Science.gov

Sample records for firmalt kwh pipe

  1. Design of a 1-kWh bipolar nickel hydrogen battery

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1984-01-01

    The design of a nickel hydrogen battery utilizing bipolar construction in a common pressure vessel is discussed. Design features are as follows: 40 ampere-hour capacity, 1 kWh stored energy as a 24 cell battery, 1.8 kW delivered in a LEO Cycle and maximum pulse power of 18.0 kW.

  2. Design of a 1-kWh bipolar nickel hydrogen battery

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1984-01-01

    The design of a nickel hydrogen battery utilizing bipolar construction in a common pressure vessel is discussed. Design features are as follows: 40 ampere-hour capcity, 1 kWh stored energy as a 24 cell battery, 1.8 kW delivered in a LEO Cycle and maximum pulse power of 18.0 kW.

  3. Update on Development of 360V, 28kWh Lithium-Ion Battery

    NASA Technical Reports Server (NTRS)

    Davies, Francis; Darcy, Eric; Cowles, Phil; Irlbeck, Brad; Weintritt, John

    2005-01-01

    Engineering unit submodule batteries (EUSB) the 360V, 28kWh EAPU battery were designed and assembled by COM DEV. These submodules consist of Sony Li-Ion 18650HC cells in a 5P-41S array yielding 180V, 1.4 kWh. Tests of these and of substrings and single cells at COM DEV and at JSC under various performance and abuse conditions demonstrated that performance requirements can be met. The thermal vacuum tests demonstrated that the worst case hot condition is the design driver. Deficiencies in the initial diode protection scheme of the battery were identified as a result of test failures. Potential solutions to the scheme are under development and will be presented.

  4. Pipe support

    DOEpatents

    Pollono, Louis P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems. A section of the pipe to be supported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe.

  5. Pipe Dreams.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2002-01-01

    Discusses the importance of attention to plumbing in college facilities, offering examples from various campuses. Addresses preventive maintenance, technology, and piping materials, including the debate between cast iron and PVC for drain pipes. (EV)

  6. Availability analysis of a 100 kWh superconducting magnetic energy storage

    NASA Astrophysics Data System (ADS)

    Maekinen, H.; Mikkonen, R.

    Superconducting Magnetic Energy Storage (SMES) is one of the possible and useful applications of modern superconducting technology. It is known that some loads on electricity distribution networks are particularly sensitive to short power interruptions and voltage sags. Different ranges of SMES applications have been widely discussed for large scale units (1 MWh - 1 GWh) as well as for small and medium scale units (1 kWh - 1 MWh). The major components of a SMES system are the superconducting magnet winding, the cryogenic refrigeration system and the power conditioning system, which interfaces the coil to the utility grid and applied load. The SMES winding is cooled by a cryogenic coolant: liquid helium for LTS (low temperature superconductor) wires; gaseous helium, liquid hydrogen or liquid nitrogen for HTS (high temperature superconductor) wires. In addition the higher operating temperature of HTS materials also means higher refrigeration efficiencies, greater reliability and easier acceptance within the utility community. It has been estimated that applying HTS materials in a SMES system will reduce the capital costs some 14-26 %. In this calculation it has been assumed that the price of HTS material is equivalent to that of LTS material. This report deals with the availability aspects of a 100 kWh SMES. A conceptual design of a reference unit has been used as a basis of the study. Therefore the lack of the detailed design leads to uncertainty in evaluating the failure data for single components. The failure rate data are mainly adopted from fusion data sources. This extrapolation is problematic, but in most cases the only way to get results at all. The method used is based on the failure modes, effects and criticality analysis, FMECA. Fault trees describe the outage logic based on the functional analysis. Event trees clarify the consequences of the primary events and the criticality of these consequences are expressed as system down times.

  7. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Phoenix Refrigeration Systems, Inc.'s heat pipe addition to the Phoenix 2000, a supermarket rooftop refrigeration/air conditioning system, resulted from the company's participation in a field test of heat pipes. Originally developed by NASA to control temperatures in space electronic systems, the heat pipe is a simple, effective, heat transfer system. It has been used successfully in candy storage facilities where it has provided significant energy savings. Additional data is expected to fully quantify the impact of the heat pipes on supermarket air conditioning systems.

  8. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    SciTech Connect

    2010-06-25

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  9. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    SciTech Connect

    Not Available

    2005-11-01

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  10. Pipe connector

    DOEpatents

    Sullivan, Thomas E.; Pardini, John A.

    1978-01-01

    A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated.

  11. Failure analysis of Mark IA lithium/iron sulfide battery. [Two 20-kWh modules

    SciTech Connect

    Kolba, V M; Battles, J E; Geller, J D; Gentry, K

    1980-10-01

    The Mark IA lithium/iron sulfide electric-vehicle battery, which consisted of two 20-kWh modules containing 60 cells each, was fabricated by Eagle-Picher Industries, Inc. and delivered to ANL for testing in May 1979. During startup heating prior to electrical testing, a short circuit developed in one of the modules, which resulted in a progressive failure of the cells. The other module, which was alongside and connected in series, was unaffected by the failure. The initial indication of difficulty was a small drop in the voltage of several cells, followed by short circuits in the balance of the cells and localized temperatures above 1000/sup 0/C. A team consisting of ANL and Eagle-Picher personnel conducted a detailed failure analysis as the failed module was disassembled. The other module was also examined for purposes of comparison. The general conclusion was that the short circuit was initiated by electrolyte leakage and resulting corrosion in the nearby region which formed metallic bridges between cells and the cell tray, or arcing between cells and the cell tray through the butt joints in the electrical insulation. The above two mechanisms were also believed to be responsible for the failure propagation. 66 figures, 11 tables.

  12. Piping Analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Burns & McDonnell provide architectural and engineering services in planning, design and construction of a wide range of projects all over the world. In design analysis, company regularly uses COSMIC computer programs. In computer testing piping design of a power plant, company uses Pipe Flexibility Analysis Program (MEL-21) to analyze stresses due to weight, temperature, and pressure found in proposed piping systems. Individual flow rates are put into the computer, then computer calculates the pressure drop existing across each component; if needed, design corrections or adjustments can be made and rechecked.

  13. Piping Flexibility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A NASA computer program aids Hudson Engineering Corporation, Houston, Texas, in the design and construction of huge petrochemical processing plants like the one shown, which is located at Ju'aymah, Saudi Arabia. The pipes handling the flow of chemicals are subject to a variety of stresses, such as weight and variations in pressure and temperature. Hudson Engineering uses a COSMIC piping flexibility analysis computer program to analyze stresses and unsure the necessary strength and flexibility of the pipes. This program helps the company realize substantial savings in reduced engineering time.

  14. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than $57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was $28,706, and that figures out to a cost reduction.

  15. Piping Connector

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A complex of high pressure piping at Stennis Space Center carries rocket propellants and other fluids/gases through the Center's Component Test Facility. Conventional clamped connectors tend to leak when propellant lines are chilled to extremely low temperatures. Reflange, Inc. customized an existing piping connector to include a secondary seal more tolerant of severe thermal gradients for Stennis. The T-Con connector solved the problem, and the company is now marketing a commercial version that permits testing, monitoring or collecting any emissions that may escape the primary seal during severe thermal transition.

  16. Pipe gripper

    DOEpatents

    Moyers, S.M.

    1975-12-16

    A device for gripping the exterior surface of a pipe or rod is described which has a plurality of wedges, each having a concave face which engages the outer surface of the pipe and each having a smooth face opposing the concave face. The wedges are seated on and their grooved concave faces are maintained in circular alignment by tapered axial segments of an opening extending through a wedge-seating member. The wedges are allowed to slide across the tapered axial segments so that such a sliding movement acts to vary the diameter of the circular alignment.

  17. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.

  18. Development of zinc-bromine batteries for utility energy storage. First annual report, 1 September 1978-31 August 1979. [8-kWh submodule

    SciTech Connect

    Putt, R.; Attia, A.J.; Lu, P.Y.; Heyland, J.H.

    1980-05-01

    Development work on the Zn/Br battery is reported. A major improvement was the use of a bipolar cell design; this design is superior with respect to cost, performance, and simplicity. A cost and design study for an 80-kWh module resulted in a cost estimate of $54/kWh(1979$) for purchased materials and components, on the basis of 2500 MWh of annual production. A cell submodule (nominal 2 kWh) of full-sized electrodes (1 ft/sup 2/) accrued over 200 continuous cycles in a hands-off, automatic routine with efficiencies in the range of 53 to 56%. Initial testing of a full-sized 8-kWh submodule demonstrated energy efficiencies of 65 to 67%. 23 figures, 10 tables. (RWR)

  19. Heat pipe technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A bibliography of heat pipe technology to provide a summary of research projects conducted on heat pipes is presented. The subjects duscussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design and fabrication, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.

  20. Ultrasonic pipe assessment

    SciTech Connect

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  1. Shield For Flexible Pipe

    NASA Technical Reports Server (NTRS)

    Ponton, Michael K.; Williford, Clifford B.; Lagen, Nicholas T.

    1995-01-01

    Cylindrical shield designed to fit around flexible pipe to protect nearby workers from injury and equipment from damage if pipe ruptures. Designed as pressure-relief device. Absorbs impact of debris ejected radially from broken flexible pipe. Also redirects flow of pressurized fluid escaping from broken pipe onto flow path allowing for relief of pressure while minimizing potential for harm.

  2. Short cracks in piping and piping welds

    SciTech Connect

    Wilkowski, G.M.; Brust, F.; Francini, R.; Ghadiali, N.; Kilinski, T.; Krishnaswamy, P.; Landow, M.; Marschall, C.W.; Rahman, S.; Scott, P. )

    1992-04-01

    This is the second semiannual report of the US Nuclear Regulatory Commission's Short Cracks in Piping and Piping Welds research program. The program began in March 1990 and will extend for 4 years. The intent of this program is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break analyses or in-service flaw evaluations. Only quasi-static loading rates are evaluated since the NRC's International Piping Integrity Research Group (IPIRG) program is evaluating the effects of seismic loading rates on cracked piping systems. Progress for through-wall-cracked pipe involved (1) conducting a 28-inch diameter stainless steel SAW and 4-inch diameter French TP316 experiments, (2) conducting a matrix of FEM analyses to determine GE/EPRI functions for short TWC pipe, (3) comparison of uncracked pipe maximum moments to various analyses and FEM solutions, (4) development of a J-estimation scheme that includes the strength of both the weld and base metals. Progress for surface-cracked pipe involved (1) conducting two experiments on 6-inch diameter pipe with d/t = 0.5 and {Theta}/{pi} = 0.25 cracks, (2) comparisons of the pipe experiments to Net-Section-Collapse predictions, and (3) modification of the SC.TNP and SC.TKP J-estimation schemes to include external surface cracks.

  3. Flexible ocean upwelling pipe

    DOEpatents

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  4. Reusable pipe flange covers

    DOEpatents

    Holden, James Elliott; Perez, Julieta

    2001-01-01

    A molded, flexible pipe flange cover for temporarily covering a pipe flange and a pipe opening includes a substantially round center portion having a peripheral skirt portion depending from the center portion, the center portion adapted to engage a front side of the pipe flange and to seal the pipe opening. The peripheral skirt portion is formed to include a plurality of circumferentially spaced tabs, wherein free ends of the flexible tabs are formed with respective through passages adapted to receive a drawstring for pulling the tabs together on a back side of the pipe flange.

  5. Heat pipe flight experiments

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.

    1973-01-01

    OAO 3 heat pipe flight experiments to check out weightlessness behavior are reported. Tested were a hollow channel screen system with helical grooves, a heat pipe with a wicking system of horizontal grooves, and a spiral artery pipe with multichannel fluid return to the evaporator. Flight experiment data proved that all heat pipe geometries containing wicking systems provided uninterrupted fluid return to the condensators during weightlessness and sufficient cooling for isothermalizing optical instruments onboard OAO.

  6. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report. [50 kWh

    SciTech Connect

    Zalosh, R. G.; Bajpai, S. N.; Short, T. P.; Tsui, R. K.

    1980-04-01

    Hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries are evaluated. Since commercial batteries are not yet available, this hazard assessment is based on both theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate (which is the form of chlorine storage in the charged battery). Six spill tests involving the chlorine hydrate equivalent of a 50-kWh battery indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm (30 to 38/sup 0/C) road surface. Other accidental chlorine release scenarios may also cause some distress, but are not expected to produce the type of life-threatening chlorine exposures that can result from large hydrate spills. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion model and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model was combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fataility rates are several times higher in a city such as Los Angeles with a warm and calm climate than in a colder and windier city such as Boston. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatality rates due to fires and asphyxiations. 37 figures, 19 tables.

  7. Singing Corrugated Pipes

    ERIC Educational Resources Information Center

    Crawford, Frank S.

    1974-01-01

    Presents theoretical and experimental observations made with a musical toy called Hummer consisting of a corrugated flexible plastic tube about three-feet long and one-inch diam open at both ends. Included are descriptions of three new instruments: the Water Pipe, the Gas-Pipe Corrugahorn Bugle, and the Gas-Pipe Blues Corrugahorn. (CC)

  8. Heat pipes. [technology utilization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development and use of heat pipes are described, including space requirements and contributions. Controllable heat pipes, and designs for automatically maintaining a selected constant temperature, are discussed which would add to the versatility and usefulness of heat pipes in industrial processing, manufacture of integrated circuits, and in temperature stabilization of electronics.

  9. 65. FIRE SUPPRESSION PIPES BEHIND FLAME BUCKET. PIPES TO UMBILICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. FIRE SUPPRESSION PIPES BEHIND FLAME BUCKET. PIPES TO UMBILICAL MAST IN LOWER LEFT CORNER; PIPES TO LAUNCHER IN UPPER LEFT CORNER; PIPES TO FLAME BUCKET IN LOWER RIGHT CORNER OF PHOTOGRAPH. POTABLE WATER PIPING IN UPPER RIGHT CORNER OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. Miniature Heat Pipes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  11. Piping inspection instrument carriage

    SciTech Connect

    Zollinger, W.T.; Treanor, R.C.

    1993-09-20

    This invention is comprised of a pipe inspection instrument carriage for use with a pipe crawler or other locomotion means for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has means mounted distally thereon for axially aligning the inspection instrumentation and means for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has means for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  12. Deployable Heat Pipe Radiator

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    A 1.2- by 1.8-m variable conductance heat pipe radiator was designed, built, and tested. The radiator has deployment capability and can passively control Freon-21 fluid loop temperatures under varying loads and environments. It consists of six grooved variable conductance heat pipes attached to a 0.032-in. aluminum panel. Heat is supplied to the radiator via a fluid header or a single-fluid flexible heat pipe header. The heat pipe header is an artery design that has a flexible section capable of bending up to 90 degrees. Radiator loads as high as 850 watts were successfully tested. Over a load variation of 200 watts, the outlet temperature of the Freon-21 fluid varied by 7 F. An alternate control system was also investigated which used a variable conductance heat pipe header attached to the heat pipe radiator panel.

  13. Abrasion resistant heat pipe

    DOEpatents

    Ernst, Donald M.

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  14. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  15. Internal pipe attachment mechanism

    DOEpatents

    Bast, Richard M.; Chesnut, Dwayne A.; Henning, Carl D.; Lennon, Joseph P.; Pastrnak, John W.; Smith, Joseph A.

    1994-01-01

    An attachment mechanism for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection.

  16. Internal pipe attachment mechanism

    DOEpatents

    Bast, R.M.; Chesnut, D.A.; Henning, C.D.; Lennon, J.P.; Pastrnak, J.W.; Smith, J.A.

    1994-12-13

    An attachment mechanism is described for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection. 6 figures.

  17. Underground radial pipe network

    SciTech Connect

    Peterson, D.L.

    1984-04-24

    The network, useful in conducting fluids to underground sites, is an assembly of flexible pipes or tubes, suspended from and connected to a drill pipe. The flexible pipes, assembled in a bundle, are spring biased to flare outwardly in an arcuate manner when a releasable cap on the distal end of the bundle is removed. The assembled bundle is inserted into and lowered down a bore hole. When the cap is released, the pipes flare radially and outwardly. Fluid, pumped into and through the assembly, can be directed into the underground formation for various purposes.

  18. Heat Pipe Materials Compatibility

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1976-01-01

    An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.

  19. External artery heat pipe

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J. (Inventor); Ernst, Donald M. (Inventor); Shaubach, Robert M. (Inventor)

    1989-01-01

    An improved heat pipe with an external artery. The longitudinal slot in the heat pipe wall which interconnects the heat pipe vapor space with the external artery is completely filled with sintered wick material and the wall of the external artery is also covered with sintered wick material. This added wick structure assures that the external artery will continue to feed liquid to the heat pipe evaporator even if a vapor bubble forms within and would otherwise block the liquid transport function of the external artery.

  20. Introduction to Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  1. Pipe crawler apparatus

    DOEpatents

    Hovis, Gregory L.; Erickson, Scott A.; Blackmon, Bruce L.

    2002-01-01

    A pipe crawler apparatus particularly useful for 3-inch and 4-inch diameter pipes is provided. The pipe crawler apparatus uses a gripping apparatus in which a free end of a piston rod is modified with a bearing retaining groove. Bearings, placed within the groove, are directed against a camming surface of three respective pivoting support members. The non-pivoting ends of the support members carry a foot-like gripping member that, upon pivoting of the support member, engages the interior wall of the pipe.

  2. Heat Pipe Planets

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  3. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1972-01-01

    The OAO-C spacecraft has three circular heat pipes, each of a different internal design, located in the space between the spacecraft structural tube and the experiment tube, which are designed to isothermalize the structure. Two of the pipes are used to transport high heat loads, and the third is for low heat loads. The test problems deal with the charging of the pipes, modifications, the mobile tilt table, the position indicator, and the heat input mechanisms. The final results showed that the techniques used were adequate for thermal-vacuum testing of heat pipes.

  4. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  5. These Pipes Are "Happening"

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2010-01-01

    The author is blessed with having the water pipes for the school system in her office. In this article, the author describes how the breaking of the pipes had led to a very worthwhile art experience for her students. They practiced contour and shaded drawing techniques, reviewed patterns and color theory, and used their reasoning skills--all while…

  6. Extendable pipe crawler

    DOEpatents

    Hapstack, Mark

    1991-01-01

    A pipe crawler having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by "inchworm"-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward.

  7. Extendable pipe crawler

    DOEpatents

    Hapstack, M.

    1991-05-28

    A pipe crawler is described having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by inchworm'-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figures.

  8. Piping stress handbook. Second edition

    SciTech Connect

    Helguero, V.

    1986-01-01

    This abridged volume contains the following: Coefficients of thermal expansion. Allowable stress range for ANSI/ASME Power Piping Code B31.1. Stress intensification and flexibility factors. Pressure and stress ratios. Design criteria for allowable loads, moment, and stresses. Properties of pipe. Weight and dimensions of pipe and components. Pipe support selection and design. Fundamentals of expansion joints. Index.

  9. Experimenting with a "Pipe" Whistle

    ERIC Educational Resources Information Center

    Stafford, Olga

    2012-01-01

    A simple pipe whistle can be made using pieces of PVC pipe. The whistle can be used to measure the resonant frequencies of open or closed pipes. A slightly modified version of the device can be used to also investigate the interesting dependence of the sound frequencies produced on the orifice-to-edge distance. The pipe whistle described here…

  10. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1994-01-01

    Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

  11. Gas pipe explorer robot

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian (Inventor)

    2004-01-01

    A gas pipe explorer formed of a plurality of connecting elements, and an articulation element between the connected elements. The connected elements include drive capabilities, and the articulation element allows the connected elements to traverse gas pipes of arbitrary shapes and sizes. A sensor may sends the characteristics of the gas pipe, and the communication element may send back those sends characteristics. The communication can be wired, over a tether connecting the device to a remote end. Alternatively, the connection can be wireless, driven by either a generator or a battery.

  12. An electrohydrodynamic heat pipe.

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1972-01-01

    A heat pipe of new design, using an electrode structure to orient and guide the dielectric liquid phase flow, is proposed. Analysis indicates that the operation of the electrohydrodynamic heat pipe is in direct analogy to capillary devices, with the polarization force acting in place of capillarity. Advantages of these new heat pipes include greatly reduced liquid friction, electrohydrodynamically enhanced evaporation and condensation heat transfer, and a possible voltage-controlled on/off feature. Preliminary calculations indicate that relatively high performance devices are possible.

  13. Electrohydrodynamic heat pipes.

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1973-01-01

    An electrohydrodynamic heat pipe of radical design is proposed which substitutes polarization electrohydrodynamic force effects for capillarity in collecting, guiding, and pumping a condensate liquid phase. The discussed device is restricted to the use of dielectric liquids as working fluids. Because of the relatively poor thermal transport properties of these liquids, capillary heat pipes using these liquids have not been high performance devices. The employment of the electrohydrodynamic concept should enhance this performance and help fill the performance gap that exists in the temperature range from 250 F to 750 F for 'conventional' capillary heat pipes.

  14. Improved Thin, Flexible Heat Pipes

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Gernert, Nelson J.; Sarraf, David B.; Wollen, Peter J.; Surina, Frank C.; Fale, John E.

    2004-01-01

    Flexible heat pipes of an improved type are fabricated as layers of different materials laminated together into vacuum- tight sheets or tapes. In comparison with prior flexible heat pipes, these flexible heat pipes are less susceptible to leakage. Other advantages of these flexible heat pipes, relative to prior flexible heat pipes, include high reliability and greater ease and lower cost of fabrication. Because these heat pipes are very thin, they are highly flexible. When coated on outside surfaces with adhesives, these flexible heat pipes can be applied, like common adhesive tapes, to the surfaces of heat sinks and objects to be cooled, even if those surfaces are curved.

  15. AutoPIPE Extract Program

    SciTech Connect

    Cline, Barbara E.

    1993-07-02

    The AutoPIPE Extract Program (APEX) provides an interface between CADAM (Computer Aided Design and Manufacturing) Release 21 drafting software and the AutoPIPE, Version 4.4, piping analysis program. APEX produces the AutoPIPE batch input file that corresponds to the piping shown in a CADAM model. The card image file contains header cards, material cards, and pipe cross section cards as well as tee, bend, valve, and flange cards. Node numbers are automatically generated. APEX processes straight pipe, branch lines and ring geometries.

  16. AutoPIPE Extract Program

    Energy Science and Technology Software Center (ESTSC)

    1993-07-02

    The AutoPIPE Extract Program (APEX) provides an interface between CADAM (Computer Aided Design and Manufacturing) Release 21 drafting software and the AutoPIPE, Version 4.4, piping analysis program. APEX produces the AutoPIPE batch input file that corresponds to the piping shown in a CADAM model. The card image file contains header cards, material cards, and pipe cross section cards as well as tee, bend, valve, and flange cards. Node numbers are automatically generated. APEX processes straightmore » pipe, branch lines and ring geometries.« less

  17. An electrohydrodynamic heat pipe

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1972-01-01

    Dielectric liquid for transfer of heat provides liquid flow from the condenser section to the evaporator section in conventional heat pipes. Working fluid is guided or pumped by an array of wire electrodes connected to a high-voltage source.

  18. Heat pipe manufacturing study

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1974-01-01

    Heat pipe manufacturing methods are examined with the goal of establishing cost effective procedures that will ultimately result in cheaper more reliable heat pipes. Those methods which are commonly used by all heat pipe manufacturers have been considered, including: (1) envelope and wick cleaning, (2) end closure and welding, (3) mechanical verification, (4) evacuation and charging, (5) working fluid purity, and (6) charge tube pinch off. The study is limited to moderate temperature aluminum and stainless steel heat pipes with ammonia, Freon-21 and methanol working fluids. Review and evaluation of available manufacturers techniques and procedures together with the results of specific manufacturing oriented tests have yielded a set of recommended cost-effective specifications which can be used by all manufacturers.

  19. Miniature pipe crawler tractor

    DOEpatents

    McKay, Mark D.; Anderson, Matthew O.; Ferrante, Todd A.; Willis, W. David

    2000-01-01

    A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantially diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.

  20. Heat pipe development

    NASA Technical Reports Server (NTRS)

    Bienart, W. B.

    1973-01-01

    The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.

  1. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The heat pipe was developed to alternately cool and heat without using energy or any moving parts. It enables non-rotating spacecraft to maintain a constant temperature when the surface exposed to the Sun is excessively hot and the non Sun-facing side is very cold. Several organizations, such as Tropic-Kool Engineering Corporation, joined NASA in a subsequent program to refine and commercialize the technology. Heat pipes have been installed in fast food restaurants in areas where humid conditions cause materials to deteriorate quickly. Moisture removal was increased by 30 percent in a Clearwater, FL Burger King after heat pipes were installed. Relative humidity and power consumption were also reduced significantly. Similar results were recorded by Taco Bell, which now specifies heat pipe systems in new restaurants in the Southeast.

  2. Neurophysiology of pipe flow

    NASA Astrophysics Data System (ADS)

    Barkley, Dwight

    2014-11-01

    This work explores the connection between the transition to turbulence in pipe flow and the dynamics of excitable media, as exemplified by nerve cells. The primary goal is to leverage years of extensive analysis of neural systems to understand the dynamics of transitional turbulence. To demonstrate the predictive nature of the approach, model simulations will be presented for puffs in pipe flow for cases not previously studied experimentally.

  3. Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  4. Freezable heat pipe

    DOEpatents

    Ernst, Donald M.; Sanzi, James L.

    1981-02-03

    A heat pipe whose fluid can be repeatedly frozen and thawed without damage to the casing. An additional part is added to a conventional heat pipe. This addition is a simple porous structure, such as a cylinder, self-supporting and free standing, which is dimensioned with its diameter not spanning the inside transverse dimension of the casing, and with its length surpassing the depth of maximum liquid.

  5. Heat pipe dynamic behavior

    NASA Technical Reports Server (NTRS)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  6. Heat Pipe Integrated Microsystems

    SciTech Connect

    Gass, K.; Robertson, P.J.; Shul, R.; Tigges, C.

    1999-03-30

    The trend in commercial electronics packaging to deliver ever smaller component packaging has enabled the development of new highly integrated modules meeting the demands of the next generation nano satellites. At under ten kilograms, these nano satellites will require both a greater density electronics and a melding of satellite structure and function. Better techniques must be developed to remove the subsequent heat generated by the active components required to-meet future computing requirements. Integration of commercially available electronics must be achieved without the increased costs normally associated with current generation multi chip modules. In this paper we present a method of component integration that uses silicon heat pipe technology and advanced flexible laminate circuit board technology to achieve thermal control and satellite structure. The' electronics/heat pipe stack then becomes an integral component of the spacecraft structure. Thermal management on satellites has always been a problem. The shrinking size of electronics and voltage requirements and the accompanying reduction in power dissipation has helped the situation somewhat. Nevertheless, the demands for increased onboard processing power have resulted in an ever increasing power density within the satellite body. With the introduction of nano satellites, small satellites under ten kilograms and under 1000 cubic inches, the area available on which to place hot components for proper heat dissipation has dwindled dramatically. The resulting satellite has become nearly a solid mass of electronics with nowhere to dissipate heat to space. The silicon heat pipe is attached to an aluminum frame using a thermally conductive epoxy or solder preform. The frame serves three purposes. First, the aluminum frame provides a heat conduction path from the edge of the heat pipe to radiators on the surface of the satellite. Secondly, it serves as an attachment point for extended structures attached to

  7. Explosive Welding of Pipes

    NASA Astrophysics Data System (ADS)

    Burtseva, Olga

    2007-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe. Model experiments with pipes having radii R = 57 mm confirmed results of the calculations and the possibility in principle to weld pipes by explosion with use of water as filler. Reduction of pipe diameter after dynamic loading and explosive welding was ˜2%.

  8. Wedgethread pipe connection

    DOEpatents

    Watts, John D.

    2003-06-17

    Several embodiments of a wedgethread pipe connection are disclosed that have improved makeup, sealing, and non-loosening characteristics. In one embodiment, an open wedgethread is disclosed that has an included angle measured in the gap between the stab flank and the load flank to be not less than zero, so as to prevent premature wedging between mating flanks before the position of full makeup is reached, as does occur between trapped wedgethreads wherein the included angle is less than zero. The invention may be used for pipe threads large or small, as a flush joint, with collars, screwed into plates or it may even be used to reversibly connect such as solid posts to base members where a wide makeup torque range is desired. This Open wedgethread, as opposed to trapped wedgethreads, provides a threaded pipe connection that: is more cost-effective; can seal high pressure gas; can provide selectively a connection strength as high as the pipe strength; assures easy makeup to the desired position of full makeup within a wide torque range; may have a torque strength as high as the pipe torque strength; is easier to manufacture; is easier to gage; and is less subject to handling damage.

  9. Remotely operated pipe connector

    DOEpatents

    Josefiak, Leonard J.; Cramer, Charles E.

    1988-01-01

    An apparatus for remotely assembling and disassembling a Graylock type coctor between a pipe and a closure for the pipe includes a base and a receptacle on the base for the closure. The pipe is moved into position vertically above the closure by a suitable positioning device such that the flange on the pipe is immediately adjacent and concentric with the flange on the closure. A moving device then moves two semicircular collars from a position free of the closure to a position such that the interior cam groove of each collar contacts the two flanges. Finally, a tensioning device automatically allows remote tightening and loosening of a nut and bolt assembly on each side of the collar to cause a seal ring located between the flanges to be compressed and to seal the closure. Release of the pipe and the connector is accomplished in the reverse order. Preferably, the nut and bolt assembly includes an elongate shaft portion on which a removable sleeve is located.

  10. Heat Pipe Technology

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The heat pipe, a sealed chamber whose walls are lined with a "wick," a thin capillary network containing a working fluid in liquid form was developed for a heat distribution system for non-rotating satellites. Use of the heat pipe provides a continuous heat transfer mechanism. "Heat tubes" that improve temperature control in plastics manufacturing equipment incorporated the heat pipe technology. James M. Stewart, an independent consultant, patented the heat tubes he developed and granted a license to Kona Corporation. The Kona Nozzle for heaterless injection molding gets heat for its operation from an external source and has no internal heating bands, reducing machine maintenance and also eliminating electrical hazards associated with heater bands. The nozzles are used by Eastman Kodak, Bic Pen Corporation, Polaroid, Tupperware, Ford Motor Company, RCA, and Western Electric in the molding of their products.

  11. Apparatus for inspecting piping

    DOEpatents

    Zollingger, W.T.; Appel, D.K.; Park, L.R.

    1995-03-21

    An inspection rabbit is described for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON{trademark}). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system. 6 figures.

  12. Apparatus for inspecting piping

    DOEpatents

    Zollingger, W. Thor; Appel, D. Keith; Park, Larry R.

    1995-01-01

    An inspection rabbit for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON.RTM.). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system.

  13. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics. PMID:24067709

  14. Composite drill pipe

    DOEpatents

    Leslie, James C.; Leslie, II, James C.; Heard, James; Truong, Liem , Josephson; Marvin , Neubert; Hans

    2008-12-02

    A composite pipe segment is formed to include tapered in wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self centering receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces. The distal peripheries of the nested end pieces are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes a contact ring in one pipe assembly pierced by a pointed contact in the other to connect the corresponding leads across the joint.

  15. Heat pipes and use of heat pipes in furnace exhaust

    SciTech Connect

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  16. Apparatus for moving a pipe inspection probe through piping

    DOEpatents

    Zollinger, W.T.; Appel, D.K.; Lewis, G.W.

    1995-07-18

    A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.

  17. Apparatus for moving a pipe inspection probe through piping

    DOEpatents

    Zollinger, W. Thor; Appel, D. Keith; Lewis, Gregory W.

    1995-01-01

    A method and apparatus for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher.

  18. Superfluid Helium Heat Pipe

    NASA Astrophysics Data System (ADS)

    Gully, P.

    This paper reports on the development and the thermal tests of three superfluid helium heat pipes. Two of them are designed to provide a large transport capacity (4 mW at 1.7 K). They feature a copper braid located inside a 6 mm outer diameter stainless tube fitted with copper ends for mechanical anchoring. The other heat pipe has no copper braid and is designed to get much smaller heat transport capacity (0.5 mW) and to explore lower temperature (0.7 - 1 K). The copper braid and the tube wall is the support of the Rollin superfluid helium film in which the heat is transferred. The low filling pressure makes the technology very simple with the possibility to easily bend the tube. We present the design and discuss the thermal performance of the heat pipes tested in the 0.7 to 2.0 K temperature range. The long heat pipe (1.2 m with copper braid) and the short one (0.25 m with copper braid) have similar thermal performance in the range 0.7 - 2.0 K. At 1.7 K the long heat pipe, 120 g in weight, reaches a heat transfer capacity of 6.2 mW and a thermal conductance of 600 mW/K for 4 mW transferred power. Due to the pressure drop of the vapor flow and Kapitza thermal resistance, the conductance of the third heat pipe dramatically decreases when the temperature decreases. A 3.8 mW/K is obtained at 0.7 K for 0.5 mW transferred power.

  19. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  20. Heat transfer in pipes

    NASA Technical Reports Server (NTRS)

    Burbach, T.

    1985-01-01

    The heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition is determined. The mean flow through velocity in the pipe, relative test length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new Prandtl equation for heat transfer and correlated well. Test material for 200- and to 400-diameter test length is represented at four different vessel temperatures.

  1. Heat pipe cooled probe

    NASA Technical Reports Server (NTRS)

    Camarda, C. J. (Inventor); Couch, L. M.

    1984-01-01

    The basic heat pipe principle is employed to provide a self-contained passively cooled probe that may be placed into a high temperature environment. The probe consists of an evaporator region of a heat pipe and a sensing instrument. Heat is absorbed as the working fluid evaporates in the probe. The vapor is transported to the vapor space of the condenser region. Heat is dissipated from the condenser region and fins causing condensation of the working fluid, which returns to the probe by gravity and the capillary action of the wick. Working fluid, wick and condenser configurations and structure materials can be selected to maintain the probe within an acceptable temperature range.

  2. Pipe Drafting with CAD. Teacher Edition.

    ERIC Educational Resources Information Center

    Smithson, Buddy

    This teacher's guide contains nine units of instruction for a course on computer-assisted pipe drafting. The course covers the following topics: introduction to pipe drafting with CAD (computer-assisted design); flow diagrams; pipe and pipe components; valves; piping plans and elevations; isometrics; equipment fabrication drawings; piping design…

  3. Deployable heat-pipe radiator

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1978-01-01

    Loop temperatures are controlled effectively under varying load conditions. Radiator has four separate pieces of hardware: heat-pipe panel, flexible heat-pipe leader, heat exchanger, fluid header. Single-fluid transport capacities of about 850 watts, corresponding to 51,000 watt-inches, have been achieved in 90 degree bend orientation of heat-pipe header.

  4. Reusable high-temperature heat pipes and heat pipe panels

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Ransone, Philip O. (Inventor)

    1989-01-01

    A reusable, durable heat pipe which is capable of operating at temperatures up to about 3000 F in an oxidizing environment and at temperatures above 3000 F in an inert or vacuum environment is produced by embedding a refractory metal pipe within a carbon-carbon composite structure. A reusable, durable heat pipe panel is made from an array of refractory-metal pipes spaced from each other. The reusable, durable, heat-pipe is employed to fabricate a hypersonic vehicle leading edge and nose cap.

  5. Defect characterization in pipe-to-pipe welds in large diameter stainless steel piping

    SciTech Connect

    Rawl, D.E. Jr.; West, S.L.; Wheeler, D.A.; Louthan, M.R. Jr.

    1990-01-01

    Metallurgical evaluation of pipe-to-pipe welds in large-diameter, Type 304 stainless steel piping used to construct the moderator/coolant water systems for Savannah River Site reactors has demonstrated that small weld defects found in this 1950-vintage system do not compromise the integrity of the system. The weld defects were too small for detection by the pre-service standard radiographic inspection, but were found through systematic ultrasonic testing (UT) and penetrant testing (PT) evaluations of piping that had been removed during upgrades to the piping system. The defects include lack of weld penetration, slag inclusions, and other weld metal discontinuities. These discontinuities typically did not propagate during more than 35 years of service. The defects examined were too small and isolated to degrade the mechanical properties of the pipe-to-pipe weldments and therefore did not compromise the integrity of the piping system. 14 refs., 7 figs.

  6. 46 CFR 154.503 - Piping and piping system components: Protection from movement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Piping and piping system components: Protection from..., Construction and Equipment Cargo and Process Piping Systems § 154.503 Piping and piping system components... cause stresses that exceed the design stresses, the piping and piping system components and cargo...

  7. 46 CFR 154.503 - Piping and piping system components: Protection from movement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Piping and piping system components: Protection from..., Construction and Equipment Cargo and Process Piping Systems § 154.503 Piping and piping system components... cause stresses that exceed the design stresses, the piping and piping system components and cargo...

  8. 46 CFR 154.503 - Piping and piping system components: Protection from movement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Piping and piping system components: Protection from..., Construction and Equipment Cargo and Process Piping Systems § 154.503 Piping and piping system components... cause stresses that exceed the design stresses, the piping and piping system components and cargo...

  9. 46 CFR 154.503 - Piping and piping system components: Protection from movement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Piping and piping system components: Protection from..., Construction and Equipment Cargo and Process Piping Systems § 154.503 Piping and piping system components... cause stresses that exceed the design stresses, the piping and piping system components and cargo...

  10. Explosive Welding of Pipes

    NASA Astrophysics Data System (ADS)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  11. Flexible Heat Pipe

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.; Wolf, D. A.

    1985-01-01

    Narrow Tube carries 10 watts or more to moving parts. Heat pipe 12 inches long and diameter of 0.312 inch (7.92mm). Bent to minimum radius of 2.5 blocks. Flexible section made of 321 stainless steel tubing (Cajon Flexible Tubing or equivalent). Evaporator and condenser made of oxygen free copper. Working fluid methanol.

  12. Aeronautical tubes and pipes

    NASA Astrophysics Data System (ADS)

    Beauclair, N.

    1984-12-01

    The main and subcomponent French suppliers of aircraft tubes and pipes are discussed, and the state of the industry is analyzed. Quality control is essential for tubes with regard to their i.d. and metallurgical compositions. French regulations do not allow welded seam tubes in hydraulic circuits unless no other form is available, and then rustproofed steel must be installed. The actual low level of orders for any run of tubes dictates that the product is only one of several among the manufacturers' line. Automation, both in NDT and quality control, assures that the tubes meet specifications. A total of 10 French companies participate in the industry, serving both civil and military needs, with some companies specializing only in titanium, steel, or aluminum materials. Concerns wishing to enter the market must upgrade their equipment to meet the higher aeronautical specifications and be prepared to furnish tubes and pipes that serve both functional and structural purposes simultaneously. Additionally, pipe-bending machines must also perform to tight specifications. Pipes can range from 0.2 mm exterior diameter to 40 mm, with wall thicknesses from 0.02 mm to 3 mm. A chart containing a list of manufacturers and their respective specifications and characteristics is presented, and a downtrend in production with reduction of personnel is noted.

  13. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1973-01-01

    Techniques associated with thermal-vacuum and bench testing, along with flight testing of the OAO-C spacecraft heat pipes are outlined, to show that the processes used in heat transfer design and testing are adequate for good performance evaluations.

  14. Heat Pipes Cool Power Magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I.; Chester, M.; Luedke, E.

    1983-01-01

    Configurations originally developed for space use are effective in any orientation. Heat pipes integrated into high-power, high-frequency, highvoltage spaceflight magnetics reduce weight and improve reliability by lowering internal tempertures. Two heat pipes integrated in design of power transformer cool unit in any orientation. Electrostatic shield conducts heat from windings to heat pipe evaporator. Technology allows dramatic reductions in size and weight, while significantly improving reliability. In addition, all attitude design of heat pipes allows operation of heat pipes independent of local gravity forces.

  15. Heat Pipes For Alyeska

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The heat pipes job is to keep the arctic ground frozen. The permafrost soil alternately freezes and thaws with seasonal temperature changes causing surface dislocations and problems for the builders. In winter, a phenomenon called frost-heaving uplifts the soil. It is something like the creation of highway potholes by the freezing of rainwater below the roadbed, but frost-heaving exerts a far greater force. Thawing of the frost in the summer causes the soil to settle unevenly. Therefore it is necessary to keep the soil in a continually frozen state so the pipeline won't rupture. To solve this problem, McDonnell Douglas Corp. applied heat pipe principles in the design of the vertical supports that hold up the pipeline.

  16. Drill pipe protector development

    SciTech Connect

    Thomerson, C.; Kenne, R.; Wemple, R.P.

    1996-03-01

    The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

  17. Explosive welding of pipes

    NASA Astrophysics Data System (ADS)

    Drennov, O.; Burtseva, O.; Kitin, A.

    2006-08-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water. Model experiments with pipes having radii R = 57 mm confirmed results of the calculations and the possibility in principle to weld pipes by explosion with use of water as filler.

  18. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Solar Fundamentals, Inc.'s hot water system employs space-derived heat pipe technology. It is used by a meat packing plant to heat water for cleaning processing machinery. Unit is complete system with water heater, hot water storage, electrical controls and auxiliary components. Other than fans and a circulating pump, there are no moving parts. System's unique design eliminates problems of balancing, leaking, corroding, and freezing.

  19. Electrohydrodynamic heat pipe research

    NASA Technical Reports Server (NTRS)

    Jones, T. B.; Perry, M. P.

    1973-01-01

    Experimental and theoretical applications to electrohydrodynamic heat pipe (EHDHP) research are presented. Two problems in the research which are discussed are the prediction of the effective thermal conductance of an EHDHP with threaded grooves for fluid distribution to the evaporator of an EHDHP. Hydrodynamic equations are included along with a discussion of boundary conditions and burn-out conditions. A discussion of the theoretical and experimental results is presented.

  20. Light Pipe Thermophotovoltaics (LTPV)

    NASA Astrophysics Data System (ADS)

    Chubb, Donald L.

    2007-02-01

    In a conventional thermophotovoltaic (TPV) energy converter the radiation from the emitter to the photovoltaic (PV) array is transmitted in a vacuum or air where the index of refraction, n = 1. The intensity of the radiation is proportional to n2. Therefore, the incident intensity on the PV array could be greatly increase if the medium between the emitter and the PV array had n > 1. This light pipe TPV (LTPV) concept was introduced by The Quantum Group at the Third National Renewable Energy Laboratory (NREL) TPV Conference in 1997. This paper presents a theoretical analysis of the LTPV concept. The solution of the one-dimensional energy equation that includes both thermal conduction and radiation yields the temperature distribution through the light pipe. Applying the analysis to a zinc selenide (ZnSe) light pipe yielded the following result. For an emitter temperature of 1000K the convertible radiation(photon energy >PV bandgap energy) that reaches the photovoltaic(PV) cell is 1 W/cm2. At the same emitter temperature, a conventional TPV converter would have 1/8 W/cm2 of convertible radiation. Thus, the LTPV concept makes possible lower temperature operation than current TPV converters.

  1. Guidable pipe plug

    DOEpatents

    Glassell, Richard L.; Babcock, Scott M.; Lewis, Benjamin E.

    2001-01-01

    A plugging device for closing an opening defined by an end of a pipe with sealant comprises a cap, an extension, an inner seal, a guide, and at least one stop. The cap has an inner surface which defines a chamber adapted for retaining the sealant. The chamber is dimensioned slightly larger than the end so as to receive the end. The chamber and end define a gap therebetween. The extension has a distal end and is attached to the inner surface opposite the distal end. The inner seal is attached to the extension and sized larger than the opening. The guide is positioned forward of the inner seal and attached to the distal end. The guide is also dimensioned to be inserted into the opening. The stop is attached to the extender, and when the stop is disposed in the pipe, the stop is movable with respect to the conduit in one direction and also prevents misalignment of the cap with the pipe. A handle can also be included to allow the cap to be positioned robotically.

  2. Heat pipe technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The annual supplement on heat pipe technology for 1971 is presented. The document contains 101 references with abstracts and 47 patents. The subjects discussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design, development, and fabrication of heat pipes, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.

  3. Experimenting with a ``Pipe'' Whistle

    NASA Astrophysics Data System (ADS)

    Stafford, Olga

    2012-04-01

    A simple pipe whistle can be made using pieces of PVC pipe. The whistle can be used to measure the resonant frequencies of open or closed pipes. A slightly modified version of the device can be used to also investigate the interesting dependence of the sound frequencies produced on the orifice-to-edge distance. The pipe whistle described here allows students in a physics of music or introductory physics course to study an example of an "edge tone" device that produces discrete sound frequencies. From their textbooks, students likely know about standing waves produced by pipes or strings, as well as the resonant frequencies for open and closed pipes. To go a bit further, they can also learn how the frequency of the sound wave depends on the orifice-to-edge distance of the wind instrument.

  4. Insulating Cryogenic Pipes With Frost

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Bova, J. A.

    1985-01-01

    Crystallized water vapor fills voids in pipe insulation. Small, carefully controlled amount of water vapor introduced into dry nitrogen gas before it enters aft fuselage. Vapor freezes on pipes, filling cracks in insulation. Ice prevents gaseous nitrogen from condensing on pipes and dripping on structure, in addition to helping to insulate all parts. Industrial applications include large refrigeration plants or facilities that use cryogenic liquids.

  5. Thermostructural applications of heat pipes

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Reeder, J. C.; Sontag, K. E.

    1979-01-01

    The feasibility of integrating heat pipes in high temperature structure to reduce local hot spot temperature was evaluated for a variety of hypersonic aerospace vehicles. From an initial list of twenty-two potential applications, the single stage to orbit wing leading edge showed the greatest promise and was selected for preliminary design of an integrated heat pipe thermostructural system. The design consisted of a Hastelloy X assembly with sodium heat pipe passages aligned normal to the wing leading edge. A d-shaped heat pipe cross section was determined to be optimum from the standpoint of structural weight.

  6. Cryogenic Heat Pipe Experiment (CRYOHP)

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy

    1992-01-01

    The objective of the CRYOHP experiment is to conduct a shuttle experiment that demonstrates the reliable operation of two oxygen heat pipes in microgravity. The experiment will perform the following tasks: (1) demonstrate startup of the pipes from the supercritical state; (2) measure the heat transport capacity of the pipes; (3) measure evaporator and condenser film coefficients; and (4) work shuttle safety issues. The approach for the experiment is as follows: (1) fly two axially grooved oxygen heat pipes attached to mechanical stirling cycle tactical coolers; (2) integrate experiment in hitch-hiker canister; and (3) fly on shuttle and control from ground.

  7. Large-bore pipe decontamination

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  8. Heat pipes - Thermal diodes

    NASA Astrophysics Data System (ADS)

    Aptekar, B. F.; Baum, J. M.; Ivanovskii, M. N.; Kolgotin, F. F.; Serbin, V. I.

    The performance concept and peculiarities of the new type of thermal diode with the trap and with the wick breakage are dealt with in the report. The experimental data were obtained and analysed for the working fluid mass and the volume of the liquid in the wick on the forward-mode limiting heat transfer. The flow rate pulsation of the working fluid in the wick was observed visually on the setup with the transparent wall. The quantitative difference on the data on the investigated thermal diode and on the identical heat pipes without the wick breakage is found experimentally concerning the forward-mode limiting heat transfer.

  9. Ceramic heat pipe wick

    NASA Technical Reports Server (NTRS)

    Seidenberg, Benjamin (Inventor); Swanson, Theodore (Inventor)

    1989-01-01

    A wick for use in a capillary loop pump heat pipe is disclosed. The wick material is an essentially uniformly porous, permeable, open-cell, silicon dioxide/aluminum oxide inorganic ceramic foam having a silica fiber ratio, by weight, of about 78 to 22, respectively, a density of 6 lbs/cu ft, and an average pore size of less than 5 microns. A representative material having these characteristics is Lockheed Missile and Space Company, Inc.'s HTP 6-22. This material is fully compatible with the freons and anhydrous ammonia and allows for the use of these very efficient working fluids, and others, in capillary loops.

  10. Polymeric heat pipe wick

    NASA Technical Reports Server (NTRS)

    Seidenberg, Benjamin

    1988-01-01

    A wick for use in a capillary loop pump heat pipe is described. The wick material is an essentially uniformly porous, permeable, open-cell, polyethylene thermoplastic foam having an ultrahigh average molecular weight of from approximately 1 to 5 million, and an average pore size of about 10 to 12 microns. A representative material having these characteristics is POREX UF, which has an average molecular weight of about 3 million. This material is fully compatible with the FREONs and anhydrous ammonia and allows for the use of these very efficient working fluids in capillary loops.

  11. Removal of Pipe Fouling Inside Pipes Using Ultrasonic Waves

    NASA Astrophysics Data System (ADS)

    Nakagawa, Noritoshi; Fujihara, Masaya; Wu, Chaoqun; Satonobu, Jun

    Since fouling generated inside pipes of chemistry plant equipment, shortens “its life”, periodical maintenance such as cleaning or replacement is needed. Therefore, the development of a safe and sanitary method of preventing a corrosion and blockage inside pipes is desired. In this study, a vibration system, composed of a bolt-clamped Langevin transducer and a pipe, was employed to experimentally study the possibility of fouling removal. In the experiment, a flexural vibration was excited in a pipe containing fouling using ultrasonic waves. When the pipe was made to vibrate, with calcium carbonate or starch used as the fouling, it was shown that the fouling was diffused into the air, and except at the node of the flexural vibration, the fouling was removed completely. Also, the result showed that a higher input voltage to the transducer was more effective in removing the fouling.

  12. Pipe crawler with stabilizing midsection

    SciTech Connect

    Zollinger, W.T.; Treanor, R.C.

    1993-09-20

    This invention is comprised of a pipe crawler having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ``inch worm`` fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting.

  13. Alternate high capacity heat pipe

    NASA Technical Reports Server (NTRS)

    Voss, F. E.

    1986-01-01

    The performance predictions for a fifty foot heat pipe (4 foot evaporator - 46 foot condensor) are discussed. These performance predictions are supported by experimental data for a four foot heat pipe. Both heat pipes have evaporators with axial groove wick structures and condensers with powder metal external artery wick structures. The predicted performance of a rectangular axial groove/external artery heat pipe operating in space is given. Heat transport versus groove width is plotted for 100, 200 and 300 grooves in the evaporator. The curves show that maximum power is achieved for groove widths from 0.040 to 0.053 as the number of grooves varies from 300 to 100. The corresponding range of maximum power is 3150 to 2400 watts. The relationships between groove width and heat pipe evaporate diameter for 100, 200 and 300 grooves in the evaporator are given. A four foot heat pipe having a three foot condenser and one foot evaporator was built and tested. The evaporator wick structure used axial grooves with rectangular cross sections, and the condenser wick structure used powder metal with an external artery configuration. Fabrication drawings are enclosed. The predicted and measured performance for this heat pipe is shown. The agreement between predicted and measured performance is good and therefore substantiates the predicted performance for a fifty foot heat pipe.

  14. Heat Pipe Blocks Return Flow

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.

    1982-01-01

    Metal-foil reed valve in conventional slab-wick heat pipe limits heat flow to one direction only. With sink warmer than source, reed is forced closed and fluid returns to source side through annular transfer wick. When this occurs, wick slab on sink side of valve dries out and heat pipe ceases to conduct heat.

  15. Building a Copper Pipe "Xylophone."

    ERIC Educational Resources Information Center

    Lapp, David R.

    2003-01-01

    Explains how to use the equation for frequency of vibration of a transversely oscillating bar or pipe with both ends free to vibrate to build a simple and inexpensive xylophone from a 3-meter section of copper pipe. The instrument produces a full major scale and can be used to investigate various musical intervals. (Author/NB)

  16. Pipe crawler with stabilizing midsection

    DOEpatents

    Zollinger, William T.; Treanor, Richard C.

    1994-01-01

    A pipe crawler having a midsection that provides the stability and flexibty to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in "inch worm" fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting.

  17. Pipe crawler with stabilizing midsection

    DOEpatents

    Zollinger, W.T.; Treanor, R.C.

    1994-12-27

    A pipe crawler is described having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ''inch worm'' fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting. 5 figures.

  18. Vapor spill pipe monitor

    NASA Astrophysics Data System (ADS)

    Bianchini, G. M.; McRae, T. G.

    1983-06-01

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote IR gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote IR sensor which measures the gas composition.

  19. Vapor spill pipe monitor

    DOEpatents

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  20. Promethus Hot Leg Piping Concept

    SciTech Connect

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  1. Vibration analysis methods for piping

    NASA Astrophysics Data System (ADS)

    Gibert, R. J.

    1981-09-01

    Attention is given to flow vibrations in pipe flow induced by singularity points in the piping system. The types of pressure fluctuations induced by flow singularities are examined, including the intense wideband fluctuations immediately downstream of the singularity and the acoustic fluctuations encountered in the remainder of the circuit, and a theory of noise generation by unsteady flow in internal acoustics is developed. The response of the piping systems to the pressure fluctuations thus generated is considered, and the calculation of the modal characteristics of piping containing a dense fluid in order to obtain the system transfer function is discussed. The TEDEL program, which calculates the vibratory response of a structure composed of straight and curved pipes with variable mechanical characteristics forming a three-dimensional network by a finite element method, is then presented, and calculations of fluid-structural coupling in tubular networks are illustrated.

  2. Prometheus Hot Leg Piping Concept

    SciTech Connect

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-30

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  3. Prometheus Hot Leg Piping Concept

    NASA Astrophysics Data System (ADS)

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  4. Geothermal district piping - A primer

    SciTech Connect

    Rafferty, K.

    1989-11-01

    Transmission and distribution piping constitutes approximately 40 -60% of the capital costs of typical geothermal district heating systems. Selections of economical piping suitable for the fluid chemistry is critical. Presently, most piping (56%) in geothermal systems is of asbestos cement construction. Some fiberglass (19%) and steel (19%) is also in use. Identification of an economical material to replace asbestos cement is important to future project development. By providing information on relative costs, purchase considerations, existing material performance and new products, this report seeks to provide a background of information to the potential pipe purchaser. A brief discussion of the use of uninsulated piping in geothermal district heating systems is also provided. 5 refs., 19 figs., 1 tab.

  5. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  6. Technology for concrete pipe manipulator

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Dan; Lin, Renzhi

    2009-12-01

    The pipe manipulator is a developing mechatronic system to enhance productivity and protects workers from cave-ins in the trench while excavating and laying pipe. The pipe manipulator is for installing concrete pipe into the trench. It is an optical-electro-mechanical system. The mechanism is make up of two parts, the upside and underside. The upside is for lifting the equipment by backhoe and rotating the underside mechanism. It includes rigidity lift beams, holding pad, four-bar linkages, hydraulic cylinder, rotating support, and rotating mechanism. Holding pad will press the bucket back to keep the bucket hooking the pipe man safely and stably. The underside mechanism is for lifting, holding and adjusting the pipe section's stance. The underside mechanism includes support trolley, and lift fork. The support trolley is driven by hydraulic cylinder for moving the fork forward or backward while laying a pipe into trench. The fork is with a self-lock mechanism for preventing the pipe from slide out of the prongs. A new photoelectric locating system is developed for auto-measuring the installing pipe section's stance within the work area. The laser target has been developed as a key part in the photoelectric locating systems. The photoelectric target is a rotating polar coordinate. Photodiodes are used for making the polar radius. There is an angular displacement sensor sitting on the heart-axis of the target for measuring angle of the target rotating. The pipe manipulator can be located by the system, and the locating methods have been presented at last of the paper.

  7. Technology for concrete pipe manipulator

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Dan; Lin, Renzhi

    2010-01-01

    The pipe manipulator is a developing mechatronic system to enhance productivity and protects workers from cave-ins in the trench while excavating and laying pipe. The pipe manipulator is for installing concrete pipe into the trench. It is an optical-electro-mechanical system. The mechanism is make up of two parts, the upside and underside. The upside is for lifting the equipment by backhoe and rotating the underside mechanism. It includes rigidity lift beams, holding pad, four-bar linkages, hydraulic cylinder, rotating support, and rotating mechanism. Holding pad will press the bucket back to keep the bucket hooking the pipe man safely and stably. The underside mechanism is for lifting, holding and adjusting the pipe section's stance. The underside mechanism includes support trolley, and lift fork. The support trolley is driven by hydraulic cylinder for moving the fork forward or backward while laying a pipe into trench. The fork is with a self-lock mechanism for preventing the pipe from slide out of the prongs. A new photoelectric locating system is developed for auto-measuring the installing pipe section's stance within the work area. The laser target has been developed as a key part in the photoelectric locating systems. The photoelectric target is a rotating polar coordinate. Photodiodes are used for making the polar radius. There is an angular displacement sensor sitting on the heart-axis of the target for measuring angle of the target rotating. The pipe manipulator can be located by the system, and the locating methods have been presented at last of the paper.

  8. Superconducting pipes and levitating magnets.

    PubMed

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel. PMID:17280160

  9. Superconducting pipes and levitating magnets

    NASA Astrophysics Data System (ADS)

    Levin, Yan; Rizzato, Felipe B.

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L≳a decays, in the axial direction, with a characteristic length ξ≈0.26a . The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  10. Heat pipe technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A cumulative bibliography on heat pipe research and development projects is presented. The subjects discussed are: (1) general information, (2) heat pipe applications, (3) heat pipe theory, (4) design and fabrication, (5) testing and operation, (6) subject and author index, and (7) heat pipe related patents.

  11. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  12. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  13. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  14. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  15. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  16. Decontaminating Aluminum/Ammonia Heat Pipes

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    1985-01-01

    Internal gas slugs reduced or eliminated. Manufacturing method increases efficiency of aluminum heat pipes in which ammonia is working fluid by insuring pipe filled with nearly pure charge of ammonia. In new process heat pipe initially closed with stainless-steel valve instead of weld so pipe put through several cycles of filling, purging, and accelerated aging.

  17. 14 CFR 27.1123 - Exhaust piping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 27.1123 Section 27.1123... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Exhaust System § 27.1123 Exhaust piping. (a) Exhaust piping... operating temperatures. (b) Exhaust piping must be supported to withstand any vibration and inertia loads...

  18. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  19. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  20. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  1. Heat pipe technology: A biblography with abstracts

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A bibliography of heat pipe research and development projects conducted during April through June 1972, is presented. The subjects discussed are: (1) general information, (2) heat pipe applications, (3) heat pipe theory, (4) design and fabrication, (5) test and operation, (6) subject and author index, and (7) heat pipe related patents.

  2. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  3. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  4. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  5. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  6. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  7. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  8. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  9. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  10. 49 CFR 192.55 - Steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for...

  11. Leachate storage transport tanker loadout piping

    SciTech Connect

    Whitlock, R.W.

    1994-11-18

    This report shows the modifications to the W-025 Trench No. 31 leachate loadout discharge piping, and also the steps involved in installing the discharge piping, including dimensions and welding information. The installation of the discharge pipe should be done in accordance to current pipe installation standards. Trench No. 31 is a radioactive mixed waste land disposal facility.

  12. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... pipe, valve, and fitting must have support and protection from damage. (d) Each foam extinguishing... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only...

  13. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... pipe, valve, and fitting must have support and protection from damage. (d) Each foam extinguishing... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only...

  14. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... pipe, valve, and fitting must have support and protection from damage. (d) Each foam extinguishing... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only...

  15. Determination of Secondary Encasement Pipe Design Pressure

    SciTech Connect

    TEDESCHI, A.R.

    2000-10-26

    This document published results of iterative calculations for maximum tank farm transfer secondary pipe (encasement) pressure upon failure of the primary pipe. The maximum pressure was calculated from a primary pipe guillotine break. Results show encasement pipeline design or testing pressures can be significantly lower than primary pipe pressure criteria.

  16. 46 CFR 45.133 - Air pipes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD....133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must be made of steel and of sufficient thickness to...

  17. Heat pipe experiment on SPAS 01

    NASA Astrophysics Data System (ADS)

    Kock, H.; Kreeb, H.; Savage, C.

    1986-08-01

    The second flight of Challenger carried a heat pipe experiment, designed to measure the performance of constant conductance heat pipe diodes over a period of 16 hr. The experiment platform and the flight results on variable conductance heat pipe housekeeping radiators, including the temperature distribution at these heat pipe versus experiment time are presented. All equipment is shown to be space qualified.

  18. 46 CFR 76.25-30 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Piping. 76.25-30 Section 76.25-30 Shipping COAST GUARD... System, Details § 76.25-30 Piping. (a) All piping, valves, and fittings of ferrous materials shall be... piping, valves, fittings, and sprinkler heads shall be securely supported, and, where...

  19. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Piping. 108.475 Section 108.475 Shipping COAST GUARD... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only...

  20. 46 CFR 108.475 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Piping. 108.475 Section 108.475 Shipping COAST GUARD... Extinguishing Systems Foam Extinguishing Systems § 108.475 Piping. (a) Each pipe, valve, and fitting in a foam... to remove liquid from the system. (e) Piping in a foam extinguishing system must be used only...

  1. 46 CFR 76.25-30 - Piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Piping. 76.25-30 Section 76.25-30 Shipping COAST GUARD... System, Details § 76.25-30 Piping. (a) All piping, valves, and fittings of ferrous materials shall be... piping, valves, fittings, and sprinkler heads shall be securely supported, and, where...

  2. 49 CFR 195.114 - Used pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Used pipe. 195.114 Section 195.114 Transportation... PIPELINE Design Requirements § 195.114 Used pipe. Any used pipe installed in a pipeline system must comply with § 195.112 (a) and (b) and the following: (a) The pipe must be of a known specification and...

  3. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt welds... butt welds must meet the following: (1) Butt welds of pipes made from carbon, carbon manganese, or...

  4. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false New pipe. 195.112 Section 195.112 Transportation... PIPELINE Design Requirements § 195.112 New pipe. Any new pipe installed in a pipeline system must comply with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or...

  5. Heat pipe transient response approximation

    NASA Astrophysics Data System (ADS)

    Reid, Robert S.

    2002-01-01

    A simple and concise routine that approximates the response of an alkali metal heat pipe to changes in evaporator heat transfer rate is described. This analytically based routine is compared with data from a cylindrical heat pipe with a crescent-annular wick that undergoes gradual (quasi-steady) transitions through the viscous and condenser boundary heat transfer limits. The sonic heat transfer limit can also be incorporated into this routine for heat pipes with more closely coupled condensers. The advantages and obvious limitations of this approach are discussed. For reference, a source code listing for the approximation appears at the end of this paper. .

  6. Abrasion protection in process piping

    SciTech Connect

    Accetta, J.

    1996-07-01

    Process piping often is subjected to failure from abrasion or a combination of abrasion and corrosion. Abrasion is a complex phenomenon, with many factors involved to varying degrees. Hard, mineral based alumina ceramic and basalt materials are used to provide protection against abrasion in many piping systems. Successful life extension examples are presented from many different industries. Lined piping components require special attention with regard to operating conditions as well as design and engineering considerations. Economic justification involves direct cost comparisons and avoided costs.

  7. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  8. Variable conductance heat pipe technology

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.; Edwards, D. K.; Anderson, W. T.

    1973-01-01

    Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft.

  9. Thermal laminarization of a stratified pipe flow

    SciTech Connect

    Oras, J.J.; Kasza, K.E.

    1984-01-01

    The present work constitutes a new program that grew out of a scoping assessment by ANL to determine the propensity for pipe stratification to occur in the reactor outlet nozzles and hot-leg piping of a generic LMFBR during events producing reverse pipe flow. This paper focuses on the role that thermal buoyancy plays relative to being able to laminarize a turbulent stratified shear zone in a horizontal pipe. The preceeding can influence the behavior of a pipe stratified-backflow-recirculation zone (cold plenum water down into the hot pipe flow) which developes as the result of a temperature difference between the pipe flow and the plenum.

  10. APEX. AutoPIPE Extract Program

    SciTech Connect

    Cline, B.E.

    1992-07-01

    The AutoPIPE Extract Program (APEX) provides an interface between CADAM (Computer Aided Design and Manufacturing) Release 21 drafting software and the AutoPIPE, Version 4.4, piping analysis program. APEX produces the AutoPIPE batch input file that corresponds to the piping shown in a CADAM model. The card image file contains header cards, material cards, and pipe cross section cards as well as tee, bend, valve, and flange cards. Node numbers are automatically generated. APEX processes straight pipe, branch lines and ring geometries.

  11. Heat pipe life and processing study

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.; Luedke, E. E.

    1979-01-01

    The merit of adding water to the reflux charge in chemically and solvent cleaned aluminum/slab wick/ammonia heat pipes was evaluated. The effect of gas in the performance of three heat pipe thermal control systems was found significant in simple heat pipes, less significant in a modified simple heat pipe model with a short wickless pipe section. Use of gas data for the worst and best heat pipes of the matrix in a variable conductance heat pipe model showed a 3 C increase in the source temperature at full on condition after 20 and 246 years, respectively.

  12. Heat-Transfer Coupling For Heat Pipes

    NASA Technical Reports Server (NTRS)

    Nesmith, Bill J.

    1991-01-01

    Proposed welded heat-transfer coupling joins set of heat pipes to thermoelectric converter. Design avoids difficult brazing operation. Includes pair of mating flanged cups. Upper cup integral part of housing of thermoelectric converter, while lower cup integral part of plate supporting filled heat pipes. Heat pipes prefilled. Heat of welding applied around periphery of coupling, far enough from heat pipes so it would not degrade working fluid or create excessive vapor pressure in the pipes.

  13. Intermediate Temperature Water Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Xiong, Da-Xi; Beach, Duane E.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range. Fabrication and testing issues are being addressed.

  14. B Plant process piping replacement feasibility study

    SciTech Connect

    Howden, G.F.

    1996-02-07

    Reports on the feasibility of replacing existing embedded process piping with new more corrosion resistant piping between cells and between cells and a hot pipe trench of a Hanford Site style canyon facility. Provides concepts for replacement piping installation, and use of robotics to replace the use of the canyon crane as the primary means of performing/supporting facility modifications (eg, cell lining, pipe replacement, equipment reinstallation) and operational maintenenace.

  15. Intermediate Temperature Water Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Xiong, Daxi; Beach, Duane E.

    2004-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test Data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range.Fabrication and testing issues are being addressed.

  16. Physics of heat pipe rewetting

    NASA Technical Reports Server (NTRS)

    Chan, S. H.

    1994-01-01

    This is the final report which summarizes the research accomplishments under the project entitled 'Physics of Heat Pipe Rewetting' under NASA Grant No. NAG 9-525, Basic, during the period of April 1, 1991 to January 31, 1994. The objective of the research project was to investigate both analytically and experimentally the rewetting characteristics of the heated, grooved plate. The grooved plate is to simulate the inner surface of the vapor channel in monogroove heat pipes for space station design. In such designs, the inner surface of the vapor channel is threaded with monogrooves. When the heat pipe is thermally overloaded, dryout of the monogroove surface occurs. Such a dryout surface should be promptly rewetted to prevent the failure of the heat pipe operation in the thermal radiator of the space station.

  17. Physics of heat pipe rewetting

    NASA Astrophysics Data System (ADS)

    Chan, S. H.

    This is the final report which summarizes the research accomplishments under the project entitled 'Physics of Heat Pipe Rewetting' under NASA Grant No. NAG 9-525, Basic, during the period of April 1, 1991 to January 31, 1994. The objective of the research project was to investigate both analytically and experimentally the rewetting characteristics of the heated, grooved plate. The grooved plate is to simulate the inner surface of the vapor channel in monogroove heat pipes for space station design. In such designs, the inner surface of the vapor channel is threaded with monogrooves. When the heat pipe is thermally overloaded, dryout of the monogroove surface occurs. Such a dryout surface should be promptly rewetted to prevent the failure of the heat pipe operation in the thermal radiator of the space station.

  18. Method for casting polyethylene pipe

    NASA Technical Reports Server (NTRS)

    Elam, R. M., Jr.

    1973-01-01

    Short lengths of 7-cm ID polyethylene pipe are cast in a mold which has a core made of room-temperature-vulcanizable (RTV) silicone. Core expands during casting and shrinks on cooling to allow for contraction of the polyethylene.

  19. Light pipes for LED measurements

    NASA Technical Reports Server (NTRS)

    Floyd, S. R.; Thomas, E. F., Jr.

    1976-01-01

    Light pipe directly couples LED optical output to single detector. Small area detector measures total optical output of diode. Technique eliminates thermal measurement problems and channels optical output to remote detector.

  20. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2014-01-01

    A loop heat pipe must start successfully before it can commence its service. The start-up transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe start-up behaviors. Topics include the four start-up scenarios, the initial fluid distribution between the evaporator and reservoir that determines the start-up scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power start-up, and methods to enhance the start-up success. Also addressed are the thermodynamic constraint between the evaporator and reservoir in the loop heat pipe operation, the superheat requirement for nucleate boiling, pressure spike and pressure surge during the start-up transient, and repeated cycles of loop start-up andshutdown under certain conditions.

  1. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, Ray A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe within an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough.

  2. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, R.A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.

  3. Mapping Temperatures On Heat Pipes

    NASA Technical Reports Server (NTRS)

    Gunnerson, Fred S.; Thorncroft, Glen E.

    1993-01-01

    Paints containing thermochromic liquid crystals (TLC's) used to map temperatures on heat pipes and thermosyphons. Color of thermally sensitive TLC coat changes reversibly upon heating or cooling. Each distinct color indicates particular temperature. Transient and steady-state isotherms become visible as colored bands. Positions and movements of bands yield information about startup transients, steady-state operation, cooler regions containing noncondensible gas, and other phenomena relevant to performance of heat pipe.

  4. Heat Pipe Thermal Conditioning Panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1973-01-01

    The technology involved in designing and fabricating a heat pipe thermal conditioning panel to satisfy a broad range of thermal control system requirements on NASA spacecraft is discussed. The design specifications were developed for a 30 by 30 inch heat pipe panel. The fundamental constraint was a maximum of 15 gradient from source to sink at 300 watts input and a flux density of 2 watts per square inch. The results of the performance tests conducted on the panel are analyzed.

  5. Heat pipe cooled power magnetics

    NASA Technical Reports Server (NTRS)

    Chester, M. S.

    1979-01-01

    A high frequency, high power, low specific weight (0.57 kg/kW) transformer developed for space use was redesigned with heat pipe cooling allowing both a reduction in weight and a lower internal temperature rise. The specific weight of the heat pipe cooled transformer was reduced to 0.4 kg/kW and the highest winding temperature rise was reduced from 40 C to 20 C in spite of 10 watts additional loss. The design loss/weight tradeoff was 18 W/kg. Additionally, allowing the same 40 C winding temperature rise as in the original design, the KVA rating is increased to 4.2 KVA, demonstrating a specific weight of 0.28 kg/kW with the internal loss increased by 50W. This space environment tested heat pipe cooled design performed as well electrically as the original conventional design, thus demonstrating the advantages of heat pipes integrated into a high power, high voltage magnetic. Another heat pipe cooled magnetic, a 3.7 kW, 20A input filter inductor was designed, developed, built, tested, and described. The heat pipe cooled magnetics are designed to be Earth operated in any orientation.

  6. Automated internal pipe cutting device

    DOEpatents

    Godlewski, William J.; Haffke, Gary S.; Purvis, Dale; Bashar, Ronald W.; Jones, Stewart D.; Moretti, Jr., Henry; Pimentel, James

    2003-01-21

    The invention is a remotely controlled internal pipe cutting device primarily used for cutting pipes where the outside of the pipe is inaccessible at the line where the cut is to be made. The device includes an axial ram within a rotational cylinder which is enclosed in a housing. The housing is adapted for attachment to an open end of the pipe and for supporting the ram and cylinder in cantilever fashion within the pipe. A radially movable cutter, preferably a plasma arc torch, is attached to the distal end of the ram. A drive mechanism, containing motors and mechanical hardware for operating the ram and cylinder, is attached to the proximal end of the housing. The ram and cylinder provide for moving the cutter axially and circumferentially, and a cable assembly attached to a remote motor provide for the movement of the cutter radially, within the pipe. The control system can be adjusted and operated remotely to control the position and movement of the cutter to obtain the desired cut. The control system can also provide automatic standoff control for a plasma arc torch.

  7. Heat pipe turbine vane cooling

    SciTech Connect

    Langston, L.; Faghri, A.

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  8. Pipe weld crown removal device

    SciTech Connect

    Sword, C.K.; Sette, P.J.

    1992-11-24

    A device is provided for grinding down the crown of a pipe weld joining aligned pipe sections so that the weld is substantially flush with the pipe sections joined by the weld. The device includes a cage assembly comprising a pair of spaced cage rings adapted to be mounted for rotation on the respective pipe sections on opposite sides of the weld, a plurality of grinding wheels, supported by the cage assembly for grinding down the crown of the weld, and a plurality of support shafts, each extending longitudinally along the joined pipe sections, parallel thereto, for individually mounting respective grinding wheels. Each end of the support shafts is mounted for rotation in a bearing assembly housed within a radially directed opening in a corresponding one of the cage rings so as to provide radial movement of the associated shaft, and thus of the associated grinding wheel, towards and away from the weld. A first drive sprocket provides rotation of the cage assembly around the pipe sections while a second drive unit, driven by a common motor, provides rotation of the grinding wheels. 2 figs.

  9. Pipe weld crown removal device

    SciTech Connect

    Sword, C.K.; Sette, P.J.

    1991-12-31

    This invention is comprised of a device that provides for grinding down the crown of a pipe weld joining aligned pipe sections so that the weld is substantially flush with the pipe sections joined by the weld. The device includes a cage assembly comprising a pair of spaced cage rings adapted to be mounted for rotation on the respective pipe sections on opposite sides of the weld, a plurality of grinding wheels, supported by the cage assembly for grinding down the crown of the weld, and a plurality of support shafts, each extending longitudinally along the joined pipe sections, parallel thereto, for individually mounting respective grinding wheels. Each end of the support shafts is mounted for rotation in a bearing assembly housed within a radially directed opening in a corresponding one of the cage rings so as to provide radial movement of the associated shaft, and thus of the associated grinding wheel, towards and away from the weld. A first drive sprocket provides rotation of the cage assembly around the pipe sections while a second drive unit, driven by a common motor, provides rotation of the grinding wheels.

  10. Heat pipe turbine vane cooling

    SciTech Connect

    Langston, L.; Faghri, A.

    1995-12-31

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and a uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  11. Light Pipe Energy Savings Calculator

    NASA Astrophysics Data System (ADS)

    Owens, Erin; Behringer, Ernest R.

    2009-04-01

    Dependence on fossil fuels is unsustainable and therefore a shift to renewable energy sources such as sunlight is required. Light pipes provide a way to utilize sunlight for interior lighting, and can reduce the need for fossil fuel-generated electrical energy. Because consumers considering light pipe installation may be more strongly motivated by cost considerations than by sustainability arguments, an easy means to examine the corresponding costs and benefits is needed to facilitate informed decision-making. The purpose of this American Physical Society Physics and Society Fellowship project is to create a Web-based calculator to allow users to quantify the possible cost savings for their specific light pipe application. Initial calculations show that the illumination provided by light pipes can replace electric light use during the day, and in many cases can supply greater illumination levels than those typically given by electric lighting. While the installation cost of a light pipe is significantly greater than the avoided cost of electricity over the lifetime of the light pipe at current prices, savings may be realized if electricity prices increase.

  12. Pipe weld crown removal device

    DOEpatents

    Sword, Charles K.; Sette, Primo J.

    1992-01-01

    A device is provided for grinding down the crown of a pipe weld joining aligned pipe sections so that the weld is substantially flush with the pipe sections joined by the weld. The device includes a cage assembly comprising a pair of spaced cage rings adapted to be mounted for rotation on the respective pipe sections on opposite sides of the weld, a plurality of grinding wheels, supported by the cage assembly for grinding down the crown of the weld, and a plurality of support shafts, each extending longitudinally along the joined pipe sections, parallel thereto, for individually mounting respective grinding wheels. Each end of the support shafts is mounted for rotation in a bearing assembly housed within a radially directed opening in a corresponding one of the cage rings so as to provide radial movement of the associated shaft, and thus of the associated grinding wheel, towards and away from the weld. A first drive sprocket provides rotation of the cage assembly around the pipe sections while a second drive unit, driven by a common motor, provides rotation of the grinding wheels.

  13. Organ pipe resonance induced vibration in piping system

    SciTech Connect

    Wang, T.

    1996-12-01

    Acoustic-induced vibration is a fluid-structure interaction phenomenon. The feedback mechanism between the acoustic pressure pulsation and the structure movements determines the excited acoustic modes which, in turn, amplify the structure response when confidence frequency and mode shape matching occurs. The acoustic modes are not determined from the acoustic boundary conditions alone, structure feedback is as responsible for determining the acoustic modes and shaping the resulting forcing functions. Acoustic-induced piping vibration, when excited, does not attenuate much with distance. Pressure pulsation can be transmitted throughout the piping system and its branch connections. It is this property that makes vibration monitoring difficult, because vibration can surface at locations far away from the acoustic source when resonance occurs. For a large piping system with interconnected branches, the monitoring task can be formidable, particularly when there is no indication what the real source is. In organ pipe resonance induced vibration, the initiating acoustic source may be inconspicuous or unavoidable during operation. In these situations, the forcing function approach can offer an optimal tool for vibration assessment. The forcing function approach was used in the evaluation of a standby steam piping vibration problem. Monitoring locations and instrument specifications were determined from the acoustic eigenfunction profiles. Measured data confirmed the presence of coherent vibrations in the large bore piping. The developed forcing function permits design evaluation of the piping system, which leads to remedial actions and enables fatigue life determination, thus providing confidence to system operation. The forcing function approach is shown to be useful in finding potential vibration area and verifying the integrity of weak structure links. Application is to steam lines at BWR plants.

  14. Well pipe joint

    SciTech Connect

    Ortloff, D.J.; Landriault, L.S.

    1987-08-25

    For use in forming a pipe joint, a threaded tubular member adapted for connecting to another threaded member to form a threaded connection between the two members is described comprising a tubular body, a projecting helical rib on the body forming screw threads having load flanks shaped to have clearance between the flanks of the thread and the load flanks of the threads of the threaded member to which the member is adapted to be connected and a torque shoulder on the body to engage a torque shoulder on the other threaded member as the connection is being made up to limit the distance one of the members can enter the other for a given make-up torque. The threads are formed on the body so that selected threads away from the torque shoulder will have less clearance between them and the mating threads on the other member than do the threads on the member adjacent the torque shoulder and the mating threads on the other member when the torque shoulders engage so that the selected threads will engage the mating threads on the other member before the other threads adjacent the torque shoulder and the mating threads on the other member engage to cause the selected threads to be loaded initially to provide the initial force between the torque shoulders and to more uniformly load all of the threads when the connection is made-up and additional external loads are applied.

  15. Drill pipe turning device

    SciTech Connect

    Soutsos, M.D.

    1986-08-12

    This patent describes a tool conformed to clamp onto segments of pipe and to advance in rotation the segments, including a frame, two opposed jaw-like arms each of the arms at a first end thereof attached to the frame by a pivotal mount and each arm including rolling means at a free second end thereof, a chain loop, a motor attached to the frame for advancing the chain loop, the motor including a drive sprocket thereon. The chain loop extends around and in engagement with the drive sprocket, the pivotal mounts, and the rolling means; the arms each including levers radially extending from the pivoted mounts and projecting over the frame; a pair of shuttles slidably mounted on the frame and having camming means to abut against the levers to pivotally articulate the arms around the pivotal mounts in the course of the translation of the shuttles; a pair of shuttle idles supported for rotation on the shuttles and aligned to engage the exterior of the chain loop; and actuating means operatively connected for translating the shuttles.

  16. Leaks in pipe networks

    USGS Publications Warehouse

    Pudar, Ranko S.; Liggett, James A.

    1992-01-01

    Leak detection in water-distribution systems can be accomplished by solving an inverse problem using measurements of pressure and/or flow. The problem is formulated with equivalent orifice areas of possible leaks as the unknowns. Minimization of the difference between measured and calculated heads produces a solution for the areas. The quality of the result depends on number and location of the measurements. A sensitivity matrix is key to deciding where to make measurements. Both location and magnitude of leaks are sensitive to the quantity and quality of pressure measurements and to how well the pipe friction parameters are known. The overdetermined problem (more measurements than suspected leaks) gives the best results, but some information can be derived from the underdetermined problem. The variance of leak areas, based on the quality of system characteristics and pressure data, indicates the likely accuracy of the results. The method will not substitute for more traditional leak surveys but can serve as a guide and supplement.

  17. Piping inspection round robin

    SciTech Connect

    Heasler, P.G.; Doctor, S.R.

    1996-04-01

    The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths.

  18. Ultrasonic isolation of buried pipes

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2016-02-01

    Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such

  19. Turbine-Driven Pipe-Cleaning Brush

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy J.; Rowell, David E.

    1994-01-01

    Simple pipe-cleaning device includes small turbine wheel axially connected, by standoff, to circular brush. Turbine wheel turns on hub bearing attached to end of upstream cable. Turbine-and-brush assembly inserted in pipe with cable trailing upstream and brush facing downstream. Water or cleaning solution pumped through pipe. Cable held at upstream end, so it holds turbine and brush in pipe at location to be cleaned. Flow in pipe turns turbine, which turns wheel, producing desired cleaning action. In addition to brushing action, device provides even mixing of cleaning solution in pipe.

  20. Magnetic refrigeration apparatus with heat pipes

    DOEpatents

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  1. Magnetic refrigeration apparatus with heat pipes

    DOEpatents

    Barclay, John A.; Prenger, Jr., F. Coyne

    1987-01-01

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  2. Pipe crawler with extendable legs

    DOEpatents

    Zollinger, William T.

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.

  3. Pipe crawler with extendable legs

    DOEpatents

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  4. Centrally activated pipe snubbing system

    DOEpatents

    Cawley, William E.

    1985-01-01

    An electromechanical pipe snubbing system and an electromechanical pipe snubber. In the system, each pipe snubber, in a set of pipe snubbers, has an electromechanical mechanism to lock and unlock the snubber. A sensor, such as a seismometer, measures a quantity related to making a snubber locking or unlocking decision. A control device makes an electrical connection between a power supply and each snubber's electromechanical mechanism to simultaneously lock each snubber when the sensor measurement indicates a snubber locking condition. The control device breaks the connection to simultaneously unlock each snubber when the sensor measurement indicates a snubber unlocking condition. In the snubber, one end of the shaft slides within a bore in one end of a housing. The other end of the shaft is rotatably attached to a pipe; the other end of the housing is rotatively attached to a wall. The snubber's electromechanical mechanism locks the slidable end of the shaft to the housing and unlocks that end from the housing. The electromechanical mechanism permits remote testing and lockup status indication for each snubber.

  5. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  6. Repair of filament wound composite pipes

    NASA Astrophysics Data System (ADS)

    Amali, Ramin; Arnall, Heather

    2015-07-01

    Filament wound pipes are used in a wide variety of industries, due to the advantages composites have over metal pipes, such as a high strength to weight ratio, and resistance against frost, corrosion and heat. Composite pipes require minimal maintenance to ensure they are safe. Any damage occurring in composite pipes could lead to failure; therefore all damage should be assessed through NDT. If it is decided that the damage makes the pipe unsafe then a decision needs to be made whether to repair or replace the pipe. Repairing a composite pipe can be quicker, easier and cheaper than replacing it and can restore the strength of the pipe effectively. This investigation looks at the repair process and the parameters involved in determining the strength of the pipe following repair through the use of over 150 models in FEA software, Abaqus. Parameters considered include the pipe diameter and thickness, damage removal size and wrap width and thickness. It was found that if the pipe is thin-walled then it can be assumed that the pipe's thickness has no effect on the FOS following repair. Formulas were created to predict the FOS following repair for varying pipe diameters, damage sizes and wrap thickness. Formulas were also created to determine the wrap width required for varying wrap thicknesses and damage sizes.

  7. Heat pipe design handbook, part 1

    NASA Technical Reports Server (NTRS)

    Skrabek, E. A.

    1972-01-01

    The development and characteristics of heat pipes are examined. The subjects discussed are: (1) principles of operation, (2) heat pipe theory, (3) pressure gradient effects, (4) variable conductance, (5) design procedure, and (6) performance limit evaluation.

  8. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or...

  9. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or...

  10. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or...

  11. 49 CFR 195.112 - New pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in... with the following: (a) The pipe must be made of steel of the carbon, low alloy-high strength, or...

  12. Flat heat pipe design, construction, and analysis

    SciTech Connect

    Voegler, G.; Boughey, B.; Cerza, M.; Lindler, K.W.

    1999-08-02

    This paper details the design, construction and partial analysis of a low temperature flat heat pipe in order to determine the feasibility of implementing flat heat pipes into thermophotovoltaic (TPV) energy conversion systems.

  13. Laboratory exercises on oscillation modes of pipes

    NASA Astrophysics Data System (ADS)

    Haeberli, Willy

    2009-03-01

    This paper describes an improved lab setup to study the vibrations of air columns in pipes. Features of the setup include transparent pipes which reveal the position of a movable microphone inside the pipe; excitation of pipe modes with a miniature microphone placed to allow access to the microphone stem for open, closed, or conical pipes; and sound insulation to avoid interference between different setups in a student lab. The suggested experiments on the modes of open, closed, and conical pipes, the transient response of a pipe, and the effect of pipe diameter are suitable for introductory physics laboratories, including laboratories for nonscience majors and music students, and for more advanced undergraduate laboratories. For honors students or for advanced laboratory exercises, the quantitative relation between the resonance width and damping time constant is of interest.

  14. Cryogenic thermal diode heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  15. High performance flexible heat pipes

    NASA Technical Reports Server (NTRS)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  16. Heat pipe thermal conditioning panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Loose, J. D.; Mccoy, K. E.

    1974-01-01

    Thermal control of electronic hardware and experiments on future space vehicles is critical to proper functioning and long life. Thermal conditioning panels (cold plates) are a baseline control technique in current conceptual studies. Heat generating components mounted on the panels are typically cooled by fluid flowing through integral channels within the panel. However, replacing the pumped fluid coolant loop within the panel with heat pipes offers attractive advantages in weight, reliability, and installation. This report describes the development and fabrication of two large 0.76 x 0.76 m heat pipe thermal conditioning panels to verify performance and establish the design concept.

  17. Introduction to Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  18. High-Capacity Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.

    1989-01-01

    Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.

  19. 46 CFR 154.520 - Piping calculations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Piping calculations. 154.520 Section 154.520 Shipping... Process Piping Systems § 154.520 Piping calculations. A piping system must be designed to meet the allowable stress values under § 56.07-10 of this chapter and, if the design temperature is −110 °C (−166...

  20. 46 CFR 154.520 - Piping calculations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Piping calculations. 154.520 Section 154.520 Shipping... Process Piping Systems § 154.520 Piping calculations. A piping system must be designed to meet the allowable stress values under § 56.07-10 of this chapter and, if the design temperature is −110 °C (−166...

  1. Repair welding on nitrided carbon steel pipe

    SciTech Connect

    Baumert, K.L.

    1994-12-31

    A carbon steel pipe containing primarily ammonia at 750--850 F developed a nitrided case 15--20 mils (0.4--0.5mm) deep. This did not affect the performance of the pipe during operation, however, repair welding was not possible because of cracking. A laboratory procedure was developed wherein nitrided pipe could be successfully welded. The technique consisted of stress relieving the pipe before welding. No post weld stress relief was necessary to effect a sound weld.

  2. 46 CFR 169.652 - Bilge piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Bilge piping. 169.652 Section 169.652 Shipping COAST... Electrical Bilge Systems § 169.652 Bilge piping. (a) All vessels of 26 feet in length and over must be... than 120 feet in length the bilge pipe must be not less than one and one-half inches. Piping on...

  3. 46 CFR 169.652 - Bilge piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Bilge piping. 169.652 Section 169.652 Shipping COAST... Electrical Bilge Systems § 169.652 Bilge piping. (a) All vessels of 26 feet in length and over must be... than 120 feet in length the bilge pipe must be not less than one and one-half inches. Piping on...

  4. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main...

  5. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main...

  6. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main...

  7. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main...

  8. 46 CFR 61.15-5 - Steam piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main...

  9. Thermal Performance of High Temperature Titanium -- Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium - water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 K and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  10. Thermal Performance of High Temperature Titanium-Water Heat Pipes by Multiple Heat Pipe Manufacturers

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.

    2007-01-01

    Titanium-water heat pipes are being investigated for use in heat rejection systems for lunar and Mars fission surface power systems. Heat pipes provide an efficient and reliable means to transfer heat to a radiator heat rejection system. NASA Glenn Research Center requisitioned nine titanium water heat pipes from three vendors. Each vendor supplied three heat pipes 1.25 cm diameter by 1.1 meter long with each vendor selecting a different wick design. Each of the three heat pipes is slightly different in construction. Additional specifications for the heat pipes included 500 K nominal operating temperature, light weight, and freeze tolerance. The heat pipes were performance tested gravity-aided, in the horizontal position and at elevations against gravity at 450 and 500 K. Performance of the three heat pipes is compared. The heat pipe data will be used to verify models of heat pipe radiators that will be used in future space exploration missions.

  11. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 25.1123 Section 25.1123... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant and auxiliary power unit installations, the following apply: (a) Exhaust piping must be heat...

  12. 14 CFR 29.1123 - Exhaust piping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 29.1123 Section 29.1123... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Exhaust System § 29.1123 Exhaust piping. (a) Exhaust... by operating temperatures. (b) Exhaust piping must be supported to withstand any vibration...

  13. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt...

  14. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt...

  15. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt...

  16. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt...

  17. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  18. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  19. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  20. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  1. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  2. 46 CFR 197.336 - Pressure piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems...

  3. 46 CFR 197.336 - Pressure piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems...

  4. 46 CFR 197.336 - Pressure piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems that are not an integral part of the vessel or facility, carrying fluids under pressures exceeding 15...

  5. 46 CFR 197.336 - Pressure piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems that are not an integral part of the vessel or facility, carrying fluids under pressures exceeding 15...

  6. 46 CFR 197.336 - Pressure piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems that are not an integral part of the vessel or facility, carrying fluids under pressures exceeding 15...

  7. 46 CFR 119.455 - Fuel piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fuel piping. 119.455 Section 119.455 Shipping COAST... Machinery Requirements § 119.455 Fuel piping. (a) Materials and workmanship. The materials and construction of fuel lines, including pipe, tube, and hose, must comply with the requirements of this...

  8. 46 CFR 119.455 - Fuel piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fuel piping. 119.455 Section 119.455 Shipping COAST... Machinery Requirements § 119.455 Fuel piping. (a) Materials and workmanship. The materials and construction of fuel lines, including pipe, tube, and hose, must comply with the requirements of this...

  9. 46 CFR 119.455 - Fuel piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fuel piping. 119.455 Section 119.455 Shipping COAST... Machinery Requirements § 119.455 Fuel piping. (a) Materials and workmanship. The materials and construction of fuel lines, including pipe, tube, and hose, must comply with the requirements of this...

  10. 46 CFR 119.455 - Fuel piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fuel piping. 119.455 Section 119.455 Shipping COAST... Machinery Requirements § 119.455 Fuel piping. (a) Materials and workmanship. The materials and construction of fuel lines, including pipe, tube, and hose, must comply with the requirements of this...