Science.gov

Sample records for finite width mirrors

  1. Comment on ``Casimir energies with finite-width mirrors''

    NASA Astrophysics Data System (ADS)

    Fialkovsky, Ignat; Pis'Mak, Yuriy; Markov, Vladimir

    2009-01-01

    We comment on a recent publication by Fosco, Lombardo, and Mazzitelli on Casimir energies for material slabs (“finite-width mirrors”) and report a discrepancy between results obtained there for a single mirror and some previous calculations. We provide a simple consistency check which proves that the method used by Fosco et al. is not reliable when applied to approximations of piecewise constant profile of the mirror. We also present an alternative method for calculation of the Casimir energy in such systems based on earlier work of ours. Our results coincide both with perturbation theory and with some older and more recent calculations, but differ from those of Fosco et al.

  2. Stressed mirror polishing: finite element simulation of mirror blank deformation

    NASA Astrophysics Data System (ADS)

    Han, Yu; Lu, Lihong

    2014-08-01

    The theoretical principle of Stressed Mirror Polishing (SMP) is introduced, including the representation method of elastic deformation, the formulations of discrete bending moment and shearing force. A Finite Element Analysis (FEA) simulation model of has been set up by ANSYS software. The warping facility in this model is consisted of 36 aluminum alloy arms equally distribute on the ambit of mirror blank. Two forces are applied on each arm to provide bending moment and shearing force. Taking type 82 segment of Thirty Meters Telescope (TMT) primary mirror for example, a FEA simulation of mirror blank deformation has been performed. Simulation result shows that, the deformation error is 33μm PV. The theoretical deformation PV value is 205μm and the simulation deformation PV value is 172μm, converging rate reaches to 0.84 in a single warping cycle. After three or four warping cycles, the residue error may converge into 1μm.

  3. Finite mirror effects in advanced interferometric gravitational wave detectors

    SciTech Connect

    Lundgren, Andrew P.; Bondarescu, Ruxandra; Tsang, David; Bondarescu, Mihai

    2008-02-15

    Thermal noise is expected to be the dominant source of noise in the most sensitive frequency band of second-generation, ground-based gravitational-wave detectors. Reshaping the beam to a flatter, wider profile which probes more of the mirror surface reduces this noise. The 'Mesa' beam shape has been proposed for this purpose and was subsequently generalized to a family of hyperboloidal beams with two parameters: twist angle {alpha} and beam width D. Varying {alpha} allows a continuous transition from the nearly flat ({alpha}=0) to the nearly concentric ({alpha}={pi}) Mesa beam configurations. We analytically prove that in the limit D{yields}{infinity} hyperboloidal beams become Gaussians. The ideal beam choice for reducing thermal noise is the widest possible beam that satisfies the Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) diffraction loss design constraint of 1 part per million (ppm) per bounce for a mirror radius of 17 cm. In the past the diffraction loss has often been calculated using the clipping approximation that, in general, underestimates the diffraction loss. We develop a code using pseudospectral methods to compute the diffraction loss directly from the propagator. We find that the diffraction loss is not a strictly monotonic function of beam width, but has local minima that occur due to finite mirror effects and leads to natural choices of D. For an {alpha}={pi} Mesa beam a local minimum occurs at D=10.67 cm and leads to a diffraction loss of 1.4 ppm. We then compute the thermal noise for the entire hyperboloidal family. We find that if one requires a diffraction loss of strictly 1 ppm, the {alpha}=0.91{pi} hyperboloidal beam is optimal, leading to the coating thermal noise (the dominant source of noise for fused-silica mirrors) being lower by about 10% than for a Mesa beam while other types of thermal noise decrease as well. We then develop an iterative process that reconstructs the mirror to specifically account for finite

  4. Finite mirror effects in advanced interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Lundgren, Andrew P.; Bondarescu, Ruxandra; Tsang, David; Bondarescu, Mihai

    2008-02-01

    Thermal noise is expected to be the dominant source of noise in the most sensitive frequency band of second-generation, ground-based gravitational-wave detectors. Reshaping the beam to a flatter, wider profile which probes more of the mirror surface reduces this noise. The “Mesa” beam shape has been proposed for this purpose and was subsequently generalized to a family of hyperboloidal beams with two parameters: twist angle α and beam width D. Varying α allows a continuous transition from the nearly flat (α=0) to the nearly concentric (α=π) Mesa beam configurations. We analytically prove that in the limit D→∞ hyperboloidal beams become Gaussians. The ideal beam choice for reducing thermal noise is the widest possible beam that satisfies the Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) diffraction loss design constraint of 1 part per million (ppm) per bounce for a mirror radius of 17 cm. In the past the diffraction loss has often been calculated using the clipping approximation that, in general, underestimates the diffraction loss. We develop a code using pseudospectral methods to compute the diffraction loss directly from the propagator. We find that the diffraction loss is not a strictly monotonic function of beam width, but has local minima that occur due to finite mirror effects and leads to natural choices of D. For an α=π Mesa beam a local minimum occurs at D=10.67cm and leads to a diffraction loss of 1.4 ppm. We then compute the thermal noise for the entire hyperboloidal family. We find that if one requires a diffraction loss of strictly 1 ppm, the α=0.91π hyperboloidal beam is optimal, leading to the coating thermal noise (the dominant source of noise for fused-silica mirrors) being lower by about 10% than for a Mesa beam while other types of thermal noise decrease as well. We then develop an iterative process that reconstructs the mirror to specifically account for finite mirror effects. This allows us to increase the

  5. Finite coplanar waveguide width effects in pulsed inductive microwave magnetometry

    SciTech Connect

    Schneider, M.L.; Kos, A.B.; Silva, T.J.

    2004-07-12

    The effect of finite coplanar waveguide (CPW) width on the measurement of the resonance frequency in thin ferromagnetic films has been characterized for pulsed inductive microwave magnetometry. A shift in resonant frequency is a linear function of the ratio of sample thickness to CPW width. The proportionality constant is experimentally determined to be 0.74{+-}0.1 times the saturation magnetization of the film. The frequency shift may be modeled as arising from an effective magnetic-anisotropy field.

  6. The flow around an inclined flat plate of finite width

    NASA Astrophysics Data System (ADS)

    Narumi, A.; Kato, S.; Terada, K.; Izumi, R.; Yanase, T.

    1985-07-01

    The flow around an inclined finite width plate was experimentally studied using oil film and oil point techniques. At the front surface, leading edge separation does not occur and the flow becomes more laminar than in the case with angle of incidence zero, though the flow yaws towards the side edge and separates from it. The flow at the back surface is characterized by a side edge vortex, a flow separated near the side edge of the leading edge, and a flow separated at the middle of the leading edge. The characteristics of these flows are discussed.

  7. Finite banana width effect on magnetoacoustic cyclotron instability

    SciTech Connect

    Chen, Y.P.; Tsai, S.T.

    1995-08-01

    The finite banana width (FBW) effect on the coupling between magnetoacoustic waves and the near harmonic gyro-oscillations of the energetic ions/{alpha} particles in tokamaks are studied. The gyrokinetic equation with FBW effect is rederived for the energetic trapped ions. The dispersion relation and growth rate of the magnetoacoustic cyclotron instability (MACI) are obtained. It is found that the coherence interaction between the energetic ion trajectory and mode field has a significant effect when the Larmor radius of energetic ions is larger than the wavelength of MACI. Near the low field side the FBW effect destabilizes the mode, while away from it the FBW gives a stabilizing effect. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. Crack opening stretch in a plate of finite width

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Bakioglu, M.

    1974-01-01

    The problem of a uniaxially stressed plate of finite width containing a centrally located damage zone is considered. It is assumed that the flaw may be represented by a part-through crack perpendicular to the plate surface, the net ligaments in the plane of the crack and through-the-thickness narrow strips ahead of the crack ends are fully yielded, and in the yielded sections the material may carry only a constant normal traction with magnitude equal to the yield strength. The problem is solved by neglecting the bending effects and the crack opening stretches at the center and the ends of the crack are obtained. Some applications of the results are indicated by using the concepts of critical crack opening stretch and constant slope plastic instability.

  9. Crack opening stretch in a plate of finite width

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Bakioglu, M.

    1975-01-01

    The problem of a uniaxially stressed plate of finite width containing a centrally located damage zone is considered. It is assumed that the flaw may be represented by a part-through crack perpendicular to the plate surface, the net ligaments in the plane of the crack and through-the-thickness narrow strips ahead of the crack ends are fully yielded, and in the yielded sections the material may carry only a constant normal traction with magnitude equal to the yield strength. The problem is solved by neglecting the bending effects and the crack opening stretches at the center and the ends of the crack are obtained. Some applications of the results are indicated by using the concepts of critical crack opening stretch and constant slope plastic instability.

  10. Josephson effect in mesoscopic graphene strips with finite width

    NASA Astrophysics Data System (ADS)

    Moghaddam, Ali G.; Zareyan, Malek

    2006-12-01

    We study Josephson effect in a ballistic graphene strip of length L smaller than the superconducting coherence length and arbitrary width W . We find that the dependence of the critical supercurrent Ic on W is drastically different for different types of the edges. For smooth and armchair edges at low concentration of the carriers Ic decreases monotonically with decreasing W/L and tends to a constant minimum for a narrow strip W/L≲1 . The minimum supercurrent is zero for smooth edges but has a finite value eΔ0/ℏ for the armchair edges. At higher concentration of the carriers, in addition to this overall monotonic variation, the critical current undergoes a series of peaks with varying W . On the other hand in a strip with zigzag edges the supercurrent is half-integer quantized to (n+1/2)4eΔ0/ℏ , showing a stepwise variation with W .

  11. Neoclassical toroidal plasma viscosity with effects of finite banana width for finite aspect ratio tokamaks

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Sabbagh, S. A.

    2016-07-01

    Theory for neoclassical toroidal plasma viscosity has been developed to model transport phenomena, especially, toroidal plasma rotation for tokamaks with broken symmetry. Theoretical predictions are in agreement with the results of the numerical codes in the large aspect ratio limit. The theory has since been extended to include effects of finite aspect ratio and finite plasma β. Here, β is the ratio of the plasma thermal pressure to the magnetic field pressure. However, there are cases where the radial wavelength of the self-consistent perturbed magnetic field strength B on the perturbed magnetic surface is comparable to the width of the trapped particles, i.e., bananas. To accommodate those cases, the theory for neoclassical toroidal plasma viscosity is further extended here to include the effects of the finite banana width. The extended theory is developed using the orbit averaged drift kinetic equation in the low collisionality regimes. The results of the theory can now be used to model plasma transport, including toroidal plasma rotation, in real finite aspect ratio, and finite plasma β tokamaks with the radial wavelength of the perturbed symmetry breaking magnetic field strength comparable to or longer than the banana width.

  12. Effect of finite substrate width on higher-order mode generation of electrically shielded symmetric microstrip

    NASA Astrophysics Data System (ADS)

    Tseng, J.-D.; Tzuang, C.-K. C.

    1992-01-01

    The effect of finite substrate width on the higher-order mode generation of an electrically shielded microstrip is investigated. By employing the full-wave mixed potential mode-matching method the microstrip on a finite-width substrate can be accurately analyzed. The dispersion characteristics of microstrip on two different substrate widths were compared in the frequency range of interest. The results indicated that the use of conventional three-dimensional simulators assuming homogeneous layered (stratified) multi-dielectric substrates may not work well above the first cutoff frequency of microstrip on a finite-width substrate.

  13. Finite width corrections to the Nambu action for the Nielsen-Olesen string

    SciTech Connect

    Maeda, K.; Turok, N.

    1987-11-01

    The finite width correction terms to the Nambu action for Nielsen-Olesen strings are calculated. They consist of an extrinsic curvature squared or rigidity term and a new 'twist' term. The extrinsic curvature term prevents cusps forming, rounding them off with a curvature radius of the order of the string width. 12 refs.

  14. Invariantly propagating dissolution fingers in finite-width systems

    NASA Astrophysics Data System (ADS)

    Dutka, Filip; Szymczak, Piotr

    2016-04-01

    Dissolution fingers are formed in porous medium due to positive feedback between transport of reactant and chemical reactions [1-4]. We investigate two-dimensional semi-infinite systems, with constant width W in one direction. In numerical simulations we solve the Darcy flow problem combined with advection-dispersion-reaction equation for the solute transport to track the evolving shapes of the fingers and concentration of reactant in the system. We find the stationary, invariantly propagating finger shapes for different widths of the system, flow and reaction rates. Shape of the reaction front, turns out to be controlled by two dimensionless numbers - the (width-based) Péclet number PeW = vW/Dφ0 and Damköhler number DaW = ksW/v, where k is the reaction rate, s - specific reactive surface area, v - characteristic flow rate, D - diffusion coefficient of the solute, and φ0 - initial porosity of the rock matrix. Depending on PeW and DaW stationary shapes can be divided into seperate classes, e.g. parabolic-like and needle-like structures, which can be inferred from theoretical predictions. In addition we determine velocity of propagating fingers in time and concentration of reagent in the system. Our simulations are compared with natural forms (solution pipes). P. Ortoleva, J. Chadam, E. Merino, and A. Sen, Geochemical self-organization II: the reactive-infiltration instability, Am. J. Sci, 287, 1008-1040 (1987). M. L. Hoefner, and H. S. Fogler. Pore evolution and channel formation during flow and reaction in porous media, AIChE Journal 34, 45-54 (1988). C. E. Cohen, D. Ding, M. Quintard, and B. Bazin, From pore scale to wellbore scale: impact of geometry on wormhole growth in carbonate acidization, Chemical Engineering Science 63, 3088-3099 (2008). P. Szymczak and A. J. C. Ladd, Reactive-infiltration nstabilities in rocks. Part II: Dissolution of a porous matrix, J. Fluid Mech. 738, 591-630 (2014).

  15. Finite beta plasma equilibrium in toroidally linked mirrors

    SciTech Connect

    Ilgisonis, V.I.; Berk, H.L.; Pastukhov, V.P.

    1993-07-01

    The problem of finite pressure plasma equilibrium in a system with closed magnetic field lines consisting of quadrupole mirrors linked by simple toroidal cells with elliptical cross-sections is analyzed. An appropriate analytical procedure is developed, that uses conformal mapping techniques, which enables one to obtain the magnetic field structure for the free boundary equilibrium problem. This method has general applicability for finding analytic solutions of the two-dimensional Dirichlet problem outside of an arbitrary closed contour. Using this method, the deformations of the plasma equilibrium configuration due to finite plasma pressure in the toroidal cell are calculated analytically to the second order in {lambda}-expansion, where {lambda} {approximately} {beta}/{epsilon}E, {beta} is the ratio of plasma pressure to the magnetic field pressure, {epsilon} is the inverse aspect ratio and E is the ellipticity of the plasma cross-section. The outer displacement of the plasma column is shown to depend nonlinearly on the increase of plasma pressure, and does not prevent the achievement of substantial {beta} {approximately} 10% in the toroidal cells.

  16. Finite-width currents, magnetic shear, and the current-driven ion-cyclotron instability

    NASA Technical Reports Server (NTRS)

    Bakshi, P.; Ganguli, G.; Palmadesso, P.

    1983-01-01

    Our earlier results that non-local effects due to even a small magnetic shear produce a significant reduction of the growth rate of the ion cyclotron instability driven by a uniform current are now generalized to finite width currents. Externally prescribed as well as self-consistent shears are considered. If the current width Lc exceeds the shear length Ls, the previous results are recovered. Shear becomes less effective with reduction of Lc, and for typical parameters, the growth rate attains its (shearless) local value for Lc/Ls approximately less than 10 to the minus 2. Non-local effects of the finite current width itself come into play if Lc is further reduced to a few ion Larmor radii and can quench the instability. Previously announced in STAR as N83-28996

  17. Effect of finite width on deflection and energy release rate of an orthotropic double cantilever specimen

    NASA Technical Reports Server (NTRS)

    Schapery, R. A.; Davidson, B. D.

    1988-01-01

    The problem of an orthotropic cantilevered plate subjected to a uniformly distributed end load is solved by the Rayleigh-Ritz energy method. The result is applied to laminated composite, double cantilevered specimens to estimate the effect of crack tip constraint on the transverse curvature, deflection and energy release rate. The solution is also utilized to determined finite width correction factors for fracture energy characterization tests in which neither plane stress nor plane strain conditions apply.

  18. Finite width coplanar waveguide patch antenna with vertical fed through interconnect

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.; Shalkhauser, Kurt A.; Owens, Jonathan; Demarco, James; Leen, Joan; Sturzebecher, Dana

    1996-01-01

    The paper presents the design, fabrication and characterization of a finite width Coplanar waveguide (FCPW) patch antenna and a FCPW-to-FCPW vertical interconnect. The experimental results demonstrate the antenna and interconnect performance. A scheme to integrate an eight element FCPW patch array with MMIC phase shifters and amplifiers using vertical interconnects is described. The antenna module has potential applications in an advanced satellite to ground transmit phased array at K-Band.

  19. Spin-polarized electron-hole quantum bilayers: finite layer width and mass-asymmetric effects

    NASA Astrophysics Data System (ADS)

    Gangadhar Nayak, Mukesh; Saini, Lalit Kumar

    2013-03-01

    The influence of mass-asymmetry and finite layer width in phase-transition from the liquid-state to the density-modulated ground-state of the spin-polarized electron-hole quantum bilayers (EHBL) is explored within the Singwi, Tosi, Land and Sjölander (qSTLS) approach. At the same number density of electrons and holes, in addition to the stronger interlayer correlations, the mass-asymmetry also shows stronger intralayer correlations in the hole layer than that of the electron layer. This change in the behaviour of correlations affects the ground-state of the spin-polarized EHBL system. Interestingly, we notice the enhancement of critical density for the onset of Wigner crystallization as compared to the recent results of spin-polarized mass-symmetric EHBL system. Pair-correlation function and local-field correction factor show a strong in-phase oscillations at the instability region. Further, we find that the inclusion of finite layer width weakens the intralayer correlations. As a result, the critical density for Wigner crystallization is lowered. The present results are compared with the recent results of spin-polarized (and unpolarized) mass-symmetric EHBL with zero (finite) layer width. Contribution to the Topical Issue "Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials", edited by Maria Antonietta Loi, Jasper Knoester and Paul H. M. van Loosdrecht.

  20. Electric Field Screening by the Proximity of Two Knife-Edge Field Emitters of Finite Width

    NASA Astrophysics Data System (ADS)

    Wong, P.; Tang, W.; Lau, Y. Y.; Hoff, B.

    2015-11-01

    Field emitter arrays have the potential to provide high current density, low voltage operation, and high pulse repetition for radar and communication. It is well known that packing density of the field emitter arrays significantly affect the emission current. Previously we calculated analytically the electric field profile of two-dimensional knife-edge cathodes with arbitrary separation by using a Schwarz-Christoffel transformation. Here we extend this previous work to include the finite width of two identical emitters. From the electric field profile, the field enhancement factor, thereby the severity of the electric field screening, are determined. It is found that for two identical emitters with finite width, the magnitude of the electric field on the knife-edge cathodes depends strongly on the ratio h / a and h / r , where h is the height of the knife-edge cathode, 2a is the distance between the cathodes, and 2 r represents their width. Particle-in-cell simulations are performed to compare with the analytical results on the emission current distribution. P. Y. Wong was supported by a Directed Energy Summer Scholar internship at Air Force Research Laboratory, Kirtland AFB, and by AFRL Award No. FA9451-14-1-0374.

  1. Effects of finite pulse width on two-dimensional Fourier transform electron spin resonance.

    PubMed

    Liang, Zhichun; Crepeau, Richard H; Freed, Jack H

    2005-12-01

    Two-dimensional (2D) Fourier transform ESR techniques, such as 2D-ELDOR, have considerably improved the resolution of ESR in studies of molecular dynamics in complex fluids such as liquid crystals and membrane vesicles and in spin labeled polymers and peptides. A well-developed theory based on the stochastic Liouville equation (SLE) has been successfully employed to analyze these experiments. However, one fundamental assumption has been utilized to simplify the complex analysis, viz. the pulses have been treated as ideal non-selective ones, which therefore provide uniform irradiation of the whole spectrum. In actual experiments, the pulses are of finite width causing deviations from the theoretical predictions, a problem that is exacerbated by experiments performed at higher frequencies. In the present paper we provide a method to deal with the full SLE including the explicit role of the molecular dynamics, the spin Hamiltonian and the radiation field during the pulse. The computations are rendered more manageable by utilizing the Trotter formula, which is adapted to handle this SLE in what we call a "Split Super-Operator" method. Examples are given for different motional regimes, which show how 2D-ELDOR spectra are affected by the finite pulse widths. The theory shows good agreement with 2D-ELDOR experiments performed as a function of pulse width. PMID:16150620

  2. One-dimensional plasmons in ultrathin metallic silicide wires of finite width

    NASA Astrophysics Data System (ADS)

    Rugeramigabo, Eddy P.; Tegenkamp, Christoph; Pfnür, Herbert; Inaoka, Takeshi; Nagao, Tadaaki

    2010-04-01

    The acoustic dispersion of plasmons (PLs) in narrow (4 nm) and ultrathin (one unit cell) metallic DySi2 wires, grown by self-assembly on vicinal Si(100)-[011] 4° turns out to be unidirectional. We observed the lowest intersubband PL as well as the acoustic PL. These PLs are specific for narrow metallic strips of finite width. Our experimental and theoretical analysis suggests that only one of two electron pockets in the surface Brillouin zone makes a substantial contribution to the PLs because the other pocket has a much smaller conductive character due to a strong admixture of electronic states with d character.

  3. Coupling Between Microstrip Lines With Finite Width Ground Plane Embedded in Thin Film Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Dalton, Edan; Tentzeris, Manos M.; Papapolymerou, John

    2003-01-01

    Three-dimensional (3D) interconnects built upon multiple layers of polyimide are required for constructing 3D circuits on CMOS (low resistivity) Si wafers, GaAs, and ceramic substrates. Thin film microstrip lines (TFMS) with finite width ground planes embedded in the polyimide are often used. However, the closely spaced TFMS lines a r e susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and experimental measurements a r e used to show that the ground planes must be connected by via holes to reduce coupling in both the forward and backward directions. Furthermore, it is shown that coupled microstrip lines establish a slotline type mode between the two ground planes and a dielectric waveguide type mode, and that the via holes recommended here eliminate these two modes.

  4. Kinetic Simulations of the Self-Focusing and Dissipation of Finite-Width Electron Plasma Waves

    SciTech Connect

    Winjum, B. J.; Berger, R. L.; Chapman, T.; Banks, J. W.; Brunner, S.

    2013-09-01

    Two-dimensional simulations, both Vlasov and particle-in-cell, are presented that show the evolution of the field and electron distribution of finite-width, nonlinear electron plasma waves. The intrinsically intertwined effects of self-focusing and dissipation of field energy caused by electron trapping are studied in simulated systems that are hundreds of wavelengths long in the transverse direction but only one wavelength long and periodic in the propagation direction. From various initial wave states, both the width at focus Δm relative to the initial width Δ0 and the maximum field amplitude at focus are shown to be a function of the growth rate of the transverse modulational instability γTPMI divided by the loss rate of field energy νE to electrons escaping the trapping region. With dissipation included, an amplitude threshold for self-focusing γTPMIE~1 is found that supports the analysis of Rose [Phys. Plasmas 12, 012318 (2005)].

  5. Kinetic simulations of the self-focusing and dissipation of finite-width electron plasma waves.

    PubMed

    Winjum, B J; Berger, R L; Chapman, T; Banks, J W; Brunner, S

    2013-09-01

    Two-dimensional simulations, both Vlasov and particle-in-cell, are presented that show the evolution of the field and electron distribution of finite-width, nonlinear electron plasma waves. The intrinsically intertwined effects of self-focusing and dissipation of field energy caused by electron trapping are studied in simulated systems that are hundreds of wavelengths long in the transverse direction but only one wavelength long and periodic in the propagation direction. From various initial wave states, both the width at focus Δm relative to the initial width Δ0 and the maximum field amplitude at focus are shown to be a function of the growth rate of the transverse modulational instability γTPMI divided by the loss rate of field energy νE to electrons escaping the trapping region. With dissipation included, an amplitude threshold for self-focusing γTPMI/νE∼1 is found that supports the analysis of Rose [Phys. Plasmas 12, 012318 (2005)]. PMID:25166675

  6. Finite-Width Effects in the Near-Threshold Zzz and Zww Production at Ilc

    NASA Astrophysics Data System (ADS)

    Pasechnik, Roman; Kuksa, Vladimir

    We calculate the cross-section of the near-threshold off-shell ZZZ and ZW+W- production at the International Linear Collider taking into account their instability and the principal part of next-to-leading order corrections. The calculations are performed in the framework of the model of unstable particles with smeared mass-shell. We show that the contribution of the finite Z/W and H widths (their instability) is large in the Higgs resonance range (about -24% and -18% for ZZZ and ZW+W-, respectively, at √ {s} = 300 GeV) and should be taken into account in the Higgs boson studies at the future International Linear Collider.

  7. Finite-width effects for the localized edge modes in zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Akbari-Sharbaf, Arash; Cottam, Michael G.

    2016-06-01

    A matrix formalism is used to derive the analytical Green's functions describing correlations between any two atomic sites on a zigzag (ZZ) graphene nanoribbon, incorporating modified electronic hopping values between edge sites that may be distinct from the hopping between interior sites. An analysis of the poles of our Green's functions shows two distinct types of localized edge modes in the electronic spectrum. The first of these, the "zero" mode, is a topologically induced mode arising from the bipartite honeycomb lattice structure of graphene and is always present along ZZ edges. The second type of localized edge mode is present at edges when the edge-to-bulk hopping ratio deviates significantly from unity. The correlations between edge sites are found to exhibit strikingly different features when mediated by the zero edge mode compared with mediation by the "modified" edge mode. In particular, the zero-mode spectral intensity for correlations between two atomic sites along opposite edges can be comparable in strength with that between two sites on the same edge of a finite-width ribbon, before it eventually tends to zero as the ribbon width tends to infinity. This remarkable behavior shows a strong dependence on the sublattice labels of the sites and is in contrast with properties of the modified hopping edge modes. The explicit form of our analytical expressions for the electronic spectrum enables us to predict the zero-mode properties (including frequency, spatial attenuation, and intensity) when the hopping values along ZZ edges are modified.

  8. Coupling Between CPW and Slotline Modes in Finite Ground CPW with Unequal Ground Plane Widths

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Papapolymerou, John; Williams, W. D. (Technical Monitor); Tentzeris, Emmanouil M.

    2002-01-01

    The coupling between the desired CPW mode and the unwanted, slotline, mode is presented for finite ground coplanar waveguides with unequal ground plane widths. Measurements, quasi-static conformal mapping, and Method of Moment analysis are performed to determine the dependence of the slotline mode excitation on the physical dimensions of the FGC line and on the frequency range of operation. Introduction: Finite ground coplanar waveguide (FGC) is often used in low cost Monolithic Microwave Integrated Circuits (MMICs) because of its many advantages over microstrip and conventional CoPlanar Waveguide (CPW). It is uniplanar, which facilitates easy connection of series and shunt elements without via holes, supports a low loss, quasi-TEM mode over a wide frequency band, and since the ground planes are electrically and physically narrow, typically less than lambda/5 wide where lambda is the guided wavelength, they reduce the circuit size and the influence of higher order modes. However, they still support the parasitic slotline mode that plagues all CPW transmission lines.

  9. Finite Element Modeling of a Semi-Rigid Hybrid Mirror and a Highly Actuated Membrane Mirror as Candidates for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Craig, Larry; Jacobson, Dave; Mosier, Gary; Nein, Max; Page, Timothy; Redding, Dave; Sutherlin, Steve; Wilkerson, Gary

    2000-01-01

    Advanced space telescopes, which will eventually replace the Hubble Space Telescope (HTS), will have apertures of 8 - 20 n. Primary mirrors of these dimensions will have to be foldable to fit into the space launcher. By necessity these mirrors will be extremely light weight and flexible and the historical approaches to mirror designs, where the mirror is made as rigid as possible to maintain figure and to serve as the anchor for the entire telescope, cannot be applied any longer. New design concepts and verifications will depend entirely on analytical methods to predict optical performance. Finite element modeling of the structural and thermal behavior of such mirrors is becoming the tool for advanced space mirror designs. This paper discusses some of the preliminary tasks and study results, which are currently the basis for the design studies of the Next Generation Space Telescope.

  10. Validation Studies of the Finite Orbit Width version of the CQL3D code

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Harvey, R. W.

    2014-10-01

    The Finite-Orbit-Width (FOW) version of the CQL3D bounce-averaged Fokker-Planck (FP) code has been further developed and tested. The neoclassical radial transport appears naturally in this version by averaging the local collision coefficients along guiding center orbits, with a proper transformation matrix from local (R,Z) coordinates to the midplane computational coordinates, where the FP equation is solved. In a similar way, the local quasilinear rf diffusion terms give rise to additional radial transport of orbits. The main challenge is the internal boundary conditions (IBC) which add many elements into the matrix of coefficients for the solution of FPE on the computational grid, effectively making it a non-banded matrix (but still sparse). Steady state runs have been achieved at NERSC supercomputers in typically 10 time steps. Validation tests are performed for NSTX conditions, but using different scaling factors of equilibrium magnetic field, from 0.5 to 8.0. The bootstrap current calculations for ions show a reasonable agreement of current density profiles with Sauter et al. model equations which are based on 1st order expansion, although the magnitudes of currents may differ by up to 30%. Supported by USDOE grants SC0006614, ER54744, and ER44649.

  11. Effect of Finite-Ion-Banana-Width on the Polarization Contribution to the Neoclassical Tearing Modes Evolution

    NASA Astrophysics Data System (ADS)

    Qu, Hongpeng; Peng, Xiaodong; Shen, Yong; Wang, Aike; Hao, Guangzhou; Hu, Shilin

    2014-12-01

    In the previous analytical description of the neoclassical polarization current effect on the neoclassical tearing modes (NTMs), it is usually assumed that the magnetic island is much larger than the finite-ion-banana-width (FBW). This assumption is questionable when the experimentally observed seed island width of the NTMs is comparable to the FBW. We introduce a simple and direct theoretical method to investigate the FBW effect on the neoclassical polarization contribution to the NTM evolution in collisional plasmas. The results show that, the FBW effect can strongly modify the neoclassical polarization current profile near the island separatrix, and thus weaken its probably stabilizing effect on the NTMs.

  12. Coupling Between Microstrip Lines with Finite Width Ground Plane Embedded in Polyimide Layers for 3D-MMICs on Si

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Dalton, Edan; Tentzeris, Emmanouil M.; Papapolymerou, John; Williams, W. Dan (Technical Monitor)

    2001-01-01

    Three-dimensional circuits built upon multiple layers of polyimide are required for constructing Si/SiGe monolithic microwave/millimeter-wave integrated circuits on complementary metal oxide semiconductor (CMOS) (low resistivity) Si wafers. Thin film microstrip lines (TFMS) with finite width ground planes embedded in the polyimide are often used. However, the closely spaced TFMS lines are susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and experimental measurements are used to show that the ground planes must be connected by via holes to reduce coupling in both the forward and backward directions.

  13. The plastic response of a cylindrical shell subjected to an internal blast wave with a finite width shock front

    NASA Astrophysics Data System (ADS)

    Kivity, Y.; Florie, C.; Lenselink, H.

    1993-02-01

    This paper considers the plastic deformation of a thin cylindrical shell subjected to an internal explosion. It is assumed that the explosive charge is placed on the axis of symmetry of the shell so that an axisymmetric blast wave is produced. The shell response is calculated assuming an elastic-perfectly plastic material. The plastic response is evaluated for two types of loads. In the first type, the blast is assumed to have an ideal shock front with a discontinuous jump to the peak pressure. In the second type of loading, the shock front has a finite rise-time. This type of loading was introduced to study the effect of finite width shock fronts. Such finite width shock fronts are typical of hydrocode calculations when simulating problems involving blast waves and their interactions with adjacent structures. It is found that for equal impulse loads, the numerical rise-time reduces the shell plastic response significantly. Numerical calculations with a three-dimensional hydrocode are presented to illustrate the analytical results. A generalization of the analysis is given which may be used to determine the required mesh resolution of a hydrocode calculation in order to obtain a prescribed accuracy in the shell response.

  14. Surface cracks in a plate of finite width under tension or bending

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Boduroglu, H.

    1984-01-01

    The problem of a finite plate containing collinear surface cracks is considered and solved by using the line spring model with plane elasticity and Reissner's plate theory. The main focus is on the effect of interaction between two cracks or between cracks and stress-free plate boundaries on the stress intensity factors in an effort to provide extensive numerical results which may be useful in applications. Some sample results are obtained and are compared with the existing finite element results. Then the problem is solved for a single (internal) crack, two collinear cracks, and two corner cracks for wide range of relative dimensions. Particularly in corner cracks, the agreement with the finite element solution is surprisingly very good. The results are obtained for semi-elliptic and rectangular crack profiles which may, in practice, correspond to two limiting cases of the actual profile of a subcritically growing surface crack.

  15. Surface cracks in a plate of finite width under extension or bending

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Boduroglu, H.

    1984-01-01

    In this paper the problem of a finite plate containing collinear surface cracks is considered. The problem is solved by using the line spring model with plane elasticity and Reissner's plate theory. The main purpose of the study is to investigate the effect of interaction between two cracks or between cracks and stress-free plate boundaries on the stress intensity factors and to provide extensive numerical results which may be useful in applications. First, some sample results are obtained and are compared with the existing finite element results. Then the problem is solved for a single (internal) crack, two collinear cracks and two corner cracks for wide range of relative dimensions. Particularly in corner cracks the agreement with the finite element solution is surprisingly very good. The results are obtained for semielliptic and rectangular crack profiles which may, in practice, correspond to two limiting cases of the actual profile of a subcritically growing surface crack.

  16. Energy-dependent finite-orbit treatment for plasma buildup in mirror fusion devices

    SciTech Connect

    Campbell, M.M.

    1980-01-01

    A computer simulation of hot plasma buildup in mirror fusion devices and results from this model are presented. In a small, hot magnetically confined plasma, the ion orbit radius (rho/sub i/) can be comparable to the plasma radius (R/sub p/). It a mirror-confined plasma were rho/sub i//R/sub p/ > 1/25 (such as 2XII-B), a point kinetic treatment of ion interactions becomes inaccurate and a finite gyro-radius (FGR) treatment must be used to adequately describe plasma buildup processes. This is particularly true for describing losses due to cold-gas charge exchange (c-x) near the plasma surface, since a particle lost near the vacuum interface may have contributed to the density as far as 2 rho/sub i/ radially inward from the c-x point. A similar FGR effect applies to beam-deposited ions whose large orbits influence the density up to 2 rho/sub i/ from the trapping point.

  17. Finite-Orbit-Width version of the CQL3D for description of RF-enhanced neoclassical transport

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Harvey, R. W.

    2015-12-01

    The CQL3D bounce-averaged Fokker-Planck (FP) code [l] has been upgraded to include Finite-Orbit-Width (FOW) effects. The calculations can be done either with a fast Hybrid-FOW option or with a slower but neoclassically complete full-FOW option. The neoclassical radial transport appears naturally in the full-FOW version by averaging the local collision coefficients along guiding center orbits, with a proper transformation matrix from local (R, Z) coordinates to the midplane computational coordinates, where the FP equation is solved. In a similar way, the local quasilinear rf diffusion terms give rise to additional radial transport of orbits. The results of validation tests for the full-FOW version are presented.

  18. Calibration approach for fluorescence lifetime determination for applications using time-gated detection and finite pulse width excitation.

    PubMed

    Keller, Scott B; Dudley, Jonathan A; Binzel, Katherine; Jasensky, Joshua; de Pedro, Hector Michael; Frey, Eric W; Urayama, Paul

    2008-10-15

    Time-gated techniques are useful for the rapid sampling of excited-state (fluorescence) emission decays in the time domain. Gated detectors coupled with bright, economical, nanosecond-pulsed light sources like flashlamps and nitrogen lasers are an attractive combination for bioanalytical and biomedical applications. Here we present a calibration approach for lifetime determination that is noniterative and that does not assume a negligible instrument response function (i.e., a negligible excitation pulse width) as does most current rapid lifetime determination approaches. Analogous to a transducer-based sensor, signals from fluorophores of known lifetime (0.5-12 ns) serve as calibration references. A fast avalanche photodiode and a GHz-bandwidth digital oscilloscope is used to detect transient emission from reference samples excited using a nitrogen laser. We find that the normalized time-integrated emission signal is proportional to the lifetime, which can be determined with good reproducibility (typically <100 ps) even for data with poor signal-to-noise ratios ( approximately 20). Results are in good agreement with simulations. Additionally, a new time-gating scheme for fluorescence lifetime imaging applications is proposed. In conclusion, a calibration-based approach is a valuable analysis tool for the rapid determination of lifetime in applications using time-gated detection and finite pulse width excitation. PMID:18798652

  19. Finite Orbit Width versions of the CQL3D code: Hybrid-FOW and Full-FOW

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Harvey, R. W.

    2012-10-01

    Finite-Orbit-Width (FOW) effects are being added into the CQL3D bounce-averaged Fokker-Planck code [1] using two main options. In the Hybrid-FOW option, partial FOW capabilities are implemented which add FOW features into the particle source (NB) operator, RF quasilinear operator, diagnostics, and guiding center orbit losses with gyro-radius correction. Collisions remain Zero-Orbit-Width (ZOW). The Hybrid-FOW version provides a greatly improved agreement with signals measured by the NSTX Fast Ion Diagnostic [2]. The advantage of the Hybrid-FOW version is that run time increases by only a factor of two compared to ZOW runs. The Full-FOW option further adds neoclassical radial transport features into the FP coding. The collisional coefficients are averaged along guiding center orbits, with a proper transformation matrix from local coordinates to the midplane coordinates, where the FP equation is solved. All radial terms are included. The computations are parallelized in velocity-grid index, typically using 128 CPU cores. We emphasize that this theory includes nonthermal and full-orbit, not first order correction, neoclassical theory. [4pt] [1] R.W. Harvey and M. McCoy, ``The CQL3D Fokker Planck Code,'' www.compxco.com/cql3d [0pt] [2] R.W. Harvey, Yu. Petrov, D. Liu, W. Heidbrink, P. Bonoli, this mtg (2012)

  20. Non-perturbative modelling of energetic particle effects on resistive wall mode: Anisotropy and finite orbit width

    SciTech Connect

    Liu, Yueqiang Chapman, I. T.; Hao, G. Z.; Wang, Z. R.; Menard, J. E.; Okabayashi, M.; Strait, E. J.; Turnbull, A.

    2014-05-15

    A non-perturbative magnetohydrodynamic-kinetic hybrid formulation is developed and implemented into the MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)] that takes into account the anisotropy and asymmetry [Graves et al., Nature Commun. 3, 624 (2012)] of the equilibrium distribution of energetic particles (EPs) in particle pitch angle space, as well as first order finite orbit width (FOW) corrections for both passing and trapped EPs. Anisotropic models, which affect both the adiabatic and non-adiabatic drift kinetic energy contributions, are implemented for both neutral beam injection and ion cyclotron resonant heating induced EPs. The first order FOW correction does not contribute to the precessional drift resonance of trapped particles, but generally remains finite for the bounce and transit resonance contributions, as well as for the adiabatic contributions from asymmetrically distributed passing particles. Numerical results for a 9MA steady state ITER plasma suggest that (i) both the anisotropy and FOW effects can be important for the resistive wall mode stability in ITER plasmas; and (ii) the non-perturbative approach predicts less kinetic stabilization of the mode, than the perturbative approach, in the presence of anisotropy and FOW effects for the EPs. The latter may partially be related to the modification of the eigenfunction of the mode by the drift kinetic effects.

  1. A Parametric Finite-Element Model for Evaluating Segmented Mirrors with Discrete, Edgewise Connectivity

    NASA Technical Reports Server (NTRS)

    Gersh-Range, Jessica A.; Arnold, William R.; Peck, Mason A.; Stahl, H. Philip

    2011-01-01

    Since future astrophysics missions require space telescopes with apertures of at least 10 meters, there is a need for on-orbit assembly methods that decouple the size of the primary mirror from the choice of launch vehicle. One option is to connect the segments edgewise using mechanisms analogous to damped springs. To evaluate the feasibility of this approach, a parametric ANSYS model that calculates the mode shapes, natural frequencies, and disturbance response of such a mirror, as well as of the equivalent monolithic mirror, has been developed. This model constructs a mirror using rings of hexagonal segments that are either connected continuously along the edges (to form a monolith) or at discrete locations corresponding to the mechanism locations (to form a segmented mirror). As an example, this paper presents the case of a mirror whose segments are connected edgewise by mechanisms analogous to a set of four collocated single-degree-of-freedom damped springs. The results of a set of parameter studies suggest that such mechanisms can be used to create a 15-m segmented mirror that behaves similarly to a monolith, although fully predicting the segmented mirror performance would require incorporating measured mechanism properties into the model. Keywords: segmented mirror, edgewise connectivity, space telescope

  2. Mirror profile optimization for nano-focusing KB mirror

    SciTech Connect

    Zhang Lin; Baker, Robert; Barrett, Ray; Cloetens, Peter; Dabin, Yves

    2010-06-23

    A KB focusing mirror width profile has been optimized to achieve nano-focusing for the nano-imaging end-station ID22NI at the ESRF. The complete mirror and flexure bender assembly has been modeled in 3D with finite element analysis using ANSYS. Bender stiffness, anticlastic effects and geometrical non-linear effects have been considered. Various points have been studied: anisotropy and crystal orientation, stress in the mirror and bender, actuator resolution and the mirror-bender adhesive bonding... Extremely high performance of the mirror is expected with residual slope error smaller than 0.6 {mu}rad, peak-to-valley, compared to the bent slope of 3000 {mu}rad.

  3. Application of the Finite Orbit Width Version of the CQL3D Code to NBI +RF Heating of NSTX Plasma

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Harvey, R. W.

    2015-11-01

    The CQL3D bounce-averaged Fokker-Planck (FP) code has been upgraded to include Finite-Orbit-Width (FOW) effects. The calculations can be done either with a fast Hybrid-FOW option or with a slower but neoclassically complete full-FOW option. The banana regime neoclassical radial transport appears naturally in the full-FOW version by averaging the local collision coefficients along guiding center orbits, with a proper transformation matrix from local (R, Z) coordinates to the midplane computational coordinates, where the FP equation is solved. In a similar way, the local quasilinear rf diffusion terms give rise to additional radial transport of orbits. The full-FOW version is applied to simulation of ion heating in NSTX plasma. It is demonstrated that it can describe the physics of transport phenomena in plasma with auxiliary heating, in particular, the enhancement of the radial transport of ions by RF heating and the occurrence of the bootstrap current. Because of the bounce-averaging on the FPE, the results are obtained in a relatively short computational time. A typical full-FOW run time is 30 min using 140 MPI cores. Due to an implicit solver, calculations with a large time step (tested up to dt = 0.5 sec) remain stable. Supported by USDOE grants SC0006614, ER54744, and ER44649.

  4. Variation of the plasma-sheet polytropic index along the midnight meridian in a finite-width magnetotail. Technical report

    SciTech Connect

    Spence, H.E.; Kivelson, M.G.

    1990-08-15

    The polytropic index is obtained as a function of distance along the midnight meridian in the terrestrial magnetotail. As our purpose is to establish the effects of the finite width of the magnetotail, we use a simple theoretical model of plasma sheet convection, i.e., two-dimensional field structure and adiabatic inward convection of a uniform distant tail source. Particle orbits are treated independently for portions of the phase space distribution on shells of constant energy. On the midnight meridian, the moments of the distribution are parameterized by tau, the ratio of half the cross-tail potential energy to the characteristic Maxwellian energy of a distant down-tail plasma source. We infer from the model the plasma pressure, P, and the number density, n, along the midnight meridian as a function of tau. P and n define locally an effective polytropic index. Gamma ranges between 5/3 and 1, depending on the value of tau and on geocentric distance. The qualitative differences between the recent empirical determinations of the polytropic index by Baumjohann and Paschmann and Huang et al. may be accounted for in part by this simple model.

  5. The variation of the plasma sheet polytropic index along the midnight meridian in a finite width magnetotail

    SciTech Connect

    Spence, H.E. ); Kivelson, M.G. )

    1990-04-01

    The authors have obtained the polytropic index as a function of distance along the midnight meridian in the terrestrial magnetotail. As their purpose is to establish the effects of the finite width of the magnetotail, they use a simple theoretical model of plasma sheet convection, i.e., 2-dimensional (2D) field structure and adiabatic inward convection of a uniform distant tail source. Particle orbits are treated independently for portions of the phase space distribution on shells of constant energy. On the midnight meridian, the moments of the distribution are parameterized by {tau}, the ratio of half the crosstail potential energy to the characteristic maxwellian energy of a distant downtail plasma source. They infer from the model the plasma pressure, P, and the number density, n, along the midnight meridian as a function of {tau}. P and n define locally an effective polytropic index, {gamma}. They find that {gamma} ranges between 5/3 and 1, depending on the value of {tau} and on geocentric distance. They suggest that the qualitative differences between the recent empirical determinations of the polytropic index by Baumjohann et al. (1989) and Huang et al. (1989) may be accounted for in part by this simple model.

  6. Anastigmatic three-mirror telescope

    NASA Technical Reports Server (NTRS)

    Korsch, D. G. (Inventor)

    1978-01-01

    A three-mirror telescope for extraterrestrial observations is described. An ellipsoidal primary mirror, a hyperbolic secondary mirror, and an ellipsoidal tertiary mirror, produce an image in a conveniently located finite plane for viewing.

  7. Mutual coupling between circular apertures on an infinite conducting ground plane and radiating into a finite width slab

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos

    1990-01-01

    The problem of electromagnetic coupling between two horns is of interest for the Microwave Reflectometer Ionization Sensor (MRIS) that will be used in the Aeroassist Flight Experiment (AFE). Laboratory measurements of mutual coupling between conical horns (using a flat metallic reflector to simulate a critically dense plasma outside) have shown a strong dependence on the finite dimensions of the shuttle tile over the apertures. Since both, the dielectric tile and the plasma outside the tile reflect microwaves, a study should be done to isolate the two mechanisms so that the MRIS reentry flight data can be interpreted correctly. Once the coupling due to the tile itself is determined then the location of the critial electron number density layers can be determined. As a first attempt to tackle this problem the Geometrical Theory of Diffraction was used to modify the existing solution to mutual coupling between apertures with infinite dielectric sheets. By using the equivalent current method, aperture theory to determine the radiated fields inside the dielectric tiles, and ray tracing the contributions to mutual coupling were determined. Results from two cases with different tile thicknesses have indicated that the main contribution to mutual coupling is due to diffraction from the bottom and top (back and front) wedges.

  8. Experience of validation and tuning of turbulence models as applied to the problem of boundary layer separation on a finite-width wedge

    NASA Astrophysics Data System (ADS)

    Babulin, A. A.; Bosnyakov, S. M.; Vlasenko, V. V.; Engulatova, M. F.; Matyash, S. V.; Mikhailov, S. V.

    2016-06-01

    Modern differential turbulence models are validated by computing a separation zone generated in the supersonic flow past a compression wedge lying on a plate of finite width. The results of three- and two-dimensional computations based on the ( q-ω), SST, and Spalart-Allmaras turbulence models are compared with experimental data obtained for 8°, 25°, and 45° wedges by A.A. Zheltovodov at the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences. An original law-of-the-wall boundary condition and modifications of the SST model intended for improving the quality of the computed separation zone are described.

  9. Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Hurlimann, M. D.; Sen, P. N.; Schwartz, L. M.; Patz, S.; Walsworth, R. L.

    2001-01-01

    We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects.

  10. Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media.

    PubMed

    Mair, R W; Hürlimann, M D; Sen, P N; Schwartz, L M; Patz, S; Walsworth, R L

    2001-01-01

    We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects. PMID:11445310

  11. Dynamic characteristics of double-barrier nanostructures with asymmetric barriers of finite height and widths in a strong ac electric field

    SciTech Connect

    Chuenkov, V. A.

    2013-12-15

    The theory of the interaction of a monoenergetic flow of injected electrons with a strong high-frequency ac electric field in resonant-tunneling diode (RTD) structures with asymmetric barriers of finite height and width is generalized. In the quasi-classical approximation, electron wavefunctions and tunneling functions in the quantum well and barriers are found. Analytical expressions for polarization currents in RTDs are derived in both the general case and in a number of limiting cases. It is shown that the polarization currents and radiation power in RTDs with asymmetric barriers strongly depend on the ratio of the probabilities of electron tunneling through the emitter and collector barriers. In the quantum mode, when δ = ε − ε{sub r} = ħω ≪ Γ (ε is the energy of electrons injected in the RTD, ħ is Planck’s constant, ω is the ac field frequency, ε{sub r} and Γ are the energy and width of the resonance level, respectively), the active polarization current in a field of E ≈ 2.8ħω/ea (e is the electron charge and a is the quantum-well width) reaches a maximum equal in magnitude to 84% of the direct resonant current, if the probability of electron tunneling through the emitter barrier is much higher than that through the collector barrier. The radiation-generation power at frequencies of ω = 10{sup 12}–10{sup 13} s{sup −1} can reach 10{sup 5}–10{sup 6} W/cm{sup 2} in this case.

  12. An Investigation into the Response of a Micro Electro Mechanical Compound Pivot Mirror Using Finite Element Modeling

    SciTech Connect

    GASS, FAWN R.; DOHNER, JEFFREY L.

    2002-01-01

    This report is a presentation of modeling and simulation work for analyzing three designs of Micro Electro Mechanical (MEM) Compound Pivot Mirrors (CPM). These CPMs were made at Sandia National Laboratories using the SUMMiT{trademark} process. At 75 volts and above, initial experimental analysis of fabricated mirrors showed tilt angles of up to 7.5 degrees for one design, and 5 degrees for the other two. Nevertheless, geometric design models predicted higher tilt angles. Therefore, a detailed study was conducted to explain why lower tilt angles occurred and if design modifications could be made to produce higher tilt angles at lower voltages. This study showed that the spring stiffnesses of the CPMs were too great to allow for desired levels of rotation at lower levels of voltage. To produce these lower stiffnesses, a redesign is needed.

  13. Expansions for infinite or finite plane circular time-reversal mirrors and acoustic curtains for wave-field-synthesis.

    PubMed

    Mellow, Tim; Kärkkäinen, Leo

    2014-03-01

    An acoustic curtain is an array of microphones used for recording sound which is subsequently reproduced through an array of loudspeakers in which each loudspeaker reproduces the signal from its corresponding microphone. Here the sound originates from a point source on the axis of symmetry of the circular array. The Kirchhoff-Helmholtz integral for a plane circular curtain is solved analytically as fast-converging expansions, assuming an ideal continuous array, to speed up computations and provide insight. By reversing the time sequence of the recording (or reversing the direction of propagation of the incident wave so that the point source becomes an "ideal" point sink), the curtain becomes a time reversal mirror and the analytical solution for this is given simultaneously. In the case of an infinite planar array, it is demonstrated that either a monopole or dipole curtain will reproduce the diverging sound field of the point source on the far side. However, although the real part of the sound field of the infinite time-reversal mirror is reproduced, the imaginary part is an approximation due to the missing singularity. It is shown that the approximation may be improved by using the appropriate combination of monopole and dipole sources in the mirror. PMID:24606267

  14. Ion microstability in tandem mirrors

    SciTech Connect

    Pearlstein, L.D.

    1983-08-29

    The formalism describing ion-cyclotron modes in mirror traps will be developed. Emphasis will be placed on the effects of finite axial boundaries on the normal modes of the system. Wave properties are a composite picture of: positive energy waves (plasma oscillation, shear Alfven and drift waves), negative energy waves (ion Bernstein waves in a loss-cone media), positive dissipation (electron Landau damping, outgoing waves), and negative dissipation (ion cyclotron damping in a loss-cone and anisotropic temperature medium). Stability boundaries in this bounded media is affected by scale lengths along the magnetic field; first, because they determine the widths of the resonances, and second, because they restrict the parallel structure of the modes.

  15. Virtual Mirrors

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2010-01-01

    The multiple-reflection photograph in Fig. 1 was taken in an elevator on board the cruise ship Norwegian Jade in March 2008. Three of the four walls of the elevator were mirrored, allowing me to see the combination of two standard arrangements of plane mirrors: two mirrors set at 90 degrees to each other and two parallel mirrors. Optical phenomena…

  16. Active control of a large deformable mirror for future E-ELT

    NASA Astrophysics Data System (ADS)

    Gasmi, R.; Le Bihan, D.; Dournaux, J. L.; Sinquin, J. C.; Jagourel, P.

    2010-07-01

    Increasing dimensions of ground based telescopes and adaptive optics needs for these instruments require wide deformable mirrors with a high number of actuators to compensate the effects of the atmospheric turbulence on the wave fronts. The new dimensions and characteristics of these deformable mirrors lead to the apparition of structural vibrations, which may reduce the rejection band width of the adaptive optics control loop. The aim of this paper is the study of the dynamic behavior of a 1-meter prototype of E-ELT's deformable mirror in order to identify its eigenmodes and to propose some ways to control its vibrations. We first present the first eigenmodes of the structure determined by both finite element analysis and experimental modal analysis. Then we present the frequency response of the prototype to a tilt excitation to estimate the effects of its vibrations on the adaptive optics loop. Finally we suggest a method to control the dynamics of the deformable mirror.

  17. 49 CFR 571.111 - Standard No. 111; Rearview mirrors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... mirror that reflect images, excluding the mirror rim or mounting brackets. Unit magnification mirror... image of an object is equal to the angular height and width of the object when viewed directly at the... WHILE BUS IS MOVING. IMAGES IN SUCH MIRRORS DO NOT ACCURATELY SHOW ANOTHER VEHICLE'S LOCATION.”...

  18. 49 CFR 571.111 - Standard No. 111; Rearview mirrors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... mirror that reflect images, excluding the mirror rim or mounting brackets. Unit magnification mirror... image of an object is equal to the angular height and width of the object when viewed directly at the... WHILE BUS IS MOVING. IMAGES IN SUCH MIRRORS DO NOT ACCURATELY SHOW ANOTHER VEHICLE'S LOCATION.”...

  19. AXAF VETA-I mirror ring focus measurements

    NASA Technical Reports Server (NTRS)

    Tananbaum, H. D.; Zhao, P.

    1994-01-01

    The AXAF VETA-I mirror ring focus measurements were made with an HRI (microchannel plate) X-ray detector. The ring focus is a sharply focused ring formed by X-rays before they reach the VEAT-I focal plane. It is caused by spherical aberrations due to the finite source distance and the despace in the VETA-I test. The ring focus test reveals some aspects fo the test system distortions and the mirror surface figure which are difficult or impossible to detect at the focal plane. The test results show periodic modulations of the ring radius and width which could be caused by gravity, thermal, and/or epoxy shrinkage distortions. The strongest component of the modulation had a 12-fold symmetry, because these distortions were exerted on the mirror through 12 flexures of the VETA-I mount. Ring focus models were developed to simulate the ring image. The models were compared with the data to understand the test system distortions and the mirror glass imperfection. Further studies will be done to complete this work. The ring focus measurement is a very powerful test. We expect that a similar test for the finally assembled mirror of AXAD-I will be highly valuable.

  20. Mirror mount

    DOEpatents

    Kuklo, Thomas C.; Bender, Donald A.

    1994-01-01

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for "X" and "Y" tilts of the mirror only. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time.

  1. Einstein's Mirror

    ERIC Educational Resources Information Center

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  2. Chiral mirrors

    SciTech Connect

    Plum, Eric; Zheludev, Nikolay I.

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  3. Micromachined mirrors

    NASA Astrophysics Data System (ADS)

    Conant, Robert Alan

    This dissertation discusses the fundamental limits of scanning mirror design, focusing on the limitations due to the interaction between mechanical properties (mirror flatness and dynamic deformation), and optical properties (beam divergence and optical resolution). The performance criteria for both resonant-scanning mirrors and steady-state, beam-positioning mirrors are related to the mirror geometries, desired optical resolution, material properties, and mechanical resonant frequencies. The optical resolution of the scanning mirror is linearly dependent on the mirror length, so longer mirrors should provide higher-resolution scanners. However, when undergoing an angular acceleration mirrors exhibit dynamic deformation, which is shown to be proportional to the fifth power of the length. Two different implementations of MEMS scanning mirrors are presented: polysilicon surface-micromachined mirrors and a new design we call the Staggered Torsional Electrostatic Combdrive (STEC) micromirror. The surface-micromachined mirrors are shown to be capable of reliable operation, but they have significant performance limitations caused by the limited thickness obtainable with the LPCVD-polysilicon structures. Calculations show that surface-micromachined mirrors of thickness 1.5 mum and diameter 550 mum are only capable of scanning +/-10 degrees at 251 Hz while retaining diffraction-limited optical performance. The STEC micromirrors, designed to overcome the limitations of the surface-micromachined mirrors, are capable of much higher-speed scanning (up to 61 kHz) without performance-limiting dynamic deformation of the mirror surface. The STEC micromirror fabrication process is extended to create Tensile Optical Surface (TOS) micromirrors---mirrors with thick silicon rib support structures and thin membranes that provide the reflective surface. An application of scanning mirrors is presented: a raster-scanning video display. This demonstration uses two surface

  4. Mirror mount

    DOEpatents

    Kuklo, T.C.; Bender, D.A.

    1994-10-04

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for ''X'' and ''Y'' tilts of the mirror only is disclosed. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time. 4 figs.

  5. Final Technical Report for SBIR entitled Four-Dimensional Finite-Orbit-Width Fokker-Planck Code with Sources, for Neoclassical/Anomalous Transport Simulation of Ion and Electron Distributions

    SciTech Connect

    Harvey, R. W.; Petrov, Yu. V.

    2013-12-03

    Within the US Department of Energy/Office of Fusion Energy magnetic fusion research program, there is an important whole-plasma-modeling need for a radio-frequency/neutral-beam-injection (RF/NBI) transport-oriented finite-difference Fokker-Planck (FP) code with combined capabilities for 4D (2R2V) geometry near the fusion plasma periphery, and computationally less demanding 3D (1R2V) bounce-averaged capabilities for plasma in the core of fusion devices. Demonstration of proof-of-principle achievement of this goal has been carried out in research carried out under Phase I of the SBIR award. Two DOE-sponsored codes, the CQL3D bounce-average Fokker-Planck code in which CompX has specialized, and the COGENT 4D, plasma edge-oriented Fokker-Planck code which has been constructed by Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory scientists, where coupled. Coupling was achieved by using CQL3D calculated velocity distributions including an energetic tail resulting from NBI, as boundary conditions for the COGENT code over the two-dimensional velocity space on a spatial interface (flux) surface at a given radius near the plasma periphery. The finite-orbit-width fast ions from the CQL3D distributions penetrated into the peripheral plasma modeled by the COGENT code. This combined code demonstrates the feasibility of the proposed 3D/4D code. By combining these codes, the greatest computational efficiency is achieved subject to present modeling needs in toroidally symmetric magnetic fusion devices. The more efficient 3D code can be used in its regions of applicability, coupled to the more computationally demanding 4D code in higher collisionality edge plasma regions where that extended capability is necessary for accurate representation of the plasma. More efficient code leads to greater use and utility of the model. An ancillary aim of the project is to make the combined 3D/4D code user friendly. Achievement of full-coupling of these two Fokker

  6. Magic Mirrors

    ERIC Educational Resources Information Center

    Mills, Allan

    2011-01-01

    "Magic mirrors" were so named because, when they were positioned to throw a reflected patch of sunlight on a nearby wall, this area contained an outline of a design cast on the back of the (bronze) mirror. Investigations begun in the 19th century showed that this was a response to heavy localized pressures exerted on the face of the thin mirror…

  7. Slumped mirrors

    NASA Astrophysics Data System (ADS)

    Pteancu, Mircea; Dragan, Dorin; Dragan, Olivier; Miron, Andrei; Stanescu, Octavian

    2008-02-01

    The authors discusse the construction of slumped mirrors, their fabrication and testing (polishing and lapping). An important topic of the discussion is thermal fabrication of mirrors by using of matrixes. One of the authors of the entry is combining astronomy and aquariums construction.

  8. Einstein's Mirror

    NASA Astrophysics Data System (ADS)

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-10-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity.1-4 The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a constant velocity.5 Einstein showed an intriguing fact that the usual law of reflection would not hold in the case of a uniformly moving mirror, that is, the angles of incidence and reflection of the light would not equal each other. Later on, it has been shown that the law of reflection at a moving mirror can be obtained in various alternative ways,6-10 but none of them seems suitable for bringing this interesting subject into the high school classroom.

  9. Quantum radiation force on a moving mirror with Dirichlet and Neumann boundary conditions for a vacuum, finite temperature, and a coherent state

    SciTech Connect

    Alves, Danilo T.; Lima, Mateus G.; Granhen, Edney R.

    2008-06-15

    We consider a real massless scalar field in a two-dimensional spacetime, satisfying Dirichlet or Neumann boundary condition at the instantaneous position of a moving boundary. For a relativistic law of motion, we show that Dirichlet and Neumann boundary conditions yield the same radiation force on a moving mirror when the initial field state is invariant under time translations. We obtain the exact formulas for the energy density of the field and the radiation force on the boundary for vacuum, thermal, coherent, and squeezed states. In the nonrelativistic limit, our results coincide with those found in the literature.

  10. Mirror, Mirror on the Wall...?

    ERIC Educational Resources Information Center

    Pflaster, Gail

    1979-01-01

    The study determined the value of using a mirror for speech teaching by recording manner, place, voicing, and blend errors produced by 27 hearing-impaired children (5-13 years old) while imitating consonant-vowel syllables under three conditions (audition alone, audition plus direct vision, and audition plus vision using a mirror). (Author)

  11. Quantum radiation force on the moving mirror of a cavity, with Dirichlet and Neumann boundary conditions for a vacuum, finite temperature, and a coherent state

    SciTech Connect

    Alves, Danilo T.; Silva, Hector O.; Lima, Mateus G.; Granhen, Edney R.

    2010-01-15

    We consider a real massless scalar field inside a cavity with a moving mirror in a two-dimensional spacetime, satisfying the Dirichlet or Neumann boundary condition at the instantaneous position of the boundaries, for an arbitrary and relativistic law of motion. Considering an arbitrary initial field state, we show that the exact value of the energy density in the cavity can be obtained by tracing back a sequence of null lines, connecting the value of the energy density at the given spacetime point to a certain known value of the energy density at a point in the region where the initial field modes are not affected by the boundary motion. We obtain the particular formulas for the energy density of the field and the quantum force acting on the boundaries for a vacuum, thermal, and a coherent state. We thus generalize a previous result in literature, where this problem is approached for only one mirror. For the particular cases of vacuum and Dirichlet boundary condition, nonrelativistic velocities, or in the limit of large length of the cavity, our results coincide with those found in the literature.

  12. Mirror mount

    DOEpatents

    Humpal, H.H.

    1987-11-10

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.

  13. Mirror mount

    DOEpatents

    Humpal, H.H.

    1986-03-21

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.

  14. Mirror mount

    DOEpatents

    Humpal, Harold H.

    1987-01-01

    A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).

  15. Isospin symmetry in mirror α decays

    NASA Astrophysics Data System (ADS)

    Timofeyuk, N. K.; Descouvemont, P.; Johnson, R. C.

    2007-03-01

    We show that a consequence of isospin symmetry, recently discovered in mirror conjugated one-nucleon decays, can be extended to mirror-conjugated α-particle decays, both virtual and real. For virtual α decays of bound mirror pairs this symmetry manifests itself as a relation between the asymptotic normalization coefficients (ANCs) of α-particle overlap integrals. This relation is given by a simple analytical formula that involves α-particle separation energies and charges of residual nuclei. For bound-unbound mirror pairs, the ANC of a bound nucleus is related to the α width of the mirror unbound level. For unbound mirror pairs we get a new analytical formula that relates the widths of mirror resonances. We test the validity of these analytical formulas against the predictions of a two-body potential and of a many-body microscopic cluster model for several mirror states in Li7-Be7, B11-C11, and F19-Ne19 isotopes. We show that these analytical formulas are valid in many cases but that some deviations can be expected for isotopes with strongly deformed and easily excited cores. In general, the results from microscopic model are not very sensitive to model assumptions and can be used to predict unknown astrophysically relevant cross sections using known information about mirror systems.

  16. Mirror Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Under a NASA contract, MI-CVD developed a process for producing bulk silicon carbide by means of a chemical vapor deposition process. The technology allows growth of a high purity material with superior mechanical/thermal properties and high polishability - ideal for mirror applications. The company employed the technology to develop three research mirrors for NASA Langley and is now marketing it as CVD SILICON CARBIDE. Its advantages include light weight, thermal stability and high reflectivity. The material has nuclear research facility applications and is of interest to industrial users of high power lasers.

  17. Double arch mirror study. Part 2: Engineering analysis report

    NASA Technical Reports Server (NTRS)

    Iraninejad, B.; Vukobratovich, D.

    1983-01-01

    A method of mounting a cryogenically cooled, lightweight, double arch, class mirror for infrared, astronomical telescopes was developed. A 50 cm, fused silica mirror was modified for use in a new mount configuration. The flexures and the finite element analysis of the mirror stresses are reported.

  18. Mirror Support

    NASA Technical Reports Server (NTRS)

    Baron, Richard L. (Inventor)

    2013-01-01

    Disclosed herein is a method of making a mirror support comprising a composite, the composite comprising a plurality of carbon nanotubes, wherein at least two of the plurality of carbon nanotubes are bonded to each other through a bridging moiety bound to each of the two carbon nanotubes, and a laminate comprising the composite.

  19. Conicoid Mirrors

    ERIC Educational Resources Information Center

    Castano, Diego J.; Hawkins, Lawrence C.

    2011-01-01

    The first-order equation relating object and image location for a mirror of arbitrary conic-sectional shape is derived. It is also shown that the parabolic reflecting surface is the only one free of aberration and only in the limiting case of distant sources. (Contains 3 figures.)

  20. Mirror, Mirror, on the Wall.

    ERIC Educational Resources Information Center

    Flowers, Jim; Rose, M. Annette

    1998-01-01

    Students use tables of anthropometric data, their own measurements, underlying principles of physics, and math to solve a problem. The problem is to determine the height of a wall mirror, and where to mount it, so that 90% of the clientele can view their entire length without stretching or bending. (Author)

  1. Mirror monochromator

    SciTech Connect

    Mankos, Marian; Shadman, Khashayar

    2014-12-02

    In this SBIR project, Electron Optica, Inc. (EOI) is developing a mirror electron monochromator (MirrorChrom) attachment to new and retrofitted electron microscopes (EMs) for improving the energy resolution of the EM from the characteristic range of 0.2-0.5 eV to the range of 10-50 meV. This improvement will enhance the characterization of materials by imaging and spectroscopy. In particular, the monochromator will refine the energy spectra characterizing materials, as obtained from transmission EMs [TEMs] fitted with electron spectrometers, and it will increase the spatial resolution of the images of materials taken with scanning EMs (SEMs) operated at low voltages. EOI’s MirrorChrom technology utilizes a magnetic prism to simultaneously deflect the electron beam off the axis of the microscope column by 90° and disperse the electrons in proportional to their energies into a module with an electron mirror and a knife-edge. The knife-edge cuts off the tails of the energy distribution to reduce the energy spread of the electrons that are reflected, and subsequently deflected, back into the microscope column. The knife-edge is less prone to contamination, and thereby charging, than the conventional slits used in existing monochromators, which improves the reliability and stability of the module. The overall design of the MirrorChrom exploits the symmetry inherent in reversing the electron trajectory in order to maintain the beam brightness – a parameter that impacts how well the electron beam can be focused downstream onto a sample. During phase I, EOI drafted a set of candidate monochromator architectures and evaluated the trade-offs between energy resolution and beam current to achieve the optimum design for three particular applications with market potential: increasing the spatial resolution of low voltage SEMs, increasing the energy resolution of low voltage TEMs (beam energy of 5-20 keV), and increasing the energy resolution of conventional TEMs (beam

  2. Large Scale Nanolaminate Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Miles, R; Chang, K

    2005-11-30

    This work concerns the development of a technology that uses Nanolaminate foils to form light-weight, deformable mirrors that are scalable over a wide range of mirror sizes. While MEMS-based deformable mirrors and spatial light modulators have considerably reduced the cost and increased the capabilities of adaptive optic systems, there has not been a way to utilize the advantages of lithography and batch-fabrication to produce large-scale deformable mirrors. This technology is made scalable by using fabrication techniques and lithography that are not limited to the sizes of conventional MEMS devices. Like many MEMS devices, these mirrors use parallel plate electrostatic actuators. This technology replicates that functionality by suspending a horizontal piece of nanolaminate foil over an electrode by electroplated nickel posts. This actuator is attached, with another post, to another nanolaminate foil that acts as the mirror surface. Most MEMS devices are produced with integrated circuit lithography techniques that are capable of very small line widths, but are not scalable to large sizes. This technology is very tolerant of lithography errors and can use coarser, printed circuit board lithography techniques that can be scaled to very large sizes. These mirrors use small, lithographically defined actuators and thin nanolaminate foils allowing them to produce deformations over a large area while minimizing weight. This paper will describe a staged program to develop this technology. First-principles models were developed to determine design parameters. Three stages of fabrication will be described starting with a 3 x 3 device using conventional metal foils and epoxy to a 10-across all-metal device with nanolaminate mirror surfaces.

  3. Mirror systems

    SciTech Connect

    Howells, M.R.

    1985-12-01

    The physics of VUV and x-ray reflection is reviewed. The main functions of mirrors in synchrotron beamlines are stated briefly and include deflection, filtration, power absorption, formation of a real image of the source, focusing, and collimation. Methods of fabrication of optical surfaces are described. Types of imperfections are discussed, including, aberrations, surface figure inaccuracy, roughness, and degradation due to use. Calculation of the photon beam thermal load, including computer modelling, is considered. 50 refs., 7 figs. (LEW)

  4. Novel unimorph adaptive mirrors for astronomy applications

    NASA Astrophysics Data System (ADS)

    Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich

    2012-07-01

    We have developed a new type of unimorph deformable mirror for the correction of low-order Zernike modes. The mirror features a clear aperture of 50 mm combined with large peak-to-valley amplitudes of up to 35 μm. Newly developed fabrication processes allow the use of prefabricated, coated, super-polished glass substrates. The mirror's unique features suggest the use in several astronomical applications like the compensation of atmospheric aberrations seen by laser beacons and the use in woofer-tweeter systems. Additionally, the design enables an efficient correction of the inevitable wave-front error imposed by the floppy structure of primary mirrors in future large space telescopes. We have modeled the mirror by using analytical as well as finite element models. We will present design, key features and manufacturing steps of the deformable mirror.

  5. Pulsed photothermal mirror technique: characterization of opaque materials.

    PubMed

    Capeloto, O A; Lukasievicz, G V B; Zanuto, V S; Herculano, L S; Souza Filho, N E; Novatski, A; Malacarne, L C; Bialkowski, S E; Baesso, M L; Astrath, N G C

    2014-11-20

    The time-resolved thermal mirror technique is developed under pulsed laser excitation for quantitative measurement of thermal and mechanical properties of opaque materials. Heat diffusion and thermoelastic equations are solved analytically for pulsed excitation assuming surface absorption and an instantaneous pulse. Analytical results for the temperature change and surface displacement in the sample are compared to all-numerical solutions using finite element method analysis accounting for the laser pulse width and sample geometry. Experiments are performed that validate the theoretical model and regression fitting is performed to obtain the thermal diffusivity and the linear thermal expansion coefficient of the samples. The values obtained for these properties are in agreement with literature data. The technique is shown to be useful for quantitative determinations of the physics properties of metals with high thermal diffusivity. PMID:25607877

  6. Thermal analysis of a 4m honeycomb telescope primary mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Xian, Hao

    2012-09-01

    Thermal characteristics of a 4m class honeycomb telescope primary mirror are presented. A 3 dimensional finite elements model of the primary mirror with the varying ambient air temperature as the boundary conditions is used for the numerical simulations. Every night's air temperature profile has been detected in 2009 in Gaomeigu observatory site. Four typical nights' air temperature profiles in different seasons are chose as the boundary conditions in finite element simulation. Temperature difference between primary mirror's optical surface and ambient air is studied, as well as the axial temperature difference inner the mirror blank and radial temperature difference on the optical surface. Primary mirror seeing phenomenon results from the temperature difference between primary mirror's optical surface and the ambient air is discussed. Thermal deformations due to temperature gradient of the primary mirror are analyzed by the finite element model. Axial thermal deformations on the optical surface are discussed in detail. Thermal deformation would induce the optical surface of primary mirror to distort from the normal shape, and lead to large observation image quality degradation. Primary mirror seeing with the turbulence near the optical surface would introduce wavefront aberration and deteriorate the final observation image. In order to reduce mirror seeing and thermal deformation, it is necessary to design a thermal control system for primary mirror. The thermal and structural analysis result will be valuable in designing primary mirror's thermal control system.

  7. Chinese "Magic" Mirrors.

    ERIC Educational Resources Information Center

    Swinson, Derek B.

    1992-01-01

    Chinese "magic" mirrors are made from bronze with the front side a mirror and the reverse side a molded image. When light is reflected from the mirror,the image on the reverse side appears. Discusses reflections of conventional mirrors, possible explanations for the magic mirror phenomenon, and applications of the phenomenon to semiconductor…

  8. Narrow Width Pentaquarks

    NASA Astrophysics Data System (ADS)

    Buccella, F.; Sorba, P.

    A general study of pentaquarks built with four quarks in a L=1 state and an antiquark in S-wave shows that several of such states are forbidden by a selection rule, which holds in the limit of flavor symmetry, to decay into a baryon and a meson final state. We identify the most promising /line{10} multiplet for the classification of the Θ+ and Ξ-- particles recently discovered with the prediction of a narrow width for both of them.

  9. Resonances and resonance widths

    SciTech Connect

    Collins, T.

    1986-05-01

    Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.

  10. Double arch mirror study

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  11. Size Optimization for Mirror Segments for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Biskach, Michael P.; McClelland, Ryan S.; Saha, Timo; Zhang, William W.

    2011-01-01

    The flight mirror assemblies (FMA) for X-ray telescopes similar to that of the International X-ray Observatory (IXO) concept consist of several thousands of individual mirror segments. The size, shape, and location of these mirrors affect many characteristics of the telescope design. Mission requirements among other factors in turn restrict mirror segment parameters such as thickness, axial- length, azimuthal span, and mass density. This paper provides an overview of the critical relationships relating to mirror segment size and configuration throughout the design and analysis of an X-ray mirror assembly. A computational analysis is presented in the form of ray tracing pairs of thin X-ray mirror segments of varying sizes aligned in gravity and supported using kinematic constraints with corresponding self weight distortions calculated using finite element analysis (FEA). The work in this paper may be used as a starting point for determining mirror segment sizes for X-ray missions like that of IXO and beyond.

  12. Compliant deformable mirror approach for wavefront improvement

    NASA Astrophysics Data System (ADS)

    Clark, James H.; Penado, F. Ernesto

    2016-04-01

    We describe a compliant static deformable mirror approach to reduce the wavefront concavity at the Navy Precision Optical Interferometer (NPOI). A single actuator pressing on the back surface of just one of the relay mirrors deforms the front surface in a correcting convex shape. Our design uses the mechanical advantage gained from a force actuator sandwiched between a rear flexure plate and the back surface of the mirror. We superimpose wavefront contour measurements with our finite element deformed mirror model. An example analysis showed improvement from 210-nm concave-concave wavefront to 51-nm concave-concave wavefront. With our present model, a 100-nm actuator increment displaces the mirror surface by 1.1 nm. We describe the need for wavefront improvement that arises from the NPOI reconfigurable array, offer a practical design approach, and analyze the support structure and compliant deformable mirror using the finite element method. We conclude that a 20.3-cm-diameter, 1.9-cm-thick Zerodur® mirror shows that it is possible to deform the reflective surface and cancel out three-fourths of the wavefront deformation without overstressing the material.

  13. Diatomic predissociation line widths

    NASA Technical Reports Server (NTRS)

    Child, M. S.

    1973-01-01

    Predissociation by rotation and curve crossing in diatomic molecules is discussed. The pattern of predissociation line widths is seen as providing a highly sensitive yardstick for the determination of unknown potential curves. In addition, the computation of such a pattern for given potential curves is considered a matter of routine, unless the predissociation happens to occur from an adiabatic potential curve. Analytic formulas are used to provide physical insight into the details of the predissociation pattern, to the extent that a direct inversion procedure is developed for determination of the repulsive potential curves for Type 1 predissociations.

  14. Thermal loading considerations for synchrotron radiation mirrors

    SciTech Connect

    Holdener, F.R.; Berglin, E.J.; Fuchs, B.A.; Humpal, H.H.; Karpenko, V.P.; Martin, R.W.; Tirsell, K.G.

    1986-03-26

    Grazing incidence mirrors used to focus synchrotron radiation beams through small distant apertures have severe optical requirements. The surface distortion due to heat loading of the first mirror in a bending magnet beam line is of particular concern when a large fraction of the incident beam is absorbed. In this paper we discuss mirror design considerations involved in minimizing the thermal/mechanical loading on vertically deflecting first surface mirrors required for SPEAR synchrotron radiation beam lines. Topics include selection of mirror material and cooling method, the choice of SiC for the substrate, optimization of the thickness, and the design of the mirror holder and cooling mechanism. Results obtained using two-dimensional, finite-element thermal/mechanical distortion analysis are presented for the case of a 6/sup 0/ grazing incidence SiC mirror absorbing up to 260 W at Beam Line VIII on the SPEAR ring. Test descriptions and results are given for the material used to thermally couple this SiC mirror to a water-cooled block. The interface material is limited to applications for which the equivalent normal heat load is less than 20 W/cm/sup 2/.

  15. Floating mirror mount

    SciTech Connect

    Koop, D.E.

    1989-01-03

    This patent describes a floating mirror mount for a mirror of a laser is described consisting of: a mirror having a front surface and a back surface, a keeper encircling the mirror and having a peripheral flange engaging the front surface of the mirror when the mirror is not installed in a laser, a retainer positioned rearwardly of the back surface of the mirror and connected to the keeper and having a spring seating surface, spring means engageable with the spring seating surface of the retainer for exerting a resilient biasing force on the mirror, and fastening means for connecting the retainer to the mirror positioning structure of the laser on installation of the mirror mount in the laser.

  16. Width of nonlinear resonance

    SciTech Connect

    Ohnuma, S.

    1984-03-01

    Two approximations are made, one essential and the other not so essential but convenient to keep the analytical treatment manageable: (1) Only one nonlinear resonance is considered at a time so that the treatment is best suited when the tune is close to one resonance only. To improve this approximation, one must go to the next order which involves a canonical transformation of dynamical variables. Analytical treatment of more than one resonance is not possible for general cases. (2) In the formalism using the action-angle variables, the Hamiltonian can have terms which are independent of the angle variables. These terms are called phase-independent terms or shear terms. The tune is then a function of the oscillation amplitudes. In the lowest-order treatment, the (4N)-pole components but not the (4N + 2)-pole components contribute to this dependence. In deriving the resonance width analytically, one ignores these terms in the Hamiltonian for the sake of simplicity. If these are retained, one needs at least three extra parameters and the analytical treatment becomes rather unwieldy.

  17. Large thin adaptive x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Doel, Peter; Atkins, Carolyn; Thompson, Samantha; Brooks, David; Yao, Jun; Feldman, Charlotte; Willingale, Richard; Button, Tim; Zhang, Dou; James, Ady

    2007-09-01

    This paper describes the progress made in a proof of concept study and recent results of a research program into large active x-ray mirrors that is part of the UK Smart X-ray Optics project. The ultimate aim is to apply the techniques of active/adaptive optics to the next generation of nested shell astronomical X-ray space telescopes. A variety of deformable mirror technologies are currently available, the most promising of which for active X-ray mirrors are probably unimorph and bimorph piezoelectric mirrors. In this type of mirror one or more sheets of piezoelectric material are bonded to or coated with a passive reflective layer. On the back or between the piezoceramic layer/layers are series of electrodes. Application of an electric field causes the piezoelectric material to undergo local deformation thus changing the mirror shape. Starting in 2005 a proof of concept active mirror research program has been undertaken. This work included modelling and development of actively controlled thin shell mirrors. Finite element models of piezo-electric actuated mirrors have been developed and verified against experimental test systems. This has included the modelling and test of piezo-electric hexagonal unimorph segments. Various actuator types and low shrinkage conductive bonding methods have been investigated and laboratory tests of the use of piezo-electric actuators to adjust the form of an XMM-Newton space telescope engineering model mirror shell have been conducted and show that movement of the optics at the required level is achievable. Promising technological approaches have been identified including moulded piezo-ceramics and piezo-electrics fibre bundles.

  18. Wind responses of the LSST secondary mirror

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; Vogiatzis, Konstantinos; Sebag, Jacques; Neill, Douglas R.

    2012-09-01

    The Large Synoptic Survey Telescope (LSST) optical design calls for a large annular 3.4 m diameter meniscus convex aspheric Secondary Mirror (M2). The M2 has a mass of approximately 1.5 metric tons and the optimized mirror support system consists of 72 axial actuators, mounted at the mirror back surface, and 6 tangent link lateral supports mounted around the outer edge. A fully integrated M2 Finite Element Model (FEM) including the mirror and the support systems has been developed to investigate the performance of the M2 assembly and to determine the image degradation due to dynamic wind loading. Detailed wind response analysis was performed based on the input from Computational Fluid Dynamics (CFD) simulations. Image quality calculations of the time history responses and Power Spectrum Density (PSD) are addressed.

  19. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, T.C.

    1995-03-21

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis. 7 figures.

  20. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, Thomas C.

    1995-01-01

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis.

  1. A comparison of performance of lightweight mirrors

    NASA Technical Reports Server (NTRS)

    Cho, Myung K.; Richard, Ralph M.; Hileman, Edward A.

    1990-01-01

    Four lightweight solid contoured back mirror shapes (a double arch, a single arch, a modified single arch, and a double concave mirror) and a cellular sandwich lightweight meniscus mirror, have been considered for the primary mirror of the Space Infrared Telescope Facility (SIRTF). A parametric design study using these shapes for the SIRTF 40 inch primary mirror with a focal ratio f/2 is presented. Evaluations of the optical performance and fundamental frequency analyses are performed to compare relative merits of each mirror configuration. Included in these are structural, optical, and frequency analyses for (1) different back contour shapes, (2) different number and location of the support points, and (3) two gravity orientations (ZENITH and HORIZON positions). The finite element program NASTRAN is used to obtain the structural deflections of the optical surface. For wavefront error analysis, FRINGE and PCFRINGE programs are used to evaluate the optical performance. A scaling law relating the optical and structural performance for various mirror contoured back shapes is developed.

  2. Quality evaluation of spaceborne SiC mirrors (I): analytical examination of the effects on mirror accuracy by variation in the thermal expansion property of the mirror surface.

    PubMed

    Kotani, Masaki; Imai, Tadashi; Katayama, Haruyoshi; Yui, Yukari; Tange, Yoshio; Kaneda, Hidehiro; Nakagawa, Takao; Enya, Keigo

    2013-07-10

    The Japan Aerospace Exploration Agency has studied a large-scale lightweight mirror constructed of reaction-bonded silicon carbide-based material as a key technology in future astronomical and earth observation missions. The authors selected silicon carbide as the promising candidate due to excellent characteristics of specific stiffness and thermal stability. One of the most important technical issues for large-scale ceramic components is the uniformity of the material's property, depending on part and processing. It might influence mirror accuracy due to uneven thermal deformation. The authors conducted systematic case studies for the conditions of CTE by finite element analysis to know the typical influence of material property nonuniformity on mirror accuracy and consequently derived a comprehensive empirical equation for the series of CTE's main factors. In addition, the authors computationally reproduced the mirror accuracy profile of a small prototype mirror shown in cryogenic testing and hereby verified wide-range practical computational evaluation technology of mirror accuracy. PMID:23852191

  3. Light, Color, and Mirrors.

    ERIC Educational Resources Information Center

    Tiburzi, Brian; Tamborino, Laurie; Parker, Gordon A.

    2000-01-01

    Describes an exercise in which students can use flashlights, mirrors, and colored paper to discover scientific principles regarding optics. Addresses the concepts of angles of incidence and reflection, colored vs. white light, and mirror images. (WRM)

  4. Topological Mirror Superconductivity

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Kane, C. L.; Mele, E. J.

    2013-08-01

    We demonstrate the existence of topological superconductors (SCs) protected by mirror and time-reversal symmetries. D-dimensional (D=1, 2, 3) crystalline SCs are characterized by 2D-1 independent integer topological invariants, which take the form of mirror Berry phases. These invariants determine the distribution of Majorana modes on a mirror symmetric boundary. The parity of total mirror Berry phase is the Z2 index of a class DIII SC, implying that a DIII topological SC with a mirror line must also be a topological mirror SC but not vice versa and that a DIII SC with a mirror plane is always time-reversal trivial but can be mirror topological. We introduce representative models and suggest experimental signatures in feasible systems. Advances in quantum computing, the case for nodal SCs, the case for class D, and topological SCs protected by rotational symmetries are pointed out.

  5. Attractive characteristics of mirrors

    NASA Astrophysics Data System (ADS)

    Post, R. F.; Ryutov, D. D.

    1994-12-01

    A summary of the attractive characteristics of mirror devices is presented. Recent progress in development of axisymmetric mirror devices is described. Potentialities of mirrors as a basis for D(3)He fusion power generators and high-flux neutron sources for fusion material tests are discussed.

  6. Indium Second-Surface Mirrors

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Hasegawa, T.

    1982-01-01

    Second-surface mirrors are formed by vapor deposition of indium onto glass. Mirrors have reflectances comparable to those of ordinary silver or aluminized mirrors and are expected to show superior corrosion resistance. Mirrors may be used in solar concentrators.

  7. General analysis of two-mirror relay systems

    NASA Technical Reports Server (NTRS)

    Hannan, Paul G.

    1992-01-01

    The general two-mirror system used at finite conjugates is examined here. Relations for first-order geometric properties and third-order aberrations are given in terms of five design parameters: object distance, image distance, exit pupil size, and the two mirror magnifications. The conditions for aplanatic solutions are derived for conic mirrors. The curvatures of the astigmatic image surfaces are given, and the condition for anastigmatic solutions is derived. The relations are applied to infinite conjugate systems and spherical mirror systems as special cases.

  8. Moving mirrors and the fluctuation-dissipation theorem

    NASA Astrophysics Data System (ADS)

    Stargen, D. Jaffino; Kothawala, Dawood; Sriramkumar, L.

    2016-07-01

    We investigate the random motion of a mirror in (1 +1 )-dimensions that is immersed in a thermal bath of massless scalar particles which are interacting with the mirror through a boundary condition. Imposing the Dirichlet or the Neumann boundary conditions on the moving mirror, we evaluate the mean radiation reaction force on the mirror and the correlation function describing the fluctuations in the force about the mean value. From the correlation function thus obtained, we explicitly establish the fluctuation-dissipation theorem governing the moving mirror. Using the fluctuation-dissipation theorem, we compute the mean-squared displacement of the mirror at finite and zero temperature. We clarify a few points concerning the various limiting behavior of the mean-squared displacement of the mirror. While we recover the standard result at finite temperature, we find that the mirror diffuses logarithmically at zero temperature, confirming similar conclusions that have been arrived at earlier in this context. We also comment on a subtlety concerning the comparison between zero temperature limit of the finite temperature result and the exact zero temperature result.

  9. Water Cooled Mirror Design

    SciTech Connect

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  10. The Width of a Proof

    ERIC Educational Resources Information Center

    Hanna, Gila

    2014-01-01

    This paper's aim is to discuss the concept of width of a proof put forward by Timothy Gowers. It explains what this concept means and attempts to show how it relates to other concepts discussed in the existing literature on proof and proving. It also explores how the concept of width of a proof might be used productively in the mathematics…

  11. Support Technique of Giant Sector-Shaped Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Sun, Shou-Xiong; Wang, Guo-Min

    2008-06-01

    Based on the segment mirror request of a giant telescope, comparing hexagonal segments with sector-shaped segments, the difference is found. The finite element method was used to analyze the sector-segment mirror deformation under the gravity. The principal aim is to optimize the numbers of the support points and the array of the support. Three schemes, models with 18, 24, and 27 points, are compared by calculating the mirror deformation under the gravity. According to the calculation, the model with 27 points is the best one under which the mirror surface deformation is less than 10 nm, which meets the specification. Then, the mirror surface deformation was calculated under the gravity with the optimized axial support and the lateral support in the central diaphragm when the primary mirror points to three different directions: horizontal, vertical and 45°. The calculation results show that all the shape changes in the sector-shaped submirror are less than 10 nm.

  12. Modeling and structural analysis of honeycomb structure mirror

    NASA Astrophysics Data System (ADS)

    Li, Yeping

    2012-09-01

    In development of large-scale astronomical telescopes, some promising new technology and method such as honeycomb structure mirrors and silicon carbide mirrors are applied for primary mirrors. Especially in space telescopes, the mirror lightweight design is becoming the key technology and honeycomb structure mirrors are normally required more and more to reduce the cost and increase the feasibility of the telescopes system. In this paper, a parameter FEA model of a two meters honeycomb structure mirror has been built, by using the engineering analysis software ANSYS. Through this model, the structural analysis, thermal deformation analysis and the simulation active correction of low-order frequency aberration by the finite element method have been presented.

  13. Flute waves in a tandem mirror

    SciTech Connect

    Mikhailovskaya, L.V.

    1984-03-01

    Stability conditions are derived for flute waves in a short tandem mirror stabilized by end cells with a min B. The frequency spectrum of the flute waves is analyzed. Those conditions under which the resonant excitation of waves by ions and electrons must be taken into account are found. When end cells without a min B are added to a central mirror system, the system becomes destabilized as the result of resonant excitation of waves at a frequency near the precession frequency of ions having a finite energy distribution.

  14. Phase width reduction project summary

    SciTech Connect

    Clark, D.J.; Xie, Z.Q.; McMahan, M. A.

    1999-11-01

    The purpose of the phase width reduction project, 1993--96, was to reduce the phase width of the 88-Inch Cyclotron beam on target from 5--10 ns to 1--2 ns for certain experiments, such as Gammasphere, which use time-of-flight identification. Since reducing the phase width also reduces beam intensity, tuning should be done to also optimize the transmission. The Multi-turn Collimator slits in the cyclotron center region were used to collimate the early turns radially, thus reducing the phase width from about 5 ns to 1--2 ns FWHM for a Gammasphere beam. The effect of the slits on phase width was verified with a Fast Faraday Cup and with particle and gamma-ray detectors in the external beamline.

  15. Optical fabrication of lightweighted 3D printed mirrors

    NASA Astrophysics Data System (ADS)

    Herzog, Harrison; Segal, Jacob; Smith, Jeremy; Bates, Richard; Calis, Jacob; De La Torre, Alyssa; Kim, Dae Wook; Mici, Joni; Mireles, Jorge; Stubbs, David M.; Wicker, Ryan

    2015-09-01

    Direct Metal Laser Sintering (DMLS) and Electron Beam Melting (EBM) 3D printing technologies were utilized to create lightweight, optical grade mirrors out of AlSi10Mg aluminum and Ti6Al4V titanium alloys at the University of Arizona in Tucson. The mirror prototypes were polished to meet the λ/20 RMS and λ/4 P-V surface figure requirements. The intent of this project was to design topologically optimized mirrors that had a high specific stiffness and low surface displacement. Two models were designed using Altair Inspire software, and the mirrors had to endure the polishing process with the necessary stiffness to eliminate print-through. Mitigating porosity of the 3D printed mirror blanks was a challenge in the face of reconciling new printing technologies with traditional optical polishing methods. The prototypes underwent Hot Isostatic Press (HIP) and heat treatment to improve density, eliminate porosity, and relieve internal stresses. Metal 3D printing allows for nearly unlimited topological constraints on design and virtually eliminates the need for a machine shop when creating an optical quality mirror. This research can lead to an increase in mirror mounting support complexity in the manufacturing of lightweight mirrors and improve overall process efficiency. The project aspired to have many future applications of light weighted 3D printed mirrors, such as spaceflight. This paper covers the design/fab/polish/test of 3D printed mirrors, thermal/structural finite element analysis, and results.

  16. LOXT mirror design study

    NASA Technical Reports Server (NTRS)

    Vanspeybroeck, L.; Antrim, W.; Boyd, D.; Giacconi, R.; Sinnamon, G.; Stille, F.

    1972-01-01

    The final report for the large orbiting X-ray telescope (LOXT) high resolution mirror design study is presented. The following tasks were performed: (1) Generation of a reference and alternate preliminary design for the LOXT high resolution mirror assembly, which will meet the LOXT scientific requirements, and are within the present state of the art of materials and fabrication techniques. (2) Measurement, in X-rays, of the scattering properties of a variety of optical flats, embodying materials, coatings, and polishing techniques which might be applicable to the flight configuration LOXT high resolution mirror. (3) Preparation of a procurement specification for a paraboloid test mirror of the size of the innermost paraboloid of the high resolution mirror assembly, including the design requirements for the reference design evolved from this preliminary design study. The results of the engineering and scientific analysis and the conclusions drawn are presented. The procurement specification for the test mirror is included.

  17. Erected mirror optical switch

    DOEpatents

    Allen, James J.

    2005-06-07

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

  18. Mesmerising mirror neurons.

    PubMed

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition. PMID:20167276

  19. Plastic deformation in profile-coated elliptical KB mirrors

    SciTech Connect

    Liu, Chian; Conley, R.; Qian, J; Kewish, C. M.; Liu, Wenjun; Assoufid, Lahsen; Macrander, Albert T.; Ice, Gene E; Tischler, Jonathan

    2012-01-01

    Profile coating has been successfully applied to produce elliptical Kirkpatrick-Baez (KB) mirrors using both cylindrical and flat Si substrates. Previously, focusing widths of 70 nm with 15-keV monochromatic and 80 nm with white beam were achieved using a flat Si substrate. Now precision elliptical KB mirrors with sub-nm figure errors are produced with both Au and Pt coatings on flat substrates. Recent studies of bare Si, Au-, and Pt-coated KB mirrors under prolonged synchrotron x-ray radiation and low-temperature vacuum annealing will be discussed in terms of film-stress relaxation and Si plastic deformation.

  20. Plastic Deformation in Profile-Coated Elliptical KB Mirrors

    DOE PAGESBeta

    Liu, Chian; Conley, R.; Qian, J.; Kewish, C. M.; Liu, W.; Assoufid, L.; Macrander, A. T.; Ice, G. E.; Tischler, J. Z.

    2012-01-01

    Profile coating has been successfully applied to produce elliptical Kirkpatrick-Baez (KB) mirrors using both cylindrical and flat Si substrates. Previously, focusing widths of 70 nm with 15-keV monochromatic and 80 nm with white beam were achieved using a flat Si substrate. Now, precision elliptical KB mirrors with sub-nm figure errors are produced with both Au and Pt coatings on flat substrates. Recent studies of bare Si-, Au-, and Pt-coated KB mirrors under prolonged synchrotron X-ray radiation and low-temperature vacuum annealing will be discussed in terms of film stress relaxation and Si plastic deformation.

  1. On time reversal mirrors

    NASA Astrophysics Data System (ADS)

    Fannjiang, Albert C.

    2009-09-01

    The concept of time reversal (TR) of a scalar wave is reexamined from basic principles. Five different time-reversal mirrors (TRMs) are introduced and their relations are analyzed. For the boundary behavior, it is shown that for a paraxial wave only the monopole TR scheme satisfies the exact boundary condition while for the spherical wave only the MD-mode TR scheme satisfies the exact boundary condition. The asymptotic analysis of the near-field focusing property is presented for two dimensions and three dimensions. It is shown that to have a subwavelength focal spot, the TRM should consist of dipole transducers. The transverse resolution of the dipole TRM is linearly proportional to the distance between the point source and the TRM. The mixed mode TRM has the similar (linear) behavior in three dimensions, but in two dimensions the transverse resolution behaves as the square root of the distance between the point source and the TRM. The monopole TRM is ineffective in focusing below the wavelength. Contrary to the matched field processing and the phase processor, both of which resemble TR, TR in a weak- or non-scattering medium is usually biased in the longitudinal direction, especially when TR is carried out on a single plane with a finite aperture. This is true for all five TR schemes. On the other hand, the TR focal spot has been shown repeatedly in the literature, both theoretically and experimentally, to be centered at the source point when the medium is multiple scattering. A reconciliation of the two seemingly conflicting results is found in the random fluctuations in the intensity of the Green function for a multiple scattering medium and the notion of scattering-enlarged effective aperture.

  2. Castable Amorphous Metal Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Davis, Gregory L.; Agnes, Gregory S.; Shapiro, Andrew A.

    2013-01-01

    A revolutionary way to produce a mirror and mirror assembly is to cast the entire part at once from a metal alloy that combines all of the desired features into the final part: optical smoothness, curvature, flexures, tabs, isogrids, low CTE, and toughness. In this work, it has been demonstrated that castable mirrors are possible using bulk metallic glasses (BMGs, also called amorphous metals) and BMG matrix composites (BMGMCs). These novel alloys have all of the desired mechanical and thermal properties to fabricate an entire mirror assembly without machining, bonding, brazing, welding, or epoxy. BMGs are multi-component metal alloys that have been cooled in such a manner as to avoid crystallization leading to an amorphous (non-crystalline) microstructure. This lack of crystal structure and the fact that these alloys are glasses, leads to a wide assortment of mechanical and thermal properties that are unlike those observed in crystalline metals. Among these are high yield strength, carbide-like hardness, low melting temperatures (making them castable like aluminum), a thermoplastic processing region (for improving smoothness), low stiffness, high strength-to-weight ratios, relatively low CTE, density similar to titanium alloys, high elasticity and ultra-smooth cast parts (as low as 0.2-nm surface roughness has been demonstrated in cast BMGs). BMGMCs are composite alloys that consist of a BMG matrix with crystalline dendrites embedded throughout. BMGMCs are used to overcome the typically brittle failure observed in monolithic BMGs by adding a soft phase that arrests the formation of cracks in the BMG matrix. In some cases, BMGMCs offer superior castability, toughness, and fatigue resistance, if not as good a surface finish as BMGs. This work has demonstrated that BMGs and BMGMCs can be cast into prototype mirrors and mirror assemblies without difficulty.

  3. Thermomechanical characterization of a membrane deformable mirror

    SciTech Connect

    Morse, Kathleen A.; McHugh, Stuart L.; Fixler, Jeff

    2008-10-10

    A membrane deformable mirror has been investigated for its potential use in high-energy laser systems. Experiments were performed in which the deformable mirror was heated with a 1 kW incandescent lamp and the thermal profile, the wavefront aberrations, and the mechanical displacement of the membrane were measured. A finite element model was also developed. The wavefront characterization experiments showed that the wavefront degraded with heating. Above a temperature of 35 deg. C, the wavefront characterization experiments indicated a dramatic increase in the high-order wavefront modes before the optical beam became immeasurable in the sensors. The mechanical displacement data of the membrane mirror showed that during heating, the membrane initially deflected towards the heat source and then deflected away from the heat source. Finite element analysis (FEA) predicted a similar displacement behavior as shown by the mechanical displacement data but over a shorter time scale and a larger magnitude. The mechanical displacement data also showed that the magnitude of membrane displacement increased with the experiments that involved higher temperatures. Above a temperature of 35 deg. C, the displacement data showed that random deflections as a function of time developed and that the magnitude of these deflections increased with increased temperature. We concluded that convection, not captured in the FEA, likely played a dominant role in mirror deformation at temperatures above 35 deg. C.

  4. Stable mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and a device for simultaneously locking the post assembly and the key assembly in a fixed position.

  5. Stable mirror mount

    DOEpatents

    Cutburth, R.W.

    1983-11-04

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and means for simultaneously locking said post assembly and said key assembly in a fixed position.

  6. Bronze rainbow hologram mirrors

    NASA Astrophysics Data System (ADS)

    Dawson, P.

    2006-02-01

    This project draws on holographic embossing techniques, ancient artistic conventions of bronze mirror design and modelling and casting processes to accomplish portraiture of reflection. Laser scanning, 3D computer graphics and holographic imaging are employed to enable a permanent 3D static holographic image to appear integrated with the real-time moving reflection of a viewer's face in a polished bronze disc. The disc and the figure which holds it (caryatid) are cast in bronze from a lost wax model, a technique which has been used for millennia to make personal mirrors. The Caryatid form of bronze mirror which went through many permutations in ancient Egyptian, Greece and Rome shows a plethora of expressive figure poses ranging from sleek nudes to highly embellished multifigure arrangements. The prototype of this series was made for Australian choreographer Graeme Murphy, Artistic Director of the Sydney Dance Company. Each subsequent mirror will be unique in figure and holographic imagery as arranged between artist and subject. Conceptually this project references both the modern experience of viewing mirrors retrieved from ancient tombs, which due to deterioration of the surface no longer reflect, and the functioning of Chinese Magic mirrors, which have the ability to project a predetermined image. Inspired by the metaphorical potential of these mirrors, which do not reflect the immediate reality of the viewer, this bronze hologram mirror series enables each viewer to reflect upon himself or herself observing simultaneously the holographic image and their own partially obliterated reflection.

  7. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  8. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  9. Tandem mirror plasma confinement apparatus

    DOEpatents

    Fowler, T. Kenneth

    1978-11-14

    Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

  10. Thermal performance of the ATST secondary mirror

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; DeVries, Joe; Hansen, Eric

    2007-12-01

    The Advanced Technology Solar Telescope (ATST) has a 4.24m off-axis primary mirror designed to deliver diffractionlimited images of the sun. Its baseline secondary mirror (M2) design uses a 0.65m diameter Silicon Carbide mirror mounted kinematically by a bi-pod flexure mechanism at three equally spaced locations. Unlike other common telescopes, the ATST M2 is to be exposed to a significant solar heat loading. A thermal management system (TMS) will be developed to accommodate the solar loading and minimize "mirror seeing effect" by controlling the temperature difference between the M2 optical surface and the ambient air at the site. Thermo-elastic analyses for steady state thermal behaviors of the ATST secondary mirror was performed using finite element analysis by I-DEAS TM and PCRINGE TM for the optical analysis. We examined extensive heat transfer simulation cases and their results were discussed. The goal of this study is to establish thermal models by I-DEAS for an adequate thermal environment. These thermal models will be useful for estimating segment thermal responses. Current study assumes a few sample time dependent thermal loadings to synthesize the operational environment.

  11. Performance evaluations of the ATST secondary mirror

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; DeVries, Joseph; Hansen, Eric

    2007-09-01

    The Advanced Technology Solar Telescope (ATST) has a 4.24m off-axis primary mirror designed to deliver diffraction-limited images of the sun. Its baseline secondary mirror (M2) design uses a 0.65m diameter Silicon Carbide mirror mounted kinematically by a bi-pod flexure mechanism at three equally spaced locations. Unlike other common telescopes, the ATST M2 is to be exposed to a significant solar heat loading. A thermal management system will be developed to accommodate the solar loading and minimize "mirror seeing effect" by controlling the temperature difference between the M2 optical surface and the ambient air at the site. Thermo-elastic analyses for steady state thermal behaviors of the ATST secondary mirror was performed using finite element analysis by I-DEAS TM and PCFRINGE TM for the optical analysis. We examined extensive heat transfer simulation cases and their results are discussed. The goal of this study is to evaluate the optical performances of M2 using thermal models and mechanical models. Thermal responses from the models enable us to manipulate time dependent thermal loadings to synthesize the operational environment for the design and development of TMS.

  12. Dynamic deformation analysis of light-weight mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Cao, Xuedong; Kuang, Long; Yang, Wei

    2012-10-01

    In the process of optical dynamic target work, under the effort of the arm of dynamic target, the mirror needs to do circular motion, additional accelerated motion and uniform motion. The maximum acceleration is 10°/s2 and the maximum velocity is 30°/s. In this paper, we mostly analyze the dynamic deformation of a 600 mm honeycomb light-weight mirror of a certain dynamic target. Using the FEA (finite element analysis) method, first of all, we analyze the deformation of the light-weight mirror induced in gravity at different position; later, the dynamic deformation of light-weight mirror is analyzed in detailed. The analysis results indicate that, when the maximum acceleration is 10°/s2 and the maximum velocity is 30°/s, the centripetal force is 5% of the gravity at the equal mass, and the dynamic deformation of the mirror is 6.1% of the deformation induced by gravity.

  13. Width effects in transonic flow over a rectangular cavity

    DOE PAGESBeta

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell Wayne; Pruett, Brian Owen Matthew

    2015-07-24

    A previous experiment by the present authors studied the flow over a finite-width rectangular cavity at freestream Mach numbers 1.5–2.5. In addition, this investigation considered the influence of three-dimensional geometry that is not replicated by simplified cavities that extend across the entire wind-tunnel test section. The latter configurations have the attraction of easy optical access into the depths of the cavity, but they do not reproduce effects upon the turbulent structures and acoustic modes due to the length-to-width ratio, which is becoming recognized as an important parameter describing the nature of the flow within narrower cavities.

  14. Structural analysis of a new type lightweight optical mirror blank

    NASA Astrophysics Data System (ADS)

    Li, Yeping; Cui, Xiangqun; Hu, Ningsheng

    2010-07-01

    To reduce the cost and increase the feasibility of the astronomical optical telescope, modern large optical telescope is normally required to be as light as possible. Therefore lightweight mirror is always pursued by large telescopes development. In this paper, a new type lightweight optical mirror blank, the evaluation of its technical feasibility and the reduction of cost are introduced. For the purpose of applying active optics with this lightweight mirror blank, the structural analysis, thermal analysis and optical performance simulation by the finite element method have been presented.

  15. Space Mirror Alignment System

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.

    2011-01-01

    An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.

  16. Fixed-Width Confidence Intervals in Linear Regression with Applications to the Johnson-Neyman Technique.

    ERIC Educational Resources Information Center

    Aitkin, Murray A.

    Fixed-width confidence intervals for a population regression line over a finite interval of x have recently been derived by Gafarian. The method is extended to provide fixed-width confidence intervals for the difference between two population regression lines, resulting in a simple procedure analogous to the Johnson-Neyman technique. (Author)

  17. Controllable Mirror Devices

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A deformable Mirror Device (DMD) is a type of spatial light modulator in which mirrors fabricated monolithically on a silicon chip are deformed, or tilted, under electronic control to change the direction of light that falls upon the mirror. NASA and Texas Instruments (TI) have worked to develop this technology, which has subsequently been commercialized by TI. Initial application is the DMD 2000 Travel Information Printer for high speed, high volume printing of airline tickets and boarding passes. Other possible applications range from real-time object tracking to advanced industrial machine vision systems.

  18. Mirror plasma apparatus

    DOEpatents

    Moir, Ralph W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.

  19. NIF small mirror mount

    SciTech Connect

    McCarville, T

    1999-07-01

    A number of small mirror mounts have been identified that meet the stringent stability, wave front, and cleanliness standards of the NIF. These requirements are similar to those required in other performance critical optical design applications. Future design teams would conserve time and effort if recognized standards were established for mirror mount design and performance characteristics. Standards for stability, physical features, wave front distortion, and cleanliness would simplify the qualification process considerably. At this point such standards are not difficult to define, as the technical support work has been performed repeatedly by mirror mount consumers and suppliers.

  20. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  1. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2010-04-06

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  2. The Rotating Mirror.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1981-01-01

    Discusses theory of the rotating mirror, its use in measuring the velocity of the electrical signal in wires, and the velocity of light. Concludes with a description of the manometric flame apparatus developed for analyzing sound waves. (SK)

  3. Composite Material Mirror Testing

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In this photograph, the composite material mirror is tested in the X-Ray Calibration Facility at the Marshall Space Flight Center for the James Webb Space Telescope (JWST). The mirror test conducted was to check the ability to accurately model and predict the cryogenic performance of complex mirror systems, and the characterization of cryogenic dampening properties of beryllium. The JWST, a next generation successor to the Hubble Space Telescope (HST), was named in honor of James W. Webb, NASA's second administrator, who led NASA in the early days of the fledgling Aerospace Agency. Scheduled for launch in 2010 aboard an expendable launch vehicle, the JWST will be able to look deeper into the universe than the HST because of the increased light-collecting power of its larger mirror and the extraordinary sensitivity of its instrument to infrared light.

  4. JWST Mirror Installation

    NASA Video Gallery

    The first six of 18 hexagonal shaped segments that will form NASA’s James Webb Space Telescope’s primary mirror for space observations were readied this week to begin final cryogenic testing at...

  5. The Athena Mirror

    NASA Astrophysics Data System (ADS)

    Wille, Eric

    2016-07-01

    The Athena mission (Advanced Telescope for High Energy Astrophysics) requires lightweight X-ray Wolter optics with a high angular resolution and large effective area. For achieving an effective area of 2 m^2 (at 1 keV) and an angular resolution of below 5 arcsec, the Silicon Pore Optics technology was developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the current design of the Athena mirror concentrating on the technology development status of the Silicon Pore Optics, ranging from the manufacturing of single mirror plates towards complete focusing mirror modules and their integration into the mirror structure.

  6. Mirror Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Phil

    2006-01-01

    NASA's Mirror Technology Roadmap identifies specific capabilities requiring significant advances in optical fabrication and testing to enable the next generation of large-aperture space telescopes for astronomy and Earth science missions ranging from x-ray to infrared.

  7. Towards a better mirror

    NASA Technical Reports Server (NTRS)

    Hoffer, David

    1987-01-01

    Telesat's Getaway Special competition was designed to promote interest in space among high school students in Canada. The winning entry proposed the manufacture of mirrors in microgravity and to compare the optical properties of these mirrors with similar ones made on Earth. Telesat engineers designed and built the experiment which flew on the Atlantic shuttle on November 27, 1985. This paper outlines the design evolution, its implementation, the manufacture and test of the GAS and the results of the experiment.

  8. Optical Performance Modeling of FUSE Telescope Mirror

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Ohl, Raymond G.; Friedman, Scott D.; Moos, H. Warren

    2000-01-01

    We describe the Metrology Data Processor (METDAT), the Optical Surface Analysis Code (OSAC), and their application to the image evaluation of the Far Ultraviolet Spectroscopic Explorer (FUSE) mirrors. The FUSE instrument - designed and developed by the Johns Hopkins University and launched in June 1999 is an astrophysics satellite which provides high resolution spectra (lambda/Delta(lambda) = 20,000 - 25,000) in the wavelength region from 90.5 to 118.7 nm The FUSE instrument is comprised of four co-aligned, normal incidence, off-axis parabolic mirrors, four Rowland circle spectrograph channels with holographic gratings, and delay line microchannel plate detectors. The OSAC code provides a comprehensive analysis of optical system performance, including the effects of optical surface misalignments, low spatial frequency deformations described by discrete polynomial terms, mid- and high-spatial frequency deformations (surface roughness), and diffraction due to the finite size of the aperture. Both normal incidence (traditionally infrared, visible, and near ultraviolet mirror systems) and grazing incidence (x-ray mirror systems) systems can be analyzed. The code also properly accounts for reflectance losses on the mirror surfaces. Low frequency surface errors are described in OSAC by using Zernike polynomials for normal incidence mirrors and Legendre-Fourier polynomials for grazing incidence mirrors. The scatter analysis of the mirror is based on scalar scatter theory. The program accepts simple autocovariance (ACV) function models or power spectral density (PSD) models derived from mirror surface metrology data as input to the scatter calculation. The end product of the program is a user-defined pixel array containing the system Point Spread Function (PSF). The METDAT routine is used in conjunction with the OSAC program. This code reads in laboratory metrology data in a normalized format. The code then fits the data using Zernike polynomials for normal incidence

  9. Notes on moving mirrors

    SciTech Connect

    Obadia, N.; Parentani, R.

    2001-08-15

    The Davies-Fulling (DF) model describes the scattering of a massless field by a noninertial mirror in two dimensions. In this paper, we generalize this model in two different ways. First, we consider partially reflecting mirrors. We show that the Bogoliubov coefficients relating inertial modes can be expressed in terms of the reflection factor and the transformation from inertial modes to modes at rest with respect to the mirror. In this perspective, the DF model is simply the limiting case when the reflection factor is unity for all frequencies. In the second part, we introduce an alternative model which is based on self-interactions described by an action principle. When the coupling is constant, this model can be solved exactly and gives rise to a partially reflecting mirror. The usefulness of this dynamical model lies in the possibility of switching off the coupling between the mirror and field. This allows us to obtain regularized expressions for the fluxes in situations where they are singular when using the DF model. Two examples are considered. The first concerns the flux induced by the disappearance of the reflection condition, a situation which bears some analogies with the end of the evaporation of a black hole. The second case concerns the flux emitted by a uniformly accelerated mirror.

  10. Design and analysis of large spaceborne light-weighted primary mirror and its support system

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Jin, Guang; Yang, Hong-bo

    2007-12-01

    With the development of the resolution of spaceborne remote sensor, the diameter of the primary mirror of spaceborne telescope becomes larger and larger. The distortion of primary mirror which is influenced by the mirror material, structure, self-weight, support system and temperature environment affects optical image quality finally. In this paper, an on-axis TMA high-resolution Cassegrain optical payload with a primary mirror whose diameter is φ 650mm was designed and the effects of the influence factors of the distortion acts on the on-axis TMA optical system primary mirror had been analyzed by means of Finite Element Analysis. During work, the technology of the primary mirror design had been summarized and general consideration of the primary mirror design technology also had been described at the same time. Considering the telescope manufacture and work station, a reasonable and optimal structure of the primary mirror sub-assembly is taken finally. In the end, the distortion of the primary mirror during its fabrication station and work station had been analyzed by integrated Finite Element Analysis Method. The results implicated the synthesis profile error (P-V value) for the primary mirror is less than λ/10 and all the indexes of the primary mirror satisfy the requirements of the optical system.

  11. Predicting Print-thru for the Sub-scale Beryllium Mirror Demonstrator (SBMD)

    NASA Technical Reports Server (NTRS)

    Craig, Larry; J. Kevin Russell (Technical Monitor)

    2002-01-01

    This document presents a finite element method for predicting print-thru or quilting for a lightweight mirror in a low temperature environment. The mirror is represented with quadrilateral and triangular plate finite elements. The SBMD (Sub-scale Beryllium Mirror Demonstrator) is circular with a diameter of 50 cm and one flat side. The mirror structure is a thin-wall triangular cell core with a single facesheet. There is a 4 mm radius fillet between the facesheet and cell walls. It is made entirely of Beryllium. It is assumed that polishing the mirror surface creates a thin surface layer with different material properties. Finite element results are compared with measured values at cryogenic temperatures.

  12. Motion of a mirror under infinitely fluctuating quantum vacuum stress

    NASA Astrophysics Data System (ADS)

    Wang, Qingdi; Unruh, William G.

    2014-04-01

    The actual value of the quantum vacuum energy density is generally regarded as irrelevant in nongravitational physics. However, this paper presents a nongravitational system where this value does have physical significance. The system is a mirror with an internal degree of freedom that interacts with a scalar field. We find that the force exerted on the mirror by the field vacuum undergoes wild fluctuations with a magnitude proportional to the value of the vacuum energy density, which is mathematically infinite. This infinite fluctuating force gives infinite instantaneous acceleration of the mirror. We show that this infinite fluctuating force and infinite instantaneous acceleration make sense because they will not result in infinite fluctuation of the mirror's position. On the contrary, the mirror's fluctuating motion will be confined in a small region due to two special properties of the quantum vacuum: (1) the vacuum friction that resists the mirror's motion and (2) the strong anticorrelation of vacuum fluctuations that constantly changes the direction of the mirror's infinite instantaneous acceleration and thus cancels the effect of infinities to make the fluctuation of the mirror's position finite.

  13. Development of GMT fast steering secondary mirror assembly

    NASA Astrophysics Data System (ADS)

    Cho, Myung; Corredor, Andrew; Dribusch, Christoph; Park, Won Hyun; Muller, Gary; Johns, Matt; Hull, Charlie; Kern, Jonathan; Kim, Young-Soo

    2014-07-01

    The Giant Magellan Telescope (GMT) is one of Extremely large telescopes, which is 25m in diameter featured with two Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). The FSM is 3.2 m in diameter and built as seven 1.1 m diameter circular segments conjugated 1:1 to the seven 8.4m segments of the primary. The guiding philosophy in the design of the FSM segment mirror is to minimize development and fabrication risks ensuring a set of secondary mirrors are available on schedule for telescope commissioning and early operations in a seeing limited mode. Each FSM segment contains a tip-tilt capability for fine co-alignment of the telescope subapertures and fast guiding to attenuate telescope wind shake and mount control jitter, thus optimizing the seeing limited performance of the telescope. The final design of the FSM mirror and support system configuration was optimized using finite element analyses and optical performance analyses. The optical surface deformations, image qualities, and structure functions for the gravity print-through cases, thermal gradient effects, and dynamic performances were evaluated. The results indicated that the GMT FSM mirror and its support system will favorably meet the optical performance goals for residual surface error and the FSM surface figure accuracy requirement defined by encircled energy (EE80) in the focal plane. The mirror cell assembly analysis indicated an excellent dynamic stiffness which will support the goal of tip-tilt operation.

  14. Properties of 16C(6.11 MeV) and its mirror in 16Ne

    NASA Astrophysics Data System (ADS)

    Fortune, H. T.

    2016-07-01

    From previous data for the reaction 14C(t ,p )16C , I have extracted a width of 32.6(5) keV for the strong state at Ex=6.11 MeV . Here, I examine its likely Jπ and configuration. The predicted width of its mirror in 16Ne is estimated to be about 260 keV.

  15. On the maximal diphoton width

    NASA Astrophysics Data System (ADS)

    Salvio, Alberto; Staub, Florian; Strumia, Alessandro; Urbano, Alfredo

    2016-03-01

    Motivated by the 750 GeV diphoton excess found at LHC, we compute the maximal width into γγ that a neutral scalar can acquire through a loop of charged fermions or scalars as function of the maximal scale at which the theory holds, taking into account vacuum (meta)stability bounds. We show how an extra gauge symmetry can qualitatively weaken such bounds, and explore collider probes and connections with Dark Matter.

  16. Opto-Mechanics of the Constellation-X SXT Mirrors: Challenges in Mounting and Assembling the Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, WIlliam W.; Saha, Timo; Lehan, John P.; Mazzarella, James; Lozipone, Lawrence; Hong, Melinda; Byron, Glenn

    2008-01-01

    The Constellation-X Spectroscopy X-Ray Telescopes consists of segmented glass mirrors with an axial length of 200 mm, a width of up to 400 mm, and a thickness of 0.4 mm. To meet the requirement of less than 15 arc-second half-power diameter with the small thickness and relatively large size is a tremendous challenge in opto-mechanics. How shall we limit distortion of the mirrors due to gravity in ground tests, that arises from thermal stress, and that occurs in the process of mounting, affixing and assembling of these mirrors? In this paper, we will describe our current opto-mechanical approach to these problems. We will discuss, in particular, the approach and experiment where the mirrors are mounted vertically by first suspending it at two points.

  17. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  18. Helically linked mirror arrangement

    SciTech Connect

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average ..beta.. and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned.

  19. Physics of mirror systems

    SciTech Connect

    Post, R.F.

    1982-05-01

    In recent years the emphasis in research on the magnetic mirror approach to fusion has been shifted to address what are essentially economically-motivated issues. The introduction of the Tandem Mirror idea solved in principal the problem of low Q (low fusion power gain) of mirror-based fusion systems. In order to optimize the tandem mirror idea from an economic standpoint, some important improvements have been suggested. These improvements include the thermal barrier idea of Baldwin and Logan and the axicell concept of Kesner. These new modifications introduce some special physics considerations. Among these are (1) The MHD stability properties of high energy electron components in the end cells; (2) The optimization of end-cell magnetic field configurations with the objective of minimizing equilibrium parallel currents; (3) The suppression of microstabilities by use of sloshing ion distributions. Following a brief outline of tandem mirror concepts, the above three topics are discussed, with illustrative examples taken from earlier work or from recent design studies.

  20. Innovative Magnetic Mirror Concepts

    NASA Astrophysics Data System (ADS)

    Simonen, Thomas

    2009-11-01

    In the past two decades, while magnetic mirror research in the US was curtailed, several innovations have been proposed and many have been demonstrated in Japan and Russia in the Gamma 10 and GDT experiments. These advances have led to new scientific understanding, means of overcoming previous short comings, and reconsideration of magnetic mirror systems as a modest size material testing neutron source or as a fusion- fission hybrid system. Compared to toroidal systems, the linear geometry of mirror systems has the significant advantages of easing construction, operation and maintenance, but has a less developed data base. The recent innovations include reliance on axi-symmetric mirror coils, suppression of energetic-ion cyclotron-modes with potential confined warm plasma, and sheared ExB flow stabilization of drift waves. To enable increased electron temperature, the magnetic field expansion ratio from the mirror to the end wall is increased beyond the square root of the ion to electron mass ratio. This expansion inhibits electron thermal conduction, reduces the incident wall power flux to low levels, and isolates plasma-wall interactions far from the confined plasma.

  1. Infinite Maxwell fisheye inside a finite circle

    NASA Astrophysics Data System (ADS)

    Liu, Yangjié; Chen, Huanyang

    2015-12-01

    This manuscript proposes a two-dimensional heterogeneous imaging medium composed of an isotropic refractive index. We exploit conformal-mapping to transfer the full Maxwell fisheye into a finite circle. Unlike our previous design that requires a mirror of Zhukovski airfoil shape, this approach can work without a mirror, while offering a comparable imaging resolution. This medium may also be used as an isotropic gradient index lens to transform a light source inside it into two identical sources of null interference. A merit of this approach is reduction of the near-zero-index area from an infinite zone into a finite one, which shall ease its realization.

  2. Effective Widths of Compression-Loaded Plates With a Cutout

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.

    2000-01-01

    A study of the effects of cutouts and laminate construction on the prebuckling and initial postbuckling stiffnesses, and the effective widths of compression-loaded, laminated-composite and aluminum square plates is presented. The effective-width concept is extended to plates with cutouts, and experimental and nonlinear finite-element analysis results are presented. Behavioral trends are compared for seven plate families and for cutout-diameter-to-plate-width ratios up to 0.66. A general compact design curve that can be used to present and compare the effective widths for a wide range of laminate constructions is also presented. A discussion of how the results can be used and extended to include certain types of damage, cracks, and other structural discontinuities or details is given. Several behavioral trends are described that initially appear to be nonintuitive. The results demonstrate a complex interaction between cutout size and plate orthotropy that affects the axial stiffness and effective width of a plate subjected to compression loads.

  3. Cryogenic mirror analysis

    NASA Technical Reports Server (NTRS)

    Nagy, S.

    1988-01-01

    Due to extraordinary distances scanned by modern telescopes, optical surfaces in such telescopes must be manufactured to unimaginable standards of perfection of a few thousandths of a centimeter. The detection of imperfections of less than 1/20 of a wavelength of light, for application in the building of the mirror for the Space Infrared Telescope Facility, was undertaken. Because the mirror must be kept very cold while in space, another factor comes into effect: cryogenics. The process to test a specific morror under cryogenic conditions is described; including the follow-up analysis accomplished through computer work. To better illustrate the process and analysis, a Pyrex Hex-Core mirror is followed through the process from the laser interferometry in the lab, to computer analysis via a computer program called FRINGE. This analysis via FRINGE is detailed.

  4. Smart materials optical mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas M.

    2014-08-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes embedded in an epoxy matrix. CNT/epoxy is a multifunctional or `smart' composite material that has sensing capabilities and can be made to incorporate self-actuation as well. Moreover, since the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and 3D printing. The technology therefore holds promise for development of a new generation of lightweight, compact `smart' telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics. We discuss possible paths for future development.

  5. Carbon nanotube optical mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  6. MHD-stable plasma confinement in an axisymmetric mirror system

    SciTech Connect

    Stupakov, G.V.

    1988-02-01

    If the magnetic field of a nonparaxial mirror system is chosen appropriately, it is possible to maintain a sharp plasma boundary in an open axisymmetric confinement system in a manner which is stable against flute modes (both global and small-scale). Stability prevails in the ideal MHD approximation without finite-ion-Larmor radius effects.

  7. Transition Metal Switchable Mirror

    SciTech Connect

    2009-01-01

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  8. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2010-01-08

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  9. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2013-05-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  10. Transition Metal Switchable Mirror

    SciTech Connect

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  11. Flat focusing mirror.

    PubMed

    Cheng, Y C; Kicas, S; Trull, J; Peckus, M; Cojocaru, C; Vilaseca, R; Drazdys, R; Staliunas, K

    2014-01-01

    The control of spatial propagation properties of narrow light beams such as divergence, focusing or imaging are main objectives in optics and photonics. In this letter, we propose and demonstrate experimentally a flat focusing mirror, based on an especially designed dielectric structure without any optical axis. More generally, it also enables imaging any light pattern in reflection. The flat focusing mirror with a transversal invariance can largely increase the applicability of structured photonic materials for light beam propagation control in small-dimension photonic circuits. PMID:25228358

  12. Mirror Measurement Device

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Small Business Innovation Research (SBIR) contract led to a commercially available instrument used to measure the shape profile of mirror surfaces in scientific instruments. Bauer Associates, Inc.'s Bauer Model 200 Profilometer is based upon a different measurement concept. The local curvature of the mirror's surface is measured at many points, and the collection of data is computer processed to yield the desired shape profile. (Earlier profilometers are based on the principle of interferometry.) The system is accurate and immune to problems like vibration and turbulence. Two profilometers are currently marketed, and a third will soon be commercialized.

  13. Flat Focusing Mirror

    PubMed Central

    Cheng, Y. C.; Kicas, S.; Trull, J.; Peckus, M.; Cojocaru, C.; Vilaseca, R.; Drazdys, R.; Staliunas, K.

    2014-01-01

    The control of spatial propagation properties of narrow light beams such as divergence, focusing or imaging are main objectives in optics and photonics. In this letter, we propose and demonstrate experimentally a flat focusing mirror, based on an especially designed dielectric structure without any optical axis. More generally, it also enables imaging any light pattern in reflection. The flat focusing mirror with a transversal invariance can largely increase the applicability of structured photonic materials for light beam propagation control in small-dimension photonic circuits. PMID:25228358

  14. Structural and optical properties for typical solid mirror shapes

    NASA Technical Reports Server (NTRS)

    Cho, Myung K.; Richard, Ralph M.

    1990-01-01

    A method is developed to determine the weight, center of gravity, areal properties, and mass inertial properties for typical mirrors. A number of support conditions were considered to examine optical surface deflections, surface quality, and fundamental natural frequency for single- and double-arch mirror shapes. Structural performance estimates were made with the NASTRAN program, and optical performances were evaluated with the FRINGE program, using an SXA 40-in mirror. To show the behavior of element types from the NASTRAN program, finite element validity and sensitivity studies were performed in optical model applications. Material parameters, contoured back shapes, and support locations are shown to have significant effects on structural and optical performances. Optimal support locations and support points are given. Fundamental natural frequencies for some shapes are found with the closed-form solution. The plate models results may not be acceptable for determining real mirror optical performances.

  15. Thermal analysis of the main mirror in space solar telescope

    NASA Astrophysics Data System (ADS)

    Li, Rong; Shi, Hu-li; Chen, Zhi-yuan

    2007-12-01

    For the design of a space solar telescope (SST), the large reflect mirror faces to the sun directly, which is in an abominable thermal condition with seriously thermal distortion. In this paper, it sets up the thermal mode and analyzes the temperature field and thermal distortion of the main mirror of SST. Further more, it uses the thermal design software SINDA/G (System Improved Numerical Differencing Analyzer/Gaski) and the finite element analysis software MSC.Patran to set up different models and various temperature distributions of the main mirror. Though comparing with these models, the paraboloid mirror model is confirmed, which becomes a reference to later thermal analysis of the whole SST.

  16. Influence functions of a thin shallow meniscus-shaped mirror.

    PubMed

    Arnold, L

    1997-04-01

    Thin shallow spherical shell theory is used to derive the general influence function, owing to uniform and/or discrete (actuators) loads, for a thin shallow meniscus-shaped mirror of uniform thickness with a central hole and supported at discrete points. Small elastic deformations are considered. No symmetry on the load distribution constrains the model. Explicit analytical expressions of the set of equations are given for calculating the influence functions. Results agree with the finite element analysis (FEA) to within 1%. When the FEA requires megabytes of RAM memory, the analytical method needs only kilobytes and typically runs 30 times faster. This is a crucial advantage for the iterative optimization of mirror supports such as large passive or active meniscus-shaped primary mirror supports or Cassegrain/Gregorian adaptive secondary actuator configurations. References are given on estimating the shear effects (thick mirror), the thickness variation effect, and the influence of the size of the support pads. PMID:18253168

  17. Mirror distortion measurements with an in-situ LTP

    NASA Astrophysics Data System (ADS)

    Takacs, Peter Z.; Qian, Shinan; Randall, Kevin J.; Yun, Wenbing; Li, Haizhang

    1998-11-01

    An in-situ long trace profiler developed at Brookhaven National Laboratory under the auspices of a CRADA with Continental Optical Corporation has successfully measured thermal distortion on a side-cooled mirror in a beam line at the Advanced Photon Source. The instrument scanned the central 90 mm of the 200 mm long mirror through a vacuum window while the mirror was subjected to heat loading from the synchrotron beam. Results clearly show transient effects occurring when the mirror is first illuminated that relax after about 15 minutes, in accord with finite element thermal calculations. The steady state curvature of the surface is measured to be slightly concave with an additional 5 km radius relative to the initial nominal curvature of about 1 km. The magnitude of this steady state condition was not expected and was not predicted by the calculations.

  18. Paranal Receives New Mirror

    NASA Astrophysics Data System (ADS)

    2008-04-01

    A 4.1-metre diameter primary mirror, a vital part of the world's newest and fastest survey telescope, VISTA (the Visible and Infrared Survey Telescope for Astronomy) has been delivered to its new mountaintop home at Cerro Paranal, Chile. The mirror will now be coupled with a small camera for initial testing prior to installing the main camera in June. Full scientific operations are due to start early next year. VISTA will form part of ESO's Very Large Telescope facility. ESO PR Photo 10d/08 ESO PR Photo 10d/08 The VISTA Mirror The mirror arrived over the Easter weekend at the Paranal Observatory where the telescope is being assembled at an altitude of 2518m, in Chile's Atacama Desert. VISTA Project Manager Alistair McPherson from STFC's UK Astronomy Technology Centre (UK ATC) accompanied the mirror on its journey to Chile: "This is a major milestone for the VISTA project. The precious mirror was loaded on to a plane in a special cradle that used tennis balls to cushion it from impact for its arduous journey across three continents. " "The mirror had a difficult four-day journey, by air and by road. It arrived in perfect condition and now that it has been coated, we will install the mirror in the telescope with a small test camera for about four weeks testing. We plan to install the main camera in June," said the Project Scientist on VISTA, Will Sutherland of Queen Mary, University of London, UK. The VISTA 4.1-metre diameter primary mirror is the most strongly curved large mirror ever polished to such a precise and exacting surface accuracy - deviations from a perfect surface of less than 1/3000th of the thickness of a human hair. On arrival at Cerro Paranal it was safely craned into the telescope dome where it was washed and coated with a thin layer of protected silver in the facility's coating plant. Silver is the best metal for the purpose since it reflects over 98% of near-infrared light, better than the more commonly used aluminium. To date, the reflectivity

  19. Edgewise connectivity: an approach to improving segmented primary mirror performance

    NASA Astrophysics Data System (ADS)

    Gersh-Range, Jessica; Arnold, William R.; Stahl, H. Philip

    2015-01-01

    As future astrophysics missions require space telescopes with greater sensitivity and angular resolution, the corresponding increase in the primary mirror diameter presents numerous challenges. Since fairing restrictions limit the maximum diameter of monolithic and deployable segmented mirrors that can be launched, there is a need for on-orbit assembly methods that decouple the mirror diameter from the choice of launch vehicle. In addition, larger mirrors are more susceptible to vibrations and are typically so lightly damped that vibrations could persist for some time if uncontrolled. To address these challenges, we present a segmented mirror architecture in which the segments are connected edgewise by mechanisms analogous to damped springs. These mechanisms can be damped springs, flux-pinning mechanisms, virtual mechanisms, or any other device with the same basic behavior. Using a parametric finite-element model, we show that for low to intermediate stiffnesses, the stiffness and damping contributions from the mechanisms improve both the natural frequency and disturbance response of the segmented mirror. At higher stiffnesses, the mechanisms structurally connect the segments, leading to a segmented mirror that performs comparably to a monolith-or better, depending on the mechanism damping-with the modular design enabling on-orbit assembly and scalability.

  20. Magneto-hydrodynamically stable axisymmetric mirrors

    NASA Astrophysics Data System (ADS)

    Ryutov, Dmitri

    2010-11-01

    The achievement of high beta (60%) plasma with near classical confinement in a linear axisymmetric magnetic configuration has sparked interest in the Gas Dynamic Trap concept. The significance of these results is that they can be projected directly to a neutron source for materials testing. The possibility of axisymmetric mirrors (AM) being magneto-hydrodynamically (MHD) stable is also of interest from a general physics standpoint (as it seemingly contradicts to well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a brief summary of classical results (in particular of the Rosenbluth-Longmire theory and of the energy principle as applied to AM) several approaches towards achieving MHD stabilization of the AM will be considered: 1) Employing the favorable field-line curvature in the end tanks; 2) Using the line-tying effect; 3) Setting the plasma in a slow or fast differential rotation; 4) Imposing a divertor configuration on the solenoidal magnetic field; 5) Controlling the plasma dynamics by the ponderomotive force; 6) Other techniques. Several of these approaches go beyond pure MHD and require accounting for finite Larmor radius effects and trapped particle modes. Some illuminative theoretical approaches for understanding axisymmetric mirror stability will be described. Wherever possible comparison of theoretical and experimental results on AM will be provided. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors will be discussed and the constraints on the plasma parameters will be formulated. Prepared by LLNL under Contract DE-AC52-07NA27344.

  1. Next generation lightweight mirror modeling software

    NASA Astrophysics Data System (ADS)

    Arnold, William R.; Fitzgerald, Matthew; Rosa, Rubin Jaca; Stahl, H. Philip

    2013-09-01

    The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 3-5 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any text editor, all the shell thickness parameters and suspension spring rates are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite

  2. Next Generation Lightweight Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.; Fitzgerald, Mathew; Rosa, Rubin Jaca; Stahl, H. Philip

    2013-01-01

    The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models easier.

  3. Next-Generation Lightweight Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.; Fitzgerald, Mathew; Rosa, Rubin Jaca; Stahl, Phil

    2013-01-01

    The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models possible

  4. Next Generation Lightweight Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William; Fitzgerald, Matthew; Stahl, Philip

    2013-01-01

    The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models possible.

  5. Durable metallized polymer mirror

    DOEpatents

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  6. Durable metallized polymer mirror

    DOEpatents

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  7. JWST Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Since the initial Design Studies leading to JWST, Mirror Technology was identified as a (if not the) critical capability necessary to enable the next generation of large aperture space telescopes required to achieve the science goals of imaging the earliest galaxies and proto-galaxies after the big bang. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996. Achieving the desired science objectives required a never before demonstrated space telescope capability, one with an 8 meter class primary mirror that is diffraction limited at 2 micrometers and operating in deep space at temperatures well below 70K. Beryllium was identified in the NASA "Yardstick" design as the preferred material because of its ability to provide stable optical performance in the anticipated thermal environment as well as its excellent specific stiffness. Because of launch vehicle constraints, two very significant architectural constraints were placed upon the telescope: segmentation and areal density. Each of these directly resulted in specific technology capability requirements. First, because the maximum launch vehicle payload fairing diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. Second, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density specification of 20 kilograms per square meter.

  8. Tandem mirror fusion research

    SciTech Connect

    Baldwin, D.E.

    1983-12-02

    The tandem mirror program has evolved considerably in the last decade. Of significance is the viable reactor concept embodied in the MARS design. An aggressive experimental program, culminating in the operation of MFTF-B in late 1986, will provide a firm basis for refining the MARS design as necessary for constructing a reactor prototype in the 1990s.

  9. Rearview Mirror Dimming Function

    ERIC Educational Resources Information Center

    Layton, William

    2011-01-01

    Students are often unaware of the little tab on a rear-view mirror that is used to dim headlights from the rear. Those who know about this tab are usually interested in knowing how it works. Explanations of the optics involved can be found in Serway and Jewett and Jones and Edge. An alternate explanation is given.

  10. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  11. Apparatus and process for removing a predetermined portion of reflective material from mirror

    DOEpatents

    Perry, Stephen J.; Steinmetz, Lloyd L.

    1994-01-01

    An apparatus and process are disclosed for removal of a stripe of soft reflective material of uniform width from the surface of a mirror by using a blade having a large included angle to inhibit curling of the blade during the cutting operation which could result in damage to the glass substrate of the mirror. The cutting blade is maintained at a low blade angle with respect to the mirror surface to produce minimal chipping along the cut edge and to minimize the force exerted on the coating normal to the glass surface which could deform the flat mirror. The mirror is mounted in a cutting mechanism containing a movable carriage on which the blade is mounted to provide very accurate straightness of the travel of the blade along the mirror.

  12. Cosmology with liquid mirror telescopes

    NASA Technical Reports Server (NTRS)

    Hogg, David W.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    Liquid mirrors provide an exciting means to obtain large optical telescopes for substantially lower costs than conventional technologies. The liquid mirror concept has been demonstrated in the lab with the construction of a diffraction limited 1.5 m mirror. The mirror surface, using liquid mercury, forms a perfect parabolic shape when the mirror cell is rotated at a uniform velocity. A liquid mirror must be able to support a heavy mercury load with minimal flexure and have a fundamental resonant frequency that is as high as possible, to suppress the amplitude of surface waves caused by small vibrations transmitted to the mirror. To minimize the transmission of vibrations to the liquid surface, the entire mirror rests on an air bearing. This necessitates the mirror cell being lightweight, due to the limited load capabilities of the air bearing. The mirror components must also have physical characteristics which minimize the effects of thermal expansion with ambient temperature fluctuations in the observatory. In addition, the 2.7 m mirror construction is designed so that the techniques used may be readily extended to the construction of large mirrors. To attain the goals of a lightweight, rigid mirror, a composite laminant construction was used. The mirror consists of a foam core cut to the desired parabolic shape, with an accuracy of a few mm. An aluminum hub serves as an anchor for the foam and skin, and allows precise centering of the mirror on the air bearing and drive system. Several plys of Kevlar, covered in an epoxy matrix, are then applied to the foam. A final layer of pure epoxy is formed by spin casting. This final layer is parabolic to within a fraction of a mm. An aluminum ring bonded to the circumference of the mirror retains the mercury, and incorporates stainless-steel hard-points for the attachment of balance weights.

  13. Thermal tuning of omnidirectional reflection bands in one-dimensional finite phononic crystals

    NASA Astrophysics Data System (ADS)

    Chen, Zhaojiang

    2015-03-01

    This study investigates the temperature-tuned omnidirectional reflection (ODR) bands in a one-dimensional (1D) finite phononic crystal (PnC), formed by alternating layers of nitinol and epoxy. An analytical model, based on the transfer matrix method, is developed to study reflection and transmission characteristics of the acoustic waves including shear and compressional waves in a 1D PnC. Existence criteria and the sensitive and continuous temperature-tunability of ODR bands in the nitinol/epoxy PnC are demonstrated using the analyses of projected-band structures and reflection spectra. The width and location of the ODR bands shift markedly with temperature variations of nitinol across the phase transition from martensite to austenite. The effects of temperature, filling fraction of nitinol layers, and the Si clad layer on ODR bands are considered. The results will be of benefit in the design and optimization of thermal tuning of omnidirectional acoustic mirrors.

  14. 14 CFR 121.95 - Route width.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., FLAG, AND SUPPLEMENTAL OPERATIONS Approval of Routes: Domestic and Flag Operations § 121.95 Route width... routes in the case of certificate holders conducting flag operations) have a width equal to...

  15. 23 CFR 658.15 - Width.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.15 Width. (a) No State shall impose a width limitation of more or less than 102 inches, or its approximate metric equivalent, 2.6 meters (102.36 inches)...

  16. 23 CFR 658.15 - Width.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.15 Width. (a) No State shall impose a width limitation of more or less than 102 inches, or its approximate metric equivalent, 2.6 meters (102.36 inches)...

  17. 23 CFR 658.15 - Width.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.15 Width. (a) No State shall impose a width limitation of more or less than 102 inches, or its approximate metric equivalent, 2.6 meters (102.36 inches)...

  18. 23 CFR 658.15 - Width.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.15 Width. (a) No State shall impose a width limitation of more or less than 102 inches, or its approximate metric equivalent, 2.6 meters (102.36 inches)...

  19. 23 CFR 658.15 - Width.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.15 Width. (a) No State shall impose a width limitation of more or less than 102 inches, or its approximate metric equivalent, 2.6 meters (102.36 inches)...

  20. Optomechanical analysis and testing of a fast steering secondary mirror prototype for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Corredor, Andrew; Park, Won Hyun; Cho, Myung; Kim, Young-Soo

    2013-09-01

    The Giant Magellan Telescope (GMT) will be one of the next class of extremely large segmented mirror telescopes. The GMT will utilize two Gregorian secondary mirrors, and Adaptive Secondary Mirror (ASM) and a Fast-steering Secondary Mirror (FSM). The FSM consists of six off-axis mirrors surrounding a central on-axis circular segment. The segments are 1.1 m in diameter and conjugated 1:1 to the seven 8.4 m segments of the primary. A prototype of the FSM mirror (FSMP) has been developed, analyzed and tested in order to demonstrate the mechanical and optical responses of the mirror assembly when subjected to structural and thermal loadings. In this paper, the mechanical and thermal performances of the FSMP were evaluated by performing finite element analyses (FEA) in NX Nastran. The deformation of the mirror's lateral flexure was measured when the FSMP was axially loaded and the temperature response of the mirror assembly was measured when exposed to a sample thermal environment. In order to validate the mirror/lateral flexure design concept, the mechanical, optical and thermal measurements obtained from the tests conducted on mirrors having two different lateral flexures were compared to the responses calculated by FEA.

  1. Status of the secondary mirrors (M2) for the Gemini 8-m telescopes

    NASA Astrophysics Data System (ADS)

    Knohl, Ernst-Dieter; Schoeppach, Armin; Pickering, Michael A.

    1998-08-01

    The 1-m diameter lightweight secondary mirrors (M2) for the Gemini 8-m telescopes will be the largest CVD-SiC mirrors ever produced. The design and manufacture of these mirrors is a very challenging task. In this paper we will discuss the mirror design, structural and mechanical analysis, and the CVD manufacturing process used to produce the mirror blanks. The lightweight design consist of a thin faceplate (4-mm) and triangular backstructure cells with ribs of varying heights. The main drivers in the design were weight (40 kg) and manufacturing limitations imposed on the backstructure cells and mirror mounts. Finite element modeling predicts that the mirror design will meet all of the Gemini M2 requirements for weight, mechanical integrity, resonances, and optical performance. Special design considerations were necessary to avoid stress concentration in the mounting areas and to meet the requirement that the mirror survive an 8-g earthquake. The highest risk step in the mirror blank manufacturing process is the near-net-shape CVD deposition of the thin, curved faceplate. Special tooling and procedures had to be developed to produce faceplates free of fractures, cracks, and stress during the cool-down from deposition temperature (1350 C) to room temperature. Due to time delay with the CVD manufacturing process in the meantime a backup solution from Zerodur has been started. This mirror is now in the advanced polishing process. Because the design of both mirrors is very similar an excellent comparison of both solutions is possible.

  2. Space active optics: performance of a deformable mirror for in-situ wave-front correction in space telescopes

    NASA Astrophysics Data System (ADS)

    Laslandes, Marie; Hourtoule, Claire; Hugot, Emmanuel; Ferrari, Marc; Lopez, Céline; Devilliers, Christophe; Liotard, Arnaud; Chazallet, Frederic

    2012-09-01

    MADRAS (Mirror Active, Deformable and Regulated for Applications in Space) project aims at demonstrating the interest of Active Optics for space applications. We present the prototype of a 24 actuators, 100 mm diameter deformable mirror to be included in a space telescope's pupil relay to compensate for large lightweight primary mirror deformation. The mirror design has been optimized with Finite Element Analysis and its experimental performance characterized in representative conditions. The developed deformable mirror provides an efficient wave-front correction with a limited number of actuators and a design fitting space requirements.

  3. Analysis and Fabrication of Paraboloidal CFRP Sandwich Mirrors

    NASA Astrophysics Data System (ADS)

    Hong, Tayo Steve

    The low areal weight requirements of telescopes in aerospace applications has driven the study on composite mirrors for several years. For example, the primary parabolic mirror in a balloon-borne, Cassegrain telescope required an optical quality better than 30 microns in figure RMS error. A parametric study on composite sandwich mirrors was conducted by using finite element analysis as well as optical analysis. The factors covered the cell sizes, core materials, core thicknesses, face layups, and support configurations. Based on theoretical calculations, many high quality spherical composite sandwich mirrors were generated by using a non-heat curing process. The CFRP faces and Nomex core were chosen as the baseline materials for mirror fabrication due to their high strength and low weight. The proposed replication method applied an interface layer between face and surface coat to eliminate print -through problems. Many important goals have been realized in those mirror samples with optical laser interferometer testing. These include the figure RMS error less than 2 microns and the surface RMS error less than 0.05 micron. The areal weights of the mirror samples are less than 7 kg/m ^2. The thermal stability of these mirrors was observed from the optical results with thermal cycling tests. The proposed 2-meter parabolic composite sandwich mirror, with an areal weight of less than 10 kg/m ^2, would consist of either (0/90/45/ -45) _{rm S} layup faces with an optimal 3^{' '} core or (QC) layup faces with a total core thickness of 5 inches. Both a ring support around the equator and the 18-point Hindle-type support would lead to the best optical quality under both self weight and thermal loading.

  4. Surface finish quality of the outer AXAF mirror pair based on x ray measurements of the VETA-I

    NASA Technical Reports Server (NTRS)

    Hughes, John P.; Schwartz, Daniel A.; Szentgyorgyi, Andrew; Vanspeybroeck, Leon; Zhao, Ping

    1992-01-01

    We employ the X-ray measurements of the VETA-I taken at the X-Ray Calibration Facility (XRCF) of the Marshall Space Flight Center (MSFC) to extract information about the surface finish quality of the outermost pair of AXAF mirrors. The particular measurements we consider are one dimensional scans of the core of the point response function (PRF) (full width half maximum (FWHM) scans), the encircled energy as a function of radius, and one dimensional scans of the wings of the PRF. We discuss briefly our ray trace model which incorporates the numerous effects present in the VETA-I test, such as the finite source distance, the size and shape of the X-ray source, the residual gravitational distortions of the optic, the despace of the VETA-I, and particulate contamination. We show how the data constrain the amplitude of mirror surface deviations for spatial frequencies greater than about 0.1 mm(exp -1). Constraints on the average amplitude of circumferential slope errors are derived as well.

  5. Congenital mirror movements.

    PubMed Central

    Schott, G D; Wyke, M A

    1981-01-01

    In this report are described seven patients assessed clinically and neuropsychologically in whom mirror movements affecting predominantly the hands occurred as a congenital disorder. These mirror movements, representing a specific type of abnormal synkinesia, may arise as a hereditary condition, in the presence of a recognisable underlying neurological abnormality, and sporadically, and the seven patients provide more or less satisfactory examples of each of these three groups. Despite the apparent uniformity of the disorder, the heterogeneity and variability may be marked, examples in some of our patients including the pronounced increase in tone that developed with arm movement, and the capacity for modulation of the associated movement by alteration of neck position and bio-feedback. Various possible mechanisms are considered; these include impaired cerebral inhibition of unwanted movements, and functioning of abnormal motor pathways. Emphasis has been placed on the putative role of the direct, crossed corticomotoneurone pathways and on the unilateral and bilateral cerebral events that precede movement. PMID:7288446

  6. Dynamic coherent backscattering mirror

    PubMed Central

    Xu, M.

    2016-01-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation. PMID:26937296

  7. Dynamic coherent backscattering mirror

    NASA Astrophysics Data System (ADS)

    Zeylikovich, I.; Xu, M.

    2016-02-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  8. Complex/Symplectic Mirrors

    SciTech Connect

    Chuang, Wu-yen; Kachru, Shamit; Tomasiello, Alessandro; /Stanford U., ITP

    2005-10-28

    We construct a class of symplectic non-Kaehler and complex non-Kaehler string theory vacua, extending and providing evidence for an earlier suggestion by Polchinski and Strominger. The class admits a mirror pairing by construction. Comparing hints from a variety of sources, including ten-dimensional supergravity and KK reduction on SU(3)-structure manifolds, suggests a picture in which string theory extends Reid's fantasy to connect classes of both complex non-Kaehler and symplectic non-Kaehler manifolds.

  9. Lightweight Substrates For Mirrors

    NASA Technical Reports Server (NTRS)

    Brown, D. Kyle

    1991-01-01

    New substrate uses conventional quasi-isotropic fabric laminate with surfacing layer of carbon-fiber paper consisting of randomly oriented chopped carbon fibers. Layered structure of fabric and paper relatively easy to manufacture. When impregnated with carbon, structure rigid and stable. Substrates of this type made quite thin, thus keeping areal weights to minimum. Mirrors of this type made faster, and cost less, than predecessors.

  10. Joined Beryllium Mirror Demonstrator

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Parsonage, Tom; Burdine, Robert (Technical Monitor)

    2001-01-01

    Fabrications of large Beryllium optical components are fundamentally limited by available facility capabilities. To overcome this limitation, NASA funded Brush Wellman Corp to study a Be joining process. Four 76 mm diameters samples and a 0.5 mm diameter Joined Beryllium Mirror Demonstrator (JBMD) were fabricated. This presentation will review the fabrication of these samples and summarize the results of their cryogenic testing at MSFCs XRCF.

  11. The Multiple Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Beckers, J. M.; Ulich, B. L.; Shannon, R. R.; Carleton, N. P.; Geary, J. C.; Latham, D. W.; Angel, J. R. P.; Hoffmann, W. F.; Low, F. J.; Weymann, R. J.

    The Multiple Mirror Telescope (MMT), located on top of Mount Hopkins (2600 m) in Arizona, consists of six main telescope systems, each of which is a classical Cassegrain with a 1.8 m diameter parabolic primary with focal ratio f/2.7, and a hyperbolic secondary producing a final f/31.6 for each of the individual telescopes. The most significant departures of the MMT from conventional optical telescope technology are (1) the use of light-weight 'egg-crate' mirrors, which reduced the telescope weight, (2) the use of an alt-azimuth mount, which simplifies the gravitational effects on the structure, (3) the use of a ball-bearing support rather than hydrostatic bearings, resulting in cost savings and less maintenance, (4) the use of spur gear drives rather than worm gears, and (5) the use of multiple coaligned light collectors rather than a single monolithic mirror. Early multiple objective telescopes are discussed, and the early history of the MMT project is given. The design and performance of the telescope are explained, and MMT instrumentation (spectrograph, optical design, detector, infrared photometer, SAO CCD camera) is given. Astronomical research with the telescope is discussed, along with plans for future multiple objective telescopes.

  12. Replication of lightweight mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Ming Y.; Matson, Lawrence E.; Lee, Heedong; Chen, Chenggang

    2009-08-01

    The fabrication of lightweight mirror assemblages via a replication technique offers great potential for eliminating the high cost and schedule associated with the grinding and polishing steps needed for conventional glass or SiC mirrors. A replication mandrel is polished to an inverse figure shape and to the desired finish quality. It is then, coated with a release layer, the appropriate reflective layer, and followed by a laminate for coefficient of thermal expansion (CTE) tailorability and strength. This optical membrane is adhered to a mirror structural substrate with a low shrinkage, CTE tailored adhesive. Afterwards, the whole assembly is separated from the mandrel. The mandrel is then cleaned and reused for the next replication run. The ultimate goal of replication is to preserve the surface finish and figure of the optical membrane upon its release from the mandrel. Successful replication requires a minimization of the residual stresses within the optical coating stack, the curing stresses from the adhesive and the thermal stress resulting from CTE mismatch between the structural substrate, the adhesive, and the optical membrane. In this paper, the results on replicated trials using both metal/metal and ceramic/ceramic laminates adhered to light weighted structural substrates made from syntactic foams (both inorganic and organic) will be discussed.

  13. Lightweight tip-tilt mirror in correlation tracker system of the Space Solar Telescope

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Yang, Shimo; Jiang, Aimin

    2005-12-01

    To compensate the image motion caused by random atmospheric turbulence and mechanical vibration, a high performance correlation tracker designed for the Space Solar Telescope (SST) has been realized in National Astronomical Observatories. Correlation tracker is to stabilize the image and provide the stabilized objective to CCD. The main optical telescope can obtain the highest spatial resolution and ensure the image processing. Tip-tilt mirror is the crucial element of the correlation tracker. The lightweight mirror is to adapt to work normally with space using and satisfy the space environmental requirement. Tip-tilt mirror's material is SiC. Confirming the appropriate joint with the platform and supporting mode through Finite Element Method. Then calculating the surface shape quality value (RMS) of the mirror effected by inertial load and temperature. The calculation results show that the tip-tilt mirror has enough stiffness and intensity. The mirror's surface shape quality value can satisfy the optical requirement of the correlation tracker system.

  14. Heavy-light charm mesons spectroscopy and decay widths

    NASA Astrophysics Data System (ADS)

    Upadhyay, Alka; Batra, Meenakshi; Gupta, Pallavi

    2016-05-01

    We present the mass formula for heavy-light charm meson at one loop, using heavy quark effective theory. Formulating an effective Lagrangian, the masses of the ground state heavy mesons have been studied in the heavy quark limit, including leading corrections from finite heavy quark masses and nonzero light quark masses, using a constrained fit for the eight equations with 11 parameters including three coupling constants g, h, and g^' }. Masses determined using this approach are fitted to the experimentally known decay widths to estimate the strong coupling constants, showing a better match with available theoretical and experimental data.

  15. Minimizing actuator-induced errors in active space telescope mirrors

    NASA Astrophysics Data System (ADS)

    Smith, Matthew W.; Miller, David W.

    2010-07-01

    The trend in future space telescopes points toward increased primary mirror diameter, which improves resolution and sensitivity. However, given the constraints on mass and volume deliverable to orbit by current launch vehicles, creative design solutions are needed to enable increased mirror size while keeping mass and volume within acceptable limits. Lightweight, segmented, rib-stiffened, actively controlled primary mirrors have emerged as a potential solution. Embedded surface-parallel actuators can be used to change the mirror prescription onorbit, lowering mirror mass overall by enabling lighter substrate materials such as silicon carbide (SiC) and relaxing manufacturing constraints. However, the discrete nature of the actuators causes high spatial frequency residual errors when commanding low-order prescription changes. A parameterized finite element model is used to simulate actuator-induced residual error and investigate design solutions that mitigate this error source. Judicious specification of mirror substrate geometry and actuator length is shown to reduce actuator-induced residual while keeping areal density constant. Specifically, a sinusoidally-varying rib shaping function is found to increase actuator influence functions and decrease residual. Likewise, longer actuators are found to offer reduced residual. Other options for geometric shaping are discussed, such as rib-to-facesheet blending and the use of two dimensional patch actuators.

  16. Finite Earth

    NASA Astrophysics Data System (ADS)

    2015-10-01

    The world has agreed on 17 Sustainable Development Goals, to be adopted this week. This is great progress towards acknowledging that the planet's finite resources need to be managed carefully in the face of humanity's unlimited aspirations.

  17. Free-edge delamination - Laminate width and loading conditions effects

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Chamis, Christos C.

    1989-01-01

    The width and loading conditions effects on free-edge stress fields in composite laminates are investigated using a three-dimensional finite element analysis. This analysis includes a special free-edge region refinement or superelement with progressive substructuring (mesh refinement) and finite thickness interply layers. The different loading conditions include in-plane and out-of-plane bending, combined axial tension and in-plane shear, twisting, uniform temperature and uniform moisture. Results obtained indicate that: axial tension causes the smallest magnitude of interlaminar free edge stress compared to other loading conditions; free-edge delamination data obtained from laboratory specimens cannot be scaled to structural components; and composite structural components are not likely to delaminate.

  18. Free-edge delamination: Laminate width and loading conditions effects

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1987-01-01

    The width and loading conditions effects on free-edge stress fields in composite laminates are investigated using a three-dimensional finite element analysis. This analysis includes a special free-edge region refinement or superelement with progrssive substructuring (mesh refinement) and finite thickness interply layers. The different loading conditions include in-plane and out-of-plane bending, combined axial tension and in-plane shear, twisting, uniform temperature and uniform moisture. Results obtained indicate that: axial tension causes the smallest magnitude of interlaminar free edge stress compared to other loading conditions; free-edge delamination data obtained from laboratory specimens cannot be scaled to structural components; and composite structural components are not likely to delaminate.

  19. A spectrum of shadowed mirroring.

    PubMed

    Wanamaker, Melissa C

    2012-04-01

    The central focus of this paper is to explore and extend Kohut's theory of maternal mirroring and to place it within the current context of psychoanalytic thinking. Kohut believed a child must experience "positive" mirroring from his or her mother in infancy and beyond to ensure development of a healthy self. Kohut alludes, however, to a possible situation in which the mother's face, metaphorically a mirror, can appear "faceless" to her child. From this I have inferred the concept of what I shall call "shadowed mirroring." Clinical and literary examples show that distorted, "shadowed" mirroring appears on a spectrum, with passive mirroring at one end and hostile (either verbal or nonverbal) mirroring on the other; some individuals experience both. I then consider how "shadowed mirroring," especially hostile mirroring, can be understood within the twin contexts of the overall mother-child relationship and present-day Intersubjective/Relational thinking that is both bidirectional and co-constructed. Shadowed mirroring can lead to severe personality dysfunction along the borderline-narcissistic range, as well as to difficulties in the areas of identity formation, failure of self-cohesiveness, and the blunting of certain humane qualities like empathy. PMID:22489812

  20. Experimental and simulation study of undesirable short-period deformation in piezoelectric deformable x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Nakamori, Hiroki; Matsuyama, Satoshi; Imai, Shota; Kimura, Takashi; Sano, Yasuhisa; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2012-05-01

    To construct adaptive x-ray focusing optics whose optical parameters can be varied while performing wavefront correction, ultraprecise piezoelectric deformable mirrors have been developed. We computationally and experimentally investigated undesirable short-period deformation caused by piezoelectric actuators adhered to the substrate during mirror deformation. Based on the results of finite element method analysis, shape measurements, and the observation of x-ray reflection images, a guideline is developed for designing deformable mirrors that do not have short-period deformation errors.

  1. Analysis of the dynamics of thin primary mirrors for large astronomical telescopes

    NASA Technical Reports Server (NTRS)

    Ostroff, A. J.; Mccann, M.

    1973-01-01

    The NASTRAN structural analysis program was used to investigate the dynamic properties of thin primary mirrors suitable for use in large orbiting astronomical telescopes. An analysis is included of the mode shapes and modal frequencies for several thin, homogeneous, isotropic mirrors. Typical cases include two different mirror diameters, two different diameter-to-thickness ratios, and both a mirror without and a mirror with a central hole that is 22 percent of the mirror diameter. The finite-element structural model is evaluated by comparing the NASTRAN generated results with theoretical values for a simply supported, flat, circular mirror. The same model is then used for evaluating the spherical mirrors. The mode shapes and frequencies of a 0.762-meter-diameter mirror with a 60-to-1 diameter-to-thickness ratio and a three-point rigid kinematic (not overconstrained) mount are calculated and plotted for comparison with results obtained previously from the SAMIS structural analysis program for this same mirror. A static analysis is also shown for comparison with experimentally obtained influence coefficients.

  2. Morphodynamics structures induced by variations of the channel width

    NASA Astrophysics Data System (ADS)

    Duro, Gonzalo; Crosato, Alessandra; Tassi, Pablo

    2014-05-01

    In alluvial channels, forcing effects, such as a longitudinally varying width, can induce the formation of steady bars (Olesen, 1984). The type of bars that form, such as alternate, central or multiple, will mainly depend on the local flow width-to-depth ratio and on upstream conditions (Struiksma et al., 1985). The effects on bar formation of varying the channel width received attention only recently and investigations, based on flume experiments and mathematical modelling, are mostly restricted to small longitudinal sinusoidal variations of the channel width (e.g. Repetto et al., 2002; Wu and Yeh, 2005, Zolezzi et al., 2012; Frascati and Lanzoni, 2013). In this work, we analyze the variations in equilibrium bed topography in a longitudinal width-varying channel with characteristic scales of the Waal River (The Netherlands) using two different 2D depth-averaged morphodynamic models, one based on the Delft3D code and one on Telemac-Mascaret system. In particular, we explore the effects of changing the wavelength of sinusoidal width variations in a straight channel, focusing on the effects of the spatial lag between bar formation and forcing that is observed in numerical models and laboratory experiments (e.g. Crosato et al, 2011). We extend the investigations to finite width variations in which longitudinal changes of the width-to-depth ratio are such that they may affect the type of bars that become unstable (alternate, central or multiple bars). Numerical results are qualitatively validated with field observations and the resulting morphodynamic pattern is compared with the physics-based predictor of river bar modes by Crosato and Mosselman (2009). The numerical models are finally used to analyse the experimental conditions of Wu and Yeh (2005). The study should be seen as merely exploratory. The aim is to investigate possible approaches for future research aiming at assessing the effects of artificial river widening and narrowing to control bar formation in

  3. Red cell distribution width and nonalcoholic steatohepatitis

    PubMed Central

    Gulcan Kurt, Yasemin; Cayci, Tuncer; Aydin, Fevzi Nuri; Agilli, Mehmet

    2014-01-01

    Red cell distribution width is a measure of deviation of the volume of red blood cells. It is a marker of anisocytosis and often used to evaluate the possible causes of anemia. Elevated red cell distribution width levels are also associated with acute and chronic inflammatory responses. In nonalcoholic steatohepatitis, inflammation is accompanied with steatosis. For assuming red cell distribution width as a marker of nonalcoholic steatohepatitis, intervening factors such as levels of inflammatory markers should also be evaluated. PMID:25473202

  4. Optically thick line widths in pyrotechnic flares

    NASA Technical Reports Server (NTRS)

    Douda, B. E.; Exton, R. J.

    1975-01-01

    Experimentally determined sodium line widths for pyrotechnic flares are compared with simple analytical, optically-thick-line-shape calculations. Three ambient pressure levels are considered (760, 150 and 30 torr) for three different flare compositions. The measured line widths range from 1.3 to 481 A. The analytic procedure emphasizes the Lorentz line shape as observed under optically-thick conditions. Calculated widths are in good agreement with the measured values over the entire range.

  5. Computational study on reliability of sheath width measurement by the cutoff probe in low pressure plasmas

    NASA Astrophysics Data System (ADS)

    Kim, D.-W.; You, S.-J.; Kim, J.-H.; Seong, D.-J.; Chang, H.-Y.; Oh, W.-Y.

    2015-11-01

    Recently, the technique for measurement of the sheath width by using the cutoff probe and its equivalent circuit model was proposed and conducted experimentally. In this study, we investigate the reliability of this technique based on the computational simulation. The simulation of three-dimensional Finite-Difference Time-Domain reproduces the transmission spectrum of the cutoff probe with an input parameter of sheath width. We measure the sheath width by using the circuit model and calculate the discrepancy between them under various input plasma densities and sheath widths. The results show the acceptable discrepancy under all of the conditions we studied (the largest discrepancy is about 45%). This indicates that the technique for measurement of sheath width around the floating tip of cutoff probe is robust and reliable. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  6. JWST Mirror Technology Development Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology is a critical enabling capability for the James Webb Space Telescope (JWST). JWST requires a Primary Mirror Segment Assembly (PMSA) that can survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured and demonstrated mirror technology for JWST. Directly traceable prototypes or flight hardware has been built, tested and operated in a relevant environment. This paper summarizes that technology development effort.

  7. Variable focal length deformable mirror

    DOEpatents

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  8. A mirror to analysis.

    PubMed

    Cohen, M

    2000-12-01

    Three books written by psychiatrists for a lay audience are examined. Two are novels, and the third is a psychiatrist's account of the years of his psychiatric residency training. In all three books psychoanalysts are portrayed in negative roles, as arrogant, cold, uncaring, and even venal. The reasons why psychiatrists would portray analysis in this light are examined, and some ways in which psychoanalysts will need to re-examine their role in education and in their relationships with psychiatric colleagues in order to counteract this negative "mirror" are suggested. PMID:11143896

  9. SXI prototype mirror mount

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  10. SXI Prototype mirror mount

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This final report describes the work performed from June 1993 to January 1995. The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule.

  11. SXI prototype mirror mount

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  12. Poco Graphite Mirror Metrology Report

    NASA Technical Reports Server (NTRS)

    Kester, Thomas J.

    2005-01-01

    Recently a lightweight mirror technology was tested at Marshall Space Flight Center's Space Optic Manufacturing Technology Center (MSFC, SOMTC). The mirror is a Poco Graphite CVD Si clad SiC substrate. It was tested for cryogenic (cryo) survivability to 20deg Kelvin in SOMTC's X-ray Calibration and Cryogenic Test Facility. The surface figure of the mirror was measured before and after cry0 cycling. The test technique and results are discussed.

  13. Tight focusing of plane waves from micro-fabricated spherical mirrors.

    PubMed

    Goldwin, J; Hinds, E A

    2008-10-27

    We derive a formula for the light field of a monochromatic plane wave that is truncated and reflected by a spherical mirror. Within the scalar field approximation, our formula is valid even for deep mirrors, where the aperture radius approaches the radius of curvature. We apply this result to micro-fabricated mirrors whose size scales are in the range of tens to hundreds of wavelengths, and show that sub-wavelength focusing (full-width at half-maximum intensity) can be achieved. This opens up the possibility of scalable arrays of tightly focused optical dipole traps without the need for high-performance optical systems. PMID:18958062

  14. IGRINS Mirror Mount Design for Three Off-Axis Collimators and One Slit-Viewer Fold Mirror

    NASA Astrophysics Data System (ADS)

    Rukdee, Surangkhana; Park, Chan; Kim, Kang-Min; Lee, Sung-Ho; Chun, Moo-Young; Yuk, In-Soo; Oh, Hee-Young; Jung, Hwa-Kyoung; Lee, Chung-Uk; Lee, Han-Shin; Rafal, Marc D.; Barnes, Stuart; Jaffe, Daniel T.

    2012-06-01

    The Korea Astronomy and Space Science Institute and the Department of Astronomy at the University of Texas at Austin are developing a near infrared wide-band high resolution spectrograph, immersion grating infrared spectrometer (IGRINS). The compact white-pupil design of the instrument optics uses seven cryogenic mirrors, including three aspherical off-axis collimators and four flat fold mirrors. In this study, we introduce the optomechanical mount designs of three off-axis collimating mirrors and one flat slit-viewer fold mirror. Two of the off-axis collimators are serving as H and K-band pupil transfer mirrors, and are designed as system alignment compensators in combination with the H2RG focal plane array detectors in each channel. For this reason, the mount designs include tip-tilt and parallel translation adjustment mechanisms to properly perform the precision alignment function. This means that the off-axis mirrors' optomechanical mount designs are among the most sensitive tasks in all IGRINS system hardware. The other flat fold mirror is designed within its very limitedly allowed work space. This slit-viewer fold m irror is mounted with its own version of the six-point kinematic optics mount. The design work consists of a computer-aided 3D modeling and finite element analysis (FEA) technique to optimize the structural stability and the thermal behavior of the mount models. From the structural and thermal FEA studies, we conclude that the four IGRINS mirror mounts are well designed to meet all optical stability tolerances and system thermal requirements.

  15. Scanning mirror for infrared sensors

    NASA Technical Reports Server (NTRS)

    Anderson, R. H.; Bernstein, S. B.

    1972-01-01

    A high resolution, long life angle-encoded scanning mirror, built for application in an infrared attitude sensor, is described. The mirror uses a Moire' fringe type optical encoder and unique torsion bar suspension together with a magnetic drive to meet stringent operational and environmental requirements at a minimum weight and with minimum power consumption. Details of the specifications, design, and construction are presented with an analysis of the mirror suspension that allows accurate prediction of performance. The emphasis is on mechanical design considerations, and brief discussions are included on the encoder and magnetic drive to provide a complete view of the mirror system and its capabilities.

  16. JWST Primary Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Mirror Technology was identified as a (if not the) critical capability necessary to achieve the Level 1 science goals. A never before demonstrated space telescope capability was required: 6 to 8 meter class pri mary mirror, diffraction limited at 2 micrometers and operates at temperatures below 50K. Launch vehicle constraints placed significant architectural constraints: deployed/segmented primary mirror (4.5 meter fairing diameter) 20 kg/m2 areal density (PM 1000 kg mass) Such mirror technology had never been demonstrated - and did not exist

  17. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Astrophysics Data System (ADS)

    Emrich, Bill

    2000-10-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies without requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma ``b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  18. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Emrich, Bill; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies with out requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma "b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  19. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    SciTech Connect

    Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa; Matsuyama, Satoshi; Kimura, Takashi; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya

    2015-04-15

    An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  20. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    NASA Astrophysics Data System (ADS)

    Goto, Takumi; Nakamori, Hiroki; Kimura, Takashi; Sano, Yasuhisa; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto; Matsuyama, Satoshi

    2015-04-01

    An adaptive Kirkpatrick-Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  1. Design and simulation of the surface shape control system for membrane mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Gengsheng; Tang, Minxue

    2009-11-01

    The surface shape control is one of the key technologies for the manufacture of membrane mirror. This paper presents a design of membrane mirror's surface shape control system on the basis of fuzzy logic control. The system contains such function modules as surface shape design, surface shape control, surface shape analysis, and etc. The system functions are realized by using hybrid programming technology of Visual C# and MATLAB. The finite element method is adopted to simulate the surface shape control of membrane mirror. The finite element analysis model is established through ANSYS Parametric Design Language (APDL). ANSYS software kernel is called by the system in background running mode when doing the simulation. The controller is designed by means of controlling the sag of the mirror's central crosssection. The surface shape of the membrane mirror and its optical aberration are obtained by applying Zernike polynomial fitting. The analysis of surface shape control and the simulation of disturbance response are performed for a membrane mirror with 300mm aperture and F/2.7. The result of the simulation shows that by using the designed control system, the RMS wavefront error of the mirror can reach to 142λ (λ=632.8nm), which is consistent to the surface accuracy of the membrane mirror obtained by the large deformation theory of membrane under the same condition.

  2. Loop-mirror-based slot waveguide refractive index sensor

    NASA Astrophysics Data System (ADS)

    Kou, Jun-long; Xu, Fei; Lu, Yan-qing

    2012-12-01

    Loop mirror has been widely used in fiber optical devices and systems for it provides a smart way to make use of the fiber birefringence properties and can enhance the sensitivity greatly. On the other hand, slot waveguide is very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper, we propose and analyze a loop-mirror-based slot waveguide (LMSW) sensor which can be routinely fabricated in modern high-volume complementary metal-oxide-semiconductor (CMOS) process. The finite element method (FEM) simulation results show that the birefringence can be as high as 0.8 which is orders of magnitude than that in conventional birefringent fiber loop mirror. High sensitivity up to 6 × 103 nm/RIU (refractive index unit) is achieved by this scheme.

  3. Ultrasonic Time Reversal Mirrors

    NASA Astrophysics Data System (ADS)

    Fink, Mathias; Montaldo, Gabriel; Tanter, Mickael

    2004-11-01

    For more than ten years, time reversal techniques have been developed in many different fields of applications including detection of defects in solids, underwater acoustics, room acoustics and also ultrasound medical imaging and therapy. The essential property that makes time reversed acoustics possible is that the underlying physical process of wave propagation would be unchanged if time were reversed. In a non dissipative medium, the equations governing the waves guarantee that for every burst of sound that diverges from a source there exists in theory a set of waves that would precisely retrace the path of the sound back to the source. If the source is pointlike, this allows focusing back on the source whatever the medium complexity. For this reason, time reversal represents a very powerful adaptive focusing technique for complex media. The generation of this reconverging wave can be achieved by using Time Reversal Mirrors (TRM). It is made of arrays of ultrasonic reversible piezoelectric transducers that can record the wavefield coming from the sources and send back its time-reversed version in the medium. It relies on the use of fully programmable multi-channel electronics. In this paper we present some applications of iterative time reversal mirrors to target detection in medical applications.

  4. Mirror development for CTA

    NASA Astrophysics Data System (ADS)

    Förster, A.; Doro, M.; Brun, P.; Canestrari, R.; Chadwick, P.; Font, L.; Ghigo, M.; Lorenz, E.; Mariotti, M.; Michalowski, J.; Niemiec, J.; Pareschi, G.; Peyaud, B.; Seweryn, K.

    2009-08-01

    The Cherenkov Telescope Array (CTA), currently in its early design phase, is a proposed new project for groundbased gamma-ray astronomy with at least 10 times higher sensitivity than current instruments. CTA is planned to consist of several tens of large Imaging Atmospheric Cherenkov Telescopes (IACTs) with a combined reflective surface of up to 10,000 m2. The challenge for the future CTA array is to develop lightweight and cost efficient mirrors with high production rates, good longterm durability and adequate optical properties. The technologies currently under investigation comprise different methods of carbon fibre/epoxy based substrates, sandwich concepts with cold-slumped surfaces made of thin float glass and different structural materials like aluminum honeycomb, glass foam or PU foam inside, and aluminum sandwich structures with either diamond milled surfaces or reflective foils. The current status of the mirror development for CTA will be summarized together with investigations on the improvement of the reflective surfaces and their protection against degradation.

  5. Relay mirror experiment

    NASA Astrophysics Data System (ADS)

    Begley, David L.

    1996-04-01

    Originating out of a SDIO-funded, Phase 1 study effort, two ground systems and an orbiting EO payload/spacecraft were the primary equipment for the RME. The RME was originally conceived to be a shuttle deployed experiment. Shortly after program start, the Challenger disaster occurred, with the promise of extensive delays. A completely new space segment was to be designed incorporating a free-flying spacecraft. During the midphase of the program, a variety of launch vehicles were envisioned to replace the shuttle, requiring the BASD team to design accommodations for Delta, Atlas, and Titan, with a Delta launch being the final solution. The ground systems tracked the spacecraft and illuminated it with green and blue beacon lasers. The Payload Experiment Package (PEP) housed the bisection tracker, a key innovation central to the experiment. The bisection tracker acquired both beacons and controlled steerable mirrors to accomplish fine tracking of the two cooperative beacons. In the process, the relay mirror was precisely positioned to enable a successful relay of a third infrared laser between the two ground sites via the orbiting spacecraft. Many of the key technologies employed in the PEP were originally developed for Ball laser communications research and development programs and other laser pointing efforts. The WAVE sensor package, built by ATA and integrated by Ball, measured the vibrations of the optical base structure on which it was mounted. These spacecraft vibration data are critical to the accurate pointing of space laser communication terminals.

  6. "Mirror-Image" Errors without Mirror-Image Stimuli

    ERIC Educational Resources Information Center

    Barroso, Felix; Braine, Lila Ghent

    1974-01-01

    Young children matching the orientation of (a) identical realistic figures that could form mirror images of each other, or (b) nonidentical realistic figures that could not form mirror images, produced the same pattern of errors. The explanation proposed is a strategy of matching analogous parts of the two figures. (Author/SDH)

  7. Modeling and vibration control of an active membrane mirror

    NASA Astrophysics Data System (ADS)

    Ruggiero, Eric J.; Inman, Daniel J.

    2009-09-01

    The future of space satellite technology lies in ultra-large mirrors and radar apertures for significant improvements in imaging and communication bandwidths. The availability of optical-quality membranes drives a parallel effort for structural models that can capture the dominant dynamics of large, ultra-flexible satellite payloads. Unfortunately, the inherent flexibility of membrane mirrors wreaks havoc with the payload's on-orbit stability and maneuverability. One possible means of controlling these undesirable dynamics is by embedding active piezoelectric ceramics near the boundary of the membrane mirror. In doing so, active feedback control can be used to eliminate detrimental vibration, perform static shape control, and evaluate the health of the structure. The overall motivation of the present work is to design a control system using distributed bimorph actuators to eliminate any detrimental vibration of the membrane mirror. As a basis for this study, a piezoceramic wafer was attached in a bimorph configuration near the boundary of a tensioned rectangular membrane sample. A finite element model of the system was developed to capture the relevant system dynamics from 0 to 300 Hz. The finite element model was compared against experimental results, and fair agreement found. Using the validated finite element models, structural control using linear quadratic regulator control techniques was then used to numerically demonstrate effective vibration control. Typical results show that less than 12 V of actuation voltage is required to eliminate detrimental vibration of the membrane samples in less than 15 ms. The functional gains of the active system are also derived and presented. These spatially descriptive control terms dictate favorable regions within the membrane domain for placing sensors and can be used as a design guideline for structural control applications. The results of the present work demonstrate that thin plate theory is an appropriate modeling

  8. Finite element analysis enhancement of cryogenic testing

    NASA Astrophysics Data System (ADS)

    Thiem, Clare D.; Norton, Douglas A.

    1991-12-01

    Finite element analysis (FEA) of large space optics enhances cryogenic testing by providing an analytical method by which to ensure that a test article survives proposed testing. The analyses presented in this paper were concerned with determining the reliability of a half meter mirror in an environment where the exact environmental profile was unknown. FEA allows the interaction between the test object and the environment to be simulated to detect potential problems prior to actual testing. These analyses examined worse case scenerios related to cooling the mirror, its structural integrity for the proposed test environment, and deformation of the reflective surface. The FEA was conducted in-house on the System's Reliability Division's VAX 11-750 and Decstation 3100 using Engineering Mechanics Research Corporation's numerically integrated elements for systems analysis finite element software. The results of the analyses showed that it would take at least 48 hours to cool the mirror to its desired testing temperature. It was also determined that the proposed mirror mount would not cause critical concentrated thermal stresses that would fracture the mirror. FEA and actual measurements of the front reflective face were compared and good agreement between computer simulation and physical tests were seen. Space deployment of large optics requires lightweight mirrors which can perform under the harsh conditions of space. The physical characteristics of these mirrors must be well understood in order that their deployment and operation are successful. Evaluating design approaches by analytical simulation, like FEA, verifies the reliability and structural integrity of a space optic during design prior to prototyping and testing. Eliminating an optic's poor design early in its life saves money, materials, and human resources while ensuring performance.

  9. Development of lightweight mirror elements for the Euro50 mirrors

    NASA Astrophysics Data System (ADS)

    Bennett, Harold E.; Romeo, Robert C.; Shaffer, Joseph J.; Chen, Peter C.

    2004-07-01

    New, very large telescopes with apertures of 30, 50, and 100 meters are being proposed by the astronomical community. Superpolished or ultrapolished mirrors with low scattered light levels and the use of adaptive optics for near-diffraction-limited performance would make such large telescopes a turning point in astronomy. The secondary mirror for the Euro50 will be a four meter adaptive optic made of a low expansion graphite-filled cyanate ester resin composite produced using a replica transfer technique. We have made three 1/3rd meter diameter prototype composite adaptive optic mirrors of this cyanate ester composite material. Because of the embedded graphite fibers, the composite material has a measured expansion coefficient in the 10-8 range, as has Zerodur or ULE glass. It is very much lighter, more rugged and more economical than Zerodur or ULE, and can be fabricated in weeks, not months. The Zerodur mandrels upon which these replica transfer mirrors are made are superpolished using centrifugal elutriation, so the replica surface has an rms roughness of 0.6 to 0.8 nm. It thus scatters about an order of magnitude less light than typical conventionally polished astronomical mirrors. In adaptive optic mirrors with sub-mm thick faceplates the number of plies used is insufficient to produce an isotropic surface. For mirrors 2 mm thick, with more plies, the surfaces are isotropic, and the slight astigmatism sometimes resulting from the mesh in the ply can be corrected by actuators to make them attractive mirrors. They must be supported to maintain a good optical figure over a meter diameter mirror. The support requirement may be met by using a new type of mechanical/piezoelectric actuator adjustable to a fraction of a wavelength. The mechanical actuators have a coarse adjust of over an mm and a fine adjust of less than a wavelength of light. They can be used in series with a novel type of piezoelectric actuator for final static adjustment. The low voltage, up to 2

  10. Study on 400-1500nm reflecting coatings on lightweight mirrors

    NASA Astrophysics Data System (ADS)

    Zhang, Yao-ping; Xu, Hong

    2007-12-01

    Image-stabilization systems are widely used during astronomical image integration because of their large gain of image quality and relatively simple control system. Probably the simplest system is the one that tilts a mirror to correct angular variations caused by atmospheric fluctuations, vibration tilt of the telescope, or angular errors of internal components. Lightweight (structured) mirrors based on piezoelectric actuators are of important part of these systems. The coating of lightweight (structured) mirrors and the associated support systems involves the prediction of the magnitude and nature of the elastic deformation of mirror surface due to mechanical and thermal residual stress during coating. The clamping ways are firstly analyzed in this paper, and the finite element method of structural analysis makes it possible to include conveniently the deformation and stress of a lightweight mirror in consideration of effects of thermal gradients and mechanical loads during coating. Two models with different clamping ways are set up by using FEA soft. The distribution of deformation and stress of lightweight mirror caused by thermal residual stress is analyzed. The coated lightweight mirror is measured by interferometer and the result shows the calculated and measured results have good compatibility. Based on the results of these studies, we select a better clamping way to coating the lightweight mirror. The lightweight mirror for astronomical telescope intensified with silver has good optical properties, but the silver mirror has the faults of weak adhesion to glass substrate and the mirror is easily corroded by atmospheric pollution. In order to solve this problem, several silver adhesion layers are studied. Due to mutual action of Al2O3 and silver film, the developed Al2O3-based silver intensified mirror has overcome the above faults and achieved good effect. Finally, the coating is measured by making use of spectrometer. The average reflectance of coating is