transient fluid-structure interaction (FSI) problems simulated by means of different discretization methods: smoothed particle hydrodynamics (SPH) and finite element (FE) methods for the fluid and the solid sub-domains, respectively. As a partitioned coupling method, the present algorithm can ensure a zero interface energy during the whole period of numerical simulation, even in the presence of large interface motion. In other words, the time integrations of the two sub-domains (second order Runge-Kutta scheme for fluid and Newmark integrator for solid) are synchronized. Thanks to this energy-conserving feature, one can preserve the minimal order of accuracy in time and the numerical stability of the FSI simulations, which are validated with a 1D and a 2D trivial numerical test cases. Additionally, some other 2D FSI simulations involving large interface motion have also been carried out with the proposed SPH-FE coupling method. Finally, an example of aquaplaning problem is given in order to show the feasibility of such coupling method in multi-dimensional applications with complicated structural geometries.
Interpolation functions in the immersed boundary and finite element methods
NASA Astrophysics Data System (ADS)
Wang, Xingshi; Zhang, Lucy T.
2010-03-01
In this paper, we review the existing interpolation functions and introduce a finite element interpolation function to be used in the immersed boundary and finite element methods. This straightforward finite element interpolation function for unstructured grids enables us to obtain a sharper interface that yields more accurate interfacial solutions. The solution accuracy is compared with the existing interpolation functions such as the discretized Dirac delta function and the reproducing kernel interpolation function. The finite element shape function is easy to implement and it naturally satisfies the reproducing condition. They are interpolated through only one element layer instead of smearing to several elements. A pressure jump is clearly captured at the fluid-solid interface. Two example problems are studied and results are compared with other numerical methods. A convergence test is thoroughly conducted for the independent fluid and solid meshes in a fluid-structure interaction system. The required mesh size ratio between the fluid and solid domains is obtained.
Regularised finite element model updating using measured incomplete modal data
NASA Astrophysics Data System (ADS)
Chen, Hua-Peng; Maung, Than Soe
2014-10-01
This paper presents an effective approach for directly updating finite element model from measured incomplete vibration modal data with regularised algorithms. The proposed method is based on the relationship between the perturbation of structural parameters such as stiffness change and the modal data measurements of the tested structure such as measured mode shape readings. In order to adjust structural parameters at detailed locations, structural updating parameters will be selected at critical point level to reflect the modelling errors at the connections of structural elements. These updating parameters are then evaluated by an iterative or a direct solution procedure, which gives optimised solutions in the least squares sense without requiring an optimisation technique. In order to reduce the influence of modal measurement uncertainty, the Tikhonov regularisation method incorporating the L-curve criterion is employed to produce reliable solutions for the chosen updating parameters. Numerical simulation investigations and experimental studies for the laboratory tested space steel frame structure are undertaken to verify the accuracy and effectiveness of the proposed methods for adjusting the stiffness at the joints of structural members. The results demonstrate that the proposed methods provide reliable estimates of finite element model updating using the measured incomplete modal data.
Comparison of finite difference and finite element solutions to the variably saturated flow equation
NASA Astrophysics Data System (ADS)
Simpson, M. J.; Clement, T. P.
2003-01-01
Numerical solutions to the equation governing variably saturated flow are usually obtained using either the finite difference (FD) method or the finite element (FE) method. A detailed comparison of these methods shows that the main difference between them is in how the numerical schemes spatially average the variation of material properties. Further differences are also observed in the way that flux boundaries are represented in FE and FD methods. A modified finite element (MFE) algorithm is used to explore the significance of these differences. The MFE algorithm enables a direct comparison with a typical FD solution scheme, and explicitly demonstrates the differences between FE and FD methods. The MFE algorithm provides an improved approximation to the partial differential equation over the usual FD approach while being computationally simpler to implement than the standard FE solution. One of the main limitations of the MFE algorithm is that the algorithm was developed by imposing several restrictions upon the more general FE solution; however, the MFE is shown to be preferable over the usual FE and FD solutions for some of the test problems considered in this study. The comparison results show that the FE (or MFE) solution can avoid the erroneous results encountered in the FD solution for coarsely discretized problems. The improvement in the FE solution is attributed to the broader hydraulic conductivity averaging and differences in the representation of flux type boundaries.
NASA Technical Reports Server (NTRS)
Clark, J. H.; Kalinowski, A. J.; Wagner, C. A.
1983-01-01
An analysis is given using finite element techniques which addresses the propagaton of a uniform incident pressure wave through a finite diameter axisymmetric tapered plate immersed in a fluid. The approach utilized in developing a finite element solution to this problem is based upon a technique for axisymmetric fluid structure interaction problems. The problem addressed is that of a 10 inch diameter axisymmetric fixed plate totally immersed in a fluid. The plate increases in thickness from approximately 0.01 inches thick at the center to 0.421 inches thick at a radius of 5 inches. Against each face of the tapered plate a cylindrical fluid volume was represented extending five wavelengths off the plate in the axial direction. The outer boundary of the fluid and plate regions were represented as a rigid encasement cylinder as was nearly the case in the physical problem. The primary objective of the analysis is to determine the form of the transmitted pressure distribution on the downstream side of the plate.
Higher-order adaptive finite-element methods for Kohn–Sham density functional theory
Motamarri, P.; Nowak, M.R.; Leiter, K.; Knap, J.; Gavini, V.
2013-11-15
We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688
Higher-order adaptive finite-element methods for Kohn-Sham density functional theory
NASA Astrophysics Data System (ADS)
Motamarri, P.; Nowak, M. R.; Leiter, K.; Knap, J.; Gavini, V.
2013-11-01
We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn-Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss-Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100-200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn-Sham DFT problem. Our studies suggest that staggering computational savings-of the order of 1000-fold-relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn-Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688 atoms using
A modified finite element procedure for underwater shock analysis
Chan, S.K.
1990-12-31
Using the regular finite element method for analyzing wave propagation problems presents difficulties: (a) The finite element mesh gives spurious reflection of the traveling wave and (b) Since a finite element model has to have a finite boundary, the wave is reflected by the outside boundary. However, for underwater shock problems, only the response of the structure is of major interest, not the behavior of the wave itself, and the shock wave can be assumed to be spherical. By taking advantage of the limited scope of the underwater shock problem, a finite element procedure can be developed that eliminates the above difficulties. This procedure not only can give very accurate solutions but it may also include structural nonlinearities and effect of cavitation.
Accelerated finite element elastodynamic simulations using the GPU
Huthwaite, Peter
2014-01-15
An approach is developed to perform explicit time domain finite element simulations of elastodynamic problems on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy’ partitioner and a new, more efficient ‘aligned’ partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The software is applied to three models from the fields of non-destructive testing, vibrations and geophysics, demonstrating a memory bandwidth of very close to the card's maximum, reflecting the bandwidth-limited nature of the algorithm. Comparison with Abaqus, a widely used commercial CPU equivalent, validated the accuracy of the results and demonstrated a speed improvement of around two orders of magnitude. A software package, Pogo, incorporating these developments, is released open source, downloadable from (http://www.pogo-fea.com/) to benefit the community. -- Highlights: •A novel memory arrangement approach is discussed for finite elements on the GPU. •The mesh is partitioned then nodes are arranged efficiently within each partition. •Models from ultrasonics, vibrations and geophysics are run. •The code is significantly faster than an equivalent commercial CPU package. •Pogo, the new software package, is released open source.
Aeroelastic Stability of Rotor Blades Using Finite Element Analysis
NASA Technical Reports Server (NTRS)
Chopra, I.; Sivaneri, N.
1982-01-01
The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. The blade is divided into a number of finite elements. Quasi-steady strip theory is used to evaluate the aerodynamic loads. The nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The equations of motion are linearized assuming blade motion to be a small perturbation about the steady deflected shape. The normal mode method based on the coupled rotating natural modes is used to reduce the number of equations in the flutter analysis. First the formulation is applied to single-load-path blades (articulated and hingeless blades). Numerical results show very good agreement with existing results obtained using the modal approach. The second part of the application concerns multiple-load-path blades, i.e. bearingless blades. Numerical results are presented for several analytical models of the bearingless blade. Results are also obtained using an equivalent beam approach wherein a bearingless blade is modelled as a single beam with equivalent properties. Results show the equivalent beam model.
A Finite Element Model for Simulation of Carbon Dioxide Sequestration
Bao, Jie; Xu, Zhijie; Fang, Yilin
2015-07-23
We present a hydro-mechanical model, followed by stress, deformation, and shear-slip failure analysis for geological sequestration of carbon dioxide (CO2). The model considers the poroelastic effects by taking into account of the two-way coupling between the geomechanical response and the fluid flow process. Analytical solutions for pressure and deformation fields were derived for a typical geological sequestration scenario in our previous work. A finite element approach is introduced here for numerically solving the hydro-mechanical model with arbitrary boundary conditions. The numerical approach was built on an open-source finite element code Elmer, and results were compared to the analytical solutions. The shear-slip failure analysis was presented based on the numerical results, where the potential failure zone is identified. Information is relevant to the prediction of the maximum sustainable injection rate or pressure. The effects of caprock permeability on the fluid pressure, deformation, stress, and the shear-slip failure zone were also quantitatively studied. It was shown that a larger permeability in caprock and base rock leads to a larger uplift but a smaller shear-slip failure zone.
Segment-to-segment contact elements for modelling joint interfaces in finite element analysis
NASA Astrophysics Data System (ADS)
Mayer, M. H.; Gaul, L.
2007-02-01
This paper presents an efficient approach to model contact interfaces of joints in finite element analysis (FEA) with segment-to-segment contact elements like thin layer or zero thickness elements. These elements originate from geomechanics and have been applied recently in modal analysis as an efficient way to define the contact stiffness of fixed joints for model updating. A big advantage of these elements is that no global contact search algorithm is employed as used in master-slave contacts. Contact search algorithms are not necessary for modelling contact interfaces of fixed joints since the interfaces are always in contact and restricted to small relative movements, which saves much computing time. We first give an introduction into the theory of segment-to-segment contact elements leading to zero thickness and thin layer elements. As a new application of zero thickness elements, we demonstrate the implementation of a structural contact damping model, derived from a Masing model, as non-linear constitutive laws for the contact element. This damping model takes into account the non-linear influence of frictional microslip in the contact interface of fixed joints. With this model we simulate the non-linear response of a bolted structure. This approach constitutes a new way to simulate multi-degree-of-freedom systems with structural joints and predict modal damping properties.
Fracture and Fragmentation of Simplicial Finite Elements Meshes using Graphs
Mota, A; Knap, J; Ortiz, M
2006-10-18
An approach for the topological representation of simplicial finite element meshes as graphs is presented. It is shown that by using a graph, the topological changes induced by fracture reduce to a few, local kernel operations. The performance of the graph representation is demonstrated and analyzed, using as reference the 3D fracture algorithm by Pandolfi and Ortiz [22]. It is shown that the graph representation initializes in O(N{sub E}{sup 1.1}) time and fractures in O(N{sub I}{sup 1.0}) time, while the reference implementation requires O(N{sub E}{sup 2.1}) time to initialize and O(N{sub I}{sup 1.9}) time to fracture, where NE is the number of elements in the mesh and N{sub I} is the number of interfaces to fracture.
Phase-space finite elements in a least-squares solution of the transport equation
Drumm, C.; Fan, W.; Pautz, S.
2013-07-01
The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshing tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)
Finite element prediction of fatigue damage growth in cancellous bone.
Hambli, Ridha; Frikha, Sana; Toumi, Hechmi; Tavares, João Manuel R S
2016-01-01
Cyclic stresses applied to bones generate fatigue damage that affects the bone stiffness and its elastic modulus. This paper proposes a finite element model for the prediction of fatigue damage accumulation and failure in cancellous bone at continuum scale. The model is based on continuum damage mechanics and incorporates crack closure effects in compression. The propagation of the cracks is completely simulated throughout the damaged area. In this case, the stiffness of the broken element is reduced by 98% to ensure no stress-carrying capacities of completely damaged elements. Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. The proposed model suggests that damage evolves over a real physical time variable (cycles). In order to reduce the computation time, the integration of the damage growth rate is based on the cycle blocks approach. In this approach, the real number of cycles is reduced (divided) into equivalent blocks of cycles. Damage accumulation is computed over the cycle blocks and then extrapolated over the corresponding real cycles. The results show a clear difference between local tensile and compressive stresses on damage accumulation. Incorporating stiffness reduction also produces a redistribution of the peak stresses in the damaged region, which results in a delay in damage fracture. PMID:26077722
Application of the Finite Element Method to Rotary Wing Aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Friedmann, P. P.
1982-01-01
A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.
Nonlinear finite element modeling of THUNDER piezoelectric actuators
NASA Astrophysics Data System (ADS)
Taleghani, Barmac K.; Campbell, Joel F.
1999-06-01
A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (Thin Layer Unimorph Ferroelectric Driver) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.
P-Finite-Element Program For Analysis Of Plates
NASA Technical Reports Server (NTRS)
Smith, James P.
1995-01-01
BUCKY is p-finite-element computer program for highly accurate analysis of structures. Used to analyze buckling, bending, and in-plane stress-and-strain behaviors of plates. Provides elastic-plastic solutions for isotropic plates in states of plane stress, and axisymmetric solution sequence used to treat three-dimensional problems. Computes response of plate to variety of loading and boundary conditions by use of higher-order displacement function in p-finite-element method. Enables user to obtain results more accurate than obtained by use of traditional h-finite elements. Written in FORTRAN 77.
Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Taleghani, Barmac K.; Campbell, Joel F.
1999-01-01
A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.
Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms
NASA Technical Reports Server (NTRS)
Kurdila, Andrew J.; Sharpley, Robert C.
1999-01-01
This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.
A finite element conjugate gradient FFT method for scattering
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.
1991-01-01
Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.
Xiao, Wei; Zaeem, Mohsen Asle; Bal, B Sonny; Rahaman, Mohamed N
2016-11-01
There is a clinical need for synthetic bioactive materials that can reliably repair intercalary skeletal tissue loss in load-bearing bones. Bioactive glasses have been investigated as one such material but their mechanical response has been a concern. Previously, we created bioactive silicate glass (13-93) scaffolds with a uniform grid-like microstructure which showed a compressive strength comparable to human cortical bone but a much lower flexural strength. In the present study, finite element modeling (FEM) was used to re-design the scaffold microstructure to improve its flexural strength without significantly lowering its compressive strength and ability to support bone infiltration in vivo. Then scaffolds with the requisite microstructures were created by a robotic deposition method and tested in four-point bending and compression to validate the FEM simulations. In general, the data validated the predictions of the FEM simulations. Scaffolds with a porosity gradient, composed of a less porous outer region and a more porous inner region, showed a flexural strength (34±5MPa) that was more than twice the value for the uniform grid-like microstructure (15±5MPa) and a higher compressive strength (88±20MPa) than the grid-like microstructure (72±10MPa). Upon implantation of the scaffolds for 12weeks in rat calvarial defects in vivo, the amount of new bone that infiltrated the pore space of the scaffolds with the porosity gradient (37±16%) was similar to that for the grid-like scaffolds (35±6%). These scaffolds with a porosity gradient that better mimics the microstructure of human long bone could provide more reliable implants for structural bone repair. PMID:27524065
Finite element techniques applied to cracks interacting with selected singularities
NASA Technical Reports Server (NTRS)
Conway, J. C.
1975-01-01
The finite-element method for computing the extensional stress-intensity factor for cracks approaching selected singularities of varied geometry is described. Stress-intensity factors are generated using both displacement and J-integral techniques, and numerical results are compared to those obtained experimentally in a photoelastic investigation. The selected singularities considered are a colinear crack, a circular penetration, and a notched circular penetration. Results indicate that singularities greatly influence the crack-tip stress-intensity factor as the crack approaches the singularity. In addition, the degree of influence can be regulated by varying the overall geometry of the singularity. Local changes in singularity geometry have little effect on the stress-intensity factor for the cases investigated.
Updating finite element dynamic models using an element-by-element sensitivity methodology
NASA Astrophysics Data System (ADS)
Farhat, Charbel; Hemez, Francois M.
1993-09-01
A sensitivity-based methodology for improving the finite element model of a given structure using test modal data and a few sensors is presented. The proposed method searches for both the location and sources of the mass and stiffness errors and does not interfere with the theory behind the finite element model while correcting these errors. The updating algorithm is derived from the unconstrained minimization of the squared L sub 2 norms of the modal dynamic residuals via an iterative two-step staggered procedure. At each iteration, the measured mode shapes are first expanded assuming that the model is error free, then the model parameters are corrected assuming that the expanded mode shapes are exact. The numerical algorithm is implemented in an element-by-element fashion and is capable of 'zooming' on the detected error locations. Several simulation examples which demonstate the potential of the proposed methodology are discussed.
A Method for Connecting Dissimilar Finite Element Meshes in Three Dimensions
Dohrmann, C.R.; Heinstein, M.W.; Key, S.W.
1998-11-12
A method is presented for connecting dissimilar finite element meshes in three dimensions. The method combines the concept of master and slave surfaces with the uniform strain approach for surface, corrections finite elements- By modifyhg the are made to element formulations boundaries of elements on the slave such that first-order patch tests are passed. The method can be used to connect meshes which use different element types. In addition, master and slave surfaces can be designated independently of relative mesh resolutions. Example problems in three-dimensional linear elasticity are presented.
Finite element analysis of phase-change storage media
Jabbar, M.; Najafi, M.
1995-12-31
The objective of this study is to predict the cooling curve for the storage tank of a clathrate (crystalline compounds made of gaseous refrigerant and water) thermal energy storage system using finite element analysis. The analysis involve modeling of a storage medium which changes its phase from liquid to solid within the storage tank. The solidification of the storage medium takes place during the storage tank`s heat extraction simulation process (charging process). The storage media in this study are Refrigerant 134a (R134a) clathrate and Refrigerant 12 (R12) clathrate. The enthalpy based standard approach is utilized to overcome the phase change discontinuities. The governing equations count for the phase change, two dimensional conduction, and convection modes. The cooling of the storage medium is simulated as energy loss from the storage tank contents. A set of algebraic discretized equations are obtained from the governing equations through the method of finite element formulation. These algebraic equations are solved using the common purpose computational fluid dynamics analysis package (FIDAP, 1991) to obtain the temperature distribution and consequently the cooling curve for the storage tank. The results for R12 clathrate are in good agreement with the experimental results obtained by Najafi and Schaetzle (1991). For R134a clathrate the results obtained follow a pattern similar to those of experimental work on R12 clathrate. The work of this study provides the necessary background for conducting experimental studies on R134a clathrate thermal energy storage system.
Progress in Developing Finite Element Models Replicating Flexural Graphite Testing
Robert Bratton
2010-06-01
This report documents the status of flexural strength evaluations from current ASTM procedures and of developing finite element models predicting the probability of failure. This work is covered under QLD REC-00030. Flexural testing procedures of the American Society for Testing and Materials (ASTM) assume a linear elastic material that has the same moduli for tension and compression. Contrary to this assumption, graphite is known to have different moduli for tension and compression. A finite element model was developed and demonstrated that accounts for the difference in moduli tension and compression. Brittle materials such as graphite exhibit significant scatter in tensile strength, so probabilistic design approaches must be used when designing components fabricated from brittle materials. ASTM procedures predicting probability of failure in ceramics were compared to methods from the current version of the ASME graphite core components rules predicting probability of failure. Using the ASTM procedures yields failure curves at lower applied forces than the ASME rules. A journal paper was published in the Journal of Nuclear Engineering and Design exploring the statistical models of fracture in graphite.
Finite Element Modeling of the Posterior Eye in Microgravity
NASA Technical Reports Server (NTRS)
Feola, Andrew; Raykin, Julia; Mulugeta, Lealem; Gleason, Rudolph; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian; Ethier, C. Ross
2015-01-01
Microgravity experienced during spaceflight affects astronauts in various ways, including weakened muscles and loss of bone density. Recently, visual impairment and intracranial pressure (VIIP) syndrome has become a major concern for space missions lasting longer than 30 days. Astronauts suffering from VIIP syndrome have changes in ocular anatomical and visual impairment that persist after returning to earth. It is hypothesized that a cephalad fluid shift in microgravity may increase the intracranial pressure (ICP), which leads to an altered biomechanical environment of the posterior globe and optic nerve sheath (ONS).Currently, there is a lack of knowledge of how elevated ICP may lead to vision impairment and connective tissue changes in VIIP. Our goal was to develop a finite element model to simulate the acute effects of elevated ICP on the posterior eye and optic nerve sheath. We used a finite element (FE) analysis approach to understand the response of the lamina cribrosa and optic nerve to the elevations in ICP thought to occur in microgravity and to identify which tissue components have the greatest impact on strain experienced by optic nerve head tissues.
Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector
NASA Technical Reports Server (NTRS)
Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)
2001-01-01
Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.
Application of Mass Lumped Higher Order Finite Elements
Chen, J.; Strauss, H. R.; Jardin, S. C.; Park, W.; Sugiyama, L. E.; G. Fu; Breslau, J.
2005-11-01
There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied.
NASA Technical Reports Server (NTRS)
Bauld, N. R., Jr.; Goree, J. G.; Tzeng, L.-S.
1985-01-01
It is pointed out that edge delamination is a serious failure mechanism for laminated composite materials. Various numerical methods have been utilized in attempts to calculate the interlaminar stress components which precede delamination in a laminate. There are, however, discrepancies regarding the results provided by different methods, taking into account a finite-difference procedure, a perturbation procedure, and finite element approaches. The present investigation has the objective to assess the capacity of a finite difference method to predict the character and magnitude of the interlaminar stress distributions near an interface corner. A second purpose of the investigation is to determine if predictions by finite element method in-plane, interlaminar stress components near an interface corner represent actual laminate behavior.
An enhanced finite element technique for diffuse phase transition
NASA Astrophysics Data System (ADS)
Münch, I.; Krauß, M.
2015-10-01
We propose a finite element technique to enhance phase-field simulations. As adaptive p-method it and can be generally applied to finite element formulations. However, diffuse interfaces have non-linear gradients within regions typically smaller compared to the size of the overall model. Thus, enhanced field interpolation with higher polynomial functions on demand allows for coarser meshing or lower regularization length for the phase transition. Our method preserves continuity of finite elements and is particularly advantageous in the context of parallelized computing. An analytical solution for the evolution of a phase-field variable governed by the Allen-Cahn equation is used to define an error measure and to investigate the proposed method. Several examples demonstrate the capability of this finite element technique.
Validation of high displacement piezoelectric actuator finite element models
NASA Astrophysics Data System (ADS)
Taleghani, Barmac K.
2000-08-01
The paper presents the results obtained by using NASTRAN and ANSYS finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness and important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN and ANSYS used different methods for modeling piezoelectric effects. In NASTRAN, a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
Error analysis of finite element solutions for postbuckled cylinders
NASA Technical Reports Server (NTRS)
Sistla, Rajaram; Thurston, Gaylen A.
1989-01-01
A general method of error analysis and correction is investigated for the discrete finite-element results for cylindrical shell structures. The method for error analysis is an adaptation of the method of successive approximation. When applied to the equilibrium equations of shell theory, successive approximations derive an approximate continuous solution from the discrete finite-element results. The advantage of this continuous solution is that it contains continuous partial derivatives of an order higher than the basis functions of the finite-element solution. Preliminary numerical results are presented in this paper for the error analysis of finite-element results for a postbuckled stiffened cylindrical panel modeled by a general purpose shell code. Numerical results from the method have previously been reported for postbuckled stiffened plates. A procedure for correcting the continuous approximate solution by Newton's method is outlined.
Generalized multiscale finite element method. Symmetric interior penalty coupling
NASA Astrophysics Data System (ADS)
Efendiev, Y.; Galvis, J.; Lazarov, R.; Moon, M.; Sarkis, M.
2013-12-01
Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the “mass” matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples.
The finite element machine: An experiment in parallel processing
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Peebles, S. W.; Crockett, T. W.; Knott, J. D.; Adams, L.
1982-01-01
The finite element machine is a prototype computer designed to support parallel solutions to structural analysis problems. The hardware architecture and support software for the machine, initial solution algorithms and test applications, and preliminary results are described.
Validation of High Displacement Piezoelectric Actuator Finite Element Models
NASA Technical Reports Server (NTRS)
Taleghani, B. K.
2000-01-01
The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
Comparison of different precondtioners for nonsymmtric finite volume element methods
Mishev, I.D.
1996-12-31
We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.
Adaptive Finite-Element Computation In Fracture Mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1995-01-01
Report discusses recent progress in use of solution-adaptive finite-element computational methods to solve two-dimensional problems in linear elastic fracture mechanics. Method also shown extensible to three-dimensional problems.
Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation
NASA Technical Reports Server (NTRS)
Cwik, T.; Lou, J.; Katz, D.
1997-01-01
In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.
Applications of finite element simulation in orthopedic and trauma surgery.
Herrera, Antonio; Ibarz, Elena; Cegoñino, José; Lobo-Escolar, Antonio; Puértolas, Sergio; López, Enrique; Mateo, Jesús; Gracia, Luis
2012-04-18
Research in different areas of orthopedic and trauma surgery requires a methodology that allows both a more economic approach and the ability to reproduce different situations in an easy way. Simulation models have been introduced recently in bioengineering and could become an essential tool in the study of any physiological unity, regardless of its complexity. The main problem in modeling with finite elements simulation is to achieve an accurate reproduction of the anatomy and a perfect correlation of the different structures, in any region of the human body. Authors have developed a mixed technique, joining the use of a three-dimensional laser scanner Roland Picza captured together with computed tomography (CT) and 3D CT images, to achieve a perfect reproduction of the anatomy. Finite element (FE) simulation lets us know the biomechanical changes that take place after hip prostheses or osteosynthesis implantation and biological responses of bone to biomechanical changes. The simulation models are able to predict changes in bone stress distribution around the implant, so allowing preventing future pathologies. The development of a FE model of lumbar spine is another interesting application of the simulation. The model allows research on the lumbar spine, not only in physiological conditions but also simulating different load conditions, to assess the impact on biomechanics. Different degrees of disc degeneration can also be simulated to determine the impact on adjacent anatomical elements. Finally, FE models may be useful to test different fixation systems, i.e., pedicular screws, interbody devices or rigid fixations compared with the dynamic ones. We have also developed models of lumbar spine and hip joint to predict the occurrence of osteoporotic fractures, based on densitometric determinations and specific biomechanical models, including approaches from damage and fracture mechanics. FE simulations also allow us to predict the behavior of orthopedic splints
Ray tracing in a finite-element domain using nodal basis functions.
Schrader, Karl N; Subia, Samuel R; Myre, John W; Summers, Kenneth L
2014-08-20
A method is presented for tracing rays through a medium discretized as finite-element volumes. The ray-trajectory equations are cast into the local element coordinate frame, and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The finite-element methodology is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The procedure is applied to a finite-element model of an optic with a severe refractive-index gradient, and the results are compared to the closed-form gradient ray-path integral approach. PMID:25321137
Mixed finite elements for the Richards' equation: linearization procedure
NASA Astrophysics Data System (ADS)
Pop, I. S.; Radu, F.; Knabner, P.
2004-07-01
We consider mixed finite element discretization for a class of degenerate parabolic problems including the Richards' equation. After regularization, time discretization is achieved by an Euler implicit scheme, while mixed finite elements are employed for the discretization in space. Based on the results obtained in (Radu et al. RANA Preprint 02-06, Eindhoven University of Technology, 2002), this paper considers a simple iterative scheme to solve the emerging nonlinear elliptic problems.
Finite element analysis of a composite wheelchair wheel design
NASA Technical Reports Server (NTRS)
Ortega, Rene
1994-01-01
The finite element analysis of a composite wheelchair wheel design is presented. The design is the result of a technology utilization request. The designer's intent is to soften the riding feeling by incorporating a mechanism attaching the wheel rim to the spokes that would allow considerable deflection upon compressive loads. A finite element analysis was conducted to verify proper structural function. Displacement and stress results are presented and conclusions are provided.
Examples of finite element mesh generation using SDRC IDEAS
NASA Technical Reports Server (NTRS)
Zapp, John; Volakis, John L.
1990-01-01
IDEAS (Integrated Design Engineering Analysis Software) offers a comprehensive package for mechanical design engineers. Due to its multifaceted capabilities, however, it can be manipulated to serve the needs of electrical engineers, also. IDEAS can be used to perform the following tasks: system modeling, system assembly, kinematics, finite element pre/post processing, finite element solution, system dynamics, drafting, test data analysis, and project relational database.
Finite element analysis of vibration and damping of laminated composites
NASA Astrophysics Data System (ADS)
Rikards, Rolands
Simple finite elements are used to form a special laminated beam and plate superelements excluding all degrees of freedom in the nodes of the middle layer, and the finite element analysis of this structure is performed. To estimate damping of structures, modal loss factors are calculated, using two methods: the 'exact' method of complex eigenvalues and the approximate energy method. It was found that both methods give satisfactory results. However, the energy method needs less computer time than the exact method.
Mathematical aspects of finite element methods for incompressible viscous flows
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.
1986-01-01
Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.
Evaluation of a hybrid, anisotropic, multilayered, quadrilateral finite element
NASA Technical Reports Server (NTRS)
Robinson, J. C.; Blackburn, C. L.
1978-01-01
A multilayered finite element with bending-extensional coupling is evaluated for: (1) buckling of general laminated plates; (2) thermal stresses of laminated plates cured at elevated temperatures; (3) displacements of a bimetallic beam; and (4) displacement and stresses of a single-cell box beam with warped cover panels. Also, displacements and stresses for flat and spherical orthotropic and anisotropic segments are compared with results from higher order plate and shell finite-element analyses.
Simulation of two-dimensional waterflooding using mixed finite elements
Chavent, G.; Jaffre, J.; Cohen, G.; Dupuy, M.; Dieste, I.
1982-01-01
A new method for the simulation of incompressible diphasic flows in two dimensions is presented, the distinctive features of which are: (1) reformation of the basic equation and specific choices of the finite element approximation of the same; (11) use of a mixed finite elements method, approximating both scalar and vector functions. Several test examples are shown, including gravity and capillary effects. The use of discontinuous basis functions proved successful for an accurate representation of sharp fronts. 16 refs.
NASA Astrophysics Data System (ADS)
Kyurkchan, A. G.; Manenkov, S. A.
2016-09-01
Two approaches for solving the three-dimensional problem of wave diffraction at a finite grating consisting of bodies of revolution are proposed. An approximate solution is obtained for a grating with small elements. This solution is applied to consider gratings with a large number of elements. The coincidence of the results obtained by the two methods is shown. The reflection and transmission coefficients are compared for finite and infinite gratings.
An analytically enriched finite element method for cohesive crack modeling.
Cox, James V.
2010-04-01
Meaningful computational investigations of many solid mechanics problems require accurate characterization of material behavior through failure. A recent approach to fracture modeling has combined the partition of unity finite element method (PUFEM) with cohesive zone models. Extension of the PUFEM to address crack propagation is often referred to as the extended finite element method (XFEM). In the PUFEM, the displacement field is enriched to improve the local approximation. Most XFEM studies have used simplified enrichment functions (e.g., generalized Heaviside functions) to represent the strong discontinuity but have lacked an analytical basis to represent the displacement gradients in the vicinity of the cohesive crack. As such, the mesh had to be sufficiently fine for the FEM basis functions to capture these gradients.In this study enrichment functions based upon two analytical investigations of the cohesive crack problem are examined. These functions have the potential of representing displacement gradients in the vicinity of the cohesive crack with a relatively coarse mesh and allow the crack to incrementally advance across each element. Key aspects of the corresponding numerical formulation are summarized. Analysis results for simple model problems are presented to evaluate if quasi-static crack propagation can be accurately followed with the proposed formulation. A standard finite element solution with interface elements is used to provide the accurate reference solution, so the model problems are limited to a straight, mode I crack in plane stress. Except for the cohesive zone, the material model for the problems is homogenous, isotropic linear elasticity. The effects of mesh refinement, mesh orientation, and enrichment schemes that enrich a larger region around the cohesive crack are considered in the study. Propagation of the cohesive zone tip and crack tip, time variation of the cohesive zone length, and crack profiles are presented. The analysis
Hybrid finite volume/ finite element method for radiative heat transfer in graded index media
NASA Astrophysics Data System (ADS)
Zhang, L.; Zhao, J. M.; Liu, L. H.; Wang, S. Y.
2012-09-01
The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.
A parallel algorithm for generation and assembly of finite element stiffness and mass matrices
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Carmona, E. A.; Nguyen, D. T.; Baddourah, M. A.
1991-01-01
A new algorithm is proposed for parallel generation and assembly of the finite element stiffness and mass matrices. The proposed assembly algorithm is based on a node-by-node approach rather than the more conventional element-by-element approach. The new algorithm's generality and computation speed-up when using multiple processors are demonstrated for several practical applications on multi-processor Cray Y-MP and Cray 2 supercomputers.
Dynamical observer for a flexible beam via finite element approximations
NASA Technical Reports Server (NTRS)
Manitius, Andre; Xia, Hong-Xing
1994-01-01
The purpose of this view-graph presentation is a computational investigation of the closed-loop output feedback control of a Euler-Bernoulli beam based on finite element approximation. The observer is part of the classical observer plus state feedback control, but it is finite-dimensional. In the theoretical work on the subject it is assumed (and sometimes proved) that increasing the number of finite elements will improve accuracy of the control. In applications, this may be difficult to achieve because of numerical problems. The main difficulty in computing the observer and simulating its work is the presence of high frequency eigenvalues in the finite-element model and poor numerical conditioning of some of the system matrices (e.g. poor observability properties) when the dimension of the approximating system increases. This work dealt with some of these difficulties.
Finite element thermal analysis of convectively-cooled aircraft structures
NASA Technical Reports Server (NTRS)
Wieting, A. R.; Thornton, E. A.
1981-01-01
The design complexity and size of convectively-cooled engine and airframe structures for hypersonic transports necessitate the use of large general purpose computer programs for both thermal and structural analyses. Generally thermal analyses are based on the lumped-parameter finite difference technique, and structural analyses are based on the finite element technique. Differences in these techniques make it difficult to achieve an efficient interface. It appears, therefore, desirable to conduct an integrated analysis based on a common technique. A summary is provided of efforts by NASA concerned with the development of an integrated thermal structural analysis capability using the finite element method. Particular attention is given to the development of conduction/forced-convection finite element methodology and applications which illustrate the capabilities of the developed concepts.
Recent developments in finite element analysis for transonic airfoils
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.
1979-01-01
The prediction of aerodynamic forces in the transonic regime generally requires a flow field calculation to solve the governing non-linear mixed elliptic-hyperbolic partial differential equations. Finite difference techniques were developed to the point that design and analysis application are routine, and continual improvements are being made by various research groups. The principal limitation in extending finite difference methods to complex three-dimensional geometries is the construction of a suitable mesh system. Finite element techniques are attractive since their application to other problems have permitted irregular mesh elements to be employed. The purpose of this paper is to review the recent developments in the application of finite element methods to transonic flow problems and to report some recent results.
Finite element cochlear models and their steady state response
NASA Astrophysics Data System (ADS)
Kagawa, Y.; Yamabuchi, T.; Watanabe, N.; Mizoguchi, T.
1987-12-01
Numerical cochlear models are constructed by means of a finite element approach and their frequency and spatial responses are calculated. The cochlea is modelled as a coupled fluid-membrane system, for which both two- and three-dimensional models are considered. The fluid in the scala canals is assumed to be incompressible and the basilar membrane is assumed to be a locally reactive impedance wall or a lossy elastic membrane. With the three-dimensional models, the effects are examined of the spiral configuration of the cochlea, of the presence of the lamina and the ligament that narrows the coupling area between the two fluid canals (scala vestibuli and scala tympani), and of the extended reaction of the basilar membrane which cannot be included in case of the two-dimensional models. The conclusion is that these effects on the cochlear response and the inherent mechanism governing the cochlear behaviour are found to be rather secondary.
Fuzzy finite-element analysis of smart structures
NASA Astrophysics Data System (ADS)
Akpan, U. O.; Koko, T. S.; Orisamolu, I. R.; Gallant, B. K.
2001-04-01
A fuzzy finite element based approach is developed for modelling smart structures with vague or imprecise uncertainties. Fuzzy sets are used to represent the uncertainties present in the piezoelectric, mechanical, thermal, and physical properties of the smart structure. In order to facilitate efficient computation, a sensitivity analysis procedure is used to streamline the number of input fuzzy variables, and the vertex fuzzy analysis technique is then used to compute the possibility distributions of the responses of the smart structural system. The methodology has been developed within the framework of the SMARTCOM computational tool for the design/analysis of smart composite structures. The methodology developed is found to be accurate and computationally efficient for the solution of practical problems.
Numerical Analysis of a Finite Element/Volume Penalty Method
NASA Astrophysics Data System (ADS)
Maury, Bertrand
The penalty method makes it possible to incorporate a large class of constraints in general purpose Finite Element solvers like freeFEM++. We present here some contributions to the numerical analysis of this method. We propose an abstract framework for this approach, together with some general error estimates based on the discretization parameter ɛ and the space discretization parameter h. As this work is motivated by the possibility to handle constraints like rigid motion for fluid-particle flows, we shall pay a special attention to a model problem of this kind, where the constraint is prescribed over a subdomain. We show how the abstract estimate can be applied to this situation, in the case where a non-body-fitted mesh is used. In addition, we describe how this method provides an approximation of the Lagrange multiplier associated to the constraint.
Large deformation finite element analysis of undrained pile installation
NASA Astrophysics Data System (ADS)
Konkol, Jakub; Bałachowski, Lech
2016-03-01
In this paper, a numerical undrained analysis of pile jacking into the subsoil using Abaqus software suit has been presented. Two different approaches, including traditional Finite Element Method (FEM) and Arbitrary Lagrangian-Eulerian (ALE) formulation, were tested. In the first method, the soil was modelled as a two-phase medium and effective stress analysis was performed. In the second one (ALE), a single-phase medium was assumed and total stress analysis was carried out. The fitting between effective stress parameters and total stress parameters has been presented and both solutions have been compared. The results, discussion and verification of numerical analyzes have been introduced. Possible applications and limitations of large deformation modelling techniques have been explained.
Tube Drawing Process Modelling By A Finite Element Analysis
NASA Astrophysics Data System (ADS)
Palengat, M.; Chagnon, G.; Millet, C.; Favier, D.
2007-05-01
Drawing process is used in manufacturing thin-walled tubes, while reducing progressively their wall thickness and their inner and outer diameters. In this paper a stainless steel 316LVM and a cobalt alloy L605 are studied with two drawing processes, hollow sinking and plug drawing. This study gets into different issues including elastoplastic behaviour, contacts, friction and numerical convergence. Experimental drawings are realized on a testing bench where forces and dimensional data are recorded. In a first approach, tensile tests lead up to apply an elastoplastic constitutive equation with an isotropic hardening law. In simulations, an axisymetric steady-state model, with numeric stabilization if needed, is used. Numerical results are compared with experimental results. Finally, in spite of some defaults, this study shows that finite element modelling is able to foresee accurately the behaviour of a tube during a drawing process. A better understanding and modelling of the mechanical behaviour of materials will improve the FEM simulation results.
Finite element analysis of the SDC barrel and endcap calorimeters
Guarino, V.; Hill, N.; Nasiakta, J.
1992-03-11
In designing the SCD barrel and endcap calorimeters, the inter-module connecting forces must be known in order to determine the required size and number of connecting links between modules, and in order to understand how individual modules will be affected by these forces when assembled to form a full barrel and endcap. The connecting forces were found by analyzing three-dimensional Finite Element Models of both the barrel and endcap. This paper is divided into two parts, the first part will describe in detail the results of the barrel analysis and the second part will describe the results obtained from the endcap analysis. A similar approach was used in constructing the models for both analysis.
Application of physical parameter identification to finite element models
NASA Technical Reports Server (NTRS)
Bronowicki, Allen J.; Lukich, Michael S.; Kuritz, Steven P.
1986-01-01
A time domain technique for matching response predictions of a structural dynamic model to test measurements is developed. Significance is attached to prior estimates of physical model parameters and to experimental data. The Bayesian estimation procedure allows confidence levels in predicted physical and modal parameters to be obtained. Structural optimization procedures are employed to minimize an error functional with physical model parameters describing the finite element model as design variables. The number of complete FEM analyses are reduced using approximation concepts, including the recently developed convoluted Taylor series approach. The error function is represented in closed form by converting free decay test data to a time series model using Prony' method. The technique is demonstrated on simulated response of a simple truss structure.
An alternative to Guyan reduction of finite-element models
NASA Technical Reports Server (NTRS)
Lin, Jiguan Gene
1988-01-01
Structural modeling is a key part of structural system identification for large space structures. Finite-element structural models are commonly used in practice because of their general applicability and availability. The initial models generated by using a standard computer program such as NASTRAN, ANSYS, SUPERB, STARDYNE, STRUDL, etc., generally contain tens of thousands of degrees of freedom. The models must be reduced for purposes of identification. Not only does the magnitude of the identification effort grow exponentially as a function of the number of degrees of freedom, but numerical procedures may also break down because of accumulated round-off errors. Guyan reduction is usually applied after a static condensation. Misapplication of Guyan reduction can lead to serious modeling errors. It is quite unfortunate and disappointing, since the accuracy of the original detailed finite-element model one tries very hard to achieve is lost by the reduction. First, why and how Guyan reduction always causes loss of accuracy is examined. An alternative approach is then introduced. The alternative can be thought of as an improvement of Guyan reduction, the Rayleigh-Ritz method, and in particular the recent algorithm of Wilson, Yuan, and Dickens. Unlike Guyan reduction, the use of the alternative does not need any special insight, experience, or skill for partitioning the structural degrees of freedom. In addition to model condensation, this alternative approach can also be used for predicting analytically, quickly, and economically, what are those structural modes that are excitable by a force actuator at a given trial location. That is, in the excitation of the structural modes for identification, it can be used for guiding the placement of the force actuators.
Finite elements based on consistently assumed stresses and displacements
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1985-01-01
Finite element stiffness matrices are derived using an extended Hellinger-Reissner principle in which internal displacements are added to serve as Lagrange multipliers to introduce the equilibrium constraint in each element. In a consistent formulation the assumed stresses are initially unconstrained and complete polynomials and the total displacements are also complete such that the corresponding strains are complete in the same order as the stresses. Several examples indicate that resulting properties for elements constructed by this consistent formulation are ideal and are less sensitive to distortions of element geometries. The method has been used to find the optimal stress terms for plane elements, 3-D solids, axisymmetric solids, and plate bending elements.
Probabilistic finite elements for fatigue and fracture analysis
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Liu, Wing Kam
1992-01-01
Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.
Finite element analysis of two disk rotor system
NASA Astrophysics Data System (ADS)
Dixit, Harsh Kumar
2016-05-01
A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.
Finite Element Model Development For Aircraft Fuselage Structures
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.
2000-01-01
The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.
Preconditioned CG-solvers and finite element grids
Bauer, R.; Selberherr, S.
1994-12-31
To extract parasitic capacitances in wiring structures of integrated circuits the authors developed the two- and three-dimensional finite element program SCAP (Smart Capacitance Analysis Program). The program computes the task of the electrostatic field from a solution of Poisson`s equation via finite elements and calculates the energies from which the capacitance matrix is extracted. The unknown potential vector, which has for three-dimensional applications 5000-50000 unknowns, is computed by a ICCG solver. Currently three- and six-node triangular, four- and ten-node tetrahedronal elements are supported.
Adaptive grid finite element model of the tokamak scrapeoff layer
Kuprat, A.P.; Glasser, A.H.
1995-07-01
The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.
Radiosity algorithms using higher order finite element methods
Troutman, R.; Max, N.
1993-08-01
Many of the current radiosity algorithms create a piecewise constant approximation to the actual radiosity. Through interpolation and extrapolation, a continuous solution is obtained. An accurate solution is found by increasing the number of patches which describe the scene. This has the effect of increasing the computation time as well as the memory requirements. By using techniques found in the finite element method, we can incorporate an interpolation function directly into our form factor computation. We can then use less elements to achieve a more accurate solution. Two algorithms, derived from the finite element method, are described and analyzed.
Adaptive implicit-explicit finite element algorithms for fluid mechanics problems
NASA Technical Reports Server (NTRS)
Tezduyar, T. E.; Liou, J.
1988-01-01
The adaptive implicit-explicit (AIE) approach is presented for the finite-element solution of various problems in computational fluid mechanics. In the AIE approach, the elements are dynamically (adaptively) arranged into differently treated groups. The differences in treatment could be based on considerations such as the cost efficiency, the type of spatial or temporal discretization employed, the choice of field equations, etc. Several numerical tests are performed to demonstrate that this approach can achieve substantial savings in CPU time and memory.
NASA Astrophysics Data System (ADS)
Bianchini, Ilaria; Argiento, Raffaele; Auricchio, Ferdinando; Lanzarone, Ettore
2015-09-01
The great influence of uncertainties on the behavior of physical systems has always drawn attention to the importance of a stochastic approach to engineering problems. Accordingly, in this paper, we address the problem of solving a Finite Element analysis in the presence of uncertain parameters. We consider an approach in which several solutions of the problem are obtained in correspondence of parameters samples, and propose a novel non-intrusive method, which exploits the functional principal component analysis, to get acceptable computational efforts. Indeed, the proposed approach allows constructing an optimal basis of the solutions space and projecting the full Finite Element problem into a smaller space spanned by this basis. Even if solving the problem in this reduced space is computationally convenient, very good approximations are obtained by upper bounding the error between the full Finite Element solution and the reduced one. Finally, we assess the applicability of the proposed approach through different test cases, obtaining satisfactory results.
Design and finite element analysis of oval man way
Hari, Y.; Gryder, B.
1996-12-01
This paper presents the design of an oval man way in the side wall of a cylindrical pressure vessel. ASME Code Section 8 is used to obtain the design parameters of the oval man way, man way cover and bolts. The code calculations require some assumptions which may not be valid. A typical design example is taken. STAAD III finite element code with plate elements is used to model the oval man way, man way cover and bolts. The stresses calculated using ASME Code Section 8 and other analytical formulas for plate and shells are compared with the stresses obtained by Finite Element Modeling. This paper gives the designer of oval man way the ability to perform a finite element analysis and compare it with the analytical calculations and assumptions made. This gives added confidence to the designer as to the validity of his calculations and assumptions.
Guo, Hongqiang; Shah, Mitul; Spilker, Robert L.
2014-01-01
The study of biphasic soft tissues contact is fundamental to understanding the biomechanical behavior of human diarthrodial joints. However, to date, few biphasic finite element contact analysis for 3D physiological geometries under finite deformation has been developed. The objective of this paper is to develop a hyperelastic biphasic contact implementation for finite deformation and sliding problem. An augmented Lagrangian method was used to enforce the continuity of contact traction and fluid pressure across the contact interface. The finite element implementation was based on a general purpose software, COMSOL Multiphysics. The accuracy of the implementation is verified using example problems, for which solutions are available by alternative analyses. The implementation was proven to be robust and able to handle finite deformation and sliding. PMID:24496915
Finite element analysis of partly wrinkled reinforced prestressed membranes
NASA Astrophysics Data System (ADS)
Gil, Antonio J.; Bonet, Javier
2007-08-01
Wrinkling is a well known phenomenon experimented by tension membranes in Civil Engineering applications. This paper will present an efficient numerical technique for the computational simulation of such wrinkles in a prestressed membrane. In particular, the relaxed energy approach (Pipkin in IMA J Appl Math 36:85-99, 1986) is particularized for prestressed membranes (Gil in Textile composites and inflatable structures, CIMNE, 2003) undergoing moderate strains. Wrinkling conditions in terms of the Euler-Lagrange finite deformation tensor along principal directions will be obtained. This will provide a framework to describe properly the initial instant when wrinkles start to be encountered in a prestressed Saint Venant-Kirchhoff hyperelastic membrane. Subsequently, a modified Helmholtz’s free energy functional will be introduced with the purpose of describing the modified constitutive behaviour of the continuum after the onset of wrinkling. Consistent derivations of the stress tensor as well as the constitutive tensor will de depicted. The results will be particularized for membranes and cables in a Finite Element discretization basis. Some numerical examples will prove the accuracy and robustness of the described algorithm.
NASA Astrophysics Data System (ADS)
Hofmann, S.
1998-06-01
The search for new elements is part of the broader field of investigations of nuclei at the limits of stability. In two series of experiments at SHIP, six new elements 0034-4885/61/6/002/img2 were synthesized via fusion reactions using 1n-deexcitation channels and lead or bismuth targets. The isotopes were unambiguously identified by means of 0034-4885/61/6/002/img3 correlations. Alpha decay, not fission, is the dominant decay mode. The collected decay data establish a means of comparison with theoretical data. This aids in the selection of appropriate models that describe the properties of known nuclei. Predictions based on these models are useful in the preparation of the next generation of experiments. Cross sections decrease by two orders of magnitude from bohrium (Z = 107) to element 112, for which a cross section of 1 pb was measured. The development of intense beam currents and sensitive detection methods is essential for the production and identification of still heavier elements and new isotopes of already known elements, as well as the measurement of small 0034-4885/61/6/002/img4-, 0034-4885/61/6/002/img5- and fission-branching ratios. An equally sensitive set-up is needed for the measurement of excitation functions at low cross sections. Based on our results, it is likely that the production of isotopes of element 114 close to the island of spherical superheavy elements (SHEs) could be achieved by fusion reactions using 0034-4885/61/6/002/img6 targets. Systematic studies of the reaction cross sections indicate that the transfer of nucleons is an important process for the initiation of fusion. The data allow for the fixing of a narrow energy window for the production of SHEs using 1n-emission channels. The likelihood of broadening the energy window by investigation of radiative capture reactions, use of neutron deficient projectile isotopes and use of actinide targets is discussed.
Taylor, Z A; Cheng, M; Ourselin, S
2008-05-01
The use of biomechanical modelling, especially in conjunction with finite element analysis, has become common in many areas of medical image analysis and surgical simulation. Clinical employment of such techniques is hindered by conflicting requirements for high fidelity in the modelling approach, and fast solution speeds. We report the development of techniques for high-speed nonlinear finite element analysis for surgical simulation. We use a fully nonlinear total Lagrangian explicit finite element formulation which offers significant computational advantages for soft tissue simulation. However, the key contribution of the work is the presentation of a fast graphics processing unit (GPU) solution scheme for the finite element equations. To the best of our knowledge, this represents the first GPU implementation of a nonlinear finite element solver. We show that the present explicit finite element scheme is well suited to solution via highly parallel graphics hardware, and that even a midrange GPU allows significant solution speed gains (up to 16.8 x) compared with equivalent CPU implementations. For the models tested the scheme allows real-time solution of models with up to 16,000 tetrahedral elements. The use of GPUs for such purposes offers a cost-effective high-performance alternative to expensive multi-CPU machines, and may have important applications in medical image analysis and surgical simulation. PMID:18450538
Variational formulation of high performance finite elements: Parametrized variational principles
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Militello, Carmello
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.
New triangular and quadrilateral plate-bending finite elements
NASA Technical Reports Server (NTRS)
Narayanaswami, R.
1974-01-01
A nonconforming plate-bending finite element of triangular shape and associated quadrilateral elements are developed. The transverse displacement is approximated within the element by a quintic polynomial. The formulation takes into account the effects of transverse shear deformation. Results of the static and dynamic analysis of a square plate, with edges simply supported or clamped, are compared with exact solutions. Good accuracy is obtained in all calculations.
Nonlocal theory and finite element modeling of nano-composites
NASA Astrophysics Data System (ADS)
Alvinasab, Ali
This research is concerned with fundamentals of modeling nano-composites. The study contains two major parts, namely, numerical modeling of nanocomposites and nonlocal theory based approach for predicting behavior of Carbon Nanotubes (CNTs). Computational modeling of glass (silica) fibers having micro-scale outer dimensions and nano-scale internal structures was performed to assess its mechanical behavior. Self-assembly technique was used to synthesize the individual fibers of approximately 5 mum in length with a hexagonal cross-section (2mum between two opposite sides) and honeycomb-like internal nano-structures. These fibers have several potential applications including synthesis of multifunctional composite materials. Numerical modeling of the individual fibers was performed using continuum mechanics based approach wherein linear elastic elements were utilized within a commercial finite element (FE) analysis software. A representative volume element approach was adopted for computational efficiency. Appropriate loads and boundary conditions were used to derive stress-strain relationship (stiffness matrix) which has six independent constants for the individual fiber. Force-displacement relationships under simulated nanoindentation were obtained for the actual fiber (with six independent constants) and under transversely isotropic approximation. The contact problem was solved for the transversely isotropic case, which indicated a much stiffer fiber compared to the FE predictions. This difference is likely due to the geometric nonlinearity considered in FE analysis yielding accurate results for large displacements. The effective mechanical properties of randomly oriented nano-structured glass fiber composite are evaluated by using a continuum mechanics based FE model. The longitudinal and transverse properties of aligned fiber are calculated. Then the equivalent material properties for tilted fiber with different fiber orientations are obtained. Based on equivalent
Viscoelastic structures. [finite element computer programs
NASA Technical Reports Server (NTRS)
Gupta, K. K.; Heer, E.
1974-01-01
Numerical analysis of viscoelastic problems may be achieved by either a step-by-step solution procedure or by the integral transform approach. However, for complicated loading and material property relationships, the latter method proves ineffective. Programs specifically developed for the analysis of viscoelastic structures are considered along with multipurpose programs with specific viscoelastic analysis capabilities.
Hybrid finite elements nanocomposite characterization by stochastic microstructuring
NASA Astrophysics Data System (ADS)
Esteva, Milton
In this thesis the impact of entangled and non-straight fibers in the determination of the effective elastic and thermal properties of polymer nanocomposite (PNC) is addressed. Most of the models in recent studies assume nanotubes to be well dispersed straight fibers with fixed size. Nonetheless experiments reveal that nanotube formation become wavy during the manufacturing process, due to their high aspect ratio and low bending stiffness. Furthermore, experiments also show that nanotubes come in a variety of diameters and lengths. In the thesis an attempt to model the behavior of entangled fibers is made in which the distributions regarding the nanotube length and diameter are incorporated. First, an approach to generate random microstructures is developed. Then, using the finite element (FE) method with embedded fibers, the effective properties are computed for each of the random microstructures. This approach requires only a regular grid for the FE mesh, circumventing the requisite computationally costly and human labor intensive mesh refinement of ordinary FE in order to capture the local morphology of the composite material. Finally, a Monte Carlo simulation approach is used to obtain statistics of the computed effective physical properties. The numerical results are found in good agreement with experimental data reported in the open literature.
Finite Element Method for Capturing Ultra-relativistic Shocks
NASA Technical Reports Server (NTRS)
Richardson, G. A.; Chung, T. J.
2003-01-01
While finite element methods are used extensively by researchers solving computational fluid dynamics in fields other than astrophysics, their use in astrophysical fluid simulations has been predominantly overlooked. Current simulations using other methods such as finite difference and finite volume (based on finite difference) have shown remarkable results, but these methods are limited by their fundamental properties in aspects that are important for simulations with complex geometries and widely varying spatial and temporal scale differences. We have explored the use of finite element methods for astrophysical fluids in order to establish the validity of using such methods in astrophysical environments. We present our numerical technique applied to solving ultra-relativistic (Lorentz Factor Gamma >> 1) shocks which are prevalent in astrophysical studies including relativistic jets and gamma-ray burst studies. We show our finite element formulation applied to simulations where the Lorentz factor ranges up to 2236 and demonstrate its stability in solving ultra-relativistic flows. Our numerical method is based on the Flowfield Dependent Variation (FDV) Method, unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in this regime. Our method results in stable solutions and accurate results as compared with other methods.
Hybrid finite element-finite difference method for thermal analysis of blood vessels.
Blanchard, C H; Gutierrez, G; White, J A; Roemer, R B
2000-01-01
A hybrid finite-difference/finite-element technique for the thermal analysis of blood vessels embedded in perfused tissue has been developed and evaluated. This method provides efficient and accurate solutions to the conjugated heat transfer problem of convection by blood coupled to conduction in the tissue. The technique uses a previously developed 3D automatic meshing method for creating a finite element mesh in the tissue surrounding the vessels, coupled iteratively with a 1-D marching finite difference method for the interior of the vessels. This hybrid technique retains the flexibility and ease of automated finite-element meshing techniques for modelling the complex geometry of blood vessels and irregularly shaped tissues, and speeds the solution time by using a simple finite-difference method to calculate the bulk mean temperatures within all blood vessels. The use of the 1D finite-difference technique in the blood vessels also eliminates the large computer memory requirements needed to accurately solve large vessel network problems when fine FE meshes are used in the interior of vessels. The accuracy of the hybrid technique has been verified against previously verified numerical solutions. In summary, the hybrid technique combines the accuracy and flexibility found in automated finite-element techniques, with the speed and reduction of computational memory requirements associated with the 1D finite-difference technique, something which has not been done before. This method, thus, has the potential to provide accurate, flexible and relatively fast solutions for the thermal analysis of coupled perfusion/blood vessel problems, and large vessel network problems. PMID:10949130
Flow Applications of the Least Squares Finite Element Method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
An Object Oriented, Finite Element Framework for Linear Wave Equations
Koning, J M
2004-08-12
This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.
Electrical and Joule heating relationship investigation using Finite Element Method
NASA Astrophysics Data System (ADS)
Thangaraju, S. K.; Munisamy, K. M.
2015-09-01
The finite element method is vastly used in material strength analysis. The nature of the finite element solver, which solves the Fourier equation of stress and strain analysis, made it possible to apply for conduction heat transfer Fourier Equation. Similarly the Current and voltage equation is also liner Fourier equation. The nature of the governing equation makes it possible to numerical investigate the electrical joule heating phenomena in electronic component. This paper highlights the Finite Element Method (FEM) application onto semiconductor interconnects to determine the specific contact resistance (SCR). Metal and semiconductor interconnects is used as model. The result confirms the possibility and validity of FEM utilization to investigate the Joule heating due electrical resistance.
Optimal mapping of irregular finite element domains to parallel processors
NASA Technical Reports Server (NTRS)
Flower, J.; Otto, S.; Salama, M.
1987-01-01
Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.
Accurate interlaminar stress recovery from finite element analysis
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Riggs, H. Ronald
1994-01-01
The accuracy and robustness of a two-dimensional smoothing methodology is examined for the problem of recovering accurate interlaminar shear stress distributions in laminated composite and sandwich plates. The smoothing methodology is based on a variational formulation which combines discrete least-squares and penalty-constraint functionals in a single variational form. The smoothing analysis utilizes optimal strains computed at discrete locations in a finite element analysis. These discrete strain data are smoothed with a smoothing element discretization, producing superior accuracy strains and their first gradients. The approach enables the resulting smooth strain field to be practically C1-continuous throughout the domain of smoothing, exhibiting superconvergent properties of the smoothed quantity. The continuous strain gradients are also obtained directly from the solution. The recovered strain gradients are subsequently employed in the integration o equilibrium equations to obtain accurate interlaminar shear stresses. The problem is a simply-supported rectangular plate under a doubly sinusoidal load. The problem has an exact analytic solution which serves as a measure of goodness of the recovered interlaminar shear stresses. The method has the versatility of being applicable to the analysis of rather general and complex structures built of distinct components and materials, such as found in aircraft design. For these types of structures, the smoothing is achieved with 'patches', each patch covering the domain in which the smoothed quantity is physically continuous.
Finite Element Modelling and Analysis of Conventional Pultrusion Processes
NASA Astrophysics Data System (ADS)
Akishin, P.; Barkanov, E.; Bondarchuk, A.
2015-11-01
Pultrusion is one of many composite manufacturing techniques and one of the most efficient methods for producing fiber reinforced polymer composite parts with a constant cross-section. Numerical simulation is helpful for understanding the manufacturing process and developing scientific means for the pultrusion tooling design. Numerical technique based on the finite element method has been developed for the simulation of pultrusion processes. It uses the general purpose finite element software ANSYS Mechanical. It is shown that the developed technique predicts the temperature and cure profiles, which are in good agreement with those published in the open literature.
Development of non-linear finite element computer code
NASA Technical Reports Server (NTRS)
Becker, E. B.; Miller, T.
1985-01-01
Recent work has shown that the use of separable symmetric functions of the principal stretches can adequately describe the response of certain propellant materials and, further, that a data reduction scheme gives a convenient way of obtaining the values of the functions from experimental data. Based on representation of the energy, a computational scheme was developed that allows finite element analysis of boundary value problems of arbitrary shape and loading. The computational procedure was implemental in a three-dimensional finite element code, TEXLESP-S, which is documented herein.
Substructure System Identification for Finite Element Model Updating
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Blades, Eric L.
1997-01-01
This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.
Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods
NASA Astrophysics Data System (ADS)
Chung, Eric; Efendiev, Yalchin; Hou, Thomas Y.
2016-09-01
In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation.
Finite element microscopic stress analysis of cracked composite systems
NASA Technical Reports Server (NTRS)
Ko, W. L.
1978-01-01
This paper considers the stress concentration problems of two types of cracked composite systems: (1) a composite system with a broken fiber (a penny-shaped crack problem), and (2) a composite system with a cracked matrix (an annular crack problem). The cracked composite systems are modeled with triangular and trapezoidal ring finite elements. Using NASTRAN (NASA Structural Analysis) finite element computer program, the stress and deformation fields in the cracked composite systems are calculated. The effect of fiber-matrix material combination on the stress concentrations and on the crack opening displacements is studied.
Global-local finite element analysis of composite structures
Deibler, J.E.
1992-06-01
The development of layered finite elements has facilitated analysis of laminated composite structures. However, the analysis of a structure containing both isotropic and composite materials remains a difficult problem. A methodology has been developed to conduct a ``global-local`` finite element analysis. A ``global`` analysis of the entire structure is conducted at the appropriate loads with the composite portions replaced with an orthotropic material of equivalent materials properties. A ``local`` layered composite analysis is then conducted on the region of interest. The displacement results from the ``global`` analysis are used as loads to the ``local`` analysis. the laminate stresses and strains can then be examined and failure criteria evaluated.
Global-local finite element analysis of composite structures
Deibler, J.E.
1992-06-01
The development of layered finite elements has facilitated analysis of laminated composite structures. However, the analysis of a structure containing both isotropic and composite materials remains a difficult problem. A methodology has been developed to conduct a global-local'' finite element analysis. A global'' analysis of the entire structure is conducted at the appropriate loads with the composite portions replaced with an orthotropic material of equivalent materials properties. A local'' layered composite analysis is then conducted on the region of interest. The displacement results from the global'' analysis are used as loads to the local'' analysis. the laminate stresses and strains can then be examined and failure criteria evaluated.
Error analysis of finite element solutions for postbuckled plates
NASA Technical Reports Server (NTRS)
Sistla, Rajaram; Thurston, Gaylen A.
1988-01-01
An error analysis of results from finite-element solutions of problems in shell structures is further developed, incorporating the results of an additional numerical analysis by which oscillatory behavior is eliminated. The theory is extended to plates with initial geometric imperfections, and this novel analysis is programmed as a postprocessor for a general-purpose finite-element code. Numerical results are given for the case of a stiffened panel in compression and a plate loaded in shear by a 'picture-frame' test fixture.
Discontinuous Galerkin finite element methods for gradient plasticity.
Garikipati, Krishna.; Ostien, Jakob T.
2010-10-01
In this report we apply discontinuous Galerkin finite element methods to the equations of an incompatibility based formulation of gradient plasticity. The presentation is motivated with a brief overview of the description of dislocations within a crystal lattice. A tensor representing a measure of the incompatibility with the lattice is used in the formulation of a gradient plasticity model. This model is cast in a variational formulation, and discontinuous Galerkin machinery is employed to implement the formulation into a finite element code. Finally numerical examples of the model are shown.
Diffusive mesh relaxation in ALE finite element numerical simulations
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
Smith, N. A. S. E-mail: maciej.rokosz@npl.co.uk Correia, T. M. E-mail: maciej.rokosz@npl.co.uk; Rokosz, M. K. E-mail: maciej.rokosz@npl.co.uk
2014-07-28
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.
Adaptive finite-element method for diffraction gratings
NASA Astrophysics Data System (ADS)
Bao, Gang; Chen, Zhiming; Wu, Haijun
2005-06-01
A second-order finite-element adaptive strategy with error control for one-dimensional grating problems is developed. The unbounded computational domain is truncated to a bounded one by a perfectly-matched-layer (PML) technique. The PML parameters, such as the thickness of the layer and the medium properties, are determined through sharp a posteriori error estimates. The adaptive finite-element method is expected to increase significantly the accuracy and efficiency of the discretization as well as reduce the computation cost. Numerical experiments are included to illustrate the competitiveness of the proposed adaptive method.
Two-dimensional finite-element temperature variance analysis
NASA Technical Reports Server (NTRS)
Heuser, J. S.
1972-01-01
The finite element method is extended to thermal analysis by forming a variance analysis of temperature results so that the sensitivity of predicted temperatures to uncertainties in input variables is determined. The temperature fields within a finite number of elements are described in terms of the temperatures of vertices and the variational principle is used to minimize the integral equation describing thermal potential energy. A computer calculation yields the desired solution matrix of predicted temperatures and provides information about initial thermal parameters and their associated errors. Sample calculations show that all predicted temperatures are most effected by temperature values along fixed boundaries; more accurate specifications of these temperatures reduce errors in thermal calculations.
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
NASA Astrophysics Data System (ADS)
Smith, N. A. S.; Rokosz, M. K.; Correia, T. M.
2014-07-01
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.
A weak Galerkin generalized multiscale finite element method
Mu, Lin; Wang, Junping; Ye, Xiu
2016-03-31
In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.
Fourier analysis of finite element preconditioned collocation schemes
NASA Technical Reports Server (NTRS)
Deville, Michel O.; Mund, Ernest H.
1990-01-01
The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.
Finite element methods for nonlinear elastostatic problems in rubber elasticity
NASA Technical Reports Server (NTRS)
Oden, J. T.; Becker, E. B.; Miller, T. H.; Endo, T.; Pires, E. B.
1983-01-01
A number of finite element methods for the analysis of nonlinear problems in rubber elasticity are outlined. Several different finite element schemes are discussed. These include the augmented Lagrangian method, continuation or incremental loading methods, and associated Riks-type methods which have the capability of incorporating limit point behavior and bifurcations. Algorithms for the analysis of limit point behavior and bifurcations are described and the results of several numerical experiments are presented. In addition, a brief survey of some recent work on modelling contact and friction in elasticity problems is given. These results pertain to the use of new nonlocal and nonlinear friction laws.
Finite element methodology for integrated flow-thermal-structural analysis
NASA Technical Reports Server (NTRS)
Thornton, Earl A.; Ramakrishnan, R.; Vemaganti, G. R.
1988-01-01
Papers entitled, An Adaptive Finite Element Procedure for Compressible Flows and Strong Viscous-Inviscid Interactions, and An Adaptive Remeshing Method for Finite Element Thermal Analysis, were presented at the June 27 to 29, 1988, meeting of the AIAA Thermophysics, Plasma Dynamics and Lasers Conference, San Antonio, Texas. The papers describe research work supported under NASA/Langley Research Grant NsG-1321, and are submitted in fulfillment of the progress report requirement on the grant for the period ending February 29, 1988.
Finite element models of the space shuttle main engine
NASA Technical Reports Server (NTRS)
Muller, G. R.
1980-01-01
Finite element models were developed as input to dynamic simulations of the high pressure fuel turbopump (HPFTP), the high pressure oxidizer turbopump (HPOTP), and the space shuttle main engine (SSME). Descriptions are provided for the five basic finite element models: HPFTP rotor, HPFTP case, HPOTP rotor, HPOTP case, and SSME (excluding turbopumps). Modal results are presented for the HPFTP rotor, HPFTP case, HPOTP rotor, coupled HPFTP rotor and case, HPOTP case, coupled HPOTP rotor and case, SSME (excluding turbopumps), and SSME (including turbopumps). Results for the SSME (including turbopumps) model are compared to data from a SSME HPOTP modal survey.
Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, John L.
1996-01-01
One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.
Considerations of crack growth and plasticity in finite element analysis
NASA Technical Reports Server (NTRS)
Lee, J. D.; Liebowitz, H.
1978-01-01
A finite-element analysis was made of crack growth in a center-cracked specimen subjected to monotonically increasing load until the point of fast fracture. Since part of the specimen experienced unloading, the boundary value problem which was formulated was based upon incremental theory of plasticity. Experimental load and crack size records were utilized. Linear relations between plastic energy and crack growth were observed. Fracture toughness parameters, which were evaluated at the onset of unstable crack propagation from finite-element analysis, were in good agreement with those determined experimentally.
Finite Element Aircraft Simulation of Turbulence
NASA Technical Reports Server (NTRS)
McFarland, R. E.
1997-01-01
A turbulence model has been developed for realtime aircraft simulation that accommodates stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations. Vehicle angular activity in response to turbulence is computed from geometrical and temporal relationships rather than by using the conventional continuum approximations that assume uniform gust immersion and low frequency responses. By using techniques similar to those recently developed for blade-element rotor models, the angular-rate filters of conventional turbulence models are not required. The model produces rotational rates as well as air mass translational velocities in response to both stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may be correlated with significant terrain features or ship models. Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc, and this distribution is used to compute roll responses. Air mass velocities are applied at significant centers of pressure in the computation of the aircraft's pitch and roll responses.
A class of hybrid finite element methods for electromagnetics: A review
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Chatterjee, A.; Gong, J.
1993-01-01
Integral equation methods have generally been the workhorse for antenna and scattering computations. In the case of antennas, they continue to be the prominent computational approach, but for scattering applications the requirement for large-scale computations has turned researchers' attention to near neighbor methods such as the finite element method, which has low O(N) storage requirements and is readily adaptable in modeling complex geometrical features and material inhomogeneities. In this paper, we review three hybrid finite element methods for simulating composite scatterers, conformal microstrip antennas, and finite periodic arrays. Specifically, we discuss the finite element method and its application to electromagnetic problems when combined with the boundary integral, absorbing boundary conditions, and artificial absorbers for terminating the mesh. Particular attention is given to large-scale simulations, methods, and solvers for achieving low memory requirements and code performance on parallel computing architectures.
NASA Technical Reports Server (NTRS)
1976-01-01
A survey of research efforts in the area of geometrically nonlinear finite elements is presented. The survey is intended to serve as a guide in the choice of nonlinear elements for specific problems, and as background to provide directions for new element developments. The elements are presented in a handbook format and are separated by type as beams, plates (or shallow shells), shells, and other elements. Within a given type, the elements are identified by the assumed displacement shapes and the forms of the nonlinear strain equations. Solution procedures are not discussed except when a particular element formulation poses special problems or capabilities in this regard. The main goal of the format is to provide quick access to a wide variety of element types, in a consistent presentation format, and to facilitate comparison and evaluation of different elements with regard to features, probable accuracy, and complexity.
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.
2002-01-01
A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.
Finite-element-based design tool for smart composite structures
NASA Astrophysics Data System (ADS)
Koko, Tamunoiyala S.; Orisamolu, Irewole R.; Smith, Malcolm J.; Akpan, Unyime O.
1997-06-01
This paper presents an integrated finite element-control methodology for the design/analysis of smart composite structures. The method forms part of an effort to develop an integrated computational tool that includes finite element modeling; control algorithms; and deterministic, fuzzy and probabilistic optimization and integrity assessment of the structures and control systems. The finite element analysis is based on a 20 node thermopiezoelectric composite element for modeling the composite structure with surface bonded piezoelectric sensors and actuators; and control is based on the linear quadratic regulator and the independent modal space control methods. The method has been implemented in a computer code called SMARTCOM. Several example problems have been used to verify various aspects of the formulations and the analysis results from the present study compare well against other numerical or experimental results. Being based on the finite element method, the present formation can be conveniently used for the analysis and design of smart composite structures with complex geometrical configurations and loadings.
Probabilistic nonlinear finite element analysis of composite structures
NASA Technical Reports Server (NTRS)
Engelstad, S. P.; Reddy, J. N.
1993-01-01
A probabilistic finite element analysis procedure for laminated composite shells is developed. A total Lagrangian finite element formulation, employing a degenerated three-dimensional laminated composite shell element with the full Green-Lagrange strains and first-order shear deformable kinematics, is used. The first-order second-moment technique for probabilistic finite element analysis of random fields is employed, and results are presented in the form of mean and variance of the structural response. Reliability calculations are made by using the first-order reliability method combined with sensitivity derivatives from the finite element analysis. Both ply-level and micromechanics-level random variables are incorporated, the latter by means of the Aboudi micromechanics model. Two sample problems are solved to verify the accuracy of the procedures developed and to quantify the variability of certain material type/structure combinations. In general, the procedure is quite effective in determining the response statistics and reliability for linear and geometric nonlinear behavior of laminated composite shells.
Finite Element Model Development and Validation for Aircraft Fuselage Structures
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.
2000-01-01
The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.
Finite Element Estimation of Meteorite Structural Properties
NASA Technical Reports Server (NTRS)
Hart, Kenneth Arthur
2015-01-01
The goal of the project titled Asteroid Threat Assessment at NASA Ames Research Center is to develop risk assessment tools. The expertise in atmospheric entry in the Entry Systems and Technology Division is being used to describe the complex physics of meteor breakup in the atmosphere. The breakup of a meteor is dependent on its structural properties, including homogeneity of the material. The present work describes an 11-week effort in which a literature survey was carried for structural properties of meteoritic material. In addition, the effect of scale on homogeneity isotropy was studied using a Monte Carlo approach in Nastran. The properties were then in a static structural response simulation of an irregularly-shape meteor (138-scale version of Asteroid Itokawa). Finally, an early plan was developed for doctoral research work at Georgia Tech. in the structural failure fragmentation of meteors.
NASA Astrophysics Data System (ADS)
Madaras, E. I.; Kline, R. A.; Cruse, G.; Striz, A. G.
1991-07-01
In this work, the use of ultrasonic property measurements as the basis for finite element analysis of full scale composite components is presented. The approach utilizes multiple velocity measurements at oblique angles of incidence and quantitative analysis of radiographic images for the local determination of each of the nine orthotropic moduli in a woven carbon-carbon composite. These values were then used as input into a finite element code (NASTRAN) to analyze the response of the material to load: here, diametric compression. The predicted response was then compared with strain gage results at several locations to validate the approach.
NASA Technical Reports Server (NTRS)
Madaras, E. I.; Kline, R. A.; Cruse, G.; Striz, A. G.
1991-01-01
In this work, the use of ultrasonic property measurements as the basis for finite element analysis of full scale composite components is presented. The approach utilizes multiple velocity measurements at oblique angles of incidence and quantitative analysis of radiographic images for the local determination of each of the nine orthotropic moduli in a woven carbon-carbon composite. These values were then used as input into a finite element code (NASTRAN) to analyze the response of the material to load: here, diametric compression. The predicted response was then compared with strain gage results at several locations to validate the approach.
An explicit Lagrangian finite element method for free-surface weakly compressible flows
NASA Astrophysics Data System (ADS)
Cremonesi, Massimiliano; Meduri, Simone; Perego, Umberto; Frangi, Attilio
2016-07-01
In the present work, an explicit finite element approach to the solution of the Lagrangian formulation of the Navier-Stokes equations for weakly compressible fluids or fluid-like materials is investigated. The introduction of a small amount of compressibility is shown to allow for the formulation of a fast and robust explicit solver based on a particle finite element method. Newtonian and Non-Newtonian Bingham laws are considered. A barotropic equation of state completes the model relating pressure and density fields. The approach has been validated through comparison with experimental tests and numerical simulations of free surface fluid problems involving water and water-soil mixtures.
Non-Periodic Finite-Element Formulation of Orbital-Free Density Functional Theory
Gavini, V; Knap, J; Bhattacharya, K; Ortiz, M
2006-10-06
We propose an approach to perform orbital-free density functional theory calculations in a non-periodic setting using the finite-element method. We consider this a step towards constructing a seamless multi-scale approach for studying defects like vacancies, dislocations and cracks that require quantum mechanical resolution at the core and are sensitive to long range continuum stresses. In this paper, we describe a local real space variational formulation for orbital-free density functional theory, including the electrostatic terms and prove existence results. We prove the convergence of the finite-element approximation including numerical quadratures for our variational formulation. Finally, we demonstrate our method using examples.
Finite element modeling of magnetic bias eddy current probe interaction with ferromagnetic materials
NASA Astrophysics Data System (ADS)
Lei, J.
2013-01-01
Requirements to demonstrate eddy current inspection capabilities for inspection of steam generator tubes in nuclear power generation stations are becoming more rigorous. One method to support qualification of an existing, modified, or new eddy current probe design is to model the probe response to various degradation modes and tube artifacts with a finite element approach. Magnetic-bias probes are used to inspect for defects in conditions where material magnetic permeability effects are a concern, such as in the presence of ferromagnetic tubes, deposits, or supports. In this paper, a transient finite element modeling approach was used to model the interaction of magnetic-bias eddy current probes with ferromagnetic materials.
Numerical techniques in linear duct acoustics. [finite difference and finite element analyses
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1980-01-01
Both finite difference and finite element analyses of small amplitude (linear) sound propagation in straight and variable area ducts with flow, as might be found in a typical turboject engine duct, muffler, or industrial ventilation system, are reviewed. Both steady state and transient theories are discussed. Emphasis is placed on the advantages and limitations associated with the various numerical techniques. Examples of practical problems are given for which the numerical techniques have been applied.
Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P
2011-04-01
Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials. PMID:21428686
Finite element analysis of fluid-filled elastic piping systems
NASA Technical Reports Server (NTRS)
Everstine, G. C.; Marcus, M. S.; Quezon, A. J.
1983-01-01
Two finite element procedures are described for predicting the dynamic response of general 3-D fluid-filled elastic piping systems. The first approach, a low frequency procedure, models each straight pipe or elbow as a sequence of beams. The contained fluid is modeled as a separate coincident sequence axial members (rods) which are tied to the pipe in the lateral direction. The model includes the pipe hoop strain correction to the fluid sound speed and the flexibility factor correction to the elbow flexibility. The second modeling approach, an intermediate frequency procedure, follows generally the original Zienkiewicz-Newton scheme for coupled fluid-structure problems except that the velocity potential is used as the fundamental fluid unknown to symmetrize the coefficient matrices. From comparisons of the beam model predictions to both experimental data and the 3-D model, the beam model is validated for frequencies up to about two-thirds of the lowest fluid-filled labor pipe mode. Accurate elbow flexibility factors are seen to be crucial for effective beam modeling of piping systems.
Development of a finite element model of decompressive craniectomy.
Fletcher, Tim L; Kolias, Angelos G; Hutchinson, Peter J A; Sutcliffe, Michael P F
2014-01-01
Decompressive craniectomy (DC), an operation whereby part of the skull is removed, is used in the management of patients with brain swelling. While the aim of DC is to reduce intracranial pressure, there is the risk that brain deformation and mechanical strain associated with the operation could damage the brain tissue. The nature and extent of the resulting strain regime is poorly understood at present. Finite element (FE) models of DC can provide insight into this applied strain and hence assist in deciding on the best surgical procedures. However there is uncertainty about how well these models match experimental data, which are difficult to obtain clinically. Hence there is a need to validate any modelling approach outside the clinical setting. This paper develops an axisymmetric FE model of an idealised DC to assess the key features of such an FE model which are needed for an accurate simulation of DC. The FE models are compared with an experimental model using gelatin hydrogel, which has similar poro-viscoelastic material property characteristics to brain tissue. Strain on a central plane of the FE model and the front face of the experimental model, deformation and load relaxation curves are compared between experiment and FE. Results show good agreement between the FE and experimental models, providing confidence in applying the proposed FE modelling approach to DC. Such a model should use material properties appropriate for brain tissue and include a more realistic whole head geometry. PMID:25025666
Development of a Finite Element Model of Decompressive Craniectomy
Fletcher, Tim L.; Kolias, Angelos G.; Hutchinson, Peter J. A.; Sutcliffe, Michael P. F.
2014-01-01
Decompressive craniectomy (DC), an operation whereby part of the skull is removed, is used in the management of patients with brain swelling. While the aim of DC is to reduce intracranial pressure, there is the risk that brain deformation and mechanical strain associated with the operation could damage the brain tissue. The nature and extent of the resulting strain regime is poorly understood at present. Finite element (FE) models of DC can provide insight into this applied strain and hence assist in deciding on the best surgical procedures. However there is uncertainty about how well these models match experimental data, which are difficult to obtain clinically. Hence there is a need to validate any modelling approach outside the clinical setting. This paper develops an axisymmetric FE model of an idealised DC to assess the key features of such an FE model which are needed for an accurate simulation of DC. The FE models are compared with an experimental model using gelatin hydrogel, which has similar poro-viscoelastic material property characteristics to brain tissue. Strain on a central plane of the FE model and the front face of the experimental model, deformation and load relaxation curves are compared between experiment and FE. Results show good agreement between the FE and experimental models, providing confidence in applying the proposed FE modelling approach to DC. Such a model should use material properties appropriate for brain tissue and include a more realistic whole head geometry. PMID:25025666
Finite element analysis simulations for ultrasonic array NDE inspections
NASA Astrophysics Data System (ADS)
Dobson, Jeff; Tweedie, Andrew; Harvey, Gerald; O'Leary, Richard; Mulholland, Anthony; Tant, Katherine; Gachagan, Anthony
2016-02-01
Advances in manufacturing techniques and materials have led to an increase in the demand for reliable and robust inspection techniques to maintain safety critical features. The application of modelling methods to develop and evaluate inspections is becoming an essential tool for the NDE community. Current analytical methods are inadequate for simulation of arbitrary components and heterogeneous materials, such as anisotropic welds or composite structures. Finite element analysis software (FEA), such as PZFlex, can provide the ability to simulate the inspection of these arrangements, providing the ability to economically prototype and evaluate improved NDE methods. FEA is often seen as computationally expensive for ultrasound problems however, advances in computing power have made it a more viable tool. This paper aims to illustrate the capability of appropriate FEA to produce accurate simulations of ultrasonic array inspections - minimizing the requirement for expensive test-piece fabrication. Validation is afforded via corroboration of the FE derived and experimentally generated data sets for a test-block comprising 1D and 2D defects. The modelling approach is extended to consider the more troublesome aspects of heterogeneous materials where defect dimensions can be of the same length scale as the grain structure. The model is used to facilitate the implementation of new ultrasonic array inspection methods for such materials. This is exemplified by considering the simulation of ultrasonic NDE in a weld structure in order to assess new approaches to imaging such structures.
Thermal conduction in particle packs via finite elements
NASA Astrophysics Data System (ADS)
Lechman, Jeremy B.; Yarrington, Cole; Erikson, William; Noble, David R.
2013-06-01
Conductive transport in heterogeneous materials composed of discrete particles is a fundamental problem for a number of applications. While analytical results and rigorous bounds on effective conductivity in mono-sized particle dispersions are well established in the literature, the methods used to arrive at these results often fail when the average size of particle clusters becomes large (i.e., near the percolation transition where particle contact networks dominate the bulk conductivity). Our aim is to develop general, efficient numerical methods that would allow us to explore this behavior and compare to a recent microstructural description of conduction in this regime. To this end, we present a finite element analysis approach to modeling heat transfer in granular media with the goal of predicting effective bulk thermal conductivities of particle-based heterogeneous composites. Our approach is verified against theoretical predictions for random isotropic dispersions of mono-disperse particles at various volume fractions up to close packing. Finally, we present results for the probability distribution of the effective conductivity in particle dispersions generated by Brownian dynamics, and suggest how this might be useful in developing stochastic models of effective properties based on the dynamical process involved in creating heterogeneous dispersions.
Finite Element Models for Electron Beam Freeform Fabrication Process
NASA Technical Reports Server (NTRS)
Chandra, Umesh
2012-01-01
Electron beam freeform fabrication (EBF3) is a member of an emerging class of direct manufacturing processes known as solid freeform fabrication (SFF); another member of the class is the laser deposition process. Successful application of the EBF3 process requires precise control of a number of process parameters such as the EB power, speed, and metal feed rate in order to ensure thermal management; good fusion between the substrate and the first layer and between successive layers; minimize part distortion and residual stresses; and control the microstructure of the finished product. This is the only effort thus far that has addressed computer simulation of the EBF3 process. The models developed in this effort can assist in reducing the number of trials in the laboratory or on the shop floor while making high-quality parts. With some modifications, their use can be further extended to the simulation of laser, TIG (tungsten inert gas), and other deposition processes. A solid mechanics-based finite element code, ABAQUS, was chosen as the primary engine in developing these models whereas a computational fluid dynamics (CFD) code, Fluent, was used in a support role. Several innovative concepts were developed, some of which are highlighted below. These concepts were implemented in a number of new computer models either in the form of stand-alone programs or as user subroutines for ABAQUS and Fluent codes. A database of thermo-physical, mechanical, fluid, and metallurgical properties of stainless steel 304 was developed. Computing models for Gaussian and raster modes of the electron beam heat input were developed. Also, new schemes were devised to account for the heat sink effect during the deposition process. These innovations, and others, lead to improved models for thermal management and prediction of transient/residual stresses and distortions. Two approaches for the prediction of microstructure were pursued. The first was an empirical approach involving the
ATESHIAN, GERARD A.; ALBRO, MICHAEL B.; MAAS, STEVE; WEISS, JEFFREY A.
2012-01-01
Biological soft tissues and cells may be subjected to mechanical as well as chemical (osmotic) loading under their natural physiological environment or various experimental conditions. The interaction of mechanical and chemical effects may be very significant under some of these conditions, yet the highly nonlinear nature of the set of governing equations describing these mechanisms poses a challenge for the modeling of such phenomena. This study formulated and implemented a finite element algorithm for analyzing mechano-chemical events in neutral deformable porous media under finite deformation. The algorithm employed the framework of mixture theory to model the porous permeable solid matrix and interstitial fluid, where the fluid consists of a mixture of solvent and solute. A special emphasis was placed on solute-solid matrix interactions, such as solute exclusion from a fraction of the matrix pore space (solubility) and frictional momentum exchange that produces solute hindrance and pumping under certain dynamic loading conditions. The finite element formulation implemented full coupling of mechanical and chemical effects, providing a framework where material properties and response functions may depend on solid matrix strain as well as solute concentration. The implementation was validated using selected canonical problems for which analytical or alternative numerical solutions exist. This finite element code includes a number of unique features that enhance the modeling of mechano-chemical phenomena in biological tissues. The code is available in the public domain, open source finite element program FEBio (http://mrl.sci.utah.edu/software). PMID:21950898
Ateshian, Gerard A; Albro, Michael B; Maas, Steve; Weiss, Jeffrey A
2011-08-01
Biological soft tissues and cells may be subjected to mechanical as well as chemical (osmotic) loading under their natural physiological environment or various experimental conditions. The interaction of mechanical and chemical effects may be very significant under some of these conditions, yet the highly nonlinear nature of the set of governing equations describing these mechanisms poses a challenge for the modeling of such phenomena. This study formulated and implemented a finite element algorithm for analyzing mechanochemical events in neutral deformable porous media under finite deformation. The algorithm employed the framework of mixture theory to model the porous permeable solid matrix and interstitial fluid, where the fluid consists of a mixture of solvent and solute. A special emphasis was placed on solute-solid matrix interactions, such as solute exclusion from a fraction of the matrix pore space (solubility) and frictional momentum exchange that produces solute hindrance and pumping under certain dynamic loading conditions. The finite element formulation implemented full coupling of mechanical and chemical effects, providing a framework where material properties and response functions may depend on solid matrix strain as well as solute concentration. The implementation was validated using selected canonical problems for which analytical or alternative numerical solutions exist. This finite element code includes a number of unique features that enhance the modeling of mechanochemical phenomena in biological tissues. The code is available in the public domain, open source finite element program FEBio (http:∕∕mrl.sci.utah.edu∕software). PMID:21950898
A finite element code for electric motor design
NASA Technical Reports Server (NTRS)
Campbell, C. Warren
1994-01-01
FEMOT is a finite element program for solving the nonlinear magnetostatic problem. This version uses nonlinear, Newton first order elements. The code can be used for electric motor design and analysis. FEMOT can be embedded within an optimization code that will vary nodal coordinates to optimize the motor design. The output from FEMOT can be used to determine motor back EMF, torque, cogging, and magnet saturation. It will run on a PC and will be available to anyone who wants to use it.
Finite element error estimation and adaptivity based on projected stresses
Jung, J.
1990-08-01
This report investigates the behavior of a family of finite element error estimators based on projected stresses, i.e., continuous stresses that are a least squared error fit to the conventional Gauss point stresses. An error estimate based on element force equilibrium appears to be quite effective. Examples of adaptive mesh refinement for a one-dimensional problem are presented. Plans for two-dimensional adaptivity are discussed. 12 refs., 82 figs.
A General-Purpose Mesh Generator for Finite Element Codes.
Energy Science and Technology Software Center (ESTSC)
1984-02-28
Version 00 INGEN is a general-purpose mesh generator for use in conjunction with two and three dimensional finite element programs. The basic components of INGEN are surface and three-dimensional region generators that use linear-blending interpolation formulae. These generators are based on an i, j, k index scheme, which is used to number nodal points, construct elements, and develop displacement and traction boundary conditions.
NASA Technical Reports Server (NTRS)
Fulton, R. E.
1986-01-01
The requirements of complex aerospace vehicles combined with the age of structural analysis systems enhance the need to advance technology toward a new generation of structural analysis capability. Recent and impeding advances in parallel and supercomputers provide the opportunity to significantly improve these structural analysis capabilities for large order finite element problems. Long-term research in parallel computing, associated with the NASA Finite Element Machine project, is discussed. The results show the potential of parallel computers to provide substantial increases in computation speed over sequential computers. Results are given for sample problems in the areas of eigenvalue analysis and transient response.
Dedicated finite elements for electrode thin films on quartz resonators.
Srivastava, Sonal A; Yong, Yook-Kong; Tanaka, Masako; Imai, Tsutomu
2008-08-01
The accuracy of the finite element analysis for thickness shear quartz resonators is a function of the mesh resolution; the finer the mesh resolution, the more accurate the finite element solution. A certain minimum number of elements are required in each direction for the solution to converge. This places a high demand on memory for computation, and often the available memory is insufficient. Typically the thickness of the electrode films is very small compared with the thickness of the resonator itself; as a result, electrode elements have very poor aspect ratios, and this is detrimental to the accuracy of the result. In this paper, we propose special methods to model the electrodes at the crystal interface of an AT cut crystal. This reduces the overall problem size and eliminates electrode elements having poor aspect ratios. First, experimental data are presented to demonstrate the effects of electrode film boundary conditions on the frequency-temperature curves of an AT cut plate. Finite element analysis is performed on a mesh representing the resonator, and the results are compared for testing the accuracy of the analysis itself and thus validating the results of analysis. Approximations such as lumping and Guyan reduction are then used to model the electrode thin films at the electrode interface and their results are studied. In addition, a new approximation called merging is proposed to model electrodes at the electrode interface. PMID:18986913
Finite-element modeling of soft tissue rolling indentation.
Sangpradit, Kiattisak; Liu, Hongbin; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D
2011-12-01
We describe a finite-element (FE) model for simulating wheel-rolling tissue deformations using a rolling FE model (RFEM). A wheeled probe performing rolling tissue indentation has proven to be a promising approach for compensating for the loss of haptic and tactile feedback experienced during robotic-assisted minimally invasive surgery (H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne, and K. Althoefer, "Rolling mechanical imaging for tissue abnormality localization during minimally invasive surgery, " IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 404-414, Feb. 2010; K. Sangpradit, H. Liu, L. Seneviratne, and K. Althoefer, "Tissue identification using inverse finite element analysis of rolling indentation," in Proc. IEEE Int. Conf. Robot. Autom. , Kobe, Japan, 2009, pp. 1250-1255; H. Liu, D. Noonan, K. Althoefer, and L. Seneviratne, "The rolling approach for soft tissue modeling and mechanical imaging during robot-assisted minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom., May 2008, pp. 845-850; H. Liu, P. Puangmali, D. Zbyszewski, O. Elhage, P. Dasgupta, J. S. Dai, L. Seneviratne, and K. Althoefer, "An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery," Proc. Inst. Mech. Eng., H, vol. 224, no. 6, pp. 751-63, 2010; D. Noonan, H. Liu, Y. Zweiri, K. Althoefer, and L. Seneviratne, "A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom. , 2008, pp. 2629-2634; H. Liu, J. Li, Q. I. Poon, L. D. Seneviratne, and K. Althoefer, "Miniaturized force indentation-depth sensor for tissue abnormality identification," IEEE Int. Conf. Robot. Autom., May 2010, pp. 3654-3659). A sound understanding of wheel-tissue rolling interaction dynamics will facilitate the evaluation of signals from rolling indentation. In this paper, we model the dynamic interactions between a wheeled probe and a
A two-scale finite element formulation for the dynamic analysis of heterogeneous materials
Ionita, Axinte
2008-01-01
In the analysis of heterogeneous materials using a two-scale Finite Element Method (FEM) the usual assumption is that the Representative Volume Element (RVE) of the micro-scale is much smaller than the finite element discretization of the macro-scale. However there are situations in which the RVE becomes comparable with, or even bigger than the finite element. These situations are considered in this article from the perspective of a two-scale FEM dynamic analysis. Using the principle of virtual power, new equations for the fluctuating fields are developed in terms of velocities rather than displacements. To allow more flexibility in the analysis, a scaling deformation tensor is introduced together with a procedure for its determination. Numerical examples using the new approach are presented.
Finite element method for optimal guidance of an advanced launch vehicle
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.; Calise, Anthony J.; Leung, Martin
1992-01-01
A temporal finite element based on a mixed form of Hamilton's weak principle is summarized for optimal control problems. The resulting weak Hamiltonian finite element method is extended to allow for discontinuities in the states and/or discontinuities in the system equations. An extension of the formulation to allow for control inequality constraints is also presented. The formulation does not require element quadrature, and it produces a sparse system of nonlinear algebraic equations. To evaluate its feasibility for real-time guidance applications, this approach is applied to the trajectory optimization of a four-state, two-stage model with inequality constraints for an advanced launch vehicle. Numerical results for this model are presented and compared to results from a multiple-shooting code. The results show the accuracy and computational efficiency of the finite element method.
Finite-Element Analysis of Multiphase Immiscible Flow Through Soils
NASA Astrophysics Data System (ADS)
Kuppusamy, T.; Sheng, J.; Parker, J. C.; Lenhard, R. J.
1987-04-01
A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equations governing flow in a three-fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures, which are derived in a companion paper by J. C. Parker et al. (this issue) and which may be calibrated from two-phase laboratory measurements, are employed in the finite-element program. The solution procedure uses backward time integration with iteration by a modified Picard method to handle the nonlinear properties. Laboratory experiments involving water displacement from soil columns by p cymene (a benzene-derivative hydrocarbon) under constant pressure were simulated by the finite-element program to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured saturation-capillary head data agreed with observed outflow data within the limits of precision of the predictions as estimated by a first-order Taylor series approximation considering parameter uncertainty due to experimental reproducability and constitutive model accuracy. Two-dimensional simulations are presented for a hypothetical field case involving introduction of NAPL near the soil surface due to leakage from an underground storage tank. Subsequent transport of NAPL in the variably saturated vadose and groundwater zones is analyzed.
SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications
NASA Technical Reports Server (NTRS)
Kirk, Benjamin S.
2007-01-01
This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.
Implicit extrapolation methods for multilevel finite element computations
Jung, M.; Ruede, U.
1994-12-31
The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.
the finite element machine: An experiment in parallel processing
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Peebles, S. W.; Crockett, T. W.; Knott, J. D.; Adams, L.
1982-01-01
The Finite Element Machine at the NASA Langley Research Center is a prototype computer designed to support parallel solutions to structural analysis problems. The hardware architecture and support software for the machine, initial solution algorithms and test applications, and preliminary results are described. Directions for future work are presented.
Experiences in interfacing NASTRAN with another finite element program
NASA Technical Reports Server (NTRS)
Schwerzler, D. D.; Leverenz, R. K.
1972-01-01
The coupling of NASTRAN to another finite element program developed for the static analysis of automotive structures is discussed. The two programs were coupled together to use the substructuring capability of the in-house program and the normal mode analysis capability of NASTRAN. Modifications were made to the NASTRAN program in order to make the coupling feasible.
Spanwise variation of potential form drag. [finite element method
NASA Technical Reports Server (NTRS)
Clever, W. C.
1977-01-01
The finite element method is used to calculate the spanwise variation of potential form drag of a wing at subsonic and supersonic speeds using linearly varying panels. The wing may be of arbitrary planform and nonplanar provided the wing panels are parallel to the aircraft axis.
Design, development and use of the finite element machine
NASA Technical Reports Server (NTRS)
Adams, L. M.; Voigt, R. C.
1983-01-01
Some of the considerations that went into the design of the Finite Element Machine, a research asynchronous parallel computer are described. The present status of the system is also discussed along with some indication of the type of results that were obtained.
Incorporation of Hysteresis Effects into Magnetc Finite Element Modeling
NASA Astrophysics Data System (ADS)
Lee, J. Y.; Lee, S. J.; Melikhov, Y.; Jiles, D. C.; Garton, M.; Lopez, R.; Brasche, L.
2004-02-01
Hysteresis effects have usually been ignored in magnetic modeling due to the multi-valued property causing difficulty in its incorporation into numerical calculations such as those based on finite elements. A linear approximation of magnetic permeability or a nonlinear B-H curve formed by connecting the tips of the hysteresis loops has been widely used in magnetic modeling for these types of calculations. We have employed the Jiles-Atherton (J-A) hysteresis model for development of a finite element method algorithm incorporating hysteresis effects. J-A model is suited for numerical analysis such as finite element modeling because of the small number of degrees of freedom and its simple form of equation. A finite element method algorithm for hysteretic materials has been developed for estimation of the volume and the distribution of retained magnetic particles around a defect site. The volume of retained magnetic particles was found to depend not only on the existing current source strength but also on the remaining magnetization of a hysteretic material. Detailed algorithm and simulation results are presented.
Finite element forced vibration analysis of rotating cyclic structures
NASA Technical Reports Server (NTRS)
Elchuri, V.; Smith, G. C. C.
1981-01-01
A capability was added to the general purpose finite element program NASTRAN Level 17.7 to conduct forced vibration analysis of tuned cyclic structures rotating about their axes of symmetry. The effects of Coriolis and centripetal accelerations together with those due to linear acceleration of the axis of rotation were included. The theoretical development of this capability is presented.
Nitsche Extended Finite Element Methods for Earthquake Simulation
NASA Astrophysics Data System (ADS)
Coon, Ethan T.
Modeling earthquakes and geologically short-time-scale events on fault networks is a difficult problem with important implications for human safety and design. These problems demonstrate a. rich physical behavior, in which distributed loading localizes both spatially and temporally into earthquakes on fault systems. This localization is governed by two aspects: friction and fault geometry. Computationally, these problems provide a stern challenge for modelers --- static and dynamic equations must be solved on domains with discontinuities on complex fault systems, and frictional boundary conditions must be applied on these discontinuities. The most difficult aspect of modeling physics on complicated domains is the mesh. Most numerical methods involve meshing the geometry; nodes are placed on the discontinuities, and edges are chosen to coincide with faults. The resulting mesh is highly unstructured, making the derivation of finite difference discretizations difficult. Therefore, most models use the finite element method. Standard finite element methods place requirements on the mesh for the sake of stability, accuracy, and efficiency. The formation of a mesh which both conforms to fault geometry and satisfies these requirements is an open problem, especially for three dimensional, physically realistic fault. geometries. In addition, if the fault system evolves over the course of a dynamic simulation (i.e. in the case of growing cracks or breaking new faults), the geometry must he re-meshed at each time step. This can be expensive computationally. The fault-conforming approach is undesirable when complicated meshes are required, and impossible to implement when the geometry is evolving. Therefore, meshless and hybrid finite element methods that handle discontinuities without placing them on element boundaries are a desirable and natural way to discretize these problems. Several such methods are being actively developed for use in engineering mechanics involving crack
Advance finite element modeling of rotor blade aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Sangha, K. B.; Panda, B.
1994-01-01
An advanced beam finite element has been developed for modeling rotor blade dynamics and aeroelasticity. This element is part of the Element Library of the Second Generation Comprehensive Helicopter Analysis System (2GCHAS). The element allows modeling of arbitrary rotor systems, including bearingless rotors. It accounts for moderately large elastic deflections, anisotropic properties, large frame motion for maneuver simulation, and allows for variable order shape functions. The effects of gravity, mechanically applied and aerodynamic loads are included. All kinematic quantities required to compute airloads are provided. In this paper, the fundamental assumptions and derivation of the element matrices are presented. Numerical results are shown to verify the formulation and illustrate several features of the element.
An extended finite element method for dislocations in arbitrary three-dimensional entities
NASA Astrophysics Data System (ADS)
Oswald, Jay
A finite element method is developed for dislocations in arbitrary, three-dimensional bodies, including micro-/nano-devices, and layered materials, such as thin films. The method is also compatible with anisotropic materials, and can readily be applied to non-linear media. In this method, dislocation are modeled by adding discontinuities to extend the conventional finite element basis. Two approaches for adding discontinuities to the conventional finite element basis are proposed. In the first, a simple discontinuous enrichment imposes a constant jump in displacement across dislocation glide planes. In the second approach, the enrichments more accurately approximate the dislocations by capture the singular asymptotic behavior near the dislocation core. A basis of singular enrichments are formed from the analytical solutions to straight dislocation lines, but are applicable for more general, curved dislocation configurations. Methods for computing the configurational forces on dislocation lines within the XFEM framework have also been developed. For jump enrichments, an approach based on an energy release rate or J-integral is proposed. When singular enrichments are available, it is shown that the Peach-Koehler equation can be used to compute forces directly. This new approach differs from many existing methods for studying dislocations because it does not rely on superposition of solutions derived analytically or through Green's functions. This extended finite element approach is suitable to study dislocations in micro- and nano-devices, and in specific material micro-structures, where complicated boundaries and material interfaces are pervasive.
Rocha, Bernardo M.; Kickinger, Ferdinand; Prassl, Anton J.; Haase, Gundolf; Vigmond, Edward J.; dos Santos, Rodrigo Weber; Zaglmayr, Sabine; Plank, Gernot
2011-01-01
Electrical activity in cardiac tissue can be described by the bidomain equations whose solution for large scale simulations still remains a computational challenge. Therefore, improvements in the discrete formulation of the problem which decrease computational and/or memory demands are highly desirable. In this study, we propose a novel technique for computing shape functions of finite elements. The technique generates macro finite elements (MFEs) based on the local decomposition of elements into tetrahedral sub-elements with linear shape functions. Such an approach necessitates the direct use of hybrid meshes composed of different types of elements. MFEs are compared to classic standard finite elements with respect to accuracy and RAM memory usage under different scenarios of cardiac modeling including bidomain and monodomain simulations in 2D and 3D for simple and complex tissue geometries. In problems with analytical solutions, MFEs displayed the same numerical accuracy of standard linear triangular and tetrahedral elements. In propagation simulations, conduction velocity and activation times agreed very well with those computed with standard finite elements. However, MFEs offer a significant decrease in memory requirements. We conclude that hybrid meshes composed of MFEs are well suited for solving problems in cardiac computational electrophysiology. PMID:20699206
Discontinuous dual-primal mixed finite elements for elliptic problems
NASA Technical Reports Server (NTRS)
Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo
2000-01-01
We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.
Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Pritchard, Joselyn I.; Buehrle, Ralph D.; Pappa, Richard S.
2002-01-01
The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC configurations were compared with experimental modal survey data. The finite element models were updated and refined, using physical parameters, to increase correlation with the measured modal data. Excellent agreement, within an average 1.5% to 2.9%, was obtained between the predicted and measured modal frequencies of the stringer, frame and dome components. The predictions for the modal frequencies of the assembled component Configurations I through V were within an average 2.9% and 9.1%. Finite element modal analyses were performed for comparison with 3 psi and 6 psi internal pressurization conditions in Configuration VI. The modal frequencies were predicted by applying differential stiffness to the elements with pressure loading and creating reduced matrices for beam elements with offsets inside external superelements. The average disagreement between the measured and predicted differences for the 0 psi and 6 psi internal pressure conditions was less than 0.5%. Comparably good agreement was obtained for the differences between the 0 psi and 3 psi measured and predicted internal pressure conditions.
Finite-element calculations on alliant FX/80
Watson, B.C.; Kamat, M.P.
1994-10-01
The finite-element method has proven to be an invaluable tool for analysis and design of complex, high-performance systems, such as those typically encountered in the aerospace or automotive industries. However, as the size of the finite-element models of such systems increases, analysis computation time using conventional computers can become prohibitively high. Parallel processing computers provide the means to overcome these computation-time limits, provided the algorithms used in the analysis can take advantage of multiple processors. The writers have examined several algorithms for linear and nonlinear static analysis, as well as dynamic finite-element analysis. The performance of these algorithms on an Alliant FX/80 parallel supercomputer has been investigated. For single load-case linear static analysis, the optimal solution algorithm is strongly problem dependent. For multiple load cases or nonlinear static analysis through a modified Newton-Raphson method, decomposition algorithms are shown to have a decided advantage over element-by-element preconditioned conjugate gradient algorithms. For eigenvalue/eigenvector analysis, the subspace iteration algorithm with a parallel decomposition is shown to achieve a relatively high parallel efficiency. 12 refs.
Computerized symbolic manipulation in nonlinear finite element analysis
NASA Technical Reports Server (NTRS)
Noor, A. K.; Andersen, C. M.
1981-01-01
The potential of using computerized symbolic manipulation in the development of nonlinear finite elements is discussed. Three tasks which can be efficiently performed using computerized symbolic manipulation are identified: (1) generation of algebraic expressions for the stiffness coefficients of nonlinear finite elements, (2) generation of FORTRAN source code for numerical evaluation of stiffness coefficients, and (3) checking the correctness of the FORTRAN statements for the arrays of coefficients. The symbolic and algebraic manipulation system MACSYMA is used in the present study. Two sample MACSYMA programs are presented for the development of the nonlinear stiffness coefficients of two-dimensional, shear-flexible, doubly-curved deep shell elements. The first program is for displacement models and the second program is for mixed models with discontinuous stress-resultant fields at interelement boundaries.
The finite element method for calculating the marine structural design
NASA Astrophysics Data System (ADS)
Ion, A.; Ticu, I.
2015-11-01
The aim of this paper is to optimally design and dimension marine structures in order for them to fulfil both functional and safety requirements. A master level of structural mechanics is vital in order to check tests and analysis and to develop new structures. This study can improve the calculation and estimation of the effects of hydrodynamics and of other loads; movements, strains and internal forces in fixed and floating platforms and ships. The finite element method (FEM) ensures basic understanding of the finite element model as applied on static cases including beam and plate elements, experience with static analysis of marine structures like platforms and ships, along with the basic understanding of dynamic response of systems with one degree of freedom and simple continuous beams, and also how analysis models can be established for real structures by the use of generalized coordinates and superposition.
Finite element dynamic analysis on CDC STAR-100 computer
NASA Technical Reports Server (NTRS)
Noor, A. K.; Lambiotte, J. J., Jr.
1978-01-01
Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.
PWSCC Assessment by Using Extended Finite Element Method
NASA Astrophysics Data System (ADS)
Lee, Sung-Jun; Lee, Sang-Hwan; Chang, Yoon-Suk
2015-12-01
The head penetration nozzle of control rod driving mechanism (CRDM) is known to be susceptible to primary water stress corrosion cracking (PWSCC) due to the welding-induced residual stress. Especially, the J-groove dissimilar metal weld regions have received many attentions in the previous studies. However, even though several advanced techniques such as weight function and finite element alternating methods have been introduced to predict the occurrence of PWSCC, there are still difficulties in respect of applicability and efficiency. In this study, the extended finite element method (XFEM), which allows convenient crack element modeling by enriching degree of freedom (DOF) with special displacement function, was employed to evaluate structural integrity of the CRDM head penetration nozzle. The resulting stress intensity factors of surface cracks were verified for the reliability of proposed method through the comparison with those suggested in the American Society of Mechanical Engineering (ASME) code. The detailed results from the FE analyses are fully discussed in the manuscript.
EXODUS: A finite element file format for pre- and postprocessing
Mills-Curran, W.C.; Gilkey, A.P.; Flanagan, D.P.
1988-09-01
The EXODUS format defines a binary file which is used for finite element analysis pre- and postprocessing. It includes data to define the finite element mesh and label both boundary condition and load application points. EXODUS accommodates multiple element types and is sufficiently general format for analysis results. A benefit of combining the mesh definition data and the results data in the same file is that the user is assured that the results data are consistent with the model. EXODUS is currently in use by the entire range of Department 1520 codes (including preprocessors, translators, linear and nonlinear analyses, and postprocessors) and is finding applications in codes outside Department 1520. 2 refs., 2 figs., 1 tab.
Finite Element Modelling of Fluid Coupling in the Coiled Cochlea
NASA Astrophysics Data System (ADS)
Ni, Guangjian; Elliott, S. J.; Lineton, B.; Saba, R.
2011-11-01
A finite element model is first used to calculate the modal pressure difference for a box model of the cochlea, which shows that the number of fluid elements across the width of the cochlea determines the accuracy with which the near field, or short wavenumber, component of the fluid coupling is reproduced. Then results are compared with the analytic results to validate the accuracy of the FE model. It is, however, the far field, or long wavelength, component of the fluid coupling that is most affected by the geometry. A finite element model of the coiled cochlea is then used to calculate fluid coupling in this case, which has similar characteristics to the uncoiled model.
NASA Astrophysics Data System (ADS)
Crone, Joshua C.; Chung, Peter W.; Leiter, Kenneth W.; Knap, Jaroslaw; Aubry, Sylvie; Hommes, Gregg; Arsenlis, Athanasios
2014-04-01
Discrete dislocation dynamics (DD) approaches have proven useful in modeling the dynamics of large ensembles of dislocations. Continuing interest in finite body effects via image stresses has extended DD numerical approaches to improve the handling of surfaces. However, a physically accurate, yet computationally scalable, implementation has been elusive. This paper presents a new framework and implementation of a finite element-based discrete DD code that (1) treats arbitrarily shaped non-convex surfaces through image tractions, (2) allows for systematic refinement of the finite element mesh both in the bulk and on the surface and (3) provides a platform to scale to relatively larger and lengthier simulations. The approach is based on the capabilities of the Parallel Dislocation Simulator coupled through a distributed shared memory implementation for the calculation of large numbers of dislocation segments interacting with an independently large number of surface finite elements. Surface tracking approaches enable topological features at surfaces to be modeled. We verify the computed results via comparisons with analytical solutions for an infinite screw dislocation and prismatic loop near a surface and examine surface effects on a Frank-Read source. Convergence of the image force error with h- and p-refinement is shown to indicate the computational robustness. Additionally, through larger numerical experiments, we demonstrate the new capabilities in a three-dimensional elastic body of finite extent.
Wu, H.W.; Shii, Sheng Hwa . Dept. of Naval Architecture and Marine Engineering)
1994-06-01
A new method, involving the combined use of analysis and the finite-element method, is applicable to the heat conduction problem with isolated heat sources. Unlike the finite-element method the analysis/finite-element combined method is able to discretize the distributed sources with discontinuities into course elements, and the solution is still calculated accurately. The results are compared in tables with exact solutions and other numerical data, and the agreement is found to be good.
Wittek, Andreas; Derwich, Wojciech; Karatolios, Konstantinos; Fritzen, Claus Peter; Vogt, Sebastian; Schmitz-Rixen, Thomas; Blase, Christopher
2016-05-01
Computational analysis of the biomechanics of the vascular system aims at a better understanding of its physiology and pathophysiology and eventually at diagnostic clinical use. Because of great inter-individual variations, such computational models have to be patient-specific with regard to geometry, material properties and applied loads and boundary conditions. Full-field measurements of heterogeneous displacement or strain fields can be used to improve the reliability of parameter identification based on a reduced number of observed load cases as is usually given in an in vivo setting. Time resolved 3D ultrasound combined with speckle tracking (4D US) is an imaging technique that provides full field information of heterogeneous aortic wall strain distributions in vivo. In a numerical verification experiment, we have shown the feasibility of identifying nonlinear and orthotropic constitutive behaviour based on the observation of just two load cases, even though the load free geometry is unknown, if heterogeneous strain fields are available. Only clinically available 4D US measurements of wall motion and diastolic and systolic blood pressure are required as input for the inverse FE updating approach. Application of the developed inverse approach to 4D US data sets of three aortic wall segments from volunteers of different age and pathology resulted in the reproducible identification of three distinct and (patho-) physiologically reasonable constitutive behaviours. The use of patient-individual material properties in biomechanical modelling of AAAs is a step towards more personalized rupture risk assessment. PMID:26455809
NASA Technical Reports Server (NTRS)
Strong, Stuart L.; Meade, Andrew J., Jr.
1992-01-01
Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.
Beyond first-order finite element schemes in micromagnetics
Kritsikis, E.; Vaysset, A.; Buda-Prejbeanu, L.D.; Toussaint, J.-C.
2014-01-01
Magnetization dynamics in ferromagnetic materials is ruled by the Landau–Lifshitz–Gilbert equation (LLG). Reliable schemes must conserve the magnetization norm, which is a nonconvex constraint, and be energy-decreasing unless there is pumping. Some of the authors previously devised a convergent finite element scheme that, by choice of an appropriate test space – the tangent plane to the magnetization – reduces to a linear problem at each time step. The scheme was however first-order in time. We claim it is not an intrinsic limitation, and the same approach can lead to efficient micromagnetic simulation. We show how the scheme order can be increased, and the nonlocal (magnetostatic) interactions be tackled in logarithmic time, by the fast multipole method or the non-uniform fast Fourier transform. Our implementation is called feeLLGood. A test-case of the National Institute of Standards and Technology is presented, then another one relevant to spin-transfer effects (the spin-torque oscillator)
Beyond first-order finite element schemes in micromagnetics
NASA Astrophysics Data System (ADS)
Kritsikis, E.; Vaysset, A.; Buda-Prejbeanu, L. D.; Alouges, F.; Toussaint, J.-C.
2014-01-01
Magnetization dynamics in ferromagnetic materials is ruled by the Landau-Lifshitz-Gilbert equation (LLG). Reliable schemes must conserve the magnetization norm, which is a nonconvex constraint, and be energy-decreasing unless there is pumping. Some of the authors previously devised a convergent finite element scheme that, by choice of an appropriate test space - the tangent plane to the magnetization - reduces to a linear problem at each time step. The scheme was however first-order in time. We claim it is not an intrinsic limitation, and the same approach can lead to efficient micromagnetic simulation. We show how the scheme order can be increased, and the nonlocal (magnetostatic) interactions be tackled in logarithmic time, by the fast multipole method or the non-uniform fast Fourier transform. Our implementation is called feeLLGood. A test-case of the National Institute of Standards and Technology is presented, then another one relevant to spin-transfer effects (the spin-torque oscillator).
Accelerated finite element elastodynamic simulations using the GPU
NASA Astrophysics Data System (ADS)
Huthwaite, Peter
2014-01-01
An approach is developed to perform explicit time domain finite element simulations of elastodynamic problems on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy' partitioner and a new, more efficient ‘aligned' partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The software is applied to three models from the fields of non-destructive testing, vibrations and geophysics, demonstrating a memory bandwidth of very close to the card's maximum, reflecting the bandwidth-limited nature of the algorithm. Comparison with Abaqus, a widely used commercial CPU equivalent, validated the accuracy of the results and demonstrated a speed improvement of around two orders of magnitude. A software package, Pogo, incorporating these developments, is released open source, downloadable from http://www.pogo-fea.com/ to benefit the community.
Nonlinear finite-element analysis of nanoindentation of viral capsids
NASA Astrophysics Data System (ADS)
Gibbons, Melissa M.; Klug, William S.
2007-03-01
Recent atomic force microscope (AFM) nanoindentation experiments measuring mechanical response of the protein shells of viruses have provided a quantitative description of their strength and elasticity. To better understand and interpret these measurements, and to elucidate the underlying mechanisms, this paper adopts a course-grained modeling approach within the framework of three-dimensional nonlinear continuum elasticity. Homogeneous, isotropic, elastic, thick-shell models are proposed for two capsids: the spherical cowpea chlorotic mottle virus (CCMV), and the ellipsocylindrical bacteriophage ϕ29 . As analyzed by the finite-element method, these models enable parametric characterization of the effects of AFM tip geometry, capsid dimensions, and capsid constitutive descriptions. The generally nonlinear force response of capsids to indentation is shown to be insensitive to constitutive particulars, and greatly influenced by geometric and kinematic details. Nonlinear stiffening and softening of the force response is dependent on the AFM tip dimensions and shell thickness. Fits of the models capture the roughly linear behavior observed in experimental measurements and result in estimates of Young’s moduli of ≈280-360MPa for CCMV and ≈4.5GPa for ϕ29 .
Unstructured finite element simulations of compressible phase change phenomena
NASA Astrophysics Data System (ADS)
Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad; Scientific Computation Research Center (Scorec) Team
2015-11-01
Modeling interactions between compressible gas flow and multiple combusting solid objects, which may undergo large deformations, is a problem with several challenging aspects that include, compressible turbulent flows, shocks, strong interfacial fluxes, discontinuous fields and large topological changes. We have developed and implemented a mathematically consistent, computational framework for simulating such problems. Within our framework the fluid is modeled by solving the compressible Navier Stokes equations with a stabilized finite element method. Turbulence is modeled using large eddy simulation, while shocks are captured using discontinuity capturing methods. The solid is modeled as a hyperelastic material, and its deformation is determined by writing the constitutive relation in a rate form. Appropriate jump conditions are derived from conservations laws applied to an evolving interface, and are implemented using discontinuous functions at the interface. The mesh is updated using the Arbitrary Lagrangian Eulerian (ALE) approach, and is refined and adapted during the simulation. In this talk we will present this framework and will demonstrate its capabilities by solving canonical phase change problems. We acknowledge the support from Army Research Office (ARO) under ARO Grant # W911NF-14-1-0301.
Bayesian sensitivity analysis of a nonlinear finite element model
NASA Astrophysics Data System (ADS)
Becker, W.; Oakley, J. E.; Surace, C.; Gili, P.; Rowson, J.; Worden, K.
2012-10-01
A major problem in uncertainty and sensitivity analysis is that the computational cost of propagating probabilistic uncertainty through large nonlinear models can be prohibitive when using conventional methods (such as Monte Carlo methods). A powerful solution to this problem is to use an emulator, which is a mathematical representation of the model built from a small set of model runs at specified points in input space. Such emulators are massively cheaper to run and can be used to mimic the "true" model, with the result that uncertainty analysis and sensitivity analysis can be performed for a greatly reduced computational cost. The work here investigates the use of an emulator known as a Gaussian process (GP), which is an advanced probabilistic form of regression. The GP is particularly suited to uncertainty analysis since it is able to emulate a wide class of models, and accounts for its own emulation uncertainty. Additionally, uncertainty and sensitivity measures can be estimated analytically, given certain assumptions. The GP approach is explained in detail here, and a case study of a finite element model of an airship is used to demonstrate the method. It is concluded that the GP is a very attractive way of performing uncertainty and sensitivity analysis on large models, provided that the dimensionality is not too high.
The least-squares finite element method for low-mach-number compressible viscous flows
NASA Technical Reports Server (NTRS)
Yu, Sheng-Tao
1994-01-01
The present paper reports the development of the Least-Squares Finite Element Method (LSFEM) for simulating compressible viscous flows at low Mach numbers in which the incompressible flows pose as an extreme. Conventional approach requires special treatments for low-speed flows calculations: finite difference and finite volume methods are based on the use of the staggered grid or the preconditioning technique; and, finite element methods rely on the mixed method and the operator-splitting method. In this paper, however, we show that such difficulty does not exist for the LSFEM and no special treatment is needed. The LSFEM always leads to a symmetric, positive-definite matrix through which the compressible flow equations can be effectively solved. Two numerical examples are included to demonstrate the method: first, driven cavity flows at various Reynolds numbers; and, buoyancy-driven flows with significant density variation. Both examples are calculated by using full compressible flow equations.
Modelling the core convection using finite element and finite difference methods
NASA Astrophysics Data System (ADS)
Chan, K. H.; Li, Ligang; Liao, Xinhao
2006-08-01
Applications of both parallel finite element and finite difference methods to thermal convection in a rotating spherical shell modelling the fluid dynamics of the Earth's outer core are presented. The numerical schemes are verified by reproducing the convection benchmark test by Christensen et al. [Christensen, U.R., Aubert, J., Cardin, P., Dormy, E., Gibbons, S., Glatzmaier, G.A., Grote, E., Honkura, Y., Jones, C., Kono, M., Matsushima, M., Sakuraba, A., Takahashi, F., Tilgner, A., Wilcht, J., Zhang, K., 2001. A numerical dynamo benchmark. Phys. Earth Planet. Interiors 128, 25-34.]. Both global average and local characteristics agree satisfactorily with the benchmark solution. With the element-by-element (EBE) parallelization technique, the finite element code demonstrates nearly optimal linear scalability in computational speed. The finite difference code is also efficient and scalable by utilizing a parallel library Aztec [Tuminaro, R.S., Heroux, M., Hutchinson, S.A., Shadid, J.N., 1999. Official AZTEC User's Guide: Version 2.1.].
Physical Constraint Finite Element Model for Medical Image Registration
Zhang, Jingya; Wang, Jiajun; Wang, Xiuying; Gao, Xin; Feng, Dagan
2015-01-01
Due to being derived from linear assumption, most elastic body based non-rigid image registration algorithms are facing challenges for soft tissues with complex nonlinear behavior and with large deformations. To take into account the geometric nonlinearity of soft tissues, we propose a registration algorithm on the basis of Newtonian differential equation. The material behavior of soft tissues is modeled as St. Venant-Kirchhoff elasticity, and the nonlinearity of the continuum represents the quadratic term of the deformation gradient under the Green- St.Venant strain. In our algorithm, the elastic force is formulated as the derivative of the deformation energy with respect to the nodal displacement vectors of the finite element; the external force is determined by the registration similarity gradient flow which drives the floating image deforming to the equilibrium condition. We compared our approach to three other models: 1) the conventional linear elastic finite element model (FEM); 2) the dynamic elastic FEM; 3) the robust block matching (RBM) method. The registration accuracy was measured using three similarities: MSD (Mean Square Difference), NC (Normalized Correlation) and NMI (Normalized Mutual Information), and was also measured using the mean and max distance between the ground seeds and corresponding ones after registration. We validated our method on 60 image pairs including 30 medical image pairs with artificial deformation and 30 clinical image pairs for both the chest chemotherapy treatment in different periods and brain MRI normalization. Our method achieved a distance error of 0.320±0.138 mm in x direction and 0.326±0.111 mm in y direction, MSD of 41.96±13.74, NC of 0.9958±0.0019, NMI of 1.2962±0.0114 for images with large artificial deformations; and average NC of 0.9622±0.008 and NMI of 1.2764±0.0089 for the real clinical cases. Student’s t-test demonstrated that our model statistically outperformed the other methods in comparison (p
Finite element analysis of inviscid subsonic boattail flow
NASA Technical Reports Server (NTRS)
Chima, R. V.; Gerhart, P. M.
1981-01-01
A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.
A progress report on estuary modeling by the finite-element method
Gray, William G.
1978-01-01
Various schemes are investigated for finite-element modeling of two-dimensional surface-water flows. The first schemes investigated combine finite-element spatial discretization with split-step time stepping schemes that have been found useful in finite-difference computations. Because of the large number of numerical integrations performed in space and the large sparse matrices solved, these finite-element schemes were found to be economically uncompetitive with finite-difference schemes. A very promising leapfrog scheme is proposed which, when combined with a novel very fast spatial integration procedure, eliminates the need to solve any matrices at all. Additional problems attacked included proper propagation of waves and proper specification of the normal flow-boundary condition. This report indicates work in progress and does not come to a definitive conclusion as to the best approach for finite-element modeling of surface-water problems. The results presented represent findings obtained between September 1973 and July 1976. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Hansbo, Peter; Larson, Mats G.; Larsson, Fredrik
2015-07-01
We develop a finite element method for a large deformation membrane elasticity problem on meshed curved surfaces using a tangential differential calculus approach that avoids the use of classical differential geometric methods. The method is also applied to form finding problems.
SQA of finite element method (FEM) codes used for analyses of pit storage/transport packages
Russel, E.
1997-11-01
This report contains viewgraphs on the software quality assurance of finite element method codes used for analyses of pit storage and transport projects. This methodology utilizes the ISO 9000-3: Guideline for application of 9001 to the development, supply, and maintenance of software, for establishing well-defined software engineering processes to consistently maintain high quality management approaches.
NASA Astrophysics Data System (ADS)
Cheng, Jiahao; Shahba, Ahmad; Ghosh, Somnath
2016-05-01
Image-based CPFE modeling involves computer generation of virtual polycrystalline microstructures from experimental data, followed by discretization into finite element meshes. Discretization is commonly accomplished using three-dimensional four-node tetrahedral or TET4 elements, which conform to the complex geometries. It has been commonly observed that TET4 elements suffer from severe volumetric locking when simulating deformation of incompressible or nearly incompressible materials. This paper develops and examines three locking-free stabilized finite element formulations in the context of crystal plasticity finite element analysis. They include a node-based uniform strain (NUS) element, a locally integrated B-bar (LIB) based element and a F-bar patch (FP) based element. All three formulations are based on the partitioning of TET4 element meshes and integrating over patches to obtain favorable incompressibility constraint ratios without adding large degrees of freedom. The results show that NUS formulation introduces unstable spurious energy modes, while the LIB and FP elements stabilize the solutions and are preferred for reliable CPFE analysis. The FP element is found to be computationally efficient over the LIB element.
Application of a data base management system to a finite element model
NASA Technical Reports Server (NTRS)
Rogers, J. L., Jr.
1980-01-01
In today's software market, much effort is being expended on the development of data base management systems (DBMS). Most commercially available DBMS were designed for business use. However, the need for such systems within the engineering and scientific communities is becoming apparent. A potential DBMS application that appears attractive is the handling of data for finite element engineering models. The applications of a commercially available, business-oriented DBMS to a structural engineering, finite element model is explored. The model, DBMS, an approach to using the DBMS, advantages and disadvantages are described. Plans for research on a scientific and engineering DBMS are discussed.
Finite-element-based photoacoustic tomography: phantom and chicken bone experiments
NASA Astrophysics Data System (ADS)
Yuan, Zhen; Zhao, Hongzhi; Wu, Changfeng; Zhang, Qizhi; Jiang, Huabei
2006-05-01
We describe a photoacoustic image reconstruction algorithm that is based on the finite-element solution to the photoacoustic wave equation in the frequency domain. Our reconstruction approach is an iterative Newton method coupled with combined Marquardt and Tikhonov regularizations that can extract the spatial distribution of optical-absorption property in heterogeneous media. We demonstrate this algorithm by using phantom and chicken bone measurements from a circular scanning photoacoustic tomography system. The results obtained show that millimeter-sized phantom objects and chicken bones and/or joints can be clearly detected using our finite-element-based photoacoustic tomography method.
Lazarov, R D; Vassilevski, P S
1999-05-06
In this paper we introduce and study a least-squares finite element approximation for singularly perturbed convection-diffusion equations of second order. By introducing the flux (diffusive plus convective) as a new unknown, the problem is written in a mixed form as a first order system. Further, the flux is augmented by adding the lower order terms with a small parameter. The new first order system is approximated by the least-squares finite element method using the minus one norm approach of Bramble, Lazarov, and Pasciak [2]. Further, we estimate the error of the method and discuss its implementation and the numerical solution of some test problems.
Axisymmetric analysis of a tube-type acoustic levitator by a finite element method.
Hatano, H
1994-01-01
A finite element approach was taken for the study of the sound field and positioning force in a tube-type acoustic levitator. An axisymmetric model, where a rigid sphere is suspended on the tube axis, was introduced to model a cylindrical chamber of a levitation tube furnace. Distributions of velocity potential, magnitudes of positioning force, and resonance frequency shifts of the chamber due to the presence of the sphere were numerically estimated in relation to the sphere's position and diameter. Experiments were additionally made to compare with the simulation. The finite element method proved to be a useful tool for analyzing and designing the tube-type levitator. PMID:18263265
NASA Technical Reports Server (NTRS)
Averill, Ronald C.
2002-01-01
An effective and robust interface element technology able to connect independently modeled finite element subdomains has been developed. This method is based on the use of penalty constraints and allows coupling of finite element models whose nodes do not coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. A significant effort has been directed toward identifying those model characteristics (element geometric properties, material properties, and loads) that most strongly affect the required penalty parameter, and subsequently to developing simple 'formulae' for automatically calculating the proper penalty parameter for each interface constraint. This task is especially critical in composite materials and structures, where adjacent sub-regions may be composed of significantly different materials or laminates. This approach has been validated by investigating a variety of two-dimensional problems, including composite laminates.
Pamgen, a library for parallel generation of simple finite element meshes.
Foucar, James G.; Drake, Richard Roy; Hensinger, David M.; Gardiner, Thomas Anthony
2008-04-01
Generating finite-element meshes is a serious bottleneck for large parallel simulations. When mesh generation is limited to serial machines and element counts approach a billion, this bottleneck becomes a roadblock. Pamgen is a parallel mesh generation library that allows on-the-fly scalable generation of hexahedral and quadrilateral finite element meshes for several simple geometries. It has been used to generate more that 1.1 billion elements on 17,576 processors. Pamgen generates an unstructured finite element mesh on each processor at the start of a simulation. The mesh is specified by commands passed to the library as a 'C'-programming language string. The resulting mesh geometry, topology, and communication information can then be queried through an API. pamgen allows specification of boundary condition application regions using sidesets (element faces) and nodesets (collections of nodes). It supports several simple geometry types. It has multiple alternatives for mesh grading. It has several alternatives for the initial domain decomposition. Pamgen makes it easy to change details of the finite element mesh and is very useful for performance studies and scoping calculations.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Majjigi, R. K.
1979-01-01
A finite element velocity potential program was developed to study acoustic wave propagation in complex geometries. For irrotational flows, relatively low sound frequencies, and plane wave input, the finite element solutions showed significant effects of inlet curvature and flow gradients on the attenuation of a given acoustic liner in a realistic variable area turbofan inlet. The velocity potential approach can not be used to estimate the effects of rotational flow on acoustic propagation, since the potential acoustic disturbances propagate at the speed of the media in sheared flow. Approaches are discussed that are being considered for extending the finite element solution to include the far field, as well as the internal portion of the duct. A new matrix partitioning approach is presented that can be incorporated in previously developed programs to allow the finite element calculation to be marched into the far field. The partitioning approach provided a large reduction in computer storage and running times.
Finite element evaluation of erosion/corrosion affected reducing elbow
Basavaraju, C.
1996-12-01
Erosion/corrosion is a primary source for wall thinning or degradation of carbon steel piping systems in service. A number of piping failures in the power industry have been attributed to erosion/corrosion. Piping elbow is one of such susceptible components for erosion/corrosion because of increased flow turbulence due to its geometry. In this paper, the acceptability of a 12 in. x 8 in. reducing elbow in RHR service water pump discharge piping, which experienced significant degradation due to wall thinning in localized areas, was evaluated using finite element analysis methodology. Since the simplified methods showed very small margin and recommended replacement of the elbow, a detailed 3-D finite element model was built using shell elements and analyzed for internal pressure and moment loadings. The finite element analysis incorporated the U.T. measured wall thickness data at various spots that experienced wall thinning. The results showed that the elbow is acceptable as-is until the next fuel cycle. FEA, though cumbersome, and time consuming is a valuable analytical tool in making critical decisions with regard to component replacement of border line situation cases, eliminating some conservatism while not compromising the safety.
FECAP - FINITE ELEMENT COMPOSITE ANALYSIS PROGRAM FOR A MICROCOMPUTER
NASA Technical Reports Server (NTRS)
Bowles, D. E.
1994-01-01
Advanced composite materials have gained use in the aerospace industry over the last 20 years because of their high specific strength and stiffness, and low coefficient of thermal expansion. Design of composite structures requires the analysis of composite material behavior. The Finite Element Composite Analysis Program, FECAP, is a special purpose finite element analysis program for analyzing composite material behavior with a microcomputer. Composite materials, in regard to this program, are defined as the combination of at least two distinct materials to form one nonhomogeneous anisotropic material. FECAP assumes a state of generalized plane strain exists in a material consisting of two or more orthotropic phases, subjected to mechanical and/or thermal loading. The finite element formulation used in FECAP is displacement based and requires the minimization of the total potential energy for each element with respect to the unknown variables. This procedure leads to a set of linear simultaneous equations relating the unknown nodal displacements to the applied loads. The equations for each element are assembled into a global system, the boundary conditions are applied, and the system is solved for the nodal displacements. The analysis may be performed using either 4-mode linear or 8-mode quadratic isoparametric elements. Output includes the nodal displacements, and the element stresses and strains. FECAP was written for a Hewlett Packard HP9000 Series 200 Microcomputer with the HP Basic operating system. It was written in HP BASIC 3.0 and requires approximately 0.5 Mbytes of RAM in addition to what is required for the operating system. A math coprocessor card is highly recommended. FECAP was developed in 1988.
Dynamic finite element modeling of poroviscoelastic soft tissue.
Yang, Zhaochun; Smolinski, Patrick
2006-02-01
Clinical evidences relative to biomechanical factors have demonstrated their important contribution to the behaviour of soft tissues. Finite element (FE) analysis is used to study the mechanical behaviour of soft tissue because it can provide numerical solutions to problems that are intractable to analytic solutions. This study focuses on the development of a FE model of a poroelastic biological tissue, which incorporates the viscoelastic material behaviour, finite deformation and inertial effect. The FE formulation is based on the weak form derived from the governing equation, and Newmark-beta method as well as Newton's method is incorporated into the implicit non-linear solutions. One-dimensional analytical solutions were used to verify the theoretical formulation and the numerical implementation of the proposed model. This study was further extended to analyze two-dimensional biomechanical models and the results clearly demonstrate the importance of including finite deformation, viscoelasticity and inertial effects. PMID:16880152
Cyclic-stress analysis of notches for supersonic transport conditions. [using finite element method
NASA Technical Reports Server (NTRS)
1974-01-01
The feasibility of using the finite element method to account for the effects of cyclic load and temperature on local stresses and strains at a notch was demonstrated. The behavior of a notched titanium panel was studied under variable loads and temperatures representative of flight conditions for the lower wing surface of a Supersonic Transport (SST). The analysis was performed with the use of the BOPACE finite-element computer program which provides capability to determine high temperature and large viscoplastic effects caused by cyclic thermal and mechanical loads. The analysis involves the development of the finite-element model as well as determination of the structural behavior of the notched panel. Results are presented for twelve SST flights comprised of five different load-temperature cycles. The results show the approach is feasible, but material response to cyclic loads, temperatures, and hold times requires improved understanding to allow proper modeling of the material.