Science.gov

Sample records for finite impulse response

  1. Finite impulse response utilizing the principle of superposition.

    PubMed

    Carter, S E; Malocha, D C

    1997-01-01

    A critical parameter in any finite impulse response (FIR) design is the impulse response length, which must be optimized for the given design specifications in order to reduce the size of the filter. To this end, many design algorithms have been introduced, such as Remez exchange, linear programming, and least mean squares. A new algorithm has been derived that is simple, efficient, and accurate for the design of arbitrary filter specifications and requires fewer computations than many other FIR approaches. This paper provides the definition of the basic functions used for the design process. An overview of the design process is given and the design technique used to design filters with tailored passband and stopband responses to yield a near-optimum time length is presented. This design can be very useful when compensating for the effects of a second transducer or other second order effects in surface acoustic wave (SAW) devices. The effects of monotonically increasing sidelobes on the impulse response length are discussed and illustrated. The addition of arbitrary phase response to the filter design process is discussed. The results of the current FIR approach are discussed and compared with other design techniques. PMID:18244136

  2. Design and application of finite impulse response digital filters.

    PubMed

    Miller, T R; Sampathkumaran, K S

    1982-01-01

    The finite impulse response (FIR) digital filter is a spatial domain filter with a frequency domain representation. The theory of the FIR filter is presented and techniques are described for designing FIR filters with known frequency response characteristics. Rational design principles are emphasized based on characterization of the imaging system using the modulation transfer function and physical properties of the imaged objects. Bandpass, Wiener, and low-pass filters were designed and applied to 201Tl myocardial images. The bandpass filter eliminates low-frequency image components that represent background activity and high-frequency components due to noise. The Wiener, or minimum mean square error filter 'sharpens' the image while also reducing noise. The Wiener filter illustrates the power of the FIR technique to design filters with any desired frequency response. The low-pass filter, while of relative limited use, is presented to compare it with a popular elementary 'smoothing' filter. PMID:7060600

  3. Clock recovering characteristics of adaptive finite-impulse-response filters in digital coherent optical receivers.

    PubMed

    Kikuchi, Kazuro

    2011-03-14

    We analyze the clock-recovery process based on adaptive finite-impulse-response (FIR) filtering in digital coherent optical receivers. When the clock frequency is synchronized between the transmitter and the receiver, only five taps in half-symbol-spaced FIR filters can adjust the sampling phase of analog-to-digital conversion optimally, enabling bit-error rate performance independent of the initial sampling phase. Even if the clock frequency is not synchronized between them, the clock-frequency misalignment can be adjusted within an appropriate block interval; thus, we can achieve an asynchronous clock mode of operation of digital coherent receivers with block processing of the symbol sequence. PMID:21445201

  4. A Methodology for Rapid Prototyping Peak-Constrained Least-Squares Bit-Serial Finite Impulse Response Filters in FPGAs

    NASA Astrophysics Data System (ADS)

    Carreira, Alex; Fox, Trevor W.; Turner, Laurence E.

    2003-12-01

    Area-efficient peak-constrained least-squares (PCLS) bit-serial finite impulse response (FIR) filter implementations can be rapidly prototyped in field programmable gate arrays (FPGA) with the methodology presented in this paper. Faster generation of the FPGA configuration bitstream is possible with a new application-specific mapping and placement method that uses JBits to avoid conventional general-purpose mapping and placement tools. JBits is a set of Java classes that provide an interface into the Xilinx Virtex FPGA configuration bitstream, allowing the user to generate new configuration bitstreams. PCLS coefficient generation allows passband-to-stopband energy ratio (PSR) performance to be traded for a reduction in the filter's hardware cost without altering the minimum stopband attenuation. Fixed-point coefficients that meet the frequency response and hardware cost specifications can be generated with the PCLS method. It is not possible to meet these specifications solely by the quantization of floating-point coefficients generated in other methods.

  5. Anatomy of a SAR impulse response.

    SciTech Connect

    Doerry, Armin Walter

    2007-08-01

    A principal measure of Synthetic Aperture Radar (SAR) image quality is the manifestation in the SAR image of a spatial impulse, that is, the SAR's Impulse Response (IPR). IPR requirements direct certain design decisions in a SAR. Anomalies in the IPR can point to specific anomalous behavior in the radar's hardware and/or software.

  6. Temporal Preparation, Response Inhibition and Impulsivity

    ERIC Educational Resources Information Center

    Correa, Angel; Trivino, Monica; Perez-Duenas, Carolina; Acosta, Alberto; Lupianez, Juan

    2010-01-01

    Temporal preparation and impulsivity involve overlapping neural structures (prefrontal cortex) and cognitive functions (response inhibition and time perception), however, their interrelations had not been investigated. We studied such interrelations by comparing the performance of groups with low vs. high non-clinical trait impulsivity during a…

  7. Finite-element nonlinear transient response computer programs PLATE 1 and CIVM-PLATE 1 for the analysis of panels subjected to impulse or impact loads

    NASA Technical Reports Server (NTRS)

    Spilker, R. L.; Witmer, E. A.; French, S. E.; Rodal, J. J. A.

    1980-01-01

    Two computer programs are described for predicting the transient large deflection elastic viscoplastic responses of thin single layer, initially flat unstiffened or integrally stiffened, Kirchhoff-Lov ductile metal panels. The PLATE 1 program pertains to structural responses produced by prescribed externally applied transient loading or prescribed initial velocity distributions. The collision imparted velocity method PLATE 1 program concerns structural responses produced by impact of an idealized nondeformable fragment. Finite elements are used to represent the structure in both programs. Strain hardening and strain rate effects of initially isotropic material are considered.

  8. Intensity impulse response of SDM links.

    PubMed

    Mecozzi, Antonio; Antonelli, Cristian; Shtaif, Mark

    2015-03-01

    We study the response of space-division multiplexed fiber links to an excitation by a short impulse of the optical intensity. We show that, in the presence of full mixing, the intensity impulse response is Gaussian, confirming recently reported experimental observations, and relate its variance to the mean square of the mode dispersion vector of the link τ(->). The good agreement between our theory and the previously published experiments provides solid foundations to the random coupling model of SDM fiber links, and provides a tool for efficient design of MIMO-DSP receivers. PMID:25836803

  9. Lewis rats have greater response impulsivity than Fischer rats.

    PubMed

    Hamilton, Kristen R; Potenza, Marc N; Grunberg, Neil E

    2014-11-01

    Impulsivity, a tendency toward immediate action without consideration of future consequences, is associated with a wide array of problematic behaviors. Response impulsivity, a type of behaviorally-assessed impulsivity characterized by behavioral disinhibition, is also associated with health risk behaviors. Response impulsivity is distinct from choice impulsivity, which is characterized by intolerance for delay. Lewis rats have higher levels of choice impulsivity than Fischer rats (Anderson & Woolverton, 2005; Madden et al., 2008; Stein et al., 2012). However, no studies have examined whether Lewis and Fischer rats have different levels of response impulsivity. The present research examined response impulsivity in the two rat strains. Subjects were 16 male Lewis and Fischer rats. Rats' response impulsivity was measured using the Five Choice Serial Reaction Time Task (5-CSRTT). In addition, their locomotor activity was measured in locomotor activity chambers. Lewis rats had more premature responses than Fischer rats during the 5-CSRTT assessment [F(1, 14)=5.34, p<0.05], indicating higher levels of response impulsivity. Locomotor activity did not differ between rat strain groups [F(1, 14)=3.05, p=.10], suggesting that overall movement did not account for group differences in response impulsivity on the 5-CSRTT. It can be concluded from this research that Lewis rats have higher levels of response impulsivity than Fischer rats, and therefore provide a valid rat model of individual differences in impulsivity. PMID:24613059

  10. SAR impulse response with residual chirps.

    SciTech Connect

    Doerry, Armin Walter

    2009-06-01

    A Linear Frequency-Modulated (LFM) chirp is a function with unit amplitude and quadratic phase characteristic. In a focused Synthetic Aperture Radar (SAR) image, a residual chirp is undesired for targets of interest, as it coarsens the manifested resolution. However, for undesired spurious signals, a residual chirp is often advantageous because it spreads the energy and thereby diminishes its peak value. In either case, a good understanding of the effects of a residual LFM chirp on a SAR Impulse Response (IPR) is required to facilitate system analysis and design. This report presents an analysis of the effects of a residual chirp on the IPR. As reference, there is a rich body of publications on various aspects of LFM chirps. A quick search reveals a plethora of articles, going back to the early 1950s. We mention here purely as trivia one of the earlier analysis papers on this waveform by Klauder, et al.

  11. Subjective field study of response to impulsive helicopter noise

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1981-01-01

    Subjects, located outdoors and indoors, judged the noisiness and other subjective noise characteristics of flyovers of two helicopters and a propeller driven airplane as part of a study of the effects of impulsiveness on the subjective response to helicopter noise. In the first experiment, the impulsive characteristics of one helicopter was controlled by varying the main rotor speed while maintaining a constant airspeed in level flight. The second experiment which utilized only the helicopters, included descent and level flight operations. The more impulsive helicopter was consistently judged less noisy than the less impulsive helicopter at equal effective perceived noise levels (EPNL). The ability of EPNL to predict noisiness was not improved by the addition of either of two proposed impulse corrections. A subjective measure of impulsiveness, however, which was not significantly related to the proposed impulse corrections, was found to improve the predictive ability of EPNL.

  12. Calculation of impulse responses with a cellular automata algorithm

    NASA Astrophysics Data System (ADS)

    Barjau, Ana

    2001-05-01

    The air columns in musical instruments usually have a predominant dimension and thus are very often modeled as 1D systems where uniparametric waves propagate. Different algorithms can be found in the literature to simulate this propagation. The more widely used are finite difference schemes and delay lines. A finite difference scheme (FD) is a numerical integration of a differential formulation (the wave equation), while delay lines (DL) use analytical exact solutions of the wave equation over finite lengths. A new and different approach is that of a cellular automaton (CA) scheme. The underlying philosophy is opposite those of FD and DL, as the starting point is not the wave equation. In a CA approach, the phenomenon to be studied is reduced to a few simple physical laws that are applied to a set of cells representing the physical system (in the present case, the propagation medium). In this paper, a CA will be proposed to obtain the impulse response of different bore geometries. The results will be compared to those obtained with other algorithms.

  13. Estimating the impulse response of buried objects from ground-penetrating radar signals

    NASA Astrophysics Data System (ADS)

    van der Lijn, Fedde; Roth, Friedrich; Verhaegen, Michel

    2003-09-01

    This paper presents a novel deconvolution algorithm designed to estimate the impulse response of buried objects based on ground penetrating radar (GPR) signals. The impulse response is a rich source of information about the buried object and therefore very useful for intelligent signal processing of GPR data. For example, it can be used in a target classification scheme to reduce the false alarm rate in demining operations. Estimating the target impulse response from the incident and scattered radar signals is a basic deconvolution problem. However, noise sensitivity and ground dispersion prevent the use of simple deconvolution methods like linear least squares deconvolution. Instead, a new deconvolution algorithm has been developed that computes estimates adhering to a physical impulse response model and that can be characterized by a limited number of parameters. It is shown that the new algorithm is robust with respect to noise and that it can deal with ground dispersion. The general performance of the algorithm has been tested on data generated by finite-difference time-domain (FDTD) simulations. The results demonstrate that the algorithm can distinguish between different dielectric and metal targets, making it very suitable for use in a classification scheme. Moreover, since the estimated impulse responses have physical meaning they can be related to target characteristics such as size and material properties. A direct application of this is the estimation of the permittivity of a dielectric target from its impulse response and that of a calibration target.

  14. Understanding the impulse response method applied to concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Clem, D. J.; Popovics, J. S.; Schumacher, T.; Oh, T.; Ham, S.; Wu, D.

    2013-01-01

    The Impulse Response (IR) method is a well-established form of non-destructive testing (NDT) where the dynamic response of an element resulting from an impact event (hammer blow) is measured with a geophone to make conclusions about the element's integrity, stiffness, and/or support conditions. The existing ASTM Standard C1740-10 prescribes a set of parameters that can be used to evaluate the conditions above. These parameters are computed from the so-called `mobility' spectrum which is obtained by dividing the measured bridge deck response by the measured impact force in the frequency domain. While applying the test method in the laboratory as well as on an actual in-service concrete bridge deck, the authors of this paper observed several limitations that are presented and discussed in this paper. In order to better understand the underlying physics of the IR method, a Finite Element (FE) model was created. Parameters prescribed in the Standard were then computed from the FE data and are discussed. One main limitation appears to be the use of a fixed upper frequency of 800 Hz. Test data from the real bridge deck as well as the FE model both show that most energy is found above that limit. This paper presents and discusses limitations of the ASTM Standard found by the authors and suggests ways for improving it.

  15. Inattention, impulsive action, and subjective response to d-amphetamine

    PubMed Central

    Weafer, Jessica; de Wit, Harriet

    2013-01-01

    Background Both impulsivity and sensitivity to the rewarding effects of drugs have long been considered risk factors for drug abuse. There is some preclinical evidence to suggest that the two are related; however, there is little information about how specific behavioral components of impulsivity are related to the acute euphorigenic effects of drugs in humans. The aim of the current study was to examine the degree to which both inattention and impulsive action predicted subjective response to amphetamine. Methods Healthy adults (n=165) performed the behavioral tasks and rated their subjective response to amphetamine (0, 5, 10, and 20 mg). Inattention was assessed as attention lapses on a simple reaction time task, and impulsive action was measured by stop RT on the stop task. Subjective response to amphetamine was assessed with the Drug Effects Questionnaire (DEQ) and the Profile of Mood States (POMS). Results Hierarchical linear regression analyses showed significant negative associations between attention lapses and subjective response to amphetamine on DEQ measures. By contrast, stop RT was positively associated with responses on both DEQ and POMS measures. Additionally, a dose-response relationship was observed, such that the strength of these associations increased with higher doses of amphetamine. Conclusions These findings suggest that inattention is associated with less subjective response to amphetamine. By contrast, the heightened sensitivity to stimulant drug reward observed in individuals high in impulsive action suggests that this might be one mechanism contributing to increased risk for stimulant drug abuse in these individuals. PMID:23790566

  16. Open-loop dereverberation of multichannel room impulse responses

    NASA Astrophysics Data System (ADS)

    Lee, Bowon; Hasegawa-Johnson, Mark A.; Goudeseune, Camille

    2003-04-01

    We are developing the audio display for a CAVE-type virtual reality theater, a 3-m cube with displays covering all six rigid faces. The user's headgear continuously reports ear positions so headphones would be possible, but we nevertheless prefer loudspeakers because this enhances the sense of total immersion. Because sounds produced at the loudspeakers are distorted by the room impulse responses, we therefore face the problem of controlling the sound at the listener's two ears. Our proposed solution consists of open-loop acoustic point control, i.e., dereverberation. The room impulse responses from each loudspeaker to each ear of the listener are inverted using multichannel inversion methods, to create exactly the desired sound field at the listener's ears. Because the actual room impulse responses cannot be measured in real time (as the listener walks around), instead the impulse responses simulated by the image-source method is used. A new evaluation criterion is proposed to quantitatively evaluate both the simulation and the open-loop dereverberation. The actual impulse responses used for this evaluation are measured with a starter pistol, since this best approximates the point source assumed by the image-source method.

  17. Can an "impulse response" really be defined for a photoreceiver?

    NASA Astrophysics Data System (ADS)

    Fraile-Pelaez, F. Javier

    2015-11-01

    In this paper we examine the validity of the concept of impulse response employed to characterize the time response and the signal-to-noise ratio of p-i-n and similar photodetecting devices. We analyze critically the way in which the formalism of analog linear systems has been extrapolated, by employing results from macroscopic electromagnetic theory such as the Shockley-Ramo theorem or any equivalent approach, to the extreme case of a single-photon detection. We argue that the concept of "response to an optical impulse" is ill-defined in the customary terms it is envisioned in the literature, this is, as an output current pulse having a certain predictable, calculated temporal shape, in response to the detection of an optical "Dirac delta" impulse, conceived in turn as the absorption of a single photon.

  18. Fracture and impulse based finite-discrete element modeling of fragmentation

    NASA Astrophysics Data System (ADS)

    Paluszny, A.; Tang, X. H.; Zimmerman, R. W.

    2013-11-01

    A numerical method for fragmentation is presented that combines the finite element method with the impulse-based discrete element method (impulse-based FDEM). In contrast to existing methods, fragments are not represented as a conglomeration of spheres; instead, their shapes are represented using solid modeling techniques, and are the result of multiple fracture growth. Fracture growth within each three-dimensional fragment is controlled by stress intensity factors computed using the finite element method and the reduced virtual integration technique. Non-convex fragment interaction and movement is modeled using impulse dynamics, rather than a penalty-based method. Collisions leading to fracture are handled individually by propagating pre-existing internal flaws and cracks. The method utilizes decoupled geometry and mesh representation, and local failure and propagation criteria. Fractures that reach volume boundaries lead to further fragmentation. The approach is demonstrated by the fragmentation of a sphere, which exhibits a velocity-dependent fragment size distribution. The distribution is characterized by a two-parameter Weibull distribution, an emergent property of the simulation. Results are in good agreement with experimental data.

  19. Understanding Computation of Impulse Response in Microwave Software Tools

    ERIC Educational Resources Information Center

    Potrebic, Milka M.; Tosic, Dejan V.; Pejovic, Predrag V.

    2010-01-01

    In modern microwave engineering curricula, the introduction of the many new topics in microwave industrial development, or of software tools for design and simulation, sometimes results in students having an inadequate understanding of the fundamental theory. The terminology for and the explanation of algorithms for calculating impulse response in…

  20. Impulse and Frequency Response of a Moving Coil Galvanometer.

    ERIC Educational Resources Information Center

    McNeill, D. J.

    1985-01-01

    Describes an undergraduate laboratory experiment in which a moving coil galvanometer is studied and the electromotive force generated by the swinging coil provides the impulse response information in a form suitable for digitizing and inputing to a microcomputer. Background information and analysis of typical data are included. (JN)

  1. Inhibition and impulsivity: behavioral and neural basis of response control.

    PubMed

    Bari, Andrea; Robbins, Trevor W

    2013-09-01

    In many circumstances alternative courses of action and thoughts have to be inhibited to allow the emergence of goal-directed behavior. However, this has not been the accepted view in the past and only recently has inhibition earned its own place in the neurosciences as a fundamental cognitive function. In this review we first introduce the concept of inhibition from early psychological speculations based on philosophical theories of the human mind. The broad construct of inhibition is then reduced to its most readily observable component which necessarily is its behavioral manifestation. The study of 'response inhibition' has the advantage of dealing with a relatively simple and straightforward process, the overriding of a planned or already initiated action. Deficient inhibitory processes profoundly affect everyday life, causing impulsive conduct which is generally detrimental for the individual. Impulsivity has been consistently linked to several types of addiction, attention deficit/hyperactivity disorder, mania and other psychiatric conditions. Our discussion of the behavioral assessment of impulsivity will focus on objective laboratory tasks of response inhibition that have been implemented in parallel for humans and other species with relatively few qualitative differences. The translational potential of these measures has greatly improved our knowledge of the neurobiological basis of behavioral inhibition and impulsivity. We will then review the current models of behavioral inhibition along with their expression via underlying brain regions, including those involved in the activation of the brain's emergency 'brake' operation, those engaged in more controlled and sustained inhibitory processes and other ancillary executive functions. PMID:23856628

  2. Volterra network modeling of the nonlinear finite-impulse reponse of the radiation belt flux

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Daglis, I. A.; Anastasiadis, A.; Vassiliadis, D.

    2011-01-01

    We show how a general class of spatio-temporal nonlinear impulse-response forecast networks (Volterra networks) can be constructed from a taxonomy of nonlinear autoregressive integrated moving average with exogenous inputs (NAR-MAX) input-output equations, and used to model the evolution of energetic particle f uxes in the Van Allen radiation belts. We present initial results for the nonlinear response of the radiation belts to conditions a month earlier. The essential features of spatio-temporal observations are recovered with the model echoing the results of state space models and linear f nite impulse-response models whereby the strongest coupling peak occurs in the preceding 1-2 days. It appears that such networks hold promise for the development of accurate and fully data-driven space weather modelling, monitoring and forecast tools.

  3. Volterra network modeling of the nonlinear finite-impulse reponse of the radiation belt flux

    SciTech Connect

    Taylor, M.; Daglis, I. A.; Anastasiadis, A.; Vassiliadis, D.

    2011-01-04

    We show how a general class of spatio-temporal nonlinear impulse-response forecast networks (Volterra networks) can be constructed from a taxonomy of nonlinear autoregressive integrated moving average with exogenous inputs (NAR-MAX) input-output equations, and used to model the evolution of energetic particle f uxes in the Van Allen radiation belts. We present initial results for the nonlinear response of the radiation belts to conditions a month earlier. The essential features of spatio-temporal observations are recovered with the model echoing the results of state space models and linear f nite impulse-response models whereby the strongest coupling peak occurs in the preceding 1-2 days. It appears that such networks hold promise for the development of accurate and fully data-driven space weather modelling, monitoring and forecast tools.

  4. Auditorium acoustics evaluation based on simulated impulse response

    NASA Astrophysics Data System (ADS)

    Wu, Shuoxian; Wang, Hongwei; Zhao, Yuezhe

    2001-05-01

    The impulse responses and other acoustical parameters of Huangpu Teenager Palace in Guangzhou were measured. Meanwhile, the acoustical simulation and auralization based on software ODEON were also made. The comparison between the parameters based on computer simulation and measuring is given. This case study shows that auralization technique based on computer simulation can be used for predicting the acoustical quality of a hall at its design stage.

  5. Impulse control and criminal responsibility: lessons from neuroscience.

    PubMed

    Penney, Steven

    2012-01-01

    Almost all of the world's legal systems recognize the "M'Naghten" exception to criminal responsibility: the inability to appreciate the wrongfulness of action. This exception rests on the assumption that punishment is morally justified only if the defendant was able to choose whether to do wrong. Jurists and jurisdictions differ, however, on whether to extend M'Naghten's logic to cases where the defendant understood the wrongfulness of an act but was incapable of resisting an impulse to commit it. In this article I ask whether contemporary neuroscience can help lawmakers to decide whether to adopt or retain this defense, known variously as the "irresistible impulse" defense or the "control" or "volitional" test for insanity. More specifically, I ask firstly, whether it is empirically true that a person can understand the wrongfulness of an act yet be powerless to refrain from committing it; and second (assuming an affirmative answer to the first), whether the law of criminal responsibility can practically accommodate this phenomenon? After canvassing the relevant neuroscientific literature, I conclude that the answer to the first question is "yes." After examining the varied treatment of the defense in the United States and other nations, I also give an affirmative answer to the second question, but only in limited circumstances. In short, the defense of irresistible impulse should be recognized, but only when it can be shown that the defendant experienced a total incapacity to control his or her conduct in the circumstances. PMID:22261322

  6. Finite Element Modeling of Impulsive Excitation and Shear Wave Propagation in an Incompressible, Transversely Isotropic Medium

    PubMed Central

    Rouze, Ned C.; Wang, Michael H.; Palmeri, Mark L.; Nightingale, Kathy R.

    2013-01-01

    Elastic properties of materials can be measured by observing shear wave propagation following localized, impulsive excitations and relating the propagation velocity to a model of the material. However, characterization of anisotropic materials is difficult because of the number of elasticity constants in the material model and the complex dependence of propagation velocity relative to the excitation axis, material symmetries, and propagation directions. In this study, we develop a model of wave propagation following impulsive excitation in an incompressible, transversely isotropic (TI) material such as muscle. Wave motion is described in terms of three propagation modes identified by their polarization relative to the material symmetry axis and propagation direction. Phase velocities for these propagation modes are expressed in terms of five elasticity constants needed to describe a general TI material, and also in terms of three constants after the application of two constraints that hold in the limit of an incompressible material. Group propagation velocities are derived from the phase velocities to describe the propagation of wave packets away from the excitation region following localized excitation. The theoretical model is compared to the results of finite element (FE) simulations performed using a nearly incompressible material model with the five elasticity constants chosen to preserve the essential properties of the material in the incompressible limit. Propagation velocities calculated from the FE displacement data show complex structure that agrees quantitatively with the theoretical model and demonstrates the possibility of measuring all three elasticity constants needed to characterize an incompressible, TI material. PMID:24094454

  7. Rapid-Response Impulsivity: Definitions, Measurement Issues, and Clinical Implications

    PubMed Central

    Hamilton, Kristen R.; Littlefield, Andrew K.; Anastasio, Noelle C.; Cunningham, Kathryn A.; Fink, Latham H.; Wing, Victoria C.; Mathias, Charles W.; Lane, Scott D.; Schutz, Christian; Swann, Alan C.; Lejuez, C.W.; Clark, Luke; Moeller, F. Gerard; Potenza, Marc N.

    2015-01-01

    Impulsivity is a multi-faceted construct that is a core feature of multiple psychiatric conditions and personality disorders. However, progress in understanding and treating impulsivity in the context of these conditions is limited by a lack of precision and consistency in its definition and assessment. Rapid-response-impulsivity (RRI) represents a tendency toward immediate action that occurs with diminished forethought and is out of context with the present demands of the environment. Experts from the International Society for Research on Impulsivity (InSRI) met to discuss and evaluate RRI-measures in terms of reliability, sensitivity, and validity with the goal of helping researchers and clinicians make informed decisions about the use and interpretation of findings from RRI-measures. Their recommendations are described in this manuscript. Commonly-used clinical and preclinical RRI-tasks are described, and considerations are provided to guide task selection. Tasks measuring two conceptually and neurobiologically distinct types of RRI, “refraining from action initiation” (RAI) and “stopping an ongoing action” (SOA) are described. RAI and SOA-tasks capture distinct aspects of RRI that may relate to distinct clinical outcomes. The InSRI group recommends that: 1) selection of RRI-measures should be informed by careful consideration of the strengths, limitations, and practical considerations of the available measures; 2) researchers use both RAI and SOA tasks in RRI studies to allow for direct comparison of RRI types and examination of their associations with clinically relevant measures; and, 3) similar considerations should be made for human and non-human studies in an effort to harmonize and integrate pre-clinical and clinical research. PMID:25867840

  8. Simultaneous identification of residual unbalances and bearing dynamic parameters from impulse responses of rotor bearing systems

    NASA Astrophysics Data System (ADS)

    Tiwari, R.; Chakravarthy, V.

    2006-10-01

    An identification algorithm for simultaneous estimation of residual unbalances and bearing dynamic parameters by using impulse response measurements is presented for multi-degree-of-freedom ( mdofs) flexible rotor-bearing systems. The algorithm identifies speed-dependent bearing dynamic parameters for each bearing and residual unbalances at predefined balancing planes. Bearing dynamic parameters consist of four stiffness and four damping coefficients and residual unbalances contain the magnitude and phase information. Timoshenko beam with gyroscopic effects are included in the system finite element modelling. To overcome the practical difficulty of number of responses that can be measured, the standard condensation is used to reduce the number of degrees of freedom ( dofs) of the model. For illustration, responses in time domain are simulated due to impulse forces in the presence of residual unbalances from a rotor-bearing model and transformed to frequency domain. The identification algorithm uses these responses to estimate bearing dynamic parameters along with residual unbalances. The proposed algorithm has the flexibility to incorporate any type and any number of bearings including seals. The identification algorithm has been tested with the measurement noise in the simulated response. Identified parameters match quite well with assumed parameters used for the simulation of responses. The response reproduction capability of identified parameters has been found to be excellent.

  9. Direction Finding Using an Antenna with Direction Dependent Impulse Response

    NASA Technical Reports Server (NTRS)

    Foltz, Heinrich; Kegege, Obadiah

    2016-01-01

    Wideband antennas may be designed to have an impulse response that is direction dependent, not only in amplitude but also in waveform shape. This property can be used to perform direction finding using a single fixed antenna, without the need for an array or antenna rotation. In this paper direction finding is demonstrated using a simple candelabra-shaped monopole operating in the 1-3 GHz range. The method requires a known transmitted pulse shape and high signal-to-noise ratio, and is not as accurate or robust as conventional methods. However, it can add direction finding capability to a wideband communication system without the addition of any hardware.

  10. Infinite impulse response modal filtering in visible adaptive optics

    NASA Astrophysics Data System (ADS)

    Agapito, G.; Arcidiacono, C.; Quirós-Pacheco, F.; Puglisi, A.; Esposito, S.

    2012-07-01

    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.

  11. Response of a seat-passenger system to impulsive loading.

    NASA Technical Reports Server (NTRS)

    Collins, J. A.; Turnbow, J. W.

    1972-01-01

    This paper presents a summary of a study of the dynamic response of an aircraft seat-passenger system to impulsive loading typical of aircraft crash situations. A brief description of the computer model SIMULA is presented, and selected data from 305 separate cases which have been studied are discussed. Maximum system forces, displacements, velocities, and accelerations are presented as functions of velocity change, aircraft deceleration, crash pulse shape, passenger weight, and seat belt slack. Data from both single and coupled parameter studies are included. A correlation of SIMULA results with experimentally obtained data is made.

  12. Impulse response method for characterization of echogenic liposomesa)

    PubMed Central

    Raymond, Jason L.; Luan, Ying; van Rooij, Tom; Kooiman, Klazina; Huang, Shao-Ling; McPherson, David D.; Versluis, Michel; de Jong, Nico; Holland, Christy K.

    2015-01-01

    An optical characterization method is presented based on the use of the impulse response to characterize the damping imparted by the shell of an air-filled ultrasound contrast agent (UCA). The interfacial shell viscosity was estimated based on the unforced decaying response of individual echogenic liposomes (ELIP) exposed to a broadband acoustic impulse excitation. Radius versus time response was measured optically based on recordings acquired using an ultra-high-speed camera. The method provided an efficient approach that enabled statistical measurements on 106 individual ELIP. A decrease in shell viscosity, from 2.1 × 10−8 to 2.5 × 10−9 kg/s, was observed with increasing dilatation rate, from 0.5 × 106 to 1 × 107 s−1. This nonlinear behavior has been reported in other studies of lipid-shelled UCAs and is consistent with rheological shear-thinning. The measured shell viscosity for the ELIP formulation used in this study [κs = (2.1 ± 1.0) × 10−8 kg/s] was in quantitative agreement with previously reported values on a population of ELIP and is consistent with other lipid-shelled UCAs. The acoustic response of ELIP therefore is similar to other lipid-shelled UCAs despite loading with air instead of perfluorocarbon gas. The methods described here can provide an accurate estimate of the shell viscosity and damping for individual UCA microbubbles. PMID:25920822

  13. Loss Factor Estimation Using the Impulse Response Decay Method on a Stiffened Structure

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph; Schiller, Noah; Allen, Albert; Moeller, Mark

    2009-01-01

    High-frequency vibroacoustic modeling is typically performed using energy-based techniques such as Statistical Energy Analysis (SEA). Energy models require an estimate of the internal damping loss factor. Unfortunately, the loss factor is difficult to estimate analytically, and experimental methods such as the power injection method can require extensive measurements over the structure of interest. This paper discusses the implications of estimating damping loss factors using the impulse response decay method (IRDM) from a limited set of response measurements. An automated procedure for implementing IRDM is described and then evaluated using data from a finite element model of a stiffened, curved panel. Estimated loss factors are compared with loss factors computed using a power injection method and a manual curve fit. The paper discusses the sensitivity of the IRDM loss factor estimates to damping of connected subsystems and the number and location of points in the measurement ensemble.

  14. Deriving a dosage-response relationship for community response to high-energy impulsive noise

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.

    1994-01-01

    The inability to systematically predict community response to exposure to sonic booms (and other high energy impulsive sounds) is a major impediment to credible analyses of the environmental effects of supersonic flight operations. Efforts to assess community response to high energy impulsive sounds are limited in at least two important ways. First, a paucity of appropriate empirical data makes it difficult to infer a dosage-response relationship by means similar to those used in the case of general transportation noise. Second, it is unclear how well the 'equal energy hypothesis' (the notion that duration, number, and level of individual events are directly interchangeable determinants of annoyance) applies to some forms of impulsive noise exposure. Some of the issues currently under consideration by a CHABA working group addressing these problems are discussed. These include means for applying information gained in controlled exposure studies about different rates of growth of annoyance with impulsive and non-impulsive sound exposure levels, and strategies for developing a dosage-response relationship in a data-poor area.

  15. Impulsive choice and response in dopamine agonist-related impulse control behaviors

    PubMed Central

    Voon, Valerie; Reynolds, Brady; Brezing, Christina; Gallea, Cecile; Skaljic, Meliha; Ekanayake, Vindhya; Fernandez, Hubert; Potenza, Marc N; Dolan, Raymond J; Hallett, Mark

    2013-01-01

    Rationale Dopaminergic medication-related Impulse Control Disorders (ICDs) such as pathological gambling and compulsive shopping have been reported in Parkinson disease (PD). Hypothesis We hypothesized that dopamine agonists (DAs) would be associated with greater impulsive choice, or greater discounting of delayed rewards, in PD patients with ICDs (PDI). Methods Fourteen PDI patients, 14 PD controls without ICDs and 16 medication-free matched normal controls were tested on (i) the Experiential Discounting Task (EDT), a feedback-based intertemporal choice task, (ii) spatial working memory and (iii) attentional set shifting. The EDT was used to assess impulsivity choice (hyperbolic K-value), reaction time (RT) and decision conflict RT (the RT difference between high conflict and low conflict choices). PDI patients and PD controls were tested on and off DA. Results On the EDT, there was a group by medication interaction effect [F(1,26)=5.62; p=0.03] with pairwise analyses demonstrating that DA status was associated with increased impulsive choice in PDI patients (p=0.02) but not in PD controls (p=0.37). PDI patients also had faster RT compared to PD controls F(1,26)=7.51 p=0.01]. DA status was associated with shorter RT [F(3,24)=8.39, p=0.001] and decision conflict RT [F(1,26)=6.16, p=0.02] in PDI patients but not in PD controls. There were no correlations between different measures of impulsivity. PDI patients on DA had greater spatial working memory impairments compared to PD controls on DA (t=2.13, df=26, p=0.04). Conclusion Greater impulsive choice, faster RT, faster decision conflict RT and executive dysfunction may contribute to ICDs in PD. PMID:19838863

  16. Spatial organization of the impulse response in a karst aquifer

    NASA Astrophysics Data System (ADS)

    Delbart, C.; Valdés, D.; Barbecot, F.; Tognelli, A.; Couchoux, L.

    2016-06-01

    Karst aquifers are characterized by a strong heterogeneity in their physical properties. The purpose of the study is the spatial variability of water transfers in a carbonated karstic aquifer. To this end, a high spatial density of information about the water transfer is needed. The characteristics of the site, a topographic hill of 13 km2 with eight boreholes, which was monitored hourly over four years, allows the study of the spatial variability of water transfers. The variability of the impulse response of the system is studied using autocorrelation and cross-correlation analysis between the rainfall and piezometric level time series. The shapes of the autocorrelation and cross-correlation functions vary according to the geographical location of the boreholes, that proves a spatial organization of the groundwater transfer. The response time varies depending on the thickness of the unsaturated zone by an unusual inverse correlation. In this case, the water level signal spatially integrates the signal transfer of the unsaturated zone and the signal transfer of the saturated part of the aquifer. Consequently, inertia and response time increased with the distance between the borehole and the top of piezometric dome. This description supports highly organized fast transfers in this karst aquifer and a highly connected fracture network.

  17. Responsibility and impulsivity and their interaction in relation to obsessive-compulsive symptoms.

    PubMed

    Smári, Jakob; Bouranel, Guethrún; Thornóra Eiethsdóttir, Sigríethur

    2008-09-01

    In the present study, the role of responsibility and impulsivity and their interaction in obsessive-compulsive symptoms was investigated. The obsessive-compulsive inventory-revised (OCI-R), an attention deficit and hyperactivity/impulsivity self-report scale (AD/HD-SR), the responsibility attitudes scale (RAS), Eysenck's impulsiveness/venturesomeness/empathy questionnaire (IVE), the community epidemiological survey-depression (CES-D) and the Penn State worry questionnaire (PSWQ) were administered to a sample of 405 Icelandic university students. Responsibility attitudes (RAS) and impulsivity measures were significantly related to scores on the OCI-R total scale, even when depression had been taken into consideration. The interaction between responsibility and hyperactivity/impulsivity added to the prediction of OCI-R scores over and above simple effects. PMID:17692284

  18. An Item Response Theory Analysis of the Impulsive Behaviors Checklist for Adolescents

    ERIC Educational Resources Information Center

    You, Jianing; Leung, Freedom; Lai, Ching-man; Fu, Kei

    2011-01-01

    This study used item response theory (IRT) to examine the Impulsive Behaviors Checklist for Adolescents (IBCL-A) among 6,276 (67.7% girls) Chinese secondary school students. The IBCL-A included 15 maladaptive impulsive behaviors adapted from the Revised Diagnostic Interview for Borderlines. The authors obtained the severity and discrimination…

  19. Subjective diffuseness of music signals convolved with binaural impulse responses

    NASA Astrophysics Data System (ADS)

    Shimokura, Ryota; Tronchin, Lamberto; Cocchi, Alessandro; Soeta, Yoshiharu

    2011-07-01

    The spatial impression of sound in a hall can be quantified using sound field factors such as the interaural cross-correlation coefficient (IACC) calculated from binaural impulse response (BIR), henceforth denoted by IACC IR. The subjective diffuseness for the listener is a spatial attribute which depends on factors associated both with the source signal and with the actual sound field, and is quantified using the IACC of the signal received by the listener, henceforth denoted by IACC SR. Therefore, the subjective diffuseness in a given hall may change with the music. The aims of this study are to estimate the IACC SR from the IACC IR and the factors, which is obtained from autocorrelation function (ACF) of music signal, and to evaluate the subjective diffuseness by these factors. First, the relationship between the IACC IR and IACC SR was investigated. Second, subjective diffuseness was measured by a psycho-acoustical experiment. As a result, the IACC SR could be estimated from the IACC IR of the BIR and the effective duration ( τe) from the ACF of music signal. It was found that the effects of BIRs on subjective diffuseness could be evaluated by IACC IR for almost all subjects, while the effects of music signals could be evaluated by the τe and the width of the peak at τ=0 ( Wϕ(0) ) of the ACF.

  20. Impulse Response Measurements Over Space-Earth Paths Using the GPS Coarse/Acquisition Codes

    NASA Technical Reports Server (NTRS)

    Lemmon, J. J.; Papazian, P. B.

    1995-01-01

    The impulse responses of radio transmission channels over space-earth paths were measured using the course/acquisition code signals from the Global Positioning System of satellites. The data acquisition system and signal processing techniques used to develop the impulse responses are described. Examples of impulse response measurements are presented. The results indicate that this measurement approach enables detection of multipath signals that are 20 dB or more below the power of the direct arrival. Channel characteristics that could be investigated with additional measurements and analyses are discussed.

  1. Matched-impulse-response processing for shallow-water localization and geoacoustic inversion

    PubMed

    Michalopoulou

    2000-11-01

    In this paper, impulse response matching is proposed for source localization and environmental inversion. The ocean impulse response is estimated using a cross-correlation procedure applied to data from the propagation of a broadband pulse in a shallow-water environment. Source localization and geoacoustic parameter estimation are then performed through time-domain correlations between the estimated impulse responses at spatially separated phones and synthetic replica impulse responses. The method is both spatially and temporally coherent. Parameter space search uses a hierarchical scheme designed to exploit the sensitivity of the acoustic field to the unknown parameters. Tested on the SWellEX-96 and synthetic data, the proposed method is shown to be more robust than conventional (linear), incoherent, broadband matched field processing. PMID:11108345

  2. Decreased caudate response to milkshake is associated with higher body mass index and greater impulsivity

    PubMed Central

    Babbs, R. Keith; Sun, Xue; Felsted, Jennifer; Chouinard-Decorte, Francois; Veldhuizen, Maria G.; Small, Dana

    2013-01-01

    Previous investigations consistently report a negative association between body mass index (BMI) and response in the caudate nucleus during the consumption of palatable and energy dense food. Since this response has also been linked to weight gain, we sought to replicate this finding and determine if the reduced response is associated with measures of impulsivity or food reward. Two studies were conducted in which fMRI was used to measure brain response to milkshake and a tasteless control solution. In study 1 (n = 25) we also assessed self-reported impulsivity, willingness to work for food, and subjective experiences of the pleasantness of milkshake taste and aroma. Replicating prior work, we report a negative association between BMI and brain response to milkshake vs. tasteless in the caudate nucleus. The opposite pattern was observed in the ventral putamen, with greater response observed in the 13 overweight compared to the 12 healthy weight subjects. Regression of brain response against impulsivity and food reward measures revealed one significant association: in the overweight but not healthy weight group self-reported impulsivity was negatively associated with caudate response to milkshake. In study 2 (n = 14), in addition to assessing brain response to milkshake and tasteless solutions subjects completed a go/no-go task outside the scanner. As predicted, we identified an inverse relationship between caudate response to milkshake vs. tasteless and failure to inhibit responses on the no go trials. We conclude that the inverse correlation between BMI and caudate response to milkshake is associated with impulsivity but not food reward. These findings suggest that response to milkshake in the dorsal striatum may be related to weight gain by promoting impulsive eating behavior. PMID:23562867

  3. Blunted hormone responses to Ipsapirone are associated with trait impulsivity in personality disorder patients.

    PubMed

    Minzenberg, Michael J; Grossman, Robert; New, Antonia S; Mitropoulou, Vivian; Yehuda, Rachel; Goodman, Marianne; Reynolds, Diedre A; Silverman, Jeremy M; Coccaro, Emil F; Marcus, Sue; Siever, Larry J

    2006-01-01

    Impulsive aggression is associated with central serotonergic dysfunction. Animal models particularly implicate the 5-HT(1A) receptor in this behavior. We tested the hypothesis that central 5-HT(1A) receptor function is impaired in impulsive aggressive personality disorder patients. A total of 52 individuals with DSM-III-R personality disorders, all medically healthy adult outpatients without concurrent psychiatric medication treatment, underwent serial plasma cortisol, prolactin, and temperature measurements before and after ipsapirone 20 mg oral administration. Subjects completed self-report measures of impulsivity, hostility, depression and anxiety, and childhood maltreatment. Stepwise regression analysis revealed impulsivity alone among symptom measures to be associated with significantly decreased peak cortisol and prolactin responses. Diagnoses of borderline personality disorder (BPD) and intermittent explosive disorder-revised (IED-R) were associated with significantly increased and decreased cortisol responses, respectively. However, post hoc analyses indicated that impulsivity was significantly negatively correlated with cortisol responses in the BPD group, and may mediate the association of both BPD and IED-R with altered cortisol responses. Temperature response was associated with neither diagnostic nor symptom measures. Neither diagnostic nor dimensional measures of depression or anxiety, nor severity of childhood maltreatment, were significantly associated with cortisol, prolactin, or temperature responses. Impulsivity is related to impaired function at (or downstream to) postsynaptic 5-HT(1A) receptors, and this relationship may be partly responsible for the association of impaired serotonergic function with diagnoses such as BPD and IED-R. In addition, D(2) receptor dysfunction may play a role in impulsivity, whereas 5-HT(1A) cell-body autoreceptor function may be spared in these disorders. PMID:16123761

  4. Growth function for human response to large-amplitude impulse noise.

    PubMed

    Schomer, P D

    1978-12-01

    The U. S. Environmental Protection Agency has proposed the use of C-weighted day/night level for the assessment of impulse noise such as the noise resulting from sonic boom, blast noise (artillery, armor, demolition, etc.) and other large-amplitude impulse sources. One remaining question pertaining to the use of C-weighting has been the growth function for human response to impulse noise. This question arises because work by Kryter and by Young using peak values and/or small amplitudes exhibited growth functions of 6--7dB for a doubling of annoyance, while the growth function for human response to common sources (planes, vehicles, etc.) increases by about 10 dB for a doubling of annoyance. Kyter's and Young's data are reanalyzed herein by using C-weighting and by including only large-amplitude data. This reanalysis results in a growth function for human response to impulse noise which increases by about 10 dB for a doubling of annoyance. This equality of growth function between common A-weighted noise and C-weighted impulse noise further supports the use of C-weighted day/night level for assessment of sonic boom, blast noise, or other large-amplitude impulse noises having similar spectral content. PMID:739098

  5. Effects of deindividuation, removal of responsibility, and coaction on impulsive and cyclical aggression.

    PubMed

    Paloutzian, R F

    1975-07-01

    The influence of two deindividuating variables, altered responsibility and coaction in groups, on one's tendency to deliver noxious or helpful stimulation impulsively and in a cyclical pattern to a target person was investigated in a laboratory experiment with use of 96 male and female junior college students. Analysis of variance revealed that, as hypothesized, Ss who coacted in groups of three and who had the responsibility for their behavior removed delivered noxious (but not helpful) stimuli more impulsively than Ss who worked alone and were made to feel responsible (p less than .01). Ss responded in a more cyclical pattern which delivering aversive tones than when delivering facilitating tones (p less than .005). A marginally significant finding was that Ss in groups responded in a more cyclical pattern than Ss alone only when the response was seen as aversive. It was concluded that the probability of impulsive and cyclical aggression may be increased by altered responsibility and coaction. PMID:1195142

  6. Finite element simulation of pipe dynamic response

    SciTech Connect

    Slagis, G.C.; Litton, R.W.

    1996-12-01

    Nonlinear finite element dynamic analyses of the response of a pipe span to controlled-displacement, sinusoidal vibration have been performed. The objective of this preliminary study is to compare strain and acceleration response data to those generated by Beaney in the Berkeley Nuclear Laboratories experiments. Results for an unpressurized, 5 Hz, carbon steel pipe are in good agreement with the experiments. Hence, it appears that analytical simulation will be useful to assess seismic margins. Recommendations for additional studies are provided. The analyses confirm the test results--dynamic response is greatly attenuated by material plasticity. Analytical strains and accelerations are about 30% higher than test data. There are several possible explanations for the differences. To assess the effect of frequency on response, the length of the pipe span was increased. Analysis of the longer, 2 Hz, pipe span shows significantly greater cyclic strains than the 5 Hz span at the same input excitation levels.

  7. An item response theory analysis of the Impulsive Behaviors Checklist for Adolescents.

    PubMed

    You, Jianing; Leung, Freedom; Lai, Ching-man; Fu, Kei

    2011-12-01

    This study used item response theory (IRT) to examine the Impulsive Behaviors Checklist for Adolescents (IBCL-A) among 6,276 (67.7% girls) Chinese secondary school students. The IBCL-A included 15 maladaptive impulsive behaviors adapted from the Revised Diagnostic Interview for Borderlines. The authors obtained the severity and discrimination parameters for each item in the IBCL-A, examined differential item functioning across gender and age groups, and tested reliability and concurrent validity of the IBCL-A IRT-scaled score. Most items in the IBCL-A were the most accurate in assessing moderate to high levels of impulsivity and discriminated well among adolescents with varied levels of impulsivity. Differential item functioning emerged in several items across gender. The IRT-scaled score showed good construct validity and incremental predictive validity. Findings demonstrate the sound psychometric properties of the IBCL-A and support the clinical utility of this scale. PMID:21041521

  8. A theoretical and experimental investigation of the linear and nonlinear impulse responses from a magnetoplasma column

    NASA Technical Reports Server (NTRS)

    Grody, N. C.

    1973-01-01

    Linear and nonlinear responses of a magnetoplasma resulting from inhomogeneity in the background plasma density are studied. The plasma response to an impulse electric field was measured and the results are compared with the theory of an inhomogeneous cold plasma. Impulse responses were recorded for the different plasma densities, static magnetic fields, and neutral pressures and generally appeared as modulated, damped oscillations. The frequency spectra of the waveforms consisted of two separated resonance peaks. For weak excitation, the results correlate with the linear theory of a cold, inhomogeneous, cylindrical magnetoplasma. The damping mechanism is identified with that of phase mixing due to inhomogeneity in plasma density. With increasing excitation voltage, the nonlinear impulse responses display stronger damping and a small increase in the frequency of oscillation.

  9. Singularity expansion method formulation for impulse response of a perfectly conducting thick cylinder

    NASA Astrophysics Data System (ADS)

    Chuang, C.-I.; Nyquist, D. P.; Chen, K.-M.; Drachman, B. C.

    1985-10-01

    The impulse response of an infinite, perfectly conducting thick cylinder to normally incident, transversely polarized, impulsive plane wave illumination is determined. Spectral-domain analysis based upon the singularity expansion method reveals that this response consists of a discrete series of natural resonance modes (natural frequencies are computed) augmented by a series of continuous-spectrum terms. The resultant late-time response demonstrates the correct 'creeping wave' behavior as predicted by the Fourier synthesis technique, but with far fewer terms required for convergence.

  10. Spatio-Temporal Dynamics of Impulse Responses to Figure Motion in Optic Flow Neurons

    PubMed Central

    Lee, Yu-Jen; Jönsson, H. Olof; Nordström, Karin

    2015-01-01

    White noise techniques have been used widely to investigate sensory systems in both vertebrates and invertebrates. White noise stimuli are powerful in their ability to rapidly generate data that help the experimenter decipher the spatio-temporal dynamics of neural and behavioral responses. One type of white noise stimuli, maximal length shift register sequences (m-sequences), have recently become particularly popular for extracting response kernels in insect motion vision. We here use such m-sequences to extract the impulse responses to figure motion in hoverfly lobula plate tangential cells (LPTCs). Figure motion is behaviorally important and many visually guided animals orient towards salient features in the surround. We show that LPTCs respond robustly to figure motion in the receptive field. The impulse response is scaled down in amplitude when the figure size is reduced, but its time course remains unaltered. However, a low contrast stimulus generates a slower response with a significantly longer time-to-peak and half-width. Impulse responses in females have a slower time-to-peak than males, but are otherwise similar. Finally we show that the shapes of the impulse response to a figure and a widefield stimulus are very similar, suggesting that the figure response could be coded by the same input as the widefield response. PMID:25955416

  11. Attending at a Low Intensity Increases Impulsivity in an Auditory Sustained Attention to Response Task.

    PubMed

    Roebuck, Hettie; Guo, Kun; Bourke, Patrick

    2015-12-01

    Why attention lapses during prolonged tasks is debated, specifically whether errors are a consequence of under-arousal or exerted effort. To explore this, we investigated whether increased impulsivity is associated with effortful processing by modifying the demand of a task by presenting it at a quiet intensity. Here, we consider whether attending at low but detectable levels affects impulsivity in a population with intact hearing. A modification of the Sustained Attention to Response Task was used with auditory stimuli at two levels: the participants' personal "lowest detectable" level and a "normal speaking" level. At the quiet intensity, we found that more impulsive responses were made compared with listening at a normal speaking level. These errors were not due to a failure in discrimination. The findings suggest an increase in processing time for auditory stimuli at low levels that exceeds the time needed to interrupt a planned habitual motor response. This leads to a more impulsive and erroneous response style. These findings have important implications for understanding the nature of impulsivity in relation to effortful processing. They may explain why a high proportion of individuals with hearing loss are also diagnosed with Attention Deficit Hyperactivity Disorder. PMID:26562860

  12. Kurtosis of room impulse responses as a diffuseness measure for reverberation chambers.

    PubMed

    Jeong, Cheol-Ho

    2016-05-01

    This study presents a kurtosis analysis of room impulse responses as a potential room diffuseness measure. The early part of an impulse response contains a direct sound and strong reflections. As these reflections are sparse and strong, the sound field is unlikely to be diffuse. Such deterministic reflections are extreme events, which prevent the pressure samples from being distributed Gaussianly, leading to a high kurtosis. This indicates that the kurtosis can be used as a diffuseness measure. Two rooms are analyzed. A non-uniform surface absorption distribution tends to increase the kurtosis significantly in a small room. A full scale reverberation chamber is tested with different diffuser settings, which shows that the kurtosis calculated from broadband impulse responses from 125 Hz to 4 kHz has a good correlation with the Sabine absorption coefficient according to ISO 354 (International Organization for Standardization, Geneva, Switzerland, 2003). PMID:27250175

  13. Interval analysis method and convex models for impulsive response of structures with uncertain-but-bounded external loads

    NASA Astrophysics Data System (ADS)

    Qiu, Zhiping; Wang, Xiaojun

    2006-06-01

    Two non-probabilistic, set-theoretical methods for determining the maximum and minimum impulsive responses of structures to uncertain-but-bounded impulses are presented. They are, respectively, based on the theories of interval mathematics and convex models. The uncertain-but-bounded impulses are assumed to be a convex set, hyper-rectangle or ellipsoid. For the two non-probabilistic methods, less prior information is required about the uncertain nature of impulses than the probabilistic model. Comparisons between the interval analysis method and the convex model, which are developed as an anti-optimization problem of finding the least favorable impulsive response and the most favorable impulsive response, are made through mathematical analyses and numerical calculations. The results of this study indicate that under the condition of the interval vector being determined from an ellipsoid containing the uncertain impulses, the width of the impulsive responses predicted by the interval analysis method is larger than that by the convex model; under the condition of the ellipsoid being determined from an interval vector containing the uncertain impulses, the width of the interval impulsive responses obtained by the interval analysis method is smaller than that by the convex model.

  14. Analysis of an impulse response measured at the basilar membrane of the chinchilla.

    PubMed

    Wit, Hero P; Bell, Andrew

    2015-07-01

    In a recent paper [J. Acoust. Soc. Am. 133, 2224-2239 (2013)], Shera and Cooper report on the impulse response of the basilar membrane (BM) of a chinchilla, a waveform which shows repetitive bursts. They explain the bursts in terms of repeated coherent reflection at BM discontinuities and partial reflection at the stapes ("coherent reflection filtering"). Here the same waveform is examined in detail, highlighting features which indicate that the coherent reflection model, with calls for the same repetitive process to act on each successive burst, does not fully account for the shape of the measured impulse response. PMID:26233010

  15. Multifractal analysis of visualized room impulse response for detecting early reflections.

    PubMed

    Pavlović, Milan; Ristić, Dragan M; Reljin, Irini; Mijić, Miomir

    2016-05-01

    This paper describes an improved method for detecting early reflections in the initial part of the room impulse response using multifractals. The proposed method uses the two-dimensional multifractal analysis. The room impulse response is visualized as a spectrogram image which is then subjected to the multifractal analysis. The algorithm is based on describing local regularity in the image using distribution of Hölder exponents. The time positions of the selected Hölder exponents in the image are utilized in detecting early reflections. The obtained results show better efficiency of the proposed algorithm compared to the previous one-dimensional multifractal analysis based algorithm. PMID:27250194

  16. Where the ocean influences the impulse response and its effect on synchronous changes of acoustic travel time.

    PubMed

    Spiesberger, John L

    2011-12-01

    In 1983, sounds at 133 Hz, 0.06 s resolution were transmitted in the Pacific for five days at 2 min intervals over 3709 km between bottom-mounted instruments maintained with atomic clocks. In 1989, a technique was developed to measure changes in acoustic travel time with an accuracy of 135 microseconds at 2 min intervals for selected windows of travel time within the impulse response. The data have short-lived 1 to 10 ms oscillations of travel time with periods less than a few days. Excluding tidal effects, different windows exhibited significant synchronized changes in travel time for periods shorter than 10 h. In the 1980s, this phenomenon was not understood because internal waves have correlation lengths of a few kilometers which are smaller than the way sound was thought to sample the ocean along well-separated and distinct rays corresponding to different windows. The paradox's resolution comes from modern theories that replace the ray-picture with finite wavelength representations that predict sound can be influenced in the upper ocean over horizontal scales such as 20 km or more. Thus, different windows are influenced by the same short-scale fluctuations of sound speed. This conclusion is supported by the data and numerical simulations of the impulse response. PMID:22225021

  17. Impulsive response of nonuniform density liquid in a laterally excited tank

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Chang, Y. W.

    1994-04-01

    A study on the impulsive component of the dynamic response of a liquid of nonuniform density in a tank undergoing lateral base excitations is presented. The system considered is a circular cylindrical tank containing an incompressible and inviscid liquid whose density increases with the liquid depth. The density distribution along the depth can be of any arbitrary continuous or discontinuous function. In the analysis, the liquid field is divided into n layers. The thickness of the liquid layers can be different, but the density of each liquid layer is considered to be uniform and is equal to the value of the original liquid density at the mid-height of that layer. The problem is solved by the eigenfunction expansion in conjunction with the transfer matrix technique. The effect of the nonuniform liquid density on the impulsive component of the dynamic response is illustrated in a numerical example in which the linear and cosine distributions of the liquid density are assumed. The response quantities examined include the impulsive pressure, base shear, and moments. The results are presented in tabular and graphical forms. It is found that the impulsive pressure distribution along the tank wall is not sensitive to the detailed distribution function of the density, and the base shear and moments for the nonuniform liquid can be estimated by assuming an equivalent uniform liquid density that preserves the total liquid weight. The effect of tank flexibility is assessed by a simple approach in which the response quantities for flexible tanks are evaluated by simplified equations.

  18. Reverberation time measurement using integrated impulse response and sweep sine excitation

    NASA Astrophysics Data System (ADS)

    Nabuco, Marco; Brando, Paulo

    2002-11-01

    As the capacity and speed of digital processing systems becomes much higher, the integrated impulsive response for reverberation time measurements by the indirect method also becomes more feasible and faster. The MLS technique to obtain the impulse response for LTI has been developed during the last several years and it is very well reported by the bibliography. Some frequency analyzers available in the market are capable to generate and process MLS to get the impulse responses very easily. Sometimes, when the room to be tested is very reverberant, sequences of higher order and a certain number of average are necessary to assure acceptable signal-to-noise ratio. The sweep sine technique or the deconvolution method to obtain impulsive responses presents many new advantages, most of them still reported in various technical documents. This paper presents the results of application of this technique to measure the reverberation time in two different reverberation rooms. Comparisons with MLS, ensemble, and reverberation time averages are presented. The sweep sine technique repeatability was verified in a reverberation chamber for a polyurethane foam sample and showed smaller standard deviations when compared with other techniques. (To be presented in Portuguese.)

  19. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  20. Comparison of the response of a heterodyne receiver to video-pulse and impulse-type signals

    NASA Astrophysics Data System (ADS)

    Caprio, S. J.

    1980-02-01

    This paper presents some of the limitations of available impulse generators and suggests a criterion to determine the useful frequency range for impulse generators based on the requirements in MIL-STD-461. This paper also discusses a technique that can be used to generate a transient response of a heterodyne receiver that closely approximates the impulse response of the receiver. The technique uses a video pulse from a commercial pulse generator. The transient response of the receiver, measured at IF, will differ from the true impulse response in IF phase only. Available data indicates that this technique may be useful to generate impulse-like responses for RF amplifiers and broad-band amplifiers that operate at frequencies as high as 100 GHz.

  1. Reduced Prefrontal Cortex Hemodynamic Response in Adults with Methamphetamine Induced Psychosis: Relevance for Impulsivity.

    PubMed

    Yamamuro, Kazuhiko; Kimoto, Sohei; Iida, Junzo; Kishimoto, Naoko; Nakanishi, Yoko; Tanaka, Shohei; Ota, Toyosaku; Makinodan, Manabu; Kishimoto, Toshifumi

    2016-01-01

    Patients with methamphetamine abuse/dependence often exhibit high levels of impulsivity, which may be associated with the structural abnormalities and functional hypoactivities observed in the frontal cortex of these subjects. Although near-infrared spectroscopy (NIRS) is a simple and non-invasive method for characterizing the clinical features of various psychiatric illnesses, few studies have used NIRS to directly investigate the association between prefrontal cortical activity and inhibitory control in patients with methamphetamine-induced psychosis (MAP). Using a 24-channel NIRS system, we compared hemodynamic responses during the Stroop color-word task in 14 patients with MAP and 21 healthy controls matched for age, sex and premorbid IQ. In addition, we used the Barrett Impulsivity Scale-11 (BIS-11) to assess impulsivity between subject groups. The MAP group exhibited significantly less activation in the anterior and frontopolar prefrontal cortex accompanied by lower Stroop color-word task performance, compared with controls. Moreover, BIS-11 scores were significantly higher in the MAP group, and were negatively correlated with the hemodynamic responses in prefrontal cortex. Our data suggest that reduced hemodynamic responses in the prefrontal cortex might reflect higher levels of impulsivity in patients with MAP, providing new insights into disrupted inhibitory control observed in MAP. PMID:27050450

  2. Reduced Prefrontal Cortex Hemodynamic Response in Adults with Methamphetamine Induced Psychosis: Relevance for Impulsivity

    PubMed Central

    Yamamuro, Kazuhiko; Kimoto, Sohei; Iida, Junzo; Kishimoto, Naoko; Nakanishi, Yoko; Tanaka, Shohei; Ota, Toyosaku; Makinodan, Manabu; Kishimoto, Toshifumi

    2016-01-01

    Patients with methamphetamine abuse/dependence often exhibit high levels of impulsivity, which may be associated with the structural abnormalities and functional hypoactivities observed in the frontal cortex of these subjects. Although near-infrared spectroscopy (NIRS) is a simple and non-invasive method for characterizing the clinical features of various psychiatric illnesses, few studies have used NIRS to directly investigate the association between prefrontal cortical activity and inhibitory control in patients with methamphetamine-induced psychosis (MAP). Using a 24-channel NIRS system, we compared hemodynamic responses during the Stroop color-word task in 14 patients with MAP and 21 healthy controls matched for age, sex and premorbid IQ. In addition, we used the Barrett Impulsivity Scale-11 (BIS-11) to assess impulsivity between subject groups. The MAP group exhibited significantly less activation in the anterior and frontopolar prefrontal cortex accompanied by lower Stroop color-word task performance, compared with controls. Moreover, BIS-11 scores were significantly higher in the MAP group, and were negatively correlated with the hemodynamic responses in prefrontal cortex. Our data suggest that reduced hemodynamic responses in the prefrontal cortex might reflect higher levels of impulsivity in patients with MAP, providing new insights into disrupted inhibitory control observed in MAP. PMID:27050450

  3. Automated estimation of the truncation of room impulse response by applying a nonlinear decay model.

    PubMed

    Janković, Marko; Ćirić, Dejan G; Pantić, Aleksandar

    2016-03-01

    Noise represents one of the most significant disturbances in measured room impulse responses (RIRs), and it has a potentially large impact on evaluation of the decay parameters. In order to reduce noise effects, various methods have been applied, including truncation of an RIR. In this paper, a procedure for the response truncation based on a model of RIR (nonlinear decay model) is presented. The model is represented by an exponential decay plus stationary noise. Unknown parameters of the model are calculated by an optimization that minimizes the difference between the curve generated by the model and the target one of the response to be truncated. Different curves can be applied in the optimization-absolute value of the RIR, logarithmic decay curve, and Schroeder curve obtained by the backward integration of the RIR. The proposed procedure is tested on various synthesized and measured impulse responses. It is compared with the procedure taken from the literature, often applied in practice. PMID:27036242

  4. Derivation of a new parametric impulse response matrix utilized for nodal wind load identification by response measurement

    NASA Astrophysics Data System (ADS)

    Kazemi Amiri, A.; Bucher, C.

    2015-05-01

    This paper provides new formulations to derive the impulse response matrix, which is then used in the problem of load identification with application to wind induced vibration. The applied loads are inversely identified based on the measured structural responses by solving the associated discrete ill-posed problem. To this end - based on an existing parametric structural model - the impulse response functions of acceleration, velocity and displacement have been computed. Time discretization of convolution integral has been implemented according to an existing and a newly proposed procedure, which differ in the numerical integration methods. The former was evaluated based on a constant rectangular approximation of the sampled data and impulse response function in a number of steps corresponding to the sampling rate, while the latter interpolates the sampled data in an arbitrary number of sub-steps and then integrates over the sub-steps and steps. The identification procedure was implemented for a simulation example as well as an experimental laboratory case. The ill-conditioning of the impulse response matrix made it necessary to use Tikhonov regularization to recover the applied force from noise polluted measured response. The optimal regularization parameter has been obtained by L-curve and GCV method. The results of simulation represent good agreement between identified and measured force. In the experiments the identification results based on the measured displacement as well as acceleration are provided. Further it is shown that the accuracy of experimentally identified load depends on the sensitivity of measurement instruments over the different frequency ranges.

  5. Comparison of New Methods for Assessing Community Response to High Energy Impulsive Sounds

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.

    1996-01-01

    The latest CHABA Working Group to have reviewed published information about the effects of high energy impulsive sounds (such as sonic booms) on communities has recommended abandonment of the dosage-response relationship identified by its predecessor in favor of two alternate prediction method. Both of the new assessment methods continue to rely on C-weighted measurements of impulsive sounds One of the two assessment methods retains the standard assumptions of the 'equal energy hypothesis' (the notion that annoyance is governed simply by the product of level, duration, and number noise events), and further assumes that the rate of growth of the prevalence of annoyance is proportional to the rate of growth of loudness with level. The other assessment method, however, assumes a level dependent (non-equal energy) summation of the C-weighted sound exposure levels of individual impulsive events. Since predictions of the second method are distribution-dependent, they are not readily represents graphically in the form of a single dosage-response function. The effects on annoyance predictions of variance in distributions of CSEL values of impulsive sounds are explored in this presentation.

  6. Magnetospheric impulse response for many levels of geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Bargatze, L. F.; Baker, D. N.; Hones, E. W., Jr.; Mcpherron, R. L.

    1985-01-01

    The temporal relationship between the solar wind and magnetospheric activity has been studied using 34 intervals of high time resolution IMP 8 solar wind data and the corresponding AL auroral activity index. The median values of the AL index for each interval were utilized to rank the intervals according to geomagnetic activity level. The linear prediction filtering technique was then applied to model magnetospheric response as measured by the AL index to the solar wind input function VB(s). The linear prediction filtering routine produces a filter of time-lagged response coefficients which estimates the most general linear relationship between the chosen input and output parameters of the magnetospheric system. It is found that the filters are composed of two response pulses speaking at time lags of 20 and 60 min. The amplitude of the 60-min pulse is the larger for moderate activity levels, while the 20-min pulse is the larger for strong activity levels. A possible interpretation is that the 20-min pulse represents magnetospheric activity driven directly by solar wind coupling and that the 60-min pulse represents magnetospheric activity driven by the release of energy previously stored in the magnetotail. If this interpretation is correct, the linear filtering results suggest that both the driven and the unloading models of magnetospheric response are important facets of a more comprehensive response model.

  7. Neonatal handling causes impulsive behavior and decreased pharmacological response to methylphenidate in male adult wistar rats.

    PubMed

    Lazzaretti, Camilla; Kincheski, Grasielle Clotildes; Pandolfo, Pablo; Krolow, Rachel; Toniazzo, Ana Paula; Arcego, Danusa Mar; Couto-Pereira, Natividade de Sá; Zeidán-Chuliá, Fares; Galvalisi, Martin; Costa, Gustavo; Scorza, Cecilia; Souza, Tadeu Mello E; Dalmaz, Carla

    2016-03-01

    Neonatal handling has an impact on adult behavior of experimental animals and is associated with rapid and increased palatable food ingestion, impaired behavioral flexibility, and fearless behavior to novel environments. These symptoms are characteristic features of impulsive trait, being controlled by the medial prefrontal cortex (mPFC). Impulsive behavior is a key component of many psychiatric disorders such as attention deficit hyperactivity disorder (ADHD), manic behavior, and schizophrenia. Others have reported a methylphenidate (MPH)-induced enhancement of mPFC functioning and improvements in behavioral core symptoms of ADHD patients. The aims of the present study were: (i) to find in vivo evidence for an association between neonatal handling and the development of impulsive behavior in adult Wistar rats and (ii) to test whether neonatal handling could have an impact on monoamine levels in the mPFC and the pharmacological response to MPH in vivo. Therefore, experimental animals (litters) were classified as: "non-handled" and "handled" (10[Formula: see text]min/day, postnatal days 1-10). After puberty, they were exposed to either a larger and delayed or smaller and immediate reward (tolerance to delay of reward task). Acute MPH (3[Formula: see text]mg/Kg. i.p.) was used to suppress and/or regulate impulsive behavior. Our results show that only neonatally handled male adult Wistar rats exhibit impulsive behavior with no significant differences in monoamine levels in the medial prefrontal cortex, together with a decreased response to MPH. On this basis, we postulate that early life interventions may have long-term effects on inhibitory control mechanisms and affect the later response to pharmacological agents during adulthood. PMID:26620193

  8. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  9. Does Impulsiveness Moderate Response to Financial Incentives for Smoking Cessation Among Pregnant and Newly Postpartum Women?

    PubMed Central

    Lopez, Alexa A.; Skelly, Joan M.; White, Thomas J.; Higgins, Stephen T.

    2015-01-01

    We examined whether impulsiveness moderates response to financial incentives for cessation among pregnant smokers. All participants were randomized to either a condition wherein financial incentives were delivered contingent on smoking abstinence or to a control condition wherein incentives were delivered independent of smoking status. The study was conducted in two steps: First, we examined associations between baseline impulsiveness scores and abstinence at late pregnancy and 24-weeks postpartum as part of a planned prospective study of this topic using data from a recently completed, randomized controlled clinical trial (N = 118). Next, to increase statistical power, we conducted a second analysis collapsing results across that recent trial and two prior trials involving the same contingent incentive and control conditions (N = 236). Impulsivity was assessed using a delay discounting (DD) of hypothetical monetary rewards task in all three trials and Barratt Impulsiveness Scale (BIS) in the most recent trial. Neither DD nor BIS predicted antepartum or postpartum smoking status in the single or combined trials. Receiving abstinence-contingent incentives, lower baseline smoking rate (cigs/day), and a history of quit attempts pre-pregnancy predicted greater odds of antepartum abstinence across the single and combined trials. No variable predicted postpartum abstinence across the single and combined trials, although a history of antepartum quit attempts and receiving abstinence-contingent incentives predicted in the single and combined trials, respectively. Overall, this study provides no evidence that impulsiveness as assessed by DD or BIS moderates response to this treatment approach while underscoring a substantial association of smoking rate and prior quit attempts with abstinence across the contingent incentives and control treatment conditions. PMID:25730417

  10. Response of TGS ferroelectric samples to rapid temperature impulses

    NASA Astrophysics Data System (ADS)

    Trybus, M.; Proszak, W.; Woś, B.

    2013-11-01

    Tryglicine sulphate (TGS) is one of the most extensively studied ferroelectric materials, which undergoes second order phase transition and shows the pyroelectric effect. In our present experiments we study the electric properties of TGS, in relation to domain switching, observing the samples' response to controlled temperature pulses. The charge released in the processes of domain switching was previously studied under constant temperature growth. Our method allows us to observe the released pyroelectric charge in both the ferroelectric and paraelectric phases. To perform our experiment we designed new measurement software and constructed a novel thermostatic sample holder containing Peltier's cells as heating/cooling elements.

  11. Relationships between trait impulsivity and cognitive control: the effect of attention switching on response inhibition and conflict resolution.

    PubMed

    Leshem, Rotem

    2016-02-01

    This study examined the relationship between trait impulsivity and cognitive control, as measured by the Barratt Impulsiveness Scale (BIS) and a focused attention dichotic listening to words task, respectively. In the task, attention was manipulated in two attention conditions differing in their cognitive control demands: one in which attention was directed to one ear at a time for a whole block of trials (blocked condition) and another in which attention was switched pseudo-randomly between the two ears from trial to trial (mixed condition). Results showed that high impulsivity participants exhibited more false alarm and intrusion errors as well as a lesser ability to distinguish between stimuli in the mixed condition, as compared to low impulsivity participants. In the blocked condition, the performance levels of the two groups were comparable with respect to these measures. In addition, total BIS scores were correlated with intrusions and laterality index in the mixed but not the blocked condition. The findings suggest that high impulsivity individuals may be less prone to attentional difficulties when cognitive load is relatively low. In contrast, when attention switching is involved, high impulsivity is associated with greater difficulty in inhibiting responses and resolving cognitive conflict than is low impulsivity, as reflected in error-prone information processing. The conclusion is that trait impulsivity in a non-clinical population is manifested more strongly when attention switching is required than during maintained attention. This may have important implications for the conceptualization and treatment of impulsivity in both non-clinical and clinical populations. PMID:26245649

  12. Quality of sound in large rooms: Alteration of room impulse responses

    NASA Astrophysics Data System (ADS)

    Linusson, Per

    1993-02-01

    Psychoacoustic testing of Room Impulse Responses (RIR), using editing techniques and listening tests with help of auralization is considered. Using these techniques the question of when the reverberation tail is subjectively diffuse was studied. This question is of great interest, for example for auralization techniques. Binaural Room Impulse Responses (BRIR's) were measured in two positions in a concert hall. Their respective reverberation tails were substituted by editing. Listening tests indicated that even with a connection time of 400 ms, some test persons could consistently detect differences with speech as source signal. With music (piano) as source signal the 'limit' of the diffuse part was somewhere between 200 to 400 ms. In the second listening test an individual reflection was substituted with a diffuse one by editing. Three types of diffuse reflections were used. The results indicated that it is possible to improve the subjective quality with a diffuse reflection. Furthermore the character of the diffuse reflection is significant.

  13. Tomographic reconstruction of indoor spatial temperature distributions using room impulse responses

    NASA Astrophysics Data System (ADS)

    Bleisteiner, M.; Barth, M.; Raabe, A.

    2016-03-01

    Temperature can be estimated by acoustic travel time measurements along known sound paths. By using a multitude of known sound paths in combination with a tomographic reconstruction technique a spatial and temporal resolution of the temperature field can be achieved. Based on it, this article focuses on an experimental method in order to determine the spatially differentiated development of room temperature with only one loudspeaker and one microphone. The theory of geometrical room acoustics is being used to identify sound paths under consideration of reflections. The travel time along a specific sound path is derived from the room impulse response. Temporal variances in room impulse response can be attributed primarily to a change in air temperature and airflow. It is shown that in the absence of airflow a 3D acoustic monitoring of the room temperature can be realized with a fairly limited use of hardware.

  14. Impulse Response Estimation for Spatial Resolution Enhancement in Ultrasonic NDE Imaging

    SciTech Connect

    Clark, G A

    2004-06-25

    This report describes a signal processing algorithm and MATLAB software for improving spatial resolution in ultrasonic nondestructive evaluation (NDE) imaging of materials. Given a measured reflection signal and an associated reference signal, the algorithm produces an optimal least-squares estimate of the impulse response of the material under test. This estimated impulse response, when used in place of the raw reflection signal, enhances the spatial resolution of the ultrasonic measurements by removing distortion caused by the limited-bandwidth transducers and the materials under test. The theory behind the processing algorithms is briefly presented, while the reader is referred to the bibliography for details. The main focus of the report is to describe how to use the MATLAB software. Two processing examples using actual ultrasonic measurements are provided for tutorial purposes.

  15. Pseudorational Impulse Responses — Algebraic System Theory for Distributed Parameter Systems

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yutaka

    This paper gives a comprehensive account on a class of distributed parameter systems, whose impulse response is called pseudorational. This notion was introduced by the author in 1980's, and is particularly amenable for the study of systems with bounded-time memory. We emphasize algebraic structures induced by this class of systems. Some recent results on coprimeness issues and H∞ control are discussed and illustrated.

  16. Finite Post Synaptic Potentials Cause a Fast Neuronal Response

    PubMed Central

    Helias, Moritz; Deger, Moritz; Rotter, Stefan; Diesmann, Markus

    2011-01-01

    A generic property of the communication between neurons is the exchange of pulses at discrete time points, the action potentials. However, the prevalent theory of spiking neuronal networks of integrate-and-fire model neurons relies on two assumptions: the superposition of many afferent synaptic impulses is approximated by Gaussian white noise, equivalent to a vanishing magnitude of the synaptic impulses, and the transfer of time varying signals by neurons is assessable by linearization. Going beyond both approximations, we find that in the presence of synaptic impulses the response to transient inputs differs qualitatively from previous predictions. It is instantaneous rather than exhibiting low-pass characteristics, depends non-linearly on the amplitude of the impulse, is asymmetric for excitation and inhibition and is promoted by a characteristic level of synaptic background noise. These findings resolve contradictions between the earlier theory and experimental observations. Here we review the recent theoretical progress that enabled these insights. We explain why the membrane potential near threshold is sensitive to properties of the afferent noise and show how this shapes the neural response. A further extension of the theory to time evolution in discrete steps quantifies simulation artifacts and yields improved methods to cross check results. PMID:21427776

  17. Multi-input Multi-output System Identification Using Impulse Responses

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Isao; Kasai, Tokio; Igawa, Hirotaka

    This paper presents a new algorithm for multi-input multi-output (MIMO) system identification in the time domain using impulse responses. The algorithm is suitable for the on-orbit system identification of spacecraft using the responses to thruster impulse inputs measured by typical satellite on-board sensors. The Eigensystem Realization Algorithm (ERA) realizes a multi-input multi-output (MIMO) system using asynchronous impulse responses in the time domain. Our new method identifies the input and output matrices of a MIMO collocated system by applying a recursive least-squares iteration scheme to refine the matrices obtained from conventional ERA. In this manner, the input matrix is considered to be constructed by the mode shape vectors and the actuator sensitivity matrix. A numerical simulation of an actual spacecraft, the Engineering Test Satellite-VI (ETS-VI), is performed to verify the algorithm. The nominal dynamics model of ETS-VI, which has six rigid body modes and fourteen elastic modes due to large flexible solar panels, is excited by six body-mounted thrusters, and the translational velocities and attitude rates are measured simultaneously. Our method successfully identifies all of the fourteen natural frequencies, damping ratios and mode shape vectors, confirming its validity.

  18. Repair monitoring of cracked concrete floor using the impulse response method

    NASA Astrophysics Data System (ADS)

    Zoidis, Nikolaos; Tatsis, Efthymios; Vlachopoulos, Christos; Gotzamanis, Anastasios; Stærke Clausen, Jesper; Aggelis, Dimitrios; Matikas, Theodore E.

    2014-04-01

    The objective of the present study was the repair monitoring of an extensively cracked concrete floor using the Impulse - Response method. The study included the evaluation of the condition of the concrete floor that suffered from extensive cracking on its surface, through systematic tests. The purpose of the study was to investigate the causes that led to extensive cracking on the floor surface in order to plan the repair strategy. The investigation included a thorough visual inspection and recording of cracks, estimation of the crack depth using ultrasonic pulse velocity measurements, investigation for voids between the concrete floor and the underlying aggregate layer using the Impulse - Response method, concrete floor thickness estimation using the Impact - Echo method and concrete quality estimation using cores cutting. The repair method that was chosen was based on grout injections in order to fill the voids located between the concrete and the underlying aggregate layer. The area, where the injections took place, was inspected using the Impulse - Response method before and after the injections for monitoring purposes and a secondary grid was designed after considering the results. The area was inspected for a third time, after injecting in the secondary grid, in order to confirm the successful filling of the voids.

  19. Acoustic analysis by spherical microphone array processing of room impulse responses.

    PubMed

    Khaykin, Dima; Rafaely, Boaz

    2012-07-01

    Spherical microphone arrays have been recently used for room acoustics analysis, to detect the direction-of-arrival of early room reflections, and compute directional room impulse responses and other spatial room acoustics parameters. Previous works presented methods for room acoustics analysis using spherical arrays that are based on beamforming, e.g., delay-and-sum, regular beamforming, and Dolph-Chebyshev beamforming. Although beamforming methods provide useful directional selectivity, optimal array processing methods can provide enhanced performance. However, these algorithms require an array cross-spectrum matrix with a full rank, while array data based on room impulse responses may not satisfy this condition due to the single frame data. This paper presents a smoothing technique for the cross-spectrum matrix in the frequency domain, designed for spherical microphone arrays, that can solve the problem of low rank when using room impulse response data, therefore facilitating the use of optimal array processing methods. Frequency smoothing is shown to be performed effectively using spherical arrays, due to the decoupling of frequency and angular components in the spherical harmonics domain. Experimental study with data measured in a real auditorium illustrates the performance of optimal array processing methods such as MUSIC and MVDR compared to beamforming. PMID:22779475

  20. Modelling based on Spatial Impulse Response Model for Optimization of Inter Digital Transducers (SAW Sensors) for Non Destructive Testing

    NASA Astrophysics Data System (ADS)

    Fall, D.; Duquennoy, M.; Ouaftouh, M.; Piwakowski, B.; Jenot, F.

    This study deals with modelling SAW-IDT transducers for their optimization. These sensors are specifically developed to characterize properties of thin layers, coatings and functional surfaces. Among the methods of characterization, the ultrasonic methods using Rayleigh surface waves are particularly interesting because the propagation of these waves is close to the surface of material and the energy is concentrated within a layer under the surface of about one wavelength thick. In order to characterize these coatings and structures, it is necessary to work in high frequencies, this is why in this study, SAW-IDT sensors are realized for surface acoustic wave generation. For optimization of these SAW-IDT sensors, particularly their band-width, it is necessary to study various IDT configurations by varying the number of electrodes, dimensions of the electrodes, their shapes and spacings. Thus it is necessary to implement effective and rapid technique for modelling. The originality of this study is to develop simulation tools based on Spatial Impulse Response model. Therefore it will be possible to reduce considerably computing time and results are obtained in a few seconds, instead of several hours (or days) by using finite element method. In order to validate this method, theoretical and experimental results are compared with finite element method and Interferometric measurements. The results obtained show a good overall concordance and confirm effectiveness of suggested method.

  1. Dose-response relationship of autonomic nervous system responses to individualized training impulse in marathon runners.

    PubMed

    Manzi, Vincenzo; Castagna, Carlo; Padua, Elvira; Lombardo, Mauro; D'Ottavio, Stefano; Massaro, Michele; Volterrani, Maurizio; Iellamo, Ferdinando

    2009-06-01

    In athletes, exercise training induces autonomic nervous system (ANS) adaptations that could be used to monitor training status. However, the relationship between training and ANS in athletes has been investigated without regard for individual training loads. We tested the hypothesis that in long-distance athletes, changes in ANS parameters are dose-response related to individual volume/intensity training load and could predict athletic performance. A spectral analysis of heart rate (HR), systolic arterial pressure variability, and baroreflex sensitivity by the sequences technique was investigated in eight recreational athletes during a 6-mo training period culminating with a marathon. Individualized training load responses were monitored by a modified training impulse (TRIMP(i)) method, which was determined in each athlete using the individual HR and lactate profiling determined during a treadmill test. Monthly TRIMP(i) steadily increased during the training period. All the ANS parameters were significantly and very highly correlated to the dose of exercise with a second-order regression model (r(2) ranged from 0.90 to 0.99; P < 0.001). Variance, high-frequency oscillations of HR variability (HRV), and baroreflex sensitivity resembled a bell-shaped curve with a minimum at the highest TRIMP(i), whereas low-frequency oscillations of HR and systolic arterial pressure variability and the low frequency (LF)-to-high frequency ratio resembled an U-shaped curve with a maximum at the highest TRIMP(i). The LF component of HRV assessed at the last recording session was significantly and inversely correlated to the time needed to complete the nearing marathon. These results suggest that in recreational athletes, ANS adaptations to exercise training are dose related on an individual basis, showing a progressive shift toward a sympathetic predominance, and that LF oscillations in HRV at peak training load could predict athletic achievement in this athlete population. PMID

  2. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Tbeodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modem three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  3. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  4. Comparison of methods of predicting community response to impulsive and nonimpulsive noise

    NASA Astrophysics Data System (ADS)

    Fidell, Sanford; Pearsons, Karl S.

    1994-02-01

    Several scientific, regulatory, and policy-coordinating bodies have developed methods for predicting community response to sonic booms. The best known of these is the dosage-response relationship of Working Group 84 of the National Academy of Science's Committee on Hearing, Bioacoustics and Biomechanics. This dosage-response relationship between C-weighted DayNight Average Sound Level and the prevalence of annoyance with high energy impulsive sounds was derived from limited amounts of information about community response to regular, prolonged, and expected exposure to artillery and sonic booms. U.S. Army Regulation 201 adapts this approach to predictions of the acceptability of impulsive noise exposure in communities. This regulation infers equivalent degrees of effect with respect to a well known dosage-response relationship for general (nonimpulsive) transportation noise. Differences in prevalence of annoyance predicted by various relationships lead to different predictions of the compatibility of land uses with sonic boom exposure. An examination of these differences makes apparent several unresolved issues in current practice for predicting and interpreting the prevalence of annoyance due to sonic boom exposure.

  5. Comparison of methods of predicting community response to impulsive and nonimpulsive noise

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.

    1994-01-01

    Several scientific, regulatory, and policy-coordinating bodies have developed methods for predicting community response to sonic booms. The best known of these is the dosage-response relationship of Working Group 84 of the National Academy of Science's Committee on Hearing, Bioacoustics and Biomechanics. This dosage-response relationship between C-weighted DayNight Average Sound Level and the prevalence of annoyance with high energy impulsive sounds was derived from limited amounts of information about community response to regular, prolonged, and expected exposure to artillery and sonic booms. U.S. Army Regulation 201 adapts this approach to predictions of the acceptability of impulsive noise exposure in communities. This regulation infers equivalent degrees of effect with respect to a well known dosage-response relationship for general (nonimpulsive) transportation noise. Differences in prevalence of annoyance predicted by various relationships lead to different predictions of the compatibility of land uses with sonic boom exposure. An examination of these differences makes apparent several unresolved issues in current practice for predicting and interpreting the prevalence of annoyance due to sonic boom exposure.

  6. Using a signal cancellation technique involving impulse response to assess directivity of hearing aids.

    PubMed

    Wu, Yu-Hsiang; Bentler, Ruth A

    2009-12-01

    The directional microphone systems of modern digital hearing aids are capable of changing their spatial directivity pattern and/or the microphone mode in response to changes in the properties of environmental sounds. These adaptive/automatic features make measurement of a hearing aid's directivity in a given test environment very difficult. Assessing the directivity of such systems requires a signal that can record the system's response while not changing the system's directivity. This paper proposes a method using a signal cancellation technique involving impulse responses to acoustically assess a hearing aid's directivity (referred to as the IR method). The impulse is presumed to be undetectable to the adaptive/automatic system because it contains little energy and a short response could be recorded before the system actually reacts. In the current study, the IR method was evaluated by testing five adaptive/automatic directional hearing aids in noise of various intensities. The results revealed that the IR method was an accurate and repeatable way to assess slow-acting directional systems in noise of varying intensities and fast-acting systems in noise of high intensities. PMID:20000935

  7. Reduced-Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.

  8. Reduced Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of an RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.

  9. A nonlinear impulse response model of the coupled carbon cycle-climate system (NICCS)

    NASA Astrophysics Data System (ADS)

    Hooss, G.; Voss, R.; Hasselmann, K.; Maier-Reimer, E.; Joos, F.

    Impulse-response-function (IRF) models are designed for applications requiring a large number of climate change simulations, such as multi-scenario climate impact studies or cost-benefit integrated-assessment studies. The models apply linear response theory to reproduce the characteristics of the climate response to external forcing computed with sophisticated state-of-the-art climate models like general circulation models of the physical ocean-atmosphere system and three-dimensional oceanic-plus-terrestrial carbon cycle models. Although highly computer efficient, IRF models are nonetheless capable of reproducing the full set of climate-change information generated by the complex models against which they are calibrated. While limited in principle to the linear response regime (less than about 3∘C global-mean temperature change), the applicability of the IRF model presented has been extended into the nonlinear domain through explicit treatment of the climate system's dominant nonlinearities: CO2 chemistry in ocean water, CO2 fertilization of land biota, and sublinear radiative forcing. The resultant nonlinear impulse-response model of the coupled carbon cycle-climate system (NICCS) computes the temporal evolution of spatial patterns of climate change for four climate variables of particular relevance for climate impact studies: near-surface temperature, cloud cover, precipitation, and sea level. The space-time response characteristics of the model are derived from an EOF analysis of a transient 850-year greenhouse warming simulation with the Hamburg atmosphere-ocean general circulation model ECHAM3-LSG and a similar response experiment with the Hamburg carbon cycle model HAMOCC. The model is applied to two long-term CO2 emission scenarios, demonstrating that the use of all currently estimated fossil fuel resources would carry the Earth's climate far beyond the range of climate change for which reliable quantitative predictions are possible today, and that even a

  10. Application of damage detection methods using passive reconstruction of impulse response functions.

    PubMed

    Tippmann, J D; Zhu, X; Lanza di Scalea, F

    2015-02-28

    In structural health monitoring (SHM), using only the existing noise has long been an attractive goal. The advances in understanding cross-correlations in ambient noise in the past decade, as well as new understanding in damage indication and other advanced signal processing methods, have continued to drive new research into passive SHM systems. Because passive systems take advantage of the existing noise mechanisms in a structure, offshore wind turbines are a particularly attractive application due to the noise created from the various aerodynamic and wave loading conditions. Two damage detection methods using a passively reconstructed impulse response function, or Green's function, are presented. Damage detection is first studied using the reciprocity of the impulse response functions, where damage introduces new nonlinearities that break down the similarity in the causal and anticausal wave components. Damage detection and localization are then studied using a matched-field processing technique that aims to spatially locate sources that identify a change in the structure. Results from experiments conducted on an aluminium plate and wind turbine blade with simulated damage are also presented. PMID:25583863

  11. Behavioral components of impulsivity.

    PubMed

    Stahl, Christoph; Voss, Andreas; Schmitz, Florian; Nuszbaum, Mandy; Tüscher, Oliver; Lieb, Klaus; Klauer, Karl Christoph

    2014-04-01

    Acting in accord with long-term goals requires control of interfering impulses, the success of which depends on several different processes. Using a structural-equation modeling approach, we investigated 5 behavioral components of impulsivity: the control of stimulus interference, proactive interference, and response interference, as well as decisional and motivational impulsivity. Results support the existence of 5 correlated but separable components of impulsive behavior. The present study is the 1st to demonstrate the separability of stimulus and response interference. It also supports the notion that control of response-related interference is not a unitary construct: Response-selection demands were separable from those of withholding or stopping. Relations between behavioral impulsivity components and self-report measures of impulsivity were largely absent. We conclude that as the construct of impulsivity has been extended to describe an increasingly diverse set of phenomena and processes, it has become too broad to be helpful in guiding future research. PMID:23957282

  12. Repeated exposure reduces the response to impulsive noise in European seabass.

    PubMed

    Radford, Andrew N; Lèbre, Laurie; Lecaillon, Gilles; Nedelec, Sophie L; Simpson, Stephen D

    2016-10-01

    Human activities have changed the acoustic environment of many terrestrial and aquatic ecosystems around the globe. Mounting evidence indicates that the resulting anthropogenic noise can impact the behaviour and physiology of at least some species in a range of taxa. However, the majority of experimental studies have considered only immediate responses to single, relatively short-term noise events. Repeated exposure to noise could lead to a heightened or lessened response. Here, we conduct two long-term (12 week), laboratory-based exposure experiments with European seabass (Dicentrarchus labrax) to examine how an initial impact of different sound types potentially changes over time. Naïve fish showed elevated ventilation rates, indicating heightened stress, in response to impulsive additional noise (playbacks of recordings of pile-driving and seismic surveys), but not to a more continuous additional noise source (playbacks of recordings of ship passes). However, fish exposed to playbacks of pile-driving or seismic noise for 12 weeks no longer responded with an elevated ventilation rate to the same noise type. Fish exposed long-term to playback of pile-driving noise also no longer responded to short-term playback of seismic noise. The lessened response after repeated exposure, likely driven by increased tolerance or a change in hearing threshold, helps explain why fish that experienced 12 weeks of impulsive noise showed no differences in stress, growth or mortality compared to those reared with exposure to ambient-noise playback. Considering how responses to anthropogenic noise change with repeated exposure is important both when assessing likely fitness consequences and the need for mitigation measures. PMID:27282635

  13. fMRI investigation of response inhibition, emotion, impulsivity, and clinical high-risk behavior in adolescents

    PubMed Central

    Brown, Matthew R. G.; Benoit, James R. A.; Juhás, Michal; Dametto, Ericson; Tse, Tiffanie T.; MacKay, Marnie; Sen, Bhaskar; Carroll, Alan M.; Hodlevskyy, Oleksandr; Silverstone, Peter H.; Dolcos, Florin; Dursun, Serdar M.; Greenshaw, Andrew J.

    2015-01-01

    High-risk behavior in adolescents is associated with injury, mental health problems, and poor outcomes in later life. Improved understanding of the neurobiology of high-risk behavior and impulsivity shows promise for informing clinical treatment and prevention as well as policy to better address high-risk behavior. We recruited 21 adolescents (age 14–17) with a wide range of high-risk behavior tendencies, including medically high-risk participants recruited from psychiatric clinics. Risk tendencies were assessed using the Adolescent Risk Behavior Screen (ARBS). ARBS risk scores correlated highly (0.78) with impulsivity scores from the Barratt Impulsivity scale (BIS). Participants underwent 4.7 Tesla functional magnetic resonance imaging (fMRI) while performing an emotional Go/NoGo task. This task presented an aversive or neutral distractor image simultaneously with each Go or NoGo stimulus. Risk behavior and impulsivity tendencies exhibited similar but not identical associations with fMRI activation patterns in prefrontal brain regions. We interpret these results as reflecting differences in response inhibition, emotional stimulus processing, and emotion regulation in relation to participant risk behavior tendencies and impulsivity levels. The results are consistent with high impulsivity playing an important role in determining high risk tendencies in this sample containing clinically high-risk adolescents. PMID:26483645

  14. State-space models of impulse hemodynamic responses over motor, somatosensory, and visual cortices

    PubMed Central

    Hong, Keum-Shik; Nguyen, Hoang-Dung

    2014-01-01

    The paper presents state space models of the hemodynamic response (HR) of fNIRS to an impulse stimulus in three brain regions: motor cortex (MC), somatosensory cortex (SC), and visual cortex (VC). Nineteen healthy subjects were examined. For each cortex, three impulse HRs experimentally obtained were averaged. The averaged signal was converted to a state space equation by using the subspace method. The activation peak and the undershoot peak of the oxy-hemoglobin (HbO) in MC are noticeably higher than those in SC and VC. The time-to-peaks of the HbO in three brain regions are almost the same (about 6.76 76 ± 0.2 s). The time to undershoot peak in VC is the largest among three. The HbO decreases in the early stage (~0.46 s) in MC and VC, but it is not so in SC. These findings were well described with the developed state space equations. Another advantage of the proposed method is its easy applicability in generating the expected HR to arbitrary stimuli in an online (or real-time) imaging. Experimental results are demonstrated. PMID:24940540

  15. A no a priori knowledge estimation of the impulse response for satellite image noise reduction

    NASA Astrophysics Data System (ADS)

    Benbouzid, A. B.; Taleb, N.

    2015-04-01

    Due to launching vibrations and space harsh environment, high resolution remote sensing satellite imaging systems require permanent assessment and control of image quality, which may vary between ground pre-launch measurements, after launch and over satellite lifetime. In order to mitigate noise, remove artifacts and enhance image interpretability, the Point Spread Function (PSF) of the imaging system is estimated. Image deconvolution can be performed across the characterization of the actual Modulation Transfer Function (MTF) of the imaging system. In this work we focus on adapting and applying a no reference method to characterize in orbit high resolution satellite images in terms of geometrical performance. Moreover, we use natural details contained in images as edges transitions to estimate the impulse response via the assessment of the MTF image. The obtained results are encouraging and promising.

  16. Closed-form impulse response model of non-line-of-sight single-scatter propagation.

    PubMed

    Sun, Yu; Zhan, Yafeng

    2016-04-01

    For optical scattering communication, a closed-form expression of channel impulse response (CIR) is favorable for further system design and channel capacity analysis. Combining the mean value theorem of integrals and L'Hôpital's rule, the exact non-line-of-sight (NLOS) single-scatter propagation model is simplified to a closed-form CIR model for a laser source with a narrow beam. Based on this model, by joint geometrical and empirical approaches, a piecewise CIR expression is presented under certain system NLOS geometries. Through numerical results on CIR for various NLOS geometries, the proposed model is verified with the exact NLOS single-scatter propagation model and the previous Gamma fitting model, showing that our model agrees better with the former than the latter. PMID:27140787

  17. The generation of shared cryptographic keys through channel impulse response estimation at 60 GHz.

    SciTech Connect

    Young, Derek P.; Forman, Michael A.; Dowdle, Donald Ryan

    2010-09-01

    Methods to generate private keys based on wireless channel characteristics have been proposed as an alternative to standard key-management schemes. In this work, we discuss past work in the field and offer a generalized scheme for the generation of private keys using uncorrelated channels in multiple domains. Proposed cognitive enhancements measure channel characteristics, to dynamically change transmission and reception parameters as well as estimate private key randomness and expiration times. Finally, results are presented on the implementation of a system for the generation of private keys for cryptographic communications using channel impulse-response estimation at 60 GHz. The testbed is composed of commercial millimeter-wave VubIQ transceivers, laboratory equipment, and software implemented in MATLAB. Novel cognitive enhancements are demonstrated, using channel estimation to dynamically change system parameters and estimate cryptographic key strength. We show for a complex channel that secret key generation can be accomplished on the order of 100 kb/s.

  18. Responses of free-living coastal pelagic fish to impulsive sounds.

    PubMed

    Hawkins, Anthony D; Roberts, Louise; Cheesman, Samuel

    2014-05-01

    The behavior of wild, pelagic fish in response to sound playback was observed with a sonar/echo sounder. Schools of sprat Sprattus sprattus and mackerel Scomber scombrus were examined at a quiet coastal location. The fish were exposed to a short sequence of repeated impulsive sounds, simulating the strikes from a pile driver, at different sound pressure levels. The incidence of behavioral responses increased with increasing sound level. Sprat schools were more likely to disperse and mackerel schools more likely to change depth. The sound pressure levels to which the fish schools responded on 50% of presentations were 163.2 and 163.3 dB re 1 μPa peak-to-peak, and the single strike sound exposure levels were 135.0 and 142.0 dB re 1 μPa(2) s, for sprat and mackerel, respectively, estimated from dose response curves. For sounds leading to mackerel responses, particle velocity levels were also estimated. The method of observation by means of a sonar/echo sounder proved successful in examining the behavior of unrestrained fish exposed to different sound levels. The technique may allow further testing of the relationship between responsiveness, sound level, and sound characteristics for different types of man-made sound, for a variety of fish species under varied conditions. PMID:24926505

  19. The transient response of finite open circular cylinders

    NASA Astrophysics Data System (ADS)

    Eftimiu, C.; Huddleston, P. L.

    1984-04-01

    An eigenmode expansion formulation of the singularity expansion method based on the electric field integral equation is developed for the transient response of conducting finite open cylinders. The eigenvalues and eigenfunctions of the impedance operator are calculated by the Galerkin method using entire domain expansion functions. The transient surface current density and backscattered far field in response to an incident electromagnetic pulse are calculated for cylinders of various aspect ratios.

  20. A Fresh Look at Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…

  1. Neuroticism-Anxiety, Impulsive-Sensation Seeking and autonomic responses to somatosensory stimuli.

    PubMed

    De Pascalis, Vilfredo; Valerio, Elena; Santoro, Mariacaterina; Cacace, Immacolata

    2007-01-01

    This study focused on autonomic responding in participants who scored high vs. low on the Neuroticism-Anxiety (N-Anx) and Impulsive-Sensation Seeking (Imp-SS) dimensions of the Zuckerman-Kuhlman Personality Questionnaire--Form III. Participants were presented with series of tones (standards, deviants and novels) and they received a mild electric shock (one, two or three pulses) at each 15th tone. Resting pre-stimulus skin conductance level (SCL) and heart rate (HR) level was recorded, as well as the skin conductance response (SCR) and (anticipatory) HR response to the electric stimuli. The autonomic measures differentiated between high- vs. low Imp-SS participants but failed to discriminate between high- vs. low N-Anx participants, with the exception that high N-Anx participants showed smaller SCRs on some trials compared to the low N-Anx participants. High Imp-SS had a lower pre-stimulus SCL and smaller SCRs to deviant stimuli compared to low Imp-SS participants. Additionally, their HR acceleration was smaller in anticipation of the first and the deviant tones whereas their deceleratory response was larger relative to the HR changes observed for the low Imp-SS participants. This pattern of findings was taken to suggest that high Imp-SS participants are more arousable and less prone to defensive reactions to novel or aversive stimulation. PMID:16899317

  2. Increased impulsivity in response to food cues after sleep loss in healthy young men

    PubMed Central

    Cedernaes, Jonathan; Brandell, Jon; Ros, Olof; Broman, Jan-Erik; Hogenkamp, Pleunie S; Schiöth, Helgi B; Benedict, Christian

    2014-01-01

    Objective To investigate whether acute total sleep deprivation (TSD) leads to decreased cognitive control when food cues are presented during a task requiring active attention, by assessing the ability to cognitively inhibit prepotent responses. Methods Fourteen males participated in the study on two separate occasions in a randomized, crossover within-subject design: one night of TSD versus normal sleep (8.5 hours). Following each nighttime intervention, hunger ratings and morning fasting plasma glucose concentrations were assessed before performing a go/no-go task. Results Following TSD, participants made significantly more commission errors when they were presented “no-go” food words in the go/no-go task, as compared with their performance following sleep (+56%; P<0.05). In contrast, response time and omission errors to “go” non-food words did not differ between the conditions. Self-reported hunger after TSD was increased without changes in fasting plasma glucose. The increase in hunger did not correlate with the TSD-induced commission errors. Conclusions Our results suggest that TSD impairs cognitive control also in response to food stimuli in healthy young men. Whether such loss of inhibition or impulsiveness is food cue-specific as seen in obesity—thus providing a mechanism through which sleep disturbances may promote obesity development—warrants further investigation. PMID:24839251

  3. Vaporization response of evaporating drops with finite thermal conductivity

    NASA Technical Reports Server (NTRS)

    Agosta, V. D.; Hammer, S. S.

    1975-01-01

    A numerical computing procedure was developed for calculating vaporization histories of evaporating drops in a combustor in which travelling transverse oscillations occurred. The liquid drop was assumed to have a finite thermal conductivity. The system of equations was solved by using a finite difference method programmed for solution on a high speed digital computer. Oscillations in the ratio of vaporization of an array of repetitivity injected drops in the combustor were obtained from summation of individual drop histories. A nonlinear in-phase frequency response factor for the entire vaporization process to oscillations in pressure was evaluated. A nonlinear out-of-phase response factor, in-phase and out-of-phase harmonic response factors, and a Princeton type 'n' and 'tau' were determined. The resulting data was correlated and is presented in graphical format. Qualitative agreement with the open literature is obtained in the behavior of the in-phase response factor. Quantitatively the results of the present finite conductivity spray analysis do not correlate with the results of a single drop model.

  4. Digital high-pass filter deconvolution by means of an infinite impulse response filter

    NASA Astrophysics Data System (ADS)

    Födisch, P.; Wohsmann, J.; Lange, B.; Schönherr, J.; Enghardt, W.; Kaever, P.

    2016-09-01

    In the application of semiconductor detectors, the charge-sensitive amplifier is widely used in front-end electronics. The output signal is shaped by a typical exponential decay. Depending on the feedback network, this type of front-end electronics suffers from the ballistic deficit problem, or an increased rate of pulse pile-ups. Moreover, spectroscopy applications require a correction of the pulse-height, while a shortened pulse-width is desirable for high-throughput applications. For both objectives, digital deconvolution of the exponential decay is convenient. With a general method and the signals of our custom charge-sensitive amplifier for cadmium zinc telluride detectors, we show how the transfer function of an amplifier is adapted to an infinite impulse response (IIR) filter. This paper investigates different design methods for an IIR filter in the discrete-time domain and verifies the obtained filter coefficients with respect to the equivalent continuous-time frequency response. Finally, the exponential decay is shaped to a step-like output signal that is exploited by a forward-looking pulse processing.

  5. Impulse response characterization of breast tomosynthesis reconstruction with parallel imaging configurations

    NASA Astrophysics Data System (ADS)

    Balla, Apuroop; Zhou, Weihua; Chen, Ying

    2010-04-01

    Early detection, diagnosis, and suitable treatment are known to significantly improve the chance of survival for breast cancer (BC) patients. To date, the most cost effective method for screening and early detection is mammography, which is also the tool that has demonstrated its ability to reduce BC mortality. Tomosynthesis is an emerging technology that offers an alternative to conventional two-dimensional mammography. Tomosynthesis produces three-dimensional (volumetric) images of the breast that may be superior to planar imaging due to improved visualization. In this paper we examined the effect of varying the number of projections (N) and total view angle (VA) on the shift-and-add (SAA), back projection (BP) and filtered back projection (FBP) image reconstruction response characterized by impulse response (IR) simulations. IR data were generated by simulating the projection images of a very thin wire, using various combinations of VA and N. Results suggested that BP and FBP performed better for in-plane performance than that of SAA. With bigger number of projection images, the investigated reconstruction algorithms performed the best by obtaining sharper in-focus IR with simulated parallel imaging configurations.

  6. On the consideration of motion effects in the computation of impulse response for underwater acoustics inversion.

    PubMed

    Josso, Nicolas F; Ioana, Cornel; Mars, Jérôme I; Gervaise, Cédric; Stéphan, Yann

    2009-10-01

    The estimation of the impulse response (IR) of a propagation channel may be of great interest for a large number of underwater applications: underwater communications, sonar detection and localization, marine mammal monitoring, etc. It quantifies the distortions of the transmitted signal in the underwater channel and enables geoacoustic inversion. The propagating signal is usually subject to additional and undesirable distortions due to the motion of the transmitter-channel-receiver configuration. This paper shows the effects of the motion while estimating the IR by matched filtering between the transmitted and the received signals. A methodology to compare IR estimation with and without motion is presented. Based on this comparison, a method for motion effect compensation is proposed in order to reduce motion-induced distortions. The proposed methodology is applied to real data sets collected in 2007 by the Service Hydrographique et Océanographique de la Marine in a shallow water environment, proving its interest for motion effect analysis. Motion compensated estimation of IRs is computed from sources transmitting broadband linear frequency modulations moving at up to 12 knots in the shallow water environment of the Malta plateau, South of Sicilia. PMID:19813789

  7. Extracting the frequencies of the pinna spectral notches in measured head related impulse responses

    NASA Astrophysics Data System (ADS)

    Raykar, Vikas C.; Duraiswami, Ramani; Yegnanarayana, B.

    2005-07-01

    The head related impulse response (HRIR) characterizes the auditory cues created by scattering of sound off a person's anatomy. The experimentally measured HRIR depends on several factors such as reflections from body parts (torso, shoulder, and knees), head diffraction, and reflection/diffraction effects due to the pinna. Structural models (Algazi et al., 2002; Brown and Duda, 1998) seek to establish direct relationships between the features in the HRIR and the anatomy. While there is evidence that particular features in the HRIR can be explained by anthropometry, the creation of such models from experimental data is hampered by the fact that the extraction of the features in the HRIR is not automatic. One of the prominent features observed in the HRIR, and one that has been shown to be important for elevation perception, are the deep spectral notches attributed to the pinna. In this paper we propose a method to robustly extract the frequencies of the pinna spectral notches from the measured HRIR, distinguishing them from other confounding features. The method also extracts the resonances described by Shaw (1997). The techniques are applied to the publicly available CIPIC HRIR database (Algazi et al., 2001c). The extracted notch frequencies are related to the physical dimensions and shape of the pinna.

  8. Uncertainties of reverberation time estimation via adaptively identified room impulse responses.

    PubMed

    Wu, Lifu; Qiu, Xiaojun; Burnett, Ian; Guo, Yecai

    2016-03-01

    This paper investigates the reverberation time estimation methods which employ backward integration of adaptively identified room impulse responses (RIRs). Two kinds of conditions are considered; the first is the "ideal condition" where the anechoic and reverberant signals are both known a priori so that the RIRs can be identified using system identification methods. The second is that only the reverberant speech signal is available, and blind identification of the RIRs via dereverberation is employed for reverberation time estimation. Results show that under the "ideal condition," the average relative errors in 7 octave bands are less than 2% for white noise and 15% for speech, respectively, when both the anechoic and reverberant signals are available. In contrast, under the second condition, the average relative errors of the blindly identified RIR-based reverberation time estimation are around 20%-30% except the 63 Hz octave band. The fluctuation of reverberation times estimated under the second condition is more severe than that under the ideal condition and the relative error for low frequency octave bands is larger than that for high octave bands under both conditions. PMID:27036246

  9. Influence of wall scattering on the early fine structures of measured room impulse responses.

    PubMed

    Jeon, Jin Yong; Jang, Hyung Suk; Kim, Yong Hee; Vorländer, Michael

    2015-03-01

    The effects of wall diffusing elements on sound-field diffuseness were investigated in a tenth-scale model hall and in a real recital hall. Acoustical measurements were carried out in both halls to measure the surface diffusivity of the lateral walls. In the scale model, the surfaces of the lateral walls and the soffits were covered with diffusers; in the recital hall, the front halves of both lateral walls were treated using reflective panels and absorptive materials. Objective characteristics were investigated using conventional room acoustic parameters and the number of peaks (Np) computed for the measured impulse responses, which were recorded under diffusive, reflective, and absorptive conditions. In addition, as a measure of the diffuse sound fields, the relative standard deviations (RSDs) of the acoustical parameters were investigated. The diffusive surfaces caused a decrease in the standard deviation of the early decay time and an increase in the Np at higher frequency bands. Auditory experiments using a paired comparison method revealed that the perception of subjective diffuseness could be quantified by using Np. In addition, one listener group's preference was correlated with Np and varied depending on different wall surface treatments. PMID:25786926

  10. The plastic response of a cylindrical shell subjected to an internal blast wave with a finite width shock front

    NASA Astrophysics Data System (ADS)

    Kivity, Y.; Florie, C.; Lenselink, H.

    1993-02-01

    This paper considers the plastic deformation of a thin cylindrical shell subjected to an internal explosion. It is assumed that the explosive charge is placed on the axis of symmetry of the shell so that an axisymmetric blast wave is produced. The shell response is calculated assuming an elastic-perfectly plastic material. The plastic response is evaluated for two types of loads. In the first type, the blast is assumed to have an ideal shock front with a discontinuous jump to the peak pressure. In the second type of loading, the shock front has a finite rise-time. This type of loading was introduced to study the effect of finite width shock fronts. Such finite width shock fronts are typical of hydrocode calculations when simulating problems involving blast waves and their interactions with adjacent structures. It is found that for equal impulse loads, the numerical rise-time reduces the shell plastic response significantly. Numerical calculations with a three-dimensional hydrocode are presented to illustrate the analytical results. A generalization of the analysis is given which may be used to determine the required mesh resolution of a hydrocode calculation in order to obtain a prescribed accuracy in the shell response.

  11. Preamplifier impulse-response shape-driven shot-noise in direct-detection photon-counting laser radars

    NASA Astrophysics Data System (ADS)

    Youmans, Douglas G.

    2001-09-01

    The number of photons returning form a target in a given time interval is well described by a negative-binomial distributed random variable. A photomultipler tube (PMT) photon-counting detector is optimal for direct detection, and the number of detected-photon 'electron pulses' produced is also negative-binomially distributed per time bin, with a reduced mean due to the device quantum efficiency. These time distributed electron pulses are amplified and filtered by the preamplifier electronics prior to digitization and signal processing. The voltage output pulse per individual photo-electron event is known as the 'impulse-response- function' of the detector and preamplifier. In this study we employ a typical analog preamplifier filter response, modeled as a Butterworth lowpass filter of order two, which filters a 200 ps wideband PMT input voltage pulse. The random summation of these lowpass voltage impulse-responses, as created by the negative-binomial photon arrival times and random photo-electron creation, is the classical electronic 'shot-noise' random process. We derive numerically the voltage probability density function of this negative- binomial/impulse-response driven shot-noise random process following the stochastic process literature. We also show a technique to include PMT variations in gain, known as the 'pulse height distribution,' and to incorporate Gaussian baseline-noise voltage. Agreement with AMOR experiments is shown to be excellent. In addition, a Monte Carlo realization is presented, using the same impulse-response temporal shape, which also gives excellent agreement with AMOR data and with the analytical/numerical calculations.

  12. The application of finite impulse response filters to the detection of fetal electrocardiogram signals.

    PubMed

    Phoenix, R G; Crowe, J A; Gibson, N M; Peasgood, W; Woolfson, M S; Faulkner, T R

    1993-01-01

    An investigation is made into the potential application of linear phase digital filters to the detection of fetal electrocardiogram signals buried in noise. Such an assessment is made by applying both matched and linear phase filters to six computer simulated fetal signals and also to experimental data. The number of times that the R-wave locations are correctly located (N), the RMS error in R-wave location (RMS) and the correlation coefficient between the averaged and clean signals are computed. It is found that the averaged fetal complexes computed using these two types of filter are almost identical. However, for three of the signals, the values for N and RMS obtained using the linear phase filter are inferior to the corresponding results obtained with the matched filter. It is suggested that the averaged complex obtained using the linear phase filter could be used as an approximation to the matched filter template; it is found that this procedure results in an effectiveness of detecting R-waves that is, for the most part, comparable with the performance of a matched filter based on the QRS complex. PMID:8107669

  13. Instantaneous Impulses.

    ERIC Educational Resources Information Center

    Erlichson, Herman

    2000-01-01

    Describes an experiment that extends Newton's instantaneous-impulse method of orbital analysis to a graphical method of orbit determination. Discusses the experiment's usefulness for teaching both horizontal projectile motion and instantaneous impulse. (WRM)

  14. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  15. Measurement of the responses of polyurethane and CONFOR(TM) foams and the development of a system identification technique to estimate polyurethane foam parameters from experimental impulse responses

    NASA Astrophysics Data System (ADS)

    Sundaram, Vaidyanadan

    Flexible polyurethane foam is the main cushioning element used in car seats. Optimization of an occupied seat's static and dynamic behavior requires models of foam that are accurate over a wide range of excitation and pre-compression conditions. Experiments were conducted to measure the response of foam over a wide range of excitation which include slowly varying uniaxial compression tests on a 3 inch cube foam sample, base excitation and impulse excitation test on a foam-mass system. The foam used was the same in all of the experiments, thus obtaining all the responses on the same foam sample which helps eliminate the sample to sample variation. Similar efforts were taken to conduct impulse and base excitation tests on CONFOR(TM) foam to help in future modeling efforts of CONFOR(TM) foam. All the experimental protocols and data pre-processing protocols along with results are presented. Previous researcher developed a linear model for a single-degree of freedom foam-mass system subjected to an impulsive excitation. Free response data from impulse tests on a foam-mass system with different masses was used to identify model parameters at various pre-compression levels (settling points). The free response of the system was modeled as a Prony series (sum of exponentials) whose parameters can be related to the parameters in the foam-mass system model. Models identified from tests at one settling point performed poorly when used to predict the response at other settling points. In this research, a method is described to estimate the parameters of a global model of the foam behavior from data gathered in a series of impulse tests at different settling points. The global model structure includes a nonlinear elastic term and a hereditary viscoelastic term. The model can be used to predict the settling point for each mass used and, by expanding the model about that settling point, local linear models of the response to impulsive excitation can be derived. From this analysis

  16. Groundwater recharge and time lag measurement through Vertosols using impulse response functions

    NASA Astrophysics Data System (ADS)

    Hocking, Mark; Kelly, Bryce F. J.

    2016-04-01

    Throughout the world there are many stressed aquifers used to support irrigated agriculture. The Condamine River catchment (southern Queensland, Australia) is one example of a globally significant agricultural region where groundwater use has exceeded recharge over the last 50 years. There is a high dependence on groundwater in this catchment, because yearly rainfall is highly variable, and actual evapotranspiration often exceeds rainfall. To better manage the aquifer there is a need to correctly conceptualise the primary inputs and outputs of the system, and characterise the lags in system response to all forcings. In catchment models it is particularly important to correctly proportion diffuse (areal) rainfall recharge and to account for the lag between rainfall and recharge at the water table. Throughout large portions of the Condamine Catchment, groundwater levels are now 20 or more metres below the ground surface. This study aimed to better quantify the lag between rainfall and recharge at the water table using the predefined impulse response function in continuous time method (PIRFICT; von Asmuth et al., 2002; von Asmuth, 2012). The PIRFICT method was applied to 255 multi-decadal groundwater level data sets throughout the catchment. Inputs into the modelling include rainfall, irrigation deep drainage, stream water level, evapotranspiration, and groundwater extractions. As an independent check the PIRFICT model derived diffuse recharge estimates are compared to point lysimeter and geochemical recharge estimates in the Vertosol soils within this catchment. It is estimated using the PIRFICT method that in the Condamine Catchment between 1990 and 2012, the mean rain-derived groundwater recharge is 4.4 mm/year. Mean groundwater response from rainfall was determined to be 5.3 years: range 188 days to 48 years. The recharge estimates are consistent with both geochemical and lysimeter point measurements of recharge. It is concluded that where extensive groundwater

  17. Kinetics of respiratory and circulatory responses to step, impulse, sinusoidal and ramp forcings of exercise load in humans.

    PubMed

    Miyamoto, Y

    1992-01-01

    Transient responses of minute ventilation (VE), oxygen consumption (VO2), carbon dioxide output (VCO2), cardiac output (Q) and heart rate (HR) to step, impulse, sinusoidal and ramp changes in exercise load were studied in healthy human subjects at the moderate load range. Exercise was performed in the upright position using a bicycle ergometer. The transient responses to step and impulse forcings fitted essentially to a second-order model consisting of a fast and a slow component, while the responses to sinusoidal and ramp forcings fitted to a first-order model. No significant asymmetry was observed between the on- and off-responses to step forcing. On the contrary, the mean response time (MRT = pure time delay + time constant) of variables to ascending ramp forcing was prolonged, while the MRT to descending ramp was shortened with decreasing ramp slope. The on- and off asymmetry of the MRT was observed in VE, VO2 and VCO2 and, to a lesser extent, also in HR and Q. A non-linear blood flow model, which simulates changes in the wash-in and wash-out time of metabolic substances into and from the chemoreceptor, has been proposed as a likely explanation for the asymmetrical responses. It was concluded that the regulatory system of respiration and circulation might be essentially non-linear in its operation, despite the fact that the cardiorespiratory responses during exercise seemed to fit linear models. PMID:1599881

  18. Finite element cochlear models and their steady state response

    NASA Astrophysics Data System (ADS)

    Kagawa, Y.; Yamabuchi, T.; Watanabe, N.; Mizoguchi, T.

    1987-12-01

    Numerical cochlear models are constructed by means of a finite element approach and their frequency and spatial responses are calculated. The cochlea is modelled as a coupled fluid-membrane system, for which both two- and three-dimensional models are considered. The fluid in the scala canals is assumed to be incompressible and the basilar membrane is assumed to be a locally reactive impedance wall or a lossy elastic membrane. With the three-dimensional models, the effects are examined of the spiral configuration of the cochlea, of the presence of the lamina and the ligament that narrows the coupling area between the two fluid canals (scala vestibuli and scala tympani), and of the extended reaction of the basilar membrane which cannot be included in case of the two-dimensional models. The conclusion is that these effects on the cochlear response and the inherent mechanism governing the cochlear behaviour are found to be rather secondary.

  19. Examination of trait impulsivity on the response to a brief mindfulness intervention among college student drinkers.

    PubMed

    Vinci, Christine; Peltier, MacKenzie; Waldo, Krystal; Kinsaul, Jessica; Shah, Sonia; Coffey, Scott F; Copeland, Amy L

    2016-08-30

    Mindfulness-based strategies show promise for targeting the construct of impulsivity and associated variables among problematic alcohol users. This study examined the moderating role of intervention (mindfulness vs relaxation vs control) on trait impulsivity and three outcomes examined post-intervention (negative affect, positive affect, and urge to drink) among 207 college students with levels of at-risk drinking. Moderation analyses revealed that the relationship between baseline impulsivity and the primary outcomes significantly differed for participants who underwent the mindfulness versus relaxation interventions. Notably, simple slope analyses revealed that negative urgency was positively associated with urge to drink following the mindfulness intervention. Among participants who underwent the relaxation intervention, analysis of simple slopes revealed that negative urgency was negatively associated with urge to drink, while positive urgency was positively associated with positive affect following the relaxation intervention. Findings suggest that level (low vs high) and subscale of impulsivity matter with regard to how a participant will respond to a mindfulness versus relaxation intervention. PMID:27344030

  20. Auditory and behavioral responses of California sea lions (Zalophus californianus) to single underwater impulses from an arc-gap transducer

    NASA Astrophysics Data System (ADS)

    Finneran, James J.; Dear, Randall; Carder, Donald A.; Ridgway, Sam H.

    2003-09-01

    A behavioral response paradigm was used to measure underwater hearing thresholds in two California sea lions (Zalophus californianus) before and after exposure to underwater impulses from an arc-gap transducer. Preexposure and postexposure hearing thresholds were compared to determine if the subjects experienced temporary shifts in their masked hearing thresholds (MTTS). Hearing thresholds were measured at 1 and 10 kHz. Exposures consisted of single underwater impulses produced by an arc-gap transducer referred to as a ``pulsed power device'' (PPD). The electrical charge of the PPD was varied from 1.32 to 2.77 kJ; the distance between the subject and the PPD was varied over the range 3.4 to 25 m. No MTTS was observed in either subject at the highest received levels: peak pressures of approximately 6.8 and 14 kPa, rms pressures of approximately 178 and 183 dB re: 1 μPa, and total energy fluxes of 161 and 163 dB re: 1 μPa2s for the two subjects. Behavioral reactions to the tests were observed in both subjects. These reactions primarily consisted of temporary avoidance of the site where exposure to the PPD impulse had previously occurred.

  1. Neuroendocrine responses to a glucose challenge in substance users with high and low levels of aggression, impulsivity, and antisocial personality.

    PubMed

    Fishbein, D H; Dax, E; Lozovsky, D B; Jaffe, J H

    1992-01-01

    Plasma glucose concentrations, and plasma prolactin and cortisol responses to a 5-hour oral glucose tolerance test (OGTT) in 37 substance abusers, were examined to assess the relationship between varying degrees of antisocial personality, impulsivity, and aggressiveness and measures of endocrine function. Childhood and presenting aggression, impulsivity and antisocial personality features were evaluated by several self-report questionnaires. Those with high scores for psychopathic deviance (MMPI) differed in glucose levels following OGTT from those with low scores. Lower cortisol nadir levels were associated with higher scores on measures of antisocial personality and aggressiveness. Also, prolactin response to glucose was attenuated relative to baseline levels in the more antisocial and aggressive subjects. The results indicate that substance abusers with high levels of self-reported antisocial personality and aggressive behavior have altered neuroendocrine responses to glucose challenge, although there was no evidence of hypoglycemia. No one personality or behavioral trait, as measured by our test battery, more strongly predicted neuroendocrine responses to glucose administration. Thus, our data partially support other reports of altered neuroendocrine responses to stressful challenges in aggressive/antisocial individuals. PMID:1625777

  2. Structural characteristic responses for finite element model updating of structures

    NASA Astrophysics Data System (ADS)

    Zhou, Linren; Wang, Lei; Ou, Jinping

    2014-04-01

    The field measurements of structures are very important to the structural finite element (FE) model updating because the errors and uncertainties of a FE model are corrected directly through closing the discrepancies between the analytical responses from FE model and the measurements from field testing of a structure. Usually, the accurate and reliable field measurements are very limited. Therefore, it is very important to make full use of the limited and valuable field measurements in structural model updating to achieve a best result with the lowest cost. In this paper, structural FE model updating is investigated in the point of view of solving a mathematical problem, and different amount and category of structural dynamic responses and static responses are considered as constraints to explore their effects on the updated results of different degree and types of structural damages. The numerical studies are carried out on a space truss. Accounting for the numerical results, some inherent phenomena and connections taking account of the updating parameters, output responses and the updated results are revealed and discussed. Some useful and practicable suggestions about using the field measurements for FE model updating are provided to achieve efficient and reliable results.

  3. Computation of Schenberg response function by using finite element modelling

    NASA Astrophysics Data System (ADS)

    Frajuca, C.; Bortoli, F. S.; Magalhaes, N. S.

    2016-05-01

    Schenberg is a detector of gravitational waves resonant mass type, with a central frequency of operation of 3200 Hz. Transducers located on the surface of the resonating sphere, according to a distribution half-dodecahedron, are used to monitor a strain amplitude. The development of mechanical impedance matchers that act by increasing the coupling of the transducers with the sphere is a major challenge because of the high frequency and small in size. The objective of this work is to study the Schenberg response function obtained by finite element modeling (FEM). Finnaly, the result is compared with the result of the simplified model for mass spring type system modeling verifying if that is suitable for the determination of sensitivity detector, as the conclusion the both modeling give the same results.

  4. Finite element simulation of impact response of wire mesh screens

    NASA Astrophysics Data System (ADS)

    Wang, Caizheng; Shankar, Krishna; Fien, Alan

    2015-09-01

    In this paper, the response of wire mesh screens to low velocity impact with blunt objects is investigated using finite element (FE) simulation. The woven wire mesh is modelled with homogeneous shell elements with equivalent smeared mechanical properties. The mechanical behaviour of the woven wire mesh was determined experimentally with tensile tests on steel wire mesh coupons to generate the data for the smeared shell material used in the FE. The effects of impacts with a low mass (4 kg) and a large mass (40 kg) providing the same impact energy are studied. The joint between the wire mesh screen and the aluminium frame surrounding it is modelled using contact elements with friction between the corresponding elements. Damage to the screen of different types compromising its structural integrity, such as mesh separation and pulling out from the surrounding frame is modelled. The FE simulation is validated with results of impact tests conducted on woven steel wire screen meshes.

  5. Linking impulse response functions to reaction time: Rod and cone reaction time data and a computational model

    PubMed Central

    Cao, Dingcai; Zele, Andrew J.; Pokorny, Joel

    2007-01-01

    Reaction times for incremental and decremental stimuli were measured at five suprathreshold contrasts for six retinal illuminance levels where rods alone (0.002–0.2 Trolands), rods and cones (2–20 Trolands) or cones alone (200 Trolands) mediated detection. A 4-primary photostimulator allowed independent control of rod or cone excitations. This is the first report of reaction times to isolated rod or cone stimuli at mesopic light levels under the same adaptation conditions. The main findings are: 1) For rods, responses to decrements were faster than increments, but cone reaction times were closely similar. 2) At light levels where both systems were functional, rod reaction times were ~20 ms longer. The data were fitted with a computational model that incorporates rod and cone impulse response functions and a stimulus-dependent neural sensory component that triggers a motor response. Rod and cone impulse response functions were derived from published psychophysical two-pulse threshold data and temporal modulation transfer functions. The model fits were accomplished with a limited number of free parameters: two global parameters to estimate the irreducible minimum reaction time for each receptor type, and one local parameter for each reaction time versus contrast function. This is the first model to provide a neural basis for the variation in reaction time with retinal illuminance, stimulus contrast, stimulus polarity, and receptor class modulated. PMID:17346763

  6. Ice Sheet Roughness Estimation Based on Impulse Responses Acquired in the Global Ice Sheet Mapping Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Niamsuwan, N.; Johnson, J. T.; Jezek, K. C.; Gogineni, P.

    2008-12-01

    The Global Ice Sheet Mapping Orbiter (GISMO) mission was developed to address scientific needs to understand the polar ice subsurface structure. This NASA Instrument Incubator Program project is a collaboration between Ohio State University, the University of Kansas, Vexcel Corporation and NASA. The GISMO design utilizes an interferometric SAR (InSAR) strategy in which ice sheet reflected signals received by a dual-antenna system are used to produce an interference pattern. The resulting interferogram can be used to filter out surface clutter so as to reveal the signals scattered from the base of the ice sheet. These signals are further processed to produce 3D-images representing basal topography of the ice sheet. In the past three years, the GISMO airborne field campaigns that have been conducted provide a set of useful data for studying geophysical properties of the Greenland ice sheet. While topography information can be obtained using interferometric SAR processing techniques, ice sheet roughness statistics can also be derived by a relatively simple procedure that involves analyzing power levels and the shape of the radar impulse response waveforms. An electromagnetic scattering model describing GISMO impulse responses has previously been proposed and validated. This model suggested that rms-heights and correlation lengths of the upper surface profile can be determined from the peak power and the decay rate of the pulse return waveform, respectively. This presentation will demonstrate a procedure for estimating the roughness of ice surfaces by fitting the GISMO impulse response model to retrieved waveforms from selected GISMO flights. Furthermore, an extension of this procedure to estimate the scattering coefficient of the glacier bed will be addressed as well. Planned future applications involving the classification of glacier bed conditions based on the derived scattering coefficients will also be described.

  7. Robust and low complexity localization algorithm based on head-related impulse responses and interaural time difference.

    PubMed

    Wan, Xinwang; Liang, Juan

    2013-01-01

    This article introduces a biologically inspired localization algorithm using two microphones, for a mobile robot. The proposed algorithm has two steps. First, the coarse azimuth angle of the sound source is estimated by cross-correlation algorithm based on interaural time difference. Then, the accurate azimuth angle is obtained by cross-channel algorithm based on head-related impulse responses. The proposed algorithm has lower computational complexity compared to the cross-channel algorithm. Experimental results illustrate that the localization performance of the proposed algorithm is better than those of the cross-correlation and cross-channel algorithms. PMID:23298016

  8. Finite-strain large-deflection elastic-viscoplastic finite-element transient response analysis of structures

    NASA Technical Reports Server (NTRS)

    Rodal, J. J. A.; Witmer, E. A.

    1979-01-01

    A method of analysis for thin structures that incorporates finite strain, elastic-plastic, strain hardening, time dependent material behavior implemented with respect to a fixed configuration and is consistently valid for finite strains and finite rotations is developed. The theory is formulated systematically in a body fixed system of convected coordinates with materially embedded vectors that deform in common with continuum. Tensors are considered as linear vector functions and use is made of the dyadic representation. The kinematics of a deformable continuum is treated in detail, carefully defining precisely all quantities necessary for the analysis. The finite strain theory developed gives much better predictions and agreement with experiment than does the traditional small strain theory, and at practically no additional cost. This represents a very significant advance in the capability for the reliable prediction of nonlinear transient structural responses, including the reliable prediction of strains large enough to produce ductile metal rupture.

  9. Experimental investigation on the dynamic response of clamped corrugated sandwich plates subjected to underwater impulsive loadings

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Wei; Li, Dacheng; Hypervelocity Impact Research Center Team

    2015-06-01

    Corrugated sandwich plates are widely used in marine industry because such plates have high strength-to-weight ratios and blast resistance. The laboratory-scaled fluid-structure interaction experiments are performed to demonstrate the shock resistance of solid monolithic plates and corrugated sandwich plates by quantifying the permanent transverse deflection at mid-span of the plates as a function of impulsive loadings per areal mass. Sandwich structures with 6mm-thick and 10mm-thick 3003 aluminum corrugated core and 5A06 face sheets are compared with the 5A06 solid monolithic plates in this paper. The dynamic deformation of plates are captured with the the 3D digital speckle correlation method (DIC). The results affirm that sandwich structures show a 30% reduction in the maximum plate deflection compare with a monolithic plate of identical mass per unit area, and the peak value of deflection effectively reduced by increasing the thickness core. The failure modes of sandwich plates consists of core crushing, imprinting, stretch tearing of face sheets, bending and permanent deformation of entire structure with the increasing impulsive loads, and the failure mechanisms are analyzed with the postmortem panels and dynamic deflection history captured by cameras. National Natural Science Foundation of China (NO.: 11372088).

  10. Finite orbit energetic particle linear response to toroidal Alfven eigenmodes

    SciTech Connect

    Berk, H.L.; Ye, Huanchun . Inst. for Fusion Studies); Breizman, B.N. . Inst. Yadernoj Fiziki)

    1991-07-01

    The linear response of energetic particles to the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width: when the banana width {triangle}{sub b} is much larger than the mode thickness {triangle}{sub m}, we obtain a new compact expression for the linear power transfer. When {triangle}{sub m}/{triangle}{sub b} {much lt} 1, the banana orbit effect reduces the power transfer by a factor of {triangle}{sub m}/{triangle}{sub b} from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balance-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances ({vert bar}{upsilon}{sub {parallel}}{vert bar} = {upsilon}{sub A} is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands ({vert bar}{upsilon}{sub {parallel}}{vert bar}) = {upsilon}{sub A}/(2{ell} {minus} 1) with {ell} {ge} 2) is substantially reduced. 10 refs.

  11. Vibration Response of Multi Storey Building Using Finite Element Modelling

    NASA Astrophysics Data System (ADS)

    Chik, T. N. T.; Zakaria, M. F.; Remali, M. A.; Yusoff, N. A.

    2016-07-01

    Interaction between building, type of foundation and the geotechnical parameter of ground may trigger a significant effect on the building. In general, stiffer foundations resulted in higher natural frequencies of the building-soil system and higher input frequencies are often associated with other ground. Usually, vibrations transmitted to the buildings by ground borne are often noticeable and can be felt. It might affect the building and become worse if the vibration level is not controlled. UTHM building is prone to the ground borne vibration due to closed distance from the main road, and the construction activities adjacent to the buildings. This paper investigates the natural frequency and vibration mode of multi storey office building with the presence of foundation system and comparison between both systems. Finite element modelling (FEM) package software of LUSAS is used to perform the vibration analysis of the building. The building is modelled based on the original plan with the foundation system on the structure model. The FEM results indicated that the structure which modelled with rigid base have high natural frequency compare to the structure with foundation system. These maybe due to soil structure interaction and also the damping of the system which related to the amount of energy dissipated through the foundation soil. Thus, this paper suggested that modelling with soil is necessary to demonstrate the soil influence towards vibration response to the structure.

  12. Millennial scale system impulse response of polar climates - deconvolution results between δ 18O records from Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Reischmann, E.; Yang, X.; Rial, J. A.

    2013-12-01

    Deconvolution has long been used in science to recover real input given a system's impulse response and output. In this study, we applied spectral division deconvolution to select, polar, δ 18O time series to investigate the possible relationship between the climates of the Polar Regions, i.e. the equivalent to a climate system's ';impulse response.' While the records may be the result of nonlinear processes, deconvolution remains an appropriate tool because the two polar climates are synchronized, forming a Hilbert transform pair. In order to compare records, the age models of three Greenland and four Antarctica records have been matched via a Monte Carlo method using the methane-matched pair GRIP and BYRD as a basis for the calculations. For all twelve polar pairs, various deconvolution schemes (Wiener, Damped Least Squares, Tikhonov, Kalman filter) give consistent, quasi-periodic, impulse responses of the system. Multitaper analysis reveals strong, millennia scale, quasi-periodic oscillations in these system responses with a range of 2,500 to 1,000 years. These are not symmetric, as the transfer function from north to south differs from that of south to north. However, the difference is systematic and occurs in the predominant period of the deconvolved signals. Specifically, the north to south transfer function is generally of longer period than the south to north transfer function. High amplitude power peaks at 5.0ky to 1.7ky characterize the former, while the latter contains peaks at mostly short periods, with a range of 2.5ky to 1.0ky. Consistent with many observations, the deconvolved, quasi-periodic, transfer functions share the predominant periodicities found in the data, some of which are likely related to solar forcing (2.5-1.0ky), while some are probably indicative of the internal oscillations of the climate system (1.6-1.4ky). The approximately 1.5 ky transfer function may represent the internal periodicity of the system, perhaps even related to the

  13. The atomic oxygen green and red line emission response to sudden impulses of the solar wind dynamic pressure.

    NASA Astrophysics Data System (ADS)

    Leonovich, Ludmila; Leonovich, Vitaly; Tashchilin, Anatoly

    The atomic oxygen green and red line emission response to sudden impulses of the solar wind dynamic pressure was revealed at mid-latitudes. The paper presents the study results of the dependence of the observed emissions intensity from the sudden variations in the solar wind and the geomagnetic field. These results show a relationship of the emissions disturbance amplitude with the solar wind speed, as well as with the geomagnetic field variations. We used the zenith photometer optical data, the geomagnetic field and the total electron content variations obtained for the Eastern Siberia region (52(°) N, 103(°) E). The investigation was supported by the RFFI grants № 12-05-00024-а, № 13-05-00733.

  14. A family of variable step-size affine projection adaptive filter algorithms using statistics of channel impulse response

    NASA Astrophysics Data System (ADS)

    Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar

    2011-12-01

    This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.

  15. Field-Aligned Current Reconfiguration and Magnetospheric Response to an Impulse in the Interplanetary Magnetic Field BY Component

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Eriksson, S.; Korth, H.; Hairston, M. R.; Baker, J. B.; Heinselman, C. J.

    2013-12-01

    When the interplanetary magnetic field (IMF) is dawnward or duskward, magnetic merging between the IMF and the geomagnetic field occurs near the cusp on the dayside flanks of the magnetosphere. During these intervals, flow channels in the ionosphere with velocities in excess of 2 km/s have been observed, which can deposit large amounts of energy into the high-latitude thermosphere. In this study, we analyze an interval on 5 April 2010 where there was a strong dawnward impulse in the IMF, followed by a gradual decay in IMF magnitude at constant clock angle. Data from the Sondrestrom incoherent scatter radar and the DMSP spacecraft were used to investigate ionospheric convection during this interval, and data from the Active Magnetospheric and Planetary Electrodynamics Response Experiment (AMPERE) were used to investigate the associated Field-Aligned Current (FAC) system. Additionally, data from AMPERE were used to investigate the time response of the dawn-side FAC pair. We find there is a delay of approximately 1.25 hours between the arrival of the dawnward IMF impulse at the magnetopause and strength of the dawnward FAC pair, which is comparable to substorm growth and expansion time scales under southward IMF. Additionally, we find at the time of the peak FAC, there is evidence of a reconfiguring four-sheet FAC system in the morning local time sector of the ionosphere. Additionally, we find an inverse correlation between the dawn FAC strength and both the solar wind Alfvénic Mach number and the SYM-H index. No statistically significant correlation between the FAC strength and the solar wind dynamic pressure was found.

  16. Impulsive Action but Not Impulsive Choice Determines Problem Gambling Severity

    PubMed Central

    Brevers, Damien; Cleeremans, Axel; Verbruggen, Frederick; Bechara, Antoine; Kornreich, Charles; Verbanck, Paul; Noël, Xavier

    2012-01-01

    Background Impulsivity is a hallmark of problem gambling. However, impulsivity is not a unitary construct and this study investigated the relationship between problem gambling severity and two facets of impulsivity: impulsive action (impaired ability to withhold a motor response) and impulsive choice (abnormal aversion for the delay of reward). Methods The recruitment includes 65 problem gamblers and 35 normal control participants. On the basis of DSM-IV-TR criteria, two groups of gamblers were distinguished: problem gamblers (n = 38) and pathological gamblers (n = 27) with similar durations of gambling practice. Impulsive action was assessed using a response inhibition task (the stop-signal task). Impulsive choice was estimated with the delay-discounting task. Possible confounds (e.g., IQ, mood, ADHD symptoms) were recorded. Results Both problem and pathological gamblers discounted reward at a higher rate than their controls, but only pathological gamblers showed abnormally low performance on the most demanding condition of the stop-signal task. None of the potential confounds covaried with these results. Conclusions These results suggest that, whereas abnormal impulsive choice characterizes all problem gamblers, pathological gamblers' impairments in impulsive action may represent an important developmental pathway of pathological gambling. PMID:23209796

  17. In situ investigation of the dynamic response of energetic materials using IMPULSE at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Ramos, K. J.; Jensen, B. J.; Iverson, A. J.; Yeager, J. D.; Carlson, C. A.; Montgomery, D. S.; Thompson, D. G.; Fezzaa, K.; Hooks, D. E.

    2014-05-01

    The mechanical and chemical response of energetic materials is controlled by a convolution of deformation mechanisms that span length scales and evolve during impact. Traditional methods use continuum measurements to infer the microstructural response whereas advances in synchrotron capabilities and diagnostics are providing new, unique opportunities to interrogate materials in real time and in situ. Experiments have been performed on a new gas-gun system (IMPact system for Ultrafast Synchrotron Experiments) using single X-ray bunch phase contrast imaging (PCI) and Laue diffraction at the Advanced Photon Source (APS). The low absorption of molecular materials maximizes x-ray beam penetration, allowing measurements in transmission using the brilliance currently available at APS Sector 32. The transmission geometry makes it possible to observe both average lattice response and spatially heterogeneous, continuum response (1-4 um spatial resolution over ~2 × 2 mm area, 80 ps exposure, 153 ns frame-rate) in energetic materials ranging from single crystals to plastic-bonded composites. The current work describes our progress developing and using these diagnostics to observe deformation mechanisms relevant to explosives and the first experiments performed with explosives on IMPULSE at APS.

  18. A touch screen based Stop Signal Response Task in rhesus monkeys for studying impulsivity associated with chronic cocaine self-administration.

    PubMed

    Liu, Shijing; Heitz, Richard P; Bradberry, Charles W

    2009-02-15

    Among a range of cognitive deficits, human cocaine addicts display increased impulsivity and decreased performance monitoring. In order to establish an animal model that can be used to study the underlying neurobiology of these deficits associated with addiction, we have developed a touch screen based Stop Signal Response Task for rhesus monkeys. This task is essentially identical to the clinically used Stop Signal Task employed for diagnostic and research purposes. In this task, impulsivity is reflected in the amount of time needed to inhibit a response after it has been initiated, the Stop Signal Response Time (SSRT). Performance monitoring is reflected by the slowing of response times following Stop trials (Post-Stop Slowing, PSS). Herein we report on the task structure, the staged methods for training animals to perform the task, and a comparison of performance values for control and cocaine experienced animals. Relative to controls, monkeys that had self-administered cocaine, followed by 18 months abstinence, displayed increased impulsivity (increased SSRT values), and decreased performance monitoring (decreased PSS values). Our results are consistent with human data, and thereby establish an ideal animal model for studying the etiology and underlying neurobiology of cocaine-induced impulse control and performance monitoring deficits. PMID:18948136

  19. Preventing (impulsive) errors: Electrophysiological evidence for online inhibitory control over incorrect responses

    PubMed Central

    van den Wildenberg, Wery P. M.; Spieser, Laure; Ridderinkhof, K. Richard

    2016-01-01

    Abstract In a rich environment, with multiple action affordances, selective action inhibition is critical in preventing the execution of inappropriate responses. Here, we studied the origin and the dynamics of incorrect response inhibition and how it can be modulated by task demands. We used EEG in a conflict task where the probability of compatible and incompatible trials was varied. This allowed us to modulate the strength of the prepotent response, and hence to increase the risk of errors, while keeping the probability of the two responses equal. The correct response activation and execution was not affected by compatibility or by probability. In contrast, incorrect response inhibition in the primary motor cortex ipsilateral to the correct response was more pronounced on incompatible trials, especially in the condition where most of the trials were compatible, indicating a modulation of inhibitory strength within the course of the action. Two prefrontal activities, one medial and one lateral, were also observed before the response, and their potential links with the observed inhibitory pattern observed are discussed. PMID:27005956

  20. Finite element model calibration using frequency responses with damping equalization

    NASA Astrophysics Data System (ADS)

    Abrahamsson, T. J. S.; Kammer, D. C.

    2015-10-01

    Model calibration is a cornerstone of the finite element verification and validation procedure, in which the credibility of the model is substantiated by positive comparison with test data. The calibration problem, in which the minimum deviation between finite element model data and experimental data is searched for, is normally characterized as being a large scale optimization problem with many model parameters to solve for and with deviation metrics that are nonlinear in these parameters. The calibrated parameters need to be found by iterative procedures, starting from initial estimates. Sometimes these procedures get trapped in local deviation function minima and do not converge to the globally optimal calibration solution that is searched for. The reason for such traps is often the multi-modality of the problem which causes eigenmode crossover problems in the iterative variation of parameter settings. This work presents a calibration formulation which gives a smooth deviation metric with a large radius of convergence to the global minimum. A damping equalization method is suggested to avoid the mode correlation and mode pairing problems that need to be solved in many other model updating procedures. By this method, the modal damping of a test data model and the finite element model is set to be the same fraction of critical modal damping. Mode pairing for mapping of experimentally found damping to the finite element model is thus not needed. The method is combined with model reduction for efficiency and employs the Levenberg-Marquardt minimizer with randomized starts to achieve the calibration solution. The performance of the calibration procedure, including a study of parameter bias and variance under noisy data conditions, is demonstrated by two numerical examples.

  1. An impulse response function for the "long tail" of excess atmospheric CO2 in an Earth system model

    NASA Astrophysics Data System (ADS)

    Lord, N. S.; Ridgwell, A.; Thorne, M. C.; Lunt, D. J.

    2016-01-01

    The ultimate fate of (fossil fuel) CO2 emitted to the atmosphere is governed by a range of sedimentological and geological processes operating on timescales of up to the ca. hundred thousand year response of the silicate weathering feedback. However, how the various geological CO2 sinks might saturate and feedbacks weaken in response to increasing total emissions is poorly known. Here we explore the relative importance and timescales of these processes using a 3-D ocean-based Earth system model. We first generate an ensemble of 1 Myr duration CO2 decay curves spanning cumulative emissions of up to 20,000 Pg C. To aid characterization and understanding of the model response to increasing emission size, we then generate an impulse response function description for the long-term fate of CO2 in the model. In terms of the process of carbonate weathering and burial, our analysis is consistent with a progressively increasing fraction of total emissions that are removed from the atmosphere as emissions increase, due to the ocean carbon sink becoming saturated, together with a lengthening of the timescale of removal from the atmosphere. However, we find that in our model the ultimate CO2 sink—silicate weathering feedback—is approximately invariant with respect to cumulative emissions, both in terms of its importance (it removes the remaining excess ~7% of total emissions from the atmosphere) and timescale (~270 kyr). Because a simple pulse-response description leads to initially large predictive errors for a realistic time-varying carbon release, we also develop a convolution-based description of atmospheric CO2 decay which can be used as a simple and efficient means of making long-term carbon cycle perturbation projections.

  2. Optimization of the matrix inversion tomosynthesis (MITS) impulse response and modulation transfer function characteristics for chest imaging

    SciTech Connect

    Godfrey, Devon J.; McAdams, H.P.; Dobbins, James T. III

    2006-03-15

    Matrix inversion tomosynthesis (MITS) uses linear systems theory, along with a priori knowledge of the imaging geometry, to deterministically distinguish between true structure and overlying tomographic blur in a set of conventional tomosynthesis planes. In this paper we examine the effect of total scan angle (ANG), number of input projections (N), and plane separation/number of reconstructed planes (NP) on the MITS impulse response (IR) and modulation transfer function (MTF), with the purpose of optimizing MITS imaging of the chest. MITS IR and MTF data were generated by simulating the imaging of a very thin wire, using various combinations of ANG, N, and NP. Actual tomosynthesis data of an anthropomorphic chest phantom were acquired with a prototype experimental system, using the same imaging parameter combinations as those in the simulations. Thoracic projection data from two human subjects were collected for corroboration of the system response analysis in vivo. Results suggest that ANG=20 deg. , N=71, NP=69 is the optimal combination for MITS chest imaging given the inherent constraints of our prototype system. MITS chest data from human subjects demonstrates that the selected imaging strategy can effectively produce high-quality MITS thoracic images in vivo.

  3. A TEM-horn antenna with dielectric lens for fast impulse response

    SciTech Connect

    Aurand, J.F.

    1995-12-31

    We designed and constructed a pair of TEM-horn antennas specifically for the very fast time-domain boresight response. Two physical topologies were made. A printed-board configuration has much slower transient response, which we think is due to pulse-smearing of the antenna currents in the dielectric substrate of the printed wiring boards. The solid state version has a 20 ps transition duration response in the main beam endfire (boresight) direction, which is the fastest we have seen to date. And since the antenna has a round trip antenna current propagation time of 6 ns, it offers clean radiated electromagnetic field measurement capability with a clear time of several nanoseconds. The printed board version has resistive loading at the aperture end of the conductors, which should offer better low- frequency performance. The dielectric lens certainly does improve the transient performance of the TEM horn, and was simple to design.

  4. Adolescent Impulsivity: Findings from a Community Sample

    ERIC Educational Resources Information Center

    d'Acremont, Mathieu; Van der Linden, Martial

    2005-01-01

    Impulsivity is central to several psychopathological states in adolescence. However, there is little consensus concerning the definition of impulsivity and its core dimensions. In response to this lack of consensus, Whiteside and Lynam (2001, "Pers. Individ. Differ." 30, 669-689) have developed the UPPS Impulsive Behavior Scale, which is able to…

  5. Finite-element impact response of debonded composite turbine blades

    NASA Astrophysics Data System (ADS)

    Dey, Sudip; Karmakar, Amit

    2014-02-01

    This paper investigates on the transient behavior of debonded composite pretwisted rotating shallow conical shells which could be idealized as turbine blades subjected to low velocity normal impact using finite-element method. Lagrange's equation of motion is used to derive the dynamic equilibrium equation and the moderate rotational speeds are considered neglecting the Coriolis effect. An eight-noded isoparametric plate bending element is employed in the finite element formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the impact parameters. The time-dependent equations are solved by using Newmark's time integration scheme. Parametric studies are performed to investigate the effects of triggering parameters like angle of twist, rotational speed, laminate configuration and location of debonding considering low velocity normal impact at the center of eight-layered graphite-epoxy composite cantilevered conical shells with bending stiff ([0o2/{±} 30o]s), torsion stiff ([45°/-45°/-45°/45°]s) and cross-ply ([0°/90°/0°/90°]s) laminate configurations.

  6. Directional impulse response of a large cavity inside a sonic crystal.

    PubMed

    Spiousas, Ignacio; Eguia, Manuel C

    2012-10-01

    Both temporal and directional responses of a cavity inside a two-dimensional sonic crystal are investigated. The size of the cavity is large compared to the lattice parameter and the wavelength for the frequency range of interest. Hence, a hybrid method to compute the response is proposed, combining multiscattering theory for the calculation of the reflective properties of the sonic crystal with a modified ray-tracing algorithm for the sound propagation within the cavity. The response of this enclosure displays resonances for certain frequency bands that depend on the geometry of the lattice and the cavity. When a full band gap exists in the sonic crystal, rays cannot propagate through the medium and total reflection occurs for all incidence angles, leading to strong resonances with an isotropic intensity field inside the cavity. When only some propagation directions are forbidden, total reflection occurs for certain ranges of incidence angles, and resonances can also be elicited but with a highly anisotropic intensity field. The spectrum of resonances of the cavity is strongly affected by changes in the lattice geometry, suggesting that they can be tailored to some extent, a feature that can lead to potential applications in architectural acoustics. PMID:23039550

  7. From the channel model of an InSb-based superresolution optical disc system to impulse response and resolution limits.

    PubMed

    Hepper, Dietmar

    2011-06-10

    The signal model of a superresolution optical channel can be an efficient tool for developing components of an associated high-density optical disc system. While the behavior of the laser diode, aperture, lens, and detector are properly described, a general mathematical model of the superresolution disc itself has not yet been available until recently. Different approaches have been made to describe the properties of a mask layer, mainly based on temperature- or power-dependent nonlinear effects. A complete signal-based or phenomenological optical channel model--from non-return-to-zero inverted input to disc readout signal--has recently been developed including the reflectivity of a superresolution disc with InSb used for the mask layer. In this contribution, the model is now extended and applied to a moving disc including a land-and-pit structure, and results are compared with data read from real superresolution discs. Both impulse response and resolution limits are derived and discussed. Thus the model provides a bridge from physical to readout signal properties, which count after all. The presented approach allows judging of the suitability of a mask layer material for storage density enhancement already based on static experiments, i.e., even before developing an associated disc drive. PMID:21673750

  8. Ray-tracing simulations of free-space optical channels for impulse response studies of indoor data links

    NASA Astrophysics Data System (ADS)

    Karppinen, Mikko; Aikio, Sanna M.; Maekinen, Jukka-Tapani; Rajaniemi, Hannu; Karioja, Pentti

    2000-04-01

    Free-space optical transmission provides large bandwidth, small size, lightweight, low cost and good security. Diffuse IR link configuration is also rather robust against shadowing. Its disadvantages are, however, bandwidth degradation due to multipath dispersion, sensitivity to ambient light and limited transmission distance due to the limitations of optical power budget. To specify the bandwidth and power budget requirements of the diffuse link, we performed ray-trace simulations for different room geometries and dimensions, and different transmitter and receiver locations. We considered both diffuse and specular reflections as well as shadowing and reflection effects due to blocking objects, such as furniture. The simulations were verified by analytically calculating the impulse response in simple diffuse reflection geometry. We also analyzed stray light induced shot noise effects. Furthermore, we simulated some properties of a quasi-diffuse link comprising of multi- beam transmitters with restricted beam divergences as well as detectors with narrow fields of view. Based on the study, novel Monte Carlo ray-tracing software packages, such as ASAP, can be used for diffuse link multipath dispersion and optical power path loss analysis. Ray tracing can also be used for parallel channel crosstalk and stray light analysis. Potential applications for these system are high- bit-rate wireless LANs and free-space optical interconnects.

  9. Upper limb dynamic responses to impulsive forces for selected assembly workers.

    PubMed

    Sesto, Mary E; Radwin, Robert G; Block, Walter F; Best, Thomas M

    2006-02-01

    This study evaluated the upper limb, dynamic, mechanical response parameters for 14 male assembly workers recruited from selected jobs based on power tool use. It was hypothesized that the type of power tool operation would affect stiffness, effective mass, and damping of the upper extremity; and workers with symptoms and positive physical examination findings would have different mechanical responses than asymptomatic workers without physical examination findings. Participants included operators who regularly used torque reaction power hand tools, such as nutrunners and screwdrivers, and nontorque reaction power hand tools, such as riveters. The mechanical parameters of the upper limb were characterized from the loading response of an apparatus having known dynamic properties while worker grasps an oscillating handle in free vibration. In addition, all workers underwent a physical examination, magnetic resonance imaging, and completed a symptom survey. Workers were categorized as controls or cases based on reported forearm symptoms and physical exam findings. A total of seven workers were categorized as cases and had less average mechanical stiffness (46%, p > 0.01), damping (74%, p > 0.01), and effective mass (59%, p > 0.05) than the seven workers categorized as controls. Magnetic resonance imaging (MRI) findings suggestive of muscle edema were observed for two workers classified as cases and who regularly used torque reaction power tools. No MRI enhancement was observed in the seven subjects who did not regularly use torque reaction power tools. The ergonomic consequences of less stiffness, effective mass, and damping in symptomatic workers may include reduced capacity to react against rapidly building torque reaction forces encountered when operating power hand tools. PMID:16361220

  10. The role of the FM component in shaping the number of impulses and response latency of inferior collicular neurons of Hipposideros armiger elicited by CF-FM sounds.

    PubMed

    Fu, Zi-Ying; Xu, Na; Wang, Jing; Tang, Jia; Jen, Philip Hung-Sun; Chen, Qi-Cai

    2014-07-25

    Previous studies show that when stimulated with constant frequency-frequency modulated (CF-FM) sounds, the inferior collicular neurons of the leaf-nosed bat, Hipposideros armiger, either discharge impulses only to the CF component (single-on, SO neurons) or to both CF and FM components (double-on, DO neurons). In this study, we specifically determine the role of the FM component in shaping the number of impulses and response latency of these two types of neurons in response to CF-FM sounds. Adding the FM component to the CF sounds significantly decreases the number of impulses of both SO and DO neurons but shortens the response latency of DO neurons in response to the CF component of the CF-FM sounds. The possible neural mechanisms underlying these seemingly paradoxical observations are briefly discussed based on our preliminary intracellular recording studies. Biological relevance of these findings in relation to different phases of bats' hunting is also discussed. PMID:24915297

  11. Conformal scanning laser Doppler vibrometer measurement of tenor steelpan response to impulse excitation.

    PubMed

    Ryan, Teresa; O'Malley, Patrick; Glean, Aldo; Vignola, Joseph; Judge, John

    2012-11-01

    A conformal scanning laser Doppler vibrometer system is used in conjunction with a mechanical pannist to measure the surface normal vibration of the entire playing surface of a C-lead tenor steelpan. The mechanical pannist is a device designed to deliver controlled, repeatable strikes that mimic a mallet during authentic use. A description of the measurement system is followed by select examples of behavior common to the results from three different excitation notes. A summary of observed response shapes and associated frequencies demonstrates the concerted placement of note overtones by the craftsmen who manufacture and tune the instruments. The measurements provide a rich mechanical snapshot of the complex motion that generates the distinctive sound of a steelpan. PMID:23145629

  12. Finite Temperature Response of a 2D Dipolar Bose Gas at Different Dipolar Tilt Angles

    NASA Astrophysics Data System (ADS)

    Shen, Pengtao; Quader, Khandker

    We calculate finite temperature (T) response of a 2D Bose gas, subject to dipolar interaction, within the random phase approximation (RPA). We evaluate the appropriate 2D finite-T pair bubble diagram needed in RPA, and explore ranges of density and temperature for various dipolar tilt angles. We find the system to exhibit a collapse transition and a finite momentum instability, signaling a density wave or striped phase. We construct phase diagrams depicting these instabilities and resulting phases, including a normal Bose gas phase. We also consider the finite-T response of a quasi-2D dipolar Bose gas. We discuss how our results may apply to ultracold dense Bose gas of polar molecules, such as 41K87Rb, that has been realized experimentally. Acknowledge partial support from Institute for Complex Adaptive Matter (ICAM).

  13. An automatic damage detection algorithm based on the Short Time Impulse Response Function

    NASA Astrophysics Data System (ADS)

    Auletta, Gianluca; Carlo Ponzo, Felice; Ditommaso, Rocco; Iacovino, Chiara

    2016-04-01

    Structural Health Monitoring together with all the dynamic identification techniques and damage detection techniques are increasing in popularity in both scientific and civil community in last years. The basic idea arises from the observation that spectral properties, described in terms of the so-called modal parameters (eigenfrequencies, mode shapes, and modal damping), are functions of the physical properties of the structure (mass, energy dissipation mechanisms and stiffness). Damage detection techniques traditionally consist in visual inspection and/or non-destructive testing. A different approach consists in vibration based methods detecting changes of feature related to damage. Structural damage exhibits its main effects in terms of stiffness and damping variation. Damage detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature. We focused the attention on the structural damage localization and detection after an earthquake, from the evaluation of the mode curvature difference. The methodology is based on the acquisition of the structural dynamic response through a three-directional accelerometer installed on the top floor of the structure. It is able to assess the presence of any damage on the structure providing also information about the related position and severity of the damage. The procedure is based on a Band-Variable Filter, (Ditommaso et al., 2012), used to extract the dynamic characteristics of systems that evolve over time by acting simultaneously in both time and frequency domain. In this paper using a combined approach based on the Fourier Transform and on the seismic interferometric analysis, an useful tool for the automatic fundamental frequency evaluation of nonlinear structures has been proposed. Moreover, using this kind of approach it is possible to improve some of the existing methods for the automatic damage detection providing stable results

  14. Estimation of Item Response Models Using the EM Algorithm for Finite Mixtures.

    ERIC Educational Resources Information Center

    Woodruff, David J.; Hanson, Bradley A.

    This paper presents a detailed description of maximum parameter estimation for item response models using the general EM algorithm. In this paper the models are specified using a univariate discrete latent ability variable. When the latent ability variable is discrete the distribution of the observed item responses is a finite mixture, and the EM…

  15. A Novel Translational Assay of Response Inhibition and Impulsivity: Effects of Prefrontal Cortex Lesions, Drugs Used in ADHD, and Serotonin 2C Receptor Antagonism

    PubMed Central

    Humby, Trevor; Eddy, Jessica B; Good, Mark A; Reichelt, Amy C; Wilkinson, Lawrence S

    2013-01-01

    Animal models are making an increasing contribution to our understanding of the psychology and brain mechanisms underlying behavioral inhibition and impulsivity. The aim here was to develop, for the first time, a mouse analog of the stop-signal reaction time task with high translational validity in order to be able to exploit this species in genetic and molecular investigations of impulsive behaviors. Cohorts of mice were trained to nose-poke to presentations of visual stimuli. Control of responding was manipulated by altering the onset of an auditory ‘stop-signal' during the go response. The anticipated systematic changes in action cancellation were observed as stopping was made more difficult by placing the stop-signal closer to the execution of the action. Excitotoxic lesions of medial prefrontal cortex resulted in impaired stopping, while the clinically effective drugs methylphenidate and atomoxetine enhanced stopping abilities. The specific 5-HT2C receptor antagonist SB242084 also led to enhanced response control in this task. We conclude that stop-signal reaction time task performance can be successfully modeled in mice and is sensitive to prefrontal cortex dysfunction and drug treatments in a qualitatively similar manner to humans and previous rat models. Additionally, using this model we show novel and highly discrete effects of 5-HT2C receptor antagonism that suggest manipulation of 5-HT2C receptor function may be of use in correcting maladaptive impulsive behaviors and provide further evidence for dissociable contributions of serotonergic transmission to response control. PMID:23657439

  16. Cultural Consensus Theory: Aggregating Continuous Responses in a Finite Interval

    NASA Astrophysics Data System (ADS)

    Batchelder, William H.; Strashny, Alex; Romney, A. Kimball

    Cultural consensus theory (CCT) consists of cognitive models for aggregating responses of "informants" to test items about some domain of their shared cultural knowledge. This paper develops a CCT model for items requiring bounded numerical responses, e.g. probability estimates, confidence judgments, or similarity judgments. The model assumes that each item generates a latent random representation in each informant, with mean equal to the consensus answer and variance depending jointly on the informant and the location of the consensus answer. The manifest responses may reflect biases of the informants. Markov Chain Monte Carlo (MCMC) methods were used to estimate the model, and simulation studies validated the approach. The model was applied to an existing cross-cultural dataset involving native Japanese and English speakers judging the similarity of emotion terms. The results sharpened earlier studies that showed that both cultures appear to have very similar cognitive representations of emotion terms.

  17. Impulsivity and comorbid traits: a multi-step approach for finding putative responsible microRNAs in the amygdala

    PubMed Central

    Pietrzykowski, Andrzej Z.; Spijker, Sabine

    2014-01-01

    Malfunction of synaptic plasticity in different brain regions, including the amygdala plays a role in impulse control deficits that are characteristics of several psychiatric disorders, such as ADHD, schizophrenia, depression and addiction. Previously, we discovered a locus for impulsivity (Impu1) containing the neuregulin 3 (Nrg3) gene, of which the level of expression determines levels of inhibitory control. MicroRNAs (miRNAs) are potent regulators of gene expression, and have recently emerged as important factors contributing to the development of psychiatric disorders. However, their role in impulsivity, as well as control of Nrg3 expression or malfunction of the amygdala, is not well established. Here, we used the GeneNetwork database of BXD mice to search for correlated traits with impulsivity using an overrepresentation analysis to filter for biologically meaningful traits. We determined that inhibitory control was significantly correlated with expression of miR-190b, -28a, -340, -219a, and -491 in the amygdala, and that the overrepresented correlated traits showed a specific pattern of coregulation with these miRNAs. A bioinformatics analysis identified that miR-190b, by targeting an Nrg3-related network, could affect synaptic plasticity in the amygdala, targeting bot impulsive and compulsive traits. Moreover, miR-28a, -340, -219a, and possibly -491 could act on synaptic function by determining the balance between neuronal outgrowth and differentiation. We propose that these miRNAs are attractive candidates of regulation of amygdala synaptic plasticity, possibly during development but also in maintaining the impulsive phenotype. These results can help us to better understand mechanisms of synaptic dysregulation in psychiatric disorders. PMID:25561905

  18. Stimulus-Response Theory of Finite Automata, Technical Report No. 133.

    ERIC Educational Resources Information Center

    Suppes, Patrick

    The central aim of this paper and its projected successors is to prove in detail that stimulus-response theory, or at least a mathematically precise version, can give an account of the learning of many phrase-structure grammars. Section 2 is concerned with standard notions of finite and probabilistic automata. An automaton is defined as a device…

  19. A finite element large deflection random response analysis of beams and plates subjected to acoustic loading

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Chiang, C. K.

    1987-01-01

    A finite element formulation is presented for the analysis of beams and rectangular plates undergoing large deflections subjected to Gaussian white noise excitations. Single-mode response is assumed in the present formulation. Root-mean-square (RMS) maximum deflections for simply supported and clamped beams and plates at various sound spectrum levels are obtained and compared with solutions using the Fokker-Planck-Kolmogorov equation and the equivalent linearization methods. RMS maximum stains and equivalent linear frequencies are compared with the equivalent linearization results for assessment of the accuracy of the finite element method.

  20. Modified impulse method for the measurement of the frequency response of acoustic filters to weakly nonlinear transient excitations

    PubMed

    Payri; Desantes; Broatch

    2000-02-01

    In this paper, a modified impulse method is proposed which allows the determination of the influence of the excitation characteristics on acoustic filter performance. Issues related to nonlinear propagation, namely wave steepening and wave interactions, have been addressed in an approximate way, validated against one-dimensional unsteady nonlinear flow calculations. The results obtained for expansion chambers and extended duct resonators indicate that the amplitude threshold for the onset of nonlinear phenomena is related to the geometry considered. PMID:10687682

  1. Finite-element simulation of transient heat response in ultrasonic transducers.

    PubMed

    Ando, E; Kagawa, Y

    1992-01-01

    The application of the finite-element method to a transient heat response problem in electrostrictive ultrasonic transducers during their pulsed operation is described. The temperature and thermal stress distribution are of practical importance for the design of the ultrasonic transducers when they are operated at intense levels. Mechanical vibratory loss is responsible for heat in the elastic parts, while dielectric loss is responsible in the ferroelectric parts. A finite-element computer model is proposed for the temperature change evaluation in the transducers with time. Natural and forced cooling convection and heat radiation from the transducers' boundaries are included. Simulation is made for Langevin-type transducer models, for which comparison is made with experimental data. PMID:18267653

  2. Origin of the sinus impulse.

    PubMed

    Schuessler, R B; Boineau, J P; Bromberg, B I

    1996-03-01

    It was generally accepted that the site of normal impulse origin within the atria was a single static focus within the sinus node. This review will examine how this model of impulse origin came about and has evolved. Early on, conflicting data suggested that the sinus node focus was not static and changed with interventions that changed heart rate, such as vagal stimulation. Furthermore, even with removal of the sinus node, a normal atrial rhythm was generated. High-resolution mapping in humans and dogs showed that the initiation of the impulse was dynamic and could be multicentric, with more than one focus initiating a single beat. Shifts in the site of origin correlated with changes in rate and were consistent with P wave changes routinely observed in the standard ECG. These studies suggested multiple pacemakers were responsible for impulse initiation. However, it was not clear how these widespread pacemakers were coordinated to function synchronously. Recent canine data suggest that the node may be partially insulated from the surrounding atrium, resulting in multicentric origin starting from a single site within the node. What has evolved is a model of impulse origin with a sinus node having discrete exit sites and a dominant pacemaker within the node that can shift to other nodal sites. Complex and changing conduction out of the node, coupled with extranodal pacemakers, which can assume dominance over the node, combine with the autonomic nervous system to control heart rate and the pattern of impulse origin within the atria. PMID:8867301

  3. Comparison of Finite Element Non-Linear Beam Random Response with Experimental Results

    NASA Astrophysics Data System (ADS)

    Chen, R. R.; Mei, C.; Wolfe, HF

    1996-09-01

    A finite element formulation combined with the equivalent linearization technique and normal mode method is developed for the non-linear random response of beams subjected to acoustic and thermal loads applied simultaneously. To validate the present formulation and solution procedure, results are compared with the classical continuum solution and the Fokker-Planck-Kolmogorov equation solution. Comparison is also made with experimental data for a pre-stretched clamped beam. Random responses of thermally buckled simply supported beam, clamped beam and simply supported-clamped beam are presented. The comparison of the present simultaneously loaded response with the existing sequentially loaded results shows a significant difference between them.

  4. Impaired Decisional Impulsivity in Pathological Videogamers

    PubMed Central

    Irvine, Michael A.; Worbe, Yulia; Bolton, Sorcha; Harrison, Neil A.; Bullmore, Edward T.; Voon, Valerie

    2013-01-01

    Background Pathological gaming is an emerging and poorly understood problem. Impulsivity is commonly impaired in disorders of behavioural and substance addiction, hence we sought to systematically investigate the different subtypes of decisional and motor impulsivity in a well-defined pathological gaming cohort. Methods Fifty-two pathological gaming subjects and age-, gender- and IQ-matched healthy volunteers were tested on decisional impulsivity (Information Sampling Task testing reflection impulsivity and delay discounting questionnaire testing impulsive choice), and motor impulsivity (Stop Signal Task testing motor response inhibition, and the premature responding task). We used stringent diagnostic criteria highlighting functional impairment. Results In the Information Sampling Task, pathological gaming participants sampled less evidence prior to making a decision and scored fewer points compared with healthy volunteers. Gaming severity was also negatively correlated with evidence gathered and positively correlated with sampling error and points acquired. In the delay discounting task, pathological gamers made more impulsive choices, preferring smaller immediate over larger delayed rewards. Pathological gamers made more premature responses related to comorbid nicotine use. Greater number of hours played also correlated with a Motivational Index. Greater frequency of role playing games was associated with impaired motor response inhibition and strategy games with faster Go reaction time. Conclusions We show that pathological gaming is associated with impaired decisional impulsivity with negative consequences in task performance. Decisional impulsivity may be a potential target in therapeutic management. PMID:24146789

  5. Ultrasonic propagation in finite-length granular chains.

    PubMed

    Hutchins, D A; Yang, J; Akanji, O; Thomas, P J; Davis, L A J; Freear, S; Harput, S; Saffari, N; Gelat, P

    2016-07-01

    A narrowband ultrasound source has been used to generate solitary wave impulses in finite-length chains of spheres. Once the input signal is of sufficient amplitude, both harmonics and sub-harmonics of the input frequency can be generated as non-linear normal modes of the system, allowing a train of impulses to be established from a sinusoidal input. The characteristics of the response have been studied as a function of the physical properties of the chain, the input waveform and the level of static pre-compression. The results agree with the predictions of a theoretical model, based on a set of discrete dynamic equations for the spheres for finite-length chains. Impulses are only created for very small pre-compression forces of the order of 0.01N, where strongly non-linear behaviour is expected. PMID:26548524

  6. Finite-element simulation of transient heat response in ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Ando, Ei'ichi; Kagawa, Yukio

    1992-05-01

    The application of the finite-element method to a transient heat response problem in electrostrictive ultrasonic transducers during their pulsed operation is described. The temperature and thermal stress distribution are of practical importance for the design of the ultrasonic transducers when they are operated at intense levels. Mechanical vibratory loss is responsible for heat in the elastic parts while dielectric loss in the ferroelectric parts. A finite-element computer model is proposed for the temperature change evaluation in the transducers with time. Natural and forced cooling convection and heat radiation from the transducers' boundaries are included. Simulation is made for Langevin-type transducer models, for which comparison is made with experimental data.

  7. Optimizing work output for finite-sized heat reservoirs: Beyond linear response.

    PubMed

    Wang, Yan

    2016-01-01

    We uncover an optimization principle for the finite-time heat-work conversion process performed between two finite-sized heat reservoirs in the nonlinear response regime that is characterized by rather generic flux-force relations. We solve the problem of maximizing work output in a given time interval by means of the variational method. Moreover, in the limiting case that the cold reservoir is infinite, we find the corresponding optimized process can be determined by a single quantity, which plays the role similar to that of the Hamiltonian in classical mechanics. Some theoretical implications are discussed consequently, under the generalized tight-coupling condition which applies to both linear and nonlinear response cases. Our results can hopefully help design and control realistic thermodynamical processes. PMID:26871037

  8. Optimizing work output for finite-sized heat reservoirs: Beyond linear response

    NASA Astrophysics Data System (ADS)

    Wang, Yan

    2016-01-01

    We uncover an optimization principle for the finite-time heat-work conversion process performed between two finite-sized heat reservoirs in the nonlinear response regime that is characterized by rather generic flux-force relations. We solve the problem of maximizing work output in a given time interval by means of the variational method. Moreover, in the limiting case that the cold reservoir is infinite, we find the corresponding optimized process can be determined by a single quantity, which plays the role similar to that of the Hamiltonian in classical mechanics. Some theoretical implications are discussed consequently, under the generalized tight-coupling condition which applies to both linear and nonlinear response cases. Our results can hopefully help design and control realistic thermodynamical processes.

  9. Implementation of structural response sensitivity calculations in a large-scale finite-element analysis system

    NASA Technical Reports Server (NTRS)

    Giles, G. L.; Rogers, J. L., Jr.

    1982-01-01

    The implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calclating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of the system are also discussed.

  10. Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Agashe, Vinayak; Vijayakar, Sandeep M.

    2000-01-01

    The dynamic response of a helicopter planetary gear system is examined over a wide range of operating speeds and torques. The analysis tool is a unique, semianalytical finite element formulation that admits precise representation of the tooth geometry and contact forces that are crucial in gear dynamics. Importantly, no a priori specification of static transmission error excitation or mesh frequency variation is required; the dynamic contact forces are evaluated internally at each time step. The calculated response shows classical resonances when a harmonic of mesh frequency coincides with a natural frequency. However, peculiar behavior occurs where resonances expected to be excited at a given speed are absent. This absence of particular modes is explained by analytical relationships that depend on the planetary configuration and mesh frequency harmonic. The torque sensitivity of the dynamic response is examined and compared to static analyses. Rotation mode response is shown to be more sensitive to input torque than translational mode response.

  11. Finite element nonlinear random response of beams to acoustic and thermal loads applied simultaneously

    NASA Astrophysics Data System (ADS)

    Chen, Ruixi; Mei, Chuh

    1993-04-01

    A finite element formulation combined with the equivalent linearization technique and the normal mode method is developed for the study of nonlinear random response of beams subjected to simultaneously applied acoustic and thermal loads. Examples include thermally buckled random response of simply supported beam, clamped-clamped beam and simply supported-clamped beam. To compare and validate the present formulation, results are compared with the solutions from existing sequential load method, and significant difference has been found. Results by classical continuum solution and the solution of Fokker-Planck-Kolmogorov equation are also derived and obtained for comparison.

  12. Simulation of the ultrasonic array response from real branched cracks using an efficient finite element method

    SciTech Connect

    Felice, Maria V.; Velichko, Alexander; Wilcox, Paul D.; Barden, Tim J.; Dunhill, Tony K.

    2014-02-18

    A hybrid model to simulate the ultrasonic array response from stress corrosion cracks is presented. These cracks are branched and difficult to detect so the model is required to enable optimization of an array design. An efficient frequency-domain finite element method is described and selected to simulate the ultrasonic scattering. Experimental validation results are presented, followed by an example of the simulated ultrasonic array response from a real stress corrosion crack whose geometry is obtained from an X-ray Computed Tomography image. A simulation-assisted array design methodology, which includes the model and use of real crack geometries, is proposed.

  13. Impulsivity and Psychoeducational Intervention in Hyperactive Children.

    ERIC Educational Resources Information Center

    Brown, Ronald T.

    1980-01-01

    Two psychoeducational procedures were investigated for their effects on impulsivity in 120 hyperactive children in two groups: those receiving stimulant drug therapy and those not receiving stimulant drug therapy. Results indicated that the use of psychoeducational treatment approaches are of value in altering the impulsive responses of…

  14. Effects of friction on the unconfined compressive response of articular cartilage: a finite element analysis.

    PubMed

    Spilker, R L; Suh, J K; Mow, V C

    1990-05-01

    A finite element analysis is used to study a previously unresolved issue of the effects of platen-specimen friction on the response of the unconfined compression test; effects of platen permeability are also determined. The finite element formulation is based on the linear KLM biphasic model for articular cartilage and other hydrated soft tissues. A Galerkin weighted residual method is applied to both the solid phase and the fluid phase, and the continuity equation for the intrinsically incompressible binary mixture is introduced via a penalty method. The solid phase displacements and fluid phase velocities are interpolated for each element in terms of unknown nodal values, producing a system of first order differential equations which are solved using a standard numerical finite difference technique. An axisymmetric element of quadrilateral cross-section is developed and applied to the mechanical test problem of a cylindrical specimen of soft tissue in unconfined compression. These studies show that interfacial friction plays a major role in the unconfined compression response of articular cartilage specimens with small thickness to diameter ratios. PMID:2345443

  15. An Unstructured Finite Volume Approach for Structural Dynamics in Response to Fluid Motions

    PubMed Central

    Xia, Guohua; Lin, Ching-Long

    2008-01-01

    A new cell-vortex unstructured finite volume method for structural dynamics is assessed for simulations of structural dynamics in response to fluid motions. A robust implicit dual-time stepping method is employed to obtain time accurate solutions. The resulting system of algebraic equations is matrix-free and allows solid elements to include structure thickness, inertia, and structural stresses for accurate predictions of structural responses and stress distributions. The method is coupled with a fluid dynamics solver for fluid-structure interaction, providing a viable alternative to the finite element method for structural dynamics calculations. A mesh sensitivity test indicates that the finite volume method is at least of second-order accuracy. The method is validated by the problem of vortex-induced vibration of an elastic plate with different initial conditions and material properties. The results are in good agreement with existing numerical data and analytical solutions. The method is then applied to simulate a channel flow with an elastic wall. The effects of wall inertia and structural stresses on the fluid flow are investigated. PMID:18496602

  16. An obesity-associated risk allele within the FTO gene affects human brain activity for areas important for emotion, impulse control and reward in response to food images.

    PubMed

    Wiemerslage, Lyle; Nilsson, Emil K; Solstrand Dahlberg, Linda; Ence-Eriksson, Fia; Castillo, Sandra; Larsen, Anna L; Bylund, Simon B A; Hogenkamp, Pleunie S; Olivo, Gaia; Bandstein, Marcus; Titova, Olga E; Larsson, Elna-Marie; Benedict, Christian; Brooks, Samantha J; Schiöth, Helgi B

    2016-05-01

    Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight-loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined how an obesity risk allele for the FTO gene affects brain activity in response to food images of different caloric content via functional magnetic resonance imaging (fMRI). Thirty participants homozygous for the rs9939609 single nucleotide polymorphism were shown images of low- or high-calorie food while brain activity was measured via fMRI. In a whole-brain analysis, we found that people with the FTO risk allele genotype (AA) had increased activity compared with the non-risk (TT) genotype in the posterior cingulate, cuneus, precuneus and putamen. Moreover, higher body mass index in the AA genotype was associated with reduced activity to food images in areas important for emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and lentiform nucleus). Lastly, we corroborate our findings with behavioural scales for the behavioural inhibition and activation systems. Our results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing. PMID:26797854

  17. Dynamic response of concrete beams externally reinforced with carbon fiber reinforced plastic (CFRP) subjected to impulsive loads

    SciTech Connect

    Jerome, D.M.; Ross, C.A.

    1996-12-31

    A series of 54 laboratory scale concrete beams 3 x 3 x 30 in. in size were impulsively loaded to failure in a drop weight impact machine. The beams had no internal reinforcement, but instead were externally reinforced on the bottom or tension side of the beams with 1, 2, and 3 ply AS4C/1919 graphite epoxy panels. In addition, several of the beams were also reinforced on the sides with 3 ply CFRP. The beams were simply supported in a drop weight machine and subjected to impact loads with amplitudes up to 10 kips, and durations less than 1 ms, at beam midspan. Measurements made during the loading event included beam total load, midspan displacement, as well as midspan strain at 3 locations in the beam`s cross-section. A high speed framing camera was also used to record the beam`s displacement-time behavior as well as to gain insight into the failure mechanisms. Beam midspan accelerations were determined by double differentiation of the displacement versus time data, and in turn, the beam`s inertial loads were calculated using the beam`s equivalent mass. Beam dynamic bending loads versus time were determined from the difference between the total load versus time and the inertial load versus time data. Bending loads versus displacements were also determined along with fracture energies. Failure to correct the loads for inertia will result in incorrect conclusions being drawn from the data, especially for bending resistance of brittle concrete test specimens. A comparison with quasistatic bending (fracture) energy data showed that the dynamic failure energy absorbed by the beams was always less than the static fracture energy, due to the brittle nature of concrete when impulsively loaded.

  18. Three-Dimensional Finite Element Ablative Thermal Response and Thermostructural Design of Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Braun, Robert D.

    2011-01-01

    A finite element ablation and thermal response program is presented for simulation of three-dimensional transient thermostructural analysis. The three-dimensional governing differential equations and finite element formulation are summarized. A novel probabilistic design methodology for thermal protection systems is presented. The design methodology is an eight step process beginning with a parameter sensitivity study and is followed by a deterministic analysis whereby an optimum design can determined. The design process concludes with a Monte Carlo simulation where the probabilities of exceeding design specifications are estimated. The design methodology is demonstrated by applying the methodology to the carbon phenolic compression pads of the Crew Exploration Vehicle. The maximum allowed values of bondline temperature and tensile stress are used as the design specifications in this study.

  19. Effect of randomness on multi-frequency aeroelastic responses resolved by Unsteady Adaptive Stochastic Finite Elements

    SciTech Connect

    Witteveen, Jeroen A.S. Bijl, Hester

    2009-10-01

    The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.

  20. Active muscle response using feedback control of a finite element human arm model.

    PubMed

    Östh, Jonas; Brolin, Karin; Happee, Riender

    2012-01-01

    Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM. PMID:21294008

  1. Multiple Modes of Impulsivity in Parkinson's Disease

    PubMed Central

    Nombela, Cristina; Rittman, Timothy; Robbins, Trevor W.; Rowe, James B.

    2014-01-01

    Cognitive problems are a major factor determining quality of life of patients with Parkinson's disease. These include deficits in inhibitory control, ranging from subclinical alterations in decision-making to severe impulse control disorders. Based on preclinical studies, we proposed that Parkinson's disease does not cause a unified disorder of inhibitory control, but rather a set of impulsivity factors with distinct psychological profiles, anatomy and pharmacology. We assessed a broad set of measures of the cognitive, behavioural and temperamental/trait aspects of impulsivity. Sixty adults, including 30 idiopathic Parkinson's disease patients (Hoehn and Yahr stage I–III) and 30 healthy controls, completed a neuropsychological battery, objective behavioural measures and self-report questionnaires. Univariate analyses of variance confirmed group differences in nine out of eleven metrics. We then used factor analysis (principal components method) to identify the structure of impulsivity in Parkinson's disease. Four principal factors were identified, consistent with four different mechanisms of impulsivity, explaining 60% of variance. The factors were related to (1) tests of response conflict, interference and self assessment of impulsive behaviours on the Barrett Impulsivity Scale, (2) tests of motor inhibitory control, and the self-report behavioural approach system, (3) time estimation and delay aversion, and (4) reflection in hypothetical scenarios including temporal discounting. The different test profiles of these four factors were consistent with human and comparative studies of the pharmacology and functional anatomy of impulsivity. Relationships between each factor and clinical and demographic features were examined by regression against factor loadings. Levodopa dose equivalent was associated only with factors (2) and (3). The results confirm that impulsivity is common in Parkinson's disease, even in the absence of impulse control disorders, and that it is

  2. Norepinephrine and impulsivity: Effects of acute yohimbine

    PubMed Central

    Swann, Alan C.; Lijffijt, Marijn; Lane, Scott D.; Cox, Blake; Steinberg, Joel L.; Moeller, F. Gerard

    2013-01-01

    Rationale Rapid-response impulsivity, characterized by inability to withhold response to a stimulus until it is adequately appraised, is associated with risky behavior and may be increased in a state-dependent manner by norepinephrine. Objective We assessed effects of yohimbine, which increases norepinephrine release by blocking alpha-2 noradrenergic receptors, on plasma catecholamine metabolites, blood pressure, subjective symptoms, and laboratory-measured rapid-response impulsivity. Methods Subjects were twenty-three healthy controls recruited from the community, with normal physical examination and ECG, and negative history for hypertension, cardiovascular illness, and Axis I or II disorder. Blood pressure, pulse, and behavioral measures were obtained before and periodically after 0.4 mg/kg oral yohimbine or placebo in a randomized, counterbalanced design. Metabolites of norepinephrine (3-methoxy-4-hydroxyphenylglycol, MHPG; vanillylmandelic acid, VMA) and dopamine (homovanillic acid, HVA) were measured by high pressure liquid chromatography with electrochemical detection. Rapid-response impulsivity was measured by commission errors and reaction times on the Immediate Memory Task (IMT), a continuous performance test designed to measure impulsivity and attention. Results Yohimbine increased plasma MHPG and VMA but not HVA. Yohimbine increased systolic and diastolic blood pressure and pulse rate. On the IMT, yohimbine increased impulsive errors and impulsive response bias and accelerated reaction times. Yohimbine-associated increase in plasma MHPG correlated with increased impulsive response rates. Time courses varied; effects on blood pressure generally preceded those on metabolites and test performance. Conclusions These effects are consistent with increased rapid-response impulsivity after pharmacological noradrenergic stimulation in healthy controls. Labile noradrenergic responses, or increased sensitivity to norepinephrine, may increase risk for impulsive

  3. Finite element model updating of a RC building considering seismic response trends

    NASA Astrophysics Data System (ADS)

    Butt, F.; Omenzetter, P.

    2013-04-01

    This paper presents a study on the seismic response trends evaluation and finite element model updating of a reinforced concrete building monitored for a period of more than two years. The three story reinforced concrete building is instrumented with five tri-axial accelerometers and a free-field tri-axial accelerometer. The time domain N4SID system identification technique was used to obtain the frequencies and damping ratios considering flexible base models taking into account the soil-structure-interaction using 50 earthquakes. Trends of variation of seismic response were developed by correlating the peak response acceleration at the roof level with identified frequencies and damping ratios. A general trend of decreasing frequencies was observed with increased level of shaking. To simulate the varying behavior of the building with response levels, a series of three dimensional finite element models were calibrated considering several points on the developed frequency-response amplitude trend lines as targets for updating. To incorporate real in-situ conditions, soil underneath the foundation and around the building was modeled using spring elements and nonstructural components (claddings and partitions) were also included. Sensitivity based model updating technique was applied taking into account concrete, soil and cladding stiffness as updating parameters. It was concluded from the investigation that knowledge of the variation of seismic response of buildings is necessary to better understand their behavior during earthquakes, and also that the participation of soil and non-structural components is significant towards the seismic response of the building and these should be considered in models to simulate the real behavior.

  4. Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Laub, Bernard; Braun, Robert D.

    2011-01-01

    The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.

  5. Linear optical response of finite systems using multishift linear system solvers

    SciTech Connect

    Hübener, Hannes; Giustino, Feliciano

    2014-07-28

    We discuss the application of multishift linear system solvers to linear-response time-dependent density functional theory. Using this technique the complete frequency-dependent electronic density response of finite systems to an external perturbation can be calculated at the cost of a single solution of a linear system via conjugate gradients. We show that multishift time-dependent density functional theory yields excitation energies and oscillator strengths in perfect agreement with the standard diagonalization of the response matrix (Casida's method), while being computationally advantageous. We present test calculations for benzene, porphin, and chlorophyll molecules. We argue that multishift solvers may find broad applicability in the context of excited-state calculations within density-functional theory and beyond.

  6. A finite element large deflection random response of a pipe containing fluid flow

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.

    1991-01-01

    A finite element approach is developed for beam type pipes undergoing large deflections subjected to random loadings. The influence of fluid velocity on the random response is investigated. The root-mean-square (rms) deflections and frequencies for different sound spectrum level values are determined for pipes with both ends either simply supported or clamped. The required number of modes to achieve accurate rms deflections is studied. The prediction of fatigue life is then based on the maximum rms stress. This analytical investigation will help to broaden the basic understanding of the role of fluid flow within structures subjected to random excitations.

  7. Genetics of impulsive behaviour

    PubMed Central

    Bevilacqua, Laura; Goldman, David

    2013-01-01

    Impulsivity, defined as the tendency to act without foresight, comprises a multitude of constructs and is associated with a variety of psychiatric disorders. Dissecting different aspects of impulsive behaviour and relating these to specific neurobiological circuits would improve our understanding of the etiology of complex behaviours for which impulsivity is key, and advance genetic studies in this behavioural domain. In this review, we will discuss the heritability of some impulsivity constructs and their possible use as endophenotypes (heritable, disease-associated intermediate phenotypes). Several functional genetic variants associated with impulsive behaviour have been identified by the candidate gene approach and re-sequencing, and whole genome strategies can be implemented for discovery of novel rare and common alleles influencing impulsivity. Via deep sequencing an uncommon HTR2B stop codon, common in one population, was discovered, with implications for understanding impulsive behaviour in both humans and rodents and for future gene discovery. PMID:23440466

  8. Acoustic radiation force impulse (ARFI) imaging: Characterizing the mechanical properties of tissues using their transient response to localized force

    NASA Astrophysics Data System (ADS)

    Nightingale, Kathryn R.; Palmeri, Mark L.; Congdon, Amy N.; Frinkely, Kristin D.; Trahey, Gregg E.

    2001-05-01

    Acoustic radiation force impulse (ARFI) imaging utilizes brief, high energy, focused acoustic pulses to generate radiation force in tissue, and conventional diagnostic ultrasound methods to detect the resulting tissue displacements in order to image the relative mechanical properties of tissue. The magnitude and spatial extent of the applied force is dependent upon the transmit beam parameters and the tissue attenuation. Forcing volumes are on the order of 5 mm3, pulse durations are less than 1 ms, and tissue displacements are typically several microns. Images of tissue displacement reflect local tissue stiffness, with softer tissues (e.g., fat) displacing farther than stiffer tissues (e.g., muscle). Parametric images of maximum displacement, time to peak displacement, and recovery time provide information about tissue material properties and structure. In both in vivo and ex vivo data, structures shown in matched B-mode images are in good agreement with those shown in ARFI images, with comparable resolution. Potential clinical applications under investigation include soft tissue lesion characterization, assessment of focal atherosclerosis, and imaging of thermal lesion formation during tissue ablation procedures. Results from ongoing studies will be presented. [Work supported by NIH Grant R01 EB002132-03, and the Whitaker Foundation. System support from Siemens Medical Solutions USA, Inc.

  9. Attributional and emotional responses to socially ambiguous cues: validation of a new assessment of social/emotional information processing in healthy adults and impulsive aggressive patients.

    PubMed

    Coccaro, Emil F; Noblett, Kurtis L; McCloskey, Michael S

    2009-07-01

    A self-report questionnaire was developed to assess attributional and emotional responses to aversive, but socially ambiguous, actions by one or more provocateurs. Multiple vignettes were developed and were followed by questions related to attribution of the provocateur's intent and the subject's emotional response to the provocateur's actions. The resulting social information processing-attribution and emotional response questionnaire (SIP-AEQ) was administered to 923 community-based adults (ages 18-45). Factor analysis revealed a three-factor structure reflecting hostile attribution, instrumental attribution, and benign attribution to provocation. A cross-validational study substantiated the factor structure. The modified 8-vignette SIP-AEQ demonstrated good internal reliability, and convergent and discriminant validity. The hostile attribution items showed a significant relationship with measures of emotion processing and responsiveness. Further analysis in a sample of impulsive aggressive patients and healthy control subjects noted similar psychometric properties and good separation between groups. Implications regarding the cognitive and emotional correlates of aggression are discussed. PMID:19345371

  10. Impulsive action: emotional impulses and their control

    PubMed Central

    Frijda, Nico H.; Ridderinkhof, K. Richard; Rietveld, Erik

    2014-01-01

    This paper presents a novel theoretical view on impulsive action, integrating thus far separate perspectives on non-reflective action, motivation, emotion regulation, and impulse control. We frame impulsive action in terms of directedness of the individual organism toward, away, or against other givens – toward future states and away from one’s present state. First, appraisal of a perceived or thought-of event or object on occasion, rapidly and without premonition or conscious deliberation, triggers a motive to modify one’s relation to that event or object. Situational specifics of the event as perceived and appraised motivate and guide selection of readiness for a particular kind of purposive action. Second, perception of complex situations can give rise to multiple appraisals, multiple motives, and multiple simultaneous changes in action readiness. Multiple states of action readiness may interact in generating action, by reinforcing or attenuating each other, thereby yielding impulse control. We show how emotion control can itself result from a motive state or state of action readiness. Our view links impulsive action mechanistically to states of action readiness, which is the central feature of what distinguishes one kind of emotion from another. It thus provides a novel theoretical perspective to the somewhat fragmented literature on impulsive action. PMID:24917835

  11. Electronic chemical response indexes at finite temperature in the canonical ensemble

    SciTech Connect

    Franco-Pérez, Marco E-mail: jlgm@xanum.uam.mx Gázquez, José L. E-mail: jlgm@xanum.uam.mx; Vela, Alberto E-mail: jlgm@xanum.uam.mx

    2015-07-14

    Assuming that the electronic energy is given by a smooth function of the number of electrons and within the extension of density functional theory to finite temperature, the first and second order chemical reactivity response functions of the Helmholtz free energy with respect to the temperature, the number of electrons, and the external potential are derived. It is found that in all cases related to the first or second derivatives with respect to the number of electrons or the external potential, there is a term given by the average of the corresponding derivative of the electronic energy of each state (ground and excited). For the second derivatives, including those related with the temperature, there is a thermal fluctuation contribution that is zero at zero temperature. Thus, all expressions reduce correctly to their corresponding chemical reactivity expressions at zero temperature and show that, at room temperature, the corrections are very small. When the assumption that the electronic energy is given by a smooth function of the number of electrons is replaced by the straight lines behavior connecting integer values, as required by the ensemble theorem, one needs to introduce directional derivatives in most cases, so that the temperature dependent expressions reduce correctly to their zero temperature counterparts. However, the main result holds, namely, at finite temperature the thermal corrections to the chemical reactivity response functions are very small. Consequently, the present work validates the usage of reactivity indexes calculated at zero temperature to infer chemical behavior at room and even higher temperatures.

  12. Fast quasi-explicit finite difference simulation of electrochemical responses initiated by a discontinuous perturbation

    SciTech Connect

    Feldberg, S.W.

    1991-01-01

    Commencing in the early 60s the application of explicit finite difference (EFD) methods to the analysis of electrochemical problems paralleled the development and availability of fast, main-frame, digital computers. The appeal of the EFD method has been its simplicity of principle and of application. EFD algorithms, however, are notoriously inefficient for solving certain types of stiff problems (e.g., problems involving a wide dynamic range of time constants). In this presentation the author discusses the principles and some applications of a fast quasi-explicit finite difference (FQEFD) method in which the computational speed is enhanced, by many orders of magnitude in some cases, without compromising the user friendliness which has popularized the EFD method. The method is designed to treat electrochemical responses to a discontinuous (e.g, chronoamperometric) perturbation and utilizes the DuFort-Frankel algorithm (1) with exponentially expanding space (2) and exponentially expanding time grids. (A previously published version of the FQEFD method (3,4) was designed to treat electrochemical responses to a continuous (e.g., cyclic voltammetric) perturbation and utilizes the DuFort-Frankel (3) algorithm in conjunction with an exponentially expanding space grid and a uniform time grid. The development of the basic FQEFD equations was presented there). The protocol for introducing the expanding time grid is straightforward and is discussed. 7 refs., 1 fig. 1 tab.

  13. Electronic chemical response indexes at finite temperature in the canonical ensemble

    NASA Astrophysics Data System (ADS)

    Franco-Pérez, Marco; Gázquez, José L.; Vela, Alberto

    2015-07-01

    Assuming that the electronic energy is given by a smooth function of the number of electrons and within the extension of density functional theory to finite temperature, the first and second order chemical reactivity response functions of the Helmholtz free energy with respect to the temperature, the number of electrons, and the external potential are derived. It is found that in all cases related to the first or second derivatives with respect to the number of electrons or the external potential, there is a term given by the average of the corresponding derivative of the electronic energy of each state (ground and excited). For the second derivatives, including those related with the temperature, there is a thermal fluctuation contribution that is zero at zero temperature. Thus, all expressions reduce correctly to their corresponding chemical reactivity expressions at zero temperature and show that, at room temperature, the corrections are very small. When the assumption that the electronic energy is given by a smooth function of the number of electrons is replaced by the straight lines behavior connecting integer values, as required by the ensemble theorem, one needs to introduce directional derivatives in most cases, so that the temperature dependent expressions reduce correctly to their zero temperature counterparts. However, the main result holds, namely, at finite temperature the thermal corrections to the chemical reactivity response functions are very small. Consequently, the present work validates the usage of reactivity indexes calculated at zero temperature to infer chemical behavior at room and even higher temperatures.

  14. Blast response of curved carbon/epoxy composite panels: Experimental study and finite-element analysis

    NASA Astrophysics Data System (ADS)

    Phadnis, V. A.; Kumar, P.; Shukla, A.; Roy, A.; Silberschmidt, V. V.

    2013-07-01

    Experimental and numerical studies were conducted to understand the effect of plate curvature on blast response of carbon/epoxy composite panels. A shock-tube system was utilized to impart controlled shock loading to quasi-isotropic composite panels with differing range of radii of curvatures. A 3D Digital Image Correlation (DIC) technique coupled with high-speed photography was used to obtain out-of-plane deflection and velocity, as well as in-plane strain on the back face of the panels. Macroscopic post-mortem analysis was performed to compare yielding and deformation in these panels. A dynamic computational simulation that integrates fluid-structure interaction was conducted to evaluate the panel response in general purpose finite-element software ABAQUS/Explicit. The obtained numerical results were compared to the experimental data and showed a good correlation.

  15. Relations between Reflection-Impulsivity and Behavioral Impulsivity in Preschool Children.

    ERIC Educational Resources Information Center

    Victor, James B.; And Others

    1985-01-01

    Reflection-impulsivity was studied in preschoolers to clarify underlying behavioral dimensions, sex differences, and contribution of activity level, mental age, and socioeconomic status. Analyses replicate a previous finding that dimension of behavioral impulsivity characterizes children with long response latency and high error scores, not…

  16. An implicit three-dimensional model for describing the inelastic response of solids undergoing finite deformation

    NASA Astrophysics Data System (ADS)

    Rajagopal, K. R.; Srinivasa, A. R.

    2016-08-01

    The aim of this paper is to develop a new unified class of 3D nonlinear anisotropic finite deformation inelasticity model that (1) exhibits rate-independent or dependent hysteretic response (i.e., response wherein reversal of the external stimuli does not cause reversal of the path in state space) with or without yield surfaces. The hysteresis persists with quasistatic loading. (2) Encompasses a wide range of different types of inelasticity models (such as Mullins effect in rubber, rock and soil mechanics, traditional metal plasticity, hysteretic behavior of shape memory materials) into a simple unified framework that is relatively easy to implement in computational schemes and (3) does not require any a priori particular notion of plastic strain or yield function. The core idea behind the approach is the development of an system of implicit rate equations that allow for the continuity of the response but with different rates along different directions. The theory, which is in purely mechanical setting, subsumes and generalizes many commonly used approaches for hypoelasticity and rate-independent plasticity. We illustrate its capability by modeling the Mullins effect which is the inelastic behavior of certain rubbery materials. We are able to simulate the entire cyclic response without the use of additional internal variables, i.e., the entire response is modeled by using an implicit function of stress and strain measures and their rates.

  17. A finite element model of region-specific response for mild diffuse brain injury.

    PubMed

    Fijalkowski, Ronald J; Yoganandan, Narayan; Zhang, Jiangyue; Pintar, Frank A

    2009-11-01

    It is well known that rotational loading is responsible for a spectrum of diffuse brain injuries spanning from concussion to diffuse axonal trauma. Many experimental studies have been performed to understand the pathological and biomechanical factors associated with diffuse brain injuries. Finite element models have also been developed to correlate experimental findings with intrinsic variables such as strain. However, a paucity of studies exist examining the combined role of the strain-time parameter. Consequently, using the principles of finite element analysis, the present study introduced the concept of sustained maximum principal strain (SMPS) criterion and explored its potential applicability to diffuse brain injury. An algorithm was developed to determine if the principal strain in a finite element of the brain exceeded a specified magnitude over a specific time interval. The anatomical and geometrical details of the rat for the two-dimensional model were obtained from published data. Using material properties from literature and iterative techniques, the model was validated under three distinct rotational loading conditions indicative of non-injury, concussion, and diffuse axonal trauma. Validation results produced a set of material properties to define the model and were deemed appropriate to examine the role of sustained strain as an indicator of the mechanics of mild diffuse brain injury at the local level. Using a separate set of histological data obtained from graded mild diffuse brain injury experimental studies in rats, different formulations of SMPS criterion were evaluated. For the hippocampus and parietal cortex regions, 4-4 SMPS criterion was found to most closely match with the pattern of histological results. This was further verified by correlating the fractional areas to the time of unconsciousness for each animal group. Although not fully conclusive, these results are valuable in the understanding of diffuse brain injury pathologies

  18. Using cross correlations of turbulent flow-induced ambient vibrations to estimate the structural impulse response. Application to structural health monitoring.

    PubMed

    Sabra, Karim G; Winkel, Eric S; Bourgoyne, Dwayne A; Elbing, Brian R; Ceccio, Steve L; Perlin, Marc; Dowling, David R

    2007-04-01

    It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz. PMID:17471715

  19. Application of finite element, global polynomial, and kriging response surfaces in Progressive Lattice Sampling designs

    SciTech Connect

    ROMERO,VICENTE J.; SWILER,LAURA PAINTON; GIUNTA,ANTHONY A.

    2000-04-25

    This paper examines the modeling accuracy of finite element interpolation, kriging, and polynomial regression used in conjunction with the Progressive Lattice Sampling (PLS) incremental design-of-experiments approach. PLS is a paradigm for sampling a deterministic hypercubic parameter space by placing and incrementally adding samples in a manner intended to maximally reduce lack of knowledge in the parameter space. When combined with suitable interpolation methods, PLS is a formulation for progressive construction of response surface approximations (RSA) in which the RSA are efficiently upgradable, and upon upgrading, offer convergence information essential in estimating error introduced by the use of RSA in the problem. The three interpolation methods tried here are examined for performance in replicating an analytic test function as measured by several different indicators. The process described here provides a framework for future studies using other interpolation schemes, test functions, and measures of approximation quality.

  20. Advantage of impulse oscillometry over spirometry to diagnose chronic obstructive pulmonary disease and monitor pulmonary responses to bronchodilators: An observational study

    PubMed Central

    Saadeh, Charles; Cross, Blake; Gaylor, Michael; Griffith, Melissa

    2015-01-01

    Objectives: This retrospective study was a comparative analysis of sensitivity of impulse oscillometry and spirometry techniques for use in a mixed chronic obstructive pulmonary disease group for assessing disease severity and inhalation therapy. Methods: A total of 30 patients with mild-to-moderate chronic obstructive pulmonary disease were monitored by impulse oscillometry, followed by spirometry. Lung function was measured at baseline after bronchodilation and at follow-up (3–18 months). The impulse oscillometry parameters were resistance in the small and large airways at 5 Hz (R5), resistance in the large airways at 15 Hz (R15), and lung reactance (area under the curve X; AX). Results: After the bronchodilator therapy, forced expiratory volume in 1 second (FEV1) readings evaluated by spirometry were unaffected at baseline and at follow-up, while impulse oscillometry detected an immediate improvement in lung function, in terms of AX (p = 0.043). All impulse oscillometry parameters significantly improved at follow-up, with a decrease in AX by 37% (p = 0.0008), R5 by 20% (p = 0.0011), and R15 by 12% (p = 0.0097). Discussion: Impulse oscillometry parameters demonstrated greater sensitivity compared with spirometry for monitoring reversibility of airway obstruction and the effect of maintenance therapy. Impulse oscillometry may facilitate early treatment dose optimization and personalized medicine for chronic obstructive pulmonary disease patients. PMID:26770777

  1. Dealing with Impulsivity.

    ERIC Educational Resources Information Center

    Neidhardt, Janet

    1987-01-01

    A mother recounts her neurologically impaired son's struggles and progress in combating impulsivity in his work and social habits. Now 23 years old, employed full-time, and off medication, the son is still impulsive, has problems with social skills, but has improved his self-image through a photography hobby. (CB)

  2. Impulsiveness in professional fighters.

    PubMed

    Banks, Sarah J; Mayer, Brittany; Obuchowski, Nancy; Shin, Wanyong; Lowe, Mark; Phillips, Michael; Modic, Michael; Bernick, Charles

    2014-01-01

    Sports involving repeated head trauma are associated with risk of neurodegenerative disorders such as chronic traumatic encephalopathy (CTE). Among the behavioral manifestations of CTE is increased impulsiveness. Here, the authors investigate the relationship between impulsiveness and exposure to head trauma in a large group of active professional fighters. Fighters tended to report less impulsiveness than did non-fighting control respondents. Overall, greater fight exposure was associated with higher levels of a specific form of impulsiveness, although there were differences between mixed martial arts fighters and boxers. Fight exposure was associated with reduction in volume of certain brain structures, and these changes were also associated with impulsiveness patterns. Longitudinal studies of professional fighters are important to understand the risk for neuropsychiatric problems. PMID:24515676

  3. Response Operators for Markov Processes in a Finite State Space: Radius of Convergence and Link to the Response Theory for Axiom A Systems

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio

    2016-01-01

    Using straightforward linear algebra we derive response operators describing the impact of small perturbations to finite state Markov processes. The results can be used for studying empirically constructed—e.g. from observations or through coarse graining of model simulations—finite state approximation of statistical mechanical systems. Recent results concerning the convergence of the statistical properties of finite state Markov approximation of the full asymptotic dynamics on the SRB measure in the limit of finer and finer partitions of the phase space are suggestive of some degree of robustness of the obtained results in the case of Axiom A system. Our findings give closed formulas for the linear and nonlinear response theory at all orders of perturbation and provide matrix expressions that can be directly implemented in any coding language, plus providing bounds on the radius of convergence of the perturbative theory. In particular, we relate the convergence of the response theory to the rate of mixing of the unperturbed system. One can use the formulas derived for finite state Markov processes to recover previous findings obtained on the response of continuous time Axiom A dynamical systems to perturbations, by considering the generator of time evolution for the measure and for the observables. A very basic, low-tech, and computationally cheap analysis of the response of the Lorenz '63 model to perturbations provides rather encouraging results regarding the possibility of using the approximate representation given by finite state Markov processes to compute the system's response.

  4. Specific Impulse and Mass Flow Rate Error

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.

    2005-01-01

    Specific impulse is defined in words in many ways. Very early in any text on rocket propulsion a phrase similar to .specific impulse is the thrust force per unit propellant weight flow per second. will be found.(2) It is only after seeing the mathematics written down does the definition mean something physically to scientists and engineers responsible for either measuring it or using someone.s value for it.

  5. Barratt Impulsivity and Neural Regulation of Physiological Arousal

    PubMed Central

    Zhang, Sheng; Hu, Sien; Hu, Jianping; Wu, Po-Lun; Chao, Herta H.; Li, Chiang-shan R.

    2015-01-01

    Background Theories of personality have posited an increased arousal response to external stimulation in impulsive individuals. However, there is a dearth of studies addressing the neural basis of this association. Methods We recorded skin conductance in 26 individuals who were assessed with Barratt Impulsivity Scale (BIS-11) and performed a stop signal task during functional magnetic resonance imaging. Imaging data were processed and modeled with Statistical Parametric Mapping. We used linear regressions to examine correlations between impulsivity and skin conductance response (SCR) to salient events, identify the neural substrates of arousal regulation, and examine the relationship between the regulatory mechanism and impulsivity. Results Across subjects, higher impulsivity is associated with greater SCR to stop trials. Activity of the ventromedial prefrontal cortex (vmPFC) negatively correlated to and Granger caused skin conductance time course. Furthermore, higher impulsivity is associated with a lesser strength of Granger causality of vmPFC activity on skin conductance, consistent with diminished control of physiological arousal to external stimulation. When men (n = 14) and women (n = 12) were examined separately, however, there was evidence suggesting association between impulsivity and vmPFC regulation of arousal only in women. Conclusions Together, these findings confirmed the link between Barratt impulsivity and heightened arousal to salient stimuli in both genders and suggested the neural bases of altered regulation of arousal in impulsive women. More research is needed to explore the neural processes of arousal regulation in impulsive individuals and in clinical conditions that implicate poor impulse control. PMID:26079873

  6. NIKE3D: an implicit, finite-deformation, finite element code for analyzing the static and dynamic response of three-dimensional solids

    SciTech Connect

    Hallquist, J.O.

    1981-01-01

    A user's manual is provided for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the large deformation static and dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node constant pressure solid elements. Bandwidth minimization is optional. Post-processors for NIKE3D include GRAPE for plotting deformed shapes and stress contours and DYNAP for plotting time histories.

  7. Aperture size, materiality of the secondary room and listener location: Impact on the simulated impulse response of a coupled-volume concert hall

    NASA Astrophysics Data System (ADS)

    Ermann, Michael; Johnson, Marty E.; Harrison, Byron W.

    2003-04-01

    By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer and distinct reverberant quality for their musicians and listeners. For this study, a coupled-volume concert hall based on an existing performing arts center is conceived and computer-modeled. It has a fixed geometric volume, form and primary-room sound absorption. Ray-tracing software simulates impulse responses, varying both aperture size and secondary-room sound absorption level, across a grid of receiver (listener) locations. The results are compared with statistical analysis that suggests a highly sensitive relationship between the double-sloped condition and the architecture of the space. This line of study aims to quantitatively and spatially correlate the double-sloped condition with (1) aperture size exposing the chamber, (2) sound absorptance in the coupled volume, and (3) listener location.

  8. Aperture size, materiality of the secondary room, and listener location: Impact on the simulated impulse response of a coupled-volume concert hall

    NASA Astrophysics Data System (ADS)

    Ermann, Michael; Johnson, Marty E.; Harrison, Byron W.

    2002-11-01

    By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer, and distinct reverberant quality for their musicians and listeners. For this study, a coupled-volume concert hall based on an existing performing arts center is conceived and computer modeled. It has a fixed geometric volume, form, and primary-room sound absorption. Ray-tracing software simulates impulse responses, varying both aperture size and secondary-room sound-absorption level, across a grid of receiver (listener) locations. The results are compared with statistical analysis that suggests a highly sensitive relationship between the double-sloped condition and the architecture of the space. This line of study aims to quantitatively and spatially correlate the double-sloped condition with (1) aperture size exposing the chamber, (2) sound absorptance in the coupled volume, and (3) listener location.

  9. Altered profiles of spontaneous novelty seeking, impulsive behavior, and response to D-amphetamine in rats perinatally exposed to bisphenol A.

    PubMed Central

    Adriani, Walter; Seta, Daniele Della; Dessì-Fulgheri, Francesco; Farabollini, Francesca; Laviola, Giovanni

    2003-01-01

    Bisphenol A (BPA) is an environmental estrogen with potentially averse effects on public health. We studied the long-term effects of perinatal exposure to BPA on later behavior in adult rats of both sexes. BPA or vehicle was administered orally to mother rats from mating to pups' weaning, at a concentration (0.040 mg/kg) within the range of human exposure. The offspring of both sexes were tested at adolescence (postnatal days 35-45) for novelty preference (experiment 1). After a 3-day familiarization to one side of a two-chamber apparatus, on day 4 rats were allowed to freely explore the whole apparatus. BPA-exposed females spent significantly less time than did controls in exploration of the novel side (i.e., increased neophobia), whereas no effect was found in the male group. At adulthood, the same animals were food deprived and tested for profiles of impulsive behavior (experiment 2), in operant chambers provided with two nose-poking holes (delivering either five or one food pellet). After the establishment of a baseline preference for the large reinforcer, a delay was introduced before the delivery of the five food pellets, which was progressively increased each day (10, 20, 30, 45, 60, 80, 100 sec). As expected, all animals exhibited a progressive shift toward the immediate but smaller reinforcer. A reduced level of impulsive behavior (i.e., a shift to the right in the intolerance-delay curve) was evidenced in BPA-treated rats. The frequency of inadequate responding (during the length of the delay) also provided a measure of restless behavior. Interestingly, the profile of BPA-treated males was feminized, strongly resembling that of control females. Animals were then tested (experiment 3) for the response to an amphetamine challenge (1 mg/kg, subcutaneously). The drug-induced increment activity was significantly less marked in BPA-treated male rats compared with controls. These findings provide clear indirect evidence of long-term alterations in brain

  10. Parametric Comparisons of Intracranial Mechanical Responses from Three Validated Finite Element Models of the Human Head

    PubMed Central

    Ji, Songbai; Ghadyani, Hamidreza; Bolander, Richard P.; Beckwith, Jonathan G.; Ford, James C.; Mcallister, Thomas W.; Flashman, Laura A.; Paulsen, Keith D.; Ernstrom, Karin; Jain, Sonia; Raman, Rema; Zhang, Liying; Greenwald, Richard M.

    2015-01-01

    A number of human head finite element (FE) models have been developed from different research groups over the years to study the mechanisms of traumatic brain injury. These models can vary substantially in model features and parameters, making it important to evaluate whether simulation results from one model are readily comparable with another, and whether response-based injury thresholds established from a specific model can be generalized when a different model is employed. The purpose of this study is to parametrically compare regional brain mechanical responses from three validated head FE models to test the hypothesis that regional brain responses are dependent on the specific head model employed as well as the region of interest (ROI). The Dartmouth Scaled and Normalized Model (DSNM), the Simulated Injury Monitor (SIMon), and the Wayne State University Head Injury Model (WSUHIM) were selected for comparisons. For model input, 144 unique kinematic conditions were created to represent the range of head impacts sustained by male collegiate hockey players during play. These impacts encompass the 50th, 95th, and 99th percentile peak linear and rotational accelerations at 16 impact locations around the head. Five mechanical variables (strain, strain rate, strain × strain rate, stress, and pressure) in seven ROIs reported from the FE models were compared using Generalized Estimating Equation statistical models. Highly significant differences existed among FE models for nearly all output variables and ROIs. The WSUHIM produced substantially higher peak values for almost all output variables regardless of the ROI compared to the DSNM and SIMon models (p < 0.05). DSNM also produced significantly different stress and pressure compared with SIMon for all ROIs (p < 0.05), but such differences were not consistent across ROIs for other variables. Regardless of FE model, most output variables were highly correlated with linear and rotational peak accelerations. The

  11. Finite-Element Modelling of the Response of the Gerbil Middle Ear to Sound.

    PubMed

    Maftoon, Nima; Funnell, W Robert J; Daniel, Sam J; Decraemer, Willem F

    2015-10-01

    We present a finite-element model of the gerbil middle ear that, using a set of baseline parameters based primarily on a priori estimates from the literature, generates responses that are comparable with responses we measured in vivo using multi-point vibrometry and with those measured by other groups. We investigated the similarity of numerous features (umbo, pars-flaccida and pars-tensa displacement magnitudes, the resonance frequency and break-up frequency, etc.) in the experimental responses with corresponding ones in the model responses, as opposed to simply computing frequency-by-frequency differences between experimental and model responses. The umbo response of the model is within the range of variability seen in the experimental data in terms of the low-frequency (i.e., well below the middle-ear resonance) magnitude and phase, the main resonance frequency and magnitude, and the roll-off slope and irregularities in the response above the resonance frequency, but is somewhat high for frequencies above the resonance frequency. At low frequencies, the ossicular axis of rotation of the model appears to correspond to the anatomical axis but the behaviour is more complex at high frequencies (i.e., above the pars-tensa break-up). The behaviour of the pars tensa in the model is similar to what is observed experimentally in terms of magnitudes, phases, the break-up frequency of the spatial vibration pattern, and the bandwidths of the high-frequency response features. A sensitivity analysis showed that the parameters that have the strongest effects on the model results are the Young's modulus, thickness and density of the pars tensa; the Young's modulus of the stapedial annular ligament; and the Young's modulus and density of the malleus. Displacements of the tympanic membrane and manubrium and the low-frequency displacement of the stapes did not show large changes when the material properties of the incus, stapes, incudomallear joint, incudostapedial joint, and

  12. Finite element modeling of human brain response to football helmet impacts.

    PubMed

    Darling, T; Muthuswamy, J; Rajan, S D

    2016-10-01

    The football helmet is used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. While the current helmet design methodology may be adequate for reducing linear acceleration of the head and minimizing TBI, it however has had less effect in minimizing mTBI. The objectives of this study are (a) to develop and validate a coupled finite element (FE) model of a football helmet and the human body, and (b) to assess responses of different regions of the brain to two different impact conditions - frontal oblique and crown impact conditions. The FE helmet model was validated using experimental results of drop tests. Subsequently, the integrated helmet-human body FE model was used to assess the responses of different regions of the brain to impact loads. Strain-rate, strain, and stress measures in the corpus callosum, midbrain, and brain stem were assessed. Results show that maximum strain-rates of 27 and 19 s(-1) are observed in the brain-stem and mid-brain, respectively. This could potentially lead to axonal injuries and neuronal cell death during crown impact conditions. The developed experimental-numerical framework can be used in the study of other helmet-related impact conditions. PMID:26867124

  13. Biomechanical response of the pubic symphysis in lateral pelvic impacts: a finite element study.

    PubMed

    Li, Zuoping; Kim, Jong-Eun; Davidson, James S; Etheridge, Brandon S; Alonso, Jorge E; Eberhardt, Alan W

    2007-01-01

    Automotive side impacts are a leading cause of injuries to the pubic symphysis, yet the mechanisms of those injuries have not been clearly established. Previous mechanical testing of isolated symphyses revealed increased joint laxity following drop tower lateral impacts to isolated pelvic bone structures, which suggested that the joints were damaged by excessive stresses and/or deformations during the impact tests. In the present study, a finite element (FE) model of a female pelvis including a previously validated symphysis sub-model was developed from computed tomography data. The full pelvis model was validated against measured force-time impact responses from drop tower experiments and then used to study the biomechanical response of the symphysis during the experimental impacts. The FE models predicted that the joint underwent a combination of lateral compression, posterior bending, anterior/posterior and superior/inferior shear that exceeded normal physiological levels prior to the onset of bony fractures. Large strains occurred concurrently within the pubic ligaments. Removal of the contralateral constraints to better approximate the boundary conditions of a seated motor vehicle occupant reduced cortical stresses and deformations of the pubic symphysis; however, ligament strains, compressive and shear stresses in the interpubic disc, as well as posterior bending of the joint structure remained as potential sources of joint damage during automotive side impacts. PMID:17399721

  14. Prediction of the mechanical response of canine humerus to three-point bending using subject-specific finite element modelling.

    PubMed

    Laurent, Cédric P; Böhme, Béatrice; Mengoni, Marlène; d'Otreppe, Vinciane; Balligand, Marc; Ponthot, Jean-Philippe

    2016-07-01

    Subject-specific finite element models could improve decision making in canine long-bone fracture repair. However, it preliminary requires that finite element models predicting the mechanical response of canine long bone are proposed and validated. We present here a combined experimental-numerical approach to test the ability of subject-specific finite element models to predict the bending response of seven pairs of canine humeri directly from medical images. Our results show that bending stiffness and yield load are predicted with a mean absolute error of 10.1% (±5.2%) for the 14 samples. This study constitutes a basis for the forthcoming optimization of canine long-bone fracture repair. PMID:27129383

  15. Short Time Impulse Response Function (STIRF) for automatic evaluation of the variation of the dynamic parameters of reinforced concrete framed structures during strong earthquakes.

    NASA Astrophysics Data System (ADS)

    Carlo Ponzo, Felice; Ditommaso, Rocco

    2015-04-01

    This study presents an innovative strategy for automatic evaluation of the variable fundamental frequency and related damping factor of nonlinear structures during strong motion phases. Most of methods for damage detection are based on the assessment of the variations of the dynamic parameters characterizing the monitored structure. A crucial aspect of these methods is the automatic and accurate estimation of both structural eigen-frequencies and related damping factors also during the nonlinear behaviour. A new method, named STIRF (Short-Time Impulse Response Function - STIRF), based on the nonlinear interferometric analysis combined with the Fourier Transform (FT) here is proposed in order to allow scientists and engineers to characterize frequencies and damping variations of a monitored structure. The STIRF approach helps to overcome some limitation derived from the use of techniques based on simple Fourier Transform. These latter techniques provide good results when the response of the monitored system is stationary, but fails when the system exhibits a non-stationary, time-varying behaviour: even non-stationary input, soil-foundation and/or adjacent structures interaction phenomena can show the inadequacy of classic techniques to analysing the nonlinear and/or non-stationary behaviour of structures. In fact, using this kind of approach it is possible to improve some of the existing methods for the automatic damage detection providing stable results also during the strong motion phase. Results are consistent with those expected if compared with other techniques. The main advantage derived from the use of the proposed approach (STIRF) for Structural Health Monitoring is based on the simplicity of the interpretation of the nonlinear variations of the fundamental frequency and the related equivalent viscous damping factor. The proposed methodology has been tested on both numerical and experimental models also using data retrieved from shaking table tests. Based on

  16. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation

    SciTech Connect

    Shin, Taeho; Teitelbaum, Samuel W.; Wolfson, Johanna; Nelson, Keith A.; Kandyla, Maria

    2015-11-21

    Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation.

  17. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation.

    PubMed

    Shin, Taeho; Teitelbaum, Samuel W; Wolfson, Johanna; Kandyla, Maria; Nelson, Keith A

    2015-11-21

    Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation. PMID:26590551

  18. Finite element prediction of seismic response modification of monumental structures utilizing base isolation

    NASA Astrophysics Data System (ADS)

    Spanos, Konstantinos; Anifantis, Nikolaos; Kakavas, Panayiotis

    2015-05-01

    The analysis of the mechanical behavior of ancient structures is an essential engineering task concerning the preservation of architectural heritage. As many monuments of classical antiquity are located in regions of earthquake activity, the safety assessment of these structures, as well as the selection of possible restoration interventions, requires numerical models capable of correctly representing their seismic response. The work presented herein was part of a research project in which a better understanding of the dynamics of classical column-architrave structures was sought by means of numerical techniques. In this paper, the seismic behavior of ancient monumental structures with multi-drum classical columns is investigated. In particular, the column-architrave classical structure under strong ground excitations was represented by a finite element method. This approach simulates the individual rock blocks as distinct rigid blocks interconnected with slidelines and incorporates seismic isolation dampers under the basement of the structure. Sliding and rocking motions of individual stone blocks and drums are modeled utilizing non-linear frictional contact conditions. The seismic isolation is modeled through the application of pad bearings under the basement of the structure. These pads are interpreted by appropriate rubber and steel layers. Time domain analyses were performed, considering the geometric and material non-linear behavior at the joints and the characteristics of pad bearings. The deformation and failure modes of drum columns subject to seismic excitations of various types and intensities were analyzed. The adverse influence of drum imperfections on structural safety was also examined.

  19. A Finite Element Study of the Dynamic Response of Brain Based on Two Parasagittal Slice Models

    PubMed Central

    Song, Xuewei; Wang, Cong; Hu, Hao; Huang, Tianlun; Jin, Jingxu

    2015-01-01

    The objective of this study is to investigate the influence of gyri and sulci on the response of human head under transient loading. To this end, two detailed parasagittal slice models with and without gyri and sulci have been developed. The models comprised not only cerebrum and skull but also cerebellum, brain stem, CSF, and corpus callosum. In addition, white and gray matters were separated. The material properties were adopted from the literature and assigned to different parts of the models. Nahum's and Trosseille's experiments reported in relevant literature were simulated and the simulation results were compared with the test data. The results show that there is no evident difference in terms of intracranial pressure between the models with and without gyri and sulci under simulated conditions. The equivalent stress below gyri and sulci in the model with gyri and sulci is slightly higher than that in the counterpart model without gyri and sulci. The maximum principle strain in brain tissue is lower in the model with gyri and sulci. The stress and strain distributions are changed due to the existence of gyri and sulci. These findings highlight the necessity to include gyri and sulci in the finite element head modeling. PMID:26495034

  20. Laser thermal response of a finite slab as a function of the laser pulse parameters

    NASA Astrophysics Data System (ADS)

    El-adawi, M. K.; Shalaby, S. A.; Mostafa, S. S.; Kotkata, M. F.

    2007-03-01

    This paper deals with the problem of heating a finite slab using laser radiation in relation to the parameters characterizing the laser pulse, namely: qmax(W/m 2), the maximum laser power density, t0 the time interval required to reach q and t, the pulse time duration. The pulse shape q(t) is suggested in the form: q(t)=βq(t/t)(1-(t/t))exp-B(t-t0/t), where β and B are parameters. Fitting with published experimental pulse [Ready JF. Effects due to absorption of laser radiation. J Appl Phys 1965;36:462-68] is made. Fourier series expansion technique is considered to solve the problem. The critical time required to initiate melting t is estimated for four metallic elements and five semiconductors, namely: Al, Cu, Ag, Au (aluminum, copper, silver, and gold), cadmium sulfide, germanium, silicon, alpha beryllium oxide, and silicon carbide. Five pulses with different characteristic parameters are considered. Computations revealed that the thermal response of the targets is highly affected by q and t, while the pulse time duration is less effective in determining the value of t. Moreover, it is revealed that the relation between t and the melting temperature for the same laser pulse is nonlinear for the considered targets under the indicated conditions.

  1. Impulsivity and methamphetamine use.

    PubMed

    Semple, Shirley J; Zians, Jim; Grant, Igor; Patterson, Thomas L

    2005-09-01

    The purpose of this study was to explore the relationship between methamphetamine (meth) use and impulsivity in a sample of 385 HIV-negative heterosexually identified meth users. Participants who scored highest on a self-report measure of impulsivity were compared with those who scored lower in terms of background characteristics, meth use patterns, use of alcohol and other illicit drugs, sexual risk behavior, and psychiatric health variables. Methamphetamine users in the high impulsivity group were younger, less educated, used larger quantities of meth, were more likely to be binge users, had a larger number of sexual partners, engaged in more unprotected vaginal and oral sex, and scored higher on the Beck Depression Inventory as compared with those in the low impulsivity group. In a logistic regression analysis, Beck depression was the factor that best distinguished between meth users who scored high and those who scored low on impulsivity. Neurophysiological pathways that may underlie the relationship between impulsivity and meth use are discussed. PMID:16135337

  2. Finite Element Analysis of the Random Response Suppression of Composite Panels at Elevated Temperatures using Shape Memory Alloy Fibers

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Zhong, Z. W.; Mei, Chuh

    1994-01-01

    A feasibility study on the use of shape memory alloys (SMA) for suppression of the random response of composite panels due to acoustic loads at elevated temperatures is presented. The constitutive relations for a composite lamina with embedded SMA fibers are developed. The finite element governing equations and the solution procedures for a composite plate subjected to combined acoustic and thermal loads are presented. Solutions include: 1) Critical buckling temperature; 2) Flat panel random response; 3) Thermal postbuckling deflection; 4) Random response of a thermally buckled panel. The preliminary results demonstrate that the SMA fibers can completely eliminate the thermal postbuckling deflection and significantly reduce the random response at elevated temperatures.

  3. A sum-over-paths algorithm for third-order impulse-response moment extraction within RC IC-interconnect networks

    NASA Astrophysics Data System (ADS)

    Wojcik, E. A.; Ni, D.; Lam, T. M.; Le Coz, Y. L.

    2015-07-01

    We have created the first stochastic SoP (Sum-over-Paths) algorithm to extract third-order impulse-response (IR) moment within RC IC interconnects. It employs a newly discovered Feynman SoP Postulate. Importantly, our algorithm maintains computational efficiency and full parallelism. Our approach begins with generation of s-domain nodal-voltage equations. We then perform a Taylor-series expansion of the circuit transfer function. These expansions yield transition diagrams involving mathematical coupling constants, or weight factors, in integral powers of complex frequency s. Our SoP Postulate enables stochastic evaluation of path sums within the circuit transition diagram to order s3-corresponding to the order of IR moment (m3) we seek here. We furnish, for the first time, an informal algebraic proof independently validating our SoP Postulate and algorithm. We list, as well, detailed procedural steps, suitable for coding, that define an efficient stochastic algorithm for m3 IR extraction. Origins of the algorithm's statistical "capacitor-number cubed" correction and "double-counting" weight factors are explained, for completeness. Our algorithm was coded and successfully tested against exact analytical solutions for 3-, 5-, and 10-stage RC lines. We achieved better than 0.65% 1-σ error convergence, after only 10K statistical samples, in less than 1 s of 2-GHz Pentium® execution time. These results continue to suggest that stochastic SoP algorithms may find useful application in circuit analysis of massively coupled networks, such as those encountered in high-end digital IC-interconnect CAD.

  4. A single-degree-of-freedom dynamic model predicts the range of human responses to impulsive forces produced by power hand tools.

    PubMed

    Lin, Jia-Hua; Radwin, Robert G; Richard, Terry G

    2003-12-01

    The human operator is modelled as a single-degree-of-freedom dynamic mechanical system for predicting the response to impulsive torque reaction forces produced by rotating spindle power hand tools such as nutrunners or screwdrivers. The model uses mass, spring and damping elements to represent the standing operator supporting the tool in the hand. It was hypothesized that these mechanical elements are affected by work location and vary among individuals. These elements were ascertained by measuring the resulting frequency and amplitude of a freely oscillating defined mechanical system when externally loaded using maximal effort to oppose its motion. Twenty-five subjects (13 female, 12 male) participated in the full factorial experiment that measured the effects of gender, vertical and horizontal work location for various tool shapes (in-line, pistol, right angle), and orientations (horizontal and vertical). The mean operator stiffness decreased from 1721 to 1195 N/m when the horizontal work location increased from 30 to 90 cm in front of the ankles for a pistol-grip handle used on a vertical surface. Males had greater mass moment of inertia of (0.0099 kg m2) than females (0.0072 kg m2) for an in-line handle used on a horizontal surface. Internal validation by independently measuring apparatus torque found that the model satisfactorily explained the measured operator dynamics with an average error of 2.86%. Group variance reflects the range of operator capacities to react against power hand tool generated forces for the sample group and therefore it may also be useful for understanding the range of capacities among a group of operators performing similar tasks. PMID:14614938

  5. Quantifying crustal response to deep active intrusions with geodesy-based finite element modeling

    NASA Astrophysics Data System (ADS)

    Henderson, S. T.; Pritchard, M. E.; Elliott, J.

    2013-12-01

    The Altiplano-Puna Volcanic Complex (APVC, 21-24 S, 66-69 W) is a first order feature of the Central Andes Volcanic Arc. The APVC consists of over 10,000 km^3 of dacitic ignimbrites deposited in the late Miocene, making it one of the largest concentrations of silicic volcanism in the world. The persistent and intense magmatic flux in this region has likely contributed to the thickened crust (50-70 km), elevated geotherm (>50 C/km) and extensive partial melt (<20 %) inferred under the APVC in modern times. Furthermore, satellite geodetic measurements show surface deformation centered on Uturuncu Volcano (22.27 S, 67.22 W) that is consistent with an ongoing magmatic intrusion in the middle to lower crust. The unique geologic setting and availability of multiple geophysical datasets provide an exceptional opportunity to locate fluid accumulation depths and model the resulting crustal mechanical response. InSAR data between 05/1992 and 01/2011 show that the deformation anomaly is characterized by axis-symmetric constant vertical uplift of 1-10 mm/yr over a radius of 35 km, which is surrounded by 1-4 mm/yr subsidence out to 75 km. One possible explanation for such a signal is diapiric rise of melt from the middle crust. We seek to determine if observed deformation can be alternatively explained by vertical ascent of magma from the lower (~70 km) to middle crust (~20 km). Such a model would be consistent with the short duration of deformation from geomorphic studies (less than 2200 years) and the potential abrupt cessation of uplift seen in a single continuous GPS station starting in 04/2010 near the center of deformation. We therefore test multiple finite element models that match spatial and temporal surface deformation, achieve mass balance between source and sink reservoirs, and require physically realistic rheological parameters of the crust. Modeling is performed with Pylith finite element software on a cylindrical three dimensional domain with a radius of 300 km

  6. Impulse noise generator--design and operation.

    PubMed

    Brinkmann, H

    1991-01-01

    In the seventies PFANDER (Pfander, 1975) proposed a screening test with an impulse noise simulator to check the particular responsivity of soldiers on vulnerability of the inner ear concerning the impulse noise-induced hearing loss. According to a system developed at the University of Oldenburg (Germany) (Klug & Radek, 1987), we have constructed an impulse noise generator designed for our specific requirements that will be presented. The simulator consists of an electrical ignited impulse noise spark gap which is supplied by a 3.5 kV high voltage source. At a distance of 1.10 m from the center of the impulse noise spark gap a peak pressure level of 155 dB with a C-Duration (Pfander, 1975) of .2 msec and with the main energy in the frequency range from 1 kHz to 2 kHz was good reproducible. It would be preferable to shift the impulse noise spectrum to lower frequencies but experimental effort has failed so far. PMID:1842469

  7. Genetic association of impulsivity in young adults: a multivariate study

    PubMed Central

    Khadka, S; Narayanan, B; Meda, S A; Gelernter, J; Han, S; Sawyer, B; Aslanzadeh, F; Stevens, M C; Hawkins, K A; Anticevic, A; Potenza, M N; Pearlson, G D

    2014-01-01

    Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N=426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype–phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the non-planning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors. PMID:25268255

  8. Finite element comparison of human and Hybrid III responses in a frontal impact.

    PubMed

    Danelson, Kerry A; Golman, Adam J; Kemper, Andrew R; Gayzik, F Scott; Clay Gabler, H; Duma, Stefan M; Stitzel, Joel D

    2015-12-01

    The improvement of finite element (FE) Human Body Models (HBMs) has made them valuable tools for investigating restraint interactions compared to anthropomorphic test devices (ATDs). The objective of this study was to evaluate the effect of various combinations of safety restraint systems on the sensitivity of thoracic injury criteria using matched ATD and Human Body Model (HBM) simulations at two crash severities. A total of seven (7) variables were investigated: 3-point belt with two (2) load limits, frontal airbag, knee bolster airbag, a buckle pretensioner, and two (2) delta-v's - 40kph and 50kph. Twenty four (24) simulations were conducted for the Hybrid III ATD FE model and repeated with a validated HBM for 48 total simulations. Metrics tested in these conditions included sternum deflection, chest acceleration, chest excursion, Viscous Criteria (V*C) criteria, pelvis acceleration, pelvis excursion, and femur forces. Additionally, chest band deflection and rib strain distribution were measured in the HBM for additional restraint condition discrimination. The addition of a frontal airbag had the largest effect on the occupant chest metrics with an increase in chest compression and acceleration but a decrease in excursion. While the THUMS and Hybrid III occupants demonstrated the same trend in the chest compression measurements, there were conflicting results in the V*C, acceleration, and displacement metrics. Similarly, the knee bolster airbag had the largest effect on the pelvis with a decrease in acceleration and excursion. With a knee bolster airbag the simulated occupants gave conflicting results, the THUMS had a decrease in femur force and the ATD had an increase. Preferential use of dummies or HBM's is not debated; however, this study highlights the ability of HBM metrics to capture additional chest response metrics. PMID:26432065

  9. The role of retardation in the structure and linear response of finite nuclei

    SciTech Connect

    Crecca, M.A.

    1989-01-01

    Conventional random phase approximation (RPA) and Tamm-Dancoff approximation (TDA) calculations of nuclear structure and the linear response employ interactions between nucleons that are instantaneous. However, N-N interactions derived from the exchange of mesons between nucleons must depend on the space-time separation of the nucleons since the mesons travel at finite speeds. Furthermore, a quantum field theory that contains interacting meson and nucleon degrees of freedom employ the Feynman propagator, i{Delta}{sub F}(x - x{prime}), to connect the nucleon-meson vertices of Feynman diagrams. This raises the question of whether calculations done with space-time dependent interactions differ significantly from the conventional calculations that employ instantaneous forces, and what are the qualitative features of the difference. The inquiry into this question begins by generalizing the traditional RPA and TDA equations into the domain of retarded (space-time dependant) interactions. This entails establishing an integral equation (the Bethe-Salpeter equation) for the polarization propagator with the appropriate RPA or TDA kernel such that the integral equation reduces to the usual RPA or TDA matrix equation for the polarization propagator as the interaction becomes instantaneous. After establishing this generalization of the RPA and TDA, a TDA calculation is performed for an interaction arising from the exchange of a scalar meson. The results are compared with those obtained from the conventional instantaneous reduction of the scalar meson exchange interaction, the Yukawa potential. Upon comparing these results one finds that in general the nuclear structure obtained from scalar meson exchange differ little less than 10%.

  10. Optically measured explosive impulse

    NASA Astrophysics Data System (ADS)

    Biss, Matthew M.; McNesby, Kevin L.

    2014-06-01

    An experimental technique is investigated to optically measure the explosive impulse produced by laboratory-scale spherical charges detonated in air. Explosive impulse has historically been calculated from temporal pressure measurements obtained via piezoelectric transducers. The presented technique instead combines schlieren flow visualization and high-speed digital imaging to optically measure explosive impulse. Prior to an explosive event, schlieren system calibration is performed using known light-ray refractions and resulting digital image intensities. Explosive charges are detonated in the test section of a schlieren system and imaged by a high-speed digital camera in pseudo-streak mode. Spatiotemporal schlieren intensity maps are converted using an Abel deconvolution, Rankine-Hugoniot jump equations, ideal gas law, triangular temperature decay profile, and Schardin's standard photometric technique to yield spatiotemporal pressure maps. Temporal integration of individual pixel pressure profiles over the positive pressure duration of the shock wave yields the explosive impulse generated for a given radial standoff. Calculated explosive impulses are shown to exhibit good agreement between optically derived values and pencil gage pressure transducers.

  11. Biomechanical Dynamics of Cranial Sutures during Simulated Impulsive Loading

    PubMed Central

    Zhang, Z. Q.; Yang, J. L.

    2015-01-01

    Background. Cranial sutures are deformable joints between the bones of the skull, bridged by collagen fibres. They function to hold the bones of the skull together while allowing for mechanical stress transmission and deformation. Objective. The aim of this study is to investigate how cranial suture morphology, suture material property, and the arrangement of sutural collagen fibres influence the dynamic responses of the suture and surrounding bone under impulsive loads. Methods. An idealized bone-suture-bone complex was analyzed using a two-dimensional finite element model. A uniform impulsive loading was applied to the complex. Outcome variables of von Mises stress and strain energy were evaluated to characterize the sutures' biomechanical behavior. Results. Parametric studies revealed that the suture strain energy and the patterns of Mises stress in both the suture and surrounding bone were strongly dependent on the suture morphologies. Conclusions. It was concluded that the higher order hierarchical suture morphology, lower suture elastic modulus, and the better collagen fiber orientation must benefit the stress attenuation and energy absorption. PMID:27019589

  12. Biomechanical Dynamics of Cranial Sutures during Simulated Impulsive Loading.

    PubMed

    Zhang, Z Q; Yang, J L

    2015-01-01

    Background. Cranial sutures are deformable joints between the bones of the skull, bridged by collagen fibres. They function to hold the bones of the skull together while allowing for mechanical stress transmission and deformation. Objective. The aim of this study is to investigate how cranial suture morphology, suture material property, and the arrangement of sutural collagen fibres influence the dynamic responses of the suture and surrounding bone under impulsive loads. Methods. An idealized bone-suture-bone complex was analyzed using a two-dimensional finite element model. A uniform impulsive loading was applied to the complex. Outcome variables of von Mises stress and strain energy were evaluated to characterize the sutures' biomechanical behavior. Results. Parametric studies revealed that the suture strain energy and the patterns of Mises stress in both the suture and surrounding bone were strongly dependent on the suture morphologies. Conclusions. It was concluded that the higher order hierarchical suture morphology, lower suture elastic modulus, and the better collagen fiber orientation must benefit the stress attenuation and energy absorption. PMID:27019589

  13. Impulse-Momentum Diagrams

    NASA Astrophysics Data System (ADS)

    Rosengrant, David

    2011-01-01

    Multiple representations are a valuable tool to help students learn and understand physics concepts. Furthermore, representations help students learn how to think and act like real scientists.2 These representations include: pictures, free-body diagrams,3 energy bar charts,4 electrical circuits, and, more recently, computer simulations and animations.5 However, instructors have limited choices when they want to help their students understand impulse and momentum. One of the only available options is the impulse-momentum bar chart.6 The bar charts can effectively show the magnitude of the momentum as well as help students understand conservation of momentum, but they do not easily show the actual direction. This paper highlights a new representation instructors can use to help their students with momentum and impulse—the impulse-momentum diagram (IMD).

  14. Ballistic impulse gauge

    DOEpatents

    Ault, Stanley K.

    1993-01-01

    A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring.

  15. Ballistic impulse gauge

    DOEpatents

    Ault, S.K.

    1993-12-21

    A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring. 4 figures.

  16. Finite-time Lyapunov exponents and metabolic control coefficients for threshold detection of stimulus-response curves.

    PubMed

    Duc, Luu Hoang; Chávez, Joseph Páez; Son, Doan Thai; Siegmund, Stefan

    2016-01-01

    In biochemical networks transient dynamics plays a fundamental role, since the activation of signalling pathways is determined by thresholds encountered during the transition from an initial state (e.g. an initial concentration of a certain protein) to a steady-state. These thresholds can be defined in terms of the inflection points of the stimulus-response curves associated to the activation processes in the biochemical network. In the present work, we present a rigorous discussion as to the suitability of finite-time Lyapunov exponents and metabolic control coefficients for the detection of inflection points of stimulus-response curves with sigmoidal shape. PMID:27416142

  17. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion. PMID:21929132

  18. Impulse radar studfinder

    DOEpatents

    McEwan, T.E.

    1995-10-10

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.

  19. Impulse radar studfinder

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  20. Energetics of impulsive solar flares: Correlating BATSE hard x-ray bursts and the solar atmosphere's soft x-ray response

    NASA Technical Reports Server (NTRS)

    Newton, Elizabeth

    1996-01-01

    This investigation has involved the correlation of BATSE-observed solar hard X-ray emission with the characteristics of soft X-ray emitting plasma observed by the Yohkoh Bragg Crystal Spectrometers. The goal was to test the hypothesis that localized electron beam heating is the dominant energy transport mechanism in impulsive flares, as formulated in the thick-target electron-heated model of Brown.

  1. Finite Mixture Dynamic Regression Modeling of Panel Data with Implications for Dynamic Response Analysis

    ERIC Educational Resources Information Center

    Kaplan, David

    2005-01-01

    This article considers the problem of estimating dynamic linear regression models when the data are generated from finite mixture probability density function where the mixture components are characterized by different dynamic regression model parameters. Specifically, conventional linear models assume that the data are generated by a single…

  2. Dynamic and thermal response finite element models of multi-body space structural configurations

    NASA Technical Reports Server (NTRS)

    Edighoffer, Harold H.

    1987-01-01

    Presented is structural dynamics modeling of two multibody space structural configurations. The first configuration is a generic space station model of a cylindrical habitation module, two solar array panels, radiator panel, and central connecting tube. The second is a 15-m hoop-column antenna. Discussed is the special joint elimination sequence used for these large finite element models, so that eigenvalues could be extracted. The generic space station model aided test configuration design and analysis/test data correlation. The model consisted of six finite element models, one of each substructure and one of all substructures as a system. Static analysis and tests at the substructure level fine-tuned the finite element models. The 15-m hoop-column antenna is a truss column and structural ring interconnected with tension stabilizing cables. To the cables, pretensioned mesh membrane elements were attached to form four parabolic shaped antennae, one per quadrant. Imposing thermal preloads in the cables and mesh elements produced pretension in the finite element model. Thermal preload variation in the 96 control cables was adjusted to maintain antenna shape within the required tolerance and to give pointing accuracy.

  3. Impulsivity, Frontal Lobes and Risk for Addiction

    PubMed Central

    Crews, Fulton Timm; Boettiger, Charlotte Ann

    2009-01-01

    Alcohol and substance abuse disorders involve continued use of substances despite negative consequences, i.e. loss of behavioral control of drug use. The frontal cortical areas of brain oversee behavioral control through executive functions. Executive functions include abstract thinking, motivation, planning, attention to tasks and inhibition of impulsive responses. Impulsiveness generally refers to premature, unduly risky, poorly conceived actions. Dysfunctional impulsivity includes deficits in attention, lack of reflection and/or insensitivity to consequences, all of which occur in addiction (Evenden, 1999; (de Wit, 2009). Binge drinking models indicate chronic alcohol damages corticolimbic brain regions (Crews et al., 2000) causing reversal learning deficits indicative of loss of executive function (Obernier et al., 2002b). Genetics and adolescent age are risk factors for alcoholism that coincide with sensitivity to alcohol induced neurotoxicity. Cortical degeneration from alcohol abuse may increase impulsivity contributing to the development, persistence and severity of alcohol use disorders. Interestingly, abstinence results in bursts of neurogenesis and brain regrowth (Crews and Nixon, 2009). Treatments for alcoholism, including naltrexone pharmacotherapy and psychotherapy may work through improving executive functions. This review will examine the relationships between impulsivity and executive function behaviors to changes in cortical structure during alcohol dependence and recovery. PMID:19410598

  4. SANTOS - a two-dimensional finite element program for the quasistatic, large deformation, inelastic response of solids

    SciTech Connect

    Stone, C.M.

    1997-07-01

    SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of two-dimensional planar or axisymmetric solids. The code is derived from the transient dynamic code PRONTO 2D. The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass control scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering materials are included. A robust master-slave contact algorithm for modeling sliding contact is implemented. An interface for coupling to an external code is also provided. 43 refs., 22 figs.

  5. Annoyance of helicopter impulsive noise

    NASA Technical Reports Server (NTRS)

    Dambra, F.; Damongeot, A.

    1978-01-01

    Psychoacoustic studies of helicopter impulsive noise were conducted in order to qualify additional annoyance due to this feature and to develop physical impulsiveness descriptors to develop impulsivity correction methods. The currently proposed descriptors and methods of impulsiveness correction are compared using a multilinear regression analysis technique. It is shown that the presently recommended descriptor and correction method provides the best correlation with the subjective evaluations of real helicopter impulsive noises. The equipment necessary for data processing in order to apply the correction method is discussed.

  6. ParCYCLIC: finite element modelling of earthquake liquefaction response on parallel computers

    NASA Astrophysics Data System (ADS)

    Peng, Jun; Lu, Jinchi; Law, Kincho H.; Elgamal, Ahmed

    2004-10-01

    This paper presents the computational procedures and solution strategy employed in ParCYCLIC, a parallel non-linear finite element program developed based on an existing serial code CYCLIC for the analysis of cyclic seismically-induced liquefaction problems. In ParCYCLIC, finite elements are employed within an incremental plasticity, coupled solid-fluid formulation. A constitutive model developed for simulating liquefaction-induced deformations is a main component of this analysis framework. The elements of the computational strategy, designed for distributed-memory message-passing parallel computer systems, include: (a) an automatic domain decomposer to partition the finite element mesh; (b) nodal ordering strategies to minimize storage space for the matrix coefficients; (c) an efficient scheme for the allocation of sparse matrix coefficients among the processors; and (d) a parallel sparse direct solver. Application of ParCYCLIC to simulate 3-D geotechnical experimental models is demonstrated. The computational results show excellent parallel performance and scalability of ParCYCLIC on parallel computers with a large number of processors. Copyright

  7. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  8. A fuzzy finite element procedure for the calculation of uncertain frequency response functions of damped structures: Part 2—Numerical case studies

    NASA Astrophysics Data System (ADS)

    De Gersem, Hilde; Moens, David; Desmet, Wim; Vandepitte, Dirk

    2005-12-01

    This work introduces a numerical algorithm to calculate frequency response functions of damped finite element models with fuzzy uncertain parameters. Part 1 of this paper focusses on the numerical procedure for the solution of the underlying interval finite element problem, based on the undamped procedure and the principle of Rayleigh damping. Part 2 of this paper illustrates the applicability of the methodology through four case studies. The concepts of the interval and the fuzzy finite element frequency response function analysis are illustrated for different types of uncertainties. The obtained results are compared with the results of Monte Carlo simulations.

  9. Waiting Impulsivity: The Influence of Acute Methylphenidate and Feedback

    PubMed Central

    Chang-Webb, Yee Chien; Morris, Laurel S.; Cooper, Ella; Sethi, Arjun; Baek, Kwangyeol; Grant, Jon; Robbins, Trevor W.; Harrison, Neil A

    2016-01-01

    Background: The ability to wait and to weigh evidence is critical to behavioral regulation. These behaviors are known as waiting and reflection impulsivity. In Study 1, we examined the effects of methylphenidate, a dopamine and norepinephrine reuptake inhibitor, on waiting and reflection impulsivity in healthy young individuals. In study 2, we assessed the role of learning from feedback in disorders of addiction. Methods: We used the recently developed 4-Choice Serial Reaction Time task and the Beads task. Twenty-eight healthy volunteers were tested twice in a randomized, double-blind, placebo-controlled cross-over trial with 20mg methylphenidate. In the second study, we analyzed premature responses as a function of prior feedback in disorders of addiction. Results: Study 1: Methylphenidate was associated with greater waiting impulsivity to a cue predicting reward along with faster responding to target onset without a generalized effect on reaction time or attention. Methylphenidate influenced reflection impulsivity based on baseline impulsivity. Study 2: More premature responses occurred after premature responses in stimulant-dependent subjects. Conclusions: We show that methylphenidate has dissociable effects on waiting and reflection impulsivity. Chronic stimulant exposure impairs learning from prior premature responses, suggesting a failure to learn that premature responding is suboptimal. These findings provide a greater mechanistic understanding of waiting impulsivity. PMID:26136351

  10. Impulse Testing of Corporate-Fed Patch Array Antennas

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil F.

    2011-01-01

    This paper discusses a novel method for detecting faults in antenna arrays. The method, termed Impulse Testing, was developed for corporate-fed patch arrays where the element is fed by a probe and is shorted at its center. Impulse Testing was devised to supplement conventional microwave measurements in order to quickly verify antenna integrity. The technique relies on exciting each antenna element in turn with a fast pulse (or impulse) that propagates through the feed network to the output port of the antenna. The resulting impulse response is characteristic of the path through the feed network. Using an oscilloscope, a simple amplitude measurement can be made to detect faults. A circuit model of the antenna elements and feed network was constructed to assess various fault scenarios and determine fault-detection thresholds. The experimental setup and impulse measurements for two patch array antennas are presented. Advantages and limitations of the technique are discussed along with applications to other antenna array topologies