Science.gov

Sample records for finite element meshes

  1. Quadrilateral finite element mesh coarsening

    SciTech Connect

    Staten, Matthew L; Dewey, Mark W; Benzley, Steven E

    2012-10-16

    Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.

  2. Quadrilateral/hexahedral finite element mesh coarsening

    SciTech Connect

    Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E

    2012-10-16

    A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.

  3. Algebraic surface design and finite element meshes

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.

    1992-01-01

    Some of the techniques are summarized which are used in constructing C sup 0 and C sup 1 continuous meshes of low degree, implicitly defined, algebraic surface patches in three dimensional space. These meshes of low degree algebraic surface patches are used to construct accurate computer models of physical objects. These meshes are also used in the finite element simulation of physical phenomena (e.g., heat dissipation, stress/strain distributions, fluid flow characteristics) required in the computer prototyping of both the manufacturability and functionality of the geometric design.

  4. Diffusive mesh relaxation in ALE finite element numerical simulations

    SciTech Connect

    Dube, E.I.

    1996-06-01

    The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.

  5. FEATURE-BASED MULTIBLOCK FINITE ELEMENT MESH GENERATION

    PubMed Central

    Shivanna, Kiran H.; Tadepalli, Srinivas C.; Grosland, Nicole M.

    2010-01-01

    Hexahedral finite element mesh development for anatomic structures and biomedical implants can be cumbersome. Moreover, using traditional meshing techniques, detailed features may be inadequately captured. In this paper, we describe methodologies to handle multi-feature datasets (i.e., feature edges and surfaces). Coupling multi-feature information with multiblock meshing techniques has enabled anatomic structures, as well as orthopaedic implants, to be readily meshed. Moreover, the projection process, node and element set creation are automated, thus reducing the user interaction during model development. To improve the mesh quality, Laplacian- and optimization-based mesh improvement algorithms have been adapted to the multi-feature datasets. PMID:21076650

  6. Finite element simulation of impact response of wire mesh screens

    NASA Astrophysics Data System (ADS)

    Wang, Caizheng; Shankar, Krishna; Fien, Alan

    2015-09-01

    In this paper, the response of wire mesh screens to low velocity impact with blunt objects is investigated using finite element (FE) simulation. The woven wire mesh is modelled with homogeneous shell elements with equivalent smeared mechanical properties. The mechanical behaviour of the woven wire mesh was determined experimentally with tensile tests on steel wire mesh coupons to generate the data for the smeared shell material used in the FE. The effects of impacts with a low mass (4 kg) and a large mass (40 kg) providing the same impact energy are studied. The joint between the wire mesh screen and the aluminium frame surrounding it is modelled using contact elements with friction between the corresponding elements. Damage to the screen of different types compromising its structural integrity, such as mesh separation and pulling out from the surrounding frame is modelled. The FE simulation is validated with results of impact tests conducted on woven steel wire screen meshes.

  7. Auto-adaptive finite element meshes

    NASA Technical Reports Server (NTRS)

    Richter, Roland; Leyland, Penelope

    1995-01-01

    Accurate capturing of discontinuities within compressible flow computations is achieved by coupling a suitable solver with an automatic adaptive mesh algorithm for unstructured triangular meshes. The mesh adaptation procedures developed rely on non-hierarchical dynamical local refinement/derefinement techniques, which hence enable structural optimization as well as geometrical optimization. The methods described are applied for a number of the ICASE test cases are particularly interesting for unsteady flow simulations.

  8. Rapid mesh generation for finite element analysis of investment castings

    SciTech Connect

    Lober, R.R.; Bohnhoff, W.J.; Meyers, R.J.

    1992-11-01

    FASTCAST is a Sandia National Laboratories program to produce investment cast prototypical hardware faster by integrating experimental and computational technologies into the casting process. FASTCAST uses the finite element method to characterize the metal flow and solidification processes to reduce uncertainty in the mold design. For the casting process to benefit from finite element analysis, analysis results must be available in a very short time frame. By focusing on the bottleneck of finite element model creation, automated mesh generation can drastically reduce the time span between geometry definition (design) and accurate analysis results. The increased availability of analysis results will diminish the need for trial and error approaches to acquiring production worthy mold and gating systems for investment casting. The CUBIT meshing tool kit is being developed to address the need for rapid mesh generation. CUBIT is being designed to effectively automate the generation of quadrilateral and hexahedral elements. It is a solid-modeler based, two- and three-dimensional preprocessor that prepares solid models for finite element analysis. CUBIT contains several meshing algorithms including two- and three-dimensional mapping, two- and three-dimensional paving (patented), and a general two and one-half dimensional sweeper based upon the plastering algorithm. This paper describes progress in the development of the CUBIT meshing toolkit.

  9. Rapid mesh generation for finite element analysis of investment castings

    SciTech Connect

    Lober, R.R.; Bohnhoff, W.J.; Meyers, R.J.

    1992-01-01

    FASTCAST is a Sandia National Laboratories program to produce investment cast prototypical hardware faster by integrating experimental and computational technologies into the casting process. FASTCAST uses the finite element method to characterize the metal flow and solidification processes to reduce uncertainty in the mold design. For the casting process to benefit from finite element analysis, analysis results must be available in a very short time frame. By focusing on the bottleneck of finite element model creation, automated mesh generation can drastically reduce the time span between geometry definition (design) and accurate analysis results. The increased availability of analysis results will diminish the need for trial and error approaches to acquiring production worthy mold and gating systems for investment casting. The CUBIT meshing tool kit is being developed to address the need for rapid mesh generation. CUBIT is being designed to effectively automate the generation of quadrilateral and hexahedral elements. It is a solid-modeler based, two- and three-dimensional preprocessor that prepares solid models for finite element analysis. CUBIT contains several meshing algorithms including two- and three-dimensional mapping, two- and three-dimensional paving (patented), and a general two and one-half dimensional sweeper based upon the plastering algorithm. This paper describes progress in the development of the CUBIT meshing toolkit.

  10. Finite element mesh refinement criteria for stress analysis

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.

    1990-01-01

    This paper discusses procedures for finite-element mesh selection and refinement. The objective is to improve accuracy. The procedures are based on (1) the minimization of the stiffness matrix race (optimizing node location); (2) the use of h-version refinement (rezoning, element size reduction, and increasing the number of elements); and (3) the use of p-version refinement (increasing the order of polynomial approximation of the elements). A step-by-step procedure of mesh selection, improvement, and refinement is presented. The criteria for 'goodness' of a mesh are based on strain energy, displacement, and stress values at selected critical points of a structure. An analysis of an aircraft lug problem is presented as an example.

  11. A General-Purpose Mesh Generator for Finite Element Codes.

    Energy Science and Technology Software Center (ESTSC)

    1984-02-28

    Version 00 INGEN is a general-purpose mesh generator for use in conjunction with two and three dimensional finite element programs. The basic components of INGEN are surface and three-dimensional region generators that use linear-blending interpolation formulae. These generators are based on an i, j, k index scheme, which is used to number nodal points, construct elements, and develop displacement and traction boundary conditions.

  12. Extraction and applications of skeletons in finite element mesh generation.

    SciTech Connect

    Quadros, William Roshan

    2010-05-01

    This paper focuses on the extraction of skeletons of CAD models and its applications in finite element (FE) mesh generation. The term 'skeleton of a CAD model' can be visualized as analogous to the 'skeleton of a human body'. The skeletal representations covered in this paper include medial axis transform (MAT), Voronoi diagram (VD), chordal axis transform (CAT), mid surface, digital skeletons, and disconnected skeletons. In the literature, the properties of a skeleton have been utilized in developing various algorithms for extracting skeletons. Three main approaches include: (1) the bisection method where the skeleton exists at equidistant from at least two points on boundary, (2) the grassfire propagation method in which the skeleton exists where the opposing fronts meet, and (3) the duality method where the skeleton is a dual of the object. In the last decade, the author has applied different skeletal representations in all-quad meshing, hex meshing, mid-surface meshing, mesh size function generation, defeaturing, and decomposition. A brief discussion on the related work from other researchers in the area of tri meshing, tet meshing, and anisotropic meshing is also included. This paper concludes by summarizing the strengths and weaknesses of the skeleton-based approaches in solving various geometry-centered problems in FE mesh generation. The skeletons have proved to be a great shape abstraction tool in analyzing the geometric complexity of CAD models as they are symmetric, simpler (reduced dimension), and provide local thickness information. However, skeletons generally require some cleanup, and stability and sensitivity of the skeletons should be controlled during extraction. Also, selecting a suitable application-specific skeleton and a computationally efficient method of extraction is critical.

  13. Finite element meshing approached as a global minimization process

    SciTech Connect

    WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.; LEUNG,VITUS J.

    2000-03-01

    The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested

  14. Fracture and Fragmentation of Simplicial Finite Elements Meshes using Graphs

    SciTech Connect

    Mota, A; Knap, J; Ortiz, M

    2006-10-18

    An approach for the topological representation of simplicial finite element meshes as graphs is presented. It is shown that by using a graph, the topological changes induced by fracture reduce to a few, local kernel operations. The performance of the graph representation is demonstrated and analyzed, using as reference the 3D fracture algorithm by Pandolfi and Ortiz [22]. It is shown that the graph representation initializes in O(N{sub E}{sup 1.1}) time and fractures in O(N{sub I}{sup 1.0}) time, while the reference implementation requires O(N{sub E}{sup 2.1}) time to initialize and O(N{sub I}{sup 1.9}) time to fracture, where NE is the number of elements in the mesh and N{sub I} is the number of interfaces to fracture.

  15. 3D Finite Element Trajectory Code with Adaptive Meshing

    NASA Astrophysics Data System (ADS)

    Ives, Lawrence; Bui, Thuc; Vogler, William; Bauer, Andy; Shephard, Mark; Beal, Mark; Tran, Hien

    2004-11-01

    Beam Optics Analysis, a new, 3D charged particle program is available and in use for the design of complex, 3D electron guns and charged particle devices. The code reads files directly from most CAD and solid modeling programs, includes an intuitive Graphical User Interface (GUI), and a robust mesh generator that is fully automatic. Complex problems can be set up, and analysis initiated in minutes. The program includes a user-friendly post processor for displaying field and trajectory data using 3D plots and images. The electrostatic solver is based on the standard nodal finite element method. The magnetostatic field solver is based on the vector finite element method and is also called during the trajectory simulation process to solve for self magnetic fields. The user imports the geometry from essentially any commercial CAD program and uses the GUI to assign parameters (voltages, currents, dielectric constant) and designate emitters (including work function, emitter temperature, and number of trajectories). The the mesh is generated automatically and analysis is performed, including mesh adaptation to improve accuracy and optimize computational resources. This presentation will provide information on the basic structure of the code, its operation, and it's capabilities.

  16. Automatic meshing of curved three-dimensional domains: Curving finite elements and curvature-based mesh control

    SciTech Connect

    Shephard, M.S.; Dey, S.; Georges, M.K.

    1995-12-31

    Specific issues associated with the automatic generation of finite element meshes for curved geometric domains axe considered. A review of the definition of when a triangulation is a valid mesh, a geometric triangulation, for curved geometric domains is given. Consideration is then given to the additional operations necessary to maintain the validity of a mesh when curved finite elements are employed. A procedure to control the mesh gradations based on the curvature of the geometric model faces is also given.

  17. A Finite Element Mesh Generation Code System with On-Line Graphic Display.

    Energy Science and Technology Software Center (ESTSC)

    1980-05-30

    Version 00 LOOM-P is a two-dimensional mesh generation program which produces a best finite element mesh network for a reactor core geometry. This is an on-line automatic mesh generating program which can produce triangular mesh elements as an edit program to QMESH-RENUM.

  18. 3D unstructured mesh discontinuous finite element hydro

    SciTech Connect

    Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.

    1995-07-01

    The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D.

  19. Iterative methods for elliptic finite element equations on general meshes

    NASA Technical Reports Server (NTRS)

    Nicolaides, R. A.; Choudhury, Shenaz

    1986-01-01

    Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included.

  20. Method and apparatus for connecting finite element meshes and performing simulations therewith

    SciTech Connect

    Dohrmann, Clark R.; Key, Samuel W.; Heinstein, Martin W.

    2003-05-06

    The present invention provides a method of connecting dissimilar finite element meshes. A first mesh, designated the master mesh, and a second mesh, designated the slave mesh, each have interface surfaces proximal the other. Each interface surface has a corresponding interface mesh comprising a plurality of interface nodes. Each slave interface node is assigned new coordinates locating the interface node on the interface surface of the master mesh. The slave interface surface is further redefined to be the projection of the slave interface mesh onto the master interface surface.

  1. Approaches to the automatic generation and control of finite element meshes

    NASA Technical Reports Server (NTRS)

    Shephard, Mark S.

    1987-01-01

    The algorithmic approaches being taken to the development of finite element mesh generators capable of automatically discretizing general domains without the need for user intervention are discussed. It is demonstrated that because of the modeling demands placed on a automatic mesh generator, all the approaches taken to date produce unstructured meshes. Consideration is also given to both a priori and a posteriori mesh control devices for automatic mesh generators as well as their integration with geometric modeling and adaptive analysis procedures.

  2. Finite element meshing of ANSYS (trademark) solid models

    NASA Technical Reports Server (NTRS)

    Kelley, F. S.

    1987-01-01

    A large scale, general purpose finite element computer program, ANSYS, developed and marketed by Swanson Analysis Systems, Inc. is discussed. ANSYS was perhaps the first commercially available program to offer truly interactive finite element model generation. ANSYS's purpose is for solid modeling. This application is briefly discussed and illustrated.

  3. A Family of Uniform Strain Tetrahedral Elements and a Method for Connecting Dissimilar Finite Element Meshes

    SciTech Connect

    Dohrmann, C.R.; Heinstein, M.W.; Jung, J.; Key, S.W.

    1999-01-01

    This report documents a collection of papers on a family of uniform strain tetrahedral finite elements and their connection to different element types. Also included in the report are two papers which address the general problem of connecting dissimilar meshes in two and three dimensions. Much of the work presented here was motivated by the development of the tetrahedral element described in the report "A Suitable Low-Order, Eight-Node Tetrahedral Finite Element For Solids," by S. W. Key {ital et al.}, SAND98-0756, March 1998. Two basic issues addressed by the papers are: (1) the performance of alternative tetrahedral elements with uniform strain and enhanced uniform strain formulations, and (2) the proper connection of tetrahedral and other element types when two meshes are "tied" together to represent a single continuous domain.

  4. A finite-element mesh generator based on growing neural networks.

    PubMed

    Triantafyllidis, D G; Labridis, D P

    2002-01-01

    A mesh generator for the production of high-quality finite-element meshes is being proposed. The mesh generator uses an artificial neural network, which grows during the training process in order to adapt itself to a prespecified probability distribution. The initial mesh is a constrained Delaunay triangulation of the domain to be triangulated. Two new algorithms to accelerate the location of the best matching unit are introduced. The mesh generator has been found able to produce meshes of high quality in a number of classic cases examined and is highly suited for problems where the mesh density vector can be calculated in advance. PMID:18244543

  5. Determination of an Initial Mesh Density for Finite Element Computations via Data Mining

    SciTech Connect

    Kanapady, R; Bathina, S K; Tamma, K K; Kamath, C; Kumar, V

    2001-07-23

    Numerical analysis software packages which employ a coarse first mesh or an inadequate initial mesh need to undergo a cumbersome and time consuming mesh refinement studies to obtain solutions with acceptable accuracy. Hence, it is critical for numerical methods such as finite element analysis to be able to determine a good initial mesh density for the subsequent finite element computations or as an input to a subsequent adaptive mesh generator. This paper explores the use of data mining techniques for obtaining an initial approximate finite element density that avoids significant trial and error to start finite element computations. As an illustration of proof of concept, a square plate which is simply supported at its edges and is subjected to a concentrated load is employed for the test case. Although simplistic, the present study provides insight into addressing the above considerations.

  6. Pamgen, a library for parallel generation of simple finite element meshes.

    SciTech Connect

    Foucar, James G.; Drake, Richard Roy; Hensinger, David M.; Gardiner, Thomas Anthony

    2008-04-01

    Generating finite-element meshes is a serious bottleneck for large parallel simulations. When mesh generation is limited to serial machines and element counts approach a billion, this bottleneck becomes a roadblock. Pamgen is a parallel mesh generation library that allows on-the-fly scalable generation of hexahedral and quadrilateral finite element meshes for several simple geometries. It has been used to generate more that 1.1 billion elements on 17,576 processors. Pamgen generates an unstructured finite element mesh on each processor at the start of a simulation. The mesh is specified by commands passed to the library as a 'C'-programming language string. The resulting mesh geometry, topology, and communication information can then be queried through an API. pamgen allows specification of boundary condition application regions using sidesets (element faces) and nodesets (collections of nodes). It supports several simple geometry types. It has multiple alternatives for mesh grading. It has several alternatives for the initial domain decomposition. Pamgen makes it easy to change details of the finite element mesh and is very useful for performance studies and scoping calculations.

  7. Examples of finite element mesh generation using SDRC IDEAS

    NASA Technical Reports Server (NTRS)

    Zapp, John; Volakis, John L.

    1990-01-01

    IDEAS (Integrated Design Engineering Analysis Software) offers a comprehensive package for mechanical design engineers. Due to its multifaceted capabilities, however, it can be manipulated to serve the needs of electrical engineers, also. IDEAS can be used to perform the following tasks: system modeling, system assembly, kinematics, finite element pre/post processing, finite element solution, system dynamics, drafting, test data analysis, and project relational database.

  8. Application of a finite element algorithm for high speed viscous flows using structured and unstructured meshes

    NASA Technical Reports Server (NTRS)

    Vemaganti, Gururaja R.; Wieting, Allan R.

    1990-01-01

    A higher-order streamline upwinding Petrov-Galerkin finite element method is employed for high speed viscous flow analysis using structured and unstructured meshes. For a Mach 8.03 shock interference problem, successive mesh adaptation was performed using an adaptive remeshing method. Results from the finite element algorithm compare well with both experimental data and results from an upwind cell-centered method. Finite element results for a Mach 14.1 flow over a 24 degree compression corner compare well with experimental data and two other numerical algorithms for both structured and unstructured meshes.

  9. A Method for Connecting Dissimilar Finite Element Meshes in Three Dimensions

    SciTech Connect

    Dohrmann, C.R.; Heinstein, M.W.; Key, S.W.

    1998-11-12

    A method is presented for connecting dissimilar finite element meshes in three dimensions. The method combines the concept of master and slave surfaces with the uniform strain approach for surface, corrections finite elements- By modifyhg the are made to element formulations boundaries of elements on the slave such that first-order patch tests are passed. The method can be used to connect meshes which use different element types. In addition, master and slave surfaces can be designated independently of relative mesh resolutions. Example problems in three-dimensional linear elasticity are presented.

  10. Unconstrained paving and plastering method for generating finite element meshes

    DOEpatents

    Staten, Matthew L.; Owen, Steven J.; Blacker, Teddy D.; Kerr, Robert

    2010-03-02

    Computer software for and a method of generating a conformal all quadrilateral or hexahedral mesh comprising selecting an object with unmeshed boundaries and performing the following while unmeshed voids are larger than twice a desired element size and unrecognizable as either a midpoint subdividable or pave-and-sweepable polyhedra: selecting a front to advance; based on sizes of fronts and angles with adjacent fronts, determining which adjacent fronts should be advanced with the selected front; advancing the fronts; detecting proximities with other nearby fronts; resolving any found proximities; forming quadrilaterals or unconstrained columns of hexahedra where two layers cross; and establishing hexahedral elements where three layers cross.

  11. Isoparametric 3-D Finite Element Mesh Generation Using Interactive Computer Graphics

    NASA Technical Reports Server (NTRS)

    Kayrak, C.; Ozsoy, T.

    1985-01-01

    An isoparametric 3-D finite element mesh generator was developed with direct interface to an interactive geometric modeler program called POLYGON. POLYGON defines the model geometry in terms of boundaries and mesh regions for the mesh generator. The mesh generator controls the mesh flow through the 2-dimensional spans of regions by using the topological data and defines the connectivity between regions. The program is menu driven and the user has a control of element density and biasing through the spans and can also apply boundary conditions, loads interactively.

  12. ESCHER: An interactive mesh-generating editor for preparing finite-element input

    NASA Technical Reports Server (NTRS)

    Oakes, W. R., Jr.

    1984-01-01

    ESCHER is an interactive mesh generation and editing program designed to help the user create a finite-element mesh, create additional input for finite-element analysis, including initial conditions, boundary conditions, and slidelines, and generate a NEUTRAL FILE that can be postprocessed for input into several finite-element codes, including ADINA, ADINAT, DYNA, NIKE, TSAAS, and ABUQUS. Two important ESCHER capabilities, interactive geometry creation and mesh archival storge are described in detail. Also described is the interactive command language and the use of interactive graphics. The archival storage and restart file is a modular, entity-based mesh data file. Modules of this file correspond to separate editing modes in the mesh editor, with data definition syntax preserved between the interactive commands and the archival storage file. Because ESCHER was expected to be highly interactive, extensive user documentation was provided in the form of an interactive HELP package.

  13. A new conformal absorbing boundary condition for finite element meshes and parallelization of FEMATS

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Volakis, J. L.; Nguyen, J.; Nurnberger, M.; Ross, D.

    1993-01-01

    Some of the progress toward the development and parallelization of an improved version of the finite element code FEMATS is described. This is a finite element code for computing the scattering by arbitrarily shaped three dimensional surfaces composite scatterers. The following tasks were worked on during the report period: (1) new absorbing boundary conditions (ABC's) for truncating the finite element mesh; (2) mixed mesh termination schemes; (3) hierarchical elements and multigridding; (4) parallelization; and (5) various modeling enhancements (antenna feeds, anisotropy, and higher order GIBC).

  14. Finite element based electrostatic-structural coupled analysis with automated mesh morphing

    SciTech Connect

    OWEN,STEVEN J.; ZHULIN,V.I.; OSTERGAARD,D.F.

    2000-02-29

    A co-simulation tool based on finite element principles has been developed to solve coupled electrostatic-structural problems. An automated mesh morphing algorithm has been employed to update the field mesh after structural deformation. The co-simulation tool has been successfully applied to the hysteric behavior of a MEMS switch.

  15. Improvement of finite element meshes - Heat transfer in an infinite cylinder

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.; Oswald, Fred B.

    1989-01-01

    An extension of a structural finite element mesh improvement technique to heat conduction analysis is presented. The mesh improvement concept was originally presented by Prager in studying tapered, axially loaded bars. It was further shown that an improved mesh can be obtained by minimizing the trace of the stiffnes matrix. These procedures are extended and applied to the analysis of heat conduction in an infinitely long hollow circular cylinder.

  16. Improvement in finite element meshes: Heat transfer in an infinite cylinder

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.; Oswald, Fred B.

    1988-01-01

    An extension of a structural finite element mesh improvement technique to heat conduction analysis is presented. The mesh improvement concept was originally presented by Prager in studying tapered, axially loaded bars. It was further shown that an improved mesh can be obtained by minimizing the trace of the stiffness matrix. These procedures are extended and applied to the analysis of heat conduction in an infinitely long hollow circular cylinder.

  17. Coupling finite element and integral equation solutions using decoupled boundary meshes

    NASA Technical Reports Server (NTRS)

    Cwik, Tom

    1992-01-01

    A method is outlined for calculating scattered fields from inhomogeneous penetrable objects using a coupled finite element-integral equation solution. The finite element equation can efficiently model fields in penetrable and inhomogeneous regions, while the integral equation exactly models fields on the finite element mesh boundary and in the exterior region. By decoupling the interior finite element and exterior integral equation meshes, considerable flexibility is found in both the number of field expansion points as well as their density. Only the nonmetal portions of the object need be modeled using a finite element expansion; exterior perfect conducting surfaces are modeled using an integral equation with a single unknown field since E(tan) is identically zero on these surfaces. Numerical convergence, accuracy, and stability at interior resonant frequencies are studied in detail.

  18. Multigrid waveform relaxation on spatial finite element meshes

    SciTech Connect

    Janssen, J.; Vandewalle, S.

    1994-12-31

    The authors shall discuss the numerical solution of a parabolic partial differential equation {partial_derivative}u/{partial_derivative}t(x,t) = Lu(x,t) + f(x,t), x{element_of}{Omega}, t>0, (1) supplied with a boundary condition and given initial values. The spatial finite element discretization of (1) on a discrete grid {Omega}{sub h} leads to an initial value problem of the form B{dot u} + Au = f, u(0) = u{sub o}, t > 0, (2) with B a non-singular matrix. The waveform relaxation method is a method for solving ordinary differential equations. It differs from most standard iterative techniques in that it is a continuous-time method, iterating with functions in time, and thereby well-suited for parallel computation.

  19. Tangle-Free Finite Element Mesh Motion for Ablation Problems

    NASA Technical Reports Server (NTRS)

    Droba, Justin

    2016-01-01

    In numerical simulations involving boundaries that evolve in time, the primary challenge is updating the computational mesh to reflect the physical changes in the domain. In particular, the fundamental objective for any such \\mesh motion" scheme is to maintain mesh quality and suppress unphysical geometric anamolies and artifacts. External to a physical process of interest, mesh motion is an added component that determines the specifics of how to move the mesh given certain limited information from the main system. This paper develops a set of boundary conditions designed to eliminate tangling and internal collision within the context of PDE-based mesh motion (linear elasticity). These boundary conditions are developed for two- and three-dimensional meshes. The paper presents detailed algorithms for commonly occuring topological scenarios and explains how to apply them appropriately. Notably, the techniques discussed herein make use of none of the specifics of any particular formulation of mesh motion and thus are more broadly applicable. The two-dimensional algorithms are validated by an extensive verification procedure. Finally, many examples of diverse geometries in both two- and three-dimensions are shown to showcase the capabilities of the tangle-free boundary conditions.

  20. Adaptive mesh refinement for time-domain electromagnetics using vector finite elements :a feasibility study.

    SciTech Connect

    Turner, C. David; Kotulski, Joseph Daniel; Pasik, Michael Francis

    2005-12-01

    This report investigates the feasibility of applying Adaptive Mesh Refinement (AMR) techniques to a vector finite element formulation for the wave equation in three dimensions. Possible error estimators are considered first. Next, approaches for refining tetrahedral elements are reviewed. AMR capabilities within the Nevada framework are then evaluated. We summarize our conclusions on the feasibility of AMR for time-domain vector finite elements and identify a path forward.

  1. Tangle-Free Finite Element Mesh Motion for Ablation Problems

    NASA Technical Reports Server (NTRS)

    Droba, Justin

    2016-01-01

    Mesh motion is the process by which a computational domain is updated in time to reflect physical changes in the material the domain represents. Such a technique is needed in the study of the thermal response of ablative materials, which erode when strong heating is applied to the boundary. Traditionally, the thermal solver is coupled with a linear elastic or biharmonic system whose sole purpose is to update mesh node locations in response to altering boundary heating. Simple mesh motion algorithms rely on boundary surface normals. In such schemes, evolution in time will eventually cause the mesh to intersect and "tangle" with itself, causing failure. Furthermore, such schemes are greatly limited in the problems geometries on which they will be successful. This paper presents a comprehensive and sophisticated scheme that tailors the directions of motion based on context. By choosing directions for each node smartly, the inevitable tangle can be completely avoided and mesh motion on complex geometries can be modeled accurately.

  2. Mesh refinement in finite element analysis by minimization of the stiffness matrix trace

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.

    1989-01-01

    Most finite element packages provide means to generate meshes automatically. However, the user is usually confronted with the problem of not knowing whether the mesh generated is appropriate for the problem at hand. Since the accuracy of the finite element results is mesh dependent, mesh selection forms a very important step in the analysis. Indeed, in accurate analyses, meshes need to be refined or rezoned until the solution converges to a value so that the error is below a predetermined tolerance. A-posteriori methods use error indicators, developed by using the theory of interpolation and approximation theory, for mesh refinements. Some use other criterions, such as strain energy density variation and stress contours for example, to obtain near optimal meshes. Although these methods are adaptive, they are expensive. Alternatively, a priori methods, until now available, use geometrical parameters, for example, element aspect ratio. Therefore, they are not adaptive by nature. An adaptive a-priori method is developed. The criterion is that the minimization of the trace of the stiffness matrix with respect to the nodal coordinates, leads to a minimization of the potential energy, and as a consequence provide a good starting mesh. In a few examples the method is shown to provide the optimal mesh. The method is also shown to be relatively simple and amenable to development of computer algorithms. When the procedure is used in conjunction with a-posteriori methods of grid refinement, it is shown that fewer refinement iterations and fewer degrees of freedom are required for convergence as opposed to when the procedure is not used. The mesh obtained is shown to have uniform distribution of stiffness among the nodes and elements which, as a consequence, leads to uniform error distribution. Thus the mesh obtained meets the optimality criterion of uniform error distribution.

  3. Learning to use the finite-element mesh generator, ESCHER 3. 2

    SciTech Connect

    Oakes, W.R. Jr.

    1989-08-01

    ESCHER is a finite-element mesh generator designed to generate valid and well proportioned two-dimensional and three-dimensional meshes. It is intended for use in a loosely integrated analysis system. Edge-geometry data can be input to ESCHER from almost any computer-aided drafting program used today. ESCHER produces a finite-element model in a neutral file format that can be translated for input to specific finite-element analysis codes. This report describes how to use ESCHER. It explains what constitutes a valid geometrical model, how to construct one from edge geometry, how to define a finite-element model given a geometrical model, and how to verify that the created model is valid. The computer-hardware system required is explained, and ESCHER's relationship to other computer codes in the Integrated Design Engineering Analysis Library, IDEAL, is discussed. 5 refs., 11 figs.

  4. Automatic processing of an orientation map into a finite element mesh that conforms to grain boundaries

    NASA Astrophysics Data System (ADS)

    Dancette, S.; Browet, A.; Martin, G.; Willemet, M.; Delannay, L.

    2016-06-01

    A new procedure for microstructure-based finite element modeling of polycrystalline aggregates is presented. The proposed method relies (i) on an efficient graph-based community detection algorithm for crystallographic data segmentation and feature contour extraction and (ii) on the generation of selectively refined meshes conforming to grain boundaries. It constitutes a versatile and close to automatic environment for meshing complex microstructures. The procedure is illustrated with polycrystal microstructures characterized by orientation imaging microscopy. Hot deformation of a Duplex stainless steel is investigated based on ex-situ EBSD measurements performed on the same region of interest before and after deformation. A finite element mesh representing the initial microstructure is generated and then used in a crystal plasticity simulation of the plane strain compression. Simulation results and experiments are in relatively good agreement, confirming a large potential for such directly coupled experimental and modeling analyses, which is facilitated by the present image-based meshing procedure.

  5. Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2005-01-01

    A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.

  6. A comparative study of an ABC and an artificial absorber for truncating finite element meshes

    NASA Technical Reports Server (NTRS)

    Oezdemir, T.; Volakis, John L.

    1993-01-01

    The type of mesh termination used in the context of finite element formulations plays a major role on the efficiency and accuracy of the field solution. The performance of an absorbing boundary condition (ABC) and an artificial absorber (a new concept) for terminating the finite element mesh was evaluated. This analysis is done in connection with the problem of scattering by a finite slot array in a thick ground plane. The two approximate mesh truncation schemes are compared with the exact finite element-boundary integral (FEM-BI) method in terms of accuracy and efficiency. It is demonstrated that both approximate truncation schemes yield reasonably accurate results even when the mesh is extended only 0.3 wavelengths away from the array aperture. However, the artificial absorber termination method leads to a substantially more efficient solution. Moreover, it is shown that the FEM-BI method remains quite competitive with the FEM-artificial absorber method when the FFT is used for computing the matrix-vector products in the iterative solution algorithm. These conclusions are indeed surprising and of major importance in electromagnetic simulations based on the finite element method.

  7. Methods and evaluations of MRI content-adaptive finite element mesh generation for bioelectromagnetic problems

    NASA Astrophysics Data System (ADS)

    Lee, W. H.; Kim, T.-S.; Cho, M. H.; Ahn, Y. B.; Lee, S. Y.

    2006-12-01

    In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.

  8. Finite Elements approach for Density Functional Theory calculations on locally refined meshes

    SciTech Connect

    Fattebert, J; Hornung, R D; Wissink, A M

    2006-03-27

    We present a quadratic Finite Elements approach to discretize the Kohn-Sham equations on structured non-uniform meshes. A multigrid FAC preconditioner is proposed to iteratively solve the equations by an accelerated steepest descent scheme. The method was implemented using SAMRAI, a parallel software infrastructure for general AMR applications. Examples of applications to small nanoclusters calculations are presented.

  9. Finite Element approach for Density Functional Theory calculations on locally refined meshes

    SciTech Connect

    Fattebert, J; Hornung, R D; Wissink, A M

    2007-02-23

    We present a quadratic Finite Element approach to discretize the Kohn-Sham equations on structured non-uniform meshes. A multigrid FAC preconditioner is proposed to iteratively solve the equations by an accelerated steepest descent scheme. The method was implemented using SAMRAI, a parallel software infrastructure for general AMR applications. Examples of applications to small nanoclusters calculations are presented.

  10. Manual for automatic generation of finite element models of spiral bevel gears in mesh

    NASA Technical Reports Server (NTRS)

    Bibel, G. D.; Reddy, S.; Kumar, A.

    1994-01-01

    The goal of this research is to develop computer programs that generate finite element models suitable for doing 3D contact analysis of faced milled spiral bevel gears in mesh. A pinion tooth and a gear tooth are created and put in mesh. There are two programs: Points.f and Pat.f to perform the analysis. Points.f is based on the equation of meshing for spiral bevel gears. It uses machine tool settings to solve for an N x M mesh of points on the four surfaces, pinion concave and convex, and gear concave and convex. Points.f creates the file POINTS.OUT, an ASCI file containing N x M points for each surface. (N is the number of node points along the length of the tooth, and M is nodes along the height.) Pat.f reads POINTS.OUT and creates the file tl.out. Tl.out is a series of PATRAN input commands. In addition to the mesh density on the tooth face, additional user specified variables are the number of finite elements through the thickness, and the number of finite elements along the tooth full fillet. A full fillet is assumed to exist for both the pinion and gear.

  11. Contact stresses in meshing spur gear teeth: Use of an incremental finite element procedure

    NASA Technical Reports Server (NTRS)

    Hsieh, Chih-Ming; Huston, Ronald L.; Oswald, Fred B.

    1992-01-01

    Contact stresses in meshing spur gear teeth are examined. The analysis is based upon an incremental finite element procedure that simultaneously determines the stresses in the contact region between the meshing teeth. The teeth themselves are modeled by two dimensional plain strain elements. Friction effects are included, with the friction forces assumed to obey Coulomb's law. The analysis assumes that the displacements are small and that the tooth materials are linearly elastic. The analysis procedure is validated by comparing its results with those for the classical two contacting semicylinders obtained from the Hertz method. Agreement is excellent.

  12. Generating anatomically accurate finite element meshes for electrical impedance tomography of the human head

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Xu, Canhua; Dai, Meng; Fu, Feng; Dong, Xiuzhen

    2013-07-01

    For electrical impedance tomography (EIT) of brain, the use of anatomically accurate and patient-specific finite element (FE) mesh has been shown to confer significant improvements in the quality of image reconstruction. But, given the lack of a rapid method to achieve the accurate anatomic geometry of the head, the generation of patient-specifc mesh is time-comsuming. In this paper, a modified fuzzy c-means algorithm based on non-local means method is performed to implement the segmentation of different layers in the head based on head CT images. This algorithm showed a better effect, especially an accurate recognition of the ventricles and a suitable performance dealing with noise. And the FE mesh established according to the segmentation results is validated in computational simulation. So a rapid practicable method can be provided for the generation of patient-specific FE mesh of the human head that is suitable for brain EIT.

  13. Charged particle tracking through electrostatic wire meshes using the finite element method

    NASA Astrophysics Data System (ADS)

    Devlin, L. J.; Karamyshev, O.; Welsch, C. P.

    2016-06-01

    Wire meshes are used across many disciplines to accelerate and focus charged particles, however, analytical solutions are non-exact and few codes exist which simulate the exact fields around a mesh with physical sizes. A tracking code based in Matlab-Simulink using field maps generated using finite element software has been developed which tracks electrons or ions through electrostatic wire meshes. The fields around such a geometry are presented as an analytical expression using several basic assumptions, however, it is apparent that computational calculations are required to obtain realistic values of electric potential and fields, particularly when multiple wire meshes are deployed. The tracking code is flexible in that any quantitatively describable particle distribution can be used for both electrons and ions as well as other benefits such as ease of export to other programs for analysis. The code is made freely available and physical examples are highlighted where this code could be beneficial for different applications.

  14. The response of cranial biomechanical finite element models to variations in mesh density.

    PubMed

    Bright, Jen A; Rayfield, Emily J

    2011-04-01

    Finite element (FE) models provide discrete solutions to continuous problems. Therefore, to arrive at the correct solution, it is vital to ensure that FE models contain a sufficient number of elements to fully resolve all the detail encountered in a continuum structure. Mesh convergence testing is the process of comparing successively finer meshes to identify the point of diminishing returns; where increasing resolution has marginal effects on results and further detail would become costly and unnecessary. Historically, convergence has not been considered in most CT-based biomechanical reconstructions involving complex geometries like the skull, as generating such models has been prohibitively time-consuming. To assess how mesh convergence influences results, 18 increasingly refined CT-based models of a domestic pig skull were compared to identify the point of convergence for strain and displacement, using both linear and quadratic tetrahedral elements. Not all regions of the skull converged at the same rate, and unexpectedly, areas of high strain converged faster than low-strain regions. Linear models were slightly stiffer than their quadratic counterparts, but did not converge less rapidly. As expected, insufficiently dense models underestimated strain and displacement, and failed to resolve strain "hot-spots" notable in contour plots. In addition to quantitative differences, visual assessments of such plots often inform conclusions drawn in many comparative studies, highlighting that mesh convergence should be performed on all finite element models before further analysis takes place. PMID:21370496

  15. MAPVAR - A Computer Program to Transfer Solution Data Between Finite Element Meshes

    SciTech Connect

    Wellman, G.W.

    1999-03-01

    MAPVAR, as was the case with its precursor programs, MERLIN and MERLIN II, is designed to transfer solution results from one finite element mesh to another. MAPVAR draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR are described. User instructions are presented. Example problems are included to demonstrate the operation of the code and the effects of various input options.

  16. Using Rock SEM Image to Create Pore-scale Finite Element Calculation Mesh

    NASA Astrophysics Data System (ADS)

    Jianjun, Liu; Lijun, Lin; Youjun, Ji

    Micro-scale numerical simulation were often used to study the deformation, flow or heat transfer mechanism of material, among the simulation, one important step is to get simulation mesh. Taking rock as an example, this paper illustrated a method of creating pore-scale finite element calculation mesh from rock Scanning Electron Microscope (SEM) image with image processing toolbox of MATLAB, Algolab Raster to Vector Conversion Toolkit and COMSOL Multiphysics software. It established a more accurate numerical model of the microscopic pore structure of rock. Simulation results demonstrate that the method is efficiency in the application of image processing and the study of microscopic pore structure.

  17. Using Multithreading for the Automatic Load Balancing of 2D Adaptive Finite Element Meshes

    NASA Technical Reports Server (NTRS)

    Heber, Gerd; Biswas, Rupak; Thulasiraman, Parimala; Gao, Guang R.; Bailey, David H. (Technical Monitor)

    1998-01-01

    In this paper, we present a multi-threaded approach for the automatic load balancing of adaptive finite element (FE) meshes. The platform of our choice is the EARTH multi-threaded system which offers sufficient capabilities to tackle this problem. We implement the question phase of FE applications on triangular meshes, and exploit the EARTH token mechanism to automatically balance the resulting irregular and highly nonuniform workload. We discuss the results of our experiments on EARTH-SP2, an implementation of EARTH on the IBM SP2, with different load balancing strategies that are built into the runtime system.

  18. Using Multi-threading for the Automatic Load Balancing of 2D Adaptive Finite Element Meshes

    NASA Technical Reports Server (NTRS)

    Heber, Gerd; Biswas, Rupak; Thulasiraman, Parimala; Gao, Guang R.; Saini, Subhash (Technical Monitor)

    1998-01-01

    In this paper, we present a multi-threaded approach for the automatic load balancing of adaptive finite element (FE) meshes The platform of our choice is the EARTH multi-threaded system which offers sufficient capabilities to tackle this problem. We implement the adaption phase of FE applications oil triangular meshes and exploit the EARTH token mechanism to automatically balance the resulting irregular and highly nonuniform workload. We discuss the results of our experiments oil EARTH-SP2, on implementation of EARTH on the IBM SP2 with different load balancing strategies that are built into the runtime system.

  19. On the Interconnection of Incompatible Solid Finite Element Meshes Using Multipoint Constraints

    NASA Technical Reports Server (NTRS)

    Fox, G. L.

    1985-01-01

    Incompatible meshes, i.e., meshes that physically must have a common boundary, but do not necessarily have coincident grid points, can arise in the course of a finite element analysis. For example, two substructures may have been developed at different times for different purposes and it becomes necessary to interconnect the two models. A technique that uses only multipoint constraints, i.e., MPC cards (or MPCS cards in substructuring), is presented. Since the method uses only MPC's, the procedure may apply at any stage in an analysis; no prior planning or special data is necessary.

  20. Mesh management methods in finite element simulations of orthodontic tooth movement.

    PubMed

    Mengoni, M; Ponthot, J-P; Boman, R

    2016-02-01

    In finite element simulations of orthodontic tooth movement, one of the challenges is to represent long term tooth movement. Large deformation of the periodontal ligament and large tooth displacement due to bone remodelling lead to large distortions of the finite element mesh when a Lagrangian formalism is used. We propose in this work to use an Arbitrary Lagrangian Eulerian (ALE) formalism to delay remeshing operations. A large tooth displacement is obtained including effect of remodelling without the need of remeshing steps but keeping a good-quality mesh. Very large deformations in soft tissues such as the periodontal ligament is obtained using a combination of the ALE formalism used continuously and a remeshing algorithm used when needed. This work demonstrates that the ALE formalism is a very efficient way to delay remeshing operations. PMID:26671785

  1. Design of an essentially non-oscillatory reconstruction procedure on finite-element type meshes

    NASA Technical Reports Server (NTRS)

    Abgrall, R.

    1991-01-01

    An essentially non-oscillatory reconstruction for functions defined on finite-element type meshes was designed. Two related problems are studied: the interpolation of possibly unsmooth multivariate functions on arbitrary meshes and the reconstruction of a function from its average in the control volumes surrounding the nodes of the mesh. Concerning the first problem, we have studied the behavior of the highest coefficients of the Lagrange interpolation function which may admit discontinuities of locally regular curves. This enables us to choose the best stencil for the interpolation. The choice of the smallest possible number of stencils is addressed. Concerning the reconstruction problem, because of the very nature of the mesh, the only method that may work is the so called reconstruction via deconvolution method. Unfortunately, it is well suited only for regular meshes as we show, but we also show how to overcome this difficulty. The global method has the expected order of accuracy but is conservative up to a high order quadrature formula only. Some numerical examples are given which demonstrate the efficiency of the method.

  2. Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.

    PubMed

    Bijar, Ahmad; Rohan, Pierre-Yves; Perrier, Pascal; Payan, Yohan

    2016-01-01

    Generation of subject-specific 3D finite element (FE) models requires the processing of numerous medical images in order to precisely extract geometrical information about subject-specific anatomy. This processing remains extremely challenging. To overcome this difficulty, we present an automatic atlas-based method that generates subject-specific FE meshes via a 3D registration guided by Magnetic Resonance images. The method extracts a 3D transformation by registering the atlas' volume image to the subject's one, and establishes a one-to-one correspondence between the two volumes. The 3D transformation field deforms the atlas' mesh to generate the subject-specific FE mesh. To preserve the quality of the subject-specific mesh, a diffeomorphic non-rigid registration based on B-spline free-form deformations is used, which guarantees a non-folding and one-to-one transformation. Two evaluations of the method are provided. First, a publicly available CT-database is used to assess the capability to accurately capture the complexity of each subject-specific Lung's geometry. Second, FE tongue meshes are generated for two healthy volunteers and two patients suffering from tongue cancer using MR images. It is shown that the method generates an appropriate representation of the subject-specific geometry while preserving the quality of the FE meshes for subsequent FE analysis. To demonstrate the importance of our method in a clinical context, a subject-specific mesh is used to simulate tongue's biomechanical response to the activation of an important tongue muscle, before and after cancer surgery. PMID:26577253

  3. Automated Generation of Finite-Element Meshes for Aircraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Li, Wu; Robinson, Jay

    2016-01-01

    This paper presents a novel approach for automated generation of fully connected finite-element meshes for all internal structural components and skins of a given wing-body geometry model, controlled by a few conceptual-level structural layout parameters. Internal structural components include spars, ribs, frames, and bulkheads. Structural layout parameters include spar/rib locations in wing chordwise/spanwise direction and frame/bulkhead locations in longitudinal direction. A simple shell thickness optimization problem with two load conditions is used to verify versatility and robustness of the automated meshing process. The automation process is implemented in ModelCenter starting from an OpenVSP geometry and ending with a NASTRAN 200 solution. One subsonic configuration and one supersonic configuration are used for numerical verification. Two different structural layouts are constructed for each configuration and five finite-element meshes of different sizes are generated for each layout. The paper includes various comparisons of solutions of 20 thickness optimization problems, as well as discussions on how the optimal solutions are affected by the stress constraint bound and the initial guess of design variables.

  4. Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh.

    PubMed

    Li, Yusong; LeBoeuf, Eugene J; Basu, P K

    2005-10-01

    A numerical model of the lattice Boltzmann method (LBM) utilizing least-squares finite-element method in space and the Crank-Nicolson method in time is developed. This method is able to solve fluid flow in domains that contain complex or irregular geometric boundaries by using the flexibility and numerical stability of a finite-element method, while employing accurate least-squares optimization. Fourth-order accuracy in space and second-order accuracy in time are derived for a pure advection equation on a uniform mesh; while high stability is implied from a von Neumann linearized stability analysis. Implemented on unstructured mesh through an innovative element-by-element approach, the proposed method requires fewer grid points and less memory compared to traditional LBM. Accurate numerical results are presented through two-dimensional incompressible Poiseuille flow, Couette flow, and flow past a circular cylinder. Finally, the proposed method is applied to estimate the permeability of a randomly generated porous media, which further demonstrates its inherent geometric flexibility. PMID:16383571

  5. Design of an essentially non-oscillatory reconstruction procedure in finite-element type meshes

    NASA Technical Reports Server (NTRS)

    Abgrall, Remi

    1992-01-01

    An essentially non oscillatory reconstruction for functions defined on finite element type meshes is designed. Two related problems are studied: the interpolation of possibly unsmooth multivariate functions on arbitary meshes and the reconstruction of a function from its averages in the control volumes surrounding the nodes of the mesh. Concerning the first problem, the behavior of the highest coefficients of two polynomial interpolations of a function that may admit discontinuities of locally regular curves is studied: the Lagrange interpolation and an approximation such that the mean of the polynomial on any control volume is equal to that of the function to be approximated. This enables the best stencil for the approximation to be chosen. The choice of the smallest possible number of stencils is addressed. Concerning the reconstruction problem, two methods were studied: one based on an adaptation of the so called reconstruction via deconvolution method to irregular meshes and one that lies on the approximation on the mean as defined above. The first method is conservative up to a quadrature formula and the second one is exactly conservative. The two methods have the expected order of accuracy, but the second one is much less expensive than the first one. Some numerical examples are given which demonstrate the efficiency of the reconstruction.

  6. Workflows for generating tetrahedral meshes for finite element simulations on complex geological structures

    NASA Astrophysics Data System (ADS)

    Zehner, Björn; Börner, Jana H.; Görz, Ines; Spitzer, Klaus

    2015-06-01

    Subsurface processing numerical simulations require accurate discretization of the modeling domain such that the geological units are represented correctly. Unstructured tetrahedral grids are particularly flexible in adapting to the shape of geo-bodies and are used in many finite element codes. In order to generate a tetrahedral mesh on a 3D geological model, the tetrahedrons have to belong completely to one geological unit and have to describe geological boundaries by connected facets of tetrahedrons. This is especially complicated at the contact points between several units and for irregular sharp-shaped bodies, especially in case of faulted zones. This study develops, tests and validates three workflows to generate a good tetrahedral mesh from a geological basis model. The tessellation of the model needs (i) to be of good quality to guarantee a stable calculation, (ii) to include certain nodes to apply boundary conditions for the numerical solution, and (iii) support local mesh refinement. As a test case we use the simulation of a transient electromagnetic measurement above a salt diapir. We can show that the suggested workflows lead to a tessellation of the structure on which the simulation can be run robustly. All workflows show advantages and disadvantages with respect to the workload, the control the user has over the resulting mesh and the skills in software handling that are required.

  7. Free Tools and Strategies for the Generation of 3D Finite Element Meshes: Modeling of the Cardiac Structures

    PubMed Central

    Pavarino, E.; Neves, L. A.; Machado, J. M.; de Godoy, M. F.; Shiyou, Y.; Momente, J. C.; Zafalon, G. F. D.; Pinto, A. R.; Valêncio, C. R.

    2013-01-01

    The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM) are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS). The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context. PMID:23762031

  8. ZONE - a finite element mesh generator. [2-D, for CDC 7600

    SciTech Connect

    Burger, M.J.

    1980-03-12

    The ZONE computer program is a finite element mesh generator that produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated for slide lines and to describe pressure boundary conditions. The mesh that is generated can be used as input to any two dimensional as well as any axisymmetrical structure program. The following points are taken up: program concept and characteristics; regions; layers; meridians (offset, circular arc, ellipse); rays; common characterstics - rays and meridians, ZONE input description; output files; examples; and program availability. Also generated is the input to the program PLOT. 15 figures. (RWR)

  9. Finite element formulation of fluctuating hydrodynamics for fluids filled with rigid particles using boundary fitted meshes

    NASA Astrophysics Data System (ADS)

    De Corato, M.; Slot, J. J. M.; Hütter, M.; D'Avino, G.; Maffettone, P. L.; Hulsen, M. A.

    2016-07-01

    In this paper, we present a finite element implementation of fluctuating hydrodynamics with a moving boundary fitted mesh for treating the suspended particles. The thermal fluctuations are incorporated into the continuum equations using the Landau and Lifshitz approach [1]. The proposed implementation fulfills the fluctuation-dissipation theorem exactly at the discrete level. Since we restrict the equations to the creeping flow case, this takes the form of a relation between the diffusion coefficient matrix and friction matrix both at the particle and nodal level of the finite elements. Brownian motion of arbitrarily shaped particles in complex confinements can be considered within the present formulation. A multi-step time integration scheme is developed to correctly capture the drift term required in the stochastic differential equation (SDE) describing the evolution of the positions of the particles. The proposed approach is validated by simulating the Brownian motion of a sphere between two parallel plates and the motion of a spherical particle in a cylindrical cavity. The time integration algorithm and the fluctuating hydrodynamics implementation are then applied to study the diffusion and the equilibrium probability distribution of a confined circle under an external harmonic potential.

  10. Optical Breast Shape Capture and Finite Element Mesh Generation for Electrical Impedance Tomography

    PubMed Central

    Forsyth, J.; Borsic, A.; Halter, R.J.; Hartov, A.; Paulsen, K.D.

    2011-01-01

    X-Ray mammography is the standard for breast cancer screening. The development of alternative imaging modalities is desirable because Mammograms expose patients to ionizing radiation. Electrical Impedance Tomography (EIT) may be used to determine tissue conductivity, a property which is an indicator of cancer presence. EIT is also a low-cost imaging solution and does not involve ionizing radiation. In breast EIT, impedance measurements are made using electrodes placed on the surface of the patient’s breast. The complex conductivity of the volume of the breast is estimated by a reconstruction algorithm. EIT reconstruction is a severely ill-posed inverse problem. As a result, noisy instrumentation and incorrect modelling of the electrodes and domain shape produce significant image artefacts. In this paper, we propose a method that has the potential to reduce these errors by accurately modelling the patient breast shape. A 3D hand-held optical scanner is used to acquire the breast geometry and electrode positions. We develop methods for processing the data from the scanner and producing volume meshes accurately matching the breast surface and electrode locations, which can be used for image reconstruction. We demonstrate this method for a plaster breast phantom and a human subject. Using this approach will allow patient-specific finite element meshes to be generated which has the potential to improve the clinical value of EIT for breast cancer diagnosis. PMID:21646711

  11. Achieving Finite Element Mesh Quality via Optimization of the Jacobian Matrix Norm and Associated Quantities, Part 1 - A Framework for Surface Mesh Optimization

    SciTech Connect

    Knupp, P.M.

    1999-01-18

    Structured mesh quality optimization methods are extended to optimization of unstructured triangular, quadrilateral, and mixed finite element meshes. N"ew interpretations of well-known nodally-bssed objective functions are made possible using matrices and matrix norms. The matrix perspective also suggests several new objective functions. Particularly significant is the interpretation of the Oddy metric and the Smoothness objective functions in terms of the condition number of the metric tensor and Jacobian matrix, respectively. Objective functions are grouped according to dimensionality to form weighted combinations. A simple unconstrained local optimum is computed using a modiiied N-ewton iteration. The optimization approach was implemented in the CUBIT mesh generation code and tested on several problems. Results were compared against several standard element-based quaIity measures to demonstrate that good mesh quality can be achieved with nodally-based objective functions.

  12. A simple adaptive mesh generator for 2-D finite element calculations

    SciTech Connect

    Fernandez, F.A.; Yong, Y.C.; Ettinger, R.D. )

    1993-03-01

    A strategy for adaptive mesh generation is proposed. The method consists of the use of a suitably defined density function', which can either be defined by the user or be calculated from a previous approximate solution, to guide the generation of a new mesh. This new mesh is built starting from a minimal number of triangular elements which are then in several sweeps, repeatedly refined according to the density function. The Delaunay algorithm is used in each stage to keep the shape of the triangles as equilateral as possible.

  13. Automatic construction of patient-specific finite-element mesh of the spine from IVDs and vertebra segmentations

    NASA Astrophysics Data System (ADS)

    Castro-Mateos, Isaac; Pozo, Jose M.; Lazary, Aron; Frangi, Alejandro F.

    2016-03-01

    Computational medicine aims at developing patient-specific models to help physicians in the diagnosis and treatment selection for patients. The spine, and other skeletal structures, is an articulated object, composed of rigid bones (vertebrae) and non-rigid parts (intervertebral discs (IVD), ligaments and muscles). These components are usually extracted from different image modalities, involving patient repositioning. In the case of the spine, these models require the segmentation of IVDs from MR and vertebrae from CT. In the literature, there exists a vast selection of segmentations methods, but there is a lack of approaches to align the vertebrae and IVDs. This paper presents a method to create patient-specific finite element meshes for biomechanical simulations, integrating rigid and non-rigid parts of articulated objects. First, the different parts are aligned in a complete surface model. Vertebrae extracted from CT are rigidly repositioned in between the IVDs, initially using the IVDs location and then refining the alignment using the MR image with a rigid active shape model algorithm. Finally, a mesh morphing algorithm, based on B-splines, is employed to map a template finite-element (volumetric) mesh to the patient-specific surface mesh. This morphing reduces possible misalignments and guarantees the convexity of the model elements. Results show that the accuracy of the method to align vertebrae into MR, together with IVDs, is similar to that of the human observers. Thus, this method is a step forward towards the automation of patient-specific finite element models for biomechanical simulations.

  14. Finite element numerical simulation of 2.5D direct current method based on mesh refinement and recoarsement

    NASA Astrophysics Data System (ADS)

    Zhang, Qian-Jiang; Dai, Shi-Kun; Chen, Long-Wei; Qiang, Jian-Ke; Li, Kun; Zhao, Dong-Dong

    2016-06-01

    To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direct current method, we propose a new mesh refinement and recoarsement method for a two-dimensional point source. We introduce the mesh refinement and mesh recoarsement into the traditional structured mesh subdivision. By refining the horizontal grids, the singularity owing to the point source is minimized and the topography is simulated. By recoarsening the horizontal grids, the number of grid cells is reduced significantly and computational efficiency is improved. Model tests show that the proposed method solves the singularity problem and reduces the number of grid cells by 80% compared to the uniform grid refinement.

  15. Discontinuous finite element solution of the radiation diffusion equation on arbitrary polygonal meshes and locally adapted quadrilateral grids

    SciTech Connect

    Ragusa, Jean C.

    2015-01-01

    In this paper, we propose a piece-wise linear discontinuous (PWLD) finite element discretization of the diffusion equation for arbitrary polygonal meshes. It is based on the standard diffusion form and uses the symmetric interior penalty technique, which yields a symmetric positive definite linear system matrix. A preconditioned conjugate gradient algorithm is employed to solve the linear system. Piece-wise linear approximations also allow a straightforward implementation of local mesh adaptation by allowing unrefined cells to be interpreted as polygons with an increased number of vertices. Several test cases, taken from the literature on the discretization of the radiation diffusion equation, are presented: random, sinusoidal, Shestakov, and Z meshes are used. The last numerical example demonstrates the application of the PWLD discretization to adaptive mesh refinement.

  16. Development of a S{sub n} transport code based on discontinuous finite element method and coarse mesh finite difference formulation

    SciTech Connect

    Lee, D. W.; Joo, H. G.

    2013-07-01

    The methods and performance of a three-dimensional S{sub n} transport code employing the Discontinuous Finite Element Method (DFEM) and the Coarse Mesh Finite Difference (CMFD) formulation are presented. The mesh generator GMSH and a post processing visualization tool Visit are combined with the code for flexible geometry processing and versatile visualization. The CMFD method for DFEM Sn applications is formulated and the performance of the CMFD acceleration of eigenvalue calculations is demonstrated for a simple set of neutron transport problems. (authors)

  17. Anisotropic mesh adaptation for solution of finite element problems using hierarchical edge-based error estimates

    SciTech Connect

    Lipnikov, Konstantin; Agouzal, Abdellatif; Vassilevski, Yuri

    2009-01-01

    We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with N{sub h} triangles, the error is proportional to N{sub h}{sup -1} and the gradient of error is proportional to N{sub h}{sup -1/2} which are optimal asymptotics. The methodology is verified with numerical experiments.

  18. GENSURF: A mesh generator for 3D finite element analysis of surface and corner cracks in finite thickness plates subjected to mode-1 loadings

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1992-01-01

    A computer program that generates three-dimensional (3D) finite element models for cracked 3D solids was written. This computer program, gensurf, uses minimal input data to generate 3D finite element models for isotropic solids with elliptic or part-elliptic cracks. These models can be used with a 3D finite element program called surf3d. This report documents this mesh generator. In this manual the capabilities, limitations, and organization of gensurf are described. The procedures used to develop 3D finite element models and the input for and the output of gensurf are explained. Several examples are included to illustrate the use of this program. Several input data files are included with this manual so that the users can edit these files to conform to their crack configuration and use them with gensurf.

  19. Meshing Preprocessor for the Mesoscopic 3D Finite Element Simulation of 2D and Interlock Fabric Deformation

    NASA Astrophysics Data System (ADS)

    Wendling, A.; Daniel, J. L.; Hivet, G.; Vidal-Sallé, E.; Boisse, P.

    2015-12-01

    Numerical simulation is a powerful tool to predict the mechanical behavior and the feasibility of composite parts. Among the available numerical approaches, as far as woven reinforced composites are concerned, 3D finite element simulation at the mesoscopic scale leads to a good compromise between realism and complexity. At this scale, the fibrous reinforcement is modeled by an interlacement of yarns assumed to be homogeneous that have to be accurately represented. Among the numerous issues induced by these simulations, the first one consists in providing a representative meshed geometrical model of the unit cell at the mesoscopic scale. The second one consists in enabling a fast data input in the finite element software (contacts definition, boundary conditions, elements reorientation, etc.) so as to obtain results within reasonable time. Based on parameterized 3D CAD modeling tool of unit-cells of dry fabrics already developed, this paper presents an efficient strategy which permits an automated meshing of the models with 3D hexahedral elements and to accelerate of several orders of magnitude the simulation data input. Finally, the overall modeling strategy is illustrated by examples of finite element simulation of the mechanical behavior of fabrics.

  20. A two-scale generalized finite element method for fatigue crack propagation simulations utilizing a fixed, coarse hexahedral mesh

    NASA Astrophysics Data System (ADS)

    O'Hara, P.; Hollkamp, J.; Duarte, C. A.; Eason, T.

    2016-01-01

    This paper presents a two-scale extension of the generalized finite element method (GFEM) which allows for static fracture analyses as well as fatigue crack propagation simulations on fixed, coarse hexahedral meshes. The approach is based on the use of specifically-tailored enrichment functions computed on-the-fly through the use of a fine-scale boundary value problem (BVP) defined in the neighborhood of existing mechanically-short cracks. The fine-scale BVP utilizes tetrahedral elements, and thus offers the potential for the use of a highly adapted fine-scale mesh in the regions of crack fronts capable of generating accurate enrichment functions for use in the coarse-scale hexahedral model. In this manner, automated hp-adaptivity which can be used for accurate fracture analyses, is now available for use on coarse, uniform hexahedral meshes without the requirements of irregular meshes and constrained approximations. The two-scale GFEM approach is verified and compared against alternative approaches for static fracture analyses, as well as mixed-mode fatigue crack propagation simulations. The numerical examples demonstrate the ability of the proposed approach to deliver accurate results even in scenarios involving multiple discontinuities or sharp kinks within a single computational element. The proposed approach is also applied to a representative panel model similar in design and complexity to that which may be used in the aerospace community.

  1. Automated quadrilateral surface discretization method and apparatus usable to generate mesh in a finite element analysis system

    DOEpatents

    Blacker, Teddy D.

    1994-01-01

    An automatic quadrilateral surface discretization method and apparatus is provided for automatically discretizing a geometric region without decomposing the region. The automated quadrilateral surface discretization method and apparatus automatically generates a mesh of all quadrilateral elements which is particularly useful in finite element analysis. The generated mesh of all quadrilateral elements is boundary sensitive, orientation insensitive and has few irregular nodes on the boundary. A permanent boundary of the geometric region is input and rows are iteratively layered toward the interior of the geometric region. Also, an exterior permanent boundary and an interior permanent boundary for a geometric region may be input and the rows are iteratively layered inward from the exterior boundary in a first counter clockwise direction while the rows are iteratively layered from the interior permanent boundary toward the exterior of the region in a second clockwise direction. As a result, a high quality mesh for an arbitrary geometry may be generated with a technique that is robust and fast for complex geometric regions and extreme mesh gradations.

  2. Rate sensitive continuum damage models and mesh dependence in finite element analyses.

    PubMed

    Ljustina, Goran; Fagerström, Martin; Larsson, Ragnar

    2014-01-01

    The experiences from orthogonal machining simulations show that the Johnson-Cook (JC) dynamic failure model exhibits significant element size dependence. Such mesh dependence is a direct consequence of the utilization of local damage models. The current contribution is an investigation of the extent of the possible pathological mesh dependence. A comparison of the resulting JC model behavior combined with two types of damage evolution is considered. The first damage model is the JC dynamic failure model, where the development of the "damage" does not affect the response until the critical state is reached. The second one is a continuum damage model, where the damage variable is affecting the material response continuously during the deformation. Both the plasticity and the damage models are rate dependent, and the damage evolutions for both models are defined as a postprocessing of the effective stress response. The investigation is conducted for a series of 2D shear tests utilizing different FE representations of the plane strain plate with pearlite material properties. The results show for both damage models, using realistic pearlite material parameters, that similar extent of the mesh dependence is obtained and that the possible viscous regularization effects are absent in the current investigation. PMID:25530994

  3. Rate Sensitive Continuum Damage Models and Mesh Dependence in Finite Element Analyses

    PubMed Central

    Fagerström, Martin

    2014-01-01

    The experiences from orthogonal machining simulations show that the Johnson-Cook (JC) dynamic failure model exhibits significant element size dependence. Such mesh dependence is a direct consequence of the utilization of local damage models. The current contribution is an investigation of the extent of the possible pathological mesh dependence. A comparison of the resulting JC model behavior combined with two types of damage evolution is considered. The first damage model is the JC dynamic failure model, where the development of the “damage” does not affect the response until the critical state is reached. The second one is a continuum damage model, where the damage variable is affecting the material response continuously during the deformation. Both the plasticity and the damage models are rate dependent, and the damage evolutions for both models are defined as a postprocessing of the effective stress response. The investigation is conducted for a series of 2D shear tests utilizing different FE representations of the plane strain plate with pearlite material properties. The results show for both damage models, using realistic pearlite material parameters, that similar extent of the mesh dependence is obtained and that the possible viscous regularization effects are absent in the current investigation. PMID:25530994

  4. Software Library for Storing and Retrieving Mesh and Results of Finite Element

    Energy Science and Technology Software Center (ESTSC)

    1997-07-07

    EXOII is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code transfer. An EXOII data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface (API).

  5. Procedure for Tooth Contact Analysis of a Face Gear Meshing With a Spur Gear Using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Bibel, George; Lewicki, David G. (Technical Monitor)

    2002-01-01

    A procedure was developed to perform tooth contact analysis between a face gear meshing with a spur pinion using finite element analysis. The face gear surface points from a previous analysis were used to create a connected tooth solid model without gaps or overlaps. The face gear surface points were used to create a five tooth face gear Patran model (with rim) using Patran PCL commands. These commands were saved in a series of session files suitable for Patran input. A four tooth spur gear that meshes with the face gear was designed and constructed with Patran PCL commands. These commands were also saved in a session files suitable for Patran input. The orientation of the spur gear required for meshing with the face gear was determined. The required rotations and translations are described and built into the session file for the spur gear. The Abaqus commands for three-dimensional meshing were determined and verified for a simplified model containing one spur tooth and one face gear tooth. The boundary conditions, loads, and weak spring constraints were determined to make the simplified model work. The load steps and load increments to establish contact and obtain a realistic load was determined for the simplified two tooth model. Contact patterns give some insight into required mesh density. Building the two gears in two different local coordinate systems and rotating the local coordinate systems was verified as an easy way to roll the gearset through mesh. Due to limitation of swap space, disk space and time constraints of the summer period, the larger model was not completed.

  6. Diffusion Synthetic Acceleration for High-Order Discontinuous Finite Element SN Transport Schemes and Application to Locally Refined Unstructured Meshes

    SciTech Connect

    Yaqi Wang; Jean C. Ragusa

    2011-10-01

    Diffusion synthetic acceleration (DSA) schemes compatible with adaptive mesh refinement (AMR) grids are derived for the SN transport equations discretized using high-order discontinuous finite elements. These schemes are directly obtained from the discretized transport equations by assuming a linear dependence in angle of the angular flux along with an exact Fick's law and, therefore, are categorized as partially consistent. These schemes are akin to the symmetric interior penalty technique applied to elliptic problems and are all based on a second-order discontinuous finite element discretization of a diffusion equation (as opposed to a mixed or P1 formulation). Therefore, they only have the scalar flux as unknowns. A Fourier analysis has been carried out to determine the convergence properties of the three proposed DSA schemes for various cell optical thicknesses and aspect ratios. Out of the three DSA schemes derived, the modified interior penalty (MIP) scheme is stable and effective for realistic problems, even with distorted elements, but loses effectiveness for some highly heterogeneous configurations. The MIP scheme is also symmetric positive definite and can be solved efficiently with a preconditioned conjugate gradient method. Its implementation in an AMR SN transport code has been performed for both source iteration and GMRes-based transport solves, with polynomial orders up to 4. Numerical results are provided and show good agreement with the Fourier analysis results. Results on AMR grids demonstrate that the cost of DSA can be kept low on locally refined meshes.

  7. The discrete maximum principle for finite element approximations of anisotropic diffusion problems on arbitrary meshes

    SciTech Connect

    Svyatskiy, Daniil; Shashkov, Mikhail; Kuzmin, D

    2008-01-01

    A new approach to the design of constrained finite element approximations to second-order elliptic problems is introduced. This approach guarantees that the finite element solution satisfies the discrete maximum principle (DMP). To enforce these monotonicity constrains the sufficient conditions for elements of the stiffness matrix are formulated. An algebraic splitting of the stiffness matrix is employed to separate the contributions of diffusive and antidiffusive numerical fluxes, respectively. In order to prevent the formation of spurious undershoots and overshoots, a symmetric slope limiter is designed for the antidiffusive part. The corresponding upper and lower bounds are defined using an estimate of the steepest gradient in terms of the maximum and minimum solution values at surrounding nodes. The recovery of nodal gradients is performed by means of a lumped-mass L{sub 2} projection. The proposed slope limiting strategy preserves the consistency of the underlying discrete problem and the structure of the stiffness matrix (symmetry, zero row and column sums). A positivity-preserving defect correction scheme is devised for the nonlinear algebraic system to be solved. Numerical results and a grid convergence study are presented for a number of anisotropic diffusion problems in two space dimensions.

  8. A parallel geometric multigrid method for finite elements on octree meshes

    SciTech Connect

    Sampath, Rahul S; Biros, George

    2010-01-01

    In this article, we present a parallel geometric multigrid algorithm for solving variable-coefficient elliptic partial differential equations on the unit box (with Dirichlet or Neumann boundary conditions) using highly nonuniform, octree-based, conforming finite element discretizations. Our octrees are 2:1 balanced, that is, we allow no more than one octree-level difference between octants that share a face, edge, or vertex. We describe a parallel algorithm whose input is an arbitrary 2:1 balanced fine-grid octree and whose output is a set of coarser 2:1 balanced octrees that are used in the multigrid scheme. Also, we derive matrix-free schemes for the discretized finite element operators and the intergrid transfer operations. The overall scheme is second-order accurate for sufficiently smooth right-hand sides and material properties; its complexity for nearly uniform trees is {Omicron}(N/n{sub p} log N/n{sub p}) + {Omicron}(n{sub p} log n{sub p}), where N is the number of octree nodes and n{sub p} is the number of processors. Our implementation uses the Message Passing Interface standard. We present numerical experiments for the Laplace and Navier (linear elasticity) operators that demonstrate the scalability of our method. Our largest run was a highly nonuniform, 8-billion-unknown, elasticity calculation using 32,000 processors on the Teragrid system, 'Ranger,' at the Texas Advanced Computing Center. Our implementation is publically available in the Dendro library, which is built on top of the PETSc library from Argonne National Laboratory.

  9. Mesh Smoothing Algorithm Applied to a Finite Element Model of the Brain for Improved Brain-Skull Interface.

    PubMed

    Kelley, Mireille E; Miller, Logan E; Urban, Jillian E; Stitzel, Joel D

    2015-01-01

    The brain-skull interface plays an important role in the strain and pressure response of the brain due to impact. In this study, a finite element (FE) model was developed from a brain atlas, representing an adult brain, by converting each 1mm isotropic voxel into a single element of the same size using a custom code developed in MATLAB. This model includes the brain (combined cerebrum and cerebellum), cerebrospinal fluid (CSF), ventricles, and a rigid skull. A voxel-based approach to develop a FE model causes the outer surface of each part to be stair-stepped, which may affect the stress and strain measurements at interfaces between parts. To improve the interaction between the skull, CSF, and brain surfaces, a previously developed mesh smoothing algorithm based on a Laplacian non-shrinking smoothing algorithm was applied to the FE model. This algorithm not only applies smoothing to the surface of the model, but also to the interfaces between the brain, CSF, and skull, while preserving volume and element quality. Warpage, jacobian, aspect ratio, and skew were evaluated and reveal that >99% of the elements retain good element quality. Future work includes implementation of contact definitions to accurately represent the brain-skull interface and to ultimately better understand and predict head injury. PMID:25996716

  10. Adaptation of an unstructured-mesh, finite-element ocean model to the simulation of ocean circulation beneath ice shelves

    NASA Astrophysics Data System (ADS)

    Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian

    2013-07-01

    Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.

  11. Users manual for AUTOMESH-2D: A program of automatic mesh generation for two-dimensional scattering analysis by the finite element method

    NASA Technical Reports Server (NTRS)

    Hua, Chongyu; Volakis, John L.

    1990-01-01

    AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.

  12. Color postprocessing for 3-dimensional finite element mesh quality evaluation and evolving graphical workstation

    NASA Technical Reports Server (NTRS)

    Panthaki, Malcolm J.

    1987-01-01

    Three general tasks on general-purpose, interactive color graphics postprocessing for three-dimensional computational mechanics were accomplished. First, the existing program (POSTPRO3D) is ported to a high-resolution device. In the course of this transfer, numerous enhancements are implemented in the program. The performance of the hardware was evaluated from the point of view of engineering postprocessing, and the characteristics of future hardware were discussed. Second, interactive graphical tools implemented to facilitate qualitative mesh evaluation from a single analysis. The literature was surveyed and a bibliography compiled. Qualitative mesh sensors were examined, and the use of two-dimensional plots of unaveraged responses on the surface of three-dimensional continua was emphasized in an interactive color raster graphics environment. Finally, a postprocessing environment was designed for state-of-the-art workstation technology. Modularity, personalization of the environment, integration of the engineering design processes, and the development and use of high-level graphics tools are some of the features of the intended environment.

  13. Parallel Finite Element Electron-Photon Transport Analysis on 2-D Unstructured Mesh

    SciTech Connect

    Drumm, C.R.

    1999-01-01

    A computer code has been developed to solve the linear Boltzmann transport equation on an unstructured mesh of triangles, from a Pro/E model. An arbitriwy arrangement of distinct material regions is allowed. Energy dependence is handled by solving over an arbitrary number of discrete energy groups. Angular de- pendence is treated by Legendre-polynomial expansion of the particle cross sections and a discrete ordinates treatment of the particle fluence. The resulting linear system is solved in parallel with a preconditioned conjugate-gradients method. The solution method is unique, in that the space-angle dependence is solved si- multaneously, eliminating the need for the usual inner iterations. Electron cross sections are obtained from a Goudsrnit-Saunderson modifed version of the CEPXS code. A one-dimensional version of the code has also been develop@ for testing and development purposes.

  14. A direct stiffness-modification approach to attaining linear consistency between incompatible finite element meshes

    SciTech Connect

    DRIESSEN,BRIAN

    2000-02-17

    In this work, a method is proposed for modifying the standard master-slave stiffness matrix so that linear consistency across the interface of the master and slave meshes is achieved. The existence of such a local stiffness modification is implied by the work of [Dohrmann, et al, to appear]. The present work aims at achieving the same linear consistency through a different method of stiffness modification that is based on simply ensuring zero residual force at the interior interface nodes for all non-zero-stress linear displacement fields and zero residual force at all interface nodes for all rigid-body linear displacement fields. These zero residuals ensure that the local stiffness modification results in an interface that passes the patch test. Numerical examples herein demonstrate that the maximum stress error at the interface goes to zero with the proposed method while it does not for the standard master-slave method.

  15. A Mesh Refinement Study on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Spellman, Regina L.

    2006-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0-in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at four discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density.

  16. The Influence of Mesh Density on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.

    2004-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0- in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA version 960 for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at five discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density. As a final comparison, the model with a fine panel and fine foam mesh was executed with slightly different material properties for the RCC. For this model, the average degraded properties of the RCC were replaced with the maximum degraded properties. Similar comparisons of panel and foam responses were made for the average and maximum degraded models.

  17. A unified monolithic approach for multi-fluid flows and fluid-structure interaction using the Particle Finite Element Method with fixed mesh

    NASA Astrophysics Data System (ADS)

    Becker, P.; Idelsohn, S. R.; Oñate, E.

    2015-06-01

    This paper describes a strategy to solve multi-fluid and fluid-structure interaction (FSI) problems using Lagrangian particles combined with a fixed finite element (FE) mesh. Our approach is an extension of the fluid-only PFEM-2 (Idelsohn et al., Eng Comput 30(2):2-2, 2013; Idelsohn et al., J Numer Methods Fluids, 2014) which uses explicit integration over the streamlines to improve accuracy. As a result, the convective term does not appear in the set of equations solved on the fixed mesh. Enrichments in the pressure field are used to improve the description of the interface between phases.

  18. Achieving Finite Element Mesh Quality via Optimization of the Jacobian Matrix Norm and Associated Quantities, Part II - A Framework for Volume Mesh Optimization and the Condition Number of the Jacobian Matrix

    SciTech Connect

    Knupp, P.M.

    1999-03-26

    Three-dimensional unstructured tetrahedral and hexahedral finite element mesh optimization is studied from a theoretical perspective and by computer experiments to determine what objective functions are most effective in attaining valid, high quality meshes. The approach uses matrices and matrix norms to extend the work in Part I to build suitable 3D objective functions. Because certain matrix norm identities which hold for 2 x 2 matrices do not hold for 3 x 3 matrices. significant differences arise between surface and volume mesh optimization objective functions. It is shown, for example, that the equivalence in two-dimensions of the Smoothness and Condition Number of the Jacobian matrix objective functions does not extend to three dimensions and further. that the equivalence of the Oddy and Condition Number of the Metric Tensor objective functions in two-dimensions also fails to extend to three-dimensions. Matrix norm identities are used to systematically construct dimensionally homogeneous groups of objective functions. The concept of an ideal minimizing matrix is introduced for both hexahedral and tetrahedral elements. Non-dimensional objective functions having barriers are emphasized as the most logical choice for mesh optimization. The performance of a number of objective functions in improving mesh quality was assessed on a suite of realistic test problems, focusing particularly on all-hexahedral ''whisker-weaved'' meshes. Performance is investigated on both structured and unstructured meshes and on both hexahedral and tetrahedral meshes. Although several objective functions are competitive, the condition number objective function is particularly attractive. The objective functions are closely related to mesh quality measures. To illustrate, it is shown that the condition number metric can be viewed as a new tetrahedral element quality measure.

  19. Toward automatic finite element analysis

    NASA Technical Reports Server (NTRS)

    Kela, Ajay; Perucchio, Renato; Voelcker, Herbert

    1987-01-01

    Two problems must be solved if the finite element method is to become a reliable and affordable blackbox engineering tool. Finite element meshes must be generated automatically from computer aided design databases and mesh analysis must be made self-adaptive. The experimental system described solves both problems in 2-D through spatial and analytical substructuring techniques that are now being extended into 3-D.

  20. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.

    PubMed

    Väänänen, Sami P; Grassi, Lorenzo; Flivik, Gunnar; Jurvelin, Jukka S; Isaksson, Hanna

    2015-08-01

    Areal bone mineral density (aBMD), as measured by dual-energy X-ray absorptiometry (DXA), predicts hip fracture risk only moderately. Simulation of bone mechanics based on DXA imaging of the proximal femur, may help to improve the prediction accuracy. Therefore, we collected three (1-3) image sets, including CT images and DXA images of 34 proximal cadaver femurs (set 1, including 30 males, 4 females), 35 clinical patient CT images of the hip (set 2, including 27 males, 8 females) and both CT and DXA images of clinical patients (set 3, including 12 female patients). All CT images were segmented manually and landmarks were placed on both femurs and pelvises. Two separate statistical appearance models (SAMs) were built using the CT images of the femurs and pelvises in sets 1 and 2, respectively. The 3D shape of the femur was reconstructed from the DXA image by matching the SAMs with the DXA images. The orientation and modes of variation of the SAMs were adjusted to minimize the sum of the absolute differences between the projection of the SAMs and a DXA image. The mesh quality and the location of the SAMs with respect to the manually placed control points on the DXA image were used as additional constraints. Then, finite element (FE) models were built from the reconstructed shapes. Mean point-to-surface distance between the reconstructed shape and CT image was 1.0 mm for cadaver femurs in set 1 (leave-one-out test) and 1.4 mm for clinical subjects in set 3. The reconstructed volumetric BMD showed a mean absolute difference of 140 and 185 mg/cm(3) for set 1 and set 3 respectively. The generation of the SAM and the limitation of using only one 2D image were found to be the most significant sources of errors in the shape reconstruction. The noise in the DXA images had only small effect on the accuracy of the shape reconstruction. DXA-based FE simulation was able to explain 85% of the CT-predicted strength of the femur in stance loading. The present method can be used to

  1. Three-dimensional modeling of a thermal dendrite using the phase field method with automatic anisotropic and unstructured adaptive finite element meshing

    NASA Astrophysics Data System (ADS)

    Sarkis, C.; Silva, L.; Gandin, Ch-A.; Plapp, M.

    2016-03-01

    Dendritic growth is computed with automatic adaptation of an anisotropic and unstructured finite element mesh. The energy conservation equation is formulated for solid and liquid phases considering an interface balance that includes the Gibbs-Thomson effect. An equation for a diffuse interface is also developed by considering a phase field function with constant negative value in the liquid and constant positive value in the solid. Unknowns are the phase field function and a dimensionless temperature, as proposed by [1]. Linear finite element interpolation is used for both variables, and discretization stabilization techniques ensure convergence towards a correct non-oscillating solution. In order to perform quantitative computations of dendritic growth on a large domain, two additional numerical ingredients are necessary: automatic anisotropic unstructured adaptive meshing [2,[3] and parallel implementations [4], both made available with the numerical platform used (CimLib) based on C++ developments. Mesh adaptation is found to greatly reduce the number of degrees of freedom. Results of phase field simulations for dendritic solidification of a pure material in two and three dimensions are shown and compared with reference work [1]. Discussion on algorithm details and the CPU time will be outlined.

  2. ANSYS duplicate finite-element checker routine

    NASA Technical Reports Server (NTRS)

    Ortega, R.

    1995-01-01

    An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.

  3. Finite Element Analysis Code

    Energy Science and Technology Software Center (ESTSC)

    2006-03-08

    MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operationmore » of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.« less

  4. Finite Element Analysis Code

    Energy Science and Technology Software Center (ESTSC)

    2005-05-07

    CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases intomore » a single database which makes it easier to postprocess the results data.« less

  5. Simulation of fatigue crack closure behavior under variable-amplitude loading by a 2D finite element analysis based on the most appropriate mesh size concept

    SciTech Connect

    Park, S.J.; Song, J.H.

    1999-07-01

    A two-dimensional elastic-plastic finite element analysis is performed for plane stress conditions with 4-node isoparametric elements to investigate the closure behavior under various variable-amplitude loading, i.e., single overloading, Hi-Lo block loading, and narrow- and wide-band random loading. The closure behavior under single overloading and Hi-Lo block loading can be well simulated by applying the concept of the most appropriate mesh size that will provide numerical results consistent with experimental data under constant-amplitude loading. It is found that the crack opening load under random loading may be predicted approximately by replacing the complicated random load history with the appropriate equivalent, simplified variable load history.

  6. Study on the Influence of the Refinement of a 3-D Finite Element Mesh in Springback Evaluation of Plane-Strain Channel Sections

    NASA Astrophysics Data System (ADS)

    Padmanabhan, R.; Oliveira, M. C.; Baptista, A. J.; Alves, J. L.; Menezes, L. F.

    2007-05-01

    Springback phenomenon associated with the elastic properties of sheet metals makes the design of forming dies a complex task. Thus, to develop consistent algorithms for springback compensation an accurate prediction of the amount of springback is mandatory. The numerical simulation using the finite element method is consensually the only feasible method to predict springback. However, springback prediction is a very complicated task and highly sensitive to various numerical parameters of finite elements (FE), such as: type, order, integration scheme, shape and size, as well the time integration formulae and the unloading strategy. All these numerical parameters make numerical simulation of springback more sensitive to numerical tolerances than the forming operation. In case of an unconstrained cylindrical bending, the in-plane to thickness FE size ratio is more relevant than the number of FE layers through-thickness, for the numerical prediction of final stress and strain states, variables of paramount importance for an accurate springback prediction. The aim of the present work is to evaluate the influence of the refinement of a 3-D FE mesh, namely the in-plane mesh refinement and the number of through-thickness FE layers, in springback prediction. The selected example corresponds to the first stage of the "Numisheet'05 Benchmark♯3", which consists basically in the sheet forming of a channel section in an industrial-scale channel draw die. The physical drawbeads are accurately taken into account in the numerical model in order to accurately reproduce its influence during the forming process simulation. FEM simulations were carried out with the in-house code DD3IMP. Solid finite elements were used. They are recommended for accuracy in FE springback simulation when the ratio between the tool radius and blank thickness is lower than 5-6. In the selected example the drawbead radius is 4.0 mm. The influence of the FE mesh refinement in springback prediction is

  7. The finite cell method for polygonal meshes: poly-FCM

    NASA Astrophysics Data System (ADS)

    Duczek, Sascha; Gabbert, Ulrich

    2016-06-01

    In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and the notion of generalized barycentric coordinates is introduced. We show that the resulting polygonal (poly-)FCM approach retains the optimal rates of convergence if and only if the geometry of the structure is adequately resolved. The main advantage of the proposed method is that it inherits the ability of polygonal finite elements for local mesh refinement and for the construction of transition elements (e.g. conforming quadtree meshes without hanging nodes). These properties along with the performance of the poly-FCM are illustrated by means of several benchmark problems for both static and dynamic cases.

  8. Numerical investigation of the factors affecting interfacial stresses in an MOD restored tooth by auto-meshed finite element method.

    PubMed

    Lin, C L; Chang, C H; Wang, C H; Ko, C C; Lee, H E

    2001-06-01

    Many researches have addressed the high correlation between the fracture of restored teeth and the prepared cavity geometry. In addition, concerns about bonding versus debonding dental materials from cavity walls and different occlusal force conditions could also alter the mechanical responses in a restored tooth. This study employed an automatic mesh procedure to investigate the mechanical interactions between different interfacial conditions and cavity parameters such as pulpal wall depth under different chewing functions. The results indicated that when occlusal force was applied directly on the tooth, it could increase unfavourable stress dramatically. When interfacial fixation was simulated as the contact condition between the tooth tissue and restorative material, it might increase the fracture potential exponentially compared with the bonded interface. For pulpal wall depth analyses, greater risks of fracture for the remaining tooth were observed in deeper cavity of mesio-occlusal-distal (MOD) restorations and the existence of a pulpal wall is essential even it is only 1 mm above the gingival wall. PMID:11422677

  9. 3-D Finite Element Code Postprocessor

    Energy Science and Technology Software Center (ESTSC)

    1996-07-15

    TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.

  10. Finite elements: Theory and application

    NASA Technical Reports Server (NTRS)

    Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)

    1988-01-01

    Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.

  11. Studies of finite element analysis of composite material structures

    NASA Technical Reports Server (NTRS)

    Douglas, D. O.; Holzmacher, D. E.; Lane, Z. C.; Thornton, E. A.

    1975-01-01

    Research in the area of finite element analysis is summarized. Topics discussed include finite element analysis of a picture frame shear test, BANSAP (a bandwidth reduction program for SAP IV), FEMESH (a finite element mesh generation program based on isoparametric zones), and finite element analysis of a composite bolted joint specimens.

  12. The NESSUS finite element code

    NASA Technical Reports Server (NTRS)

    Dias, J. B.; Nagiegaal, J. C.; Nakazawa, S.

    1987-01-01

    The objective of this development is to provide a new analysis tool which integrates the structural modeling versatility of a modern finite element code with the latest advances in the area of probabilistic modeling and structural reliability. Version 2.0 of the NESSUS finite element code was released last February, and is currently being exercised on a set of problems which are representative of typical Space Shuttle Main Engine (SSME) applications. NESSUS 2.0 allows linear elastostatic and eigenvalue analysis of structures with uncertain geometry, material properties and boundary conditions, which are subjected to a random mechanical and thermal loading environment. The NESSUS finite element code is a key component in a broader software system consisting of five major modules. NESSUS/EXPERT is an expert system under development at Southwest Research Institute, with the objective of centralizing all component-specific knowledge useful for conducting probabilistic analysis of typical Space Shuttle Main Engine (SSME) components. NESSUS/FEM contains the finite element code used for the structural analysis and parameter sensitivity evaluation of these components. The task of parametrizing a finite element mesh in terms of the random variables present is facilitated with the use of the probabilistic data preprocessor in NESSUS/PRE. An external database file is used for managing the bulk of the data generated by NESSUS/FEM.

  13. Refining quadrilateral and brick element meshes

    SciTech Connect

    Schneiders, R.; Debye, J.

    1995-12-31

    We consider the problem of refining unstructured quadrilateral and brick element meshes. We present an algorithm which is a generalization of an algorithm developed by Cheng et. al. for structured quadrilateral element meshes. The problem is solved for the two-dimensional case. Concerning three dimensions we present a solution for some special cases and a general solution that introduces tetrahedral and pyramidal transition elements.

  14. Visualization of higher order finite elements.

    SciTech Connect

    Thompson, David C.; Pebay, Philippe Pierre; Crawford, Richard H.; Khardekar, Rahul Vinay

    2004-04-01

    Finite element meshes are used to approximate the solution to some differential equation when no exact solution exists. A finite element mesh consists of many small (but finite, not infinitesimal or differential) regions of space that partition the problem domain, {Omega}. Each region, or element, or cell has an associated polynomial map, {Phi}, that converts the coordinates of any point, x = ( x y z ), in the element into another value, f(x), that is an approximate solution to the differential equation, as in Figure 1(a). This representation works quite well for axis-aligned regions of space, but when there are curved boundaries on the problem domain, {Omega}, it becomes algorithmically much more difficult to define {Phi} in terms of x. Rather, we define an archetypal element in a new coordinate space, r = ( r s t ), which has a simple, axis-aligned boundary (see Figure 1(b)) and place two maps onto our archetypal element:

  15. Finite element modeling of the human pelvis

    SciTech Connect

    Carlson, B.

    1995-11-01

    A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.

  16. Automatic finite element generators

    NASA Technical Reports Server (NTRS)

    Wang, P. S.

    1984-01-01

    The design and implementation of a software system for generating finite elements and related computations are described. Exact symbolic computational techniques are employed to derive strain-displacement matrices and element stiffness matrices. Methods for dealing with the excessive growth of symbolic expressions are discussed. Automatic FORTRAN code generation is described with emphasis on improving the efficiency of the resultant code.

  17. A two dimensional interface element for coupling of independently modeled three dimensional finite element meshes and extensions to dynamic and non-linear regimes

    NASA Technical Reports Server (NTRS)

    Aminpour, Mohammad

    1995-01-01

    The work reported here pertains only to the first year of research for a three year proposal period. As a prelude to this two dimensional interface element, the one dimensional element was tested and errors were discovered in the code for built-up structures and curved interfaces. These errors were corrected and the benchmark Boeing composite crown panel was analyzed successfully. A study of various splines led to the conclusion that cubic B-splines best suit this interface element application. A least squares approach combined with cubic B-splines was constructed to make a smooth function from the noisy data obtained with random error in the coordinate data points of the Boeing crown panel analysis. Preliminary investigations for the formulation of discontinuous 2-D shell and 3-D solid elements were conducted.

  18. A coarse-mesh nodal method-diffusive-mesh finite difference method

    SciTech Connect

    Joo, H.; Nichols, W.R.

    1994-05-01

    Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper.

  19. NON-CONFORMING FINITE ELEMENTS; MESH GENERATION, ADAPTIVITY AND RELATED ALGEBRAIC MULTIGRID AND DOMAIN DECOMPOSITION METHODS IN MASSIVELY PARALLEL COMPUTING ENVIRONMENT

    SciTech Connect

    Lazarov, R; Pasciak, J; Jones, J

    2002-02-01

    Construction, analysis and numerical testing of efficient solution techniques for solving elliptic PDEs that allow for parallel implementation have been the focus of the research. A number of discretization and solution methods for solving second order elliptic problems that include mortar and penalty approximations and domain decomposition methods for finite elements and finite volumes have been investigated and analyzed. Techniques for parallel domain decomposition algorithms in the framework of PETC and HYPRE have been studied and tested. Hierarchical parallel grid refinement and adaptive solution methods have been implemented and tested on various model problems. A parallel code implementing the mortar method with algebraically constructed multiplier spaces was developed.

  20. One-node coarse-mesh finite difference algorithm for fine-mesh finite difference operator

    SciTech Connect

    Shin, H.C.; Kim, Y.H.; Kim, Y.B.

    1999-07-01

    This paper is concerned with speeding up the convergence of the fine-mesh finite difference (FMFD) method for the neutron diffusion problem. The basic idea of the new algorithm originates from the two-node coarse-mesh finite difference (CMFD) schemes for nodal methods, where the low-order CMFD operator is iteratively corrected through a global-local iteration so that the final solution of the CMFD problem is equivalent to the high-order nodal solution. Unlike conventional CMFD methods, the new CMFD algorithm is based on one-node local problems, and the high-order solution over the local problem is determined by using the FMFD operator. Nonlinear coupling of CMFD and FMFD operators was previously studied by Aragones and Ahnert. But, in their work, the coarse-mesh operator is corrected by the so-called flux discontinuity factors, and the local problem is defined differently in the sense of boundary conditions and the core dissection scheme.

  1. A continuum mechanics-based framework for boundary and finite element mesh optimization in two dimensions for application in excavation analysis

    NASA Astrophysics Data System (ADS)

    Zsáki, Attila M.; Curran, John H.

    2005-04-01

    The determination of the optimum excavation sequences in mining and civil engineering using numerical stress analysis procedures requires repeated solution of large models. Often such models contain much more complexity and geometric detail than required to arrive at an accurate stress analysis solution, especially considering our limited knowledge of rock mass properties. This paper develops an automated framework for estimating the effects of excavations at a region of interest, and optimizing the geometry used for stress analysis. It eliminates or simplifies the excavations in a model while maintaining the accuracy of analysis results. The framework can equally be applied to two-dimensional boundary and finite element models.The framework will have the largest impact for non-linear finite element analysis. It can significantly reduce computational times for such analysis by simplifying models. Error estimators are used in the framework to assess accuracy. The advantages of applying the framework are demonstrated on an excavation-sequencing scenario.

  2. Generating meshes for finite-difference analysis using a solid modeler

    NASA Astrophysics Data System (ADS)

    Laguna, G. W.; White, W. T.; Cabral, B. K.

    1987-09-01

    One tool used by the Engineering Research Division of LLNL to help analyze the behavior of electronic systems in hostile environments is 3D finite-difference time-domain (FDTD) computation. FDTD codes solve Maxwell's equations,the differential equations of electromagnetism, on a uniform lattice of points. It is this uniform lattice, or mesh, that distinguishes finite-difference codes from other codes. The simple mesh makes FDTD codes computationally more efficient than other codes, which enables them to run larger problems and to run faster (up to thirty times faster than finite-element codes, for example). Therefore, within the Engineering Department at LLNL, Electronics Engineering (EE) has initiated a project to develop a mesh generator that will provide meshes suitable for FDTD analysis. This report describes the results of the first year of EE's FDTD Mesh Generation Project. During this year a preliminary version of an automated mesh generator was built and used to create a mesh of an object of interest to the High-Power Microwave Program, namely an electrically detonatable land mine. The code was verified by meshing basic solids such as spheres and cylinders. Because of the design of the code, there is no software limitation to the size of meshes that can be accommodated. The algorithm with a mesh space of approximately 500,000 cells has been demonstrated. The mesh generator can detect certain objects with walls that are thinner than the width of a cell. The code has internal graphics for viewing objects as they appear prior to being converted to a finite-difference representation. Additionally, via data files, the code is coupled to two external graphics packages for visually checking the meshes, namely TAURUS on the Cray and a new code, IMAGE, on the Silicon Graphics IRIS workstation.

  3. Generating meshes for finite-difference analysis using a solid modeler

    SciTech Connect

    Laguna, G.W.; White, W.T.; Cabral, B.K.

    1987-09-01

    One tool used by the Engineering Research Division of LLNL to help analyze the behavior of electronic systems in hostile environments is 3D finite-difference time-domain (FDTD) computation. FDTD codes solve Maxwell's equations,the differential equations of electromagnetism, on a uniform lattice of points. It is this uniform lattice, or ''mesh,'' that distinguishes finite-difference codes from other codes. The simple mesh makes FDTD codes computationally more efficient than other codes, which enables them to run larger problems and to run faster (up to thirty times faster than finite-element codes, for example). Therefore, within the Engineering Department at LLNL, Electronics Engineering (EE) has initiated a project to develop a mesh generator that will provide meshes suitable for FDTD analysis. This report describes the results of the first year of EE's FDTD Mesh Generation Project. During this year a preliminary version of an automated mesh generator was built and used to create a mesh of an object of interest to the High-Power Microwave Program, namely an electrically detonatable land mine. The code was verified by meshing basic solids such as spheres and cylinders. Because of the design of the code, there is no software limitation to the size of meshes that can be accommodated. The algorithm with a mesh space of approximately 500,000 cells has been demonstrated. The mesh generator can detect certain objects with walls that are thinner than the width of a cell. The code has internal graphics for viewing objects as they appear prior to being converted to a finite-difference representation. Additionally, via data files, the code is coupled to two external graphics packages for visually checking the meshes, namely TAURUS on the Cray and a new code, IMAGE, on the Silicon Graphics IRIS workstation.

  4. Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation

    NASA Technical Reports Server (NTRS)

    Cwik, T.; Lou, J.; Katz, D.

    1997-01-01

    In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.

  5. Overcoming element erosion limitations within Lagrangian finite element codes

    NASA Astrophysics Data System (ADS)

    Vignjevic, Rade; Hughes, Kevin; Walker, Andrew; Taylor, Emma A.

    2001-10-01

    Lagrangian finite element methods have been used extensively in the past to study the non-linear transient behaviour of materials, ranging from crash test of cars to simulating bird strikes on planes.... However, as this type of space discretization does not allow for motion of the material through the mesh when modelling extremely large deformations, the mesh becomes highly distorted. This paper describes some limitations and applicability of this type of analysis for high velocity impacts. A method for dealing with this problem is by the erosion of elements is proposed where the main issue is the deformation of element failure strains. Results were compared with empirical perforation results and were found to be in good agreement. The results were then used to simulate high velocity impacts upon a multi-layered aluminium target, in order to predict a ballistic limit curve. LS-DYNA3D was used as the FE solver for all simulations. Meshes were generated with Truegrid.

  6. Finite Element Analysis Code

    Energy Science and Technology Software Center (ESTSC)

    2005-06-26

    Exotxt is an analysis code that reads finite element results data stored in an exodusII file and generates a file in a structured text format. The text file can be edited or modified via a number of text formatting tools. Exotxt is used by analysis to translate data from the binary exodusII format into a structured text format which can then be edited or modified and then either translated back to exodusII format or tomore » another format.« less

  7. Propped Cantilever Mesh Convergence Study Using Hexahedral Elements

    SciTech Connect

    Chi-Fung Tso; David Molitoris; Spencer Snow; Alex Norman

    2001-10-01

    The Task Group on Computational Modelling for Explicit Analyses in the ASME Boiler and Pressure Vessel Code committee was set up in August 2008 to develop a quantitative finite element modelling guidance document for the explicit dynamic analysis of energy-limited events. This guidance document will be referenced in the ASME Boiler and Pressure Vessel Code Section III Division 3 and NRC Regulatory Guide 7.6 as a means by which the quality of a finite element model may be judged. In energy limited events, which the guidance document will address, ductile metallic materials will suffer significant plastic strains to take full advantage of their energy absorption capacity. Accuracy of the analyses in predicting large strains is therefore essential. One of the issues that this guidance document will address is the issue of the quality of a finite element mesh, and in particular, mesh refinement to obtain a convergent solution. That is, for a given structure under a given loading using a given type of element, what is the required mesh density to achieve sufficiently accurate results. One portion of the guidance document will be devoted to a series of element convergence studies that can aid designers in establishing the mesh refinement requirements necessary to achieve accurate results for a variety of different elements types in regions of high plastic strain. These convergence studies will also aid reviewers in evaluating the quality of a finite element model and the apparent accuracy of its results. The first convergence study consists of an elegantly simple problem of a cantilevering beam, simply supported at one end and built in at the other, loaded by a uniformly-distributed load that is ramped up over a finite time to a constant value. Three different loads were defined, with the smallest load to cause stresses that are entirely elastic and the largest load to cause large plastic deformations. Material properties, loading rates and boundary conditions were also

  8. Modular Finite Element Methods Library Version: 1.0

    Energy Science and Technology Software Center (ESTSC)

    2010-06-22

    MFEM is a general, modular library for finite element methods. It provides a variety of finite element spaces and bilinear/linear forms in 2D and 3D. MFEM also includes classes for dealing with various types of meshes and their refinement.

  9. Finite element analysis of human joints

    SciTech Connect

    Bossart, P.L.; Hollerbach, K.

    1996-09-01

    Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.

  10. Finite Element Results Visualization for Unstructured Grids

    SciTech Connect

    Speck, Douglas E.; Dovey, Donald J.

    1996-07-15

    GRIZ is a general-purpose post-processing application supporting interactive visualization of finite element analysis results on unstructured grids. In addition to basic pseudocolor renderings of state variables over the mesh surface, GRIZ provides modern visualization techniques such as isocontours and isosurfaces, cutting planes, vector field display, and particle traces. GRIZ accepts both command-line and mouse-driven input, and is portable to virtually any UNIX platform which provides Motif and OpenGl libraries.

  11. Probabilistic fracture finite elements

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.; Lua, Y. J.

    1991-01-01

    The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.

  12. IFEMS, an Interactive Finite Element Modeling System Using a CAD/CAM System

    NASA Technical Reports Server (NTRS)

    Mckellip, S.; Schuman, T.; Lauer, S.

    1980-01-01

    A method of coupling a CAD/CAM system with a general purpose finite element mesh generator is described. The three computer programs which make up the interactive finite element graphics system are discussed.

  13. A finite element conjugate gradient FFT method for scattering

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.

    1991-01-01

    Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.

  14. Construction of hexahedral elements mesh capturing realistic geometries of Bayou Choctaw SPR site

    SciTech Connect

    Park, Byoung Yoon; Roberts, Barry L.

    2015-09-01

    The three-dimensional finite element mesh capturing realistic geometries of Bayou Choctaw site has been constructed using the sonar and seismic survey data obtained from the field. The mesh is consisting of hexahedral elements because the salt constitutive model is coded using hexahedral elements. Various ideas and techniques to construct finite element mesh capturing artificially and naturally formed geometries are provided. The techniques to reduce the number of elements as much as possible to save on computer run time with maintaining the computational accuracy is also introduced. The steps and methodologies could be applied to construct the meshes of Big Hill, Bryan Mound, and West Hackberry strategic petroleum reserve sites. The methodology could be applied to the complicated shape masses for not only various civil and geological structures but also biological applications such as artificial limbs.

  15. Effect of grid system on finite element calculation

    NASA Technical Reports Server (NTRS)

    Lee, K. D.; Yen, S. M.

    1980-01-01

    Detailed parametric studies of the effect of grid system on finite element calculation for potential flows were made. These studies led to the formulation of a design criteria for optimum mesh system and the development of two methods to generate the optimum mesh system. The guidelines for optimum mesh system are: (1) the mesh structure should be regular; (2) the element should be as regular and equilateral as possible; (3) the distribution of size of element should be consistent with that of flow variables to insure maximum uniformity in error distribution; (4) for non-Dirichlet boundary conditions, smaller boundary elements or higher order interpolation functions should be used; and (5) the mesh should accommodate the boundary geometry as accurately as possible. The results of the parametric studies are presented.

  16. Interpolation functions in the immersed boundary and finite element methods

    NASA Astrophysics Data System (ADS)

    Wang, Xingshi; Zhang, Lucy T.

    2010-03-01

    In this paper, we review the existing interpolation functions and introduce a finite element interpolation function to be used in the immersed boundary and finite element methods. This straightforward finite element interpolation function for unstructured grids enables us to obtain a sharper interface that yields more accurate interfacial solutions. The solution accuracy is compared with the existing interpolation functions such as the discretized Dirac delta function and the reproducing kernel interpolation function. The finite element shape function is easy to implement and it naturally satisfies the reproducing condition. They are interpolated through only one element layer instead of smearing to several elements. A pressure jump is clearly captured at the fluid-solid interface. Two example problems are studied and results are compared with other numerical methods. A convergence test is thoroughly conducted for the independent fluid and solid meshes in a fluid-structure interaction system. The required mesh size ratio between the fluid and solid domains is obtained.

  17. Adaptive Finite Element Methods in Geodynamics

    NASA Astrophysics Data System (ADS)

    Davies, R.; Davies, H.; Hassan, O.; Morgan, K.; Nithiarasu, P.

    2006-12-01

    Adaptive finite element methods are presented for improving the quality of solutions to two-dimensional (2D) and three-dimensional (3D) convection dominated problems in geodynamics. The methods demonstrate the application of existing technology in the engineering community to problems within the `solid' Earth sciences. Two-Dimensional `Adaptive Remeshing': The `remeshing' strategy introduced in 2D adapts the mesh automatically around regions of high solution gradient, yielding enhanced resolution of the associated flow features. The approach requires the coupling of an automatic mesh generator, a finite element flow solver and an error estimator. In this study, the procedure is implemented in conjunction with the well-known geodynamical finite element code `ConMan'. An unstructured quadrilateral mesh generator is utilised, with mesh adaptation accomplished through regeneration. This regeneration employs information provided by an interpolation based local error estimator, obtained from the computed solution on an existing mesh. The technique is validated by solving thermal and thermo-chemical problems with known benchmark solutions. In a purely thermal context, results illustrate that the method is highly successful, improving solution accuracy whilst increasing computational efficiency. For thermo-chemical simulations the same conclusions can be drawn. However, results also demonstrate that the grid based methods employed for simulating the compositional field are not competitive with the other methods (tracer particle and marker chain) currently employed in this field, even at the higher spatial resolutions allowed by the adaptive grid strategies. Three-Dimensional Adaptive Multigrid: We extend the ideas from our 2D work into the 3D realm in the context of a pre-existing 3D-spherical mantle dynamics code, `TERRA'. In its original format, `TERRA' is computationally highly efficient since it employs a multigrid solver that depends upon a grid utilizing a clever

  18. Mimetic finite difference method for the stokes problem on polygonal meshes

    SciTech Connect

    Lipnikov, K; Beirao Da Veiga, L; Gyrya, V; Manzini, G

    2009-01-01

    Various approaches to extend the finite element methods to non-traditional elements (pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry analysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure.

  19. A novel approach in formulation of special transition elements: Mesh interface elements

    NASA Technical Reports Server (NTRS)

    Sarigul, Nesrin

    1991-01-01

    The objective of this research program is in the development of more accurate and efficient methods for solution of singular problems encountered in various branches of mechanics. The research program can be categorized under three levels. The first two levels involve the formulation of a new class of elements called 'mesh interface elements' (MIE) to connect meshes of traditional elements either in three dimensions or in three and two dimensions. The finite element formulations are based on boolean sum and blending operators. MEI are being formulated and tested in this research to account for the steep gradients encountered in aircraft and space structure applications. At present, the heat transfer and structural analysis problems are being formulated from uncoupled theory point of view. The status report: (1) summarizes formulation for heat transfer and structural analysis; (2) explains formulation of MEI; (3) examines computational efficiency; and (4) shows verification examples.

  20. Finite element computational fluid mechanics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1983-01-01

    Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.

  1. 2-d Finite Element Code Postprocessor

    Energy Science and Technology Software Center (ESTSC)

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  2. Second order tensor finite element

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.

    1990-01-01

    The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.

  3. Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1997-01-01

    An adaptive refinement strategy based on hierarchical element subdivision is formulated and implemented for meshes containing arbitrary mixtures of tetrahendra, hexahendra, prisms and pyramids. Special attention is given to keeping memory overheads as low as possible. This procedure is coupled with an algebraic multigrid flow solver which operates on mixed-element meshes. Inviscid flows as well as viscous flows are computed an adaptively refined tetrahedral, hexahedral, and hybrid meshes. The efficiency of the method is demonstrated by generating an adapted hexahedral mesh containing 3 million vertices on a relatively inexpensive workstation.

  4. Probabilistic Finite Element: Variational Theory

    NASA Technical Reports Server (NTRS)

    Belytschko, T.; Liu, W. K.

    1985-01-01

    The goal of this research is to provide techniques which are cost-effective and enable the engineer to evaluate the effect of uncertainties in complex finite element models. Embedding the probabilistic aspects in a variational formulation is a natural approach. In addition, a variational approach to probabilistic finite elements enables it to be incorporated within standard finite element methodologies. Therefore, once the procedures are developed, they can easily be adapted to existing general purpose programs. Furthermore, the variational basis for these methods enables them to be adapted to a wide variety of structural elements and to provide a consistent basis for incorporating probabilistic features in many aspects of the structural problem. Tasks concluded include the theoretical development of probabilistic variational equations for structural dynamics, the development of efficient numerical algorithms for probabilistic sensitivity displacement and stress analysis, and integration of methodologies into a pilot computer code.

  5. Recent developments in finite element analysis for transonic airfoils

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.

    1979-01-01

    The prediction of aerodynamic forces in the transonic regime generally requires a flow field calculation to solve the governing non-linear mixed elliptic-hyperbolic partial differential equations. Finite difference techniques were developed to the point that design and analysis application are routine, and continual improvements are being made by various research groups. The principal limitation in extending finite difference methods to complex three-dimensional geometries is the construction of a suitable mesh system. Finite element techniques are attractive since their application to other problems have permitted irregular mesh elements to be employed. The purpose of this paper is to review the recent developments in the application of finite element methods to transonic flow problems and to report some recent results.

  6. An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations

    SciTech Connect

    Key, S.W.; Heinstein, M.W.; Stone, C.M.

    1997-12-31

    Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.

  7. Dual Formulations of Mixed Finite Element Methods with Applications

    PubMed Central

    Gillette, Andrew; Bajaj, Chandrajit

    2011-01-01

    Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete Exterior Calculus explains why the degrees of freedom associated to the different variables should be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the numerical stability of the method. Additionally, we define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods. Examples from magnetostatics and Darcy flow are examined in detail. PMID:21984841

  8. Contact Stress Analysis of Spiral Bevel Gears Using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Bibel, G. D.; Kumar, A; Reddy, S.; Handschuh, R.

    1995-01-01

    A procedure is presented for performing three-dimensional stress analysis of spiral bevel gears in mesh using the finite element method. The procedure involves generating a finite element model by solving equations that identify tooth surface coordinates. Coordinate transformations are used to orientate the gear and pinion for gear meshing. Contact boundary conditions are simulated with gap elements. A solution technique for correct orientation of the gap elements is given. Example models and results are presented.

  9. Asymmetric quadrilateral shell elements for finite strains

    NASA Astrophysics Data System (ADS)

    Areias, P.; Dias-da-Costa, D.; Pires, E. B.; Van Goethem, N.

    2013-07-01

    Very good results in infinitesimal and finite strain analysis of shells are achieved by combining either the enhanced-metric technique or the selective-reduced integration for the in-plane shear energy and an assumed natural strain technique (ANS) in a non-symmetric Petrov-Galerkin arrangement which complies with the patch-test. A recovery of the original Wilson incompatible mode element is shown for the trial functions in the in-plane components. As a beneficial side-effect, Newton-Raphson convergence behavior for non-linear problems is improved with respect to symmetric formulations. Transverse-shear and in-plane patch tests are satisfied while distorted-mesh accuracy is higher than with symmetric formulations. Classical test functions with assumed-metric components are required for compatibility reasons. Verification tests are performed with advantageous comparisons being observed in all of them. Applications to large displacement elasticity and finite strain plasticity are shown with both low sensitivity to mesh distortion and (relatively) high accuracy. A equilibrium-consistent (and consistently linearized) updated-Lagrangian algorithm is proposed and tested. Concerning the time-step dependency, it was found that the consistent updated-Lagrangian algorithm is nearly time-step independent and can replace the multiplicative plasticity approach if only moderate elastic strains are present, as is the case of most metals.

  10. Hybrid finite element-finite difference method for thermal analysis of blood vessels.

    PubMed

    Blanchard, C H; Gutierrez, G; White, J A; Roemer, R B

    2000-01-01

    A hybrid finite-difference/finite-element technique for the thermal analysis of blood vessels embedded in perfused tissue has been developed and evaluated. This method provides efficient and accurate solutions to the conjugated heat transfer problem of convection by blood coupled to conduction in the tissue. The technique uses a previously developed 3D automatic meshing method for creating a finite element mesh in the tissue surrounding the vessels, coupled iteratively with a 1-D marching finite difference method for the interior of the vessels. This hybrid technique retains the flexibility and ease of automated finite-element meshing techniques for modelling the complex geometry of blood vessels and irregularly shaped tissues, and speeds the solution time by using a simple finite-difference method to calculate the bulk mean temperatures within all blood vessels. The use of the 1D finite-difference technique in the blood vessels also eliminates the large computer memory requirements needed to accurately solve large vessel network problems when fine FE meshes are used in the interior of vessels. The accuracy of the hybrid technique has been verified against previously verified numerical solutions. In summary, the hybrid technique combines the accuracy and flexibility found in automated finite-element techniques, with the speed and reduction of computational memory requirements associated with the 1D finite-difference technique, something which has not been done before. This method, thus, has the potential to provide accurate, flexible and relatively fast solutions for the thermal analysis of coupled perfusion/blood vessel problems, and large vessel network problems. PMID:10949130

  11. A modified finite element procedure for underwater shock analysis

    SciTech Connect

    Chan, S.K.

    1990-12-31

    Using the regular finite element method for analyzing wave propagation problems presents difficulties: (a) The finite element mesh gives spurious reflection of the traveling wave and (b) Since a finite element model has to have a finite boundary, the wave is reflected by the outside boundary. However, for underwater shock problems, only the response of the structure is of major interest, not the behavior of the wave itself, and the shock wave can be assumed to be spherical. By taking advantage of the limited scope of the underwater shock problem, a finite element procedure can be developed that eliminates the above difficulties. This procedure not only can give very accurate solutions but it may also include structural nonlinearities and effect of cavitation.

  12. Dynamic Analysis of Geared Rotors by Finite Elements

    NASA Technical Reports Server (NTRS)

    Kahraman, A.; Ozguven, H. Nevzat; Houser, D. R.; Zakrajsek, J. J.

    1992-01-01

    A finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of on shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis geared rotors by calculating the critical speeds and determining the response of any point on the shafts to mass unbalances, geometric eccentricities of gears, and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.

  13. Dynamic analysis of geared rotors by finite elements

    NASA Technical Reports Server (NTRS)

    Kahraman, A.; Ozguven, H. N.; Houser, D. R.; Zakrajsek, J.

    1989-01-01

    The finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis of geared rotors by calculating the critical speeds and determining the response of any point on the shaft to mass unbalances, geometric eccentricities of gears and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.

  14. Dynamic analysis of geared rotors by finite elements

    NASA Technical Reports Server (NTRS)

    Kahraman, Ahmet; Ozguven, H. Nevzat; Houser, Donald R.; Zakrajsek, James J.

    1990-01-01

    A finite-element model of a geared rotor system on flexible bearings was developed. The model includes the rotary inertia of shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis of geared rotors by calculating the critical speeds and determining the response of any point on the shaft to mass unbalances, geometric eccentricities of gears and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.

  15. A suitable low-order, eight-node tetrahedral finite element for solids

    SciTech Connect

    Key, S.W.; Heinstein, M.S.; Stone, C.M.; Mello, F.J.; Blanford, M.L.; Budge, K.G.

    1998-03-01

    To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping, and the element`s performance in applications are presented. In particular they examine the eight-node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties.

  16. Finite element error estimation and adaptivity based on projected stresses

    SciTech Connect

    Jung, J.

    1990-08-01

    This report investigates the behavior of a family of finite element error estimators based on projected stresses, i.e., continuous stresses that are a least squared error fit to the conventional Gauss point stresses. An error estimate based on element force equilibrium appears to be quite effective. Examples of adaptive mesh refinement for a one-dimensional problem are presented. Plans for two-dimensional adaptivity are discussed. 12 refs., 82 figs.

  17. Nonlinear, finite deformation, finite element analysis

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhung; Waas, Anthony M.

    2016-06-01

    The roles of the consistent Jacobian matrix and the material tangent moduli, which are used in nonlinear incremental finite deformation mechanics problems solved using the finite element method, are emphasized in this paper, and demonstrated using the commercial software ABAQUS standard. In doing so, the necessity for correctly employing user material subroutines to solve nonlinear problems involving large deformation and/or large rotation is clarified. Starting with the rate form of the principle of virtual work, the derivations of the material tangent moduli, the consistent Jacobian matrix, the stress/strain measures, and the objective stress rates are discussed and clarified. The difference between the consistent Jacobian matrix (which, in the ABAQUS UMAT user material subroutine is referred to as DDSDDE) and the material tangent moduli ( C e ) needed for the stress update is pointed out and emphasized in this paper. While the former is derived based on the Jaumann rate of the Kirchhoff stress, the latter is derived using the Jaumann rate of the Cauchy stress. Understanding the difference between these two objective stress rates is crucial for correctly implementing a constitutive model, especially a rate form constitutive relation, and for ensuring fast convergence. Specifically, the implementation requires the stresses to be updated correctly. For this, the strains must be computed directly from the deformation gradient and corresponding strain measure (for a total form model). Alternatively, the material tangent moduli derived from the corresponding Jaumann rate of the Cauchy stress of the constitutive relation (for a rate form model) should be used. Given that this requirement is satisfied, the consistent Jacobian matrix only influences the rate of convergence. Its derivation should be based on the Jaumann rate of the Kirchhoff stress to ensure fast convergence; however, the use of a different objective stress rate may also be possible. The error associated

  18. An enhanced finite element technique for diffuse phase transition

    NASA Astrophysics Data System (ADS)

    Münch, I.; Krauß, M.

    2015-10-01

    We propose a finite element technique to enhance phase-field simulations. As adaptive p-method it and can be generally applied to finite element formulations. However, diffuse interfaces have non-linear gradients within regions typically smaller compared to the size of the overall model. Thus, enhanced field interpolation with higher polynomial functions on demand allows for coarser meshing or lower regularization length for the phase transition. Our method preserves continuity of finite elements and is particularly advantageous in the context of parallelized computing. An analytical solution for the evolution of a phase-field variable governed by the Allen-Cahn equation is used to define an error measure and to investigate the proposed method. Several examples demonstrate the capability of this finite element technique.

  19. Generalized multiscale finite element method. Symmetric interior penalty coupling

    NASA Astrophysics Data System (ADS)

    Efendiev, Y.; Galvis, J.; Lazarov, R.; Moon, M.; Sarkis, M.

    2013-12-01

    Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the “mass” matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples.

  20. Tetrahedral mesh improvement via optimization of the element condition number

    SciTech Connect

    FREITAG,LORI A.; KNUPP,PATRICK

    2000-05-22

    The authors present a new shape measure for tetrahedral elements that is optimal in that it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed from the condition number of the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume. Using this shape measure, they formulate two optimization objective functions that are differentiated by their goal: the first seeks to improve the average quality of the tetrahedral mesh; the second aims to improve the worst-quality element in the mesh. They review the optimization techniques used with each objective function and presents experimental results that demonstrate the effectiveness of the mesh improvement methods. They show that a combined optimization approach that uses both objective functions obtains the best-quality meshes for several complex geometries.

  1. Dedicated finite elements for electrode thin films on quartz resonators.

    PubMed

    Srivastava, Sonal A; Yong, Yook-Kong; Tanaka, Masako; Imai, Tsutomu

    2008-08-01

    The accuracy of the finite element analysis for thickness shear quartz resonators is a function of the mesh resolution; the finer the mesh resolution, the more accurate the finite element solution. A certain minimum number of elements are required in each direction for the solution to converge. This places a high demand on memory for computation, and often the available memory is insufficient. Typically the thickness of the electrode films is very small compared with the thickness of the resonator itself; as a result, electrode elements have very poor aspect ratios, and this is detrimental to the accuracy of the result. In this paper, we propose special methods to model the electrodes at the crystal interface of an AT cut crystal. This reduces the overall problem size and eliminates electrode elements having poor aspect ratios. First, experimental data are presented to demonstrate the effects of electrode film boundary conditions on the frequency-temperature curves of an AT cut plate. Finite element analysis is performed on a mesh representing the resonator, and the results are compared for testing the accuracy of the analysis itself and thus validating the results of analysis. Approximations such as lumping and Guyan reduction are then used to model the electrode thin films at the electrode interface and their results are studied. In addition, a new approximation called merging is proposed to model electrodes at the electrode interface. PMID:18986913

  2. Implicit extrapolation methods for multilevel finite element computations

    SciTech Connect

    Jung, M.; Ruede, U.

    1994-12-31

    The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.

  3. Finite element analysis of multilayer coextrusion.

    SciTech Connect

    Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A.; Mrozek, Randy A.; Lenhart, Joseph Ludlow; Rao, Rekha Ranjana; Collins, Robert; Mondy, Lisa Ann

    2011-09-01

    Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.

  4. Finite octree meshing through topologically driven geometric operators

    NASA Technical Reports Server (NTRS)

    Grice, Kurt R.

    1987-01-01

    The octree technique is developed into the finite octree, and an overview is given. Modeler requirements are given. The octree discretization is discussed along with geometric communication operators. Geometric communication operators returning topological associativity and geometric communication operators returning spatial data are also discussed and illustrated. The advantages are given of the boundary representation and of geometric communication operators. The implementation plays an important role in the integration with a variety of geometric modelers. The capabilities of closed loop processes within a complete finite element system are presented.

  5. Infinite Possibilities for the Finite Element.

    ERIC Educational Resources Information Center

    Finlayson, Bruce A.

    1981-01-01

    Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)

  6. EXODUS: A finite element file format for pre- and postprocessing

    SciTech Connect

    Mills-Curran, W.C.; Gilkey, A.P.; Flanagan, D.P.

    1988-09-01

    The EXODUS format defines a binary file which is used for finite element analysis pre- and postprocessing. It includes data to define the finite element mesh and label both boundary condition and load application points. EXODUS accommodates multiple element types and is sufficiently general format for analysis results. A benefit of combining the mesh definition data and the results data in the same file is that the user is assured that the results data are consistent with the model. EXODUS is currently in use by the entire range of Department 1520 codes (including preprocessors, translators, linear and nonlinear analyses, and postprocessors) and is finding applications in codes outside Department 1520. 2 refs., 2 figs., 1 tab.

  7. Peridynamic Multiscale Finite Element Methods

    SciTech Connect

    Costa, Timothy; Bond, Stephen D.; Littlewood, David John; Moore, Stan Gerald

    2015-12-01

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the

  8. Massively parallel computation of RCS with finite elements

    NASA Technical Reports Server (NTRS)

    Parker, Jay

    1993-01-01

    One of the promising combinations of finite element approaches for scattering problems uses Whitney edge elements, spherical vector wave-absorbing boundary conditions, and bi-conjugate gradient solution for the frequency-domain near field. Each of these approaches may be criticized. Low-order elements require high mesh density, but also result in fast, reliable iterative convergence. Spherical wave-absorbing boundary conditions require additional space to be meshed beyond the most minimal near-space region, but result in fully sparse, symmetric matrices which keep storage and solution times low. Iterative solution is somewhat unpredictable and unfriendly to multiple right-hand sides, yet we find it to be uniformly fast on large problems to date, given the other two approaches. Implementation of these approaches on a distributed memory, message passing machine yields huge dividends, as full scalability to the largest machines appears assured and iterative solution times are well-behaved for large problems. We present times and solutions for computed RCS for a conducting cube and composite permeability/conducting sphere on the Intel ipsc860 with up to 16 processors solving over 200,000 unknowns. We estimate problems of approximately 10 million unknowns, encompassing 1000 cubic wavelengths, may be attempted on a currently available 512 processor machine, but would be exceedingly tedious to prepare. The most severe bottlenecks are due to the slow rate of mesh generation on non-parallel machines and the large transfer time from such a machine to the parallel processor. One solution, in progress, is to create and then distribute a coarse mesh among the processors, followed by systematic refinement within each processor. Elimination of redundant node definitions at the mesh-partition surfaces, snap-to-surface post processing of the resulting mesh for good modelling of curved surfaces, and load-balancing redistribution of new elements after the refinement are auxiliary

  9. Mixed Finite Element Method for Melt Migration

    NASA Astrophysics Data System (ADS)

    Taicher, A. L.; Hesse, M. A.; Arbogast, T.

    2012-12-01

    Multi-phase flow arises during partial melting in the earth mantle, where the porosity is small and material has the characteristics of a compacting porous medium. The equations governing multi-phase flow have been specialized to partially molten materials by McKenzie and Fowler. Their model, also called a Darcy-Stokes system, is highly coupled and non-linear. Melt flow is governed by Darcy's Law while the high temperature, ductile creep of the solid matrix is modeled using viscous non-Newtonian Stokes rheology. In addition, the melt and solid pressures are related through a compaction relation. This nearly elliptic mechanical problem is then coupled with both solute transport and thermal evolution according to the enthalpy method developed by Katz. A suitable numerical method must solve the Darcy-Stokes problem in a manner compatible with the transport problem. Moreover, unlike most porous media problems, partially molten materials transition dynamically from non-porous solid to porous medium. Therefore, a numerical method must also carefully account for the limit of zero porosity. The Darcy-Stokes system for modeling partial melting in the mantle is a novel problem. As far as we know, there currently does not exist a finite element solution in the literature solving these coupled equations. The finite element framework provides support for additional analysis of error and convergence. Moreover, both mesh refinement and anisotropy are naturally incorporated into finite elements. In particular, the mixed finite element method presents a good candidate because it works in both limiting cases: Darcy and incompressible Stokes flow. Mixed methods also produce discretely conservative fluxes that are required for the transport problem to remains stable without violating conservation of mass. Based preliminary investigations in 1D and derived energy estimates, we present a mixed formulation for the Darcy-Stokes system. Next, using novel elements of lowest order and

  10. A weak Galerkin generalized multiscale finite element method

    DOE PAGESBeta

    Mu, Lin; Wang, Junping; Ye, Xiu

    2016-03-31

    In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.

  11. Elbow stress indices using finite element analysis

    NASA Astrophysics Data System (ADS)

    Yu, Lixin

    Section III of the ASME Boiler and Pressure Vessel Code (the Code) specifies rules for the design of nuclear power plant components. NB-3600 of the Code presents a simplified design method using stress indices---Scalar Coefficients used the modify straight pipe stress equations so that they can be applied to elbows, tees and other piping components. The stress indices of piping components are allowed to be determined both analytically and experimentally. This study concentrates on the determination of B2 stress indices for elbow components using finite element analysis (FEA). First, the previous theoretical, numerical and experimental investigations on elbow behavior were comprehensively reviewed, as was the philosophy behind the use of stress indices. The areas of further research was defined. Then, a comprehensive investigation was carried out to determine how the finite element method should be used to correctly simulate an elbow's structural behavior. This investigation included choice of element type, convergence of mesh density, use of boundary restraint and a reconciliation study between FEA and laboratory experiments or other theoretical formulations in both elastic and elasto-plastic domain. Results from different computer programs were also compared. Reasonably good reconciliation was obtained. Appendix II of the Code describes the experimental method to determine B2 stress indices based on load-deflection curves. This procedure was used to compute the B2 stress indices for various loading modes on one particular elbow configuration. The B2 stress indices thus determined were found to be about half of the value calculated from the Code equation. Then the effect on B2 stress indices of those factors such as internal pressure and flange attachments were studied. Finally, the investigation was extended to other configurations of elbow components. A parametric study was conducted on different elbow sizes and schedules. Regression analysis was then used to

  12. Finite element methods in numerical relativity.

    NASA Astrophysics Data System (ADS)

    Mann, P. J.

    The finite element method is very successful in Newtonian fluid simulations, and can be extended to relativitstic fluid flows. This paper describes the general method, and then outlines some preliminary results for spherically symmetric geometries. The mixed finite element - finite difference scheme is introduced, and used for the description of spherically symmetric collapse. Baker's (Newtonian) shock modelling method and Miller's moving finite element method are also mentioned. Collapse in double-null coordinates requires non-constant time slicing, so the full finite element method in space and time is described.

  13. Stabilized tetrahedral elements for crystal plasticity finite element analysis overcoming volumetric locking

    NASA Astrophysics Data System (ADS)

    Cheng, Jiahao; Shahba, Ahmad; Ghosh, Somnath

    2016-05-01

    Image-based CPFE modeling involves computer generation of virtual polycrystalline microstructures from experimental data, followed by discretization into finite element meshes. Discretization is commonly accomplished using three-dimensional four-node tetrahedral or TET4 elements, which conform to the complex geometries. It has been commonly observed that TET4 elements suffer from severe volumetric locking when simulating deformation of incompressible or nearly incompressible materials. This paper develops and examines three locking-free stabilized finite element formulations in the context of crystal plasticity finite element analysis. They include a node-based uniform strain (NUS) element, a locally integrated B-bar (LIB) based element and a F-bar patch (FP) based element. All three formulations are based on the partitioning of TET4 element meshes and integrating over patches to obtain favorable incompressibility constraint ratios without adding large degrees of freedom. The results show that NUS formulation introduces unstable spurious energy modes, while the LIB and FP elements stabilize the solutions and are preferred for reliable CPFE analysis. The FP element is found to be computationally efficient over the LIB element.

  14. Finite element and finite difference methods in electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Morgan, Michael A.

    Finite-difference and finite-element methods for the computational analysis of EM scattering phenomena are examined in chapters contributed by leading experts. Topics addressed include an FEM for composite scatterers, coupled finite- and boundary-element methods for EM scattering, absorbing boundary conditions for the direct solution PDEs arising in EM scattering problems, application of the control-region approximation to two-dimensional EM scattering, coupled potentials for EM fields in inhomogeneous media, the method of conforming boundary elements for transient electromagnetics, and the finite-difference time-domain method for numerical modeling of EM wave interactions with arbitrary structures. Extensive diagrams and graphs of typical results are provided.

  15. From high-resolution CT data to finite element models: development of an integrated modular framework.

    PubMed

    Pahr, Dieter H; Zysset, Philippe K

    2009-02-01

    This work introduces a novel method of automating the process of patient-specific finite element (FE) model development using a mapped mesh technique. The objective is to map a predefined mesh (template) of high quality directly onto a new bony surface (target) definition, thereby yielding a similar mesh with minimal user interaction. To bring the template mesh into correspondence with the target surface, a deformable registration technique based on the FE method has been adopted. The procedure has been made hierarchical allowing several levels of mesh refinement to be used, thus reducing the time required to achieve a solution. Our initial efforts have focused on the phalanx bones of the human hand. Mesh quality metrics, such as element volume and distortion were evaluated. Furthermore, the distance between the target surface and the final mapped mesh were measured. The results have satisfactorily proven the applicability of the proposed method. PMID:18839383

  16. Finite element study on modification of bracket base and its effects on bond strength

    PubMed Central

    Shyagali, Tarulatha R.; Bhayya, Deepak P.; Urs, Chandralekha B.; Subramaniam, Shashikala

    2015-01-01

    OBJECTIVE: This article aims to analyze the difference in stresses generated in the bracket-cement-tooth system by means of a peel load in single and double-mesh bracket bases using a three-dimensional finite element computer model. MATERIAL AND METHODS: A three-dimensional finite element model of the bracket-cement-tooth system was constructed and consisted of 40,536 bonds and 49,201 finite elements using a commercial mesh generating programmer (ANSYS 7.0). Both single and double-mesh bracket bases were modified by varying the diameter from 100-400 µm progressively, and the spacing between the mesh wires was kept at 300 µm for each diameter of wire. A peel load was applied on the model to study the stresses generated in different layers. RESULTS: In case of double-mesh bracket base, there was reduction in stress generation at the enamel in comparison to single-mesh bracket base. There was no difference in stress generated at the bracket layer between single and double-mesh bracket bases. At the impregnated wire mesh (IWM), layer stresses increased as the wire diameter of the mesh increased. CONCLUSION: Results show that bracket design modification can improve bonding abilities and simultaneously reduce enamel damage while debonding. These facts may be used in bringing about the new innovative bracket designs for clinical use. PMID:25992991

  17. Probabilistic finite element analysis of a craniofacial finite element model.

    PubMed

    Berthaume, Michael A; Dechow, Paul C; Iriarte-Diaz, Jose; Ross, Callum F; Strait, David S; Wang, Qian; Grosse, Ian R

    2012-05-01

    We employed a probabilistic finite element analysis (FEA) method to determine how variability in material property values affects stress and strain values in a finite model of a Macaca fascicularis cranium. The material behavior of cortical bone varied in three ways: isotropic homogeneous, isotropic non-homogeneous, and orthotropic non-homogeneous. The material behavior of the trabecular bone and teeth was always treated as isotropic and homogeneous. All material property values for the cranium were randomized with a Gaussian distribution with either coefficients of variation (CVs) of 0.2 or with CVs calculated from empirical data. Latin hypercube sampling was used to determine the values of the material properties used in the finite element models. In total, four hundred and twenty six separate deterministic FE simulations were executed. We tested four hypotheses in this study: (1) uncertainty in material property values will have an insignificant effect on high stresses and a significant effect on high strains for homogeneous isotropic models; (2) the effect of variability in material property values on the stress state will increase as non-homogeneity and anisotropy increase; (3) variation in the in vivo shear strain values reported by Strait et al. (2005) and Ross et al. (2011) is not only due to variations in muscle forces and cranial morphology, but also due to variation in material property values; (4) the assumption of a uniform coefficient of variation for the material property values will result in the same trend in how moderate-to-high stresses and moderate-to-high strains vary with respect to the degree of non-homogeneity and anisotropy as the trend found when the coefficients of variation for material property values are calculated from empirical data. Our results supported the first three hypotheses and falsified the fourth. When material properties were varied with a constant CV, as non-homogeneity and anisotropy increased the level of variability in

  18. Parallel performance of a preconditioned CG solver for unstructured finite element applications

    SciTech Connect

    Shadid, J.N.; Hutchinson, S.A.; Moffat, H.K.

    1994-12-31

    A parallel unstructured finite element (FE) implementation designed for message passing MIMD machines is described. This implementation employs automated problem partitioning algorithms for load balancing unstructured grids, a distributed sparse matrix representation of the global finite element equations and a parallel conjugate gradient (CG) solver. In this paper a number of issues related to the efficient implementation of parallel unstructured mesh applications are presented. These include the differences between structured and unstructured mesh parallel applications, major communication kernels for unstructured CG solvers, automatic mesh partitioning algorithms, and the influence of mesh partitioning metrics on parallel performance. Initial results are presented for example finite element (FE) heat transfer analysis applications on a 1024 processor nCUBE 2 hypercube. Results indicate over 95% scaled efficiencies are obtained for some large problems despite the required unstructured data communication.

  19. Domain decomposition methods for mortar finite elements

    SciTech Connect

    Widlund, O.

    1996-12-31

    In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.

  20. Higher-Order Finite Elements for Computing Thermal Radiation

    NASA Technical Reports Server (NTRS)

    Gould, Dana C.

    2004-01-01

    Two variants of the finite-element method have been developed for use in computational simulations of radiative transfers of heat among diffuse gray surfaces. Both variants involve the use of higher-order finite elements, across which temperatures and radiative quantities are assumed to vary according to certain approximations. In this and other applications, higher-order finite elements are used to increase (relative to classical finite elements, which are assumed to be isothermal) the accuracies of final numerical results without having to refine computational meshes excessively and thereby incur excessive computation times. One of the variants is termed the radiation sub-element (RSE) method, which, itself, is subject to a number of variations. This is the simplest and most straightforward approach to representation of spatially variable surface radiation. Any computer code that, heretofore, could model surface-to-surface radiation can incorporate the RSE method without major modifications. In the basic form of the RSE method, each finite element selected for use in computing radiative heat transfer is considered to be a parent element and is divided into sub-elements for the purpose of solving the surface-to-surface radiation-exchange problem. The sub-elements are then treated as classical finite elements; that is, they are assumed to be isothermal, and their view factors and absorbed heat fluxes are calculated accordingly. The heat fluxes absorbed by the sub-elements are then transferred back to the parent element to obtain a radiative heat flux that varies spatially across the parent element. Variants of the RSE method involve the use of polynomials to interpolate and/or extrapolate to approximate spatial variations of physical quantities. The other variant of the finite-element method is termed the integration method (IM). Unlike in the RSE methods, the parent finite elements are not subdivided into smaller elements, and neither isothermality nor other

  1. Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements

    NASA Technical Reports Server (NTRS)

    Gould, Dana C.

    2000-01-01

    This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.

  2. Finite element analysis in fluids; Proceedings of the Seventh International Conference on Finite Element Methods in Flow Problems, University of Alabama, Huntsville, Apr. 3-7, 1989

    NASA Astrophysics Data System (ADS)

    Chung, T. J.; Karr, Gerald R.

    Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.

  3. Finite element analysis in fluids; Proceedings of the Seventh International Conference on Finite Element Methods in Flow Problems, University of Alabama, Huntsville, Apr. 3-7, 1989

    NASA Technical Reports Server (NTRS)

    Chung, T. J. (Editor); Karr, Gerald R. (Editor)

    1989-01-01

    Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.

  4. FEBio: finite elements for biomechanics.

    PubMed

    Maas, Steve A; Ellis, Benjamin J; Ateshian, Gerard A; Weiss, Jeffrey A

    2012-01-01

    In the field of computational biomechanics, investigators have primarily used commercial software that is neither geared toward biological applications nor sufficiently flexible to follow the latest developments in the field. This lack of a tailored software environment has hampered research progress, as well as dissemination of models and results. To address these issues, we developed the FEBio software suite (http://mrl.sci.utah.edu/software/febio), a nonlinear implicit finite element (FE) framework, designed specifically for analysis in computational solid biomechanics. This paper provides an overview of the theoretical basis of FEBio and its main features. FEBio offers modeling scenarios, constitutive models, and boundary conditions, which are relevant to numerous applications in biomechanics. The open-source FEBio software is written in C++, with particular attention to scalar and parallel performance on modern computer architectures. Software verification is a large part of the development and maintenance of FEBio, and to demonstrate the general approach, the description and results of several problems from the FEBio Verification Suite are presented and compared to analytical solutions or results from other established and verified FE codes. An additional simulation is described that illustrates the application of FEBio to a research problem in biomechanics. Together with the pre- and postprocessing software PREVIEW and POSTVIEW, FEBio provides a tailored solution for research and development in computational biomechanics. PMID:22482660

  5. Finite element coiled cochlea model

    NASA Astrophysics Data System (ADS)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  6. A sweeping preconditioner for time-harmonic Maxwell's equations with finite elements

    NASA Astrophysics Data System (ADS)

    Tsuji, Paul; Engquist, Bjorn; Ying, Lexing

    2012-05-01

    This paper is concerned with preconditioning the stiffness matrix resulting from finite element discretizations of Maxwell's equations in the high frequency regime. The moving PML sweeping preconditioner, first introduced for the Helmholtz equation on a Cartesian finite difference grid, is generalized to an unstructured mesh with finite elements. The method dramatically reduces the number of GMRES iterations necessary for convergence, resulting in an almost linear complexity solver. Numerical examples including electromagnetic cloaking simulations are presented to demonstrate the efficiency of the proposed method.

  7. Control volume finite element method with multidimensional edge element Scharfetter-Gummel upwinding. Part 1, formulation.

    SciTech Connect

    Bochev, Pavel Blagoveston

    2011-06-01

    We develop a new formulation of the Control Volume Finite Element Method (CVFEM) with a multidimensional Scharfetter-Gummel (SG) upwinding for the drift-diffusion equations. The formulation uses standard nodal elements for the concentrations and expands the flux in terms of the lowest-order Nedelec H(curl; {Omega})-compatible finite element basis. The SG formula is applied to the edges of the elements to express the Nedelec element degree of freedom on this edge in terms of the nodal degrees of freedom associated with the endpoints of the edge. The resulting upwind flux incorporates the upwind effects from all edges and is defined at the interior of the element. This allows for accurate evaluation of integrals on the boundaries of the control volumes for arbitrary quadrilateral elements. The new formulation admits efficient implementation through a standard loop over the elements in the mesh followed by loops over the element nodes (associated with control volume fractions in the element) and element edges (associated with flux degrees of freedom). The quantities required for the SG formula can be precomputed and stored for each edge in the mesh for additional efficiency gains. For clarity the details are presented for two-dimensional quadrilateral grids. Extension to other element shapes and three dimensions is straightforward.

  8. Finite element model for brittle fracture and fragmentation

    DOE PAGESBeta

    Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin; Samulyak, Roman; Lu, Cao

    2016-06-01

    A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.

  9. Finite difference methods with non-uniform meshes for nonlinear fractional differential equations

    NASA Astrophysics Data System (ADS)

    Li, Changpin; Yi, Qian; Chen, An

    2016-07-01

    In this article, finite difference methods with non-uniform meshes for solving nonlinear fractional differential equations are presented, where the non-equidistant stepsize is non-decreasing. The rectangle formula and trapezoid formula are proposed based on the non-uniform meshes. Combining the above two methods, we then establish the predictor-corrector scheme. The error and stability analysis are carefully investigated. At last, numerical examples are carried out to verify the theoretical analysis. Besides, the comparisons between non-uniform and uniform meshes are given, where the non-uniform meshes show the better performance when dealing with the less smooth problems.

  10. A methodology to mesh mesoscopic representative volume element of 3D interlock woven composites impregnated with resin

    NASA Astrophysics Data System (ADS)

    Ha, Manh Hung; Cauvin, Ludovic; Rassineux, Alain

    2016-04-01

    We present a new numerical methodology to build a Representative Volume Element (RVE) of a wide range of 3D woven composites in order to determine the mechanical behavior of the fabric unit cell by a mesoscopic approach based on a 3D finite element analysis. Emphasis is put on the numerous difficulties of creating a mesh of these highly complex weaves embedded in a resin. A conforming mesh at the numerous interfaces between yarns is created by a multi-quadtree adaptation technique, which makes it possible thereafter to build an unstructured 3D mesh of the resin with tetrahedral elements. The technique is not linked with any specific tool, but can be carried out with the use of any 2D and 3D robust mesh generators.

  11. Element-topology-independent preconditioners for parallel finite element computations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alexander, Scott

    1992-01-01

    A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.

  12. Graphics for Finite-Element Analysis

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Sawyer, L. M.

    1982-01-01

    ELPLOT program is a passive computer graphics system that could be utilized for display of models and responses of general finite-element analyses. Program includes: Wide range of view-orientation selections, number of alternative data-input formats, extensive family of finite-element types, and capabilities for both static and dynamic-response displays.

  13. Finite element analysis of helicopter structures

    NASA Technical Reports Server (NTRS)

    Rich, M. J.

    1978-01-01

    Application of the finite element analysis is now being expanded to three dimensional analysis of mechanical components. Examples are presented for airframe, mechanical components, and composite structure calculations. Data are detailed on the increase of model size, computer usage, and the effect on reducing stress analysis costs. Future applications for use of finite element analysis for helicopter structures are projected.

  14. Finite-Element Composite-Analysis Program

    NASA Technical Reports Server (NTRS)

    Bowles, David E.

    1990-01-01

    Finite Element Composite Analysis Program, FECAP, special-purpose finite-element program for analyzing behavior of composite material with microcomputer. Procedure leads to set of linear simultaneous equations relating unknown nodal displacement to applied loads. Written in HP BASIC 3.0.

  15. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel

  16. FEMHD: An adaptive finite element method for MHD and edge modelling

    SciTech Connect

    Strauss, H.R.

    1995-07-01

    This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.

  17. IA-FEMesh: An open-source, interactive, multiblock approach to anatomic finite element model development

    PubMed Central

    Grosland, Nicole M.; Shivanna, Kiran H.; Magnotta, Vincent A.; Kallemeyn, Nicole A.; DeVries, Nicole A.; Tadepalli, Srinivas C.; Lisle, Curtis

    2009-01-01

    Finite element (FE) analysis is a valuable tool in musculoskeletal research. The demands associated with mesh development, however, often prove daunting. In an effort to facilitate anatomic FE model development we have developed an open source software toolkit (IA-FEMesh). IA-FEMesh employs a multiblock meshing scheme aimed at hexahedral mesh generation. An emphasis has been placed on making the tools interactive, in an effort to create a user friendly environment. The goal is to provide an efficient and reliable method for model development, visualization, and mesh quality evaluation. While these tools have been developed, initially, in the context of skeletal structures they can be applied to countless applications. PMID:19157630

  18. Crystal level simulations using Eulerian finite element methods

    SciTech Connect

    Becker, R; Barton, N R; Benson, D J

    2004-02-06

    Over the last several years, significant progress has been made in the use of crystal level material models in simulations of forming operations. However, in Lagrangian finite element approaches simulation capabilities are limited in many cases by mesh distortion associated with deformation heterogeneity. Contexts in which such large distortions arise include: bulk deformation to strains approaching or exceeding unity, especially in highly anisotropic or multiphase materials; shear band formation and intersection of shear bands; and indentation with sharp indenters. Investigators have in the past used Eulerian finite element methods with material response determined from crystal aggregates to study steady state forming processes. However, Eulerian and Arbitrary Lagrangian-Eulerian (ALE) finite element methods have not been widely utilized for simulation of transient deformation processes at the crystal level. The advection schemes used in Eulerian and ALE codes control mesh distortion and allow for simulation of much larger total deformations. We will discuss material state representation issues related to advection and will present results from ALE simulations.

  19. Immersed finite element method and its applications to biological systems

    PubMed Central

    Liu, Wing Kam; Liu, Yaling; Farrell, David; Zhang, Lucy; Wang, X. Sheldon; Fukui, Yoshio; Patankar, Neelesh; Zhang, Yongjie; Bajaj, Chandrajit; Lee, Junghoon; Hong, Juhee; Chen, Xinyu; Hsu, Huayi

    2009-01-01

    This paper summarizes the newly developed immersed finite element method (IFEM) and its applications to the modeling of biological systems. This work was inspired by the pioneering work of Professor T.J.R. Hughes in solving fluid–structure interaction problems. In IFEM, a Lagrangian solid mesh moves on top of a background Eulerian fluid mesh which spans the entire computational domain. Hence, mesh generation is greatly simplified. Moreover, both fluid and solid domains are modeled with the finite element method and the continuity between the fluid and solid subdomains is enforced via the interpolation of the velocities and the distribution of the forces with the reproducing Kernel particle method (RKPM) delta function. The proposed method is used to study the fluid–structure interaction problems encountered in human cardiovascular systems. Currently, the heart modeling is being constructed and the deployment process of an angioplasty stent has been simulated. Some preliminary results on monocyte and platelet deposition are presented. Blood rheology, in particular, the shear-rate dependent de-aggregation of red blood cell (RBC) clusters and the transport of deformable cells, are modeled. Furthermore, IFEM is combined with electrokinetics to study the mechanisms of nano/bio filament assembly for the understanding of cell motility. PMID:20200602

  20. Adaptive Finite Element Methods for Continuum Damage Modeling

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.

    1995-01-01

    The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.

  1. Immersed finite element method and its applications to biological systems.

    PubMed

    Liu, Wing Kam; Liu, Yaling; Farrell, David; Zhang, Lucy; Wang, X Sheldon; Fukui, Yoshio; Patankar, Neelesh; Zhang, Yongjie; Bajaj, Chandrajit; Lee, Junghoon; Hong, Juhee; Chen, Xinyu; Hsu, Huayi

    2006-02-15

    This paper summarizes the newly developed immersed finite element method (IFEM) and its applications to the modeling of biological systems. This work was inspired by the pioneering work of Professor T.J.R. Hughes in solving fluid-structure interaction problems. In IFEM, a Lagrangian solid mesh moves on top of a background Eulerian fluid mesh which spans the entire computational domain. Hence, mesh generation is greatly simplified. Moreover, both fluid and solid domains are modeled with the finite element method and the continuity between the fluid and solid subdomains is enforced via the interpolation of the velocities and the distribution of the forces with the reproducing Kernel particle method (RKPM) delta function. The proposed method is used to study the fluid-structure interaction problems encountered in human cardiovascular systems. Currently, the heart modeling is being constructed and the deployment process of an angioplasty stent has been simulated. Some preliminary results on monocyte and platelet deposition are presented. Blood rheology, in particular, the shear-rate dependent de-aggregation of red blood cell (RBC) clusters and the transport of deformable cells, are modeled. Furthermore, IFEM is combined with electrokinetics to study the mechanisms of nano/bio filament assembly for the understanding of cell motility. PMID:20200602

  2. A finite element conjugate gradient FFT method for scattering

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Zapp, John; Hsa, Chang-Yu; Volakis, John L.

    1990-01-01

    An extension of a two dimensional formulation is presented for a three dimensional body of revolution. With the introduction of a Fourier expansion of the vector electric and magnetic fields, a coupled two dimensional system is generated and solved via the finite element method. An exact boundary condition is employed to terminate the mesh and the fast fourier transformation (FFT) is used to evaluate the boundary integrals for low O(n) memory demand when an iterative solution algorithm is used. By virtue of the finite element method, the algorithm is applicable to structures of arbitrary material composition. Several improvements to the two dimensional algorithm are also described. These include: (1) modifications for terminating the mesh at circular boundaries without distorting the convolutionality of the boundary integrals; (2) the development of nonproprietary mesh generation routines for two dimensional applications; (3) the development of preprocessors for interfacing SDRC IDEAS with the main algorithm; and (4) the development of post-processing algorithms based on the public domain package GRAFIC to generate two and three dimensional gray level and color field maps.

  3. Nonlinear Schwarz-Fas Methods for Unstructured Finite Element Elliptic Problems

    SciTech Connect

    Jones, J E; Vassilevski, P S; Woodward, C S

    2002-09-30

    This paper provides extensions of an element agglomeration AMG method to nonlinear elliptic problems discretized by the finite element method on general unstructured meshes. The method constructs coarse discretization spaces and corresponding coarse nonlinear operators as well as their Jacobians. We introduce both standard (fairly quasi-uniformly coarsened) and non-standard (coarsened away) coarse meshes and respective finite element spaces. We use both kind of spaces in FAS type coarse subspace correction (or Schwarz) algorithms. Their performance is illustrated on a number of model problems. The coarsened away spaces seem to perform better than the standard spaces for problems with nonlinearities in the principal part of the elliptic operator.

  4. An analytically enriched finite element method for cohesive crack modeling.

    SciTech Connect

    Cox, James V.

    2010-04-01

    Meaningful computational investigations of many solid mechanics problems require accurate characterization of material behavior through failure. A recent approach to fracture modeling has combined the partition of unity finite element method (PUFEM) with cohesive zone models. Extension of the PUFEM to address crack propagation is often referred to as the extended finite element method (XFEM). In the PUFEM, the displacement field is enriched to improve the local approximation. Most XFEM studies have used simplified enrichment functions (e.g., generalized Heaviside functions) to represent the strong discontinuity but have lacked an analytical basis to represent the displacement gradients in the vicinity of the cohesive crack. As such, the mesh had to be sufficiently fine for the FEM basis functions to capture these gradients.In this study enrichment functions based upon two analytical investigations of the cohesive crack problem are examined. These functions have the potential of representing displacement gradients in the vicinity of the cohesive crack with a relatively coarse mesh and allow the crack to incrementally advance across each element. Key aspects of the corresponding numerical formulation are summarized. Analysis results for simple model problems are presented to evaluate if quasi-static crack propagation can be accurately followed with the proposed formulation. A standard finite element solution with interface elements is used to provide the accurate reference solution, so the model problems are limited to a straight, mode I crack in plane stress. Except for the cohesive zone, the material model for the problems is homogenous, isotropic linear elasticity. The effects of mesh refinement, mesh orientation, and enrichment schemes that enrich a larger region around the cohesive crack are considered in the study. Propagation of the cohesive zone tip and crack tip, time variation of the cohesive zone length, and crack profiles are presented. The analysis

  5. A new finite element and finite difference hybrid method for computing electrostatics of ionic solvated biomolecule

    NASA Astrophysics Data System (ADS)

    Ying, Jinyong; Xie, Dexuan

    2015-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.

  6. Finite-volume goal-oriented mesh adaptation for aerodynamics using functional derivative with respect to nodal coordinates

    NASA Astrophysics Data System (ADS)

    Todarello, Giovanni; Vonck, Floris; Bourasseau, Sébastien; Peter, Jacques; Désidéri, Jean-Antoine

    2016-05-01

    A new goal-oriented mesh adaptation method for finite volume/finite difference schemes is extended from the structured mesh framework to a more suitable setting for adaptation of unstructured meshes. The method is based on the total derivative of the goal with respect to volume mesh nodes that is computable after the solution of the goal discrete adjoint equation. The asymptotic behaviour of this derivative is assessed on regularly refined unstructured meshes. A local refinement criterion is derived from the requirement of limiting the first order change in the goal that an admissible node displacement may cause. Mesh adaptations are then carried out for classical test cases of 2D Euler flows. Efficiency and local density of the adapted meshes are presented. They are compared with those obtained with a more classical mesh adaptation method in the framework of finite volume/finite difference schemes [46]. Results are very close although the present method only makes usage of the current grid.

  7. Simulation of thin slot spirals and dual circular patch antennas using the finite element method with mixed elements

    NASA Technical Reports Server (NTRS)

    Gong, Jian; Volakis, John L.; Nurnberger, Michael W.

    1995-01-01

    This semi-annual report describes progress up to mid-January 1995. The report contains five sections all dealing with the modeling of spiral and patch antennas recessed in metallic platforms. Of significance is the development of decomposition schemes which separate the different regions of the antenna volume. Substantial effort was devoted to improving the feed model in the context of the finite element method (FEM). Finally, an innovative scheme for truncating finite element meshes is presented.

  8. Optimization of tetrahedral meshes

    SciTech Connect

    Briere De L`Isle, E.; George, P.L.

    1995-12-31

    Finite element computations are all the more exact if we start from {open_quotes}good{close_quotes} elements. We are interested in meshes where the elements are tetrahedra and we shall develop utilities allowing us to improve the quality of these meshes.

  9. Will Finite Elements Replace Structural Mechanics?

    NASA Astrophysics Data System (ADS)

    Ojalvo, I. U.

    1984-01-01

    This paper presents a personal view regarding the need for a continued interest and activity in structural methods in general, while viewing finite elements and the computer as simply two specific tools for assisting in this endeavor. An attempt is made to provide some insight as to why finite element methods seem to have "won the war," and to give examples of their more (and less) intelligent use. Items addressed include a highlight of unnecessary limitations of many existing standard finite element codes and where it is felt that further development work is needed.

  10. The finite element method in thermomechanics

    SciTech Connect

    Hsu, T.

    1986-01-01

    Thermal stress analysis is critical in the design and operation of energy-efficient power plant components and engines as well as in nuclear and aerospace systems. The Finite Element Method in Thermomechanics attempts to embrace a wide range of topics in the nonlinear thermomechanical analysis. The book covers the basic principles of the finite element method: the formulations for the base thermomechanical analysis, including thermoelastic-plastic-creep stress analysis; the use of Fourier series for nonaxisymmetric loadings, and stress waves in solids in thermal environments; and the base finite element code called TEPSAC.

  11. Simulating Space Capsule Water Landing with Explicit Finite Element Method

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Lyle, Karen H.

    2007-01-01

    A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.

  12. Assignment Of Finite Elements To Parallel Processors

    NASA Technical Reports Server (NTRS)

    Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.

    1990-01-01

    Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.

  13. A Moving Window Technique in Parallel Finite Element Time Domain Electromagnetic Simulation

    SciTech Connect

    Lee, Lie-Quan; Candel, Arno; Ng, Cho; Ko, Kwok; ,

    2010-06-07

    A moving window technique for the finite element time domain (FETD) method is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite-element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the key to implementing a moving window in a finite-element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal FETD method and the advantages of using the moving window technique are discussed.

  14. Finite element modeling of electromagnetic fields and waves using NASTRAN

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  15. Turbomachinery flow calculation on unstructured grids using finite element method

    NASA Astrophysics Data System (ADS)

    Koschel, W.; Vornberger, A.

    An explicit finite-element scheme based on a two-step Taylor-Galerkin algorithm allows the solution of the Euler and Navier-Stokes equations on unstructured grids. Mesh generation methods for unstructured grids are described which lead to efficient flow calculations. Turbulent flow is calculated by using an algebraic turbulence model. To test the numerical accuracy, a laminar and turbulent flow over a flat plate and the supersonic flow in a corner has been calculated. For validation the method is applied to the simulation of the inviscid flow through a transonic turbine cascade and the viscous flow through a subsonic turbine cascade.

  16. A survey of mixed finite element methods

    NASA Technical Reports Server (NTRS)

    Brezzi, F.

    1987-01-01

    This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.

  17. Effects of mesh resolution and topographic representation in 2D finite volume models of shallow water fluvial flow

    NASA Astrophysics Data System (ADS)

    Horritt, M. S.; Bates, P. D.; Mattinson, M. J.

    2006-09-01

    SummaryThe effects of mesh resolution and topographic data quality on the predictions of a 2D finite volume model of channel flow are investigated. 25 cm resolution side scan sonar swath bathymetry of a 7 km reach of the river Thames, UK, provides topography for a series of finite volume models with resolutions ranging from 2.5 to 50 m. Results from the coarser meshes are compared with the 2.5 m simulation which is used as a benchmark. The model shows greater sensitivity to mesh resolution than topographic sampling. Sensitivity to mesh resolution is attributed to two effects of roughly equal magnitude. Small elements are able to represent hydraulic features such as recirculation zones, and a more accurate representation of the domain boundary helps to drive these flow features. In practical terms, a models at a resolution of 20 and 50 m require 50 m cross-sections, whereas the 10 m model predictions are improved by using all the bathymetry data.

  18. Quantify Resonance Inspection with Finite Element-Based Modal Analyses

    SciTech Connect

    Lai, Canhai; Sun, Xin; Dasch, Cameron; Harmon, George; Jones, Martin

    2011-06-01

    Resonance inspection uses the natural acoustic resonances of a part to identify anomalous parts. Modern instrumentation can measure the many resonant frequencies rapidly and accurately. Sophisticated sorting algorithms trained on sets of good and anomalous parts can rapidly and reliably inspect and sort parts. This paper aims at using finite-element-based modal analysis to put resonance inspection on a more quantitative basis. A production-level automotive steering knuckle is used as the example part for our study. First, the resonance frequency spectra for the knuckle are measured with two different experimental techniques. Next, scanning laser vibrometry is used to determine the mode shape corresponding to each resonance. The material properties including anisotropy are next measured to high accuracy using resonance spectroscopy on cuboids cut from the part. Then, finite element model (FEM) of the knuckle is generated by meshing the actual part geometry obtained with computed tomography (CT). The resonance frequencies and mode shapes are next predicted with a natural frequency extraction analysis after extensive mesh size sensitivity study. The good comparison between the predicted and the experimentally measured resonance spectra indicate that finite-element-based modal analyses have the potential to be a powerful tool in shortening the training process and improving the accuracy of the resonance inspection process for a complex, production level part. The finite element based analysis can also provide a means to computationally test the sensitivity of the frequencies to various possible defects such as porosity or oxide inclusions especially in the high stress regions that the part will experience in service.

  19. Quantify Resonance Inspection with Finite Element-Based Modal Analyses

    SciTech Connect

    Sun, Xin; Lai, Canhai; Dasch, Cameron

    2010-11-10

    Resonance inspection uses the natural acoustic resonances of a part to identify anomalous parts. Modern instrumentation can measure the many resonant frequencies rapidly and accurately. Sophisticated sorting algorithms trained on sets of good and anomalous parts can rapidly and reliably inspect and sort parts. This paper aims at using finite-element-based modal analysis to put resonance inspection on a more quantitative basis. A production-level automotive steering knuckle is used as the example part for our study. First, the resonance frequency spectra for the knuckle are measured with two different experimental techniques. Next, scanning laser vibrometry is used to determine the mode shape corresponding to each resonance. The material properties including anisotropy are next measured to high accuracy using resonance spectroscopy on cuboids cut from the part. Then, finite element model (FEM) of the knuckle is generated by meshing the actual part geometry obtained with computed tomography (CT). The resonance frequencies and mode shapes are next predicted with a natural frequency extraction analysis after extensive mesh size sensitivity study. The good comparison between the predicted and the experimentally measured resonance spectra indicate that finite-element-based modal analyses have the potential to be a powerful tool in shortening the training process and improving the accuracy of the resonance inspection process for a complex, production level part. The finite element based analysis can also provide a means to computationally test the sensitivity of the frequencies to various possible defects such as porosity or oxide inclusions especially in the high stress regions that the part will experience in service.

  20. Finite-Element Modeling For Structural Analysis

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Androlake, S. G.

    1995-01-01

    Report presents study of finite-element mathematical modeling as used in analyzing stresses and strains at joints between thin, shell-like components (e.g., ducts) and thicker components (e.g., flanges or engine blocks). First approach uses global/local model to evaluate system. Provides correct total response and correct representation of stresses away from any discontinuities. Second approach involves development of special transition finite elements to model transitions between shells and thicker structural components.

  1. Improved inhomogeneous finite elements for fabric reinforced composite mechanics analysis

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1992-01-01

    There is a need to do routine stress/failure analysis of fabric reinforced composite microstructures to provide additional confidence in critical applications and guide materials development. Conventional methods of 3-D stress analysis are time consuming to set up, run and interpret. A need exists for simpler methods of modeling these structures and analyzing the models. The principal difficulty is the discrete element mesh generation problem. Inhomogeneous finite elements are worth investigating for application to these problems because they eliminate the mesh generation problem. However, there are penalties associated with these elements. Their convergence rates can be slow compared to homogeneous elements. Also, there is no accepted method for obtaining detailed stresses in the constituent materials of each element. This paper shows that the convergence rate can be significantly improved by a simple device which substitutes homogeneous elements for the inhomogeneous ones. The device is shown to work well in simple one and two dimensional problems. However, demonstration of the application to more complex two and three dimensional problems remains to be done. Work is also progressing toward more realistic fabric microstructural geometries.

  2. Merging of intersecting triangulations for finite element modeling.

    PubMed

    Cebral, J R; Löhner, R; Choyke, P L; Yim, P J

    2001-06-01

    Surface mesh generation over intersecting triangulations is a problem common to many branches of biomechanics. A new strategy for merging intersecting triangulations is described. The basis of the method is that object surfaces are represented as the zero-level iso-surface of the distance-to-surface function defined on a background grid. Thus, the triangulation of intersecting objects reduces to the extraction of an iso-surface from an unstructured grid. In a first step, a regular background mesh is constructed. For each point of the background grid, the closest distance to the surface of each object is computed. Background points are then classified as external or internal by checking the direction of the surface normal at the closest location and assigned a positive or negative distance, respectively. Finally, the zero-level iso-surface is constructed. This is the final triangulation of the intersecting objects. The overall accuracy is enhanced by adaptive refinement of the background grid elements. The resulting surface models are used as support surfaces to generate three-dimensional grids for finite element analysis. The algorithms are demonstrated by merging arterial branches independently reconstructed from contrast-enhanced magnetic resonance images and by adding extra features such as vascular stents. Although the methodology is presented in the context of finite element analysis of blood flow, the algorithms are general and can be applied in other areas as well. PMID:11470121

  3. Finite element analysis of flexible, rotating blades

    NASA Technical Reports Server (NTRS)

    Mcgee, Oliver G.

    1987-01-01

    A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.

  4. A mesh generator for tetrahedral elements using Delaunay triangulation

    SciTech Connect

    Yuan, J.S.; Fitzsimons, C.J. )

    1993-03-01

    A tetrahedral mesh generator has been developed. The generator is based on the Delaunay triangulation which is implemented by employing the insertion polyhedron algorithm. In this paper some new methods to deal with the problems associated with the three-dimensional Delaunay triangulation and the insertion polyhedron algorithm are presented: degeneracy, the crossing situation, identification of the internal elements and internal point generation. The generator works both for convex and non-convex domains, including those with high aspect-ratio subdomains. Some examples are given in this paper to illustrate the capability of the generator.

  5. AMESH A mesh creating program for the integral finite differencemethod: A User's Manual

    SciTech Connect

    Haukwa, Charles

    1998-08-31

    Amesh program generates discrete grids for numerical modeling of flow and transport problems in which the formulation is based on integral finite difference method (IFDM). For example, the output of Amesh can be used directly as (part of) the input to TOUGH2 or TOUGH numerical Simulator (Pruess, 1987, 1990, Pruess, et al., 1996). The code Amesh can generate 1D, 2D or 3D numerical grids for a given set of locations, i.e. the centers of each discrete sub-domain. In the 2D aerial plane the Voronoi tessellation method is used (Voronoi, 1908; Ahuja, 1982; Aurehammer, 1991; Fortune, 1987, 1988, 1993). In this method we can create a mesh of elements, within model domain, where the interfaces between neighbor elements are the perpendicular bisectors of the line connecting the element centers. The interface distances are simply the medians of the line connecting the centers. To create the 3D grid, the vertical direction interface areas are always treated as horizontal projections of the 2D areal plane. In the lateral direction the interface areas are always vertical projections. In both cases the direction of gravity vector is given by the cosine of angle formed by the line joining the element centers and the vertical. From the list of element locations (center points), the program determines element volumes, and the connection information, i.e. areas, connection distances and the angle. The default input file is ''in''. The output files are ''eleme'' are ''conne'' and ''segmt''. The files ''eleme'' and ''come'' contain all the data required to describe a TOUGH2 input and together they describe the input TOUGH2 input file called ''MESH'', for the specified domain. The file ''segmt'' can be used to plot the geometrical shape of each element in each layer of the input domain. The input data into Amesh does not have to be ordered. AMESH uses a fast quaternary sorting algorithm (Fortune, 1988; Watson 1985) to sort and compute the adjacency relationships between nodes in the 2D

  6. Error estimates of triangular finite elements under a weak angle condition

    NASA Astrophysics Data System (ADS)

    Mao, Shipeng; Shi, Zhongci

    2009-08-01

    In this note, by analyzing the interpolation operator of Girault and Raviart given in [V. Girault, P.A. Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, in: Springer Series in Computational Mathematics, Springer-Verlag, Berlin,1986] over triangular meshes, we prove optimal interpolation error estimates for Lagrange triangular finite elements of arbitrary order under the maximal angle condition in a unified and simple way. The key estimate is only an application of the Bramble-Hilbert lemma.

  7. Analytical finite element matrix elements and global matrix assembly for hierarchical 3-D vector basis functions within the hybrid finite element boundary integral method

    NASA Astrophysics Data System (ADS)

    Li, L.; Wang, K.; Li, H.; Eibert, T. F.

    2014-11-01

    A hybrid higher-order finite element boundary integral (FE-BI) technique is discussed where the higher-order FE matrix elements are computed by a fully analytical procedure and where the gobal matrix assembly is organized by a self-identifying procedure of the local to global transformation. This assembly procedure applys to both, the FE part as well as the BI part of the algorithm. The geometry is meshed into three-dimensional tetrahedra as finite elements and nearly orthogonal hierarchical basis functions are employed. The boundary conditions are implemented in a strong sense such that the boundary values of the volume basis functions are directly utilized within the BI, either for the tangential electric and magnetic fields or for the asssociated equivalent surface current densities by applying a cross product with the unit surface normals. The self-identified method for the global matrix assembly automatically discerns the global order of the basis functions for generating the matrix elements. Higher order basis functions do need more unknowns for each single FE, however, fewer FEs are needed to achieve the same satisfiable accuracy. This improvement provides a lot more flexibility for meshing and allows the mesh size to raise up to λ/3. The performance of the implemented system is evaluated in terms of computation time, accuracy and memory occupation, where excellent results with respect to precision and computation times of large scale simulations are found.

  8. A Lagrangian-Eulerian finite element method with adaptive gridding for advection-dispersion problems

    SciTech Connect

    Ijiri, Y.; Karasaki, K.

    1994-02-01

    In the present paper, a Lagrangian-Eulerian finite element method with adaptive gridding for solving advection-dispersion equations is described. The code creates new grid points in the vicinity of sharp fronts at every time step in order to reduce numerical dispersion. The code yields quite accurate solutions for a wide range of mesh Peclet numbers and for mesh Courant numbers well in excess of 1.

  9. Finite Element Interface to Linear Solvers

    SciTech Connect

    Williams, Alan

    2005-03-18

    Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on the problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.

  10. phdMesh

    Energy Science and Technology Software Center (ESTSC)

    2008-01-01

    Parallel Heterogeneous Dynamic unstructured Mesh (phdMesh) data structure library and integration testing code that performs dynamic load balancing of the data structure and parallel geometric proximity search on a contrived test problem. The phdMesh library is intended to be module within a finite element or finite volume library or code. The integration testing code is intended to provide a compact and highly portable performance evaluation code for parallel computing systems.

  11. Thermal Analysis of a High-Speed Aircraft Wing Using p-Version Finite Elements

    NASA Technical Reports Server (NTRS)

    Gould, Dana C.

    2001-01-01

    This paper presents the results of conceptual level thermal analyses of a High Speed Civil Transport (HSCT) wing using p-version finite elements. The work was motivated by a thermal analysis of a HSCT wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining a traditional finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Further study indicated using p-version finite elements might improve computation performance for this class of problem. Methods for determining internal radiation heat transfer were then developed and demonstrated on test problems representative of the geometry found in an aircraft wing structure. This paper presents the results of the application of these new methods to the analysis of a high speed aircraft wing. Results for both a wing box model as well as a full wing model are presented. 'Me reduced wing box model allows for a comparison of the traditional finite element method with mesh refinement (h-refinement) to the new p-version finite elements while the full wing model demonstrates the applicability and efficiency of p-version finite elements for large models.

  12. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.

    PubMed

    Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

    2014-01-01

    We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed. PMID:25301974

  13. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES

    PubMed Central

    RAND, ALEXANDER; GILLETTE, ANDREW; BAJAJ, CHANDRAJIT

    2013-01-01

    We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called ‘serendipity’ elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed. PMID:25301974

  14. The Mimetic Finite Element Method and the Virtual Element Method for elliptic problems with arbitrary regularity.

    SciTech Connect

    Manzini, Gianmarco

    2012-07-13

    We develop and analyze a new family of virtual element methods on unstructured polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular discrete spaces V{sub h} {contained_in} C{sup {alpha}} {element_of} N. The degrees of freedom are (a) solution and derivative values of various degree at suitable nodes and (b) solution moments inside polygons. The convergence of the method is proven theoretically and an optimal error estimate is derived. The connection with the Mimetic Finite Difference method is also discussed. Numerical experiments confirm the convergence rate that is expected from the theory.

  15. Finite-element models of continental extension

    NASA Technical Reports Server (NTRS)

    Lynch, H. David; Morgan, Paul

    1990-01-01

    Numerical models of the initial deformation of extending continental lithosphere, computed to investigate the control of preexisting thermal and mechanical heterogeneities on the style of deformation, are presented. The finite element method is used to calculate deformation with a viscoelastic-plastic model for the lithosphere. Comparisons of the results of analytic models and finite-element models using this method show that good results may be obtained by the numerical technique, even with elements containing both brittle and viscoelastic sampling points. It is shown that the gross style of initial extensional deformation is controlled by the depth and width of the initial heterogeneity which localizes deformation.

  16. Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.

    PubMed

    Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A

    2016-03-21

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. PMID:26900037

  17. Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.

    2010-01-01

    Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.

  18. A moving mesh finite difference method for equilibrium radiation diffusion equations

    SciTech Connect

    Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.

  19. A moving mesh finite difference method for equilibrium radiation diffusion equations

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor-corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.

  20. An adaptive mesh finite volume method for the Euler equations of gas dynamics

    NASA Astrophysics Data System (ADS)

    Mungkasi, Sudi

    2016-06-01

    The Euler equations have been used to model gas dynamics for decades. They consist of mathematical equations for the conservation of mass, momentum, and energy of the gas. For a large time value, the solution may contain discontinuities, even when the initial condition is smooth. A standard finite volume numerical method is not able to give accurate solutions to the Euler equations around discontinuities. Therefore we solve the Euler equations using an adaptive mesh finite volume method. In this paper, we present a new construction of the adaptive mesh finite volume method with an efficient computation of the refinement indicator. The adaptive method takes action automatically at around places having inaccurate solutions. Inaccurate solutions are reconstructed to reduce the error by refining the mesh locally up to a certain level. On the other hand, if the solution is already accurate, then the mesh is coarsened up to another certain level to minimize computational efforts. We implement the numerical entropy production as the mesh refinement indicator. As a test problem, we take the Sod shock tube problem. Numerical results show that the adaptive method is more promising than the standard one in solving the Euler equations of gas dynamics.

  1. Accelerated finite element elastodynamic simulations using the GPU

    SciTech Connect

    Huthwaite, Peter

    2014-01-15

    An approach is developed to perform explicit time domain finite element simulations of elastodynamic problems on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy’ partitioner and a new, more efficient ‘aligned’ partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The software is applied to three models from the fields of non-destructive testing, vibrations and geophysics, demonstrating a memory bandwidth of very close to the card's maximum, reflecting the bandwidth-limited nature of the algorithm. Comparison with Abaqus, a widely used commercial CPU equivalent, validated the accuracy of the results and demonstrated a speed improvement of around two orders of magnitude. A software package, Pogo, incorporating these developments, is released open source, downloadable from (http://www.pogo-fea.com/) to benefit the community. -- Highlights: •A novel memory arrangement approach is discussed for finite elements on the GPU. •The mesh is partitioned then nodes are arranged efficiently within each partition. •Models from ultrasonics, vibrations and geophysics are run. •The code is significantly faster than an equivalent commercial CPU package. •Pogo, the new software package, is released open source.

  2. Fracture Capabilities in Grizzly with the extended Finite Element Method (X-FEM)

    SciTech Connect

    Dolbow, John; Zhang, Ziyu; Spencer, Benjamin; Jiang, Wen

    2015-09-01

    Efforts are underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). A capability was previously developed to calculate three-dimensional interaction- integrals to extract mixed-mode stress-intensity factors. This capability requires the use of a finite element mesh that conforms to the crack geometry. The eXtended Finite Element Method (X-FEM) provides a means to represent a crack geometry without explicitly fitting the finite element mesh to it. This is effected by enhancing the element kinematics to represent jump discontinuities at arbitrary locations inside of the element, as well as the incorporation of asymptotic near-tip fields to better capture crack singularities. In this work, use of only the discontinuous enrichment functions was examined to see how accurate stress intensity factors could still be calculated. This report documents the following work to enhance Grizzly’s engineering fracture capabilities by introducing arbitrary jump discontinuities for prescribed crack geometries; X-FEM Mesh Cutting in 3D: to enhance the kinematics of elements that are intersected by arbitrary crack geometries, a mesh cutting algorithm was implemented in Grizzly. The algorithm introduces new virtual nodes and creates partial elements, and then creates a new mesh connectivity; Interaction Integral Modifications: the existing code for evaluating the interaction integral in Grizzly was based on the assumption of a mesh that was fitted to the crack geometry. Modifications were made to allow for the possibility of a crack front that passes arbitrarily through the mesh; and Benchmarking for 3D Fracture: the new capabilities were benchmarked against mixed-mode three-dimensional fracture problems with known analytical solutions.

  3. Domain decomposition based iterative methods for nonlinear elliptic finite element problems

    SciTech Connect

    Cai, X.C.

    1994-12-31

    The class of overlapping Schwarz algorithms has been extensively studied for linear elliptic finite element problems. In this presentation, the author considers the solution of systems of nonlinear algebraic equations arising from the finite element discretization of some nonlinear elliptic equations. Several overlapping Schwarz algorithms, including the additive and multiplicative versions, with inexact Newton acceleration will be discussed. The author shows that the convergence rate of the Newton`s method is independent of the mesh size used in the finite element discretization, and also independent of the number of subdomains into which the original domain in decomposed. Numerical examples will be presented.

  4. Accurate, finite-volume methods for three dimensional magneto-hydrodynamics on Lagrangian meshes

    SciTech Connect

    Rousculp, C.L.; Barnes, D.C.

    1999-07-01

    Recently developed algorithms for ideal and resistive, 3D MHD calculations on Lagrangian hexahedral meshes have been generalized to work with a lagrangian mesh composed of arbitrary polyhedral cells. this allows for mesh refinement during a calculation to prevent the well known problem of tangling in a Lagrangian mesh. Arbitrary polyhedral cells are decomposed into tetrahedrons. The action of the magnetic vector potential, A {sm_bullet} {delta}1, is centered on all faces edges of this extended mesh. Thus, {triangledown} {sm_bullet} B = 0 is maintained to round-off error. For ideal flow, (E = v x B), vertex forces are derived by the variation of magnetic energy with respect to vertex positions, F = {minus}{partial_derivative}W{sub B}/{partial_derivative}r. This assures symmetry as well as magnetic flux, momentum, and energy conservation. The method is local so that parallelization by domain decomposition is natural for large meshes. In addition, a simple, ideal-gas, finite pressure term has been included. The resistive diffusion, (E = {minus}{eta}J), is treated with a support operator method, to obtain an energy conservative, symmetric method on an arbitrary polyhedral mesh. The equation of motion is time-step-split. First, the ideal term is treated explicitly. Next, the diffusion is solved implicitly with a preconditioned conjugate gradient method. Results of convergence tests are presented. Initial results of an annular Z-pinch implosion problem illustrate the application of these methods to multi-material problems.

  5. Method of modifying a volume mesh using sheet extraction

    DOEpatents

    Borden, Michael J.; Shepherd, Jason F.

    2007-02-20

    A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet extraction. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of determining a sheet of hexahedral mesh elements, generating nodes for merging, and merging the nodes to delete the sheet of hexahedral mesh elements and modify the volume mesh.

  6. Use of edge-based finite elements for solving three dimensional scattering problems

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Jin, J. M.; Volakis, John L.

    1991-01-01

    Edge based finite elements are free from drawbacks associated with node based vectorial finite elements and are, therefore, ideal for solving 3-D scattering problems. The finite element discretization using edge elements is checked by solving for the resonant frequencies of a closed inhomogeneously filled metallic cavity. Great improvements in accuracy are observed when compared to the classical node based approach with no penalty in terms of computational time and with the expected absence of spurious modes. A performance comparison between the edge based tetrahedra and rectangular brick elements is carried out and tetrahedral elements are found to be more accurate than rectangular bricks for a given storage intensity. A detailed formulation for the scattering problem with various approaches for terminating the finite element mesh is also presented.

  7. Phase-space finite elements in a least-squares solution of the transport equation

    SciTech Connect

    Drumm, C.; Fan, W.; Pautz, S.

    2013-07-01

    The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshing tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)

  8. Verification of Orthogrid Finite Element Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Steeve, B. E.

    1996-01-01

    The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.

  9. Variable-node plate and shell elements with assumed natural strain and smoothed integration methods for nonmatching meshes

    NASA Astrophysics Data System (ADS)

    Sohn, Dongwoo; Im, Seyoung

    2013-06-01

    In this paper, novel finite elements that include an arbitrary number of additional nodes on each edge of a quadrilateral element are proposed to achieve compatible connection of neighboring nonmatching meshes in plate and shell analyses. The elements, termed variable-node plate elements, are based on two-dimensional variable-node elements with point interpolation and on the Mindlin-Reissner plate theory. Subsequently the flat shell elements, termed variable-node shell elements, are formulated by further extending the plate elements. To eliminate a transverse shear locking phenomenon, the assumed natural strain method is used for plate and shell analyses. Since the variable-node plate and shell elements allow an arbitrary number of additional nodes and overcome locking problems, they make it possible to connect two nonmatching meshes and to provide accurate solutions in local mesh refinement. In addition, the curvature and strain smoothing methods through smoothed integration are adopted to improve the element performance. Several numerical examples are presented to demonstrate the effectiveness of the elements in terms of the accuracy and efficiency of the analyses.

  10. Visualizing higher order finite elements. Final report

    SciTech Connect

    Thompson, David C; Pebay, Philippe Pierre

    2005-11-01

    This report contains an algorithm for decomposing higher-order finite elements into regions appropriate for isosurfacing and proves the conditions under which the algorithm will terminate. Finite elements are used to create piecewise polynomial approximants to the solution of partial differential equations for which no analytical solution exists. These polynomials represent fields such as pressure, stress, and momentum. In the past, these polynomials have been linear in each parametric coordinate. Each polynomial coefficient must be uniquely determined by a simulation, and these coefficients are called degrees of freedom. When there are not enough degrees of freedom, simulations will typically fail to produce a valid approximation to the solution. Recent work has shown that increasing the number of degrees of freedom by increasing the order of the polynomial approximation (instead of increasing the number of finite elements, each of which has its own set of coefficients) can allow some types of simulations to produce a valid approximation with many fewer degrees of freedom than increasing the number of finite elements alone. However, once the simulation has determined the values of all the coefficients in a higher-order approximant, tools do not exist for visual inspection of the solution. This report focuses on a technique for the visual inspection of higher-order finite element simulation results based on decomposing each finite element into simplicial regions where existing visualization algorithms such as isosurfacing will work. The requirements of the isosurfacing algorithm are enumerated and related to the places where the partial derivatives of the polynomial become zero. The original isosurfacing algorithm is then applied to each of these regions in turn.

  11. 3-dimensional wells and tunnels for finite element grids

    SciTech Connect

    Cherry, T.A.; Gable, C.W.; Trease, H.

    1996-12-31

    Modeling fluid, vapor, and air injection and extraction from wells poses a number of problems. The length scale of well bores is centimeters, the region of high pressure gradient may be tens of meters and the reservoir may be tens of kilometers. Furthermore, accurate representation of the path of a deviated well can be difficult. Incorporating the physics of injection and extraction can be made easier and more accurate with automated grid generation tools that incorporate wells as part of a background mesh that represents the reservoir. GEOMESH is a modeling tool developed for automating finite element grid generation. This tool maintains the geometric integrity of the geologic framework and produces optimal (Delaunay) tetrahedral grids. GEOMESH creates a 3D well as hexagonal segments formed along the path of the well. This well structure is tetrahedralized into a Delaunay mesh and then embedded into a background mesh. The well structure can be radially or vertically refined and each well layer is assigned a material property or can take on the material properties of the surrounding stratigraphy. The resulting embedded well can then be used by unstructured finite element models for gas and fluid flow in the vicinity of wells or tunnels. This 3D well representation allows the study of the free-surface of the well and surrounding stratigraphy. It reduces possible grid orientation effects, and allows better correlation between well sample data and the geologic model. The well grids also allow improved visualization for well and tunnel model analysis. 3D observation of the grids helps qualitative interpretation and can reveal features not apparent in fewer dimensions.

  12. 3-dimensional wells and tunnels for finite element grids

    SciTech Connect

    Cherry, T.A.; Gable, C.W.; Trease, H.

    1996-04-01

    Modeling fluid, vapor, and air injection and extraction from wells poses a number of problems. The length scale of well bores is centimeters, the region of high pressure gradient may be tens of meters and the reservoir may be tens of kilometers. Furthermore, accurate representation of the path of a deviated well can be difficult. Incorporating the physics of injection and extraction can be made easier and more accurate with automated grid generation tools that incorporate wells as part of a background mesh that represents the reservoir. GEOMESH is a modeling tool developed for automating finite element grid generation. This tool maintains the geometric integrity of the geologic framework and produces optimal (Delaunay) tetrahedral grids. GEOMESH creates a 3D well as hexagonal segments formed along the path of the well. This well structure is tetrahedralized into a Delaunay mesh and then embedded into a background mesh. The well structure can be radially or vertically refined and each well layer is assigned a material property or can take on the material properties of the surrounding stratigraphy. The resulting embedded well can then be used by unstructured finite element models for gas and fluid flow in the vicinity of wells or tunnels. This 3D well representation allows the study of the free- surface of the well and surrounding stratigraphy. It reduces possible grid orientation effects, and allows better correlation between well sample data and the geologic model. The well grids also allow improved visualization for well and tunnel model analysis. 3D observation of the grids helps qualitative interpretation and can reveal features not apparent in fewer dimensions.

  13. Finite element treatment of soft elastohydrodynamic lubrication problems in the finite deformation regime

    NASA Astrophysics Data System (ADS)

    Stupkiewicz, Stanisław

    2009-10-01

    Soft elastohydrodynamic lubrication (EHL) problem is studied for a reciprocating elastomeric seal with full account of finite configuration changes. The fluid part is described by the Reynolds equation which is formulated on the deformed boundary of the seal treated as a hyperelastic body. The paper is concerned with the finite element (FE) treatment of this soft EHL problem. Displacement-based FE discretization is applied for the solid part. The Reynolds equation is discretized using the FE method or, alternatively, the discontinuous Galerkin method, both employing higher-order interpolation of pressure. The performance of both methods is assessed by studying convergence and stability of the solution for a benchmark problem of an O-ring seal. It is shown that the solution may exhibit spurious oscillations which occur in severe lubrication conditions. Mesh refinement results in reduction of these oscillations, while increasing the pressure interpolation order or application of the discontinuous Galerkin method does not help significantly.

  14. Nonlinear explicit transient finite element analysis on the Intel Delta

    SciTech Connect

    Plaskacz, E.J.; Ramirez, M.R.; Gupta, S.

    1993-03-01

    Many large scale finite element problems are intractable on current generation production supercomputers. High-performance computer architectures offer effective avenues to bridge the gap between computational needs and the power of computational hardware. The biggest challenge lies in the substitution of the key algorithms in an application program with redesigned algorithms which exploit the new architectures and use better or more appropriate numerical techniques. A methodology for implementing nonlinear finite element analysis on a homogeneous distributed processing network is discussed. The method can also be extended to heterogeneous networks comprised of different machine architectures provided that they have a mutual communication interface. This unique feature has greatly facilitated the port of the code to the 8-node Intel Touchstone Gamma and then the 512-node Intel Touchstone Delta. The domain is decomposed serially in a preprocessor. Separate input files are written for each subdomain. These files are read in by local copies of the program executable operating in parallel. Communication between processors is addressed utilizing asynchronous and synchronous message passing. The basic kernel of message passing is the internal force exchange which is analogous to the computed interactions between sections of physical bodies in static stress analysis. Benchmarks for the Intel Delta are presented. Performance exceeding 1 gigaflop was attained. Results for two large-scale finite element meshes are presented.

  15. Nonlinear explicit transient finite element analysis on the Intel Delta

    SciTech Connect

    Plaskacz, E.J. ); Ramirez, M.R.; Gupta, S. . Dept. of Civil Engineering)

    1993-01-01

    Many large scale finite element problems are intractable on current generation production supercomputers. High-performance computer architectures offer effective avenues to bridge the gap between computational needs and the power of computational hardware. The biggest challenge lies in the substitution of the key algorithms in an application program with redesigned algorithms which exploit the new architectures and use better or more appropriate numerical techniques. A methodology for implementing nonlinear finite element analysis on a homogeneous distributed processing network is discussed. The method can also be extended to heterogeneous networks comprised of different machine architectures provided that they have a mutual communication interface. This unique feature has greatly facilitated the port of the code to the 8-node Intel Touchstone Gamma and then the 512-node Intel Touchstone Delta. The domain is decomposed serially in a preprocessor. Separate input files are written for each subdomain. These files are read in by local copies of the program executable operating in parallel. Communication between processors is addressed utilizing asynchronous and synchronous message passing. The basic kernel of message passing is the internal force exchange which is analogous to the computed interactions between sections of physical bodies in static stress analysis. Benchmarks for the Intel Delta are presented. Performance exceeding 1 gigaflop was attained. Results for two large-scale finite element meshes are presented.

  16. Finite element radiation transport in one dimension

    SciTech Connect

    Painter, J.F.

    1997-05-09

    A new physics package solves radiation transport equations in one space dimension, multiple energy groups and directions. A discontinuous finite element method discretizes radiation intensity with respect to space and angle, and a continuous finite element method discretizes electron temperature `in space. A splitting method solves the resulting linear equations. This is a one-dimensional analog of Kershaw and Harte`s two-dimensional package. This package has been installed in a two-dimensional inertial confinement fusion code, and has given excellent results for both thermal waves and highly directional radiation. In contrast, the traditional discrete ordinate and spherical harmonic methods show less accurate results in both cases.

  17. Simulation of wind effects on tall structures by finite element method

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Masood

    2015-07-01

    In the present study finite element method is used to predict the wind forces on a tall structure. The governing equations of mass and momentum with boundary conditions are solved. The κ-ɛ turbulence model is utilized to calculate the turbulence viscosity. The results are independent from the generated mesh. The numerical results are validated with American Society of Civil Engineering standards.

  18. Automated volumetric grid generation for finite element modeling of human hand joints

    SciTech Connect

    Hollerbach, K.; Underhill, K.; Rainsberger, R.

    1995-02-01

    We are developing techniques for finite element analysis of human joints. These techniques need to provide high quality results rapidly in order to be useful to a physician. The research presented here increases model quality and decreases user input time by automating the volumetric mesh generation step.

  19. Simulation of wind effects on tall structures by finite element method

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Masood

    2016-06-01

    In the present study finite element method is used to predict the wind forces on a tall structure. The governing equations of mass and momentum with boundary conditions are solved. The κ- ɛ turbulence model is utilized to calculate the turbulence viscosity. The results are independent from the generated mesh. The numerical results are validated with American Society of Civil Engineering standards.

  20. Tangential differential calculus and the finite element modeling of a large deformation elastic membrane problem

    NASA Astrophysics Data System (ADS)

    Hansbo, Peter; Larson, Mats G.; Larsson, Fredrik

    2015-07-01

    We develop a finite element method for a large deformation membrane elasticity problem on meshed curved surfaces using a tangential differential calculus approach that avoids the use of classical differential geometric methods. The method is also applied to form finding problems.

  1. Edge-based finite elements and vector ABCs applied to 3D scattering

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Jin, J. M.; Volakis, John L.

    1992-01-01

    An edge based finite element formulation with vector absorbing boundary conditions is presented for scattering by composite structures having boundaries satisfying impedance and/or transition conditions. Remarkably accurate results are obtained by placing the mesh a small fraction of a wavelength away from the scatterer.

  2. The sensitivity of biological finite element models to the resolution of surface geometry: a case study of crocodilian crania

    PubMed Central

    Evans, Alistair R.; McHenry, Colin R.

    2015-01-01

    The reliability of finite element analysis (FEA) in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context. PMID:26056620

  3. Slave finite elements: The temporal element approach to nonlinear analysis

    NASA Technical Reports Server (NTRS)

    Gellin, S.

    1984-01-01

    A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.

  4. Numerical computation of transonic flows by finite-element and finite-difference methods

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  5. Efficient finite element simulation of slot spirals, slot radomes and microwave structures

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, J. L.

    1995-01-01

    This progress report contains the following two documents: (1) 'Efficient Finite Element Simulation of Slot Antennas using Prismatic Elements' - A hybrid finite element-boundary integral (FE-BI) simulation technique is discussed to treat narrow slot antennas etched on a planar platform. Specifically, the prismatic elements are used to reduce the redundant sampling rates and ease the mesh generation process. Numerical results for an antenna slot and frequency selective surfaces are presented to demonstrate the validity and capability of the technique; and (2) 'Application and Design Guidelines of the PML Absorber for Finite Element Simulations of Microwave Packages' - The recently introduced perfectly matched layer (PML) uniaxial absorber for frequency domain finite element simulations has several advantages. In this paper we present the application of PML for microwave circuit simulations along with design guidelines to obtain a desired level of absorption. Different feeding techniques are also investigated for improved accuracy.

  6. Evaluation of the use of a singularity element in finite element analysis of center-cracked plates

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Gross, B.; Srawley, J., E.

    1972-01-01

    Two different methods are applied to the analyses of finite width linear elastic plates with central cracks. Both methods give displacements as a primary part of the solution. One method makes use of Fourier transforms. The second method employs a coarse mesh of triangular second-order finite elements in conjunction with a single singularity element subjected to appropriate additional constraints. The displacements obtained by these two methods are in very good agreement. The results suggest considerable potential for the use of a cracked element for related crack problems, particularly in connection with the extension to nonlinear material behavior.

  7. Finite element modeling of nonisothermal polymer flows

    NASA Technical Reports Server (NTRS)

    Roylance, D.

    1981-01-01

    A finite element formulation designed to simulate polymer melt flows in which both conductive and convective heat transfer are important is described, and the numerical model is illustrated by means of computer experiments using extruder drag flow and entry flow as trial problems. Fluid incompressibility is enforced by a penalty treatment of the element pressures, and the thermal convective transport is modeled by conventional Galerkin and optimal upwind treatments.

  8. Evolution of assumed stress hybrid finite element

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1984-01-01

    Early versions of the assumed stress hybrid finite elements were based on the a priori satisifaction of stress equilibrium conditions. In the new version such conditions are relaxed but are introduced through additional internal displacement functions as Lagrange multipliers. A rational procedure is to choose the displacement terms such that the resulting strains are now of complete polynomials up to the same degree as that of the assumed stresses. Several example problems indicate that optimal element properties are resulted by this method.

  9. A multidimensional finite element method for CFD

    NASA Technical Reports Server (NTRS)

    Pepper, Darrell W.; Humphrey, Joseph W.

    1991-01-01

    A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.

  10. Finite Element Simulation of Smart Structures

    NASA Technical Reports Server (NTRS)

    Cui, Y. Lawrence; Panahandeh, M.

    1996-01-01

    Finite element equations representing the behavior of piezoelectric materials when bounded to a typical structure and used as sensors and actuators were developed. Emphasis was placed on generating sensor output equations of piezoelectric sensors and responses of a typical structure bonded with piezoelectric sensors and actuators on the basis of finite element formulation. The model can predict not only structural responses due to both mechanical and electrical loading but also electrical potential due to mechanical or thermal effects. The resulted finite element equations were then used for simple control design and performance evaluation. In the control algorithm, voltages coming out from piezoelectric sensors, which are proportional to strains at sensing locations, are taken as input. The voltages applied to the piezoelectric actuators are used as output. The feasibility of integrating control algorithm with the element routine developed herein and FEAP was demonstrated. In particular, optimal independent modal space control was implemented in a software package on the basis of finite element formulation. A rudimentary finite element-control algorithm package was also developed to evaluate the performance of candidate control laws. A few numerical simulations using the software package developed herein were given. The integrated software package will provide a design tool to address issues such as how adaptive smart systems will scale to a full size aircraft, the amount of piezoelectric materials and the powers needed to actuate it for desired performance. It will also provide a viable new structural control design concept for practical applications in large flexible structures such as aerospace vehicles and aircraft.

  11. An Imbricate Finite Element Method (I-FEM) using full, reduced, and smoothed integration

    NASA Astrophysics Data System (ADS)

    Cazes, Fabien; Meschke, Günther

    2013-11-01

    A method to design finite elements that imbricate with each other while being assembled, denoted as imbricate finite element method, is proposed to improve the smoothness and the accuracy of the approximation based upon low order elements. Although these imbricate elements rely on triangular meshes, the approximation stems from the shape functions of bilinear quadrilateral elements. These elements satisfy the standard requirements of the finite element method: continuity, delta function property, and partition of unity. The convergence of the proposed approximation is investigated by means of two numerical benchmark problems comparing three different schemes for the numerical integration including a cell-based smoothed FEM based on a quadratic shape of the elements edges. The method is compared to related existing methods.

  12. Finite element displacement analysis of a lung.

    NASA Technical Reports Server (NTRS)

    Matthews, F. L.; West, J. B.

    1972-01-01

    A method is given based on the technique of finite elements which determines theoretically the mechanical behavior of a lung-shaped body loaded by its own weight. The results of this theoretical analysis have been compared with actual measurements of alveolar size and pleural pressures in animal lungs.

  13. Animation of finite element models and results

    NASA Technical Reports Server (NTRS)

    Lipman, Robert R.

    1992-01-01

    This is not intended as a complete review of computer hardware and software that can be used for animation of finite element models and results, but is instead a demonstration of the benefits of visualization using selected hardware and software. The role of raw computational power, graphics speed, and the use of videotape are discussed.

  14. Investigation of Radar Propagation in Buildings: A 10 Billion Element Cartesian-Mesh FETD Simulation

    SciTech Connect

    Stowell, M L; Fasenfest, B J; White, D A

    2008-01-14

    In this paper large scale full-wave simulations are performed to investigate radar wave propagation inside buildings. In principle, a radar system combined with sophisticated numerical methods for inverse problems can be used to determine the internal structure of a building. The composition of the walls (cinder block, re-bar) may effect the propagation of the radar waves in a complicated manner. In order to provide a benchmark solution of radar propagation in buildings, including the effects of typical cinder block and re-bar, we performed large scale full wave simulations using a Finite Element Time Domain (FETD) method. This particular FETD implementation is tuned for the special case of an orthogonal Cartesian mesh and hence resembles FDTD in accuracy and efficiency. The method was implemented on a general-purpose massively parallel computer. In this paper we briefly describe the radar propagation problem, the FETD implementation, and we present results of simulations that used over 10 billion elements.

  15. A Floating Node Method for the Modelling of Discontinuities Within a Finite Element

    NASA Technical Reports Server (NTRS)

    Pinho, Silvestre T.; Chen, B. Y.; DeCarvalho, Nelson V.; Baiz, P. M.; Tay, T. E.

    2013-01-01

    This paper focuses on the accurate numerical representation of complex networks of evolving discontinuities in solids, with particular emphasis on cracks. The limitation of the standard finite element method (FEM) in approximating discontinuous solutions has motivated the development of re-meshing, smeared crack models, the eXtended Finite Element Method (XFEM) and the Phantom Node Method (PNM). We propose a new method which has some similarities to the PNM, but crucially: (i) does not introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not require numerical integration over only part of a domain; (iii) can incorporate weak discontinuities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is conceptually simpler than the PNM.

  16. Sensitivity Analysis of Material Microstructure Effects on Predicted Crack Paths Using Finite Element Simulations

    NASA Astrophysics Data System (ADS)

    Jacob, Anaïs; Mehmanparast, Ali

    2016-07-01

    The effects of microstructure, grain and grain boundary (GB) properties on predicted damage paths and indicative crack propagation direction have been examined for a polycrystalline material using mesoscale finite element simulations. Numerical analyses were carried out on a compact tension specimen geometry containing granular mesh structures with random grain shapes and sizes of average diameter 100μm. Nanoindentation tests were performed to investigate the dependency of mesoscale hardness measurements on the indentation location with respect to grain and GB regions. Finite element results have shown that under tensile loading conditions, the predicted damage paths are very sensitive to the granular mesh structure, GB properties and individual grain properties. Furthermore, finite element results have revealed that the cracking mode (i.e., transgranular/intergranular) and maximum crack deviation angle are strongly dependent on the material microstructures employed in simulations.

  17. On Hybrid and mixed finite element methods

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1981-01-01

    Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.

  18. Finite element computation with parallel VLSI

    NASA Technical Reports Server (NTRS)

    Mcgregor, J.; Salama, M.

    1983-01-01

    This paper describes a parallel processing computer consisting of a 16-bit microcomputer as a master processor which controls and coordinates the activities of 8086/8087 VLSI chip set slave processors working in parallel. The hardware is inexpensive and can be flexibly configured and programmed to perform various functions. This makes it a useful research tool for the development of, and experimentation with parallel mathematical algorithms. Application of the hardware to computational tasks involved in the finite element analysis method is demonstrated by the generation and assembly of beam finite element stiffness matrices. A number of possible schemes for the implementation of N-elements on N- or n-processors (N is greater than n) are described, and the speedup factors of their time consumption are determined as a function of the number of available parallel processors.

  19. Revolution in Orthodontics: Finite element analysis

    PubMed Central

    Singh, Johar Rajvinder; Kambalyal, Prabhuraj; Jain, Megha; Khandelwal, Piyush

    2016-01-01

    Engineering has not only developed in the field of medicine but has also become quite established in the field of dentistry, especially Orthodontics. Finite element analysis (FEA) is a computational procedure to calculate the stress in an element, which performs a model solution. This structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the finite element method (FEM) to view a variety of parameters, and to fully identify implications of the analysis. This is a review to show the applications of FEM in Orthodontics. It is extremely important to verify what the purpose of the study is in order to correctly apply FEM. PMID:27114948

  20. Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature

    SciTech Connect

    Rudd, R E; Broughton, J Q

    2005-05-30

    Coarse-grained molecular dynamics (CGMD) is a technique developed as a concurrent multiscale model that couples conventional molecular dynamics (MD) to a more coarse-grained description of the periphery. The coarse-grained regions are modeled on a mesh in a formulation that generalizes conventional finite element modeling (FEM) of continuum elasticity. CGMD is derived solely from the MD model, however, and has no continuum parameters. As a result, it provides a coupling that is smooth and provides control of errors that arise at the coupling between the atomistic and coarse-grained regions. In this article, we elaborate on the formulation of CGMD, describing in detail how CGMD is applied to anharmonic solids and finite temperature simulations. As tests of CGMD, we present in detail the calculation of the phonon spectra for solid argon and tantalum in 3D, demonstrating how CGMD provides a better description of the elastic waves than that provided by FEM. We also present elastic wave scattering calculations that show the elastic wave scattering is more benign in CGMD than FEM. We also discuss the dependence of scattering on the properties of the mesh. We introduce a rigid approximation to CGMD that eliminates internal relaxation, similar to the Quasicontinuum technique, and compare it to the full CGMD.

  1. Finite Element Interface to Linear Solvers

    Energy Science and Technology Software Center (ESTSC)

    2005-03-18

    Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on themore » problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.« less

  2. New plate and shell elements for NASTRAN. [development of higher order triangular plate-bending finite element

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.

    1973-01-01

    A new higher order triangular plate-bending finite element is presented which possesses high accuracy for practical mesh subdivisions and which uses only translations and rotations as grid point degrees of freedom. The element has 18 degrees of freedom, the transverse displacement and two rotations at the vertices and mid-side grid points of the triangle. The transverse displacement within the element is approximated by a quintic polynomial; the bending strains thus vary cubically within the element. Transverse shear flexibility is taken into account in the stiffness formulation. Two examples of static and dynamic analysis are included to show the behavior of the element.

  3. Finite Element Heat & Mass Transfer Code

    Energy Science and Technology Software Center (ESTSC)

    1996-10-10

    FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; andmore » double porosity and double porosity/double permeability capabilities.« less

  4. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  5. Simplified Finite Element Modelling of Acoustically Treated Structures

    NASA Astrophysics Data System (ADS)

    Carfagni, M.; Citti, P.; Pierini, M.

    1997-07-01

    The application of non-optimized damping and phono-absorbent materials to automotive systems has not proved fully satisfactory in abating noise and vibration. The objective of this work was to develop a simple finite element modelling procedure that would allow optimizing structures such as a car body-in-white in terms of vibroacoustic behavior from the design stage. A procedure was developed to determine the modifications to be made in the mass, stiffness and damping characteristics in the finite element (FE) modelling of a metal structure meshed with shell elements so that the model would describe the behavior of the acoustically treated structure. To validate the modifications, a numerical-experimental comparison of the velocities on the vibrating surface was carried out, followed by a numerical-experimental comparison of the sound pressures generated by the vibrating plate. In the comparison a simple monopole model was used, in which each area of vibrating surface could be likened to a point source. The simulation and experimental procedures, previously validated for the metal structure, were then applied to multi-layered panels. Good agreement between the experimental and simulated velocities and sound pressures resulted for all the multi-layered panel configurations examined.

  6. Evaluation of a Kinematically-Driven Finite Element Footstrike Model.

    PubMed

    Hannah, Iain; Harland, Andy; Price, Dan; Schlarb, Heiko; Lucas, Tim

    2016-06-01

    A dynamic finite element model of a shod running footstrike was developed and driven with 6 degree of freedom foot segment kinematics determined from a motion capture running trial. Quadratic tetrahedral elements were used to mesh the footwear components with material models determined from appropriate mechanical tests. Model outputs were compared with experimental high-speed video (HSV) footage, vertical ground reaction force (GRF), and center of pressure (COP) excursion to determine whether such an approach is appropriate for the development of athletic footwear. Although unquantified, good visual agreement to the HSV footage was observed but significant discrepancies were found between the model and experimental GRF and COP readings (9% and 61% of model readings outside of the mean experimental reading ± 2 standard deviations, respectively). Model output was also found to be highly sensitive to input kinematics with a 120% increase in maximum GRF observed when translating the force platform 2 mm vertically. While representing an alternative approach to existing dynamic finite element footstrike models, loading highly representative of an experimental trial was not found to be achievable when employing exclusively kinematic boundary conditions. This significantly limits the usefulness of employing such an approach in the footwear development process. PMID:26671721

  7. Effects of Mesh Irregularities on Accuracy of Finite-Volume Discretization Schemes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2012-01-01

    The effects of mesh irregularities on accuracy of unstructured node-centered finite-volume discretizations are considered. The focus is on an edge-based approach that uses unweighted least-squares gradient reconstruction with a quadratic fit. For inviscid fluxes, the discretization is nominally third order accurate on general triangular meshes. For viscous fluxes, the scheme is an average-least-squares formulation that is nominally second order accurate and contrasted with a common Green-Gauss discretization scheme. Gradient errors, truncation errors, and discretization errors are separately studied according to a previously introduced comprehensive methodology. The methodology considers three classes of grids: isotropic grids in a rectangular geometry, anisotropic grids typical of adapted grids, and anisotropic grids over a curved surface typical of advancing layer grids. The meshes within the classes range from regular to extremely irregular including meshes with random perturbation of nodes. Recommendations are made concerning the discretization schemes that are expected to be least sensitive to mesh irregularities in applications to turbulent flows in complex geometries.

  8. Accurate, finite-volume methods for 3D MHD on unstructured Lagrangian meshes

    SciTech Connect

    Barnes, D.C.; Rousculp, C.L.

    1998-10-01

    Previous 2D methods for magnetohydrodynamics (MHD) have contributed both to development of core code capability and to physics applications relevant to AGEX pulsed-power experiments. This strategy is being extended to 3D by development of a modular extension of an ASCI code. Extension to 3D not only increases complexity by problem size, but also introduces new physics, such as magnetic helicity transport. The authors have developed a method which incorporates all known conservation properties into the difference scheme on a Lagrangian unstructured mesh. Because the method does not depend on the mesh structure, mesh refinement is possible during a calculation to prevent the well known problem of mesh tangling. Arbitrary polyhedral cells are decomposed into tetrahedrons. The action of the magnetic vector potential, A {center_dot} {delta}l, is centered on the edges of this extended mesh. For ideal flow, this maintains {del} {center_dot} B = 0 to round-off error. Vertex forces are derived by the variation of magnetic energy with respect to vertex positions, F = {minus}{partial_derivative}W{sub B}/{partial_derivative}r. This assures symmetry as well as magnetic flux, momentum, and energy conservation. The method is local so that parallelization by domain decomposition is natural for large meshes. In addition, a simple, ideal-gas, finite pressure term has been included. The resistive diffusion part is calculated using the support operator method, to obtain an energy conservative, symmetric method on an arbitrary mesh. Implicit time difference equations are solved by preconditioned, conjugate gradient methods. Results of convergence tests are presented. Initial results of an annular Z-pinch implosion problem illustrate the application of these methods to multi-material problems.

  9. Diagonal multisoliton matrix elements in finite volume

    NASA Astrophysics Data System (ADS)

    Pálmai, T.; Takács, G.

    2013-02-01

    We consider diagonal matrix elements of local operators between multisoliton states in finite volume in the sine-Gordon model and formulate a conjecture regarding their finite size dependence which is valid up to corrections exponential in the volume. This conjecture extends the results of Pozsgay and Takács which were only valid for diagonal scattering. In order to test the conjecture, we implement a numerical renormalization group improved truncated conformal space approach. The numerical comparisons confirm the conjecture, which is expected to be valid for general integrable field theories. The conjectured formula can be used to evaluate finite temperature one-point and two-point functions using recently developed methods.

  10. An iterative parallel sparse matrix equation solver with application to finite element modeling of electromagnetic scattering

    SciTech Connect

    Cwik, T.; Jamnejad, V.; Zuffada, C.

    1994-12-31

    The usefulness of finite element modeling follows from the ability to accurately simulate the geometry and three-dimensional fields on the scale of a fraction of a wavelength. To make this modeling practical for engineering design, it is necessary to integrate the stages of geometry modeling and mesh generation, numerical solution of the fields-a stage heavily dependent on the efficient use of a sparse matrix equation solver, and display of field information. The stages of geometry modeling, mesh generation, and field display are commonly completed using commercially available software packages. Algorithms for the numerical solution of the fields need to be written for the specific class of problems considered. Interior problems, i.e. simulating fields in waveguides and cavities, have been successfully solved using finite element methods. Exterior problems, i.e. simulating fields scattered or radiated from structures, are more difficult to model because of the need to numerically truncate the finite element mesh. To practically compute a solution to exterior problems, the domain must be truncated at some finite surface where the Sommerfeld radiation condition is enforced, either approximately or exactly. Approximate methods attempt to truncate the mesh using only local field information at each grid point, whereas exact methods are global, needing information from the entire mesh boundary. In this work, a method that couples three-dimensional finite element (FE) solutions interior to the bounding surface, with an efficient integral equation (IE) solution that exactly enforces the Sommerfeld radiation condition is developed. The bounding surface is taken to be a surface of revolution (SOR) to greatly reduce computational expense in the IE portion of the modeling.

  11. TRIM: A finite-volume MHD algorithm for an unstructured adaptive mesh

    SciTech Connect

    Schnack, D.D.; Lottati, I.; Mikic, Z.

    1995-07-01

    The authors describe TRIM, a MHD code which uses finite volume discretization of the MHD equations on an unstructured adaptive grid of triangles in the poloidal plane. They apply it to problems related to modeling tokamak toroidal plasmas. The toroidal direction is treated by a pseudospectral method. Care was taken to center variables appropriately on the mesh and to construct a self adjoint diffusion operator for cell centered variables.

  12. A new spectral finite volume method for elastic wave modelling on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Zhuang, Yuan; Chung, Eric T.

    2016-04-01

    In this paper, we consider a new spectral finite volume method for the elastic wave equations. Our new finite volume method is based on a piecewise constant approximation on a fine mesh and a high-order polynomial reconstruction on a coarser mesh. Our new method is constructed based on two existing techniques, the high-order finite volume method and the spectral finite volume method. In fact, we will construct a new method to take advantage of both methods. More precisely, our method has two distinctive features. The first one is that the local polynomial reconstructions are performed on the coarse triangles, and the reconstruction matrices for all the coarse triangles are the same. This fact enhances the parallelization of our algorithm. We will present a parallel implementation of our method and show excellent efficiency results. The second one is that, by using a suitable number of finer triangles with a coarse triangle, we obtain an over-determined reconstruction system, which can enhance the robustness of the reconstruction process. To derive our scheme, standard finite volume technique is applied to each fine triangle, and the high-order reconstructed polynomials, computed on coarse triangles, are used to compute numerical fluxes. We will present numerical results to show the performance of our method. Our method is presented for 2D problems, but the same methodology can be applied to 3D.

  13. Plasticity - Theory and finite element applications.

    NASA Technical Reports Server (NTRS)

    Armen, H., Jr.; Levine, H. S.

    1972-01-01

    A unified presentation is given of the development and distinctions associated with various incremental solution procedures used to solve the equations governing the nonlinear behavior of structures, and this is discussed within the framework of the finite-element method. Although the primary emphasis here is on material nonlinearities, consideration is also given to geometric nonlinearities acting separately or in combination with nonlinear material behavior. The methods discussed here are applicable to a broad spectrum of structures, ranging from simple beams to general three-dimensional bodies. The finite-element analysis methods for material nonlinearity are general in the sense that any of the available plasticity theories can be incorporated to treat strain hardening or ideally plastic behavior.

  14. Finite Element Analysis of Honeycomb Impact Attenuator

    NASA Astrophysics Data System (ADS)

    Yang, Seung-Yong; Choi, Seung-Kyu; Kim, Nohyu

    To participate in Student Formula Society of Automotive Engineers (SAE) competitions, it is necessary to build an impact attenuator that would give an average deceleration not to exceed 20g when it runs into a rigid wall. Students can use numerical simulations or experimental test data to show that their car satisfies this safety requirement. A student group to study formula cars at the Korea University of Technology and Education has designed a vehicle to take part in a SAE competition, and a honeycomb structure was adopted as the impact attenuator. In this paper, finite element calculations were carried out to investigate the dynamic behavior of the honeycomb attenuator. Deceleration and deformation behaviors were studied. Effect of the yield strength was checked by comparing the numerical results. ABAQUS/Explicit finite element code was used.

  15. High speed finite element simulations on the graphics card

    SciTech Connect

    Huthwaite, P.; Lowe, M. J. S.

    2014-02-18

    A software package is developed to perform explicit time domain finite element simulations of ultrasonic propagation on the graphical processing unit, using Nvidia’s CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy’ partitioner and a new, more efficient ‘aligned’ partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The technique is compared to a commercial CPU equivalent, demonstrating an overall speedup of at least 100 for a non-destructive testing weld model.

  16. Numerical Analysis of a Finite Element/Volume Penalty Method

    NASA Astrophysics Data System (ADS)

    Maury, Bertrand

    The penalty method makes it possible to incorporate a large class of constraints in general purpose Finite Element solvers like freeFEM++. We present here some contributions to the numerical analysis of this method. We propose an abstract framework for this approach, together with some general error estimates based on the discretization parameter ɛ and the space discretization parameter h. As this work is motivated by the possibility to handle constraints like rigid motion for fluid-particle flows, we shall pay a special attention to a model problem of this kind, where the constraint is prescribed over a subdomain. We show how the abstract estimate can be applied to this situation, in the case where a non-body-fitted mesh is used. In addition, we describe how this method provides an approximation of the Lagrange multiplier associated to the constraint.

  17. High speed finite element simulations on the graphics card

    NASA Astrophysics Data System (ADS)

    Huthwaite, P.; Lowe, M. J. S.

    2014-02-01

    A software package is developed to perform explicit time domain finite element simulations of ultrasonic propagation on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established `greedy' partitioner and a new, more efficient `aligned' partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The technique is compared to a commercial CPU equivalent, demonstrating an overall speedup of at least 100 for a non-destructive testing weld model.

  18. Finite Element Analysis of Reverberation Chambers

    NASA Technical Reports Server (NTRS)

    Bunting, Charles F.; Nguyen, Duc T.

    2000-01-01

    The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.

  19. Finite element analysis of wrinkling membranes

    NASA Technical Reports Server (NTRS)

    Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.

    1984-01-01

    The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.

  20. ExodusII Finite Element Data Model

    Energy Science and Technology Software Center (ESTSC)

    2005-05-14

    EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface. (exodus II is based on netcdf)

  1. Finite element based electric motor design optimization

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren

    1993-01-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.

  2. Finite element model of needle electrode sensitivity

    NASA Astrophysics Data System (ADS)

    Høyum, P.; Kalvøy, H.; Martinsen, Ø. G.; Grimnes, S.

    2010-04-01

    We used the Finite Element (FE) Method to estimate the sensitivity of a needle electrode for bioimpedance measurement. This current conducting needle with insulated shaft was inserted in a saline solution and current was measured at the neutral electrode. FE model resistance and reactance were calculated and successfully compared with measurements on a laboratory model. The sensitivity field was described graphically based on these FE simulations.

  3. Finite-element 3D simulation tools for high-current relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley; Ekdahl, Carl

    2002-08-01

    The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.

  4. FESDIF -- Finite Element Scalar Diffraction theory code

    SciTech Connect

    Kraus, H.G.

    1992-09-01

    This document describes the theory and use of a powerful scalar diffraction theory based computer code for calculation of intensity fields due to diffraction of optical waves by two-dimensional planar apertures and lenses. This code is called FESDIF (Finite Element Scalar Diffraction). It is based upon both Fraunhofer and Kirchhoff scalar diffraction theories. Simplified routines for circular apertures are included. However, the real power of the code comes from its basis in finite element methods. These methods allow the diffracting aperture to be virtually any geometric shape, including the various secondary aperture obstructions present in telescope systems. Aperture functions, with virtually any phase and amplitude variations, are allowed in the aperture openings. Step change aperture functions are accommodated. The incident waves are considered to be monochromatic. Plane waves, spherical waves, or Gaussian laser beams may be incident upon the apertures. Both area and line integral transformations were developed for the finite element based diffraction transformations. There is some loss of aperture function generality in the line integral transformations which are typically many times more computationally efficient than the area integral transformations when applicable to a particular problem.

  5. Variational approach to probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.

    1987-01-01

    Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.

  6. Enhancements to modal testing using finite elements

    NASA Astrophysics Data System (ADS)

    Jarvis, Brian

    In calculating the natural frequencies and mode shapes from a finite element analysis, there are generally many more degrees of freedom than can be handled for the eigensolution. A reduction process is employed to reduce the number to a master set and chosen so that the modes of interest are well defined. By choosing those freedoms where the inertia terms are high or the stiffness terms are low then an automatic procedure for selecting the best freedoms can be defined. For modal testing, these master freedoms also indicate the best transducer locations for optimum low order mode identification. Having carried out the modal test, the mode shapes obtained can be forced onto the finite element model giving greatly enhanced results. By examining terms in all mode shapes from the finite element model in the frequency range of interest, the best reference or excitation position can be found. An example of the use of this technique to study the modal properties of an aero-engine compressor blade is given.

  7. Variational approach to probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.

    1991-01-01

    Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.

  8. COMGEN: A computer program for generating finite element models of composite materials at the micro level

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    1990-01-01

    COMGEN (Composite Model Generator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or session files to be submitted to the finite element pre- and postprocessor PATRAN based on a few simple user inputs such as fiber diameter and percent fiber volume fraction of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned easily to the models within COMGEN. PATRAN uses a session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC.

  9. A macro finite element formulation for cardiac electrophysiology simulations using hybrid unstructured grids

    PubMed Central

    Rocha, Bernardo M.; Kickinger, Ferdinand; Prassl, Anton J.; Haase, Gundolf; Vigmond, Edward J.; dos Santos, Rodrigo Weber; Zaglmayr, Sabine; Plank, Gernot

    2011-01-01

    Electrical activity in cardiac tissue can be described by the bidomain equations whose solution for large scale simulations still remains a computational challenge. Therefore, improvements in the discrete formulation of the problem which decrease computational and/or memory demands are highly desirable. In this study, we propose a novel technique for computing shape functions of finite elements. The technique generates macro finite elements (MFEs) based on the local decomposition of elements into tetrahedral sub-elements with linear shape functions. Such an approach necessitates the direct use of hybrid meshes composed of different types of elements. MFEs are compared to classic standard finite elements with respect to accuracy and RAM memory usage under different scenarios of cardiac modeling including bidomain and monodomain simulations in 2D and 3D for simple and complex tissue geometries. In problems with analytical solutions, MFEs displayed the same numerical accuracy of standard linear triangular and tetrahedral elements. In propagation simulations, conduction velocity and activation times agreed very well with those computed with standard finite elements. However, MFEs offer a significant decrease in memory requirements. We conclude that hybrid meshes composed of MFEs are well suited for solving problems in cardiac computational electrophysiology. PMID:20699206

  10. Nitsche Extended Finite Element Methods for Earthquake Simulation

    NASA Astrophysics Data System (ADS)

    Coon, Ethan T.

    Modeling earthquakes and geologically short-time-scale events on fault networks is a difficult problem with important implications for human safety and design. These problems demonstrate a. rich physical behavior, in which distributed loading localizes both spatially and temporally into earthquakes on fault systems. This localization is governed by two aspects: friction and fault geometry. Computationally, these problems provide a stern challenge for modelers --- static and dynamic equations must be solved on domains with discontinuities on complex fault systems, and frictional boundary conditions must be applied on these discontinuities. The most difficult aspect of modeling physics on complicated domains is the mesh. Most numerical methods involve meshing the geometry; nodes are placed on the discontinuities, and edges are chosen to coincide with faults. The resulting mesh is highly unstructured, making the derivation of finite difference discretizations difficult. Therefore, most models use the finite element method. Standard finite element methods place requirements on the mesh for the sake of stability, accuracy, and efficiency. The formation of a mesh which both conforms to fault geometry and satisfies these requirements is an open problem, especially for three dimensional, physically realistic fault. geometries. In addition, if the fault system evolves over the course of a dynamic simulation (i.e. in the case of growing cracks or breaking new faults), the geometry must he re-meshed at each time step. This can be expensive computationally. The fault-conforming approach is undesirable when complicated meshes are required, and impossible to implement when the geometry is evolving. Therefore, meshless and hybrid finite element methods that handle discontinuities without placing them on element boundaries are a desirable and natural way to discretize these problems. Several such methods are being actively developed for use in engineering mechanics involving crack

  11. Finite element methods of analysis for 3D inviscid compressible flows

    NASA Technical Reports Server (NTRS)

    Peraire, Jaime

    1990-01-01

    The applicants have developed a finite element based approach for the solution of three-dimensional compressible flows. The procedure enables flow solutions to be obtained on tetrahedral discretizations of computational domains of complex form. A further development was the incorporation of a solution adaptive mesh strategy in which the adaptivity is achieved by complete remeshing of the solution domain. During the previous year, the applicants were working with the Advanced Aerodynamics Concepts Branch at NASA Ames Research Center with an implementation of the basic meshing and solution procedure. The objective of the work to be performed over this twelve month period was the transfer of the adaptive mesh technology and also the undertaking of basic research into alternative flow algorithms for the Euler equations on unstructured meshes.

  12. A new parallel algorithm for contact detection in finite element methods

    SciTech Connect

    Hendrickson, B.; Plimpton, S.; Attaway, S.; Vaughan, C.; Gardner, D.

    1996-03-01

    In finite-element, transient dynamics simulations, physical objects are typically modeled as Lagrangian meshes because the meshes can move and deform with the objects as they undergo stress. In many simulations, such as computations of impacts or explosions, portions of the deforming mesh come in contact with each other as the simulation progresses. These contacts must be detected and the forces they impart to the mesh must be computed at each timestep to accurately capture the physics of interest. While the finite-element portion of these computations is readily parallelized, the contact detection problem is difficult to implement efficiently on parallel computers and has been a bottleneck to achieving high performance on large parallel machines. In this paper we describe a new parallel algorithm for detecting contacts. Our approach differs from previous work in that we use two different parallel decompositions, a static one for the finite element analysis and dynamic one for contact detection. We present results for this algorithm in a parallel version of the transient dynamics code PRONTO-3D running on a large Intel Paragon.

  13. Hybrid finite elements nanocomposite characterization by stochastic microstructuring

    NASA Astrophysics Data System (ADS)

    Esteva, Milton

    In this thesis the impact of entangled and non-straight fibers in the determination of the effective elastic and thermal properties of polymer nanocomposite (PNC) is addressed. Most of the models in recent studies assume nanotubes to be well dispersed straight fibers with fixed size. Nonetheless experiments reveal that nanotube formation become wavy during the manufacturing process, due to their high aspect ratio and low bending stiffness. Furthermore, experiments also show that nanotubes come in a variety of diameters and lengths. In the thesis an attempt to model the behavior of entangled fibers is made in which the distributions regarding the nanotube length and diameter are incorporated. First, an approach to generate random microstructures is developed. Then, using the finite element (FE) method with embedded fibers, the effective properties are computed for each of the random microstructures. This approach requires only a regular grid for the FE mesh, circumventing the requisite computationally costly and human labor intensive mesh refinement of ordinary FE in order to capture the local morphology of the composite material. Finally, a Monte Carlo simulation approach is used to obtain statistics of the computed effective physical properties. The numerical results are found in good agreement with experimental data reported in the open literature.

  14. Method of modifying a volume mesh using sheet insertion

    DOEpatents

    Borden, Michael J.; Shepherd, Jason F.

    2006-08-29

    A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet insertion. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify (refine) the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of locating a sheet of hexahedral mesh elements, determining a plurality of hexahedral elements within the sheet to refine, shrinking the plurality of elements, and inserting a new sheet of hexahedral elements adjacently to modify the volume mesh. Additionally, another predetermined algorithm using mesh cutting may be followed to modify a volume mesh.

  15. Finite element prediction of fatigue damage growth in cancellous bone.

    PubMed

    Hambli, Ridha; Frikha, Sana; Toumi, Hechmi; Tavares, João Manuel R S

    2016-01-01

    Cyclic stresses applied to bones generate fatigue damage that affects the bone stiffness and its elastic modulus. This paper proposes a finite element model for the prediction of fatigue damage accumulation and failure in cancellous bone at continuum scale. The model is based on continuum damage mechanics and incorporates crack closure effects in compression. The propagation of the cracks is completely simulated throughout the damaged area. In this case, the stiffness of the broken element is reduced by 98% to ensure no stress-carrying capacities of completely damaged elements. Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. The proposed model suggests that damage evolves over a real physical time variable (cycles). In order to reduce the computation time, the integration of the damage growth rate is based on the cycle blocks approach. In this approach, the real number of cycles is reduced (divided) into equivalent blocks of cycles. Damage accumulation is computed over the cycle blocks and then extrapolated over the corresponding real cycles. The results show a clear difference between local tensile and compressive stresses on damage accumulation. Incorporating stiffness reduction also produces a redistribution of the peak stresses in the damaged region, which results in a delay in damage fracture. PMID:26077722

  16. Comparison of stress distributions in a simple tubular joint using 3-D finite element, photoelastic and strain gauge techniques

    SciTech Connect

    Fessler, H.; Edwards, C.D.

    1983-05-01

    Combined strip and rosette gauge measurements and results from three-dimensional, finite element calculations are in excellent agreement with frozen stress photoelastic results for an efficient shape of cast-steel node under axial, brace loading. Three different meshes showed that two layers of elements through the thickness are needed.

  17. Modelling bucket excavation by finite element

    NASA Astrophysics Data System (ADS)

    Pecingina, O. M.

    2015-11-01

    Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the

  18. Basis Functions With Divergence Constraints For The Finite Element Method

    NASA Astrophysics Data System (ADS)

    Pinciuc, Christopher Michael

    Maxwell's equations are a system of partial differential equations of vector fields. Imposing the constitutive relations for material properties yields equations for the curl and divergence of the electric and magnetic fields. The curl and divergence equations must be solved simultaneously, which is not the same as solving three separate scalar problems in each component of the vector field. This thesis describes a new method for solving partial differential equations of vector fields using the finite element method. New basis functions are used to solve the curl equation while allowing the divergence to be set as a constraint. The basis functions are defined on a mesh of bricks and the method is applicable for geometries that conform to a Cartesian coordinate system. The basis functions are a combination of cubic Hermite splines and second order Lagrange interpolation polynomials. The method yields a linearly independent set of constraints for the divergence, which is modelled to second order accuracy within each brick. Mesh refinement is accomplished by dividing selected bricks into 2 x 2 x 2 smaller bricks of equal size. The change in the node pattern at an interface where mesh refinement occurs necessitates a modified implementation of the divergence constraints as well as additional constraints for hanging nodes. The mesh can be refined to an arbitrary number of levels. The basis functions can exactly model the discontinuity in the normal component of the field at a planar interface. The method is modified to solve problems with singularities at material boundaries that form 90° edges and corners. The primary test problem of the new basis functions is to obtain the resonant frequencies and fields of three-dimensional cavities. The new basis functions can resolve physical solutions and non-physical, spurious modes. The eigenvalues obtained with the new method are in good agreement with exact solutions and experimental values in cases where they exist. There is

  19. Finite element analysis of the dynamic behavior of a laminated windscreen with frequency dependent viscoelastic core.

    PubMed

    Bouayed, Kaïss; Hamdi, Mohamed-Ali

    2012-08-01

    This paper presents numerical and experimental validation of results obtained by a shell finite element, which has been developed for modeling of the dynamic behavior of sandwich multilayered structures with a viscoelastic core. The proposed shell finite element is very easy to implement in existing finite element solvers, since it uses only the displacements as degrees of freedom at external faces and at inter-layer interfaces. The displacement field is linearly interpolated in the thickness direction of each layer, and analytical integration is made in the thickness direction in order to avoid meshing of each sandwich layer by solid elements. Only the two dimensional mid-surface of reference is meshed, facilitating the mesh generation task. A simplified modal approach using a real modal basis is also proposed to efficiently calculate the dynamic response of the sandwich structure. The proposed method reduces the memory size and computing time and takes into account the frequency-dependence of the polymer core mechanical properties. Results obtained by the proposed element in conjunction with the simplified modal method have been numerically and experimentally validated by comparison to results obtained by commercial software codes (MSC/NASTRAN and ESI/RAYON-VTM), and to measurements done on automobile windscreens. PMID:22894198

  20. Limitation of Finite Element Analysis of Poroelastic Behavior of Biological Tissues Undergoing Rapid Loading

    PubMed Central

    Stokes, Ian A.; Chegini, Salman; Ferguson, Stephen J.; Gardner-Morse, Mack G.; Iatridis, James C.; Laible, Jeffrey P.

    2010-01-01

    The finite element method is used in biomechanics to provide numerical solutions to simulations of structures having complex geometry and spatially differing material properties. Time-varying load deformation behaviors can result from solid viscoelasticity as well as viscous fluid flow through porous materials. Finite element poroelastic analysis of rapidly loaded slow-draining materials may be ill-conditioned, but this problem is not widely known in the biomechanics field. It appears as instabilities in the calculation of interstitial fluid pressures, especially near boundaries and between different materials. Accurate solutions can require impractical compromises between mesh size and time steps. This article investigates the constraints imposed by this problem on tissues representative of the intervertebral disc, subjected to moderate physiological rates of deformation. Two test cylindrical structures were found to require over 104 linear displacement-constant pressure elements to avoid serious oscillations in calculated fluid pressure. Fewer Taylor–Hood (quadratic displacement–linear pressure elements) were required, but with complementary increases in computational costs. The Vermeer–Verruijt criterion for 1D mesh size provided guidelines for 3D mesh sizes for given time steps. Pressure instabilities may impose limitations on the use of the finite element method for simulating fluid transport behaviors of biological soft tissues at moderately rapid physiological loading rates. PMID:20306136

  1. A variational multiscale finite element method for monolithic ALE computations of shock hydrodynamics using nodal elements

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Scovazzi, G.

    2016-06-01

    We present a monolithic arbitrary Lagrangian-Eulerian (ALE) finite element method for computing highly transient flows with strong shocks. We use a variational multiscale (VMS) approach to stabilize a piecewise-linear Galerkin formulation of the equations of compressible flows, and an entropy artificial viscosity to capture strong solution discontinuities. Our work demonstrates the feasibility of VMS methods for highly transient shock flows, an area of research for which the VMS literature is extremely scarce. In addition, the proposed monolithic ALE method is an alternative to the more commonly used Lagrangian+remap methods, in which, at each time step, a Lagrangian computation is followed by mesh smoothing and remap (conservative solution interpolation). Lagrangian+remap methods are the methods of choice in shock hydrodynamics computations because they provide nearly optimal mesh resolution in proximity of shock fronts. However, Lagrangian+remap methods are not well suited for imposing inflow and outflow boundary conditions. These issues offer an additional motivation for the proposed approach, in which we first perform the mesh motion, and then the flow computations using the monolithic ALE framework. The proposed method is second-order accurate and stable, as demonstrated by extensive numerical examples in two and three space dimensions.

  2. A class of hybrid finite element methods for electromagnetics: A review

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Chatterjee, A.; Gong, J.

    1993-01-01

    Integral equation methods have generally been the workhorse for antenna and scattering computations. In the case of antennas, they continue to be the prominent computational approach, but for scattering applications the requirement for large-scale computations has turned researchers' attention to near neighbor methods such as the finite element method, which has low O(N) storage requirements and is readily adaptable in modeling complex geometrical features and material inhomogeneities. In this paper, we review three hybrid finite element methods for simulating composite scatterers, conformal microstrip antennas, and finite periodic arrays. Specifically, we discuss the finite element method and its application to electromagnetic problems when combined with the boundary integral, absorbing boundary conditions, and artificial absorbers for terminating the mesh. Particular attention is given to large-scale simulations, methods, and solvers for achieving low memory requirements and code performance on parallel computing architectures.

  3. Mesoscale dynamic coupling of finite- and discrete-element methods for fluid-particle interactions.

    PubMed

    Srivastava, S; Yazdchi, K; Luding, S

    2014-08-01

    A new method for two-way fluid-particle coupling on an unstructured mesoscopically coarse mesh is presented. In this approach, we combine a (higher order) finite-element method (FEM) on the moving mesh for the fluid with a soft sphere discrete-element method for the particles. The novel feature of the proposed scheme is that the FEM mesh is a dynamic Delaunay triangulation based on the positions of the moving particles. Thus, the mesh can be multi-purpose: it provides (i) a framework for the discretization of the Navier-Stokes equations, (ii) a simple tool for detecting contacts between moving particles, (iii) a basis for coarse-graining or upscaling, and (iv) coupling with other physical fields (temperature, electromagnetic, etc.). This approach is suitable for a wide range of dilute and dense particulate flows, because the mesh resolution adapts with particle density in a given region. Two-way momentum exchange is implemented using semi-empirical drag laws akin to other popular approaches; for example, the discrete particle method, where a finite-volume solver on a coarser, fixed grid is used. We validate the methodology with several basic test cases, including single- and double-particle settling with analytical and empirical expectations, and flow through ordered and random porous media, when compared against finely resolved FEM simulations of flow through fixed arrays of particles. PMID:24982251

  4. Crystal plasticity finite element analysis for René88DT statistical volume element generation

    NASA Astrophysics Data System (ADS)

    Tucker, Joseph C.; Cerrone, Albert R., III; Ingraffea, Anthony R.; Rollett, Anthony D.

    2015-04-01

    This work focuses on the major cause of life limiting behavior in Ni-based superalloys for high pressure and temperature turbine disks applications in low cycle fatigue. Specific ideas of local microstructure features, such as the role of as large as (ALA) grains, in promoting slip localization in directly measured 3D microstructures were tested with finite element method (FEM) simulations with crystal plasticity. Synthetic microstructures with experimentally determined microstructurally small fatigue crack weakest link features of ALA grains comprise the test cases. A René88 damage tolerant (R88DT) dataset, from electron backscatter diffraction, was used to instantiate approximately 1.5 million elements and 200 grains from FEM sensitivity studies. Changing mesh resolution minimally impacted global damage response, but local convergence required the maximum resolution. The present results help to quantify the deleterious impact of ALA grains in Ni-based superalloys to extend service life.

  5. Implementation of Implicit Adaptive Mesh Refinement in an Unstructured Finite-Volume Flow Solver

    NASA Technical Reports Server (NTRS)

    Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.

    2013-01-01

    This paper explores the implementation of adaptive mesh refinement in an unstructured, finite-volume solver. Unsteady and steady problems are considered. The effect on the recovery of high-order numerics is explored and the results are favorable. Important to this work is the ability to provide a path for efficient, implicit time advancement. A method using a simple refinement sensor based on undivided differences is discussed and applied to a practical problem: a shock-shock interaction on a hypersonic, inviscid double-wedge. Cases are compared to uniform grids without the use of adapted meshes in order to assess error and computational expense. Discussion of difficulties, advances, and future work prepare this method for additional research. The potential for this method in more complicated flows is described.

  6. Finite volume scheme with quadratic reconstruction on unstructured adaptive meshes applied to turbomachinery flows

    SciTech Connect

    Delanaye, M.; Essers, J.A.

    1997-04-01

    This paper presents a new finite volume cell-centered scheme for solving the two-dimensional Euler equations. The technique for computing the advective derivatives is based on a high-order Gauss quadrature and an original quadratic reconstruction of the conservative variables for each control volume. A very sensitive detector identifying discontinuity regions switches the scheme to a TVD scheme, and ensures the monotonicity of the solution. The code uses unstructured meshes whose cells are polygons with any number of edges. A mesh adaptation based on cell division is performed in order to increase the resolution of shocks. The accuracy, insensitivity to grid distortions, and shock capturing properties of the scheme are demonstrated for different cascade flow computations.

  7. [Developing a finite element model of human head with true anatomic structure mandible].

    PubMed

    Ma, Chunsheng; Zhang, Haizhong; Du, Huiliang; Huang, Shilin; Zhang, Jinhuan

    2005-02-01

    A finite element model of human mandible is developed from CT scan images by the technologies of three-dimensional reconstruction, image processing and meshing. The mandible model is connected to one modified head model of Hybrid III dummy with joint according to the anatomic structure and mechanical characteristics of the temporomandibular joint. Then a finite element model of the human head with the true anatomic structure mandible is developed. This model has been validated with the cadaver test results. It can be used in researches on the mechanism of craniofacial blunt-impact injury and on the assessment of injury severity. PMID:15762115

  8. Finite element analysis of direct thrust-controlled linear induction motor

    SciTech Connect

    Kwon, B.I.; Woo, K.I.; Kim, S. . Dept. of Electrical Engineering)

    1999-05-01

    This paper describes the finite element analysis of a direct thrust-controlled linear induction motor (LIM). The time-stepping finite element method and the moving mesh technique are used to calculate the dynamic characteristics of LIM during the direct thrust control. Because LIM has the end effect, thrust correction coefficient is introduced to predict an actual thrust in control. The simulation results, the thrust and the stator flux linkage are shown below and the stator current is compared with an experimental one.

  9. Nested multigrid vector and scalar potential finite element method for three-dimensional time-harmonic electromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Yu; Cangellaris, Andreas C.

    2002-05-01

    A new finite element methodology is presented for fast and robust numerical simulation of three-dimensional electromagnetic wave phenomena. The new methodology combines nested multigrid techniques with the ungauged vector and scalar potential formulation of the finite element method. The finite element modeling is performed on nested meshes over the computational domain of interest. The iterative solution of the finite element matrix on the finest mesh is performed using the conjugate gradient method, while the nested multigrid vector and scalar potential algorithm acts as the preconditioner for the iterative solver. Numerical experiments from the application of the new methodology to three-dimensional electromagnetic scattering are used to demonstrate its superior numerical convergence and efficient memory usage.

  10. Finite element methods in probabilistic mechanics

    NASA Technical Reports Server (NTRS)

    Liu, Wing Kam; Mani, A.; Belytschko, Ted

    1987-01-01

    Probabilistic methods, synthesizing the power of finite element methods with second-order perturbation techniques, are formulated for linear and nonlinear problems. Random material, geometric properties and loads can be incorporated in these methods, in terms of their fundamental statistics. By construction, these methods are applicable when the scale of randomness is not too large and when the probabilistic density functions have decaying tails. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. Applications showing the effects of combined random fields and cyclic loading/stress reversal are studied and compared with Monte Carlo simulation results.

  11. Shape optimization including finite element grid adaptation

    NASA Technical Reports Server (NTRS)

    Kikuchi, N.; Taylor, J. E.

    1984-01-01

    The prediction of optimal shape design for structures depends on having a sufficient level of precision in the computation of structural response. These requirements become critical in situations where the region to be designed includes stress concentrations or unilateral contact surfaces, for example. In the approach to shape optimization discussed here, a means to obtain grid adaptation is incorporated into the finite element procedures. This facility makes it possible to maintain a level of quality in the computational estimate of response that is surely adequate for the shape design problem.

  12. Chemorheology of reactive systems: Finite element analysis

    NASA Technical Reports Server (NTRS)

    Douglas, C.; Roylance, D.

    1982-01-01

    The equations which govern the nonisothermal flow of reactive fluids are outlined, and the means by which finite element analysis is used to solve these equations for the sort of arbitrary boundary conditions encountered in industrial practice are described. The performance of the computer code is illustrated by several trial problems, selected more for their value in providing insight to polymer processing flows than as practical production problems. Although a good deal remains to be learned as to the performance and proper use of this numerical technique, it is undeniably useful in providing better understanding of today's complicated polymer processing problems.

  13. Finite element solutions of free surface flows

    NASA Technical Reports Server (NTRS)

    Zarda, P. R.; Marcus, M. S.

    1977-01-01

    A procedure is presented for using NASTRAN to determine the flow field about arbitrarily shaped bodies in the presence of a free surface. The fundamental unknown of the problem is the velocity potential which must satisfy Laplace's equation in the fluid region. Boundary conditions on the free surface may involve second order derivatives in space and time. In cases involving infinite domains either a tractable radiation condition is applied at a truncated boundary or a series expansion is used and matched to the local finite elements. Solutions are presented for harmonic, transient, and steady state problems and compared to either exact solutions or other numerical solutions.

  14. System software for the finite element machine

    NASA Technical Reports Server (NTRS)

    Crockett, T. W.; Knott, J. D.

    1985-01-01

    The Finite Element Machine is an experimental parallel computer developed at Langley Research Center to investigate the application of concurrent processing to structural engineering analysis. This report describes system-level software which has been developed to facilitate use of the machine by applications researchers. The overall software design is outlined, and several important parallel processing issues are discussed in detail, including processor management, communication, synchronization, and input/output. Based on experience using the system, the hardware architecture and software design are critiqued, and areas for further work are suggested.

  15. Moving finite elements in 2-D

    NASA Technical Reports Server (NTRS)

    Gelinas, R. J.; Doss, S. K.; Vajk, J. P.; Djomehri, J.; Miller, K.

    1983-01-01

    The mathematical background regarding the moving finite element (MFE) method of Miller and Miller (1981) is discussed, taking into account a general system of partial differential equations (PDE) and the amenability of the MFE method in two dimensions to code modularization and to semiautomatic user-construction of numerous PDE systems for both Dirichlet and zero-Neumann boundary conditions. A description of test problem results is presented, giving attention to aspects of single square wave propagation, and a solution of the heat equation.

  16. 2-D Finite Element Heat Conduction

    Energy Science and Technology Software Center (ESTSC)

    1989-10-30

    AYER is a finite element program which implicitly solves the general two-dimensional equation of thermal conduction for plane or axisymmetric bodies. AYER takes into account the effects of time (transient problems), in-plane anisotropic thermal conductivity, a three-dimensional velocity distribution, and interface thermal contact resistance. Geometry and material distributions are arbitrary, and input is via subroutines provided by the user. As a result, boundary conditions, material properties, velocity distributions, and internal power generation may be mademore » functions of, e.g., time, temperature, location, and heat flux.« less

  17. Iterative methods for mixed finite element equations

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.

    1985-01-01

    Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.

  18. Dynamic analysis of mechanisms by finite elements

    SciTech Connect

    Botsali, F.M.; Uenuevar, A.

    1996-11-01

    The need to increase productivity in order to decrease manufacturing costs lead to an increase in the working speeds of machines and mechanical systems used in manufacturing. A method is presented for investigating the dynamics of mechanisms with elastic links. Finite element method is used in the formulation of the dynamic problem. Modal transformation is used in order to reduce the number of equations of motion. Using the presented technique, elastic and rigid body motions of mechanism links are solved simultaneously. The presented method may be applied to spatial and open loop mechanisms including robot manipulators as well.

  19. Multiscale Simulation of Microcrack Based on a New Adaptive Finite Element Method

    NASA Astrophysics Data System (ADS)

    Xu, Yun; Chen, Jun; Chen, Dong Quan; Sun, Jin Shan

    In this paper, a new adaptive finite element (FE) framework based on the variational multiscale method is proposed and applied to simulate the dynamic behaviors of metal under loadings. First, the extended bridging scale method is used to couple molecular dynamics and FE. Then, macro damages evolvements of those micro defects are simulated by the adaptive FE method. Some auxiliary strategies, such as the conservative mesh remapping, failure mechanism and mesh splitting technique are also included in the adaptive FE computation. Efficiency of our method is validated by numerical experiments.

  20. Three-dimensional crack growth with hp-generalized finite element and face offsetting methods

    NASA Astrophysics Data System (ADS)

    Pereira, J. P.; Duarte, C. A.; Jiao, X.

    2010-08-01

    A coupling between the hp-version of the generalized finite element method ( hp-GFEM) and the face offsetting method (FOM) for crack growth simulations is presented. In the proposed GFEM, adaptive surface meshes composed of triangles are utilized to explicitly represent complex three-dimensional (3-D) crack surfaces. By applying the hp-GFEM at each crack growth step, high-order approximations on locally refined meshes are automatically created in complex 3-D domains while preserving the aspect ratio of elements, regardless of crack geometry. The FOM is applied to track the evolution of the crack front in the explicit crack surface representation. The FOM provides geometrically feasible crack front descriptions based on hp-GFEM solutions. The coupling of hp-GFEM and FOM allows the simulation of arbitrary crack growth with concave crack fronts independent of the volume mesh. Numerical simulations illustrate the robustness and accuracy of the proposed methodology.

  1. Dynamic and thermal response finite element models of multi-body space structural configurations

    NASA Technical Reports Server (NTRS)

    Edighoffer, Harold H.

    1987-01-01

    Presented is structural dynamics modeling of two multibody space structural configurations. The first configuration is a generic space station model of a cylindrical habitation module, two solar array panels, radiator panel, and central connecting tube. The second is a 15-m hoop-column antenna. Discussed is the special joint elimination sequence used for these large finite element models, so that eigenvalues could be extracted. The generic space station model aided test configuration design and analysis/test data correlation. The model consisted of six finite element models, one of each substructure and one of all substructures as a system. Static analysis and tests at the substructure level fine-tuned the finite element models. The 15-m hoop-column antenna is a truss column and structural ring interconnected with tension stabilizing cables. To the cables, pretensioned mesh membrane elements were attached to form four parabolic shaped antennae, one per quadrant. Imposing thermal preloads in the cables and mesh elements produced pretension in the finite element model. Thermal preload variation in the 96 control cables was adjusted to maintain antenna shape within the required tolerance and to give pointing accuracy.

  2. A Piecewise Linear Discontinuous Finite Element Spatial Discretization of the Transport Equation in 2D Cylindrical Geometry

    SciTech Connect

    Bailey, T S; Adams, M L; Chang, J H

    2008-10-01

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional cylindrical (RZ) geometry for arbitrary polygonal meshes. This discretization is a discontinuous finite element method that utilizes the piecewise linear basis functions developed by Stone and Adams. We describe an asymptotic analysis that shows this method to be accurate for many problems in the thick diffusion limit on arbitrary polygons, allowing this method to be applied to radiative transfer problems with these types of meshes. We also present numerical results for multiple problems on quadrilateral grids and compare these results to the well-known bi-linear discontinuous finite element method.

  3. Higher-order adaptive finite-element methods for Kohn–Sham density functional theory

    SciTech Connect

    Motamarri, P.; Nowak, M.R.; Leiter, K.; Knap, J.; Gavini, V.

    2013-11-15

    We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688

  4. Higher-order adaptive finite-element methods for Kohn-Sham density functional theory

    NASA Astrophysics Data System (ADS)

    Motamarri, P.; Nowak, M. R.; Leiter, K.; Knap, J.; Gavini, V.

    2013-11-01

    We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn-Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss-Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100-200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn-Sham DFT problem. Our studies suggest that staggering computational savings-of the order of 1000-fold-relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn-Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688 atoms using

  5. A knowledge-based approach to the adaptive finite element analysis

    SciTech Connect

    Haghighi, K.; Kang, E.

    1995-12-31

    An automatic and knowledge-based finite element mesh generator (INTELMESH), which makes extensive use of interactive computer graphics techniques, has been developed. INTELMESH is designed for planar domains and axisymmetric 3-D structures of elasticity and heat transfer subjected to mechanical and thermal loading. It intelligently identifies the critical regions/points in the problem domain and utilizes the new concepts of substructuring and wave propagation to choose the proper mesh size for them. INTELMESH generates well-shaped triangular elements by applying triangulation and Laplacian smoothing procedures. The adaptive analysis involves the initial finite element analysis and an efficient a-posteriori error analysis and estimation. Once a problem is defined, the system automatically builds a finite element model and analyzes the problem through an automatic iterative process until the error reaches a desired level. It has been shown that the proposed approach which initiates the process with an a-priori, and near optimum mesh of the object, converges to the desired accuracy in less time and at less cost.

  6. Accuracy of finite-element models for the stress analysis of multiple-holed moderator blocks

    SciTech Connect

    Smith, P.D.; Sullivan, R.M.; Lewis, A.C.; Yu, H.J.

    1981-01-01

    Two steps have been taken to quantify and improve the accuracy in the analysis. First, the limitations of various approximation techniques have been studied with the aid of smaller benchmark problems containing fewer holes. Second, a new family of computer programs has been developed for handling such large problems. This paper describes the accuracy studies and the benchmark problems. A review is given of some proposed modeling techniques including local mesh refinement, homogenization, a special-purpose finite element, and substructuring. Some limitations of these approaches are discussed. The new finite element programs and the features that contribute to their efficiency are discussed. These include a standard architecture for out-of-core data processing and an equation solver that operates on a peripheral array processor. The central conclusions of the paper are: (1) modeling approximation methods such as local mesh refinement and homogenization tend to be unreliable, and they should be justified by a fine mesh benchmark analysis; and (2) finite element codes are now available that can achieve accurate solutions at a reasonable cost, and there is no longer a need to employ modeling approximations in the two-dimensional analysis of HTGR fuel elements. 10 figures.

  7. Finite element modeling of piezoelectric elements with complex electrode configuration

    NASA Astrophysics Data System (ADS)

    Paradies, R.; Schläpfer, B.

    2009-02-01

    It is well known that the material properties of piezoelectric materials strongly depend on the state of polarization of the individual element. While an unpolarized material exhibits mechanically isotropic material properties in the absence of global piezoelectric capabilities, the piezoelectric material properties become transversally isotropic with respect to the polarization direction after polarization. Therefore, for evaluating piezoelectric elements the material properties, including the coupling between the mechanical and the electromechanical behavior, should be addressed correctly. This is of special importance for the micromechanical description of piezoelectric elements with interdigitated electrodes (IDEs). The best known representatives of this group are active fiber composites (AFCs), macro fiber composites (MFCs) and the radial field diaphragm (RFD), respectively. While the material properties are available for a piezoelectric wafer with a homogeneous polarization perpendicular to its plane as postulated in the so-called uniform field model (UFM), the same information is missing for piezoelectric elements with more complex electrode configurations like the above-mentioned ones with IDEs. This is due to the inhomogeneous field distribution which does not automatically allow for the correct assignment of the material, i.e. orientation and property. A variation of the material orientation as well as the material properties can be accomplished by including the polarization process of the piezoelectric transducer in the finite element (FE) simulation prior to the actual load case to be investigated. A corresponding procedure is presented which automatically assigns the piezoelectric material properties, e.g. elasticity matrix, permittivity, and charge vector, for finite element models (FEMs) describing piezoelectric transducers according to the electric field distribution (field orientation and strength) in the structure. A corresponding code has been

  8. Quantum algorithms and the finite element method

    NASA Astrophysics Data System (ADS)

    Montanaro, Ashley; Pallister, Sam

    2016-03-01

    The finite element method is used to approximately solve boundary value problems for differential equations. The method discretizes the parameter space and finds an approximate solution by solving a large system of linear equations. Here we investigate the extent to which the finite element method can be accelerated using an efficient quantum algorithm for solving linear equations. We consider the representative general question of approximately computing a linear functional of the solution to a boundary value problem and compare the quantum algorithm's theoretical performance with that of a standard classical algorithm—the conjugate gradient method. Prior work claimed that the quantum algorithm could be exponentially faster but did not determine the overall classical and quantum run times required to achieve a predetermined solution accuracy. Taking this into account, we find that the quantum algorithm can achieve a polynomial speedup, the extent of which grows with the dimension of the partial differential equation. In addition, we give evidence that no improvement of the quantum algorithm can lead to a superpolynomial speedup when the dimension is fixed and the solution satisfies certain smoothness properties.

  9. Impeller deflection and modal finite element analysis.

    SciTech Connect

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.

  10. A finite element model for ultrasonic cutting.

    PubMed

    Lucas, Margaret; MacBeath, Alan; McCulloch, Euan; Cardoni, Andrea

    2006-12-22

    Using a single-blade ultrasonic cutting device, a study of ultrasonic cutting of three very different materials is conducted using specimens of cheese, polyurethane foam and epoxy resin. Initial finite element models are created, based on the assumption that the ultrasonic blade causes a crack to propagate in a controlled mode 1 opening, and these are validated against experimental data from three point bend fracture tests and ultrasonic cutting experiments on the materials. Subsequently, the finite element model is developed to represent ultrasonic cutting of a multi-layered material. Materials are chosen whose properties allow a model to be developed that could represent a multi-layer food product or biological structure, to enable ultrasonic cutting systems to be designed for applications both in the field of food processing and surgical procedures. The model incorporates an estimation of the friction condition between the cutting blade and the material to be cut and allows adjustment of the frequency, cutting amplitude and cutting speed. PMID:16814351

  11. A staggered mesh finite difference scheme for the computation of hypersonic Euler flows

    NASA Technical Reports Server (NTRS)

    Sanders, Richard

    1991-01-01

    A shock capturing finite difference method for systems of hyperbolic conservation laws is presented which avoids the need to solve Riemann problems while being competitive in performance with other current methods. A staggered spatial mesh is employed, so that complicated nonlinear waves generated at cell interfaces are averaged over cell interiors at the next time level. The full method combines to form a conservative version of the modified method of characteristics. The advantages of the method are discussed, and numerical results are presented for the two-dimensional double ellipse problem.

  12. An adaptive-mesh finite-difference solution method for the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Luchini, Paolo

    1987-02-01

    An adjustable variable-spacing grid is presented which permits the addition or deletion of single points during iterative solutions of the Navier-Stokes equations by finite difference methods. The grid is designed for application to two-dimensional steady-flow problems which can be described by partial differential equations whose second derivatives are constrained to the Laplacian operator. An explicit Navier-Stokes equations solution technique defined for use with the grid incorporates a hybrid form of the convective terms. Three methods are developed for automatic modifications of the mesh during calculations.

  13. Second order finite volume scheme for Maxwell's equations with discontinuous electromagnetic properties on unstructured meshes

    SciTech Connect

    Ismagilov, Timur Z.

    2015-02-01

    This paper presents a second order finite volume scheme for numerical solution of Maxwell's equations with discontinuous dielectric permittivity and magnetic permeability on unstructured meshes. The scheme is based on Godunov scheme and employs approaches of Van Leer and Lax–Wendroff to increase the order of approximation. To keep the second order of approximation near dielectric permittivity and magnetic permeability discontinuities a novel technique for gradient calculation and limitation is applied near discontinuities. Results of test computations for problems with linear and curvilinear discontinuities confirm second order of approximation. The scheme was applied to modelling propagation of electromagnetic waves inside photonic crystal waveguides with a bend.

  14. Development of an hp-version finite element method for computational optimal control

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Warner, Michael S.

    1993-01-01

    The purpose of this research effort is to develop a means to use, and to ultimately implement, hp-version finite elements in the numerical solution of optimal control problems. The hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element.

  15. CUBIT mesh generation environment. Volume 1: Users manual

    SciTech Connect

    Blacker, T.D.; Bohnhoff, W.J.; Edwards, T.L.

    1994-05-01

    The CUBIT mesh generation environment is a two- and three-dimensional finite element mesh generation tool which is being developed to pursue the goal of robust and unattended mesh generation--effectively automating the generation of quadrilateral and hexahedral elements. It is a solid-modeler based preprocessor that meshes volume and surface solid models for finite element analysis. A combination of techniques including paving, mapping, sweeping, and various other algorithms being developed are available for discretizing the geometry into a finite element mesh. CUBIT also features boundary layer meshing specifically designed for fluid flow problems. Boundary conditions can be applied to the mesh through the geometry and appropriate files for analysis generated. CUBIT is specifically designed to reduce the time required to create all-quadrilateral and all-hexahedral meshes. This manual is designed to serve as a reference and guide to creating finite element models in the CUBIT environment.

  16. Simulation of a Single-Element Lean-Direct Injection Combustor Using Arbitrary Polyhedral Mesh

    NASA Technical Reports Server (NTRS)

    Wey, Thomas; Liu, Nan-Suey

    2012-01-01

    This paper summarizes procedures of generating the arbitrary polyhedral mesh as well as presents sample results from its application to the numerical solution of a single-element LDI combustor using a preliminary version of the new OpenNCC.

  17. A multigrid solution method for mixed hybrid finite elements

    SciTech Connect

    Schmid, W.

    1996-12-31

    We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.

  18. GPU-Accelerated Finite Element Method for Modelling Light Transport in Diffuse Optical Tomography

    PubMed Central

    Schweiger, Martin

    2011-01-01

    We introduce a GPU-accelerated finite element forward solver for the computation of light transport in scattering media. The forward model is the computationally most expensive component of iterative methods for image reconstruction in diffuse optical tomography, and performance optimisation of the forward solver is therefore crucial for improving the efficiency of the solution of the inverse problem. The GPU forward solver uses a CUDA implementation that evaluates on the graphics hardware the sparse linear system arising in the finite element formulation of the diffusion equation. We present solutions for both time-domain and frequency-domain problems. A comparison with a CPU-based implementation shows significant performance gains of the graphics accelerated solution, with improvements of approximately a factor of 10 for double-precision computations, and factors beyond 20 for single-precision computations. The gains are also shown to be dependent on the mesh complexity, where the largest gains are achieved for high mesh resolutions. PMID:22013431

  19. Directionally adaptive finite element method for multidimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Tan, Zhiqiang; Varghese, Philip L.

    1993-01-01

    A directionally adaptive finite element method for multidimensional compressible flows is presented. Quadrilateral and hexahedral elements are used because they have several advantages over triangular and tetrahedral elements. Unlike traditional methods that use quadrilateral/hexahedral elements, our method allows an element to be divided in each of the three directions in 3D and two directions in 2D. Some restrictions on mesh structure are found to be necessary, especially in 3D. The refining and coarsening procedures, and the treatment of constraints are given. A new implementation of upwind schemes in the constrained finite element system is presented. Some example problems, including a Mach 10 shock interaction with the walls of a 2D channel, a 2D viscous compression corner flow, and inviscid and viscous 3D flows in square channels, are also shown.

  20. Finite element analysis enhancement of cryogenic testing

    NASA Astrophysics Data System (ADS)

    Thiem, Clare D.; Norton, Douglas A.

    1991-12-01

    Finite element analysis (FEA) of large space optics enhances cryogenic testing by providing an analytical method by which to ensure that a test article survives proposed testing. The analyses presented in this paper were concerned with determining the reliability of a half meter mirror in an environment where the exact environmental profile was unknown. FEA allows the interaction between the test object and the environment to be simulated to detect potential problems prior to actual testing. These analyses examined worse case scenerios related to cooling the mirror, its structural integrity for the proposed test environment, and deformation of the reflective surface. The FEA was conducted in-house on the System's Reliability Division's VAX 11-750 and Decstation 3100 using Engineering Mechanics Research Corporation's numerically integrated elements for systems analysis finite element software. The results of the analyses showed that it would take at least 48 hours to cool the mirror to its desired testing temperature. It was also determined that the proposed mirror mount would not cause critical concentrated thermal stresses that would fracture the mirror. FEA and actual measurements of the front reflective face were compared and good agreement between computer simulation and physical tests were seen. Space deployment of large optics requires lightweight mirrors which can perform under the harsh conditions of space. The physical characteristics of these mirrors must be well understood in order that their deployment and operation are successful. Evaluating design approaches by analytical simulation, like FEA, verifies the reliability and structural integrity of a space optic during design prior to prototyping and testing. Eliminating an optic's poor design early in its life saves money, materials, and human resources while ensuring performance.

  1. Mixed Finite Element Methods for Melt Migration

    NASA Astrophysics Data System (ADS)

    Taicher, A. L.

    2013-12-01

    Multi-phase flow arises during partial melting in the earth mantle, where the porosity is small and material has the characteristics of a compacting porous medium. The equations governing multi-phase flow have been specialized to partially molten materials by McKenzie and Fowler. Their model, also called a Darcy-Stokes system, is highly coupled and non-linear. Melt flow is governed by Darcy's Law while the high temperature, ductile creep of the solid matrix is modeled using viscous non-Newtonian Stokes rheology. In addition, the melt and solid pressures are related through a compaction relation. This nearly elliptic mechanical problem is then coupled with both solute transport and thermal evolution according to the enthalpy method developed by Katz. A suitable numerical method must solve the Darcy-Stokes problem in a manner compatible with the transport problem. Moreover, unlike most porous media problems, partially molten materials transition dynamically from non-porous solid to porous medium so must carefully account for the limit of zero porosity. The Darcy-Stokes system for modeling partial melting in the mantle is a novel problem. As far as we know, there currently does not exist a finite element solution in the literature solving these coupled equations. In particular, the mixed finite element method presents a good candidate because it works in both limiting cases: Darcy and incompressible Stokes flow. We present a mixed formulation for the Darcy-Stokes system. Next, we present novel elements of lowest order and compatible with both Darcy and Stokes flow Finally, we present our 2D mixed FEM code result for solving Stokes and Darcy flow as well as the coupled Darcy-Stokes system the mid-ocean ridge or corner flow problem.

  2. Domain decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation

    NASA Astrophysics Data System (ADS)

    Beilina, Larisa

    2016-08-01

    We present domain decomposition finite element/finite difference method for the solution of hyperbolic equation. The domain decomposition is performed such that finite elements and finite differences are used in different subdomains of the computational domain: finite difference method is used on the structured part of the computational domain and finite elements on the unstructured part of the domain. Explicit discretizations for both methods are constructed such that the finite element and the finite difference schemes coincide on the common structured overlapping layer between computational subdomains. Then the resulting approach can be considered as a pure finite element scheme which avoids instabilities at the interfaces. We derive an energy estimate for the underlying hyperbolic equation with absorbing boundary conditions and illustrate efficiency of the domain decomposition method on the reconstruction of the conductivity function in three dimensions.

  3. A unified multigrid solver for the Navier-Stokes equations on mixed element meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Venkatakrishnan, V.

    1995-01-01

    A unified multigrid solution technique is presented for solving the Euler and Reynolds-averaged Navier-Stokes equations on unstructured meshes using mixed elements consisting of triangles and quadrilaterals in two dimensions, and of hexahedra, pyramids, prisms, and tetrahedra in three dimensions. While the use of mixed elements is by no means a novel idea, the contribution of the paper lies in the formulation of a complete solution technique which can handle structured grids, block structured grids, and unstructured grids of tetrahedra or mixed elements without any modification. This is achieved by discretizing the full Navier-Stokes equations on tetrahedral elements, and the thin layer version of these equations on other types of elements, while using a single edge-based data-structure to construct the discretization over all element types. An agglomeration multigrid algorithm, which naturally handles meshes of any types of elements, is employed to accelerate convergence. An automatic algorithm which reduces the complexity of a given triangular or tetrahedral mesh by merging candidate triangular or tetrahedral elements into quadrilateral or prismatic elements is also described. The gains in computational efficiency afforded by the use of non-simplicial meshes over fully tetrahedral meshes are demonstrated through several examples.

  4. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analyses is presented. New thermal finite elements which yield exact nodal and element temperature for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal-structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  5. NUMERICAL MODELING OF CONTAMINANT TRANSPORT IN FRACTURED POROUS MEDIA USING MIXED FINITE ELEMENT AND FINITE VOLUME METHODS

    SciTech Connect

    Taylor, G.; Dong, C.; Sun, S.

    2010-03-18

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods, i.e. mixed finite element (MFE) and the finite volume methods. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocities field for both the fractures and matrix which are crucial to the convection part of the transport equation. The finite volume method and the standard MFE method are used to approximate the convection and dispersion terms respectively. The model is used to investigate the interaction of adsorption with transport and to extract information on effective adsorption distribution coefficients. Numerical examples in different fractured media illustrate the robustness and efficiency of the proposed numerical model.

  6. A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three-Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes

    NASA Technical Reports Server (NTRS)

    Zhang, Zeng-Chan; Yu, S. T. John; Chang, Sin-Chung; Jorgenson, Philip (Technical Monitor)

    2001-01-01

    In this paper, we report a version of the Space-Time Conservation Element and Solution Element (CE/SE) Method in which the 2D and 3D unsteady Euler equations are simulated using structured or unstructured quadrilateral and hexahedral meshes, respectively. In the present method, mesh values of flow variables and their spatial derivatives are treated as independent unknowns to be solved for. At each mesh point, the value of a flow variable is obtained by imposing a flux conservation condition. On the other hand, the spatial derivatives are evaluated using a finite-difference/weighted-average procedure. Note that the present extension retains many key advantages of the original CE/SE method which uses triangular and tetrahedral meshes, respectively, for its 2D and 3D applications. These advantages include efficient parallel computing ease of implementing non-reflecting boundary conditions, high-fidelity resolution of shocks and waves, and a genuinely multidimensional formulation without using a dimensional-splitting approach. In particular, because Riemann solvers, the cornerstones of the Godunov-type upwind schemes, are not needed to capture shocks, the computational logic of the present method is considerably simpler. To demonstrate the capability of the present method, numerical results are presented for several benchmark problems including oblique shock reflection, supersonic flow over a wedge, and a 3D detonation flow.

  7. A Viscoelastic Hybrid Shell Finite Element

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur

    1999-01-01

    An elastic large displacement thick-shell hybrid finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at he element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses in included in the mixed variational functional. Nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to numerically simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.

  8. Implementation of a mesh adaptive scheme based on an element-level error indicator

    NASA Technical Reports Server (NTRS)

    Keating, Scott; Felippa, Carlos A.; Militello, Carmelo

    1993-01-01

    We investigate the formulation and application of element-level error indicators based on parametrized variational principles. The qualifier 'element-level' means that no information from adjacent elements is used for error estimation. This property is ideally suited to drive adaptive mesh refinement on parallel computers where access to neighboring elements resident on different processors may incur significant computational overhead. Furthermore, such indicators are not affected by physical jumps at junctures or interfaces. An element-level indicator has been derived from the higher-order element energy and applied to r and h mesh adaptation of meshes in plates and shell structures. We report on our initial experiments with a cylindrical shell that intersects with fist plates forming a simplified 'wing-body intersection' benchmark problem.

  9. A new spectral finite volume method for elastic wave modelling on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Zhuang, Yuan; Chung, Eric T.

    2016-07-01

    In this paper, we consider a new spectral finite volume method (FVM) for the elastic wave equations. Our new FVM is based on a piecewise constant approximation on a fine mesh and a high-order polynomial reconstruction on a coarser mesh. Our new method is constructed based on two existing techniques, the high-order FVM and the spectral FVM. In fact, we will construct a new method to take advantage of both methods. More precisely, our method has two distinctive features. The first one is that the local polynomial reconstructions are performed on the coarse triangles and the reconstruction matrices for all the coarse triangles are the same. This fact enhances the parallelization of our algorithm. We will present a parallel implementation of our method and show excellent efficiency results. The second one is that, by using a suitable number of finer triangles with a coarse triangle, we obtain an overdetermined reconstruction system, which can enhance the robustness of the reconstruction process. To derive our scheme, standard finite volume technique is applied to each fine triangle, and the high-order reconstructed polynomials, computed on coarse triangles, are used to compute numerical fluxes. We will present numerical results to show the performance of our method. Our method is presented for 2-D problems, but the same methodology can be applied to 3-D.

  10. An implementation analysis of the linear discontinuous finite element method

    SciTech Connect

    Becker, T. L.

    2013-07-01

    This paper provides an implementation analysis of the linear discontinuous finite element method (LD-FEM) that spans the space of (l, x, y, z). A practical implementation of LD includes 1) selecting a computationally efficient algorithm to solve the 4 x 4 matrix system Ax = b that describes the angular flux in a mesh element, and 2) choosing how to store the data used to construct the matrix A and the vector b to either reduce memory consumption or increase computational speed. To analyze the first of these, three algorithms were selected to solve the 4 x 4 matrix equation: Cramer's rule, a streamlined implementation of Gaussian elimination, and LAPACK's Gaussian elimination subroutine dgesv. The results indicate that Cramer's rule and the streamlined Gaussian elimination algorithm perform nearly equivalently and outperform LAPACK's implementation of Gaussian elimination by a factor of 2. To analyze the second implementation detail, three formulations of the discretized LD-FEM equations were provided for implementation in a transport solver: 1) a low-memory formulation, which relies heavily on 'on-the-fly' calculations and less on the storage of pre-computed data, 2) a high-memory formulation, which pre-computes much of the data used to construct A and b, and 3) a reduced-memory formulation, which lies between the low - and high-memory formulations. These three formulations were assessed in the Jaguar transport solver based on relative memory footprint and computational speed for increasing mesh size and quadrature order. The results indicated that the memory savings of the low-memory formulation were not sufficient to warrant its implementation. The high-memory formulation resulted in a significant speed advantage over the reduced-memory option (10-50%), but also resulted in a proportional increase in memory consumption (5-45%) for increasing quadrature order and mesh count; therefore, the practitioner should weigh the system memory constraints against any

  11. A shell finite element model of the pelvic floor muscles.

    PubMed

    d'Aulignac, D; Martins, J A C; Pires, E B; Mascarenhas, T; Jorge, R M Natal

    2005-10-01

    The pelvic floor gives support to the organs in the abdominal cavity. Using the dataset made public in (Janda et al. J. Biomech. (2003) 36(6), pp. 749-757), we have reconstructed the geometry of one of the most important parts of the pelvic floor, the levator ani, using NURB surfaces. Once the surface is triangulated, the corresponding mesh is used in a finite element analysis with shell elements. Based on the 3D behavior of the muscle we have constructed a shell that takes into account the direction of the muscle fibers and the incompressibility of the tissue. The constitutive model for the isotropic strain energy and the passive strain energy stored in the fibers is adapted from Humphrey's model for cardiac muscles. To this the active behavior of the skeletal muscle is added. We present preliminary results of a simulation of the levator ani muscle under pressure and with active contraction. This research aims at helping simulate the damages to the pelvic floor that can occur after childbirth. PMID:16298856

  12. An improved method for the automatic mapping of computed tomography numbers onto finite element models.

    PubMed

    Taddei, Fulvia; Pancanti, Alberto; Viceconti, Marco

    2004-01-01

    The assignment of bone tissue material properties is a fundamental step in the generation of subject-specific finite element models from computed tomography data. Aim of the present work is to investigate the influence of the material mapping algorithm on the results predicted by the finite element analysis. Two models, a coarse and a refined one, of a human ileum, femur and tibia, were generated from CT data and used for the tests. In addition a convergence analysis was carried out for the femur model, using six refinement levels, to verify whether the inclusion of the material properties would significantly alter the convergence behaviour of the mesh. The results showed that the choice of the mapping algorithm influences the material distribution. However, this did not always propagate into the finite element results. The difference between the maximum Von Mises stress remained always lower than 10%, apart one case when it reached the 13%. However, the global behaviour of the meshes showed more marked differences between the two algorithms: in the finer meshes of the two long bones 20-30% of the bone volume showed differences in the predicted Von Mises stresses greater than 10%. The convergence behaviour of the model was not worsened by the introduction of inhomogeneous material properties. The software was made available in the public domain. PMID:14644599

  13. Valuing Asian options using the finite element method and duality techniques

    NASA Astrophysics Data System (ADS)

    Foufas, Georgios; Larson, Mats G.

    2008-12-01

    The main objective of this paper is to develop an adaptive finite element method for computation of the values, and different sensitivity measures, of the Asian option with both fixed and floating strike. The pricing is based on Black-Scholes PDE-model and a method developed by Vecer where the resulting PDEs are of parabolic type in one spatial dimension and can be applied to both continuous and discrete Asian options. We propose using an adaptive finite element method which is based on a posteriori estimates of the error in desired quantities, which we derive using duality techniques. The a posteriori error estimates are tested and verified, and are used to calculate optimal meshes for each type of option. The use of adapted meshes gives superior accuracy and performance with less degrees of freedom than using uniform meshes. The suggested adaptive finite element method is stable, gives fast and accurate results, and can be applied to other types of options as well.

  14. Fuzzy finite element analysis of smart structures

    NASA Astrophysics Data System (ADS)

    Akpan, Unyime O.; Koko, Tamunoiyala S.; Orisamolu, Irewole R.; Gallant, B. Keith

    2000-06-01

    A fuzzy finite element based approach is developed for modelling smart structures with vague or imprecise uncertainties. Fuzzy sets are used to represent the uncertainties present in the piezoelectric, mechanical, thermal, and physical properties of the smart structure. In order to facilitate efficient computation, a sensitivity analysis procedure is used to streamline the number of input fuzzy variables, and the vertex fuzzy analysis technique is then used to compute the possibility distributions of the responses of the smart structural system. The methodology has been developed within the framework of the SMARTCOM computational tool for the design/analysis of smart composite structures. The methodology developed is found to be accurate and computationally efficient for solution of practical problems.

  15. Continuation finite element analysis of viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Chow, Tai-Whang

    A finite element procedure using a mixed formulation and a predictor-corrector type continuation algorithm for the analysis of two dimensional steady state flows of viscoelastic fluids is described. As a simple but nontrivial test example, radial flow immenating from a line by the numerical discretization and believed to be the cause for previous numerical failures, are shown and branch solution paths are followed by step length adjustment and by convergent tolerance relaxation. A technique for jumping over bifurcation points is presented and used to increase the Weissenberg number with no apparent limit for the radial flow problem. A second example related to extrusion of viscoelastic material is also analyzed. Steady state velocity fields, deviatoric stress distributions and pressure distributions for several different Weissenberg numbers are presented with bifurcation points and turning points noted.

  16. Quality management of finite element analysis

    NASA Astrophysics Data System (ADS)

    Barlow, John

    1991-09-01

    A quality management system covering the use of finite element analysis is described. The main topics are as follows: acquisition, development and verification of software (including the software suppliers software quality control system), support, documentation, error control, internal software, software acceptance and release; development and qualification of analysis methods, including software evaluation, analysis procedure qualification and documentation, procedure quality checks, control of analysis procedure errors; product design and integrity analysis, including project quality assurance and analysis planning, task specification and allocation, analysis, execution, results checking and analysis records. Other issues include the commercial and business advantages of quality systems, project and technical management and the training and experience of personnel. The items are correlated with the requirements of International Standard Organization 9001.

  17. Finite-element modeling of nanoindentation

    SciTech Connect

    Knapp, J.A.; Follstaedt, D.M.; Myers, S.M.; Barbour, J.C.; Friedmann, T.A.

    1999-02-01

    Procedures have been developed based on finite-element modeling of nanoindentation data to obtain the mechanical properties of thin films and ion-beam-modified layers independently of the properties of the underlying substrates. These procedures accurately deduce the yield strength, Young{close_quote}s elastic modulus, and layer hardness from indentations as deep as 50{percent} of the layer thickness or more. We have used these procedures to evaluate materials ranging from ion implanted metals to deposited, diamond-like carbon layers. The technique increases the applicability of indentation testing to very thin layers, composite layers, and modulated compositions. This article presents an overview of the procedures involved and illustrates them with selected examples. {copyright} {ital 1999 American Institute of Physics.}

  18. 3-D Finite Element Heat Transfer

    Energy Science and Technology Software Center (ESTSC)

    1992-02-01

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  19. Finite element analysis: A boon to dentistry

    PubMed Central

    Trivedi, Shilpa

    2014-01-01

    The finite element analysis (FEA) is an upcoming and significant research tool for biomechanical analyses in biological research. It is an ultimate method for modeling complex structures and analyzing their mechanical properties. In Implantology, FEA has been used to study the stress patterns in various implant components and also in the peri-implant bone. It is also useful for studying the biomechanical properties of implants as well as for predicting the success of implants in clinical condition. FEA of simulated traumatic loads can be used to understand the biomechanics of fracture. FEA has various advantages compared with studies on real models. The experiments are repeatable, there are no ethical considerations and the study designs may be modified and changed as per the requirement. There are certain limitations of FEA too. It is a computerized in vitro study in which clinical condition may not be completely replicated. So, further FEA research should be supplemented with clinical evaluation. PMID:25737944

  20. Finite element simulation of pipe dynamic response

    SciTech Connect

    Slagis, G.C.; Litton, R.W.

    1996-12-01

    Nonlinear finite element dynamic analyses of the response of a pipe span to controlled-displacement, sinusoidal vibration have been performed. The objective of this preliminary study is to compare strain and acceleration response data to those generated by Beaney in the Berkeley Nuclear Laboratories experiments. Results for an unpressurized, 5 Hz, carbon steel pipe are in good agreement with the experiments. Hence, it appears that analytical simulation will be useful to assess seismic margins. Recommendations for additional studies are provided. The analyses confirm the test results--dynamic response is greatly attenuated by material plasticity. Analytical strains and accelerations are about 30% higher than test data. There are several possible explanations for the differences. To assess the effect of frequency on response, the length of the pipe span was increased. Analysis of the longer, 2 Hz, pipe span shows significantly greater cyclic strains than the 5 Hz span at the same input excitation levels.

  1. Finite-element solutions for geothermal systems

    NASA Technical Reports Server (NTRS)

    Chen, J. C.; Conel, J. E.

    1977-01-01

    Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.

  2. Optimizing electroslag cladding with finite element modeling

    SciTech Connect

    Li, M.V.; Atteridge, D.G.; Meekisho, L.

    1996-12-31

    Electroslag cladding of nickel alloys onto carbon steel propeller shafts was optimized in terms of interpass temperatures. A two dimensional finite element model was used in this study to analyze the heat transfer induced by multipass electroslag cladding. Changes of interpass temperatures during a cladding experiment with uniform initial temperature distribution on a section of shaft were first simulated. It was concluded that uniform initial temperature distribution would lead to interpass temperatures out of the optimal range if continuous cladding is expected. The difference in the cooling conditions among experimental and full size shafts and its impact on interpass temperatures during the cladding were discussed. Electroslag cladding onto a much longer shaft, virtually an semi infinite long shaft, was analyzed with specific reference to the practical applications of electroslag cladding. Optimal initial preheating temperature distribution was obtained for continuous cladding on full size shafts which would keep the interpass temperatures within the required range.

  3. Finite element or Galerkin type semidiscrete schemes

    NASA Technical Reports Server (NTRS)

    Durgun, K.

    1983-01-01

    A finite element of Galerkin type semidiscrete method is proposed for numerical solution of a linear hyperbolic partial differential equation. The question of stability is reduced to the stability of a system of ordinary differential equations for which Dahlquist theory applied. Results of separating the part of numerical solution which causes the spurious oscillation near shock-like response of semidiscrete scheme to a step function initial condition are presented. In general all methods produce such oscillatory overshoots on either side of shocks. This overshoot pathology, which displays a behavior similar to Gibb's phenomena of Fourier series, is explained on the basis of dispersion of separated Fourier components which relies on linearized theory to be satisfactory. Expository results represented.

  4. Boundary element and finite element coupling for aeroacoustics simulations

    NASA Astrophysics Data System (ADS)

    Balin, Nolwenn; Casenave, Fabien; Dubois, François; Duceau, Eric; Duprey, Stefan; Terrasse, Isabelle

    2015-08-01

    We consider the scattering of acoustic perturbations in the presence of a flow. We suppose that the space can be split into a zone where the flow is uniform and a zone where the flow is potential. In the first zone, we apply a Prandtl-Glauert transformation to recover the Helmholtz equation. The well-known setting of boundary element method for the Helmholtz equation is available. In the second zone, the flow quantities are space dependent, we have to consider a local resolution, namely the finite element method. Herein, we carry out the coupling of these two methods and present various applications and validation test cases. The source term is given through the decomposition of an incident acoustic field on a section of the computational domain's boundary. Validations against analytic, another numerical method and measurements on different test cases are presented.

  5. Finite element analyses of CCAT preliminary design

    NASA Astrophysics Data System (ADS)

    Sarawit, Andrew T.; Kan, Frank W.

    2014-07-01

    This paper describes the development of the CCAT telescope finite element model (FEM) and the analyses performed to support the preliminary design work. CCAT will be a 25 m diameter telescope operating in the 0.2 to 2 mm wavelength range. It will be located at an elevation of 5600 m on Cerro Chajnantor in Northern Chile, near ALMA. The telescope will be equipped with wide-field cameras and spectrometers mounted at the two Nasmyth foci. The telescope will be inside an enclosure to protect it from wind buffeting, direct solar heating, and bad weather. The main structures of the telescope include a steel Mount and a carbon-fiber-reinforced-plastic (CFRP) primary truss. The finite element model developed in this study was used to perform modal, frequency response, seismic response spectrum, stress, and deflection analyses of telescope. Modal analyses of telescope were performed to compute the structure natural frequencies and mode shapes and to obtain reduced order modal output at selected locations in the telescope structure to support the design of the Mount control system. Modal frequency response analyses were also performed to compute transfer functions at these selected locations. Seismic response spectrum analyses of the telescope subject to the Maximum Likely Earthquake were performed to compute peak accelerations and seismic demand stresses. Stress analyses were performed for gravity load to obtain gravity demand stresses. Deflection analyses for gravity load, thermal load, and differential elevation drive torque were performed so that the CCAT Observatory can verify that the structures meet the stringent telescope surface and pointing error requirements.

  6. A voxel-based finite element model for the prediction of bladder deformation

    SciTech Connect

    Chai Xiangfei; Herk, Marcel van; Hulshof, Maarten C. C. M.; Bel, Arjan

    2012-01-15

    Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classical FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to

  7. Design of Software for Design of Finite Element for Structural Analysis. Ph.D. Thesis - Stuttgart Univ., 22 Nov. 1983

    NASA Technical Reports Server (NTRS)

    Helfrich, Reinhard

    1987-01-01

    The concepts of software engineering which allow a user of the finite element method to describe a model, to collect and to check the model data in a data base as well as to form the matrices required for a finite element calculation are examined. Next the components of the model description are conceived including the mesh tree, the topology, the configuration, the kinematic boundary conditions, the data for each element, and the loads. The possibilities for description and review of the data are considered. The concept of the segments for the modularization of the programs follows the components of the model description. The significance of the mesh tree as a globular guiding structure will be understood in view of the principle of the unity of the model, the mesh tree, and the data base. The user-friendly aspects of the software system will be summarized: the principle of language communication, the data generators, error processing, and data security.

  8. Reissner-Mindlin Legendre Spectral Finite Elements with Mixed Reduced Quadrature

    SciTech Connect

    Brito, K. D.; Sprague, M. A.

    2012-10-01

    Legendre spectral finite elements (LSFEs) are examined through numerical experiments for static and dynamic Reissner-Mindlin plate bending and a mixed-quadrature scheme is proposed. LSFEs are high-order Lagrangian-interpolant finite elements with nodes located at the Gauss-Lobatto-Legendre quadrature points. Solutions on unstructured meshes are examined in terms of accuracy as a function of the number of model nodes and total operations. While nodal-quadrature LSFEs have been shown elsewhere to be free of shear locking on structured grids, locking is demonstrated here on unstructured grids. LSFEs with mixed quadrature are, however, locking free and are significantly more accurate than low-order finite-elements for a given model size or total computation time.

  9. Stable Generalized Finite Element Method and associated iterative schemes; application to interface problems

    NASA Astrophysics Data System (ADS)

    Kergrene, Kenan; Babuška, Ivo; Banerjee, Uday

    2016-06-01

    The Generalized Finite Element Method (GFEM) is an extension of the Finite Element Method (FEM), where the standard finite element space is augmented with a space of non-polynomial functions, called the enrichment space. The functions in the enrichment space mimic the local behavior of the unknown solution of the underlying variational problem. GFEM has been successfully applied to a wide range of problems. However, it often suffers from bad conditioning, i.e., its conditioning may not be robust with respect to the mesh and in fact, the conditioning could be much worse than that of the standard FEM. In this paper, we present a numerical study that shows that if the "angle" between the finite element space and the enrichment space is bounded away from 0, uniformly with respect to the mesh, then the GFEM is stable, i.e., the conditioning of GFEM is not worse than that of the standard FEM. A GFEM with this property is called a Stable GFEM (SGFEM). The last part of the paper is devoted to the derivation of a robust iterative solver exploiting this angle condition. It is shown that the required "wall-clock" time is greatly reduced compared to popular GFEMs used in the literature.

  10. Simulation of patch and slot antennas using FEM with prismatic elements and investigations of artificial absorber mesh termination schemes

    NASA Technical Reports Server (NTRS)

    Gong, J.; Ozdemir, T.; Volakis, J; Nurnberger, M.

    1995-01-01

    Year 1 progress can be characterized with four major achievements which are crucial toward the development of robust, easy to use antenna analysis code on doubly conformal platforms. (1) A new FEM code was developed using prismatic meshes. This code is based on a new edge based distorted prism and is particularly attractive for growing meshes associated with printed slot and patch antennas on doubly conformal platforms. It is anticipated that this technology will lead to interactive, simple to use codes for a large class of antenna geometries. Moreover, the codes can be expanded to include modeling of the circuit characteristics. An attached report describes the theory and validation of the new prismatic code using reference calculations and measured data collected at the NASA Langley facilities. The agreement between the measured and calculated data is impressive even for the coated patch configuration. (2) A scheme was developed for improved feed modeling in the context of FEM. A new approach based on the voltage continuity condition was devised and successfully tested in modeling coax cables and aperture fed antennas. An important aspect of this new feed modeling approach is the ability to completely separate the feed and antenna mesh regions. In this manner, different elements can be used in each of the regions leading to substantially improved accuracy and meshing simplicity. (3) A most important development this year has been the introduction of the perfectly matched interface (PMI) layer for truncating finite element meshes. So far the robust boundary integral method has been used for truncating the finite element meshes. However, this approach is not suitable for antennas on nonplanar platforms. The PMI layer is a lossy anisotropic absorber with zero reflection at its interface. (4) We were able to interface our antenna code FEMA_CYL (for antennas on cylindrical platforms) with a standard high frequency code. This interface was achieved by first generating

  11. CLFE2D: A generalized plane strain finite element program laminated composites subject to mechanical and hygrothermal loading

    NASA Technical Reports Server (NTRS)

    Buczek, M. B.; Gregory, M. A.; Herakovich, C. T.

    1983-01-01

    CLFE2D is a two dimensional generalized plane strain finite element code, using a linear, four node, general quadrilateral, isoparametric element. The program is developed to calculate the displacements, strains, stresses, and strain energy densities in a finite width composite laminate. CLFE2D offers any combination of the following load types: nodal displacements, nodal forces, uniform normal strain, or hygrothermal. The program allows the user to input one set of three dimensional orthotropic material properties. The user can then specify the angle of material principal orientation for each element in the mesh. Output includes displacements, stresses, strains and strain densities at points selected by the user. An option is also available to plot the underformed and deformed finite element meshes.

  12. Adaptive finite elements with high aspect ratio for the computation of coalescence using a phase-field model

    NASA Astrophysics Data System (ADS)

    Burman, E.; Jacot, A.; Picasso, M.

    2004-03-01

    A multiphase-field model for the description of coalescence in a binary alloy is solved numerically using adaptive finite elements with high aspect ratio. The unknown of the multiphase-field model are the three phase fields (solid phase 1, solid phase 2, and liquid phase), a Lagrange multiplier and the concentration field. An Euler implicit scheme is used for time discretization, together with continuous, piecewise linear finite elements. At each time step, a linear system corresponding to the three phases plus the Lagrange multiplier has to be solved. Then, the linear system pertaining to concentration is solved. An adaptive finite element algorithm is proposed. In order to reduce the number of mesh vertices, the generated meshes contain elements with high aspect ratio. The refinement and coarsening criteria are based on an error indicator which has already been justified theoretically for simpler problems. Numerical results on two test cases show the efficiency of the method.

  13. Application of 3D X-ray CT data sets to finite element analysis

    SciTech Connect

    Bossart, P.L.; Martz, H.E.; Brand, H.R.; Hollerbach, K.

    1995-08-31

    Finite Element Modeling (FEM) is becoming more important as industry drives toward concurrent engineering. A fundamental hindrance to fully exploiting the power of FEM is the human effort required to acquire complex part geometry, particularly as-built geometry, as a FEM mesh. Many Quantitative Non Destructive Evaluation (QNDE) techniques that produce three-dimensional (3D) data sets provide a substantial reduction in the effort required to apply FEM to as-built parts. This paper describes progress at LLNL on the application of 3D X-ray computed tomography (CT) data sets to more rapidly produce high-quality FEM meshes of complex, as-built geometries. Issues related to the volume segmentation of the 3D CT data as well as the use of this segmented data to tailor generic hexahedral FEM meshes to part specific geometries are discussed. The application of these techniques to FEM analysis in the medical field is reported here.

  14. A novel finite element framework for numerical simulation of fluidization processes and multiphase granular flow

    NASA Astrophysics Data System (ADS)

    Percival, James; Xie, Zhihua; Pavlidis, Dimitrios; Gomes, Jefferson; Pain, Christopher; Matar, Omar

    2013-11-01

    We present results from a new formulation of a numerical model for direct simulation of bed fluidization and multiphase granular flow. The model is based on a consistent application of continuous-discontinuous mixed control volume finite element methods applied to fully unstructured meshes. The unstructured mesh framework allows for both a mesh adaptive capability, modifying the computational geometry in order to bound the error in the numerical solution while maximizing computational efficiency, and a simple scripting interface embedded in the model which allows fast prototyping of correlation models and parameterizations in intercomparison experiments. The model is applied to standard test problems for fluidized beds. EPSRC Programme Grant EP/K003976/1.

  15. Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Agashe, Vinayak; Vijayakar, Sandeep M.

    2000-01-01

    The dynamic response of a helicopter planetary gear system is examined over a wide range of operating speeds and torques. The analysis tool is a unique, semianalytical finite element formulation that admits precise representation of the tooth geometry and contact forces that are crucial in gear dynamics. Importantly, no a priori specification of static transmission error excitation or mesh frequency variation is required; the dynamic contact forces are evaluated internally at each time step. The calculated response shows classical resonances when a harmonic of mesh frequency coincides with a natural frequency. However, peculiar behavior occurs where resonances expected to be excited at a given speed are absent. This absence of particular modes is explained by analytical relationships that depend on the planetary configuration and mesh frequency harmonic. The torque sensitivity of the dynamic response is examined and compared to static analyses. Rotation mode response is shown to be more sensitive to input torque than translational mode response.

  16. Uniform Strain Elements for Three-Node Triangular and Four-Node Tetrahedral Meshes

    SciTech Connect

    Dohrmann, C.R.; Heinstein, M.W.; Jung, J.; Key, S.W.; Witkowski, W.R.

    1999-03-02

    A family of uniform strain elements is presented for three-node triangular and four-node tetrahedral meshes. The elements use the linear interpolation functions of the original mesh, but each element is associated with a single node. As a result, a favorable constraint ratio for the volumetric response is obtained for problems in solid mechanics. The uniform strain elements do not require the introduction of additional degrees of freedom and their performance is shown to be significantly better than that of three-node triangular or four-node tetrahedral elements. In addition, nodes inside the boundary of the mesh are observed to exhibit superconvergent behavior for a set of example problems.

  17. Development of an adaptive hp-version finite element method for computational optimal control

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Warner, Michael S.

    1994-01-01

    In this research effort, the usefulness of hp-version finite elements and adaptive solution-refinement techniques in generating numerical solutions to optimal control problems has been investigated. Under NAG-939, a general FORTRAN code was developed which approximated solutions to optimal control problems with control constraints and state constraints. Within that methodology, to get high-order accuracy in solutions, the finite element mesh would have to be refined repeatedly through bisection of the entire mesh in a given phase. In the current research effort, the order of the shape functions in each element has been made a variable, giving more flexibility in error reduction and smoothing. Similarly, individual elements can each be subdivided into many pieces, depending on the local error indicator, while other parts of the mesh remain coarsely discretized. The problem remains to reduce and smooth the error while still keeping computational effort reasonable enough to calculate time histories in a short enough time for on-board applications.

  18. A cut finite element method for coupled bulk-surface problems on time-dependent domains

    NASA Astrophysics Data System (ADS)

    Hansbo, Peter; Larson, Mats G.; Zahedi, Sara

    2016-08-01

    In this contribution we present a new computational method for coupled bulk-surface problems on time-dependent domains. The method is based on a space-time formulation using discontinuous piecewise linear elements in time and continuous piecewise linear elements in space on a fixed background mesh. The domain is represented using a piecewise linear level set function on the background mesh and a cut finite element method is used to discretize the bulk and surface problems. In the cut finite element method the bilinear forms associated with the weak formulation of the problem are directly evaluated on the bulk domain and the surface defined by the level set, essentially using the restrictions of the piecewise linear functions to the computational domain. In addition a stabilization term is added to stabilize convection as well as the resulting algebraic system that is solved in each time step. We show in numerical examples that the resulting method is accurate and stable and results in well conditioned algebraic systems independent of the position of the interface relative to the background mesh.

  19. Section Builder: A finite element tool for analysis and design of composite beam cross-sections

    NASA Astrophysics Data System (ADS)

    Chakravarty, Uttam Kumar

    SectionBuilder is an innovative finite element based tool, developed for analysis and design of composite beam cross-sections. The tool can handle the cross-sections with parametric shapes and arbitrary configurations. It can also handle arbitrary lay-ups for predefined beam cross-section geometries in a consistent manner. The material properties for each layer of the cross-section can be defined on the basis of the design requirements. This tool is capable of dealing with multi-cell composite cross-sections with arbitrary lay-ups. It has also the benefit of handling the variation of thickness of skin and D-spars for beams such as rotor blades. A typical cross-section is considered as a collection of interconnected walls. Walls with arbitrary lay-ups based on predefined geometries and material properties are generated first. The complex composite beam cross-sections are developed by connecting the walls using various types of connectors. These connectors are compatible with the walls, i.e., the thickness of the layers of the walls must match with those of the connectors at the place of connection. Cross-sections are often reinforced by core material for constructing realistic rotor blade cross-sections. The tool has the ability to integrate core materials into the cross-sections. A mapped mesh is considered for meshing parametric shapes, walls and various connectors, whereas a free mesh is considered for meshing the core materials. A new algorithm based on the Delaunay refinement algorithm is developed for creating the best possible free mesh for core materials. After meshing the cross-section, the tool determines the sectional properties using finite element analysis. This tool computes sectional properties including stiffness matrix, compliance matrix, mass matrix, and principal axes. A visualization environment is integrated with the tool for visualizing the stress and strain distributions over the cross-section.

  20. Parallel goal-oriented adaptive finite element modeling for 3D electromagnetic exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Key, K.; Ovall, J.; Holst, M.

    2014-12-01

    We present a parallel goal-oriented adaptive finite element method for accurate and efficient electromagnetic (EM) modeling of complex 3D structures. An unstructured tetrahedral mesh allows this approach to accommodate arbitrarily complex 3D conductivity variations and a priori known boundaries. The total electric field is approximated by the lowest order linear curl-conforming shape functions and the discretized finite element equations are solved by a sparse LU factorization. Accuracy of the finite element solution is achieved through adaptive mesh refinement that is performed iteratively until the solution converges to the desired accuracy tolerance. Refinement is guided by a goal-oriented error estimator that uses a dual-weighted residual method to optimize the mesh for accurate EM responses at the locations of the EM receivers. As a result, the mesh refinement is highly efficient since it only targets the elements where the inaccuracy of the solution corrupts the response at the possibly distant locations of the EM receivers. We compare the accuracy and efficiency of two approaches for estimating the primary residual error required at the core of this method: one uses local element and inter-element residuals and the other relies on solving a global residual system using a hierarchical basis. For computational efficiency our method follows the Bank-Holst algorithm for parallelization, where solutions are computed in subdomains of the original model. To resolve the load-balancing problem, this approach applies a spectral bisection method to divide the entire model into subdomains that have approximately equal error and the same number of receivers. The finite element solutions are then computed in parallel with each subdomain carrying out goal-oriented adaptive mesh refinement independently. We validate the newly developed algorithm by comparison with controlled-source EM solutions for 1D layered models and with 2D results from our earlier 2D goal oriented

  1. Adaptive mesh strategies for the spectral element method

    NASA Technical Reports Server (NTRS)

    Mavriplis, Catherine

    1992-01-01

    An adaptive spectral method was developed for the efficient solution of time dependent partial differential equations. Adaptive mesh strategies that include resolution refinement and coarsening by three different methods are illustrated on solutions to the 1-D viscous Burger equation and the 2-D Navier-Stokes equations for driven flow in a cavity. Sharp gradients, singularities, and regions of poor resolution are resolved optimally as they develop in time using error estimators which indicate the choice of refinement to be used. The adaptive formulation presents significant increases in efficiency, flexibility, and general capabilities for high order spectral methods.

  2. Survey and development of finite elements for nonlinear structural analysis. Volume 2: Nonlinear shell finite elements

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development of two new shell finite elements for applications to large deflection problems is considered. The elements in question are doubly curved and of triangular and quadrilateral planform. They are restricted to small strains of elastic materials, and can accommodate large rotations. The elements described, which are based on relatively simple linear elements, make use of a new displacement function approach specifically designed for strongly nonlinear problems. The displacement function development for nonlinear applications is based on certain beam element formulations, and the strain-displacement equations are of a shallow shell type. Additional terms were included in these equations in an attempt to avoid the large errors characteristic of shallow shell elements in certain types of problems. An incremental nonlinear solution procedure specifically adopted to the element formulation was developed. The solution procedure is of combined incremental and total Lagrangian type, and uses a new updating scheme. A computer program was written to evaluate the developed formulations. This program can accommodate small element groups in arbitrary arrangements. Two simple programs were successfully solved. The results indicate that this new type of element has definite promise and should be a fruitful area for further research.

  3. Impact of new computing systems on finite element computations

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Storassili, O. O.; Fulton, R. E.

    1983-01-01

    Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified.

  4. Improved finite-element methods for rotorcraft structures

    NASA Technical Reports Server (NTRS)

    Hinnant, Howard E.

    1991-01-01

    An overview of the research directed at improving finite-element methods for rotorcraft airframes is presented. The development of a modification to the finite element method which eliminates interelement discontinuities is covered. The following subject areas are discussed: geometric entities, interelement continuity, dependent rotational degrees of freedom, and adaptive numerical integration. This new methodology is being implemented as an anisotropic, curvilinear, p-version, beam, shell, and brick finite element program.

  5. A comparative study of finite element and finite difference methods for Cauchy-Riemann type equations

    NASA Technical Reports Server (NTRS)

    Fix, G. J.; Rose, M. E.

    1983-01-01

    A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.

  6. A finite element method for solving the shallow water equations on the sphere

    NASA Astrophysics Data System (ADS)

    Comblen, Richard; Legrand, Sébastien; Deleersnijder, Eric; Legat, Vincent

    Within the framework of ocean general circulation modeling, the present paper describes an efficient way to discretize partial differential equations on curved surfaces by means of the finite element method on triangular meshes. Our approach benefits from the inherent flexibility of the finite element method. The key idea consists in a dialog between a local coordinate system defined for each element in which integration takes place, and a nodal coordinate system in which all local contributions related to a vectorial degree of freedom are assembled. Since each element of the mesh and each degree of freedom are treated in the same way, the so-called pole singularity issue is fully circumvented. Applied to the shallow water equations expressed in primitive variables, this new approach has been validated against the standard test set defined by [Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N., 1992. A standard test set for numerical approximations to the shallow water equations in spherical geometry. Journal of Computational Physics 102, 211-224]. Optimal rates of convergence for the P1NC-P1 finite element pair are obtained, for both global and local quantities of interest. Finally, the approach can be extended to three-dimensional thin-layer flows in a straightforward manner.

  7. Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Loehner, Rainald; Morgan, Ken; Peraire, Jaime; Vahdati, Mehdi

    1987-01-01

    A high resolution finite element method for the solution of problems involving high speed compressible flows is presented. The method uses the concepts of flux-corrected transport and is presented in a form which is suitable for implementation on completely unstructured triangular or tetrahedral meshes. Transient and steady state examples are solved to illustrate the performance of the algorithm.

  8. Evaluation of an improved finite-element thermal stress calculation technique

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.

    1982-01-01

    A procedure for generating accurate thermal stresses with coarse finite element grids (Ojalvo's method) is described. The procedure is based on the observation that for linear thermoelastic problems, the thermal stresses may be envisioned as being composed of two contributions; the first due to the strains in the structure which depend on the integral of the temperature distribution over the finite element and the second due to the local variation of the temperature in the element. The first contribution can be accurately predicted with a coarse finite-element mesh. The resulting strain distribution can then be combined via the constitutive relations with detailed temperatures from a separate thermal analysis. The result is accurate thermal stresses from coarse finite element structural models even where the temperature distributions have sharp variations. The range of applicability of the method for various classes of thermostructural problems such as in-plane or bending type problems and the effect of the nature of the temperature distribution and edge constraints are addressed. Ojalvo's method is used in conjunction with the SPAR finite element program. Results are obtained for rods, membranes, a box beam and a stiffened panel.

  9. Finite element analysis in a minicomputer/mainframe environment

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Murphy, R. C.

    1978-01-01

    Design considerations were evaluated for general purpose finite element systems to maximize performance when installed on distributed computer hardware/software systems. It is shown how the features of current minicomputers complement those of a modular implementation of the finite element method for increasing the control, speed, and visibility (interactive graphics) in solving structural problems at reduced cost. The approach used is to implement a finite element system in a distributed computer environment to solve structural problems and to explore alternatives in distributing finite element computations.

  10. A multi-microprocessor system for finite element structural analysis

    NASA Technical Reports Server (NTRS)

    Jordan, H. F.; Sawyer, P. L.

    1978-01-01

    During the last few years, advances in microprocessor technology have spurred a renewed interest in special-purpose computers. The microprocessor has become small, inexpensive, and powerful enough to be considered as a building block for special-purpose hardware. A description is presented of the architecture of a prototype 'finite element machine' currently being built. Attention is given to details regarding the finite element analysis problem, the arrangement of the processors as finite element nodes in the structural model, the influence of the architecture on the solution algorithm, interprocessor communication primitives, and the performance of the finite element machine.

  11. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  12. Charged-particle Gun Design with 3D Finite-element Methods

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley

    2002-04-01

    The DARHT second-axis injector poses a major challenge for computer simulation. The relativistic electrons are subject to strong beam-generated electric and magnetic forces. The beam and applied fields are fully three-dimensional. Furthermore, accurate field calculations at surfaces are critical to model Child-law emission. Although several 2D relativistic beam codes are available, there is presently no 3D tool that can address all important processes in the DARHT injector. As a result, we created the OmniTrak 3D finite-element code suite. This talk gives a basic tutorial on finite-element methods with emphasis on electron gun design via the ray-tracing technique. Four main areas are covered: 1) the mesh as a tool to organize space, 2) transformation of the Poisson equation through the minimum residual principle, 3) orbit tracking in a complex environment and 4) handling self-consistent beam-generated fields. The components of a volume mesh (elements, nodes and facets) are reviewed. We consider motivations for choosing a 3D mesh style: structured versus unstructured, tetrahedrons versus hexahedrons. We discuss methods for taking volume integrals over arbitrary hexahedrons through normal coordinates and shape functions, leading to the fundamental field equations. The special problems of 3D magnetic field solutions and the advantages of the reduced potential method are outlined. Accurate field interpolations for orbit calculations require fast identification of occupied elements. A method for fast element identification that also yields the orbit penetration point on the element surface is described. The final topics are the assignment of charge and current to meshes from calculated orbits and techniques for space-charge-limited emission from multiple arbitrary 3D surfaces.

  13. Positivity-preserving, flux-limited finite-difference and finite-element methods for reactive transport

    NASA Astrophysics Data System (ADS)

    MacKinnon, Robert J.; Carey, Graham F.

    2003-01-01

    A new class of positivity-preserving, flux-limited finite-difference and Petrov-Galerkin (PG) finite-element methods are devised for reactive transport problems.The methods are similar to classical TVD flux-limited schemes with the main difference being that the flux-limiter constraint is designed to preserve positivity for problems involving diffusion and reaction. In the finite-element formulation, we also consider the effect of numerical quadrature in the lumped and consistent mass matrix forms on the positivity-preserving property. Analysis of the latter scheme shows that positivity-preserving solutions of the resulting difference equations can only be guaranteed if the flux-limited scheme is both implicit and satisfies an additional lower-bound condition on time-step size. We show that this condition also applies to standard Galerkin linear finite-element approximations to the linear diffusion equation. Numerical experiments are provided to demonstrate the behavior of the methods and confirm the theoretical conditions on time-step size, mesh spacing, and flux limiting for transport problems with and without nonlinear reaction.

  14. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    SciTech Connect

    Kim, S.

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  15. Representation of bioelectric current sources using Whitney elements in the finite element method.

    PubMed

    Tanzer, I Oğuz; Järvenpää, Seppo; Nenonen, Jukka; Somersalo, Erkki

    2005-07-01

    Bioelectric current sources of magneto- and electroencephalograms (MEG, EEG) are usually modelled with discrete delta-function type current dipoles, despite the fact that the currents in the brain are naturally continuous throughout the neuronal tissue. In this study, we represent bioelectric current sources in terms of Whitney-type elements in the finite element method (FEM) using a tetrahedral mesh. The aim is to study how well the Whitney elements can reproduce the potential and magnetic field patterns generated by a point current dipole in a homogeneous conducting sphere. The electric potential is solved for a unit sphere model with isotropic conductivity and magnetic fields are calculated for points located on a cap outside the sphere. The computed potential and magnetic field are compared with analytical solutions for a current dipole. Relative difference measures between the FEM and analytical solutions are less than 1%, suggesting that Whitney elements as bioelectric current sources are able to produce the same potential and magnetic field patterns as the point dipole sources. PMID:15972978

  16. Representation of bioelectric current sources using Whitney elements in the finite element method

    NASA Astrophysics Data System (ADS)

    Oguz Tanzer, I.; Järvenpää, Seppo; Nenonen, Jukka; Somersalo, Erkki

    2005-07-01

    Bioelectric current sources of magneto- and electroencephalograms (MEG, EEG) are usually modelled with discrete delta-function type current dipoles, despite the fact that the currents in the brain are naturally continuous throughout the neuronal tissue. In this study, we represent bioelectric current sources in terms of Whitney-type elements in the finite element method (FEM) using a tetrahedral mesh. The aim is to study how well the Whitney elements can reproduce the potential and magnetic field patterns generated by a point current dipole in a homogeneous conducting sphere. The electric potential is solved for a unit sphere model with isotropic conductivity and magnetic fields are calculated for points located on a cap outside the sphere. The computed potential and magnetic field are compared with analytical solutions for a current dipole. Relative difference measures between the FEM and analytical solutions are less than 1%, suggesting that Whitney elements as bioelectric current sources are able to produce the same potential and magnetic field patterns as the point dipole sources.

  17. Investigations into the applicability of adaptive finite element methods to two-dimensional infinite Prandtl number thermal and thermochemical convection

    NASA Astrophysics Data System (ADS)

    Davies, D. R.; Davies, J. H.; Hassan, O.; Morgan, K.; Nithiarasu, P.

    2007-05-01

    An adaptive finite element procedure is presented for improving the quality of solutions to convection-dominated problems in geodynamics. The method adapts the mesh automatically around regions of high solution gradient, yielding enhanced resolution of the associated flow features. The approach requires the coupling of an automatic mesh generator, a finite element flow solver, and an error estimator. In this study, the procedure is implemented in conjunction with the well-known geodynamical finite element code ConMan. An unstructured quadrilateral mesh generator is utilized, with mesh adaptation accomplished through regeneration. This regeneration employs information provided by an interpolation-based local error estimator, obtained from the computed solution on an existing mesh. The technique is validated by solving thermal and thermochemical problems with well-established benchmark solutions. In a purely thermal context, results illustrate that the method is highly successful, improving solution accuracy while increasing computational efficiency. For thermochemical simulations the same conclusions can be drawn. However, results also demonstrate that the grid-based methods employed for simulating the compositional field are not competitive with the other methods (tracer particle and marker chain) currently employed in this field, even at the higher spatial resolutions allowed by the adaptive grid strategies.

  18. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  19. Accelerated finite element elastodynamic simulations using the GPU

    NASA Astrophysics Data System (ADS)

    Huthwaite, Peter

    2014-01-01

    An approach is developed to perform explicit time domain finite element simulations of elastodynamic problems on the graphical processing unit, using Nvidia's CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy' partitioner and a new, more efficient ‘aligned' partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The software is applied to three models from the fields of non-destructive testing, vibrations and geophysics, demonstrating a memory bandwidth of very close to the card's maximum, reflecting the bandwidth-limited nature of the algorithm. Comparison with Abaqus, a widely used commercial CPU equivalent, validated the accuracy of the results and demonstrated a speed improvement of around two orders of magnitude. A software package, Pogo, incorporating these developments, is released open source, downloadable from http://www.pogo-fea.com/ to benefit the community.

  20. Estimation of Thermoelectric Generator Performance by Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Ziolkowski, P.; Poinas, P.; Leszczynski, J.; Karpinski, G.; Müller, E.

    2010-09-01

    Prediction of thermoelectric performance parameters by numerical methods is an inherent part of thermoelectric generator (TEG) development and allows for time- and cost-saving assessment of material combinations and variations of crucial design parameters (e.g., shape, pellet length, and thermal coupling). Considering the complexity of a TEG system and its numerous affecting factors, the clarity and the flexibility of a mathematical treatment comes to the fore. Comfortable tools are provided by commercial finite element modeling (FEM) software offering powerful geometry interfaces, mesh generators, solvers, and postprocessing options. We describe the level of development and the simulation results of a three dimensional (3D) TEG FEM. Using ANSYS 11.0, we implemented and simulated a TEG module geometry under various conditions. Comparative analytical one dimensional (1D) results and a direct comparison with inhouse-developed TEG simulation software show the consistency of results. Several pellet aspect ratios and contact property configurations (thermal/electrical interface resistance) were evaluated for their impact on the TEG performance as well as parasitic effects such as convection, radiation, and conductive heat bypass. The scenarios considered revealed the highest efficiency decay for convectionally loaded setups (up to 4.8%pts), followed by the impacts of contact resistances (up to 4.8%pts), by radiation (up to 0.56%pts), and by thermal conduction of a solid filling material within the voids of the module construction (up to 0.14%pts).

  1. Unstructured finite element simulations of compressible phase change phenomena

    NASA Astrophysics Data System (ADS)

    Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad; Scientific Computation Research Center (Scorec) Team

    2015-11-01

    Modeling interactions between compressible gas flow and multiple combusting solid objects, which may undergo large deformations, is a problem with several challenging aspects that include, compressible turbulent flows, shocks, strong interfacial fluxes, discontinuous fields and large topological changes. We have developed and implemented a mathematically consistent, computational framework for simulating such problems. Within our framework the fluid is modeled by solving the compressible Navier Stokes equations with a stabilized finite element method. Turbulence is modeled using large eddy simulation, while shocks are captured using discontinuity capturing methods. The solid is modeled as a hyperelastic material, and its deformation is determined by writing the constitutive relation in a rate form. Appropriate jump conditions are derived from conservations laws applied to an evolving interface, and are implemented using discontinuous functions at the interface. The mesh is updated using the Arbitrary Lagrangian Eulerian (ALE) approach, and is refined and adapted during the simulation. In this talk we will present this framework and will demonstrate its capabilities by solving canonical phase change problems. We acknowledge the support from Army Research Office (ARO) under ARO Grant # W911NF-14-1-0301.

  2. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

    PubMed

    Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo

    2013-09-15

    A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can

  3. A high resolution finite volume method for efficient parallel simulation of casting processes on unstructured meshes

    SciTech Connect

    Kothe, D.B.; Turner, J.A.; Mosso, S.J.; Ferrell, R.C.

    1997-03-01

    We discuss selected aspects of a new parallel three-dimensional (3-D) computational tool for the unstructured mesh simulation of Los Alamos National Laboratory (LANL) casting processes. This tool, known as {bold Telluride}, draws upon on robust, high resolution finite volume solutions of metal alloy mass, momentum, and enthalpy conservation equations to model the filling, cooling, and solidification of LANL castings. We briefly describe the current {bold Telluride} physical models and solution methods, then detail our parallelization strategy as implemented with Fortran 90 (F90). This strategy has yielded straightforward and efficient parallelization on distributed and shared memory architectures, aided in large part by new parallel libraries {bold JTpack9O} for Krylov-subspace iterative solution methods and {bold PGSLib} for efficient gather/scatter operations. We illustrate our methodology and current capabilities with source code examples and parallel efficiency results for a LANL casting simulation.

  4. A plane stress finite element model for elastic-plastic mode I/II crack growth

    NASA Astrophysics Data System (ADS)

    James, Mark Anthony

    A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.

  5. Integrated finite element model of composite materials

    NASA Astrophysics Data System (ADS)

    Teply, Jan L.; Herbein, William C.

    1989-05-01

    Two problems traditionally addressed in the area of micromechanics of composite materials can be briefly summarized as follows: (1) for a macroscopically uniform volume of composite material, which is subjected to macroscopically uniform boundary tractions, displacements or heat influx, find overall thermomechanical properties in terms of the thermomechanical properties of the individual constituents; and (2) for the same material volume and boundary conditions as above, find the local stress, strain, and temperature fields in the constituents and on the interfaces. Two different types of micromechanical models are usually applied to the solutions of these two types of problems. For linear elastic materials, the micromechanical models to solve problem (1) offer simple solutions of overall thermomechanical properties either in terms of bound which are derived from periodic or random microstructures, or in terms of single estimates, which are derived from a solution of an isolated inclusion. The finite element variational approaches are applied to integrate the solutions of problems (1) and (2) into one model. The application of displacement and equilibrium variational approaches to the calculation of overall elastic-plastic properties, are extended to the solution of the second problem. The integrated model is then applied to calculate the overall properties and local stress and strain fields of boron-aluminum composites subjected to transverse tension, in-plane shear and bending.

  6. Laterally displaced pipelines: Finite element analysis

    SciTech Connect

    Altaee, A.; Boivin, R.

    1995-12-31

    The rate effect of lateral soil movement against buried pipes in clay soils is investigated in finite element analyzes using two different computer programs, AGAC and CRISP. Rapid and slow ground movements are considered in ideal undrained and ideal drained analysis, respectively, which represent the two extreme boundaries with respect to rate of loading (rate of ground movement). The analyses address a typical full-scale buried pipe as described by Rizkalla et al. (1992). The pipe considered for the analysis has a diameter of 0.914 m and is placed in a backfilled 2.0 m wide and 1.8 m deep excavation. Results from both AGAC and CRISP analyzes are similar in terms of total lateral force versus lateral pipe movement. For example, both programs indicate the same clear difference in the resulting pipe movement for cases of rapid and slow ground movement, especially at large movement. When the ground movement is rapid, the pipe moves both laterally and upward. One the other hand, when the ground movement is slow, the pipe experiences only lateral movement and no noticeable vertical movement. The total force acting on the pipe (and stresses and strains within the pipe) is larger for the slow rate of loading. The results of analyzes presented herein agree with results of tests on a 5.5 m beam centrifuge performed by the Center for Cold Oceans Resources Engineering.

  7. Finite element modeling of retinal prosthesis mechanics

    NASA Astrophysics Data System (ADS)

    Basinger, B. C.; Rowley, A. P.; Chen, K.; Humayun, M. S.; Weiland, J. D.

    2009-10-01

    Epiretinal prostheses used to treat degenerative retina diseases apply stimulus via an electrode array fixed to the ganglion cell side of the retina. Mechanical pressure applied by these arrays to the retina, both during initial insertion and throughout chronic use, could cause sufficient retinal damage to reduce the device's effectiveness. In order to understand and minimize potential mechanical damage, we have used finite element analysis to model mechanical interactions between an electrode array and the retina in both acute and chronic loading configurations. Modeling indicates that an acute tacking force distributes stress primarily underneath the tack site and heel edge of the array, while more moderate chronic stresses are distributed more evenly underneath the array. Retinal damage in a canine model chronically implanted with a similar array occurred in correlating locations, and model predictions correlate well with benchtop eyewall compression tests. This model provides retinal prosthesis researchers with a tool to optimize the mechanical electrode array design, but the techniques used here represent a unique effort to combine a modifiable device and soft biological tissues in the same model and those techniques could be extended to other devices that come into mechanical contact with soft neural tissues.

  8. Finite Element Modeling of Human Placental Tissue

    PubMed Central

    Yu, Mao; Manoogian, Sarah; Duma, Stefan M.; Stitzel, Joel D.

    2009-01-01

    Motor vehicle crashes account for a large portion of placental abruption and fetal losses. To better understand the material properties of the human placenta, a Finite Element (FE) model of human placenta tissue was created and verified using data from uniaxial tension tests. Sixty-four tensile tests at three different strain rates of 7% strain/s, 70% strain/s, and 700% strain/s from six whole human placentas were used for model development. Nominal stresses were calculated by dividing forces at the grips by the original cross-sectional area. Nominal strains were calculated by dividing cross-head displacement by the original gauge length. A detailed methodology for interpreting experimental data for application to material model development is presented. A model of the tension coupon was created in LS-DYNA and stretched in the same manner as the uniaxial tension tests. The behavior of the material was optimized to the uniaxial tension test using a multi-island genetic algorithm. The results demonstrate good correlation between experiments and the model, with an average difference of 2% between the optimized FE and experimental first principal stress at the termination state. The material parameters found in this study can be utilized in FE models of placental tissues for behavior under dynamic loading. PMID:20184849

  9. TACO: a finite element heat transfer code

    SciTech Connect

    Mason, W.E. Jr.

    1980-02-01

    TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code.

  10. Least squares finite element method with high continuity NURBS basis for incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Chen, De-Xiang; Xu, Zi-Li; Liu, Shi; Feng, Yong-Xin

    2014-03-01

    Modern least squares finite element method (LSFEM) has advantage over mixed finite element method for non-self-adjoint problem like Navier-Stokes equations, but has problem to be norm equivalent and mass conservative when using C0 type basis. In this paper, LSFEM with non-uniform B-splines (NURBS) is proposed for Navier-Stokes equations. High order continuity NURBS is used to construct the finite-dimensional spaces for both velocity and pressure. Variational form is derived from the governing equations with primitive variables and the DOFs due to additional variables are not necessary. There is a novel k-refinement which has spectral convergence of least squares functional. The method also has same advantages as isogeometric analysis like automatic mesh generation and exact geometry representation. Several benchmark problems are solved using the proposed method. The results agree well with the benchmark solutions available in literature. The results also show good performance in mass conservation.

  11. A NURBS-based generalized finite element scheme for 3D simulation of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Safdari, Masoud; Najafi, Ahmad R.; Sottos, Nancy R.; Geubelle, Philippe H.

    2016-08-01

    A 3D NURBS-based interface-enriched generalized finite element method (NIGFEM) is introduced to solve problems with complex discontinuous gradient fields observed in the analysis of heterogeneous materials. The method utilizes simple structured meshes of hexahedral elements that do not necessarily conform to the material interfaces in heterogeneous materials. By avoiding the creation of conforming meshes used in conventional FEM, the NIGFEM leads to significant simplification of the mesh generation process. To achieve an accurate solution in elements that are crossed by material interfaces, the NIGFEM utilizes Non-Uniform Rational B-Splines (NURBS) to enrich the solution field locally. The accuracy and convergence of the NIGFEM are tested by solving a benchmark problem. We observe that the NIGFEM preserves an optimal rate of convergence, and provides additional advantages including the accurate capture of the solution fields in the vicinity of material interfaces and the built-in capability for hierarchical mesh refinement. Finally, the use of the NIGFEM in the computational analysis of heterogeneous materials is discussed.

  12. Three-point compact finite difference scheme on non-uniform meshes for the time-fractional Black-Scholes equation

    NASA Astrophysics Data System (ADS)

    Dimitrov, Yuri M.; Vulkov, Lubin G.

    2015-11-01

    We construct a three-point compact finite difference scheme on a non-uniform mesh for the time-fractional Black-Scholes equation. We show that for special graded meshes used in finance, the Tavella-Randall and the quadratic meshes the numerical solution has a fourth-order accuracy in space. Numerical experiments are discussed.

  13. Finite Element Analysis (FEA) in Design and Production.

    ERIC Educational Resources Information Center

    Waggoner, Todd C.; And Others

    1995-01-01

    Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)

  14. Spectral-element simulations of wave propagation in complex exploration-industry models: Mesh generation and forward simulations

    NASA Astrophysics Data System (ADS)

    Nissen-Meyer, T.; Luo, Y.; Morency, C.; Tromp, J.

    2008-12-01

    Seismic-wave propagation in exploration-industry settings has seen major research and development efforts for decades, yet large-scale applications have often been limited to 2D or 3D finite-difference, (visco- )acoustic wave propagation due to computational limitations. We explore the possibility of including all relevant physical signatures in the wavefield using the spectral- element method (SPECFEM3D, SPECFEM2D), thereby accounting for acoustic, (visco-)elastic, poroelastic, anisotropic wave propagation in meshes which honor all crucial discontinuities. Mesh design is the crux of the problem, and we use CUBIT (Sandia Laboratories) to generate unstructured quadrilateral 2D and hexahedral 3D meshes for these complex background models. While general hexahedral mesh generation is an unresolved problem, we are able to accommodate most of the relevant settings (e.g., layer-cake models, salt bodies, overthrusting faults, and strong topography) with respectively tailored workflows. 2D simulations show localized, characteristic wave effects due to these features that shall be helpful in designing survey acquisition geometries in a relatively economic fashion. We address some of the fundamental issues this comprehensive modeling approach faces regarding its feasibility: Assessing geological structures in terms of the necessity to honor the major structural units, appropriate velocity model interpolation, quality control of the resultant mesh, and computational cost for realistic settings up to frequencies of 40 Hz. The solution to this forward problem forms the basis for subsequent 2D and 3D adjoint tomography within this context, which is the subject of a companion paper.

  15. A p-adaptive stabilized finite element method for fluid dynamics

    NASA Astrophysics Data System (ADS)

    Karanam, Anil Kumar

    2008-10-01

    Stabilized finite element methods have been shown to yield robust, accurate numerical solutions to both the compressible and incompressible Navier-Stokes equations for laminar and turbulent flows. This work presents an application of mesh entity based, hierarchical basis functions to a new stabilized finite element formulation, exploiting the capability to grade polynomial order while maintaining C0 continuity while using traditional finite element data structures. The hierarchical basis accomplishes this by starting with vertex interpolants (a linear basis) and then allowing the polynomial order to vary on each entity (edges, faces, and regions) in the mesh which are then multiplied by blends within each element to build a composite function that is locally higher order but still globally continuous. Details of this formulation and its efficient implementation will be presented. Partition weighting schemes were developed to achieve optimal load balance and scalability for parallel simulations. An application is presented, of p-refinement applied to a laminar flow past a surface mounted unit cube placed in a channel. Finally, post-processing techniques are also described for the effective visualization of higher order solutions.

  16. Stress and failure analysis of textile composites using a global/local finite element method. Ph.D. Thesis

    SciTech Connect

    Woo, K.

    1993-01-01

    Textile composites are known to have improved out-of-plane properties and impact resistance. However, detailed analysis of textile composites is very difficult to perform due to the geometric complexity. In the present study, a practical computational procedure based on a global/local finite element method was developed for detailed analysis of textile composites. This procedure utilizes two problem levels: global and local levels. At the global level, an initial solution was obtained using a coarse global mesh. At the local level, a small portion of the textile composite was refined in a local mesh and analyzed in a great detail. In this study, single-field and multi-field macro elements were used in the global analysis. The macro elements are defined herein to be elements with microstructure within each element. Both the conventional finite element method and the global/local finite element method with macro elements were used to study the variation of effective properties and failure behavior of plain weave and satin weave textile composites. Results indicated that the global/local procedure was very efficient for the detailed analysis of the textile composites. The use of macro elements in the global mesh predicted the global response well and the detailed local stress distribution was obtained by the refined local mesh with discrete material modeling. With a small loss of accuracy, the global/local procedure was able to provide a reasonable solution where the conventional finite element analysis was not possible due to huge computer resource requirements. The effective properties of plain weave and satin weave textile composites were dependent on waviness. The effective properties also showed strong dependency on the number of layers. Quick convergence was obtained, however, as the number of layers increased. The stress and failure index distribution of thin plain weave textile composites were different from that of thick plain weave textile composites.

  17. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.

    PubMed

    Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P

    2011-04-01

    Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials. PMID:21428686

  18. Asymptotic boundary conditions with immersed finite elements for interface magnetostatic/electrostatic field problems with open boundary

    NASA Astrophysics Data System (ADS)

    Chu, Yuchuan; Cao, Yong; He, Xiaoming; Luo, Min

    2011-11-01

    Many of the magnetostatic/electrostatic field problems encountered in aerospace engineering, such as plasma sheath simulation and ion neutralization process in space, are not confined to finite domain and non-interface problems, but characterized as open boundary and interface problems. Asymptotic boundary conditions (ABC) and immersed finite elements (IFE) are relatively new tools to handle open boundaries and interface problems respectively. Compared with the traditional truncation approach, asymptotic boundary conditions need a much smaller domain to achieve the same accuracy. When regular finite element methods are applied to an interface problem, it is necessary to use a body-fitting mesh in order to obtain the optimal convergence rate. However, immersed finite elements possess the same optimal convergence rate on a Cartesian mesh, which is critical to many applications. This paper applies immersed finite element methods and asymptotic boundary conditions to solve an interface problem arising from electric field simulation in composite materials with open boundary. Numerical examples are provided to demonstrate the high global accuracy of the IFE method with ABC based on Cartesian meshes, especially around both interface and boundary. This algorithm uses a much smaller domain than the truncation approach in order to achieve the same accuracy.

  19. FINITE-ELEMENT ANALYSIS OF MULTIPHASE IMMISCIBLE FLOW THROUGH SOILS

    EPA Science Inventory

    A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equation...

  20. A computer graphics program for general finite element analyses

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Sawyer, L. M.

    1978-01-01

    Documentation for a computer graphics program for displays from general finite element analyses is presented. A general description of display options and detailed user instructions are given. Several plots made in structural, thermal and fluid finite element analyses are included to illustrate program options. Sample data files are given to illustrate use of the program.

  1. Solution-adaptive finite element method in computational fracture mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1993-01-01

    Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.

  2. NOTE: Solving the ECG forward problem by means of a meshless finite element method

    NASA Astrophysics Data System (ADS)

    Li, Z. S.; Zhu, S. A.; He, Bin

    2007-07-01

    The conventional numerical computational techniques such as the finite element method (FEM) and the boundary element method (BEM) require laborious and time-consuming model meshing. The new meshless FEM only uses the boundary description and the node distribution and no meshing of the model is required. This paper presents the fundamentals and implementation of meshless FEM and the meshless FEM method is adapted to solve the electrocardiography (ECG) forward problem. The method is evaluated on a single-layer torso model, in which the analytical solution exists, and tested in a realistic geometry homogeneous torso model, with satisfactory results being obtained. The present results suggest that the meshless FEM may provide an alternative for ECG forward solutions.

  3. 2.5D Finite/infinite Element Approach for Simulating Train-Induced Ground Vibrations

    NASA Astrophysics Data System (ADS)

    Yang, Y. B.; Hung, H. H.; Kao, J. C.

    2010-05-01

    The 2.5D finite/infinite element approach for simulating the ground vibrations by surface or underground moving trains will be briefly summarized in this paper. By assuming the soils to be uniform along the direction of the railway, only a two-dimensional profile of the soil perpendicular to the railway need be considered in the modeling. Besides the two in-plane degrees of freedom (DOFs) per node conventionally used for plane strain elements, an extra DOF is introduced to account for the out-of-plane wave transmission. The profile of the half-space is divided into a near field and a semi-infinite far field. The near field containing the train loads and irregular structures is simulated by the finite elements, while the far field covering the soils with infinite boundary by the infinite elements, by which due account is taken of the radiation effects for the moving loads. Enhanced by the automated mesh expansion procedure proposed previously by the writers, the far field impedances for all the lower frequencies are generated repetitively from the mesh created for the highest frequency considered. Finally, incorporated with a proposed load generation mechanism that takes the rail irregularity and dynamic properties of trains into account, an illustrative case study was performed. This paper investigates the vibration isolation effect of the elastic foundation that separates the concrete slab track from the underlying soil or tunnel structure. In addition, the advantage of the 2.5D approach was clearly demonstrated in that the three-dimensional wave propagation effect can be virtually captured using a two-dimensional finite/infinite element mesh. Compared with the conventional 3D approach, the present approach appears to be simple, efficient and generally accurate.

  4. Finite Element analyses of soil bioengineered slopes

    NASA Astrophysics Data System (ADS)

    Tamagnini, Roberto; Switala, Barbara Maria; Sudan Acharya, Madhu; Wu, Wei; Graf, Frank; Auer, Michael; te Kamp, Lothar

    2014-05-01

    Soil Bioengineering methods are not only effective from an economical point of view, but they are also interesting as fully ecological solutions. The presented project is aimed to define a numerical model which includes the impact of vegetation on slope stability, considering both mechanical and hydrological effects. In this project, a constitutive model has been developed that accounts for the multi-phase nature of the soil, namely the partly saturated condition and it also includes the effects of a biological component. The constitutive equation is implemented in the Finite Element (FE) software Comes-Geo with an implicit integration scheme that accounts for the collapse of the soils structure due to wetting. The mathematical formulation of the constitutive equations is introduced by means of thermodynamics and it simulates the growth of the biological system during the time. The numerical code is then applied in the analysis of an ideal rainfall induced landslide. The slope is analyzed for vegetated and non-vegetated conditions. The final results allow to quantitatively assessing the impact of vegetation on slope stability. This allows drawing conclusions and choosing whenever it is worthful to use soil bioengineering methods in slope stabilization instead of traditional approaches. The application of the FE methods show some advantages with respect to the commonly used limit equilibrium analyses, because it can account for the real coupled strain-diffusion nature of the problem. The mechanical strength of roots is in fact influenced by the stress evolution into the slope. Moreover, FE method does not need a pre-definition of any failure surface. FE method can also be used in monitoring the progressive failure of the soil bio-engineered system as it calculates the amount of displacements and strains of the model slope. The preliminary study results show that the formulated equations can be useful for analysis and evaluation of different soil bio

  5. Nondestructive Evaluation Correlated with Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Azid, Ali; Baaklini, George Y.

    1999-01-01

    Advanced materials are being developed for use in high-temperature gas turbine applications. For these new materials to be fully utilized, their deformation properties, their nondestructive evaluation (NDE) quality and material durability, and their creep and fatigue fracture characteristics need to be determined by suitable experiments. The experimental findings must be analyzed, characterized, modeled and translated into constitutive equations for stress analysis and life prediction. Only when these ingredients - together with the appropriate computational tools - are available, can durability analysis be performed in the design stage, long before the component is built. One of the many structural components being evaluated by the NDE group at the NASA Lewis Research Center is the flywheel system. It is being considered as an energy storage device for advanced space vehicles. Such devices offer advantages over electrochemical batteries in situations demanding high power delivery and high energy storage per unit weight. In addition, flywheels have potentially higher efficiency and longer lifetimes with proper motor-generator and rotor design. Flywheels made of fiber-reinforced polymer composite material show great promise for energy applications because of the high energy and power densities that they can achieve along with a burst failure mode that is relatively benign in comparison to those of flywheels made of metallic materials Therefore, to help improve durability and reduce structural uncertainties, we are developing a comprehensive analytical approach to predict the reliability and life of these components under these harsh loading conditions. The combination of NDE and two- and three-dimensional finite element analyses (e.g., stress analyses and fracture mechanics) is expected to set a standardized procedure to accurately assess the applicability of using various composite materials to design a suitable rotor/flywheel assembly.

  6. Updates to Simulation of a Single-Element Lean-Direct Injection Combustor Using Arbitary Polyhedral Meshes

    NASA Technical Reports Server (NTRS)

    Wey, Thomas; Liu, Nan-Suey

    2015-01-01

    This paper summarizes the procedures of (1) generating control volumes anchored at the nodes of a mesh; and (2) generating staggered control volumes via mesh reconstructions, in terms of either mesh realignment or mesh refinement, as well as presents sample results from their applications to the numerical solution of a single-element LDI combustor using a releasable edition of the National Combustion Code (NCC).

  7. Experience with automatic, dynamic load balancing and adaptive finite element computation

    SciTech Connect

    Wheat, S.R.; Devine, K.D.; Maccabe, A.B.

    1993-10-01

    Distributed memory, Massively Parallel (MP), MIMD technology has enabled the development of applications requiring computational resources previously unobtainable. Structural mechanics and fluid dynamics applications, for example, are often solved by finite element methods (FEMs) requiring, millions of degrees of freedom to accurately simulate physical phenomenon. Adaptive methods, which automatically refine or coarsen meshes and vary the order of accuracy of the numerical solution, offer greater robustness and computational efficiency than traditional FEMs by reducing the amount of computation required away from physical structures such as shock waves and boundary layers. On MP computers, FEMs frequently result in distributed processor load imbalances. To overcome load imbalance, many MP FEMs use static load balancing as a preprocessor to the finite element calculation. Adaptive methods complicate the load imbalance problem since the work per element is not uniform across the solution domain and changes as the computation proceeds. Therefore, dynamic load balancing is required to maintain global load balance. We describe a dynamic, fine-grained, element-based data migration system that maintains global load balance and is effective in the presence of changing work loads. Global load balance is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method utilizes an automatic element management system library to which a programmer integrates the application`s computational description. The library`s flexibility supports a large class of finite element and finite difference based applications.

  8. Unconditionally stable concurrent procedures for transient finite-element analysis

    NASA Technical Reports Server (NTRS)

    Ortiz, Michael; Nour-Omid, Bahram

    1989-01-01

    A family of algorithms was outlined which would appear to be particularly well-suited for implementation in a parallel environment. This is due to the fact that for any partition of the mesh each subdomain in the partition can be processed over a time step simultaneously and independently of the rest. The method eliminates the need for assembling and factorizing large global arrays while retaining the unconditional stability properties of the algorithms used at the local level. To critically appraise the proposed methodology, two limiting cases were considered: element-by-element mesh partitions, and coarse mesh partitions. It was concluded that while the proposed methodology can be useful in sequential machines, it would appear to be promising as it bears on computation. It should also be emphasized that extensions of the method to nonlinear problems are possible.

  9. Stress Recovery Based h-Adaptive Finite Element Simulation of Sheet Forming Operations

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohd.; Singh, Devinder

    2016-05-01

    In the present work, stress recovery techniques based adaptive finite element analysis of sheet forming operations is presented. An adaptive two dimensional finite element computer code allows the analysis of sheet forming operations and results in distribution of adaptively refined mesh, effective strain, and punch load, stress and strain rate tensor in the domain that has been developed. The recovery scheme for determining more accurate stress field is based on the least squares fitting of the computed stresses in an element patch surrounding and including a particular node. The solution error is estimated on the basis of an energy norm. It is shown with the help of an illustrative example of axi-symmetric stretching of a metal blank by a hemispherical punch that the adaptive analysis may be usefully employed to predict accurately deformation process, the seats of large deformations and locations of possible instability.

  10. Strain energy release rate determination of stress intensity factors by finite element methods

    NASA Technical Reports Server (NTRS)

    Walsh, R. M., Jr.; Pipes, R. B.

    1985-01-01

    The stiffness derivative finite element technique is used to determine the Mode I stress intensity factors for three-crack configurations. The geometries examined include the double edge notch, single edge notch, and the center crack. The results indicate that when the specified guidelines of the Stiffness Derivative Method are used, a high degree of accuracy can be achieved with an optimized, relatively coarse finite element mesh composed of standard, four-node, plane strain, quadrilateral elements. The numerically generated solutions, when compared with analytical ones, yield results within 0.001 percent of each other for the double edge crack, 0.858 percent for the single edge crack, and 2.021 percent for the center crack.

  11. Stress Recovery Based h-Adaptive Finite Element Simulation of Sheet Forming Operations

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohd.; Singh, Devinder

    2016-07-01

    In the present work, stress recovery techniques based adaptive finite element analysis of sheet forming operations is presented. An adaptive two dimensional finite element computer code allows the analysis of sheet forming operations and results in distribution of adaptively refined mesh, effective strain, and punch load, stress and strain rate tensor in the domain that has been developed. The recovery scheme for determining more accurate stress field is based on the least squares fitting of the computed stresses in an element patch surrounding and including a particular node. The solution error is estimated on the basis of an energy norm. It is shown with the help of an illustrative example of axi-symmetric stretching of a metal blank by a hemispherical punch that the adaptive analysis may be usefully employed to predict accurately deformation process, the seats of large deformations and locations of possible instability.

  12. Simulation of two-dimensional waterflooding by using mixed finite elements

    SciTech Connect

    Chavent, G.; Cohen, G.; Dieste, I.; Dupuy, M.; Jaffre, J.

    1984-08-01

    A new method to simulate incompressible diphasic flow in two dimensions (2D) is presented. Its distinctive features include (1) a reformulation of the basic equation using the premise of a global pressure and (2) approximation of convective terms by an upwind scheme for discontinuous finite elements. A mixed finite-element method approximates both the scalar functions (pressure and saturation) and the vector functions (total velocity field and capillary diffusion vector). The pressure (resp. the saturation) is approximated by a discontinuous function piecewise constant (resp. linear) on the elements of the mesh. A basis of divergence-free vectors is used in the pressure equation, which accelerates computation. Several test examples, which include gravity and capillary effects, are presented.

  13. A Posteriori Bounds for Linear-Functional Outputs of Crouzeix-Raviart Finite Element Discretizations of the Incompressible Stokes Problem

    NASA Technical Reports Server (NTRS)

    Patera, Anthony T.; Paraschivoiu, Marius

    1998-01-01

    We present a finite element technique for the efficient generation of lower and upper bounds to outputs which are linear functionals of the solutions to the incompressible Stokes equations in two space dimensions; the finite element discretization is effected by Crouzeix-Raviart elements, the discontinuous pressure approximation of which is central to our approach. The bounds are based upon the construction of an augmented Lagrangian: the objective is a quadratic "energy" reformulation of the desired output; the constraints are the finite element equilibrium equations (including the incompressibility constraint), and the intersubdomain continuity conditions on velocity. Appeal to the dual max-min problem for appropriately chosen candidate Lagrange multipliers then yields inexpensive bounds for the output associated with a fine-mesh discretization; the Lagrange multipliers are generated by exploiting an associated coarse-mesh approximation. In addition to the requisite coarse-mesh calculations, the bound technique requires solution only of local subdomain Stokes problems on the fine-mesh. The method is illustrated for the Stokes equations, in which the outputs of interest are the flowrate past, and the lift force on, a body immersed in a channel.

  14. Advances in 3D electromagnetic finite element modeling

    SciTech Connect

    Nelson, E.M.

    1997-08-01

    Numerous advances in electromagnetic finite element analysis (FEA) have been made in recent years. The maturity of frequency domain and eigenmode calculations, and the growth of time domain applications is briefly reviewed. A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will also be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis is also discussed.

  15. Multiphase flow through porous media: an adaptive control volume finite element formulation

    NASA Astrophysics Data System (ADS)

    Mostaghimi, P.; Tollit, B.; Gorman, G.; Neethling, S.; Pain, C.

    2012-12-01

    Accurate modeling of multiphase flow in porous media is of great importance in a wide range of applications in science and engineering. We have developed a numerical scheme which employs an implicit pressure explicit saturation (IMPES) algorithm for the temporal discretization of the governing equations. The saturation equation is spatially discretized using a node centered control volume method on an unstructured finite element mesh. The face values are determined through an upwind scheme. The pressure equation is spatially discretized using a continuous control volume finite element method (CV-FEM) to achieve consistency with the discrete saturation equation. The numerical simulation is implemented in Fluidity, an open source and general purpose fluid simulator capable of solving a number of different governing equations for fluid flow and accompanying field equations on arbitrary unstructured meshes. The model is verified against the Buckley-Leverett problem where a quasi-analytical solution is available. We discuss the accuracy and the order of convergence of the scheme. We demonstrate the scheme for modeling multiphase flow in a synthetic heterogeneous porous medium along with the use of anisotropic mesh adaptivity to control local solution errors and increase computational efficiency. The adaptive method is also used to simulate two-phase flow in heap leaching, an industrial mining process, where the flow of the leaching solution is gravitationally dominated. Finally we describe the extension of the developed numerical scheme for simulation of flow in multiscale fractured porous media and its capability to model the multiscale characterization of flow in full scale.

  16. Smoothed finite element method implemented in a resultant eight-node solid-shell element for geometrical linear analysis

    NASA Astrophysics Data System (ADS)

    Élie-Dit-Cosaque, Xavier J.-G.; Gakwaya, Augustin; Naceur, Hakim

    2015-01-01

    A smoothed finite element method formulation for the resultant eight-node solid-shell element is presented in this paper for geometrical linear analysis. The smoothing process is successfully performed on the element mid-surface to deal with the membrane and bending effects of the stiffness matrix. The strain smoothing process allows replacing the Cartesian derivatives of shape functions by the product of shape functions with normal vectors to the element mid-surface boundaries. The present formulation remains competitive when compared to the classical finite element formulations since no inverse of the Jacobian matrix is calculated. The three dimensional resultant shell theory allows the element kinematics to be defined only with the displacement degrees of freedom. The assumed natural strain method is used not only to eliminate the transverse shear locking problem encountered in thin-walled structures, but also to reduce trapezoidal effects. The efficiency of the present element is presented and compared with that of standard solid-shell elements through various benchmark problems including some with highly distorted meshes.

  17. Evaluation of Strip Footing Bearing Capacity Built on the Anthropogenic Embankment by Random Finite Element Method

    NASA Astrophysics Data System (ADS)

    Pieczynska-Kozlowska, Joanna

    2014-05-01

    One of a geotechnical problem in the area of Wroclaw is an anthropogenic embankment layer delaying to the depth of 4-5m, arising as a result of historical incidents. In such a case an assumption of bearing capacity of strip footing might be difficult. The standard solution is to use a deep foundation or foundation soil replacement. However both methods generate significant costs. In the present paper the authors focused their attention on the influence of anthropogenic embankment variability on bearing capacity. Soil parameters were defined on the basis of CPT test and modeled as 2D anisotropic random fields and the assumption of bearing capacity were made according deterministic finite element methods. Many repeated of the different realizations of random fields lead to stable expected value of bearing capacity. The algorithm used to estimate the bearing capacity of strip footing was the random finite element method (e.g. [1]). In traditional approach of bearing capacity the formula proposed by [2] is taken into account. qf = c'Nc + qNq + 0.5γBN- γ (1) where: qf is the ultimate bearing stress, cis the cohesion, qis the overburden load due to foundation embedment, γ is the soil unit weight, Bis the footing width, and Nc, Nq and Nγ are the bearing capacity factors. The method of evaluation the bearing capacity of strip footing based on finite element method incorporate five parameters: Young's modulus (E), Poisson's ratio (ν), dilation angle (ψ), cohesion (c), and friction angle (φ). In the present study E, ν and ψ are held constant while c and φ are randomized. Although the Young's modulus does not affect the bearing capacity it governs the initial elastic response of the soil. Plastic stress redistribution is accomplished using a viscoplastic algorithm merge with an elastic perfectly plastic (Mohr - Coulomb) failure criterion. In this paper a typical finite element mesh was assumed with 8-node elements consist in 50 columns and 20 rows. Footings width B

  18. An automatic granular structure generation and finite element analysis of heterogeneous semi-solid materials

    NASA Astrophysics Data System (ADS)

    Sharifi, Hamid; Larouche, Daniel

    2015-09-01

    The quality of cast metal products depends on the capacity of the semi-solid metal to sustain the stresses generated during the casting. Predicting the evolution of these stresses with accuracy in the solidification interval should be highly helpful to avoid the formation of defects like hot tearing. This task is however very difficult because of the heterogeneous nature of the material. In this paper, we propose to evaluate the mechanical behaviour of a metal during solidification using a mesh generation technique of the heterogeneous semi-solid material for a finite element analysis at the microscopic level. This task is done on a two-dimensional (2D) domain in which the granular structure of the solid phase is generated surrounded by an intergranular and interdendritc liquid phase. Some basic solid grains are first constructed and projected in the 2D domain with random orientations and scale factors. Depending on their orientation, the basic grains are combined to produce larger grains or separated by a liquid film. Different basic grain shapes can produce different granular structures of the mushy zone. As a result, using this automatic grain generation procedure, we can investigate the effect of grain shapes and sizes on the thermo-mechanical behaviour of the semi-solid material. The granular models are automatically converted to the finite element meshes. The solid grains and the liquid phase are meshed properly using quadrilateral elements. This method has been used to simulate the microstructure of a binary aluminium-copper alloy (Al-5.8 wt% Cu) when the fraction solid is 0.92. Using the finite element method and the Mie-Grüneisen equation of state for the liquid phase, the transient mechanical behaviour of the mushy zone under tensile loading has been investigated. The stress distribution and the bridges, which are formed during the tensile loading, have been detected.

  19. Application of finite element substructuring to composite micromechanics. M.S. Thesis - Akron Univ., May 1984

    NASA Technical Reports Server (NTRS)

    Caruso, J. J.

    1984-01-01

    Finite element substructuring is used to predict unidirectional fiber composite hygral (moisture), thermal, and mechanical properties. COSMIC NASTRAN and MSC/NASTRAN are used to perform the finite element analysis. The results obtained from the finite element model are compared with those obtained from the simplified composite micromechanics equations. A unidirectional composite structure made of boron/HM-epoxy, S-glass/IMHS-epoxy and AS/IMHS-epoxy are studied. The finite element analysis is performed using three dimensional isoparametric brick elements and two distinct models. The first model consists of a single cell (one fiber surrounded by matrix) to form a square. The second model uses the single cell and substructuring to form a nine cell square array. To compare computer time and results with the nine cell superelement model, another nine cell model is constructed using conventional mesh generation techniques. An independent computer program consisting of the simplified micromechanics equation is developed to predict the hygral, thermal, and mechanical properties for this comparison. The results indicate that advanced techniques can be used advantageously for fiber composite micromechanics.

  20. Error Analysis In Explicit Finite Element Analysis Of Incremental Sheet Forming

    SciTech Connect

    Bambach, M.; Hirt, G.

    2007-05-17

    Asymmetric incremental sheet forming (AISF) is a relatively new manufacturing process for the production of low volumes of sheet metal parts. Forming is accomplished by the CNC controlled movements of a simple ball-headed tool that follows a 3D trajectory to gradually shape a sheet metal blank. The local plastic deformation under the tool leads to a number of challenges for the Finite Element Modeling. Previous work indicates that implicit finite element methods are at present not efficient enough to allow for the simulation of AISF for industrially relevant parts, mostly due to the fact that the moving contact requires a very small time step. Explicit Finite Element methods can be speeded up by means of mass or load scaling to enable the simulation of large scale sheet metal forming problems, even for AISF. However, it is well known that the methods used to speed up the FE calculations can entail poor results when dynamic effects start to dominate the solution. Typically, the ratio of kinetic to internal energy is used as an assessment of the influence of dynamical effects. It has already been shown in the past that this global criterion can easily be violated locally for a patch of elements of the finite element mesh. This is particularly important for AISF with its highly localised loading and complex tool kinematics. The present paper details an investigation of dynamical effects in explicit Finite Element analysis of AISF. The interplay of mass or time scaling scheme and the smoothness of the tool trajectory is analysed with respect to the resulting errors. Models for tool path generation will be presented allowing for a generation of tool trajectories with predefined maximum speed and acceleration. Based on this, a strategy for error control is proposed which helps reduce the time for setting up reliable explicit finite element models for AISF.

  1. Error Analysis In Explicit Finite Element Analysis Of Incremental Sheet Forming

    NASA Astrophysics Data System (ADS)

    Bambach, M.; Hirt, G.

    2007-05-01

    Asymmetric incremental sheet forming (AISF) is a relatively new manufacturing process for the production of low volumes of sheet metal parts. Forming is accomplished by the CNC controlled movements of a simple ball-headed tool that follows a 3D trajectory to gradually shape a sheet metal blank. The local plastic deformation under the tool leads to a number of challenges for the Finite Element Modeling. Previous work indicates that implicit finite element methods are at present not efficient enough to allow for the simulation of AISF for industrially relevant parts, mostly due to the fact that the moving contact requires a very small time step. Explicit Finite Element methods can be speeded up by means of mass or load scaling to enable the simulation of large scale sheet metal forming problems, even for AISF. However, it is well known that the methods used to speed up the FE calculations can entail poor results when dynamic effects start to dominate the solution. Typically, the ratio of kinetic to internal energy is used as an assessment of the influence of dynamical effects. It has already been shown in the past that this global criterion can easily be violated locally for a patch of elements of the finite element mesh. This is particularly important for AISF with its highly localised loading and complex tool kinematics. The present paper details an investigation of dynamical effects in explicit Finite Element analysis of AISF. The interplay of mass or time scaling scheme and the smoothness of the tool trajectory is analysed with respect to the resulting errors. Models for tool path generation will be presented allowing for a generation of tool trajectories with predefined maximum speed and acceleration. Based on this, a strategy for error control is proposed which helps reduce the time for setting up reliable explicit finite element models for AISF.

  2. A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael

    2014-10-01

    In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with

  3. Conditioning and stability of finite difference schemes on uniform meshes for a singularly perturbed parabolic convection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Shishkin, G. I.

    2013-04-01

    For a singularly perturbed parabolic convection-diffusion equation, the conditioning and stability of finite difference schemes on uniform meshes are analyzed. It is shown that a convergent standard monotone finite difference scheme on a uniform mesh is not ɛ-uniformly well conditioned or ɛ-uniformly stable to perturbations of the data of the grid problem (here, ɛ is a perturbation parameter, ɛ ∈ (0, 1]). An alternative finite difference scheme is proposed, namely, a scheme in which the discrete solution is decomposed into regular and singular components that solve grid subproblems considered on uniform meshes. It is shown that this solution decomposition scheme converges ɛ-uniformly in the maximum norm at an O( N -1ln N + N {0/-1}) rate, where N + 1 and N 0 + 1 are the numbers of grid nodes in x and t, respectively. This scheme is ɛ-uniformly well conditioned and ɛ-uniformly stable to perturbations of the data of the grid problem. The condition number of the solution decomposition scheme is of order O(δ-2lnδ-1 + δ{0/-1}); i.e., up to a logarithmic factor, it is the same as that of a classical scheme on uniform meshes in the case of a regular problem. Here, δ = N -1ln N and δ0 = N {0/-1} are the accuracies of the discrete solution in x and t, respectively.

  4. Application of the Finite Element Method to Rotary Wing Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Friedmann, P. P.

    1982-01-01

    A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.

  5. Adaptive meshless local maximum-entropy finite element method for convection-diffusion problems

    NASA Astrophysics Data System (ADS)

    Wu, C. T.; Young, D. L.; Hong, H. K.

    2014-01-01

    In this paper, a meshless local maximum-entropy finite element method (LME-FEM) is proposed to solve 1D Poisson equation and steady state convection-diffusion problems at various Peclet numbers in both 1D and 2D. By using local maximum-entropy (LME) approximation scheme to construct the element shape functions in the formulation of finite element method (FEM), additional nodes can be introduced within element without any mesh refinement to increase the accuracy of numerical approximation of unknown function, which procedure is similar to conventional p-refinement but without increasing the element connectivity to avoid the high conditioning matrix. The resulted LME-FEM preserves several significant characteristics of conventional FEM such as Kronecker-delta property on element vertices, partition of unity of shape function and exact reproduction of constant and linear functions. Furthermore, according to the essential properties of LME approximation scheme, nodes can be introduced in an arbitrary way and the continuity of the shape function along element edge is kept at the same time. No transition element is needed to connect elements of different orders. The property of arbitrary local refinement makes LME-FEM be a numerical method that can adaptively solve the numerical solutions of various problems where troublesome local mesh refinement is in general necessary to obtain reasonable solutions. Several numerical examples with dramatically varying solutions are presented to test the capability of the current method. The numerical results show that LME-FEM can obtain much better and stable solutions than conventional FEM with linear element.

  6. A chimera grid scheme. [multiple overset body-conforming mesh system for finite difference adaptation to complex aircraft configurations

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Dougherty, F. C.; Benek, J. A.

    1983-01-01

    A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.

  7. Nonlinear finite element modeling of THUNDER piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Taleghani, Barmac K.; Campbell, Joel F.

    1999-06-01

    A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (Thin Layer Unimorph Ferroelectric Driver) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.

  8. Quality assessment and control of finite element solutions

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Babuska, Ivo

    1987-01-01

    Status and some recent developments in the techniques for assessing the reliability of finite element solutions are summarized. Discussion focuses on a number of aspects including: the major types of errors in the finite element solutions; techniques used for a posteriori error estimation and the reliability of these estimators; the feedback and adaptive strategies for improving the finite element solutions; and postprocessing approaches used for improving the accuracy of stresses and other important engineering data. Also, future directions for research needed to make error estimation and adaptive movement practical are identified.

  9. P-Finite-Element Program For Analysis Of Plates

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1995-01-01

    BUCKY is p-finite-element computer program for highly accurate analysis of structures. Used to analyze buckling, bending, and in-plane stress-and-strain behaviors of plates. Provides elastic-plastic solutions for isotropic plates in states of plane stress, and axisymmetric solution sequence used to treat three-dimensional problems. Computes response of plate to variety of loading and boundary conditions by use of higher-order displacement function in p-finite-element method. Enables user to obtain results more accurate than obtained by use of traditional h-finite elements. Written in FORTRAN 77.

  10. Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Taleghani, Barmac K.; Campbell, Joel F.

    1999-01-01

    A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.

  11. Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms

    NASA Technical Reports Server (NTRS)

    Kurdila, Andrew J.; Sharpley, Robert C.

    1999-01-01

    This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.

  12. A multiply parallel implementation of finite element-based discrete dislocation dynamics for arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Crone, Joshua C.; Chung, Peter W.; Leiter, Kenneth W.; Knap, Jaroslaw; Aubry, Sylvie; Hommes, Gregg; Arsenlis, Athanasios

    2014-04-01

    Discrete dislocation dynamics (DD) approaches have proven useful in modeling the dynamics of large ensembles of dislocations. Continuing interest in finite body effects via image stresses has extended DD numerical approaches to improve the handling of surfaces. However, a physically accurate, yet computationally scalable, implementation has been elusive. This paper presents a new framework and implementation of a finite element-based discrete DD code that (1) treats arbitrarily shaped non-convex surfaces through image tractions, (2) allows for systematic refinement of the finite element mesh both in the bulk and on the surface and (3) provides a platform to scale to relatively larger and lengthier simulations. The approach is based on the capabilities of the Parallel Dislocation Simulator coupled through a distributed shared memory implementation for the calculation of large numbers of dislocation segments interacting with an independently large number of surface finite elements. Surface tracking approaches enable topological features at surfaces to be modeled. We verify the computed results via comparisons with analytical solutions for an infinite screw dislocation and prismatic loop near a surface and examine surface effects on a Frank-Read source. Convergence of the image force error with h- and p-refinement is shown to indicate the computational robustness. Additionally, through larger numerical experiments, we demonstrate the new capabilities in a three-dimensional elastic body of finite extent.

  13. A finite element approach for modeling photon transport in tissue.

    PubMed

    Arridge, S R; Schweiger, M; Hiraoka, M; Delpy, D T

    1993-01-01

    The use of optical radiation in medical physics is important in several fields for both treatment and diagnosis. In all cases an analytic and computable model of the propagation of radiation in tissue is essential for a meaningful interpretation of the procedures. A finite element method (FEM) for deriving photon density inside an object, and photon flux at its boundary, assuming that the photon transport model is the diffusion approximation to the radiative transfer equation, is introduced herein. Results from the model for a particular case are given: the calculation of the boundary flux as a function of time resulting from a delta-function input to a two-dimensional circle (equivalent to a line source in an infinite cylinder) with homogeneous scattering and absorption properties. This models the temporal point spread function of interest in near infrared spectroscopy and imaging. The convergence of the FEM results are demonstrated, as the resolution of the mesh is increased, to the analytical expression for the Green's function for this system. The diffusion approximation is very commonly adopted as appropriate for cases which are scattering dominated, i.e., where mu s > mu a, and results from other workers have compared it to alternative models. In this article a high degree of agreement with a Monte Carlo method is demonstrated. The principle advantage of the FE method is its speed. It is in all ways as flexible as Monte Carlo methods and in addition can produce photon density everywhere, as well as flux on the boundary. One disadvantage is that there is no means of deriving individual photon histories. PMID:8497214

  14. Improved Finite Element Modeling of the Turbofan Engine Inlet Radiation Problem

    NASA Technical Reports Server (NTRS)

    Roy, Indranil Danda; Eversman, Walter; Meyer, H. D.

    1993-01-01

    Improvements have been made in the finite element model of the acoustic radiated field from a turbofan engine inlet in the presence of a mean flow. The problem of acoustic radiation from a turbofan engine inlet is difficult to model numerically because of the large domain and high frequencies involved. A numerical model with conventional finite elements in the near field and wave envelope elements in the far field has been constructed. By employing an irrotational mean flow assumption, both the mean flow and the acoustic perturbation problem have been posed in an axisymmetric formulation in terms of the velocity potential; thereby minimizing computer storage and time requirements. The finite element mesh has been altered in search of an improved solution. The mean flow problem has been reformulated with new boundary conditions to make it theoretically rigorous. The sound source at the fan face has been modeled as a combination of positive and negative propagating duct eigenfunctions. Therefore, a finite element duct eigenvalue problem has been solved on the fan face and the resulting modal matrix has been used to implement a source boundary condition on the fan face in the acoustic radiation problem. In the post processing of the solution, the acoustic pressure has been evaluated at Gauss points inside the elements and the nodal pressure values have been interpolated from them. This has significantly improved the results. The effect of the geometric position of the transition circle between conventional finite elements and wave envelope elements has been studied and it has been found that the transition can be made nearer to the inlet than previously assumed.

  15. Updating finite element dynamic models using an element-by-element sensitivity methodology

    NASA Astrophysics Data System (ADS)

    Farhat, Charbel; Hemez, Francois M.

    1993-09-01

    A sensitivity-based methodology for improving the finite element model of a given structure using test modal data and a few sensors is presented. The proposed method searches for both the location and sources of the mass and stiffness errors and does not interfere with the theory behind the finite element model while correcting these errors. The updating algorithm is derived from the unconstrained minimization of the squared L sub 2 norms of the modal dynamic residuals via an iterative two-step staggered procedure. At each iteration, the measured mode shapes are first expanded assuming that the model is error free, then the model parameters are corrected assuming that the expanded mode shapes are exact. The numerical algorithm is implemented in an element-by-element fashion and is capable of 'zooming' on the detected error locations. Several simulation examples which demonstate the potential of the proposed methodology are discussed.

  16. Development of an hp-version finite element method for computational optimal control

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Warner, Michael S.

    1993-01-01

    The purpose of this research effort was to begin the study of the application of hp-version finite elements to the numerical solution of optimal control problems. Under NAG-939, the hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element. One possible drawback is the increased computational effort within each element required in implementing hp-version finite elements. We are trying to determine whether this computational effort is sufficiently offset by the reduction in the number of time elements used and improved Newton-Raphson convergence so as to be useful in solving optimal control problems in real time. Because certain of the element interior unknowns can be eliminated at the element level by solving a small set of nonlinear algebraic equations in which the nodal values are taken as given, the scheme may turn out to be especially powerful in a parallel computing environment. A different processor could be assigned to each element. The number of processors, strictly speaking, is not required to be any larger than the number of sub-regions which are free of discontinuities of any kind.

  17. North Atlantic Finite Element Ocean Modeling

    NASA Astrophysics Data System (ADS)

    Veluthedathekuzhiyil, Praveen

    This thesis presents a modified version of the Finite Element Ocean Model (FEOM) developed at Alfred Wegener Institute for Polar and Marine Research (AWI) for the North Atlantic Ocean. A reasonable North Atlantic Ocean simulation is obtained against the observational data sets in a Control simulation (CS) where the surface boundary conditions are relaxed to a climatology. The vertical mixing in the model was tuned to represent convection in the model, also the horizontal mixing and diffusion coefficients to represent the changes in the resolution of the model’s unstructured grid. In addition, the open boundaries in the model are treated with a sponge layer where tracers are relaxed to climatology. The model is then further modified to accept the atmospheric flux forcing at the surface boundary with an added net heat flux correction and freshwater forcing from major rivers that are flowing into the North Atlantic Ocean. The impact of this boundary condition on the simulation results is then analyzed and shows many improvements albeit the drift in tracer properties around the Gulf Stream region remains as that of the CS case. However a comparison of the vertical sections at Cape Desolation and Cape Farewell with the available observational data sets shows many improvements in this simulation compared to that of the CS case. But the freshwater content in the Labrador Sea interior shows a continued drift as that of the CS case with an improvement towards the 10th model year. A detailed analysis of the boundary currents around the Labrador Sea shows the weak offshore transport of freshwater from the West Greenland Current (WGC) as one of the causes. To further improve the model and reasonably represent the boundary currents and associated sub-grid scale eddies in the model, a modified sub-grid scale parameterization based on Gent and McWilliams, (1990) is adopted. The sensitivity of using various approaches in the thickness diffusion parameter ( Kgm) for this

  18. Use of geostatistical modeling to capture complex geology in finite-element analyses

    SciTech Connect

    Rautman, C.A.; Longenbaugh, R.S.; Ryder, E.E.

    1995-12-01

    This paper summarizes a number of transient thermal analyses performed for a representative two-dimensional cross section of volcanic tuffs at Yucca Mountain using the finite element, nonlinear heat-conduction code COYOTE-II. In addition to conventional design analyses, in which material properties are formulated as a uniform single material and as horizontally layered, internally uniform matters, an attempt was made to increase the resemblance of the thermal property field to the actual geology by creating two fairly complex, geologically realistic models. The first model was created by digitizing an existing two-dimensional geologic cross section of Yucca Mountain. The second model was created using conditional geostatistical simulation. Direct mapping of geostatistically generated material property fields onto finite element computational meshes was demonstrated to yield temperature fields approximately equivalent to those generated through more conventional procedures. However, the ability to use the geostatistical models offers a means of simplifying the physical-process analyses.

  19. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.

    2013-01-01

    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  20. Evolutionary topology optimization using the extended finite element method and isolines

    NASA Astrophysics Data System (ADS)

    Abdi, Meisam; Wildman, Ricky; Ashcroft, Ian

    2014-05-01

    This study presents a new algorithm for structural topological optimization of two-dimensional continuum structures by combining the extended finite element method (X-FEM) with an evolutionary optimization algorithm. Taking advantage of an isoline design approach for boundary representation in a fixed grid domain, X-FEM can be implemented to improve the accuracy of finite element solutions on the boundary during the optimization process. Although this approach does not use any remeshing or moving mesh algorithms, final topologies have smooth and clearly defined boundaries which need no further interpretation. Numerical comparisons of the converged solutions with standard bi-directional evolutionary structural optimization solutions show the efficiency of the proposed method, and comparison with the converged solutions using MSC NASTRAN confirms the high accuracy of this method.

  1. Application of finite-element method to three-dimensional nuclear reactor analysis

    SciTech Connect

    Cheung, K.Y.

    1985-01-01

    The application of the finite element method to solve a realistic one-or-two energy group, multiregion, three-dimensional static neutron diffusion problem is studied. Linear, quadratic, and cubic serendipity box-shape elements are used. The resulting sets of simultaneous algebraic equations with thousands of unknowns are solved by the conjugate gradient method, without forming the large coefficient matrix explicitly. This avoids the complicated data management schemes to store such a large coefficient matrix. Three finite-element computer programs: FEM-LINEAR, FEM-QUADRATIC and FEM-CUBIC were developed, using the linear, quadratic, and cubic box-shape elements respectively. They are self-contained, using simple nodal labeling schemes, without the need for separate finite element mesh generating routines. The efficiency and accuracy of these computer programs are then compared among themselves, and with other computer codes. The cubic element model is not recommended for practical usage because it gives almost identical results as the quadratic model, but it requires considerably longer computation time. The linear model is less accurate than the quadratic model, but it requires much shorter computation time. For a large 3-D problem, the linear model is to be preferred since it gives acceptable accuracy. The quadratic model may be used if improved accuracy is desired.

  2. Finite element analysis of constrained total Condylar Knee Prosthesis

    SciTech Connect

    1998-07-13

    selected for production. Because of unanticipated delays in the CRADA funding, the knee design had to be finalized before the analysis could be accomplished. Thus, the scope of work was modified by the industrial partner. It was decided that it would be most beneficial to perform FEA that would closely replicate the lab tests that had been done as the basis of the design. Exactech was responsible for transmitting the component geometries to Livermore, as well as providing complete data from the quasi-static laboratory loading tests that were performed on various designs. LLNL was responsible for defining the basic finite element mesh and carrying out the analysis. We performed the initial computer simulation and verified model integrity, using the laboratory data. After performing the parametric studies, the results were reviewed with Exactech. Also, the results were presented at the Orthopedic Research Society meeting in a poster session.

  3. Preprocessor and postprocessor computer programs for a radial-flow finite-element model

    USGS Publications Warehouse

    Pucci, A.A., Jr.; Pope, D.A.

    1987-01-01

    Preprocessing and postprocessing computer programs that enhance the utility of the U.S. Geological Survey radial-flow model have been developed. The preprocessor program: (1) generates a triangular finite element mesh from minimal data input, (2) produces graphical displays and tabulations of data for the mesh , and (3) prepares an input data file to use with the radial-flow model. The postprocessor program is a version of the radial-flow model, which was modified to (1) produce graphical output for simulation and field results, (2) generate a statistic for comparing the simulation results with observed data, and (3) allow hydrologic properties to vary in the simulated region. Examples of the use of the processor programs for a hypothetical aquifer test are presented. Instructions for the data files, format instructions, and a listing of the preprocessor and postprocessor source codes are given in the appendixes. (Author 's abstract)

  4. A Parallel Multigrid Method for the Finite Element Analysis of Mechanical Contact

    SciTech Connect

    Hales, J D; Parsons, I D

    2002-03-21

    A geometrical multigrid method for solving the linearized matrix equations arising from node-on-face three-dimensional finite element contact is described. The development of an efficient implementation of this combination that minimizes both the memory requirements and the computational cost requires careful construction and storage of the portion of the coarse mesh stiffness matrices that are associated with the contact stiffness on the fine mesh. The multigrid contact algorithm is parallelized in a manner suitable for distributed memory architectures: results are presented that demonstrates the scheme's scalability. The solution of a large contact problem derived from an analysis of the factory joints present in the Space Shuttle reusable solid rocket motor demonstrates the usefulness of the general approach.

  5. A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling

    NASA Astrophysics Data System (ADS)

    Puzyrev, Vladimir; Koldan, Jelena; de la Puente, Josep; Houzeaux, Guillaume; Vázquez, Mariano; Cela, José María

    2013-05-01

    We present a nodal finite-element method that can be used to compute in parallel highly accurate solutions for 3-D controlled-source electromagnetic forward-modelling problems in anisotropic media. Secondary coupled-potential formulation of Maxwell's equations allows to avoid the singularities introduced by the sources, while completely unstructured tetrahedral meshes and mesh refinement support an accurate representation of geological and bathymetric complexity and improve the solution accuracy. Different complex iterative solvers and an efficient pre-conditioner based on the sparse approximate inverse are used for solving the resulting large sparse linear system of equations. Results are compared with the ones of other researchers to check the accuracy of the method. We demonstrate the performance of the code in large problems with tens and even hundreds of millions of degrees of freedom. Scalability tests on massively parallel computers show that our code is highly scalable.

  6. Finite element modeling of borehole heat exchanger systems. Part 2. Numerical simulation

    NASA Astrophysics Data System (ADS)

    Diersch, H.-J. G.; Bauer, D.; Heidemann, W.; Rühaak, W.; Schätzl, P.

    2011-08-01

    Single borehole heat exchanger (BHE) and arrays of BHE are modeled by using the finite element method. Applying BHE in regional discretizations optimal conditions of mesh spacing around singular BHE nodes are derived. Optimal meshes have shown superior to such discretizations which are either too fine or too coarse. The numerical methods are benchmarked against analytical and numerical reference solutions. Practical application to a borehole thermal energy store (BTES) consisting of 80 BHE is given for the real-site BTES Crailsheim, Germany. The simulations are controlled by the specifically developed FEFLOW-TRNSYS coupling module. Scenarios indicate the effect of the groundwater flow regime on efficiency and reliability of the subsurface heat storage system.

  7. A Note on Substructuring Preconditioning for Nonconforming Finite Element Approximations of Second Order Elliptic Problems

    NASA Technical Reports Server (NTRS)

    Maliassov, Serguei

    1996-01-01

    In this paper an algebraic substructuring preconditioner is considered for nonconforming finite element approximations of second order elliptic problems in 3D domains with a piecewise constant diffusion coefficient. Using a substructuring idea and a block Gauss elimination, part of the unknowns is eliminated and the Schur complement obtained is preconditioned by a spectrally equivalent very sparse matrix. In the case of quasiuniform tetrahedral mesh an appropriate algebraic multigrid solver can be used to solve the problem with this matrix. Explicit estimates of condition numbers and implementation algorithms are established for the constructed preconditioner. It is shown that the condition number of the preconditioned matrix does not depend on either the mesh step size or the jump of the coefficient. Finally, numerical experiments are presented to illustrate the theory being developed.

  8. Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method

    NASA Astrophysics Data System (ADS)

    Bai, YanHong; Wu, YongKe; Xie, XiaoPing

    2016-09-01

    Superconvergence and a posteriori error estimators of recovery type are analyzed for the 4-node hybrid stress quadrilateral finite element method proposed by Pian and Sumihara (Int. J. Numer. Meth. Engrg., 1984, 20: 1685-1695) for linear elasticity problems. Uniform superconvergence of order $O(h^{1+\\min\\{\\alpha,1\\}})$ with respect to the Lam\\'{e} constant $\\lambda$ is established for both the recovered gradients of the displacement vector and the stress tensor under a mesh assumption, where $\\alpha>0$ is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. A posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results.

  9. Application of Mass Lumped Higher Order Finite Elements

    SciTech Connect

    Chen, J.; Strauss, H. R.; Jardin, S. C.; Park, W.; Sugiyama, L. E.; G. Fu; Breslau, J.

    2005-11-01

    There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied.

  10. Finite element simulation of a local scale air quality model over complex terrain

    NASA Astrophysics Data System (ADS)

    Oliver, A.; Montero, G.; Montenegro, R.; Rodríguez, E.; Escobar, J. M.; Perez-Foguet, A.

    2012-05-01

    In this paper we propose a finite element method approach for modelling the air quality in a local scale over complex terrain. The area of interest is up to tens of kilometres and it includes pollutant sources. The proposed methodology involves the generation of an adaptive tetrahedral mesh, the computation of an ambient wind field, the inclusion of the plume rise effect in the wind field, and the simulation of transport and reaction of pollutants. We apply our methodology to simulate a fictitious pollution episode in La Palma island (Canary Island, Spain).

  11. Validation of high displacement piezoelectric actuator finite element models

    NASA Astrophysics Data System (ADS)

    Taleghani, Barmac K.

    2000-08-01

    The paper presents the results obtained by using NASTRAN and ANSYS finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness and important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN and ANSYS used different methods for modeling piezoelectric effects. In NASTRAN, a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.

  12. Error analysis of finite element solutions for postbuckled cylinders

    NASA Technical Reports Server (NTRS)

    Sistla, Rajaram; Thurston, Gaylen A.

    1989-01-01

    A general method of error analysis and correction is investigated for the discrete finite-element results for cylindrical shell structures. The method for error analysis is an adaptation of the method of successive approximation. When applied to the equilibrium equations of shell theory, successive approximations derive an approximate continuous solution from the discrete finite-element results. The advantage of this continuous solution is that it contains continuous partial derivatives of an order higher than the basis functions of the finite-element solution. Preliminary numerical results are presented in this paper for the error analysis of finite-element results for a postbuckled stiffened cylindrical panel modeled by a general purpose shell code. Numerical results from the method have previously been reported for postbuckled stiffened plates. A procedure for correcting the continuous approximate solution by Newton's method is outlined.

  13. The finite element machine: An experiment in parallel processing

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Peebles, S. W.; Crockett, T. W.; Knott, J. D.; Adams, L.

    1982-01-01

    The finite element machine is a prototype computer designed to support parallel solutions to structural analysis problems. The hardware architecture and support software for the machine, initial solution algorithms and test applications, and preliminary results are described.

  14. Validation of High Displacement Piezoelectric Actuator Finite Element Models

    NASA Technical Reports Server (NTRS)

    Taleghani, B. K.

    2000-01-01

    The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.

  15. Comparison of different precondtioners for nonsymmtric finite volume element methods

    SciTech Connect

    Mishev, I.D.

    1996-12-31

    We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.

  16. Adaptive Finite-Element Computation In Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1995-01-01

    Report discusses recent progress in use of solution-adaptive finite-element computational methods to solve two-dimensional problems in linear elastic fracture mechanics. Method also shown extensible to three-dimensional problems.

  17. Evaluation of Solid Modeling Software for Finite Element Analysis of Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Mital, Subodh; Lang, Jerry

    2010-01-01

    Three computer programs, used for the purpose of generating 3-D finite element models of the Repeating Unit Cell (RUC) of a textile, were examined for suitability to model woven Ceramic Matrix Composites (CMCs). The programs evaluated were the open-source available TexGen, the commercially available WiseTex, and the proprietary Composite Material Evaluator (COMATE). A five-harness-satin (5HS) weave for a melt-infiltrated (MI) silicon carbide matrix and silicon carbide fiber was selected as an example problem and the programs were tested for their ability to generate a finite element model of the RUC. The programs were also evaluated for ease-of-use and capability, particularly for the capability to introduce various defect types such as porosity, ply shifting, and nesting of a laminate. Overall, it was found that TexGen and WiseTex were useful for generating solid models of the tow geometry; however, there was a lack of consistency in generating well-conditioned finite element meshes of the tows and matrix. TexGen and WiseTex were both capable of allowing collective and individual shifting of tows within a ply and WiseTex also had a ply nesting capability. TexGen and WiseTex were sufficiently userfriendly and both included a Graphical User Interface (GUI). COMATE was satisfactory in generating a 5HS finite element mesh of an idealized weave geometry but COMATE lacked a GUI and was limited to only 5HS and 8HS weaves compared to the larger amount of weave selections available with TexGen and WiseTex.

  18. Faults simulations for three-dimensional reservoir-geomechanical models with the extended finite element method

    NASA Astrophysics Data System (ADS)

    Prévost, Jean H.; Sukumar, N.

    2016-01-01

    Faults are geological entities with thicknesses several orders of magnitude smaller than the grid blocks typically used to discretize reservoir and/or over-under-burden geological formations. Introducing faults in a complex reservoir and/or geomechanical mesh therefore poses significant meshing difficulties. In this paper, we consider the strong-coupling of solid displacement and fluid pressure in a three-dimensional poro-mechanical (reservoir-geomechanical) model. We introduce faults in the mesh without meshing them explicitly, by using the extended finite element method (X-FEM) in which the nodes whose basis function support intersects the fault are enriched within the framework of partition of unity. For the geomechanics, the fault is treated as an internal displacement discontinuity that allows slipping to occur using a Mohr-Coulomb type criterion. For the reservoir, the fault is either an internal fluid flow conduit that allows fluid flow in the fault as well as to enter/leave the fault or is a barrier to flow (sealing fault). For internal fluid flow conduits, the continuous fluid pressure approximation admits a discontinuity in its normal derivative across the fault, whereas for an impermeable fault, the pressure approximation is discontinuous across the fault. Equal-order displacement and pressure approximations are used. Two- and three-dimensional benchmark computations are presented to verify the accuracy of the approach, and simulations are presented that reveal the influence of the rate of loading on the activation of faults.

  19. Mixed finite elements for the Richards' equation: linearization procedure

    NASA Astrophysics Data System (ADS)

    Pop, I. S.; Radu, F.; Knabner, P.

    2004-07-01

    We consider mixed finite element discretization for a class of degenerate parabolic problems including the Richards' equation. After regularization, time discretization is achieved by an Euler implicit scheme, while mixed finite elements are employed for the discretization in space. Based on the results obtained in (Radu et al. RANA Preprint 02-06, Eindhoven University of Technology, 2002), this paper considers a simple iterative scheme to solve the emerging nonlinear elliptic problems.

  20. Finite element analysis of a composite wheelchair wheel design

    NASA Technical Reports Server (NTRS)

    Ortega, Rene

    1994-01-01

    The finite element analysis of a composite wheelchair wheel design is presented. The design is the result of a technology utilization request. The designer's intent is to soften the riding feeling by incorporating a mechanism attaching the wheel rim to the spokes that would allow considerable deflection upon compressive loads. A finite element analysis was conducted to verify proper structural function. Displacement and stress results are presented and conclusions are provided.