Science.gov

Sample records for fisheries habitat inventory

  1. White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume II, Appendix A, Fisheries Habitat Inventory.

    SciTech Connect

    Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest

    1985-06-01

    Stream habitat inventories on 155 stream miles in the White River drainage on the Mt. Hood National Forest are summarized in this report. Inventory, data evaluation, and reporting work were accomplished within the framework of the budgetary agreements established between the USDA Forest Service, Mt. Hood National Forest, and the Bonneville Power Administration, in the first 2 years of a multiyear program. One hundred forty-two stream miles of those inventoried on the Forest appear suitable for anadromous production. The surveyed area appears to contain most or all of the high quality fish habitat which would be potentially available for anadromous production if access is provided above the White River Falls below the Forest boundary. About 34 stream miles would be immediately accessible without further work on the Forest with passage at the Falls. Seventy-two additional miles could be made available with only minor (requiring low investment of money and planning) passage work further up the basin. Thirty-six miles of potential upstream habitat would likely require major investment to provide access.

  2. Contributions of Estuarine Habitats to Major Fisheries

    EPA Science Inventory

    Estuaries provide unique habitat conditions that are essential to the production of major fisheries throughout the world, but quantitatively demonstrating the value of these habitats to fisheries presents some difficult problems. The questions are important, because critical hab...

  3. Connecting fishery sustainability to estuarine habitats and nutrient loading

    EPA Science Inventory

    The production of several important fishery species depends on critical estuarine habitats, including seagrasses and salt marshes. Relatively simple models can be constructed to relate fishery productivity to the extent and distribution of these habitats by linking fishery-depend...

  4. Cumulative Effects of Micro-Hydro Development on the Fisheries of the Swan River Drainage, Montana, Volume III, Fish and Habitat Inventory of Tributary Streams, 1983-1984 Final Report.

    SciTech Connect

    Leathe, Stephen A.

    1985-03-01

    This report summarizes a study of the fisheries of the Swan River drainage in relation to potential small hydro development. This information was collected in order to obtain a reliable basin-wide database which was used to evaluate the potential cumulative effects of a number of proposed small hydro developments on the fisheries of the drainage. For each named tributary stream there is a reach-by-reach narrative summary of general habitat characteristics, outstanding features of the stream, and fish populations and spawning use. An attempt was made to rank many of the measured parameters relative to other surveyed stream reaches in the drainage. 3 refs.

  5. State-of-the-art techniques for inventory of Great Lakes aquatic habitats and resources

    USGS Publications Warehouse

    Edsall, Thomas A.; Brock, R.H.; Bukata, R.P.; Dawson, J.J.; Horvath, F.J.

    1992-01-01

    This section of the Classification and Inventory of Great Lakes Aquatic Habitat report was prepared as a series of individually authored contributions that describe, in various levels of detail, state-of-the-art techniques that can be used alone or in combination to inventory aquatic habitats and resources in the Laurentian Great Lakes system. No attempt was made to review and evaluate techniques that are used routinely in limnological and fisheries surveys and inventories because it was felt that users of this document would be familiar with them.

  6. Dynamic habitat models: using telemetry data to project fisheries bycatch.

    PubMed

    Zydelis, Ramūnas; Lewison, Rebecca L; Shaffer, Scott A; Moore, Jeffrey E; Boustany, Andre M; Roberts, Jason J; Sims, Michelle; Dunn, Daniel C; Best, Benjamin D; Tremblay, Yann; Kappes, Michelle A; Halpin, Patrick N; Costa, Daniel P; Crowder, Larry B

    2011-11-01

    Fisheries bycatch is a recognized threat to marine megafauna. Addressing bycatch of pelagic species however is challenging owing to the dynamic nature of marine environments and vagility of these organisms. In order to assess the potential for species to overlap with fisheries, we propose applying dynamic habitat models to determine relative probabilities of species occurrence for specific oceanographic conditions. We demonstrate this approach by modelling habitats for Laysan (Phoebastria immutabilis) and black-footed albatrosses (Phoebastria nigripes) using telemetry data and relating their occurrence probabilities to observations of Hawaii-based longline fisheries in 1997-2000. We found that modelled habitat preference probabilities of black-footed albatrosses were high within some areas of the fishing range of the Hawaiian fleet and such preferences were important in explaining bycatch occurrence. Conversely, modelled habitats of Laysan albatrosses overlapped little with Hawaii-based longline fisheries and did little to explain the bycatch of this species. Estimated patterns of albatross habitat overlap with the Hawaiian fleet corresponded to bycatch observations: black-footed albatrosses were more frequently caught in this fishery despite being 10 times less abundant than Laysan albatrosses. This case study demonstrates that dynamic habitat models based on telemetry data may help to project interactions with pelagic animals relative to environmental features and that such an approach can serve as a tool to guide conservation and management decisions. PMID:21429921

  7. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    SciTech Connect

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of

  8. Perceptions of fish habitat conditions in Oklahoma tailwater fisheries: a survey of fisheries managers

    USGS Publications Warehouse

    Long, James M.

    2011-01-01

    While the downstream effects of dams on fish habitat have long been recognized, broad-scale assessments of tailwater fish habitat have rarely been conducted. In this paper, I report on the status of tailwater fisheries in Oklahoma as determined through a web-based survey of fisheries biologists with the Oklahoma Department of Wildlife Conservation conducted in July 2010. Respondents addressed 38 tailwaters, encompassing all major areas of the state. The majority of fish species comprising these fisheries included blue catfish (Ictalurus furcatus), followed by white bass (Morone chrysops), channel catfish (I. punctatus) and flathead catfish (Pylodictis olivaris). Most respondents indicated no or low concerns with fish habitat in tailwaters under their management supervision; only two tailwaters (Tenkiller Ferry and Fort Gibson) had the majority of concerns with fish habitat identified as high to moderately high. Principal components analysis and subsequent correlation analysis showed that tailwaters that scored high for issues related to shoreline erosion, change in water depth, flow fluctuations, and flow timing were associated with dams with large maximum discharge ability. No other factors related to fish habitat condition in tailwaters were found. In Oklahoma, dams with maximum discharge of at least 6,767.5 m3 sec–1 were more likely to have flow-related fish habitat concerns in the tailwater.

  9. Use of a seagrass residency index to apportion commercial fishery landing values and recreation fisheries expenditure to seagrass habitat service.

    PubMed

    Jackson, Emma L; Rees, Siân E; Wilding, Catherine; Attrill, Martin J

    2015-06-01

    Where they dominate coastlines, seagrass beds are thought to have a fundamental role in maintaining populations of exploited species. Thus, Mediterranean seagrass beds are afforded protection, yet no attempt to determine the contribution of these areas to both commercial fisheries landings and recreational fisheries expenditure has been made. There is evidence that seagrass extent continues to decline, but there is little understanding of the potential impacts of this decline. We used a seagrass residency index, that was trait and evidence based, to estimate the proportion of Mediterranean commercial fishery landings values and recreation fisheries total expenditure that can be attributed to seagrass during different life stages. The index was calculated as a weighted sum of the averages of the estimated residence time in seagrass (compared with other habitats) at each life stage of the fishery species found in seagrass. Seagrass-associated species were estimated to contribute 30%-40% to the value of commercial fisheries landings and approximately 29% to recreational fisheries expenditure. These species predominantly rely on seagrass to survive juvenile stages. Seagrass beds had an estimated direct annual contribution during residency of €58-91 million (4% of commercial landing values) and €112 million (6% of recreation expenditure) to commercial and recreational fisheries, respectively, despite covering <2% of the area. These results suggest there is a clear cost of seagrass degradation associated with ineffective management of seagrass beds and that policy to manage both fisheries and seagrass beds should take into account the socioeconomic implications of seagrass loss to recreational and commercial fisheries. PMID:25581593

  10. Fishery Resources and Threatened Coastal Habitats in the Northern Gulf of Mexico (Abstract)

    EPA Science Inventory

    We have explored relationships between selected fishery species of the northern Gulf of Mexico and important features of their habitats. The principal goal of our research is to predict the cumulative effects of habitat alterations on coastal resources and ecosystems. Pink shrimp...

  11. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    SciTech Connect

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek, Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety

  12. The Pelagics Habitat Analysis Module (PHAM): Decision Support Tools for Pelagic Fisheries

    NASA Astrophysics Data System (ADS)

    Armstrong, E. M.; Harrison, D. P.; Kiefer, D.; O'Brien, F.; Hinton, M.; Kohin, S.; Snyder, S.

    2009-12-01

    PHAM is a project funded by NASA to integrate satellite imagery and circulation models into the management of commercial and threatened pelagic species. Specifically, the project merges data from fishery surveys, and fisheries catch and effort data with satellite imagery and circulation models to define the habitat of each species. This new information on habitat will then be used to inform population distribution and models of population dynamics that are used for management. During the first year of the project, we created two prototype modules. One module, which was developed for the Inter-American Tropical Tuna Commission, is designed to help improve information available to manage the tuna fisheries of the eastern Pacific Ocean. The other module, which was developed for the Coastal Pelagics Division of the Southwest Fishery Science Center, assists management of by-catch of mako, blue, and thresher sharks along the Californian coast. Both modules were built with the EASy marine geographic information system, which provides a 4 dimensional (latitude, longitude, depth, and time) home for integration of the data. The projects currently provide tools for automated downloading and geo-referencing of satellite imagery of sea surface temperature, height, and chlorophyll concentrations; output from JPL’s ECCO2 global circulation model and its ROM California current model; and gridded data from fisheries and fishery surveys. It also provides statistical tools for defining species habitat from these and other types of environmental data. These tools include unbalanced ANOVA, EOF analysis of satellite imagery, and multivariate search routines for fitting fishery data to transforms of the environmental data. Output from the projects consists of dynamic maps of the distribution of the species that are driven by the time series of satellite imagery and output from the circulation models. It also includes relationships between environmental variables and recruitment. During

  13. Estimating Fish Exploitation and Aquatic Habitat Loss across Diffuse Inland Recreational Fisheries

    PubMed Central

    de Kerckhove, Derrick Tupper; Minns, Charles Kenneth; Chu, Cindy

    2015-01-01

    The current state of many freshwater fish stocks worldwide is largely unknown but suspected to be vulnerable to exploitation from recreational fisheries and habitat degradation. Both these factors, combined with complex ecological dynamics and the diffuse nature of inland fisheries could lead to an invisible collapse: the drastic decline in fish stocks without great public or management awareness. In this study we provide a method to address the pervasive knowledge gaps in regional rates of exploitation and habitat degradation, and demonstrate its use in one of North America’s largest and most diffuse recreational freshwater fisheries (Ontario, Canada). We estimated that 1) fish stocks were highly exploited and in apparent danger of collapse in management zones close to large population centres, and 2) fish habitat was under a low but constant threat of degradation at rates comparable to deforestation in Ontario and throughout Canada. These findings confirm some commonly held, but difficult to quantify, beliefs in inland fisheries management but also provide some further insights including 1) large anthropogenic projects greater than one hectare could contribute much more to fish habitat loss on an area basis than the cumulative effect of smaller projects within one year, 2) hooking mortality from catch-and-release fisheries is likely a greater source of mortality than the harvest itself, and 3) in most northern management zones over 50% of the fisheries resources are not yet accessible to anglers. While this model primarily provides a framework to prioritize management decisions and further targeted stock assessments, we note that our regional estimates of fisheries productivity and exploitation were similar to broadscale monitoring efforts by the Province of Ontario. We discuss the policy implications from our results and extending the model to other jurisdictions and countries. PMID:25875790

  14. FISHERY RESOURCES AND THREATENED HABITATS IN THE NORTHERN GULF OF MEXICO

    EPA Science Inventory

    Jordan, Steve and Darrin Dantin. 2004. Fishery Resources and Threatened Habitats in the Northern Gulf of Mexico (Abstract). Presented at the Aquatic Stressors All-Investigators Meeting, 9-11 March 2004, Washington, DC. 1 p. (ERL,GB R996).

    We have explored relationships be...

  15. 77 FR 66564 - North Pacific Fishery Management Council; Essential Fish Habitat Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... period that ended on October 9, 2012 (77 FR 47356). NMFS did not receive any comments on these proposed... proposed with Amendments 10 and 12 to the Salmon FMP (77 FR 19605, April 2, 2012). The Secretary of... Management Council; Essential Fish Habitat Amendments AGENCY: National Marine Fisheries Service...

  16. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement C, White River Habitat Inventory, 1983 Annual Report.

    SciTech Connect

    Heller, David

    1984-04-01

    More than 130 miles of stream fish habitat was inventoried and evaluated on the Mt. Hood National Forest during the first year of this multi-year project. First year tasks included field inventory and evaluation of habitat conditions on the White River and tributary streams thought to have the highest potential for supporting anadromous fish populations. All streams inventoried were located on the Mt. Hood National Forest. The surveyed area appears to contain most of the high quality anadromous fish habitat in the drainage. Habitat conditions appear suitable for steelhead, coho, and chinook salmon, and possibly sockeye. One hundred and twenty-four miles of potential anadromous fish habitat were identifed in the survey. Currently, 32 miles of this habitat would be readily accessible to anadromous fish. An additional 72 miles of habitat could be accessed with only minor passage improvement work. About 20 miles of habitat, however, will require major investment to provide fish passage. Three large lakes (Boulder, 14 acres; Badger, 45 acres; Clear, 550 acres) appear to be well-suited for rearing anadromous fish, although passage enhancement would be needed before self-sustaining runs could be established in any of the lakes.

  17. The habitats exploited and the species trapped in a Caribbean island trap fishery

    USGS Publications Warehouse

    Garrison, V.H.; Rogers, C.S.; Beets, J.; Friedlander, A.M.

    2004-01-01

    We visually observed fish traps in situ to identify the habitats exploited by the U.S. Virgin Islands fishery and to document species composition and abundance in traps by habitat. Fishers set more traps in algal plains than in any other habitat around St. John. Coral reefs, traditionally targeted by fishers, accounted for only 16% of traps. Traps in algal plain contained the highest number of fishes per trap and the greatest numbers of preferred food species. Traps on coral reefs contained the most species, 41 of the 59 taxa observed in the study. Acanthurus coeruleus was the most abundant species and Acanthuridae the most abundant family observed in traps. Piscivore numbers were low and few serranids were observed. Traps in algal plain contained the most fishes as a result of: ecological changes such as shifts in habitat use, mobility of species and degradation of nearshore habitat (fishery independent); and, catchability of fishes and long-term heavy fishing pressure (fishery dependent). The low number of serranids per trap, dominance of the piscivore guild by a small benthic predator, Epinephelus guttatus, and dominance of trap contents overall by a small, fast-growing species of a lower trophic guild, Acanthurus coeruleus, all point to years of intense fishing pressure.

  18. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Willamette River Basin, 1934-1942, Final Report.

    SciTech Connect

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the basis to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  19. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Yakima River Basin, 1934-1942, Final Report.

    SciTech Connect

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1996-01-01

    of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  20. Pelagic Habitat Analysis Module (PHAM) for GIS Based Fisheries Decision Support

    NASA Technical Reports Server (NTRS)

    Kiefer, D. A.; Armstrong, Edward M.; Harrison, D. P.; Hinton, M. G.; Kohin, S.; Snyder, S.; O'Brien, F. J.

    2011-01-01

    We have assembled a system that integrates satellite and model output with fisheries data We have developed tools that allow analysis of the interaction between species and key environmental variables Demonstrated the capacity to accurately map habitat of Thresher Sharks Alopias vulpinus & pelagicus. Their seasonal migration along the California Current is at least partly driven by the seasonal migration of sardine, key prey of the sharks.We have assembled a system that integrates satellite and model output with fisheries data We have developed tools that allow analysis of the interaction between species and key environmental variables Demonstrated the capacity to accurately map habitat of Thresher Sharks Alopias vulpinus nd pelagicus. Their seasonal migration along the California Current is at least partly driven by the seasonal migration of sardine, key prey of the sharks.

  1. Natural Propagation and Habitat improvement, Volume 2B, Washington, Similkameen River Habitat Inventory, 1983 Final Report.

    SciTech Connect

    Unknown Author

    1984-04-01

    During the summer low flow period, a habitat assessment of the Similkameen, Tulameen, Ashnola and Pasayten rivers in British Columbia and Washington State was conducted between August 10 and October 10, 1983. The biophysical survey assessed 400 km (250 mi) of stream at 77 stations. Fish sampling was conducted at each station to assess the resident fish populations and standing crop. Rainbow trout populations and standing crops were found to be very low. Large populations of mountain whitefish and bridgelip suckers were present in the manstem Similkameen River below Similkameen Falls. High densities of sculpins and longnose dace were found throughout the system except for sculpins above the falls, where none were captured. Approximately 961,000 m/sup 2/ (1,150,000 yd/sup 2/) of spawnable area for steelhead trout were estimated for the entire system which could accommodate 98,000 spawners. Nearly 367,000 m/sup 2/ (439,000 yd/sup 2/) of chinook salmon spawnable area was also estimated, capable of accommodating 55,000 chinook. Rearing area for steelhead trout smolts was estimated for the whole system at 1.8 million m/sup 2/ (2.2 million yd/sup 2/). Chinook salmon smolt rearing area was estimated at 700,000 m/sup 2/ (837,000 yd/sup 2/). Rearing area was found to be a limiting factor to anadromous production in a Similkameen River system. Smolt production from the system was estimated 610,000 steelhead trout and between 1.6 million and 4.8 million chinook salmon. No water quality, temperature or flow problems for anadromous salmonids were evident from the available data and the habitat inventory. In addition to an impassable falls on the Tulameen River at river mile 32.5, only two other areas of difficult passage exist in the system, Similkameen Falls (a series of chutes) and the steep, narrow lower section of the Ashnola River. 51 references, 18 figures, 25 tables.

  2. Amazonian freshwater habitats experiencing environmental and socioeconomic threats affecting subsistence fisheries.

    PubMed

    Alho, Cleber J R; Reis, Roberto E; Aquino, Pedro P U

    2015-09-01

    Matching the trend seen among the major large rivers of the globe, the Amazon River and its tributaries are facing aquatic ecosystem disruption that is affecting freshwater habitats and their associated biodiversity, including trends for decline in fishery resources. The Amazon's aquatic ecosystems, linked natural resources, and human communities that depend on them are increasingly at risk from a number of identified threats, including expansion of agriculture; cattle pastures; infrastructure such as hydroelectric dams, logging, mining; and overfishing. The forest, which regulates the hydrological pulse, guaranteeing the distribution of rainfall and stabilizing seasonal flooding, has been affected by deforestation. Flooding dynamics of the Amazon Rivers are a major factor in regulating the intensity and timing of aquatic organisms. This study's objective was to identify threats to the integrity of freshwater ecosystems, and to seek instruments for conservation and sustainable use, taking principally fish diversity and fisheries as factors for analysis. PMID:25572836

  3. Fisheries Habitat Evaluation in Tributaries of the Coeur d`Alene Indian Reservation : Annual Report 1992.

    SciTech Connect

    Woodward-Lillengreen, Kelly L.; Skillingstad, Tami; Scholz, Allan T.

    1993-10-01

    In 1987 the Northwest Power Planning Council amended the Columbia River Basin Fish and Wildlife Program, directing the Bonneville Power Administration (BPA) to fund, ``a baseline stream survey of tributaries located on the Coeur d`Alene Indian Reservation to compile information on improving spawning habitat, rearing habitat, and access to spawning tributaries for bull trout, cutthroat trout, and to evaluate the existing fish stocks. ff justified by the results of the survey, fund the design, construction and operation of a cutthroat and bull trout hatchery on the Coeur d`Alene Indian Reservation; necessary habitat improvement projects; and a three year monitoring program to evaluate the effectiveness of the hatchery and habitat improvement projects. If the baseline survey indicates a better alternative than construction of a fish hatchery, the Coeur d`Alene Tribe will submit an alternative plan for consideration in program amendment proceeding.`` This report contains the results of the third year of the study and the Coeur d`Alene Indian Tribes` preliminary recommendations for enhancing the cutthroat and bull trout fishery on the Coeur d`Alene Indian Reservation. These recommendations are based on study results from year three data and information obtained in the first two years of the study.

  4. Using forest inventory data to assess fisher resting habitat suitability in California.

    PubMed

    Zielinski, William J; Truex, Richard L; Dunk, Jeffrey R; Gaman, Tom

    2006-06-01

    The fisher (Martes pennanti) is a forest-dwelling carnivore whose current distribution and association with late-seral forest conditions make it vulnerable to stand-altering human activities or natural disturbances. Fishers select a variety of structures for daily resting bouts. These habitat elements, together with foraging and reproductive (denning) habitat, constitute the habitat requirements of fishers. We develop a model capable of predicting the suitability of fisher resting habitat using standard forest vegetation inventory data. The inventory data were derived from Forest Inventory and Analysis (FIA), a nationwide probability-based sample used to estimate forest characteristics. We developed the model by comparing vegetation and topographic data at 75 randomly selected fisher resting structures in the southern Sierra Nevada with 232 forest inventory plots. We collected vegetation data at fisher resting locations using the FIA vegetation sampling protocol and centering the 1-ha FIA plot on the resting structure. To distinguish used and available inventory plots, we used nonparametric logistic regression to evaluate a set of a priori biological models. The top model represented a dominant portion of the Akaike weights (0.87), explained 31.5% of the deviance, and included the following variables: average canopy closure, basal area of trees <51 cm diameter breast height (dbh), average hardwood dbh, maximum tree dbh, percentage slope, and the dbh of the largest conifer snag. Our use of routinely collected forest inventory data allows the assessment and monitoring of change in fisher resting habitat suitability over large regions with no additional sampling effort. Although models were constrained to include only variables available from the list of those measured using the FIA protocol, we did not find this to be a shortcoming. The model makes it possible to compare average resting habitat suitability values before and after forest management treatments, among

  5. Intense Habitat-Specific Fisheries-Induced Selection at the Molecular Pan I Locus Predicts Imminent Collapse of a Major Cod Fishery

    PubMed Central

    Árnason, Einar; Hernandez, Ubaldo Benitez; Kristinsson, Kristján

    2009-01-01

    Predation is a powerful agent in the ecology and evolution of predator and prey. Prey may select multiple habitats whereby different genotypes prefer different habitats. If the predator is also habitat-specific the prey may evolve different habitat occupancy. Drastic changes can occur in the relation of the predator to the evolved prey. Fisheries exert powerful predation and can be a potent evolutionary force. Fisheries-induced selection can lead to phenotypic changes that influence the collapse and recovery of the fishery. However, heritability of the phenotypic traits involved and selection intensities are low suggesting that fisheries-induced evolution occurs at moderate rates at decadal time scales. The Pantophysin I (Pan I) locus in Atlantic cod (Gadus morhua), representing an ancient balanced polymorphism predating the split of cod and its sister species, is under an unusual mix of balancing and directional selection including current selective sweeps. Here we show that Pan I alleles are highly correlated with depth with a gradient of 0.44% allele frequency change per meter. AA fish are shallow-water and BB deep-water adapted in accordance with behavioral studies using data storage tags showing habitat selection by Pan I genotype. AB fish are somewhat intermediate although closer to AA. Furthermore, using a sampling design covering space and time we detect intense habitat-specific fisheries-induced selection against the shallow-water adapted fish with an average 8% allele frequency change per year within year class. Genotypic fitness estimates (0.08, 0.27, 1.00 of AA, AB, and BB respectively) predict rapid disappearance of shallow-water adapted fish. Ecological and evolutionary time scales, therefore, are congruent. We hypothesize a potential collapse of the fishery. We find that probabilistic maturation reaction norms for Atlantic cod at Iceland show declining length and age at maturing comparable to changes that preceded the collapse of northern cod at

  6. Secure & Restore Critical Fisheries Habitat, Flathead Subbasin, FY2008 Annual Report.

    SciTech Connect

    DuCharme, Lynn; Tohtz, Joel

    2008-11-12

    The construction of Hungry Horse Dam inundated 125 km of adfluvial trout habitat in the South Fork of the Flathead River and its tributaries, impacting natural fish reproduction and rearing. Rapid residential and commercial growth in the Flathead Watershed now threaten the best remaining habitats and restrict our opportunities to offset natural resource losses. Hydropower development and other land disturbances caused severe declines in the range and abundance of our focal resident fish species, bull trout and westslope cutthroat trout. Bull trout were listed as threatened in 1998 under the Endangered Species Act and westslope cutthroat were petitioned for listing under ESA. Westslope cutthroat are a species of special concern in Montana and a species of special consideration by the Confederated Salish and Kootenai Tribes. The Secure & Protect Fisheries Habitat project follows the logical progression towards habitat restoration outlined in the Hungry Horse Dam Fisheries Mitigation Implementation Plan approved by the NWPPC in 1993. This project is also consistent with the 2000 Fish and Wildlife Program and the Flathead River Subbasin Plan that identifies the protection of habitats for these populations as one of the most critical needs in the subbasin and directs actions to offset habitat losses. The Flathead basin is one of the fastest growing human population centers in Montana. Riparian habitats are being rapidly developed and subdivided, causing habitat degradation and altering ecosystem functions. Remaining critical habitats in the Flathead Watershed need to be purchased or protected with conservation easements if westslope cutthroat and bull trout are to persist and expand within the subbasin. In addition, habitats degraded by past land uses need to be restored to maximize the value of remaining habitats and offset losses caused by the construction of Hungry Horse Dam. Securing and restoring remaining riparian habitat will benefit fish by shading and

  7. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Umatilla, Tucannon, Asotin, and Grande Ronde River Basins, 1934-1942, Final Report.

    SciTech Connect

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960) inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  8. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Clearwater, Salmon, Weiser, and Payette River Basins, 1934-1942, Final Report.

    SciTech Connect

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  9. Coral habitat in the Aleutian Islands of Alaska: depth distribution, fine-scale species associations, and fisheries interactions

    NASA Astrophysics Data System (ADS)

    Stone, R. P.

    2006-05-01

    The first in situ exploration of Aleutian Island coral habitat was completed in 2002 to determine the distribution of corals, to examine fine-scale associations between targeted fish species and corals, and to investigate the interaction between the areas’ diverse fisheries and coral habitat. Corals, mostly gorgonians and hydrocorals, were present on all 25 seafloor transects and at depths between 27 and 363 m, but were most abundant between 100 and 200 m depth. Mean coral abundance (1.23 colonies m-2) far exceeded that reported for other high-latitude ecosystems and high-density coral gardens (3.85 colonies m-2) were observed at seven locations. Slope and offshore pinnacle habitats characterized by exposed bedrock, boulders, and cobbles generally supported the highest abundances of coral and fish. Overall, 85% of the economically important fish species observed on transects were associated with corals and other emergent epifauna. Disturbance to the seafloor from bottom-contact fishing gear was evident on 88% of the transects, and approximately 39% of the total area of the seafloor observed had been disturbed. Since cold-water corals appear to be a ubiquitous feature of seafloor habitats in the Aleutian Islands, fisheries managers face clear challenges integrating coral conservation into an ecosystem approach to fisheries management.

  10. Summary Report for Bureau of Fisheries Stream Habitat Surveys: Cowlitz River Basin, 1934-1942 Final Report.

    SciTech Connect

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat surveys, conducted in the Cowlitz River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead. The purpose of the survey was, as described by Rich, [open quotes]to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes[close quotes]. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946. Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin.

  11. Fisheries Habitat Evaluation on Tributaries of the Coeur d`Alene Indian Reservation : Annual Report [1991].

    SciTech Connect

    Woodward-Lillengreen, Kelly L.; Johnson, D. Chad; Scholz, Allan T.

    1993-02-01

    The purpose of this study was to conduct physical and biological surveys of streams located on the Coeur d'Alene Indian Reservation. Surveys were designed to collect information on improving spawning habitat, rearing habitat, and access to spawning tributaries for bull trout and cutthroat trout and to evaluate the existing fish stocks. The objectives of the second year of the study were to: (1) Develop a stream ranking system to select the five streams of primary fisheries potential; (2) Conduct physical field surveys; (3) Determine population dynamics; (4) Determine growth rates of existing trout species; (5) Determine macroinvertebrate densities and diversities; and (6) Determine baseline angler utilization. The Missouri method of evaluating stream reaches was modified and utilized to rank the ten tributaries (as determined by Graves et al. 1990) associated with reservation lands. The method incorporated such data as stream bank and bed stability, condition of riparian vegetation, land use, degree of urbanization, passage barriers, water quality, flow and temperature regimes, as well as the overall habitat suitability for all life history stages of cutthroat and bull trout. This data was then combined with relative abundance data, growth rates and invertebrate densities to choose five streams, which offer the best potential habitat, for further study. Relative abundance estimates resulted in the capture of 6,138 fish from June, August, and October, 1991. A total of 427 cutthroat trout were collected from all sampled tributaries. Relative abundance of cutthroat trout for all tributaries was 6.7%. Fighting Creek had the highest abundance of cutthroat trout at 93.1%, followed by Evans Creeks at 30.8%, Lake Creek at 12.1%, Hell's Gulch at 11.1%, Alder Creek at 3.3%, Benewah Creek at 2.1% and Plummer/Little Plummer creeks at 5%. Population estimates were conducted in Benewah, Alder, Evans and Lake creeks. Estimates were: 23.5 {+-} 2.3 fish/l,922.6 m2 in Benewah Creek

  12. Towards an integrated forecasting system for fisheries on habitat-bound stocks

    NASA Astrophysics Data System (ADS)

    Christensen, A.; Butenschön, M.; Gürkan, Z.; Allen, I. J.

    2013-03-01

    First results of a coupled modelling and forecasting system for fisheries on habitat-bound stocks are being presented. The system consists currently of three mathematically, fundamentally different model subsystems coupled offline: POLCOMS providing the physical environment implemented in the domain of the north-west European shelf, the SPAM model which describes sandeel stocks in the North Sea, and the third component, the SLAM model, which connects POLCOMS and SPAM by computing the physical-biological interaction. Our major experience by the coupling model subsystems is that well-defined and generic model interfaces are very important for a successful and extendable coupled model framework. The integrated approach, simulating ecosystem dynamics from physics to fish, allows for analysis of the pathways in the ecosystem to investigate the propagation of changes in the ocean climate and to quantify the impacts on the higher trophic level, in this case the sandeel population, demonstrated here on the basis of hindcast data. The coupled forecasting system is tested for some typical scientific questions appearing in spatial fish stock management and marine spatial planning, including determination of local and basin-scale maximum sustainable yield, stock connectivity and source/sink structure. Our presented simulations indicate that sandeel stocks are currently exploited close to the maximum sustainable yield, even though periodic overfishing seems to have occurred, but large uncertainty is associated with determining stock maximum sustainable yield due to stock inherent dynamics and climatic variability. Our statistical ensemble simulations indicates that the predictive horizon set by climate interannual variability is 2-6 yr, after which only an asymptotic probability distribution of stock properties, like biomass, are predictable.

  13. Fisheries Habitat Evaluation on Tributaries of the Coeur d`Alene Indian Reservation : 1993, 1994 Annual Report.

    SciTech Connect

    Woodward-Lillengreen, Kelly L.; Vitale, Angelo; Peters, Ronald L.

    1996-09-01

    Bull trout and cutthroat trout are two salmonid species native to the Lake Coeur d`Alene drainage. Historically these species were a critical component of the Coeur d`Alene Tribe`s annual subsistence requirements. Since 1932, the cutthroat trout population has declined significantly in the Coeur d`Alene system. The present ecosystem bears little resemblance to habitat composition, diversity and structure of the historic ecosystem. The purpose of this study was to conduct baseline stream and biological surveys of four drainages located within the Coeur d`alene Reservation and make recommendations on ways to increase the westslope cutthroat and bull trout populations on the Reservation. Data indicated that habitat degradation, specifically, water quantity and lack of habitat complexity, was limiting westslope cutthroat and bull trout populations on the Reservation. Population data indicated that cutthroat trout populations were low when compared to other similar drainages. Surveys revealed a conspicuous absence of bull trout. Recommendations included: conducting extensive habitat restoration in the study drainages; developing alternate harvest opportunities to reduce pressure on wild stocks; purchasing critical watershed areas for fisheries habitat protection; constructing and operating a trout production facility; and, implementing a five-year monitoring program to evaluate the program effectiveness.

  14. Modulation of Habitat-Based Conservation Plans by Fishery Opportunity Costs: A New Caledonia Case Study Using Fine-Scale Catch Data

    PubMed Central

    Deas, Marilyn; Andréfouët, Serge; Léopold, Marc; Guillemot, Nicolas

    2014-01-01

    Numerous threats impact coral reefs and conservation actions are urgently needed. Fast production of marine habitat maps promotes the use of habitat-only conservation plans, where a given percentage of the area of each habitat is set as conservation objectives. However, marine reserves can impact access to fishing grounds and generate opportunity costs for fishers that need to be minimized. In New Caledonia (Southwest Pacific), we used fine-scale fishery catch maps to define nineteen opportunity costs layers (expressed as biomass catch loss) considering i) total catches, ii) target fish families, iii) local marine tenure, and iv) gear type. The expected lower impacts on fishery catch when using the different cost constraints were ranked according to effectiveness in decreasing the costs generated by the habitat-only scenarios. The exercise was done for two habitat maps with different thematic richness. In most cases, habitat conservation objectives remained achievable, but effectiveness varied widely between scenarios and between habitat maps. The results provide practical guidelines for coral reef conservation and management. Habitat-only scenarios can be used to initiate conservation projects with stakeholders but the costs induced by such scenarios can be lowered by up to 50–60% when detailed exhaustive fishery data are used. When using partial data, the gain would be only in the 15–25% range. The best compromises are achieved when using local data. PMID:24835216

  15. Modulation of habitat-based conservation plans by fishery opportunity costs: a New Caledonia case study using fine-scale catch data.

    PubMed

    Deas, Marilyn; Andréfouët, Serge; Léopold, Marc; Guillemot, Nicolas

    2014-01-01

    Numerous threats impact coral reefs and conservation actions are urgently needed. Fast production of marine habitat maps promotes the use of habitat-only conservation plans, where a given percentage of the area of each habitat is set as conservation objectives. However, marine reserves can impact access to fishing grounds and generate opportunity costs for fishers that need to be minimized. In New Caledonia (Southwest Pacific), we used fine-scale fishery catch maps to define nineteen opportunity costs layers (expressed as biomass catch loss) considering i) total catches, ii) target fish families, iii) local marine tenure, and iv) gear type. The expected lower impacts on fishery catch when using the different cost constraints were ranked according to effectiveness in decreasing the costs generated by the habitat-only scenarios. The exercise was done for two habitat maps with different thematic richness. In most cases, habitat conservation objectives remained achievable, but effectiveness varied widely between scenarios and between habitat maps. The results provide practical guidelines for coral reef conservation and management. Habitat-only scenarios can be used to initiate conservation projects with stakeholders but the costs induced by such scenarios can be lowered by up to 50-60% when detailed exhaustive fishery data are used. When using partial data, the gain would be only in the 15-25% range. The best compromises are achieved when using local data. PMID:24835216

  16. Forecasting effects of climate change on Great Lakes fisheries: models that link habitat supply to population dynamics can help

    USGS Publications Warehouse

    Jones, Michael L.; Shuter, Brian J.; Zhao, Yingming; Stockwell, Jason D.

    2006-01-01

    Future changes to climate in the Great Lakes may have important consequences for fisheries. Evidence suggests that Great Lakes air and water temperatures have risen and the duration of ice cover has lessened during the past century. Global circulation models (GCMs) suggest future warming and increases in precipitation in the region. We present new evidence that water temperatures have risen in Lake Erie, particularly during summer and winter in the period 1965–2000. GCM forecasts coupled with physical models suggest lower annual runoff, less ice cover, and lower lake levels in the future, but the certainty of these forecasts is low. Assessment of the likely effects of climate change on fish stocks will require an integrative approach that considers several components of habitat rather than water temperature alone. We recommend using mechanistic models that couple habitat conditions to population demographics to explore integrated effects of climate-caused habitat change and illustrate this approach with a model for Lake Erie walleye (Sander vitreum). We show that the combined effect on walleye populations of plausible changes in temperature, river hydrology, lake levels, and light penetration can be quite different from that which would be expected based on consideration of only a single factor.

  17. Regulated flushing in a gravel-bed river for channel habitat maintenance: A Trinity River fisheries case study

    NASA Astrophysics Data System (ADS)

    Nelson, R. Wayne; Dwyer, John R.; Greenberg, Wendy E.

    1987-08-01

    The operation of Trinity and Lewiston Dams on the Trinity River in northern California in the United States, combined with severe watershed erosion, has jeopardized the existence of prime salmonid fisheries. Extreme streamflow depletion and stream sedimentation below Lewiston have resulted in heavy accumulation of coarse sediment on riffle gravel and filling of streambed pools, causing the destruction of spawning, nursery, and overwintering habitat for prized chinook salmon ( Salmo gairdnerii) and steelhead trout ( Oncorhynchus tschawytscha). Proposals to restore and maintain the degraded habitat include controlled one-time remedial peak flows or annual maintenance peak flows designed to flush the spawning gravel and scour the banks, deltas, and pools. The criteria for effective channel restoration or maintenance by streambed flushing and scouring are examined here, as well as the mechanics involved. The liabilities of releasing mammoth scouring-flushing flows approximating the magnitude that preceded reservoir construction make this option unviable. The resulting damage to fish habitat established under the postproject streamflow regime, as well as damage to human settlements in the floodplain, would be unacceptable, as would the opportunity costs to hydroelectric and irrigation water users. The technical feasibility of annual maintenance flushing flows depends upon associated mechanical and structural measures, particularly instream maintenance dredging of deep pools and construction of a sediment control dam on a tributary where watershed erosion is extreme. The cost effectiveness of a sediment dam with a limited useful economic life, combined with perpetual maintenance dredging, is questionable.

  18. 76 FR 35408 - Essential Fish Habitat (EFH) Components of Fishery Management Plans (Northeast Multispecies...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... need for the Omnibus EFH Amendment can be found in the original NOI dated February 24, 2004, (69 FR... EIS (DEIS) was published on April 6, 2007 (72 FR 17157). Phase 2 will include an evaluation of the... Amendment to the fishery management plans (FMPs) for Northeast (NE) multispecies, Atlantic sea...

  19. CUMULATIVE EFFECTS OF COASTAL HABITAT ALTERATIONS ON FISHERY RESOURCES: TOWARD PREDICTION AT REGIONAL SCALES

    EPA Science Inventory

    The integrity of aquatic ecosystems and habitats at the land-sea interface is challeneged by several forces, ranging from plot scale destruction and disturbance, to watershed scale perturbations, to global changes in climate and human demographis. The scientific challenge is to ...

  20. Ecosystem Services of Coastal Habitats and Fisheries: Multi-Scale Ecological and Economic Modeling

    EPA Science Inventory

    Critical habitats for fish and wildlife often are small patches in landscapes, e.g., aquatic vegetation beds, reefs, isolated ponds and wetlands, remnant old growth forests, etc, yet the same animal populations that depend on these patches for reproduction or survival can be exte...

  1. Progress in understanding the importance of coastal wetland nursery habitat to Great Lakes fisheries support

    EPA Science Inventory

    Great Lakes coastal wetlands provide important habitat for Great Lakes fishes of all life stages. A literature review of ichthyoplankton surveys conducted in Great Lakes coastal wetlands found at least 82 species reported to be captured during the larval stage. Twenty of those sp...

  2. Fisheries Habitat Evaluation on Tributaries of the Coeur d`Alene Indian Reservation : 1990 Annual Report.

    SciTech Connect

    Graves, Suzy

    1992-02-01

    Ranking criteria were developed to rate 19 tributaries on the Coeur d`Alene Indiana Reservation for potential of habitat enhancement for westslope cutthroat trout, Oncorhynchus clarki lewisi, and bull trout, Salvelinus malma. Cutthroat and bull trout habitat requirements, derived from an extensive literature review of each species, were compared to the physical and biological parameters of each stream observed during an aerial -- helicopter survey. Ten tributaries were selected for further study, using the ranking criteria that were derived. The most favorable ratings were awarded to streams that were located completely on the reservation, displayed highest potential for improvement and enhancement, had no barriers to fish migration, good road access, and a gradient acceptable to cutthroat and bull trout habitation. The ten streams selected for study were Bellgrove, Fighting, Lake, Squaw, Plummer, Little Plummer, Benewah, Alder, Hell`s Gulch and Evans creeks.

  3. Habitat overlap between southern bluefin tuna and yellowfin tuna in the east coast longline fishery - implications for present and future spatial management

    NASA Astrophysics Data System (ADS)

    Hartog, Jason R.; Hobday, Alistair J.; Matear, Richard; Feng, Ming

    2011-03-01

    Southern bluefin tuna (SBT) are presently a quota-managed species in the multi-species eastern Australian tuna and billfish longline fishery (ETBF). Capture of SBT is regulated by quota, as is access to regions likely to contain SBT. A habitat prediction model combining data from an ocean model and pop-up satellite archival tags is used to define habitat zones based on the probability of SBT occurrence. These habitat zones are used by fishery managers to restrict access by ETBF fishers to SBT habitat during a May-November management season. The zones display a distinct seasonal cycle driven by the seasonal southward expansion and northward contraction of the East Australia Current (EAC) and as a result access by fishers to particular ocean regions changes seasonally. This species also overlaps with the commercially valuable yellowfin tuna (YFT), thus, we modified the SBT model to generate YFT habitat predictions in order to investigate habitat overlap between SBT and YFT. There is seasonal variation in the overlap of the core habitat between these two species, with overlap early (May-Jul) in the management season and habitat separation occurring towards the end (Aug-Nov). The EAC is one of the fastest warming ocean regions in the southern hemisphere. To consider the future change in distribution of these two species compared to the present and to explore the potential impact on fishers and managers of the future, we use future ocean predictions from the CSIRO Bluelink ocean model for the year 2064 to generate habitat predictions. As the ocean warms on the east coast of Australia and the EAC extends southward, our model predicts the suitable habitat for SBT and YFT will move further south. There was an increase in the overlap of SBT and YFT habitat throughout the management season, due to regional variation of each species' habitat. These results illustrate that a management tradeoff exists between restricting fisher access to SBT habitat and allowing access to YFT

  4. Hungry Horse Dam Fisheries Mitigation : Fish Passage and Habitat Improvement in the Upper Flathead River Basin, 1991-1996 Progress Report.

    SciTech Connect

    Knotek, W.Ladd; Deleray, Mark; Marotz, Brian L.

    1997-08-01

    In the past 50 years, dramatic changes have occurred in the Flathead Lake and River system. Degradation of fishery resources has been evident, in part due to deterioration of aquatic habitat and introduction of non-endemic fish and invertebrate species. Habitat loss has been attributed to many factors including the construction and operation of Hungry Horse Dam, unsound land use practices, urban development, and other anthropogenic and natural disturbances. Fish migration has also been limited by barriers such as dams and impassible culverts. Cumulatively, these factors have contributed to declines in the distribution and abundance of native fish populations. Recovery of fish populations requires that a watershed approach be developed that incorporates long-term aquatic habitat needs and promotes sound land use practices and cooperation among natural resource management agencies. In this document, the authors (1) describe completed and ongoing habitat improvement and fish passage activities under the Hungry Horse Fisheries Mitigation Program, (2) describe recently identified projects that are in the planning stage, and (3) develop a framework for identifying prioritizing, implementing, and evaluating future fish habitat improvement and passage projects.

  5. Yakima/Klickitat Fisheries Project: Management, Data and Habitat, Annual Report 2001-2002.

    SciTech Connect

    Sampson, Melvin R.

    2002-03-01

    The Yakima/Klickitat Fisheries Project (YKFP or Project) is an all stock initiative that is responding to the need for scientific knowledge for rebuilding and maintaining naturally spawning anadromous fish stocks in both basins. The Yakama Nation, as the Lead Agency, in coordination with the co-managers, Washington Department of Fish and Wildlife and in cooperation with the Bonneville Power Administration, the funding agency, is pursuing this. We are testing the principles of supplementation as a means to rebuild fish populations through the use of locally adapted broodstock in an artificial production program. This concept is being utilized on the Spring Chinook within the Yakima River Basin. The coho and fall chinook programs were approved and implemented in the Yakima Basin. The coho programs principle objective is to determine if naturally spawning coho populations can be reintroduced throughout their biological range in the basin. The objective of the fall chinook program is to determine if supplementation is a viable strategy to increase fall chinook populations in the Yakima subbasin. The coho and fall chinook programs are under the three step process that was established by the Northwest Power Planning Council. The Klickitat subbasin management program is combined with the Yakima subbasin program. This contract includes the Klickitat Basin Coordinator and operational costs for the basin. The Klickitat Subbasin has separate contracts for Monitoring & Evaluation, Construction, and ultimately, Operation and Maintenance. In the Klickitat subbasin, we propose to use supplementation to increase populations of spring chinook and steelhead. This program is still in the developmental stages consistent with the three step process.

  6. Yakima/Klickitat Fisheries Project : Management, Data and Habitat, Annual Report 2002-2003.

    SciTech Connect

    Sampson, Melvin R.

    2002-03-01

    The Yakima/Klickitat Fisheries Project (YKFP or Project) is an all stock initiative that is responding to the need for scientific knowledge for rebuilding and maintaining naturally spawning anadromous fish stocks in both basins. The Yakama Nation, as the Lead Agency, in coordination with the co-managers, Washington Department of Fish and Wildlife and in cooperation with the Bonneville Power Administration, the funding agency, is pursuing this. We are testing the principles of supplementation as a means to rebuild fish populations through the use of locally adapted broodstock in an artificial production program. This concept is being utilized on the Spring Chinook within the Yakima River Basin. The coho and fall chinook programs were approved and implemented in the Yakima Basin. The coho programs principle objective is to determine if naturally spawning coho populations can be reintroduced throughout their biological range in the basin. The objective of the fall chinook program is to determine if supplementation is a viable strategy to increase fall chinook populations in the Yakima subbasin. The coho and fall chinook programs are under the three step process that was established by the Northwest Power Planning Council. The Klickitat subbasin management program is combined with the Yakima subbasin program. This contract includes the Klickitat Basin Coordinator and operational costs for the basin. The Klickitat Subbasin has separate contracts for Monitoring and Evaluation, Construction, and ultimately, Operation and Maintenance. In the Klickitat subbasin, we propose to use supplementation to increase populations of spring chinook and steelhead. This program is still in the developmental stages consistent with the three step process.

  7. MASSACHUSETTS DIVISION OF FISHERIES AND WILDLIFE ADAPTATION PLANNING USING AN EXPERT PANEL BASED HABITAT VULNERABLITY ASSESSMENT John O'Leary, MA Div. of Fisheries and Wildlife and Hector Galbraith, Ph d. Climate Change Initiative, Manomet Center for Conservation Sciences

    NASA Astrophysics Data System (ADS)

    O'Leary, J. A.; Galbraith, H.

    2010-12-01

    We are using the results from a recently completed Habitat Vulnerability Assessment (HVA) for adaptation planning within the Massachusetts Division of Fisheries and Wildlife. We used Regional Downscale Climate Projections to provide exposure information for the assessment and an Expert Panel of biologists to provide information on the sensitivity and adaptive capacity of the habitat types we assessed. We estimated the vulnerability of 22 key habitat types which were identified in the State Wildlife Action Plan (SWAP). Results of the expert panel based HVA include a relative ranking of vulnerability to climate change for these habitats within Massachusetts, a confidence score for the estimated vulnerability for each habitat type evaluated and a narrative identifying the factors which influence the vulnerability of the habitat. We also evaluated the vulnerability of the Species in Greatest Conservation Need (SGCN) from the SWAP to climate change conditions. The SGCN are linked to their primary habitat types. The HVA results along with recommendations from the National Academies Report: Adapting to the Impacts of Climate Change America’s Climate Choices: Panel on Adapting to the Impacts of Climate Change will inform “climate smart” adaptation strategies for agency management, acquisition, and research and monitoring programs that build on and do not replace existing implementation strategies. We believe that the adaptation planning process that we outline in this presentation could serve as a model for resource agencies and others who are in the process of developing their response to anticipated impacts from climate change conditions. We are also engaged in a collaborative effort to conduct a Regional Habitat Vulnerability Assessment (RHVA). Results form the RHVA will provide the MDFW with the ability to assess adaptation strategies based on regional need.

  8. Protection of fish spawning habitat for the conservation of warm-temperature reef-fish fisheries of shelf-edge reefs of Florida

    USGS Publications Warehouse

    Koenig, Christopher C.; Coleman, Felicia C.; Grimes, Churchill B.; Fitzhugh, Gary R.; Scanlon, Kathyryn M.; Gledhill, Christopher T.; Grace, Mark

    2000-01-01

    We mapped and briefly describe the surficial geology of selected examples of shelf-edge reefs (50–120 m deep) of the southeastern United States, which are apparently derived from ancient Pleistocene shorelines and are intermittently distributed throughout the region. These reefs are ecologically significant because they support a diverse array of fish and invertebrate species, and they are the only aggregation spawning sites of gag (Mycteroperca microlepis), scamp (M. phenax), and other economically important reef fish. Our studies on the east Florida shelf in the Experimental Oculina Research Reserve show that extensive damage to the habitat-structuring coral Oculina varicosa has occurred in the past, apparently from trawling and dredging activities of the 1970s and later. On damaged or destroyed Oculina habitat, reef-fish abundance and diversity are low, whereas on intact habitat, reef-fish diversity is relatively high compared to historical diversity on the same site. The abundance and biomass of the economically important reef fish was much higher in the past than it is now, and spawning aggregations of gag and scamp have been lost or greatly reduced in size. On the west Florida shelf, fishers have concentrated on shelf-edge habitats for over 100 yrs, but fishing intensity increased dramatically in the 1980s. Those reefs are characterized by low abundance of economically important species. The degree and extent of habitat damage there is unknown. We recommend marine fishery reserves to protect habitat and for use in experimentally examining the potential production of unfished communities.

  9. Population estimates for the peregrine falcon in Arizona: A habitat inventory approach

    USGS Publications Warehouse

    Ellis, D.H.; Glinski, R.L.

    1988-01-01

    At least 50 pairs of peregrine falcons reside in Arizona. From aerial surveys of available habitat and occupancy trends at more than 600 sites searched from 1975 to 1985, we estimated that at least 90 pairs resided in the study area. We project a fully recovered population of at least 190 pairs.

  10. Use of LANDSAT for land use and habitat inventories for the New Jersey Pinelands

    NASA Technical Reports Server (NTRS)

    Tracy, C.

    1981-01-01

    The New Jersey Heritage program surveyed available mapping information on landcover and vegetative communities and found that most commonly used sources, such as local land use maps and aerial photographs, were useful for individual sites, but either varied in their classifications or could not be used over extensive areas. A demonstration project using LANDSAT satellite information for the Great Egg Harbor/Tuckahoe watersheds was initiated with the goals of application (providing an inventory of vegetative communities and land use) flexibility (providing a method of collecting data which can be updated or modified in the future); and efficiency (allowing for an acceptable cost level by having staff undertake the project and avoid the more costly methods from air photo interpretation or on-site surveying. The classification procedure used is described and the spatial distributions of the 10 landcover classes determined are listed.

  11. 78 FR 62587 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Atlantic Fishery Management Council's Habitat and Environmental Protection (Habitat) Advisory Panel (AP). SUMMARY: The South Atlantic Fishery Management Council (Council) will hold a meeting of its Habitat AP in...: The Habitat AP will work on development of the Council's Essential Fish Habitat Policy Statements...

  12. 50 CFR 660.395 - Essential Fish Habitat (EFH)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Essential Fish Habitat (EFH) 660.395 Section 660.395 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Groundfish Fisheries § 660.395 Essential Fish Habitat (EFH) Essential fish habitat (EFH) is defined as...

  13. 50 CFR 660.75 - Essential Fish Habitat (EFH).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Essential Fish Habitat (EFH). 660.75 Section 660.75 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Groundfish Fisheries § 660.75 Essential Fish Habitat (EFH). Essential fish habitat (EFH) is defined as...

  14. 50 CFR 660.75 - Essential Fish Habitat (EFH).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Essential Fish Habitat (EFH). 660.75 Section 660.75 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Groundfish Fisheries § 660.75 Essential Fish Habitat (EFH). Essential fish habitat (EFH) is defined as...

  15. 50 CFR 660.75 - Essential Fish Habitat (EFH).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Essential Fish Habitat (EFH). 660.75 Section 660.75 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Groundfish Fisheries § 660.75 Essential Fish Habitat (EFH). Essential fish habitat (EFH) is defined as...

  16. 50 CFR 660.75 - Essential Fish Habitat (EFH).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Essential Fish Habitat (EFH). 660.75 Section 660.75 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Groundfish Fisheries § 660.75 Essential Fish Habitat (EFH). Essential fish habitat (EFH) is defined as...

  17. Nearshore benthic habitat GIS for the Channel Islands National Sanctuary and southern California State Fisheries Reserves. Volume 1

    USGS Publications Warehouse

    Cochrane, Guy R.; Nasby, Nicole M.; Reid, Jane A.; Waltenberger, Ben; Lee, Kristen M.

    2003-01-01

    The nearshore benthic habitat of the Santa Barbara coast and Channel Islands supports diverse marine life that is commercially, recreationally, and intrinsically valuable. Some of these resources are known to be endangered including a variety of rockfish and the white abalone. Agencies of the state of California and the United States have been mandated to preserve and enhance these resources. Data from sidescan sonar, bathymetry, video and dive observations, and physical samples are consolidated in a geographic information system (GIS). The GIS provides researchers and policymakers a view of the relationship among data sets to assist scienctific research and to help with economic and social policy-making decisions regarding this protected environment.

  18. 77 FR 19230 - Western Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Insular Fisheries. A. American Samoa i. Coral reef and crustacean fisheries. ii. Bottomfish fisheries. iii. Precious corals fishery and coral reef habitat status. iv. Update on Bio-Sampling Program data summary. v. Non-stock related factors affecting Catch Per Unit Effort (CPUE) in the coral reef fisheries....

  19. Habitat conservation and creation: Invoking the flood-pulse concept to enhance fisheries in the lower Mississippi River

    USGS Publications Warehouse

    Schramm, H.L., Jr.; Eggleton, M.A.; Mayo, R.M.

    2000-01-01

    Analysis of four years of growth data failed to identify a single temperature or hydrologic variable that consistently accounted for variation in annual growth of catfishes (Ictaluridae). Instead, a composite variable that measured duration of floodplain inundation when water temperature exceeded minima for active feeding was directly related to growth. Results indicated that floodplain inundation have provided little direct energetic benefit to fishes when water temperatures were sub-optimal for active feeding, but floodplain resources were exploited when thermal conditions were sufficient for active feeding and growth. Thus, the flood-pulse concept applies to the lower Mississippi River (LMR) when modified to consider temperature. Managing the existing leveed floodplain to prolong inundation, increase water temperatures during spring flooding, and maintain connectivity of floodplain habitats with the main river channel should benefit fish production in the LMR.

  20. Kootenai River Fisheries Investigations; Chapter 3 : Mainstem Habitat Use and Recruitment Estimates of Rainbow Trout, 1996 Annual Report.

    SciTech Connect

    Fredericks, James P.; Hendricks, Steve

    1997-09-01

    The objective of this study was to determine if recruitment is limiting the population of rainbow trout Oncorhynchus mykiss in the mainstem Kootenai River. The authors used snorkeling and electrofishing techniques to estimate juvenile rainbow trout density and total numbers in Idaho tributaries, and they trapped juvenile outmigrants to identify the age at which juvenile trout migrate from tributaries to the Kootenai River. The authors radio and reward-tagged post-spawn adult rainbow trout captured in Deep Creek to identify river reach and habitat used by those fish spawning and rearing in the Deep Creek drainage. They also conducted redd surveys in the Kootenai River to determine the extent of mainstem spawning. Based on the amount of available habitat and juvenile rainbow trout densities, the Deep Creek drainage was the most important area for juvenile production. Population estimates of age 0, age 1+, and age 2+ rainbow trout indicated moderate to high densities in several streams in the Deep Creek drainage whereas other streams, such as Deep Creek, had very low densities of juvenile trout. The total number of age 0, age 1+, and age 2+ rainbow trout in Deep Creek drainage in 1996 was estimated to be 63,743, 12,095, and 3,095, respectively. Radio telemetry efforts were hindered by the limited range of the transmitters, but movements of a radio-tagged trout and a returned reward tag indicated that at least a portion of the trout utilizing the Deep Creek drainage migrated downriver from the mouth of Deep Creek to the meandering section of river. They found no evidence of mainstem spawning by rainbow trout, but redd counting efforts were hindered by high flows from mid-April through June.

  1. Inventory of wetland habitat using remote sensing for the proposed Oahe irrigation unit in eastern South Dakota

    NASA Technical Reports Server (NTRS)

    Best, R. G.; Moore, D. G.; Myers, V. I.

    1977-01-01

    An inventory of wetlands for the area included in the proposed Oahe irrigation project was conducted to provide supplemental data for the wildlife mitigation plan. Interpretation techniques for inventoring small wetlands in the low relief terrain of the Lake Dakota Plain were documented and data summaries included. The data were stored and tabulated in a computerized spatial data analysis system.

  2. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, Appendices, 1984 Annual Report.

    SciTech Connect

    Shepard, Bradley B.

    1985-06-01

    The appendices include: (1) stream habitat inventory procedures; (2) lengths and volumes across hydroacoustic transects in Libby Reservoir; (3) temperature, pH, dissolved oxygen, and conductivity profiles in Libby Reservoir; (4) habitat survey information by reach; (5) gill net catches by species; (6) annual catches of fish in floating gill nets; (7) vertical distributions of fish and zooplankton; (8) timing of juvenile and adult movement through traps; (9) food habits information for collected fish; (10) estimated densities and composition of zooplankton by genera; (11) seasonal catch of macroinvertebrates; and (12) initial modeling effort on the Libby Reservoir fishery. (ACR)

  3. California Cooperative Oceanic Fisheries Investigations Reports

    SciTech Connect

    Olfe, J.; Lang, C.; Vernet, M.

    1989-10-01

    This document contains 15 papers. Topics include a review of some California fisheries, spawning biomass of the northern anchovy, marine fisheries, habitat alterations, fishery management, reproduction, population dynamics, acoustic Doppler currents and sea lion interaction and depredation. Each paper will be indexed and entered separately on the energy data base. 54 figs., 29 tabs. (KD)

  4. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for green turtle. 226.208 Section 226.208 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat...

  5. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for green turtle. 226.208 Section 226.208 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat...

  6. Salmon River Habitat Enhancement, 1989 Annual Report.

    SciTech Connect

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  7. 50 CFR 600.815 - Contents of Fishery Management Plans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Contents of Fishery Management Plans. 600.815 Section 600.815 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Essential Fish Habitat (EFH) § 600.815 Contents of...

  8. 78 FR 13326 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ...; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce ACTION: Notice; public meeting. ] SUMMARY: The New England Fishery Management Council (Council) is scheduling a public meeting of its Habitat Committee to consider actions...

  9. 75 FR 18482 - Stanford University Habitat Conservation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... 0648-XV36 Stanford University Habitat Conservation Plan AGENCIES: National Marine Fisheries Service... habitat conservation plan, and receipt of application; notice of public meeting. SUMMARY: This notice... Incidental Take and Implementation of Stanford University ] Habitat Conservation Plan (Plan), and...

  10. Coeur d'Alene Tribe Fish and Wildlife Program Habitat Protection Plan; Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation, 1997-2002 Technical Report.

    SciTech Connect

    Vitale, Angelo; Roberts, Frank; Peters, Ronald

    2002-06-01

    Throughout the last century, the cumulative effects of anthropogenic disturbances have caused drastic watershed level landscape changes throughout the Reservation and surrounding areas (Coeur d'Alene Tribe 1998). Changes include stream channelization, wetland draining, forest and palouse prairie conversion for agricultural use, high road density, elimination of old growth timber stands, and denuding riparian communities. The significance of these changes is manifested in the degradation of habitats supporting native flora and fauna. Consequently, populations of native fish, wildlife, and plants, which the Tribe relies on as subsistence resources, have declined or in some instances been extirpated (Apperson et al. 1988; Coeur d'Alene Tribe 1998; Lillengreen et al. 1996; Lillengreen et al. 1993; Gerry Green Coeur d'Alene Tribe wildlife Biologist, personal communication 2002). For example, bull trout (Salvelinus confluentus) are not present at detectable levels in Reservation tributaries, westslope cutthroat trout (Oncorhynchus clarki lewisi) are not present in numbers commensurate with maintaining harvestable fisheries (Lillengreen et al. 1993, 1996), and the Sharp-tailed grouse (Tympanuchus phasianellus) are not present at detectable levels on the Reservation (Gerry Green, Coeur d'Alene Tribe wildlife biologist, personal communication). The Coeur d'Alene Tribe added Fisheries and Wildlife Programs to their Natural Resources Department to address these losses and protect important cultural, and subsistence resources for future generations. The Tribal Council adopted by Resolution 89(94), the following mission statement for the Fisheries Program: 'restore, protect, expand and re-establish fish populations to sustainable levels to provide harvest opportunities'. This mission statement, focused on fisheries restoration and rehabilitation, is a response to native fish population declines throughout the Tribe's aboriginal territory, including the Coeur d'Alene Indian

  11. Inland fisheries

    USGS Publications Warehouse

    Cable, Louella E.

    1971-01-01

    Today's inland commercial fisheries are small independent operational units widely dispersed on lakes, impoundments, and streams throughout the vast central plains. The problems of the fisheries are diverse and unique to local conditions. Inland fisheries are particularly important to the Nation in times of international conflict because they are distributed throughout the area and the fish can be easily harvested.

  12. 50 CFR 226.221 - Critical habitat for black abalone (Haliotis cracherodii).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for black abalone (Haliotis cracherodii). 226.221 Section 226.221 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.221 Critical habitat...

  13. 50 CFR 226.202 - Critical habitat for Stellar sea lions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for Stellar sea lions. 226.202 Section 226.202 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.202 Critical habitat for Stellar sea...

  14. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... HABITAT § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following...

  15. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... HABITAT § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following...

  16. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... HABITAT § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following...

  17. Marine fisheries in Tanzania.

    PubMed

    Jiddawi, Narriman S; Ohman, Marcus C

    2002-12-01

    Fishery resources are a vital source of food and make valuable economic contributions to the local communities involved in fishery activities along the 850 km stretch of the Tanzania coastline and numerous islands. Small-scale artisanal fishery accounts for the majority of fish catch produced by more than 43 000 fishermen in the country, mainly operating in shallow waters within the continental shelf, using traditional fishing vessels including small boats, dhows, canoes, outrigger canoes and dinghys. Various fishing techniques are applied using uncomplicated passive fishing gears such as basket traps, fence traps, nets as well as different hook and line techniques. Species composition and size of the fish varies with gear type and location. More than 500 species of fish are utilized for food with reef fishes being the most important category including emperors, snappers, sweetlips, parrotfish, surgeonfish, rabbitfish, groupers and goatfish. Most of the fish products are used for subsistence purposes. However, some are exported. Destructive fishing methods such as drag nets and dynamite fishing pose a serious problem as they destroy important habitats for fish and other organisms, and there is a long-term trend of overharvested fishery resources. However, fishing pressure varies within the country as fishery resources are utilized in a sustainable manner in some areas. For this report more than 340 references about Tanzanian fishery and fish ecology were covered. There are many gaps in terms of information needed for successful fishery management regarding both basic and applied research. Most research results have been presented as grey literature (57%) with limited distribution; only one-fifth were scientific publications in international journals. PMID:12572817

  18. A rehabilitation plan for walleye populations and habitats in Lake Superior

    USGS Publications Warehouse

    Hoff, MIchael H.

    2003-01-01

    The walleye (Stizostedion vitreum vitreum) has been historically important in regional fisheries and fish communities in large bays, estuaries, and rivers of Lake Superior. Significant negative impacts on the species caused by overharvesting, habitat degradation, and pollution during the late 1800s and early 1900s have led to the preparation of a strategic rehabilitation plan. The lakewide goal is to maintain, enhance, and rehabilitate habitat for walleye and to establish self-sustaining populations in areas where walleyes historically lived. Population objectives that support the goal are to increase the abundance of juvenile and adult walleyes in selected areas. Habitat objectives that support the goal include increasing spawning and nursery habitat in four areas: enhancing fish passage, reducing sedimentation, increasing water quality, and reducing contaminants in walleyes. Progress toward achieving the habitat objectives should be measured by documenting increases in spawning and nursery habitats, resolving fish-passage issues, reducing sediments in rivers, and reducing contaminant levels in walleyes. Stocking various life stages of walleye should be considered to rehabilitate certain degraded populations. Total annual mortality of walleye populations should be less than 45% to allow populations to either increase or be maintained at target levels of abundance. Routine assessments should focus on gathering the data necessary to evaluate abundance and mortality and on taking inventories of spawning and nursery habitats. Research should be conducted to understand the specific habitat requirements for Lake Superior walleye populations and the habitat-abundance relationships for populations and for the lake as a whole.

  19. Application of remote sensing in South Dakota to provide accurate inventories of agricultural crops, enhance contrast in photographic products, monitor rangeland habitat loss, map Aspen, and prepare hydrogeologic surveys

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Dalsted, K. J.; Best, R. G.; Smith, J. R.; Eidenshink, J. C.; Schmer, F. A.; Andrawis, A. S.; Rahn, P. H.

    1977-01-01

    The author has identified the following significant results. Digital analysis of LANDSAT CCT's indicated that two discrete spectral background zones occurred among the five soil zone. K-CLASS classification of corn revealed that accuracy increased when two background zones were used, compared to the classification of corn stratified by five soil zones. Selectively varying film type developer and development time produces higher contract in reprocessed imagery. Interpretation of rangeland and cropped land data from 1968 aerial photography and 1976 LANDSAT imagery indicated losses in rangeland habitat. Thermal imagery was useful in locating potential sources of sub-surface water and geothermal energy, estimating evapotranspiration, and inventorying the land.

  20. Quantifying multi-habitat support of Great Lakes fishes

    EPA Science Inventory

    Recent advances in trophic ecology have revealed the interconnectedness of diverse habitats in support of aquatic food webs. Understanding the degree to which different habitats support fish can be valuable for fisheries management and ecosystem protection. For example, stable is...

  1. The occurrence of the colonial ascidian Didemnum sp. on Georges Bank gravel habitat: ecological observations and potential effects on groundfish and scallop fisheries

    USGS Publications Warehouse

    Valentine, P.C.; Collie, J.S.; Reid, R.N.; Asch, R.G.; Guida, V.G.; Blackwood, D.S.

    2007-01-01

    The colonial ascidian Didemnum sp. is present on the Georges Bank fishing grounds in a gravel habitat where the benthic invertebrate fauna has been monitored annually since 1994. The species was not noted before 2002 when large colonies were first observed; and by 2003 and 2004 it covered large areas of the seabed at some locations. The latest survey in 2005 documented the tunicate's presence in two gravel areas that total more than 67 nm2 (230 km2). The affected area is located on the Northern Edge of the bank in United States waters near the U.S./Canada boundary ( Fig. 1). This is the first documented offshore occurrence of a species that has colonized eastern U.S. coastal waters from New York to Maine during the past 15–20 years ( U.S. Geological Survey, 2006). Video imagery shows colonies coalescing to form large mats that cover more than 50% of the seabed along some video/photo transects. The affected area is an immobile pebble and cobble pavement that lies at water depths of 40 to 65 m where strong semidiurnal tidal currents reach speeds of 1 to 2 kt (50–100 cm/s). The water column is mixed year round, ensuring a constant supply of nutrients to the seabed. Annual temperatures range from 4 to 15 °C ( Mountain and Holzwarth, 1989). The gravel areas are bounded by sand ridges whose mobile surfaces are moved daily by the strong tidal currents. Studies commenced here in 1994 to characterize the gravel habitat and to document the effects of fishing disturbance on it ( Collie et al., 2005).

  2. Exploring the effect of the spatial scale of fishery management.

    PubMed

    Takashina, Nao; Baskett, Marissa L

    2016-02-01

    For any spatially explicit management, determining the appropriate spatial scale of management decisions is critical to success at achieving a given management goal. Specifically, managers must decide how much to subdivide a given managed region: from implementing a uniform approach across the region to considering a unique approach in each of one hundred patches and everything in between. Spatially explicit approaches, such as the implementation of marine spatial planning and marine reserves, are increasingly used in fishery management. Using a spatially explicit bioeconomic model, we quantify how the management scale affects optimal fishery profit, biomass, fishery effort, and the fraction of habitat in marine reserves. We find that, if habitats are randomly distributed, the fishery profit increases almost linearly with the number of segments. However, if habitats are positively autocorrelated, then the fishery profit increases with diminishing returns. Therefore, the true optimum in management scale given cost to subdivision depends on the habitat distribution pattern. PMID:26593243

  3. Continuing education needs for fishery professionals: a survey of North American fisheries administrators

    USGS Publications Warehouse

    Rassam, G.N.; Eisler, R.

    2001-01-01

    North American fishery professionals? continuing education needs were investigated in an American Fisheries Society questionnaire sent to 111 senior fishery officials in winter 2000. Based on a response rate of 52.2% (N = 58), a minimum of 2,967 individuals would benefit from additional training, especially in the areas of statistics and analysis (83% endorsement rate), restoration and enhancement (81%), population dynamics (81%), multi-species interactions (79%), and technical writing (79%). Other skills and techniques recommended by respondents included computer skills (72%), fishery modeling (69%), habitat modification (67%), watershed processes (66%), fishery management (64%), riparian and stream ecology (62%), habitat management (62%), public administration (62%), nonindigenous species (57%), and age and growth (55%). Additional comments by respondents recommended new technical courses, training in various communications skills, and courses to more effectively manage workloads.

  4. 50 CFR 226.206 - Critical habitat for the Southern Resident killer whale (Orcinus orca).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for the Southern Resident killer whale (Orcinus orca). 226.206 Section 226.206 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.206...

  5. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas...

  6. 50 CFR Figure 16 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Bering Sea Habitat Conservation Area 16 Figure 16 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Fig. 16 Figure 16 to part 679—Bering Sea Habitat Conservation Area ER25JY08.010...

  7. 50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat...

  8. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  9. 50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat...

  10. 50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat...

  11. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  12. 50 CFR Table 25 to Part 679 - Bowers Ridge Habitat Conservation Zone

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Bowers Ridge Habitat Conservation Zone 25 Table 25 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 25 Table 25 to Part 679—Bowers Ridge Habitat Conservation Zone Area number...

  13. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat...

  14. 50 CFR Table 25 to Part 679 - Bowers Ridge Habitat Conservation Zone

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Bowers Ridge Habitat Conservation Zone 25 Table 25 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 25 Table 25 to Part 679—Bowers Ridge Habitat Conservation Zone Area number...

  15. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas...

  16. 50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat...

  17. 50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude...

  18. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat...

  19. 50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat...

  20. 50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat...

  1. 50 CFR Figure 16 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Bering Sea Habitat Conservation Area 16 Figure 16 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Fig. 16 Figure 16 to part 679—Bering Sea Habitat Conservation Area ER25JY08.010...

  2. 50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude...

  3. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat...

  4. 50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat...

  5. 50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat...

  6. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  7. 50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude...

  8. 50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat...

  9. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas...

  10. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  11. 50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude...

  12. 50 CFR Figure 16 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Bering Sea Habitat Conservation Area 16 Figure 16 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Fig. 16 Figure 16 to part 679—Bering Sea Habitat Conservation Area ER25JY08.010...

  13. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas...

  14. 50 CFR Figure 16 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Bering Sea Habitat Conservation Area 16 Figure 16 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Fig. 16 Figure 16 to part 679—Bering Sea Habitat Conservation Area ER25JY08.010...

  15. 50 CFR Table 25 to Part 679 - Bowers Ridge Habitat Conservation Zone

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Bowers Ridge Habitat Conservation Zone 25 Table 25 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 25 Table 25 to Part 679—Bowers Ridge Habitat Conservation Zone Area number...

  16. 50 CFR Figure 16 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Bering Sea Habitat Conservation Area 16 Figure 16 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Fig. 16 Figure 16 to part 679—Bering Sea Habitat Conservation Area ER25JY08.010...

  17. 50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat...

  18. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat...

  19. 50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat...

  20. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas...

  1. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat...

  2. 50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat...

  3. 50 CFR Table 25 to Part 679 - Bowers Ridge Habitat Conservation Zone

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Bowers Ridge Habitat Conservation Zone 25 Table 25 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 25 Table 25 to Part 679—Bowers Ridge Habitat Conservation Zone Area number...

  4. 50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat...

  5. 50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude...

  6. 50 CFR Table 25 to Part 679 - Bowers Ridge Habitat Conservation Zone

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Bowers Ridge Habitat Conservation Zone 25 Table 25 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 25 Table 25 to Part 679—Bowers Ridge Habitat Conservation Zone Area number...

  7. 50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat...

  8. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat...

  9. 50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat...

  10. 78 FR 23224 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... Fishery Management Council's Habitat & Environmental Protection Advisory Panel (AP); Coral AP; Joint Meeting of the Habitat & Environmental Protection AP and Coral AP; and Deepwater Shrimp AP. SUMMARY: The.... Coral AP Agenda, Tuesday, May 7, 2013, 1 p.m. Until 5 p.m. 1. Receive an update from NOAA...

  11. 50 CFR 424.12 - Criteria for designating critical habitat.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Criteria for designating critical habitat... LISTING ENDANGERED AND THREATENED SPECIES AND DESIGNATING CRITICAL HABITAT Revision of the Lists § 424.12 Criteria for designating critical habitat. (a) Critical habitat shall be specified to the maximum...

  12. 50 CFR 226.213 - Critical habitat for Johnson's seagrass.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for Johnson's seagrass... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.213 Critical habitat for Johnson's seagrass. Critical habitat is designated to include substrate and water...

  13. 50 CFR 226.213 - Critical habitat for Johnson's seagrass.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Johnson's seagrass... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.213 Critical habitat for Johnson's seagrass. Critical habitat is designated to include substrate and water...

  14. 50 CFR 424.12 - Criteria for designating critical habitat.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Criteria for designating critical habitat... LISTING ENDANGERED AND THREATENED SPECIES AND DESIGNATING CRITICAL HABITAT Revision of the Lists § 424.12 Criteria for designating critical habitat. (a) Critical habitat shall be specified to the maximum...

  15. 50 CFR 226.213 - Critical habitat for Johnson's seagrass.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for Johnson's seagrass... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.213 Critical habitat for Johnson's seagrass. Critical habitat is designated to include substrate and water...

  16. 50 CFR 226.213 - Critical habitat for Johnson's seagrass.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Johnson's seagrass... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.213 Critical habitat for Johnson's seagrass. Critical habitat is designated to include substrate and water...

  17. 50 CFR 226.213 - Critical habitat for Johnson's seagrass.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for Johnson's seagrass... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.213 Critical habitat for Johnson's seagrass. Critical habitat is designated to include substrate and water...

  18. 30 CFR 285.803 - How must I conduct my approved activities to protect essential fish habitats identified and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protect essential fish habitats identified and described under the Magnuson-Stevens Fishery Conservation... activities to protect essential fish habitats identified and described under the Magnuson-Stevens Fishery... essential fish habitat or habitat areas of particular concern may be adversely affected by your...

  19. 76 FR 52640 - Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... National Oceanic and Atmospheric Administration RIN 0648-XA655 Pacific Fishery Management Council; Public... (NOAA), Commerce. ACTION: Notice of a public meeting. SUMMARY: The Pacific Fishery Management Council's (Pacific Council) ad hoc groundfish Essential Fish Habitat Review Committee (EFHRC) will hold a...

  20. 78 FR 51711 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ...) 431-2300; fax: (603) 433-5649. Council address: New England Fishery Management Council, 50 Water... National Oceanic and Atmospheric Administration RIN 0648-XC813 New England Fishery Management Council... Council (Council) is scheduling a public meeting of its Joint Groundfish/Habitat Committees on September...

  1. 77 FR 68735 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ...) 634-2001. Council address: New England Fishery Management Council, 50 Water Street, Mill 2... National Oceanic and Atmospheric Administration RIN 0648-XC355 New England Fishery Management Council... Council (Council) is scheduling a public meeting of its Habitat Oversight Committee to consider...

  2. 50 CFR Figure 21 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 21 Figure 21 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area ER25JY08.012...

  3. 50 CFR Figure 10 to Part 679 - Pribilof Islands Area Habitat Conservation Zone in the Bering Sea

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Pribilof Islands Area Habitat Conservation Zone in the Bering Sea 10 Figure 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Habitat Conservation Zone in the Bering Sea ER15NO99.008...

  4. 50 CFR Table 44 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 44 Table 44 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area Longitude Latitude 1651.54W 6045.54N*...

  5. 50 CFR Figure 21 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 21 Figure 21 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area ER25JY08.012...

  6. 50 CFR Figure 17 to Part 679 - Northern Bering Sea Research Area and St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Northern Bering Sea Research Area and St. Lawrence Island Habitat Conservation Area 17 Figure 17 to part 679 Wildlife and Fisheries FISHERY... Sea Research Area and St. Lawrence Island Habitat Conservation Area ER25JY08.011...

  7. 50 CFR Figure 10 to Part 679 - Pribilof Islands Area Habitat Conservation Zone in the Bering Sea

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Pribilof Islands Area Habitat Conservation Zone in the Bering Sea 10 Figure 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Habitat Conservation Zone in the Bering Sea ER15NO99.008...

  8. 50 CFR Table 44 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 44 Table 44 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area Longitude Latitude 1651.54W 6045.54N*...

  9. 50 CFR Figure 21 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 21 Figure 21 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area ER25JY08.012...

  10. 50 CFR Figure 10 to Part 679 - Pribilof Islands Area Habitat Conservation Zone in the Bering Sea

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Pribilof Islands Area Habitat Conservation Zone in the Bering Sea 10 Figure 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Habitat Conservation Zone in the Bering Sea ER15NO99.008...

  11. 50 CFR Figure 21 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 21 Figure 21 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area ER25JY08.012...

  12. 50 CFR Figure 10 to Part 679 - Pribilof Islands Area Habitat Conservation Zone in the Bering Sea

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Pribilof Islands Area Habitat Conservation Zone in the Bering Sea 10 Figure 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Habitat Conservation Zone in the Bering Sea ER15NO99.008...

  13. 50 CFR Table 44 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 44 Table 44 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area Longitude Latitude 1651.54W 6045.54N*...

  14. 50 CFR Table 44 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 44 Table 44 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area Longitude Latitude 1651.54W 6045.54N*...

  15. 50 CFR Figure 10 to Part 679 - Pribilof Islands Area Habitat Conservation Zone in the Bering Sea

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Pribilof Islands Area Habitat Conservation Zone in the Bering Sea 10 Figure 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Habitat Conservation Zone in the Bering Sea ER15NO99.008...

  16. 50 CFR Figure 21 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 21 Figure 21 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area ER25JY08.012...

  17. 50 CFR Table 44 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 44 Table 44 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area Longitude Latitude 1651.54W 6045.54N*...

  18. 50 CFR 17.94 - Critical habitats.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 2 2011-10-01 2011-10-01 false Critical habitats. 17.94 Section 17.94... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the lists at §§ 17.11 and 17.12 have been determined by the Director to be Critical Habitat. All...

  19. 50 CFR 17.94 - Critical habitats.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Critical habitats. 17.94 Section 17.94... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the lists at §§ 17.11 and 17.12 have been determined by the Director to be Critical Habitat. All...

  20. 50 CFR 17.94 - Critical habitats.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 2 2012-10-01 2012-10-01 false Critical habitats. 17.94 Section 17.94... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the lists at §§ 17.11 and 17.12 have been determined by the Director to be Critical Habitat. All...

  1. 50 CFR 17.94 - Critical habitats.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 2 2013-10-01 2013-10-01 false Critical habitats. 17.94 Section 17.94... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the lists at §§ 17.11 and 17.12 have been determined by the Director to be Critical Habitat. All...

  2. 50 CFR 17.94 - Critical habitats.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 2 2014-10-01 2014-10-01 false Critical habitats. 17.94 Section 17.94... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the lists at §§ 17.11 and 17.12 have been determined by the Director to be Critical Habitat. All...

  3. 50 CFR 226.207 - Critical habitat for leatherback turtle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for leatherback turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.207 Critical habitat for leatherback turtle. Leatherback Sea Turtle (dermochelys coriacea) The waters...

  4. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for hawksbill turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding...

  5. 50 CFR 226.207 - Critical habitat for leatherback turtle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for leatherback turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.207 Critical habitat for leatherback turtle. Leatherback Sea Turtle (dermochelys coriacea) The waters...

  6. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for hawksbill turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding...

  7. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for hawksbill turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding...

  8. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for hawksbill turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding...

  9. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for green turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat for green turtle. (a) Culebra Island, Puerto Rico—Waters surrounding the island of...

  10. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for hawksbill turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding...

  11. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for green turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat for green turtle. (a) Culebra Island, Puerto Rico—Waters surrounding the island of...

  12. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for green turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat for green turtle. (a) Culebra Island, Puerto Rico—Waters surrounding the island of...

  13. 30 CFR 285.803 - How must I conduct my approved activities to protect essential fish habitats identified and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protect essential fish habitats identified and described under the Magnuson-Stevens Fishery Conservation... fish habitats identified and described under the Magnuson-Stevens Fishery Conservation and Management Act? (a) If, during the conduct of your approved activities, MMS finds that essential fish habitat...

  14. 30 CFR 585.803 - How must I conduct my approved activities to protect essential fish habitats identified and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... protect essential fish habitats identified and described under the Magnuson-Stevens Fishery Conservation... fish habitats identified and described under the Magnuson-Stevens Fishery Conservation and Management Act? (a) If, during the conduct of your approved activities, BOEM finds that essential fish habitat...

  15. 30 CFR 585.803 - How must I conduct my approved activities to protect essential fish habitats identified and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protect essential fish habitats identified and described under the Magnuson-Stevens Fishery Conservation... fish habitats identified and described under the Magnuson-Stevens Fishery Conservation and Management Act? (a) If, during the conduct of your approved activities, BOEM finds that essential fish habitat...

  16. 30 CFR 585.803 - How must I conduct my approved activities to protect essential fish habitats identified and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... protect essential fish habitats identified and described under the Magnuson-Stevens Fishery Conservation... fish habitats identified and described under the Magnuson-Stevens Fishery Conservation and Management Act? (a) If, during the conduct of your approved activities, BOEM finds that essential fish habitat...

  17. Inventory Management

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Known as MRO for Maintenance, Repair and Operating supplies, Tropicana Products, Inc.'s automated inventory management system is an adaptation of the Shuttle Inventory Management System (SIMS) developed by NASA to assure adequate supply of every item used in support of the Space Shuttle. The Tropicana version monitors inventory control, purchasing receiving and departmental costs for eight major areas of the company's operation.

  18. Effects of Climate Change on Fishery Species in Florida

    NASA Astrophysics Data System (ADS)

    Shenker, Jonathan M.

    2009-07-01

    Recreational and commercial fishery species in Florida and elsewhere are under serious stress from overfishing and many types of habitat and water quality degradation. Climate change may add to that stress by affecting an array of biological processes, although the range of some subtropical and tropical species may expand northward in the state. It is expected to trigger sea level rise and changes in hurricanes and precipitation levels in Florida and elsewhere. Perhaps the most significant impacts of climate change on fishery species will also associated with changes in seagrasses and mangroves that function as Essential Nursery Habitats. Seagrasses in estuarine and coastal areas are limited by water depth and light penetration. Increases in sea level and in precipitation-induced turbidity may restrict the extent of seagrass habitats and their role in fishery production. Expanded efforts to reduce nutrient and sediment loading into seagrass habitats may help minimize the potential loss of a valuable fish nursery habitat. Mangroves have also been affected by human activities, and are the subject of restoration efforts in many areas. Potential sea level rise may cause an expansion of mangrove habitats in the Everglades, at the expense of freshwater habitats. This potential tradeoff of habitats should be considered by the water flow and habitat restoration programs in the Everglades.

  19. 50 CFR 226.220 - Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for the Cook Inlet beluga... CRITICAL HABITAT § 226.220 Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas). Critical habitat is designated in Cook Inlet, Alaska, for the Cook Inlet beluga whale as described...

  20. 50 CFR 226.206 - Critical habitat for the Southern Resident killer whale (Orcinus orca).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for the Southern Resident... CRITICAL HABITAT § 226.206 Critical habitat for the Southern Resident killer whale (Orcinus orca). Critical habitat is designated for the Southern Resident killer whale as described in this section. The...

  1. 50 CFR 226.206 - Critical habitat for the Southern Resident killer whale (Orcinus orca).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for the Southern Resident... CRITICAL HABITAT § 226.206 Critical habitat for the Southern Resident killer whale (Orcinus orca). Critical habitat is designated for the Southern Resident killer whale as described in this section. The...

  2. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 57°03′ N/153°00′ W. (d) Maps of critical habitat for the North Pacific right whale follow:...

  3. 50 CFR 226.206 - Critical habitat for the Southern Resident killer whale (Orcinus orca).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for the Southern... DESIGNATED CRITICAL HABITAT § 226.206 Critical habitat for the Southern Resident killer whale (Orcinus orca). Critical habitat is designated for the Southern Resident killer whale as described in this section....

  4. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 57°03′ N/153°00′ W. (d) Maps of critical habitat for the North Pacific right whale follow:...

  5. 50 CFR 226.220 - Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for the Cook Inlet... DESIGNATED CRITICAL HABITAT § 226.220 Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas). Critical habitat is designated in Cook Inlet, Alaska, for the Cook Inlet beluga whale as described...

  6. 50 CFR 226.220 - Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for the Cook Inlet... DESIGNATED CRITICAL HABITAT § 226.220 Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas). Critical habitat is designated in Cook Inlet, Alaska, for the Cook Inlet beluga whale as described...

  7. 50 CFR 226.220 - Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for the Cook Inlet... DESIGNATED CRITICAL HABITAT § 226.220 Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas). Critical habitat is designated in Cook Inlet, Alaska, for the Cook Inlet beluga whale as described...

  8. 50 CFR 226.206 - Critical habitat for the Southern Resident killer whale (Orcinus orca).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for the Southern... DESIGNATED CRITICAL HABITAT § 226.206 Critical habitat for the Southern Resident killer whale (Orcinus orca). Critical habitat is designated for the Southern Resident killer whale as described in this section....

  9. 76 FR 56171 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... Panel (AP) in Charleston, SC. DATES: The meeting will take place October 5-6, 2011. See SUPPLEMENTARY...) 769-4520; e-mail: kim.iverson@safmc.net . SUPPLEMENTARY INFORMATION: Members of the Snapper Grouper AP... fishery and recreational deep-dropping on bottom habitat. The AP will give input on red porgy...

  10. Habitat planning, maintenance and management working group

    SciTech Connect

    1997-03-01

    The Gulf of Mexico (GOM), called {open_quotes}America`s Sea,{close_quotes} is actually a small ocean basin covering over 1.5 million square kilometers. Because of the multiple uses, diversity, and size of the Gulf`s resources, management is shared by a number of governmental agencies including the Minerals Management Service, the Gulf of Mexico Fishery Management Council, the Gulf States Marine Fisheries Commission, National Marine Fisheries Service, the US Coast Guard, the US Army Corps of Engineers, and the five Gulf states fisheries agencies. All of these entities share a common goal of achieving optimum sustainable yield to maximize geological, biological, social, and economic benefits from these resources. These entities also share a common theme that the successful management of the northern GOM requires maintenance and enhancement of both the quantity and quality of habitats. A closer look at the GOM shows the sediment to be clearly dominated by vast sand and mud plains. These soft bottom habitats are preferred by many groundfish and shrimp species and, thus, have given rise to large commercial fisheries on these stocks. Hard bottom and reef habitats, on the other hand, are limited to approximately 1.6% of the total area of the Gulf, so that, while there are high demands by commercial and recreational fishermen for reef associated species, the availability of habitat for these stocks is limited. The thousands of oil and gas structures placed in the Gulf have added significant amounts of new hard substrate. The rigs-to-reefs concept was a common sense idea with support from environmental user groups and the petroleum industry for preserving a limited but valuable habitat type. As long as maximizing long-term benefits from the Gulf s resources for the greatest number of users remains the goal, then programs such as Rigs-to-Reefs will remain an important tool for fisheries and habitat managers in the Gulf.

  11. Modeling sensitive elasmobranch habitats

    NASA Astrophysics Data System (ADS)

    Pennino, M. Grazia; Muñoz, Facundo; Conesa, David; López-Quílez, Antonio; Bellido, José Marí; a

    2013-10-01

    Basic information on the distribution and habitat preferences of ecologically important species is essential for their management and protection. In the Mediterranean Sea there is increasing concern over elasmobranch species because their biological (ecological) characteristics make them highly vulnerable to fishing pressure. Their removal could affect the structure and function of marine ecosystems, inducing changes in trophic interactions at the community level due to the selective elimination of predators or prey species, competitors and species replacement. In this study Bayesian hierarchical spatial models are used to map the sensitive habitats of the three most caught elasmobranch species (Galeus melastomus, Scyliorhinus canicula, Etmopterus spinax) in the western Mediterranean Sea, based on fishery-dependent bottom trawl data. Results show that habitats associated with hard substrata and sandy beds, mainly in deep waters and with a high seabed gradient, have a greater probability registering the presence of the studied species than those associated with muddy shallow waters. Temperature and chlorophyll-α concentration show a negative relationship with S. canicula occurrence. Our results identify some of the sensitive habitats for elasmobranchs in the western Mediterranean Sea (GSA06 South), providing essential and easy-to-use interpretation tools, such as predictive distribution maps, with the final aim of improving management and conservation of these vulnerable species.

  12. Rights and Conflicts in the Management of Fisheries in the Lower Songkhram River Basin, Northeast Thailand

    NASA Astrophysics Data System (ADS)

    Khumsri, Malasri; Ruddle, Kenneth; Shivakoti, Ganesh P.

    2009-04-01

    A complex, pre-existing local property rights system, characterized by overlap and conflict, comprises the local basis for managing inland fisheries in communities of the Lower Songkhram River Basin (LSRB) of Northeastern Thailand. The components, conflicts and changes of the system are analyzed for fourteen communities, focusing on the auction system for barrages, an illegal and destructive, yet tolerated, fishery. These rights, adapted to gear type, seasonality, and habitat of the LSRB fisheries, are a critical social resource and proven management system that should be legitimized. Recommendations are made for both improving general inland fisheries policy and reforming the barrage fishery.

  13. Schoolyard Habitats[R] Site Planning Guide.

    ERIC Educational Resources Information Center

    National Wildlife Federation, Reston, VA.

    This document provides guidance for the creation of habitats on school grounds. Science activities, resources, and information on how to apply knowledge to the design, creation, and development of a habitat are presented. Contents include: (1) "Starting the Process"; (2) "Gathering Information: Site Inventory and Analysis"; (3) "Assembling the…

  14. Inland capture fisheries

    PubMed Central

    Welcomme, Robin L.; Cowx, Ian G.; Coates, David; Béné, Christophe; Funge-Smith, Simon; Halls, Ashley; Lorenzen, Kai

    2010-01-01

    The reported annual yield from inland capture fisheries in 2008 was over 10 million tonnes, although real catches are probably considerably higher than this. Inland fisheries are extremely complex, and in many cases poorly understood. The numerous water bodies and small rivers are inhabited by a wide range of species and several types of fisher community with diversified livelihood strategies for whom inland fisheries are extremely important. Many drivers affect the fisheries, including internal fisheries management practices. There are also many drivers from outside the fishery that influence the state and functioning of the environment as well as the social and economic framework within which the fishery is pursued. The drivers affecting the various types of inland water, rivers, lakes, reservoirs and wetlands may differ, particularly with regard to ecosystem function. Many of these depend on land-use practices and demand for water which conflict with the sustainability of the fishery. Climate change is also exacerbating many of these factors. The future of inland fisheries varies between continents. In Asia and Africa the resources are very intensely exploited and there is probably little room for expansion; it is here that resources are most at risk. Inland fisheries are less heavily exploited in South and Central America, and in the North and South temperate zones inland fisheries are mostly oriented to recreation rather than food production. PMID:20713391

  15. 75 FR 29724 - Gulf of Mexico Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... Lobster/Stone Crab; Administrative Policy; Data Collection; Habitat; and Sustainable Fisheries/Ecosystem... Goliath Grouper Review Workshop and the SEDAR Spiny Lobster Assessment Review Workshop. 10 a.m. - 12...

  16. 75 FR 27708 - Stanford University Habitat Conservation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... INFORMATION: Need for Correction In the Federal Register of April 12, 2010, in FR Doc. 2010-8300, on page... 0648-XV36 Stanford University Habitat Conservation Plan AGENCIES: National Marine Fisheries Service... Register on April 12, 2010, announcing the availability of the Stanford University Habitat...

  17. Salmon River Habitat Enhancement, Part 1, 1984 Annual Report.

    SciTech Connect

    Konopacky, Richard C.

    1985-06-01

    This volume contains reports on subprojects involving the determining of alternatives to enhance salmonid habitat on patented land in Bear Valley Creek, Idaho, coordination activities for habitat projects occurring on streams within fishing areas of the Shoshone-Bannock Indian Tribes, and habitat and fish inventories in the Salmon River. Separate abstracts have been prepared for individual reports. (ACR)

  18. 50 CFR 226.218 - Critical habitat for the U.S. DPS of smalltooth sawfish (Pristis pectinata).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for the U.S. DPS of... DESIGNATED CRITICAL HABITAT § 226.218 Critical habitat for the U.S. DPS of smalltooth sawfish (Pristis pectinata). Critical habitat is designated for the U.S. DPS of smalltooth sawfish as described in...

  19. 50 CFR 226.218 - Critical habitat for the U.S. DPS of smalltooth sawfish (Pristis pectinata).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for the U.S. DPS of... DESIGNATED CRITICAL HABITAT § 226.218 Critical habitat for the U.S. DPS of smalltooth sawfish (Pristis pectinata). Critical habitat is designated for the U.S. DPS of smalltooth sawfish as described in...

  20. 50 CFR 226.218 - Critical habitat for the U.S. DPS of smalltooth sawfish (Pristis pectinata).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for the U.S. DPS of... DESIGNATED CRITICAL HABITAT § 226.218 Critical habitat for the U.S. DPS of smalltooth sawfish (Pristis pectinata). Critical habitat is designated for the U.S. DPS of smalltooth sawfish as described in...

  1. 50 CFR 226.218 - Critical habitat for the U.S. DPS of smalltooth sawfish (Pristis pectinata).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for the U.S. DPS of... DESIGNATED CRITICAL HABITAT § 226.218 Critical habitat for the U.S. DPS of smalltooth sawfish (Pristis pectinata). Critical habitat is designated for the U.S. DPS of smalltooth sawfish as described in...

  2. 50 CFR 226.218 - Critical habitat for the U.S. DPS of smalltooth sawfish (Pristis pectinata).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for the U.S. DPS of... DESIGNATED CRITICAL HABITAT § 226.218 Critical habitat for the U.S. DPS of smalltooth sawfish (Pristis pectinata). Critical habitat is designated for the U.S. DPS of smalltooth sawfish as described in...

  3. 50 CFR 226.211 - Critical habitat for Seven Evolutionarily Significant Units (ESUs) of Salmon (Oncorhynchus spp...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Seven Evolutionarily Significant Units (ESUs) of Salmon (Oncorhynchus spp.) in California. 226.211 Section 226.211 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS...

  4. 50 CFR 226.212 - Critical habitat for 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead (Oncorhynchus spp.) in Washington, Oregon and Idaho. 226.212 Section 226.212 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT...

  5. 50 CFR 226.212 - Critical habitat for 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead (Oncorhynchus spp.) in Washington, Oregon and Idaho. 226.212 Section 226.212 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT...

  6. 50 CFR 226.212 - Critical habitat for 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead (Oncorhynchus spp.) in Washington, Oregon and Idaho. 226.212 Section 226.212 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT...

  7. 50 CFR 226.212 - Critical habitat for 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for 13 Evolutionarily Significant Units (ESUs) of salmon and steelhead (Oncorhynchus spp.) in Washington, Oregon and Idaho. 226.212 Section 226.212 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT...

  8. 77 FR 32083 - Gulf of Mexico Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... being designated as Essential Fish Habitat. 9:30 a.m.-12 noon--The Mackerel Management Committee will... National Oceanic and Atmospheric Administration Gulf of Mexico Fishery Management Council; Public Meetings...), Commerce. ACTION: Notice of public meetings. SUMMARY: The Gulf of Mexico Fishery Management...

  9. Fringe benefit: Value of restoring coastal wetlands for Great Lakes fisheries

    EPA Science Inventory

    Fishery support is recognized as a valuable ecosystem service provided by Great Lakes coastal wetlands, but it is challenging to quantify because multiple species and habitats are involved. Recent studies indicate that coastal wetland area is proportional to fishery harvest among...

  10. The Areal Extent of Brown Shrimp Habitat Suitability in Mobile Bay, Alabama USA: Targeting Vegetated Habitat Restoration

    EPA Science Inventory

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the U.S. Protection and management of these vital GOM habitats are critical t...

  11. 50 CFR Figure 17 to Part 679 - Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA) 17 Figure 17 to part 679 Wildlife and Fisheries... 679—Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area...

  12. 50 CFR Figure 17 to Part 679 - Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA) 17 Figure 17 to part 679 Wildlife and Fisheries... 679—Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area...

  13. 50 CFR Figure 17 to Part 679 - Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA) 17 Figure 17 to part 679 Wildlife and Fisheries... 679—Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area...

  14. 50 CFR Figure 17 to Part 679 - Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA) 17 Figure 17 to part 679 Wildlife and Fisheries... 679—Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area...

  15. Stock assessment in inland fisheries: a foundation for sustainable use and conservation

    USGS Publications Warehouse

    Lorenzen, Kai; Cowx, Ian G.; Entsua-Mensah, R. E. M.; Lester, Nigel P.; Koehn, J.D.; Randall, R.G.; So, N.; Bonar, Scott A.; Bunnell, David; Venturelli, Paul A.; Bower, Shannon D.; Cooke, Steven J.

    2016-01-01

    Fisheries stock assessments are essential for science-based fisheries management. Inland fisheries pose challenges, but also provide opportunities for biological assessments that differ from those encountered in large marine fisheries for which many of our assessment methods have been developed. These include the number and diversity of fisheries, high levels of ecological and environmental variation, and relative lack of institutional capacity for assessment. In addition, anthropogenic impacts on habitats, widespread presence of non-native species and the frequent use of enhancement and restoration measures such as stocking affect stock dynamics. This paper outlines various stock assessment and data collection approaches that can be adapted to a wide range of different inland fisheries and management challenges. Although this paper identifies challenges in assessment, it focuses on solutions that are practical, scalable and transferrable. A path forward is suggested in which biological assessment generates some of the critical information needed by fisheries managers to make effective decisions that benefit the resource and stakeholders.

  16. Biology, fishery, conservation and management of Indian Ocean tuna fisheries

    NASA Astrophysics Data System (ADS)

    Gopalakrishna Pillai, N.; Satheeshkumar, Palanisamy

    2012-12-01

    The focus of the study is to explore the recent trend of the world tuna fishery with special reference to the Indian Ocean tuna fisheries and its conservation and sustainable management. In the Indian Ocean, tuna catches have increased rapidly from about 179959 t in 1980 to about 832246 t in 1995. They have continued to increase up to 2005; the catch that year was 1201465 t, forming about 26% of the world catch. Since 2006 onwards there has been a decline in the volume of catches and in 2008 the catch was only 913625 t. The Principal species caught in the Indian Ocean are skipjack and yellowfin. Western Indian Ocean contributed 78.2% and eastern Indian Ocean 21.8% of the total tuna production from the Indian Ocean. The Indian Ocean stock is currently overfished and IOTC has made some recommendations for management regulations aimed at sustaining the tuna stock. Fishing operations can cause ecological impacts of different types: by catches, damage of the habitat, mortalities caused by lost or discarded gear, pollution, generation of marine debris, etc. Periodic reassessment of the tuna potential is also required with adequate inputs from exploratory surveys as well as commercial landings and this may prevent any unsustainable trends in the development of the tuna fishing industry in the Indian Ocean.

  17. 50 CFR 226.203 - Critical habitat for northern right whales.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for northern right whales... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.203 Critical habitat for northern right whales. (a) Great South Channel. The area bounded by 41°40′ N/69°45′...

  18. 50 CFR 424.19 - Final rules-impact analysis of critical habitat.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... habitat. 424.19 Section 424.19 Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE... LISTING ENDANGERED AND THREATENED SPECIES AND DESIGNATING CRITICAL HABITAT Revision of the Lists § 424.19 Final rules—impact analysis of critical habitat. The Secretary shall identify any significant...

  19. 50 CFR 402.48 - Conference on proposed species or proposed critical habitat.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... critical habitat. 402.48 Section 402.48 Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND... Act § 402.48 Conference on proposed species or proposed critical habitat. EPA may employ the procedures described in § 402.10 to confer on any species proposed for listing or any habitat proposed...

  20. 50 CFR 226.202 - Critical habitat for Stellar sea lions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Stellar sea lions... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.202 Critical habitat for Stellar sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska...

  1. 50 CFR 424.19 - Final rules-impact analysis of critical habitat.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... habitat. 424.19 Section 424.19 Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE... LISTING ENDANGERED AND THREATENED SPECIES AND DESIGNATING CRITICAL HABITAT Revision of the Lists § 424.19 Final rules—impact analysis of critical habitat. The Secretary shall identify any significant...

  2. 50 CFR 402.10 - Conference on proposed species or proposed critical habitat.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... critical habitat. 402.10 Section 402.10 Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND... on proposed species or proposed critical habitat. (a) Each Federal agency shall confer with the... result in the destruction or adverse modification of proposed critical habitat. The conference...

  3. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for Sacramento winter-run... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways, bottom...

  4. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Sacramento winter-run... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways, bottom...

  5. 50 CFR 402.10 - Conference on proposed species or proposed critical habitat.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... critical habitat. 402.10 Section 402.10 Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND... on proposed species or proposed critical habitat. (a) Each Federal agency shall confer with the... result in the destruction or adverse modification of proposed critical habitat. The conference...

  6. 50 CFR 402.48 - Conference on proposed species or proposed critical habitat.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... critical habitat. 402.48 Section 402.48 Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND... Act § 402.48 Conference on proposed species or proposed critical habitat. EPA may employ the procedures described in § 402.10 to confer on any species proposed for listing or any habitat proposed...

  7. 50 CFR 226.203 - Critical habitat for northern right whales.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for northern right whales... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.203 Critical habitat for northern right whales. (a) Great South Channel. The area bounded by 41°40′ N/69°45′...

  8. 50 CFR 226.201 - Critical habitat for Hawaiian monk seals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for Hawaiian monk seals... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.201 Critical habitat for Hawaiian monk seals. Hawaiian Monk Seal (Monachus schauinslandi) All beach areas,...

  9. 50 CFR 226.201 - Critical habitat for Hawaiian monk seals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Hawaiian monk seals... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.201 Critical habitat for Hawaiian monk seals. Hawaiian Monk Seal (Monachus schauinslandi) All beach areas,...

  10. 50 CFR 226.201 - Critical habitat for Hawaiian monk seals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for Hawaiian monk seals... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.201 Critical habitat for Hawaiian monk seals. Hawaiian Monk Seal (Monachus schauinslandi) All beach areas,...

  11. 50 CFR 226.202 - Critical habitat for Steller sea lions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Steller sea lions... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.202 Critical habitat for Steller sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska...

  12. 50 CFR 226.202 - Critical habitat for Stellar sea lions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for Stellar sea lions... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.202 Critical habitat for Stellar sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska...

  13. 50 CFR 226.203 - Critical habitat for northern right whales.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for northern right... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.203 Critical habitat for northern right whales. (a) Great South Channel. The area bounded by...

  14. 50 CFR 402.10 - Conference on proposed species or proposed critical habitat.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... proposed critical habitat. 402.10 Section 402.10 Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES....10 Conference on proposed species or proposed critical habitat. (a) Each Federal agency shall confer... species or result in the destruction or adverse modification of proposed critical habitat. The...

  15. 50 CFR 226.201 - Critical habitat for Hawaiian monk seals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for Hawaiian monk seals... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.201 Critical habitat for Hawaiian monk seals. Hawaiian Monk Seal (Monachus schauinslandi) All beach areas,...

  16. 50 CFR 402.48 - Conference on proposed species or proposed critical habitat.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... proposed critical habitat. 402.48 Section 402.48 Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES... Rodenticide Act § 402.48 Conference on proposed species or proposed critical habitat. EPA may employ the procedures described in § 402.10 to confer on any species proposed for listing or any habitat proposed...

  17. 50 CFR 226.203 - Critical habitat for northern right whales.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for northern right... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.203 Critical habitat for northern right whales. (a) Great South Channel. The area bounded by...

  18. 50 CFR 226.203 - Critical habitat for northern right whales.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for northern right... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.203 Critical habitat for northern right whales. (a) Great South Channel. The area bounded by...

  19. 50 CFR 424.19 - Final rules-impact analysis of critical habitat.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... habitat. 424.19 Section 424.19 Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE... LISTING ENDANGERED AND THREATENED SPECIES AND DESIGNATING CRITICAL HABITAT Revision of the Lists § 424.19 Final rules—impact analysis of critical habitat. The Secretary shall identify any significant...

  20. 50 CFR 226.201 - Critical habitat for Hawaiian monk seals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Hawaiian monk seals... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.201 Critical habitat for Hawaiian monk seals. Hawaiian Monk Seal (Monachus schauinslandi) All beach areas,...

  1. Toward fisheries sustainability in North America: Issues, challenges, and strategies for action

    USGS Publications Warehouse

    MacDonald, D.D.; Knudsen, E.E.

    2004-01-01

    Many fisheries in North America are severely depleted and trending downwards. In an effort to find ways of reversing this disturbing situation, the American Fisheries Society and the Sustainable Fisheries Foundation invited leading experts in fisheries science and aquatic resource management to share their thoughts and insights in this book. These experts were asked to identify the factors that are currently impairing our ability to effectively manage fisheries resources and propose creative solutions for addressing the most challenging issues affecting fisheries sustainability. Based on the information that was provided by the experts (i.e., as presented in the earlier chapters of this book), it is apparent that a wide range of human activities are adversely affecting our shared fisheries resources and the aquatic habitats upon which they depend. The most challenging problems stem from causes that are largely beyond the scope of traditional fisheries management (e.g., human population growth, resource consumption patterns, global climate change, broad land-use patterns). It is also apparent that resolution of these challenges will require a new approach to fisheries management - one that effectively integrates economic, social, and environmental interests into a decision-making framework that supports fisheries sustainability. The key strategies for supporting such a transition toward a more holistic and comprehensive approach to managing the human activities that influence fisheries and aquatic resources are summarized in this chapter. ?? 2004 by the American Fisheries Society.

  2. Habitat automation

    NASA Technical Reports Server (NTRS)

    Swab, Rodney E.

    1992-01-01

    A habitat, on either the surface of the Moon or Mars, will be designed and built with the proven technologies of that day. These technologies will be mature and readily available to the habitat designer. We believe an acceleration of the normal pace of automation would allow a habitat to be safer and more easily maintained than would be the case otherwise. This document examines the operation of a habitat and describes elements of that operation which may benefit from an increased use of automation. Research topics within the automation realm are then defined and discussed with respect to the role they can have in the design of the habitat. Problems associated with the integration of advanced technologies into real-world projects at NASA are also addressed.

  3. Commercial Fisheries Surveys

    USGS Publications Warehouse

    Fabrizio, Mary C.; Richards, R. Anne

    1996-01-01

    In this chapter, we describe methods for sampling commercial fisheries and identify factors affecting the design of sampling plans. When sampled properly, commercial fisheries can provide important information on the response of aquatic organisms to exploitation; such information can be used by management agencies to develop regulations for ensuring long-term production of the resource and long-term economic benefit. Fishery statistics are typically used to estimate abundance, mortality, recruitment, growth, and other vital characterisitcs of populations. Fishery statistics can also be used to study changes in fish community composition resulting from differential exploitation of species.

  4. 75 FR 67688 - Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The Pacific Fishery Management Council's (Council's) Ad Hoc Groundfish Essential Fish Habitat Review Committee (EFHRC) will hold a work session... Management Act, provided the public has been notified of the EFHRC's intent to take final action to...

  5. Climate change impacts on the biophysics and economics of world fisheries

    NASA Astrophysics Data System (ADS)

    Sumaila, U. Rashid; Cheung, William W. L.; Lam, Vicky W. Y.; Pauly, Daniel; Herrick, Samuel

    2011-12-01

    Global marine fisheries are underperforming economically because of overfishing, pollution and habitat degradation. Added to these threats is the looming challenge of climate change. Observations, experiments and simulation models show that climate change would result in changes in primary productivity, shifts in distribution and changes in the potential yield of exploited marine species, resulting in impacts on the economics of fisheries worldwide. Despite the gaps in understanding climate change effects on fisheries, there is sufficient scientific information that highlights the need to implement climate change mitigation and adaptation policies to minimize impacts on fisheries.

  6. Benthic habitat map of the U.S. Coral Reef Task Force Watershed Partnership Initiative Kā'anapali priority study area and the State of Hawai'i Kahekili Herbivore Fisheries Management Area, west-central Maui, Hawai'i

    USGS Publications Warehouse

    Cochran, Susan A.; Gibbs, Ann E.; White, Darla J.

    2014-01-01

    Nearshore areas off of west-central Maui, Hawai‘i, once dominated by abundant coral coverage, now are characterized by an increased abundance of turf algae and macroalgae. In an effort to improve the health and resilience of the coral reef system, the Kahekili Herbivore Fisheries Management Area was established by the State of Hawai‘i, and the U.S. Coral Reef Task Force selected the Kā‘anapali region as a priority study area. To support these efforts, the U.S. Geological survey mapped nearly 5 km2 of sea floor from the shoreline to water depths of about 30 m. Unconsolidated sediment (predominantly sand) constitutes 65 percent of the sea floor in the mapped area. Reef and other hardbottom potentially available for coral recruitments constitutes 35 percent of the mapped area. Of this potentially available hardbottom, only 51 percent is covered with a minimum of 10 percent coral, and most is found between 5 and 10 m water depth.

  7. Contaminant effects on fisheries

    SciTech Connect

    Cairns, V.W.; Hodson, P.V.; Nriagu, J.O.

    1984-01-01

    These proceedings collect papers on the effects of water pollution on fish and fisheries. Topics include: monitoring lead pollution in fish, metallothionein and acclimation to heavy metals in fish, modeling approaches, appraising the status of fisheries, and assessing the health of aquatic ecosystems.

  8. Ocean fronts drive marine fishery production and biogeochemical cycling.

    PubMed

    Woodson, C Brock; Litvin, Steven Y

    2015-02-10

    Long-term changes in nutrient supply and primary production reportedly foreshadow substantial declines in global marine fishery production. These declines combined with current overfishing, habitat degradation, and pollution paint a grim picture for the future of marine fisheries and ecosystems. However, current models forecasting such declines do not account for the effects of ocean fronts as biogeochemical hotspots. Here we apply a fundamental technique from fluid dynamics to an ecosystem model to show how fronts increase total ecosystem biomass, explain fishery production, cause regime shifts, and contribute significantly to global biogeochemical budgets by channeling nutrients through alternate trophic pathways. We then illustrate how ocean fronts affect fishery abundance and yield, using long-term records of anchovy-sardine regimes and salmon abundances in the California Current. These results elucidate the fundamental importance of biophysical coupling as a driver of bottom-up vs. top-down regulation and high productivity in marine ecosystems. PMID:25624488

  9. Ocean fronts drive marine fishery production and biogeochemical cycling

    PubMed Central

    Woodson, C. Brock; Litvin, Steven Y.

    2015-01-01

    Long-term changes in nutrient supply and primary production reportedly foreshadow substantial declines in global marine fishery production. These declines combined with current overfishing, habitat degradation, and pollution paint a grim picture for the future of marine fisheries and ecosystems. However, current models forecasting such declines do not account for the effects of ocean fronts as biogeochemical hotspots. Here we apply a fundamental technique from fluid dynamics to an ecosystem model to show how fronts increase total ecosystem biomass, explain fishery production, cause regime shifts, and contribute significantly to global biogeochemical budgets by channeling nutrients through alternate trophic pathways. We then illustrate how ocean fronts affect fishery abundance and yield, using long-term records of anchovy–sardine regimes and salmon abundances in the California Current. These results elucidate the fundamental importance of biophysical coupling as a driver of bottom–up vs. top–down regulation and high productivity in marine ecosystems. PMID:25624488

  10. Salmon River Habitat Enhancement, 1984 Annual Report.

    SciTech Connect

    Konopacky, Richard C.

    1986-04-01

    This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

  11. 78 FR 48653 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... Fish, Data Collection, and Joint Coral/Habitat Protection Management Committees; and a meeting of the... Data Collection and Management Programs for the Magnuson-Stevens Managed Stocks. Joint Coral/Habitat... from the May 2013 Coral Workshop on Interrelationships between Corals and Fisheries. Council...

  12. Coeur d'Alene Tribe Fisheries Program : Implementation of Fisheries Enhancement Opportunities on the Coeur d’Alene Reservation : 2007 Annual Report.

    SciTech Connect

    Firehammer, Jon A.; Vitale, Angelo J.; Hallock, Stephanie A.

    2009-09-08

    in the face of anthropogenic influences and prospective climate change. This included recovering the lacustrine-adfluvial life history form that was historically prevalent and had served to provide both resilience and resistance to the structure of cutthroat trout populations in the Coeur d'Alene basin. To this end, the Coeur d'Alene Tribe closed Lake Creek and Benewah Creek to fishing in 1993 to initiate recovery of westslope cutthroat trout to historical levels. However, achieving sustainable cutthroat trout populations also required addressing biotic factors and habitat features in the basin that were limiting recovery. Early in the 1990s, BPA-funded surveys and inventories identified limiting factors in Tribal watersheds that would need to be remedied to restore westslope cutthroat trout populations. The limiting factors included: low-quality, low-complexity mainstem stream habitat and riparian zones; high stream temperatures in mainstem habitats; negative interactions with nonnative brook trout in tributaries; and potential survival bottlenecks in Coeur d'Alene Lake. In 1994, the Northwest Power Planning Council adopted the recommendations set forth by the Coeur d'Alene Tribe to improve the Reservation fishery (NWPPC Program Measures 10.8B.20). These recommended actions included: (1) Implement habitat restoration and enhancement measures in Alder, Benewah, Evans, and Lake Creeks; (2) Purchase critical watershed areas for protection of fisheries habitat; (3) Conduct an educational/outreach program for the general public within the Coeur d'Alene Reservation to facilitate a 'holistic' watershed protection process; (4) Develop an interim fishery for tribal and non-tribal members of the reservation through construction, operation and maintenance of five trout ponds; (5) Design, construct, operate and maintain a trout production facility; and (6) Implement a monitoring program to evaluate the effectiveness of the hatchery and habitat improvement projects. These

  13. Inventory management.

    PubMed

    Levin, Roger

    2004-06-01

    As dentistry continues to evolve, the best management systems of the business world need to be incorporated into each practice. As always, my goal in these columns is to bring and modify the best business principles available to readers of The Journal of the American Dental Association. Just in Time ordering and inventory control is one of the best, as evidenced by the fact that top-performing companies worldwide have adopted it. PMID:15270164

  14. Fisheries: hope or despair?

    PubMed

    Pitcher, Tony J; Cheung, William W L

    2013-09-30

    Recent work suggesting that fisheries depletions have turned the corner is misplaced because analysis was based largely on fisheries from better-managed developed-world fisheries. Some indicators of status show improvements in the minority of fisheries subjected to formal assessment. Other indicators, such as trophic level and catch time series, have been controversial. Nevertheless, several deeper analyses of the status of the majority of world fisheries confirm the previous dismal picture: serious depletions are the norm world-wide, management quality is poor, catch per effort is still declining. The performance of stock assessment itself may stand challenged by random environmental shifts and by the need to accommodate ecosystem-level effects. The global picture for further fisheries species extinctions, the degradation of ecosystem food webs and seafood security is indeed alarming. Moreover, marine ecosystems and their embedded fisheries are challenged in parallel by climate change, acidification, metabolic disruptors and other pollutants. Attempts to remedy the situation need to be urgent, focused, innovative and global. PMID:23827135

  15. Natural Propagation and Habitat Improvement, Volume I, Oregon, 1984 Final and Annual Reports.

    SciTech Connect

    Miller, Rod

    1986-02-01

    This volume contains reports on habitat improvement and fisheries enhancement projects conducted in the following subbasins: (1) Clackamas River; (2) Hood River; :(3) Deschutes River; (4) John Day River; (5) Umatilla River; and (6) Grande Ronde River. (ACR)

  16. Natural Propagation and Habitat Improvement, Volume 1, Oregon, 1986 Final and Annual Reports.

    SciTech Connect

    Stuart, Amy

    1987-01-01

    This report describes activities implemented for fisheries habitat improvement work on priority drainages in the Clackamas and Hood River sub-basins. Separate abstracts have been prepared for the reports on individual projects. (ACR)

  17. 50 CFR 660.712 - Longline fishery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Longline fishery. 660.712 Section 660.712 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES Highly Migratory Fisheries § 660.712 Longline fishery. (a) Gear...

  18. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 56° 45′ N/153° 00′ W 57° 03′ N/153° 00′ W. (d) Maps of critical habitat for the North Pacific...

  19. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 56° 45′ N/153° 00′ W 57° 03′ N/153° 00′ W. (d) Maps of critical habitat for the North Pacific...

  20. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 56° 45′ N/153° 00′ W 57° 03′ N/153° 00′ W. (d) Maps of critical habitat for the North Pacific...

  1. 76 FR 74757 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Annual Catch Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... October 20, 2011 (76 FR 65133). A minority report was submitted by dissenting South Atlantic Council... Fishery of the South Atlantic Region (Golden Crab), the Dolphin and Wahoo Fishery off the Atlantic States (Dolphin and Wahoo), and the Pelagic Sargassum Habitat of the South Atlantic Region (Sargassum) as...

  2. 75 FR 21600 - Groundfish Fisheries of the Bering Sea and Aleutian Islands Area and the Gulf of Alaska; King and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ...The North Pacific Fishery Management Council (Council) and NMFS are soliciting proposals for candidate sites that could be identified as HAPCs and managed within Essential Fish Habitat (EFH) pursuant to the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act). The Council has identified skate nurseries as a priority for consideration during this call for proposals,......

  3. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 3 2011-10-01 2011-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  4. 50 CFR 17.95 - Critical habitat-fish and wildlife.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Critical habitat-fish and wildlife. 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  5. 50 CFR 17.95 - Critical habitat-fish and wildlife.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 2 2014-10-01 2014-10-01 false Critical habitat-fish and wildlife. 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  6. 50 CFR 17.95 - Critical habitat-fish and wildlife.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 2 2012-10-01 2012-10-01 false Critical habitat-fish and wildlife. 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  7. 50 CFR 17.95 - Critical habitat-fish and wildlife.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 2 2011-10-01 2011-10-01 false Critical habitat-fish and wildlife. 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  8. 50 CFR 17.95 - Critical habitat-fish and wildlife.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 2 2013-10-01 2013-10-01 false Critical habitat-fish and wildlife. 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  9. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 3 2010-10-01 2010-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  10. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 4 2011-10-01 2011-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  11. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 3 2013-10-01 2013-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  12. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 3 2012-10-01 2012-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  13. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 3 2014-10-01 2014-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  14. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 4 2012-10-01 2012-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  15. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 5 2014-10-01 2014-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  16. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 5 2013-10-01 2013-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  17. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 5 2012-10-01 2012-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  18. INVENTORY ABSTRACTION

    SciTech Connect

    G. Ragan

    2001-12-19

    The purpose of the inventory abstraction, which has been prepared in accordance with a technical work plan (CRWMS M&O 2000e for ICN 02 of the present analysis, and BSC 2001e for ICN 03 of the present analysis), is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M&O 2000c, 2000f). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) key technical issue (KTI): ''The rate at which radionuclides in SNF [spent nuclear fuel] are released from the EBS [engineered barrier system] through the oxidation and dissolution of spent fuel'' (NRC 1999, Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release to the

  19. Citrus Inventory

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Florida's Charlotte County Property Appraiser is using an aerial color infrared mapping system for inventorying citrus trees for valuation purposes. The ACIR system has significantly reduced the time and manpower required for appraisal. Aerial photographs are taken and interpreted by a video system which makes it possible to detect changes from previous years. Potential problems can be identified. KSC's TU Office has awarded a contract to the Citrus Research and Education Center to adapt a prototype system which would automatically count trees and report totals.

  20. Tradeoffs between fisheries harvest and the resilience of coral reefs.

    PubMed

    Bozec, Yves-Marie; O'Farrell, Shay; Bruggemann, J Henrich; Luckhurst, Brian E; Mumby, Peter J

    2016-04-19

    Many countries are legally obliged to embrace ecosystem-based approaches to fisheries management. Reductions in bycatch and physical habitat damage are now commonplace, but mitigating more sophisticated impacts associated with the ecological functions of target fisheries species are in their infancy. Here we model the impacts of a parrotfish fishery on the future state and resilience of Caribbean coral reefs, enabling us to view the tradeoff between harvest and ecosystem health. We find that the implementation of a simple and enforceable size restriction of >30 cm provides a win:win outcome in the short term, delivering both ecological and fisheries benefits and leading to increased yield and greater coral recovery rate for a given harvest rate. However, maintaining resilient coral reefs even until 2030 requires the addition of harvest limitations (<10% of virgin fishable biomass) to cope with a changing climate and induced coral disturbances, even in reefs that are relatively healthy today. Managing parrotfish is not a panacea for protecting coral reefs but can play a role in sustaining the health of reefs and high-quality habitat for reef fisheries. PMID:27044106

  1. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and maps may be... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Snake River sockeye... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.205 Critical habitat...

  2. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and maps may be... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for Snake River sockeye... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.205 Critical habitat...

  3. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and maps may be... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Snake River sockeye... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.205 Critical habitat...

  4. 75 FR 26703 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... National Oceanic and Atmospheric Administration 50 CFR Part 697 RIN 0648-AY41 Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery AGENCY: National Marine Fisheries Service (NMFS... Marine Fisheries Commission's (Commission) Interstate Fishery Management Plan (ISFMP) for weakfish....

  5. WILDLIFE HABITAT

    EPA Science Inventory

    Habitat change statistics were used to estimate the effects of alternative future scenarios for agriculture on non-fish vertebrate diversity in Iowa farmlands. Study areas were two watersheds in central Iowa of about 50 and 90 square kilometers, respectively. Future scenarios w...

  6. An index of reservoir habitat impairment

    USGS Publications Warehouse

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  7. Rapid Global Expansion of Invertebrate Fisheries: Trends, Drivers, and Ecosystem Effects

    PubMed Central

    Anderson, Sean C.; Mills Flemming, Joanna; Watson, Reg; Lotze, Heike K.

    2011-01-01

    Background Worldwide, finfish fisheries are receiving increasing assessment and regulation, slowly leading to more sustainable exploitation and rebuilding. In their wake, invertebrate fisheries are rapidly expanding with little scientific scrutiny despite increasing socio-economic importance. Methods and Findings We provide the first global evaluation of the trends, drivers, and population and ecosystem consequences of invertebrate fisheries based on a global catch database in combination with taxa-specific reviews. We also develop new methodologies to quantify temporal and spatial trends in resource status and fishery development. Since 1950, global invertebrate catches have increased 6-fold with 1.5 times more countries fishing and double the taxa reported. By 2004, 34% of invertebrate fisheries were over-exploited, collapsed, or closed. New fisheries have developed increasingly rapidly, with a decrease of 6 years (3 years) in time to peak from the 1950s to 1990s. Moreover, some fisheries have expanded further and further away from their driving market, encompassing a global fishery by the 1990s. 71% of taxa (53% of catches) are harvested with habitat-destructive gear, and many provide important ecosystem functions including habitat, filtration, and grazing. Conclusions Our findings suggest that invertebrate species, which form an important component of the basis of marine food webs, are increasingly exploited with limited stock and ecosystem-impact assessments, and enhanced management attention is needed to avoid negative consequences for ocean ecosystems and human well-being. PMID:21408090

  8. Salmon River Habitat Enhancement. 1990 Annual Report

    SciTech Connect

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  9. WA DEPARTMENT OF FISH & WILDLIFE PRIORITY HABITATS AND SPECIES

    EPA Science Inventory

    This is a database that is being developed from a wildlife inventory program in progress at WDF&W. It consists of polygons or points that describe the limiting habitats of priority species, and priority habitats. The database currently covers state & private forest lands, and u...

  10. Riparian habitat on the Humboldt River, Deeth to Elko, Nevada

    NASA Technical Reports Server (NTRS)

    Price, K. P.; Ridd, M. K.

    1983-01-01

    A map inventory of the major habitat types existing along the Humbolt River riparian zone in Nevada is described. Through aerialphotography, 16 riparian habitats are mapped that describe the ecological relationships between soil and vegetation types, flooding and soil erosion, and the various management practices employed to date. The specific land and water management techniques and their impact on the environment are considered.

  11. Indigenous community-based fisheries in Australia.

    PubMed

    Carter, Jennifer; Hill, Greg

    2007-12-01

    The commercial sea cucumber species known as Sandfish (Holothuria scabra) occurs intertidally and subtidally in the Northern Territory of Australia, on or adjacent to Aboriginal land. A 4-yr program of community-based fisheries research with Aboriginal Australians was implemented to assess the viability of indigenous Australians' involvement in the wild-stock fishery. The research involved extensive and intensive indigenous participation, unusual in Australian biophysical sciences research, during field survey and habitat mapping, complemented by commercial catch data modelling and discussion of its implications. Field surveys produced Sandfish distribution and site-specific density, and revealed some areas that were not commercially fished. Catch data modelling results suggested that no additional effort could be sustained, however commercial fishers increased their effort, expanding their operations into the newly mapped areas. These actions effectively precluded indigenous peoples' aspirations of entry into the commercial fishery. The efficacy and outcomes of participatory program design with indigenous Australians need critique in the absence of the political will and statutory backing to provide equitable access to resources. PMID:17175093

  12. The Patagonian toothfish: biology, ecology and fishery.

    PubMed

    Collins, Martin A; Brickle, Paul; Brown, Judith; Belchier, Mark

    2010-01-01

    Patagonian toothfish (Dissostichus eleginoides) is a large notothenioid fish that supports valuable fisheries throughout the Southern Ocean. D. eleginoides are found on the southern shelves and slopes of South America and around the sub-Antarctic islands of the Southern Ocean. Patagonian toothfish are a long-lived species (>50 years), which initially grow rapidly on the shallow shelf areas, before undertaking an ontogenetic migration into deeper water. Although they are active predators and scavengers, there is no evidence of large-scale geographic migrations, and studies using genetics, biochemistry, parasite fauna and tagging indicate a high degree of isolation between populations in the Indian Ocean, South Georgia and the Patagonian Shelf. Patagonian toothfish spawn in deep water (ca. 1000 m) during the austral winter, producing pelagic eggs and larvae. Larvae switch to a demersal habitat at around 100 mm (1-year-old) and inhabit relatively shallow water (<300 m) until 6-7 years of age, when they begin a gradual migration into deeper water. As juveniles in shallow water, toothfish are primarily piscivorous, consuming the most abundant suitably sized local prey. With increasing size and habitat depth, the diet diversifies and includes more scavenging. Toothfish have weakly mineralised skeletons and a high fat content in muscle, which helps neutral buoyancy, but limits swimming capacity. Toothfish generally swim with labriform motion, but are capable of more rapid sub-carangiform swimming when startled. Toothfish were first caught as a by-catch (as juveniles) in shallow trawl fisheries, but following the development of deep water longlining, fisheries rapidly developed throughout the Southern Ocean. The initial rapid expansion of the fishery, which led to a peak of over 40,000 tonnes in reported landings in 1995, was accompanied by problems of bird by-catch and overexploitation as a consequence of illegal, unreported and unregulated fishing (IUU). These problems

  13. 50 CFR 300.106 - Exploratory fisheries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 11 2014-10-01 2014-10-01 false Exploratory fisheries. 300.106 Section 300.106 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Antarctic Marine Living Resources § 300.106 Exploratory fisheries. (a) An exploratory fishery,...

  14. 50 CFR 300.106 - Exploratory fisheries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 11 2012-10-01 2012-10-01 false Exploratory fisheries. 300.106 Section 300.106 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Antarctic Marine Living Resources § 300.106 Exploratory fisheries. (a) An exploratory fishery,...

  15. 50 CFR 300.106 - Exploratory fisheries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Exploratory fisheries. 300.106 Section 300.106 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Antarctic Marine Living Resources § 300.106 Exploratory fisheries. (a) An exploratory fishery,...

  16. 50 CFR 300.106 - Exploratory fisheries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Exploratory fisheries. 300.106 Section 300.106 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Antarctic Marine Living Resources § 300.106 Exploratory fisheries. (a) An exploratory fishery,...

  17. 50 CFR 300.106 - Exploratory fisheries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Exploratory fisheries. 300.106 Section 300.106 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Antarctic Marine Living Resources § 300.106 Exploratory fisheries. (a) An exploratory fishery,...

  18. Habitat classification modeling with incomplete data: Pushing the habitat envelope

    USGS Publications Warehouse

    Zarnetske, P.L.; Edwards, T.C., Jr.; Moisen, G.G.

    2007-01-01

    Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can be used. Traditional techniques generate pseudoabsence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, thresholdindependent receiver operating characteristic (ROC) plots, adjusted deviance (Dadj2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant, suggesting

  19. Habitat classification modeling with incomplete data: pushing the habitat envelope.

    PubMed

    Zarnetske, Phoebe L; Edwards, Thomas C; Moisen, Gretchen G

    2007-09-01

    Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can bb used. Traditional techniques generate pseudo-absence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, threshold-independent receiver operating characteristic (ROC) plots, adjusted deviance (D(adj)2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant

  20. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: targeting vegetated habitat restoration.

    PubMed

    Smith, Lisa M; Nestlerode, Janet A; Harwell, Linda C; Bourgeois, Pete

    2010-12-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. PMID:20082136

  1. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: Targeting vegetated habitat restoration

    USGS Publications Warehouse

    Smith, L.M.; Nestlerode, J.A.; Harwell, L.C.; Bourgeois, P.

    2010-01-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. ?? 2010 Springer Science+Business Media B.V.

  2. 75 FR 59899 - Endangered and Threatened Wildlife and Plants: Proposed Rulemaking To Designate Critical Habitat...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ...We, the National Marine Fisheries Service (NMFS), propose to designate approximately 390 square kilometers of critical habitat for the endangered black abalone, pursuant to section 4 of the Endangered Species Act (ESA). Specific areas proposed for designation include rocky habitats from the mean higher high water (MHHW) line to a depth of 6 meters (m) within the following areas on the......

  3. 76 FR 515 - Endangered and Threatened Species, Designation of Critical Habitat for Southern Distinct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ...We, the National Marine Fisheries Service (NMFS), propose to designate critical habitat for the southern Distinct Population Segment (DPS) of Pacific eulachon (Thaleichthys pacificus), which was recently listed as threatened under the Endangered Species Act (ESA). We have proposed 12 specific areas for designation as critical habitat within the states of California, Oregon, and Washington. The......

  4. Mars habitat

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The College of Engineering & Architecture at Prairie View A&M University has been participating in the NASA/USRA Advanced Design Program since 1986. The interdisciplinary nature of the program allowed the involvement of students and faculty throughout the College of Engineering & Architecture for the last five years. The research goal for the 1990-1991 year is to design a human habitat on Mars that can be used as a permanent base for 20 crew members. The research is being conducted by undergraduate students from the Department of Architecture.

  5. 77 FR 37656 - Multi-Species Habitat Conservation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... Statement in the Federal Register on February 22, 2008 (73 FR 9776). That document also announced a 30-day... Impact Statement, Siskiyou County, California in the Federal Register (74 FR 58602). The public review... 0648-XC011 Multi-Species Habitat Conservation Plan AGENCY: National Marine Fisheries Service...

  6. Mixed responses of tropical Pacific fisheries and aquaculture to climate change

    NASA Astrophysics Data System (ADS)

    Bell, Johann D.; Ganachaud, Alexandre; Gehrke, Peter C.; Griffiths, Shane P.; Hobday, Alistair J.; Hoegh-Guldberg, Ove; Johnson, Johanna E.; Le Borgne, Robert; Lehodey, Patrick; Lough, Janice M.; Matear, Richard J.; Pickering, Timothy D.; Pratchett, Morgan S.; Gupta, Alex Sen; Senina, Inna; Waycott, Michelle

    2013-06-01

    Pacific Island countries have an extraordinary dependence on fisheries and aquaculture. Maintaining the benefits from the sector is a difficult task, now made more complex by climate change. Here we report how changes to the atmosphere-ocean are likely to affect the food webs, habitats and stocks underpinning fisheries and aquaculture across the region. We found winners and losers--tuna are expected to be more abundant in the east and freshwater aquaculture and fisheries are likely to be more productive. Conversely, coral reef fisheries could decrease by 20% by 2050 and coastal aquaculture may be less efficient. We demonstrate how the economic and social implications can be addressed within the sector--tuna and freshwater aquaculture can help support growing populations as coral reefs, coastal fisheries and mariculture decline.

  7. 78 FR 26518 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Exempted Fishery for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... regulations, implemented under Framework Adjustment 9 (60 FR 19364, April 18, 1995) and expanded under Amendment 7 to the FMP (61 FR 27710, May 31, 1996), contain a NE multispecies fishing mortality and bycatch... United States; Northeast Multispecies Fishery; Exempted Fishery for the Spiny Dogfish Fishery in...

  8. 78 FR 54547 - Fisheries Off West Coast States; Highly Migratory Fisheries; California Drift Gillnet Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... emergency rules (62 FR 44421; August 21, 1997) specify the following three criteria that define what an...; Issuance of Permit; Fisheries Off West Coast States; Highly Migratory Fisheries; California Drift Gillnet Fishery; Sperm Whale Interaction Restriction; Final Rule and Notice #0;#0;Federal Register / Vol. 78 ,...

  9. 75 FR 17070 - Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... recommended by the Council, and specified by NMFS, as 254,050 lb (115,235 kg) of Deep 7 bottomfish (74 FR... National Oceanic and Atmospheric Administration 50 CFR Part 665 RIN 0648-XU60 Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery Closure AGENCY: National...

  10. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 7 2011-10-01 2005-10-01 true Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED)...

  11. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 5 2010-10-01 2010-10-01 true Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED)...

  12. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 7 2014-10-01 2013-10-01 true Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  13. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 6 2011-10-01 2011-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  14. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 7 2012-10-01 2012-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  15. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 8 2012-10-01 2012-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED)...

  16. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 4 2010-10-01 2010-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  17. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 7 2013-10-01 2013-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  18. Methods for evaluating riparian habitats with applications to management

    USGS Publications Warehouse

    Platts, William S.; Armour, C.L.; Booth, G.D.; Bryant, M.; Bufford, J.L.; Cuplin, P.; Jensen, S.; Lienkaemper, G.W.; Minshall, G.W.; Monsen, S.T.; Nelson, R.L.; Sedell, J.R.; Tuhy, J.S.

    1987-01-01

    Riparian area planning and management is a major national issues today--something that should have been the case a century ago. A century of additive effects of land use has resulted in major impacts on many riparian stream habitats and their fisheries, wildlife, and domestic livestock use. Before scientists can evaluate the influences of various land and water uses on riparian environments, they must first understand these environments. This means being able to detect and measure with confidence the natural and artificial variation and instantaneous conditions of the riparian habitat. These conditions must then be related to the production capability of riparian habitat and any extraneous factors affecting this production potential.

  19. Habitat Suitability Index Models and Instream Flow Suitability Curves: Inland Stocks of Striped Bass

    USGS Publications Warehouse

    Crance, Johnie H.

    1984-01-01

    The Habitat Suitability Index (HSI) models and instream flow Suitability Index (SI) presented in this publication aid in identifying important variables that determine the quality of striped bass habitat. Facts, ideas, and opinions obtained from published and unpublished reports, a Delphi panel of 18 striped bass experts/authorities, and the Striped Bass Committee, Southern Division, American Fisheries Society, are synthesized and presented in a format that can be used for habitat impact assessment and development of management alternatives.

  20. 75 FR 9158 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Coastal Sharks Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... National Oceanic and Atmospheric Administration RIN 0648-XU54 Atlantic Coastal Fisheries Cooperative Management Act Provisions; Coastal Sharks Fishery AGENCY: National Marine Fisheries Service (NMFS), National.... SUMMARY: NMFS announces that on February 4, 2010, the Atlantic States Marine Fisheries...

  1. 78 FR 45896 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Trimester Closure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... National Oceanic and Atmospheric Administration 50 CFR Part 648 RIN 0648-XC782 Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Trimester Closure for the Common Pool Fishery AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration...

  2. 75 FR 33242 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... National Oceanic and Atmospheric Administration RIN 0648-XW45 Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery AGENCY: National Marine Fisheries Service (NMFS), National.... SUMMARY: On May 6, 2010, the Atlantic States Marine Fisheries Commission (Commission) found the State...

  3. 78 FR 76759 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Trimester Closure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... National Oceanic and Atmospheric Administration 50 CFR Part 648 RIN 0648-XD024 Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Trimester Closure for the Common Pool Fishery AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration...

  4. A spatially distinct history of the development of california groundfish fisheries.

    PubMed

    Miller, Rebecca R; Field, John C; Santora, Jarrod A; Schroeder, Isaac D; Huff, David D; Key, Meisha; Pearson, Don E; MacCall, Alec D

    2014-01-01

    During the past century, commercial fisheries have expanded from small vessels fishing in shallow, coastal habitats to a broad suite of vessels and gears that fish virtually every marine habitat on the globe. Understanding how fisheries have developed in space and time is critical for interpreting and managing the response of ecosystems to the effects of fishing, however time series of spatially explicit data are typically rare. Recently, the 1933-1968 portion of the commercial catch dataset from the California Department of Fish and Wildlife was recovered and digitized, completing the full historical series for both commercial and recreational datasets from 1933-2010. These unique datasets include landing estimates at a coarse 10 by 10 minute "grid-block" spatial resolution and extends the entire length of coastal California up to 180 kilometers from shore. In this study, we focus on the catch history of groundfish which were mapped for each grid-block using the year at 50% cumulative catch and total historical catch per habitat area. We then constructed generalized linear models to quantify the relationship between spatiotemporal trends in groundfish catches, distance from ports, depth, percentage of days with wind speed over 15 knots, SST and ocean productivity. Our results indicate that over the history of these fisheries, catches have taken place in increasingly deeper habitat, at a greater distance from ports, and in increasingly inclement weather conditions. Understanding spatial development of groundfish fisheries and catches in California are critical for improving population models and for evaluating whether implicit stock assessment model assumptions of relative homogeneity of fisheries removals over time and space are reasonable. This newly reconstructed catch dataset and analysis provides a comprehensive appreciation for the development of groundfish fisheries with respect to commonly assumed trends of global fisheries patterns that are typically

  5. A Spatially Distinct History of the Development of California Groundfish Fisheries

    PubMed Central

    Miller, Rebecca R.; Field, John C.; Santora, Jarrod A.; Schroeder, Isaac D.; Huff, David D.; Key, Meisha; Pearson, Don E.; MacCall, Alec D.

    2014-01-01

    During the past century, commercial fisheries have expanded from small vessels fishing in shallow, coastal habitats to a broad suite of vessels and gears that fish virtually every marine habitat on the globe. Understanding how fisheries have developed in space and time is critical for interpreting and managing the response of ecosystems to the effects of fishing, however time series of spatially explicit data are typically rare. Recently, the 1933–1968 portion of the commercial catch dataset from the California Department of Fish and Wildlife was recovered and digitized, completing the full historical series for both commercial and recreational datasets from 1933–2010. These unique datasets include landing estimates at a coarse 10 by 10 minute “grid-block” spatial resolution and extends the entire length of coastal California up to 180 kilometers from shore. In this study, we focus on the catch history of groundfish which were mapped for each grid-block using the year at 50% cumulative catch and total historical catch per habitat area. We then constructed generalized linear models to quantify the relationship between spatiotemporal trends in groundfish catches, distance from ports, depth, percentage of days with wind speed over 15 knots, SST and ocean productivity. Our results indicate that over the history of these fisheries, catches have taken place in increasingly deeper habitat, at a greater distance from ports, and in increasingly inclement weather conditions. Understanding spatial development of groundfish fisheries and catches in California are critical for improving population models and for evaluating whether implicit stock assessment model assumptions of relative homogeneity of fisheries removals over time and space are reasonable. This newly reconstructed catch dataset and analysis provides a comprehensive appreciation for the development of groundfish fisheries with respect to commonly assumed trends of global fisheries patterns that are

  6. Habitat scale mapping of fisheries ecosystem services values in estuaries

    EPA Science Inventory

    Little is known about the variability of ecosystem service values at spatial scales most relevant to local decision makers. Competing definitions of ecosystem services, the paucity of ecological and economic information and the lack of standardization in methodology are major ob...

  7. Small-Scale Fisheries Bycatch Jeopardizes Endangered Pacific Loggerhead Turtles

    PubMed Central

    Peckham, S. Hoyt; Diaz, David Maldonado; Walli, Andreas; Ruiz, Georgita; Crowder, Larry B.; Nichols, Wallace J.

    2007-01-01

    Background Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna. Principal Findings/Methodology 30 North Pacific loggerhead turtles that we satellite-tracked from 1996–2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS). We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1) observe two small-scale fleets that operated closest to the high use area and 2) through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year−1, rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge. Conclusions/Significance Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing

  8. The Habitat Connection.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  9. Habitat Demonstration Unit - Deep Space Habitat Configuration

    NASA Video Gallery

    This animated video shows the process of transporting, assembling and testing the Habitat Demonstration Unit - Deep Space Habitat (HDU DSH) configuration, which will be deployed during the 2011 Des...

  10. 50 CFR 600.110 - Intercouncil fisheries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Intercouncil fisheries. 600.110 Section 600.110 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Regional Fishery Management Councils §...

  11. 50 CFR 600.110 - Intercouncil fisheries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Intercouncil fisheries. 600.110 Section 600.110 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Regional Fishery Management Councils §...

  12. 50 CFR 635.28 - Fishery closures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Fishery closures. 635.28 Section 635.28 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE ATLANTIC HIGHLY MIGRATORY SPECIES Management Measures § 635.28 Fishery closures....

  13. 50 CFR 259.32 - Conditional fisheries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 11 2014-10-01 2014-10-01 false Conditional fisheries. 259.32 Section 259.32 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES CAPITAL CONSTRUCTION FUND Capital Construction...

  14. 50 CFR 259.32 - Conditional fisheries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 11 2012-10-01 2012-10-01 false Conditional fisheries. 259.32 Section 259.32 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES CAPITAL CONSTRUCTION FUND Capital Construction...

  15. 50 CFR 259.32 - Conditional fisheries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Conditional fisheries. 259.32 Section 259.32 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES CAPITAL CONSTRUCTION FUND Capital Construction...

  16. 50 CFR 600.110 - Intercouncil fisheries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Intercouncil fisheries. 600.110 Section 600.110 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Regional Fishery Management Councils §...

  17. 50 CFR 600.110 - Intercouncil fisheries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Intercouncil fisheries. 600.110 Section 600.110 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Regional Fishery Management Councils §...

  18. 50 CFR 259.32 - Conditional fisheries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Conditional fisheries. 259.32 Section 259.32 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES CAPITAL CONSTRUCTION FUND Capital Construction...

  19. 50 CFR 259.32 - Conditional fisheries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Conditional fisheries. 259.32 Section 259.32 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES CAPITAL CONSTRUCTION FUND Capital Construction...

  20. 50 CFR 600.110 - Intercouncil fisheries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Intercouncil fisheries. 600.110 Section 600.110 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Regional Fishery Management Councils §...

  1. Shipboard fisheries management terminals

    NASA Technical Reports Server (NTRS)

    Nagler, R. G.; Sager, E. V.

    1980-01-01

    The needs of the National Marine Fisheries Service (NMGS), National Weather Service, and the U.S. Coast Guard for locational, biological, and environmental data were assessed. The fisheries conservation zones and the yellowfin tuna jurisdiction of the NMFS operates observer programs on foreign and domestic fishing vessels. Data input terminal and data transfer and processing technology are reviewed to establish available capability. A matrix of implementation options is generated to identify the benefits of each option, and preliminary cost estimates are made. Recommendations are made for incremental application of available off the shelf hardware to obtain improved performance and benefits within a well bounded cost. Terminal recommendations are made for three interdependent shipboard units emphasizing: (1) the determination of location and fishing activity; (2) hand held data inputting and formatting in the fishing work areas; and (3) data manipulation, merging, and editing.

  2. 78 FR 50347 - Fisheries Off West Coast States; Modifications of the West Coast Commercial Salmon Fisheries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... management measures for ocean salmon fisheries (78 FR 25865, May 3, 2013), the West Coast Salmon Fishery... salmon fisheries (78 FR 25865, May 3, 2013), NMFS announced the commercial and recreational fisheries in... the 2013 ocean salmon fisheries and 2014 fisheries opening prior to May 1, 2014 (78 FR 25865, May...

  3. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2002-2003.

    SciTech Connect

    Sears, Sheryl

    2004-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated

  4. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2001-2002.

    SciTech Connect

    Sears, Sheryl

    2003-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated

  5. Salmon River Habitat Enhancement, Part 1 of 2, 1986 Annual Report.

    SciTech Connect

    Richards, Carl

    1987-03-01

    The tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved fish inventories in Bear Valley Creek, Idaho, that will be used in conjunction with 1984 and 1985 fish and habitat pre-treatment (baseline) data to evaluate effects of habitat enhancement on the habitat and fish community in Bear Valley Creek overtime. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur in the upper-Salmon River basin. Subproject III involved fish inventories (pre-treatment) in the Yankee Fork drainage of the Salmon River, and habitat problem identification on Fivemile and Ramey Creek. Subproject IV involved baseline habitat and fish inventories on the East Fork of the Salmon River, Herd Creek and Big-Boulder Creek. Individual abstracts have been prepared for the four subproject reports. 20 refs., 37 figs., 22 tabs.

  6. Habits and Habitats of Fishes in the Upper Mississippi River

    USGS Publications Warehouse

    Norwick, R.; Janvrin, J.; Zigler, S.; Kratt, R.

    2011-01-01

    The Upper Mississippi River consists of 26 navigation pools that provide abundant habitat for a host of natural resources, such as fish, migratory waterfowl, non-game birds, deer, beaver, muskrats, snakes, reptiles, frogs, toads, salamanders, and many others. Of all the many different types of animals that depend on the river, fish are the most diverse with over 140 different species. The sport fishery is very diverse with at least 25 species commonly harvested. Fish species, such as walleyes, largemouth bass, bluegills, and crappies are favorites of sport anglers. Others such as common carp, buffalos, and channel catfish, are harvested by commercial anglers and end up on the tables of families all over the country. Still other fishes are important because they provide food for sport or commercial species. The fishery resources in these waters contribute millions of dollars to the economy annually. Overall, the estimate impact of anglers and other recreational users exceeds $1.2 billion on the Upper Mississippi River. The fisheries in the various reaches of the river of often are adversely affected by pollution, urbanization, non-native fishes, navigation, recreational boating, fishing, dredging, and siltation. However, state and federal agencies expend considerable effort and resources to manage fisheries and restore river habitats. This pamphlet was prepared to help you better understand what fishery resources exist, what the requirements of each pecies are, and how man-induced changes that are roposed or might occur could affect them.

  7. Defining dynamic pelagic habitats in oceanic waters off eastern Australia

    NASA Astrophysics Data System (ADS)

    Hobday, A. J.; Young, J. W.; Moeseneder, C.; Dambacher, J. M.

    2011-03-01

    Although many species in the pelagic ocean are widespread, they are not randomly distributed. These species may have associations with particular water masses or habitats, but to best understand patterns in the ocean, these habitats must be identified. Previous efforts have produced static or seasonal climatologies, which still represent smearing over habitats. The Eastern Tuna and Billfish Longline Fishery (ETBF) targets a range of high trophic level species in oceanic waters off eastern Australia. In this study, dynamic ocean habitats in the region were identified for each month based on cluster analysis of five oceanographic variables averaged at a monthly time scale and a spatial scale of 0.5° for the period 1995-2006. A total of seven persistent habitats were identified off eastern Australia with intra and interannual variation in size and location, indicating the importance of spatial and temporal variation in the dynamics of the region. The degree to which these dynamic habitats were distinguished was tested using (i) stable isotope analysis of top fish predators caught in the region and (ii) estimates of variation in estimated abundance generated from catch data from the fishery. More precise estimates (measured as lower total CV) of isotopic values from swordfish ( Xiphias gladius), yellowfin tuna ( Thunnus albacares) and albacore ( Thunnus alalunga) were obtained for 4 of 6 isotope comparisons using the dynamic habitat groupings, which indicate that stratifying by pelagic habitat improved precision. Dynamic habitats produced more precise abundance estimates for 7 of 8 large pelagic species examined, with an average reduction in total CV of 19% compared to when abundance was estimated based on static habitat stratification. These findings could be used to guide development of effective monitoring strategies that can distinguish patterns due to environmental variation, and in the longer term, climate change.

  8. NARSTO EMISSION INVENTORY ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  9. Lower Flathead System Fisheries Study, 1985 Annual Report.

    SciTech Connect

    Pajak, Paul; Bradshaw, William H.; DeSantos, Joseph M.; Darling, James E.

    1986-01-01

    Existing aquatic habitat in the lower Flathead River and its tributaries was assessed for its relationship to the present size, distribution, and maintenance of all salmonid species, northern pike, and largemouth bass populations. The objectives were to assess how and to what extent hydroelectric development and operation affects the quality and quantity of aquatic habitat in the lower Flathead River and its tributaries and life stages of existing trout, pike, and largemouth bass populations, evaluate the potential for increasing quality habitat, and thus game fish production, through mitigation, and develop an array of fisheries management options to mitigate the impacts of present hydroelectric operations, demonstrating under each management option how fish populations would benefit and hydroelectric generation capabilities would be modified.

  10. 78 FR 3402 - Marine Fisheries Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... National Oceanic and Atmospheric Administration RIN 0648-XC443 Marine Fisheries Advisory Committee AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce... of a forthcoming meeting of the Marine Fisheries Advisory Committee (MAFAC). The members will...

  11. 77 FR 46733 - Marine Fisheries Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... National Oceanic and Atmospheric Administration RIN 0648-XC145 Marine Fisheries Advisory Committee AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce... of a forthcoming meeting of the Marine Fisheries Advisory Committee (MAFAC). The members will...

  12. 75 FR 44770 - Marine Fisheries Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... National Oceanic and Atmospheric Administration RIN 0648-XX87 Marine Fisheries Advisory Committee AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce... of a forthcoming meeting of the Marine Fisheries Advisory Committee (MAFAC). The members will...

  13. 76 FR 14379 - Marine Fisheries Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... National Oceanic and Atmospheric Administration RIN 0648-XA265 Marine Fisheries Advisory Committee AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce... of a forthcoming meeting of the Marine Fisheries Advisory Committee (MAFAC). The members will...

  14. Management implications of fish trap effectiveness in adjacent coral reef and gorgonian habitats

    USGS Publications Warehouse

    Wolff, Nicholas; Grober-Dunsmore, Rikki; Rogers, Caroline S.; Beets, James P.

    1999-01-01

    A combination of visual census and trap sampling in St. John, USVI indicated that traps performed better in gorgonian habitat than in adjacent coral reef habitat. Although most families were seen more commonly in coral habitat, they were caught more often in gorgonian areas. Traps probably fished more effectively in gorgonian habitats, especially for migrating species, because traps provided shelter in the relatively topographically uniform environment of gorgonian dominated habitats. Recently, trap fishermen on St. John have been moving effort away from traditionally fished nearshore coral reefs and into a variety of more homogeneous habitats such as gorgonian habitat. Consequently, exploitation rates of the already over-harvested reef fish resources may be increasing. Reef fish managers and marine reserve designers should consider limiting trap fishing in gorgonian habitats to slow the decline of reef fisheries.

  15. Global climate change: Policy implications for fisheries

    SciTech Connect

    Gucinski, H.; Lackey, R.T.; Spence, B.C.

    1990-01-01

    Several government agencies are evaluating policy options for addressing global climate change. These include planning for anticipated effects and developing mitigation options where feasible if climate does change as predicted. For fisheries resources, policy questions address effects on international, national, and regional scales. Climate change variables expected to affect inland and offshore fisheries include temperature rise, changes in the hydrologic cycle, alterations in nutrient fluxes, and reduction and relocation of spawning and nursery habitat. These variables will affect resources at all levels of biological organization, including the genetic, organism, population, and ecosystem levels. In this context, changes in primary productivity, species composition in the food-web, migration, invasions, synchrony in biological cycles, shifts in utilization of niches, and problems of larvae entrainment in estuaries have been identified. Maintaining ecosystem robustness (i.e., high biodiversity) is another component of the problem. Action requires establishing priorities for information needs, determining appropriate temporal and spatial scales at which to model effects, and accounting for interactive changes in physical and biological cycles. A policy response can be derived when these results are integrated with social needs and human population constraints.

  16. 75 FR 62109 - Gulf of Mexico Fishery Management Council (Council); Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ...; Sustainable Fisheries/Ecosystem; Habitat; Budget/Personnel; Spiny Lobster/Stone Crab; Mackerel Management and...-to- date 2010 budget review. 2 p.m.-3 p.m.--The Spiny Lobster Management Committee will review draft Amendment 10 to the Spiny Lobster FMP and an analysis to repeal the Stone Crab FMP. 3 p.m.-3:30...

  17. Habit-specific estimates of fisheries ecosystem services in Weeks Bay, Alabama

    EPA Science Inventory

    One of the challenges EPA is addressing as part of its Ecological Services Research Program (ESRP) is linking ecological services (ES) of coastal and estuarine habitat types (e.g. fishery support, nutrient processing, carbon sequestration, etc.) with economic values to inform sta...

  18. 76 FR 16618 - Western Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ... National Oceanic and Atmospheric Administration RIN 0648-XA317 Western Pacific Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The Western Pacific Fishery... Fisheries B. Crustacean Fisheries C. Precious Coral Fisheries D. Pacific Islands Regional Office...

  19. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... information by contacting one of the Service regional offices, the addresses of which are listed at 50 CFR 2.2... 50 Wildlife and Fisheries 8 2014-10-01 2013-10-01 true Critical habitat; plants on the islands of...) Interagency Cooperation (Continued) § 17.99 Critical habitat; plants on the islands of Kauai, Niihau,...

  20. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... information by contacting one of the Service regional offices, the addresses of which are listed at 50 CFR 2.2... 50 Wildlife and Fisheries 8 2013-10-01 2013-10-01 false Critical habitat; plants on the islands of...) Interagency Cooperation (Continued) § 17.99 Critical habitat; plants on the islands of Kauai, Niihau,...

  1. Anticipating ocean acidification's economic consequences for commercial fisheries

    NASA Astrophysics Data System (ADS)

    Cooley, Sarah R.; Doney, Scott C.

    2009-06-01

    Ocean acidification, a consequence of rising anthropogenic CO2 emissions, is poised to change marine ecosystems profoundly by increasing dissolved CO2 and decreasing ocean pH, carbonate ion concentration, and calcium carbonate mineral saturation state worldwide. These conditions hinder growth of calcium carbonate shells and skeletons by many marine plants and animals. The first direct impact on humans may be through declining harvests and fishery revenues from shellfish, their predators, and coral reef habitats. In a case study of US commercial fishery revenues, we begin to constrain the economic effects of ocean acidification over the next 50 years using atmospheric CO2 trajectories and laboratory studies of its effects, focusing especially on mollusks. In 2007, the 3.8 billion US annual domestic ex-vessel commercial harvest ultimately contributed 34 billion to the US gross national product. Mollusks contributed 19%, or 748 million, of the ex-vessel revenues that year. Substantial revenue declines, job losses, and indirect economic costs may occur if ocean acidification broadly damages marine habitats, alters marine resource availability, and disrupts other ecosystem services. We review the implications for marine resource management and propose possible adaptation strategies designed to support fisheries and marine-resource-dependent communities, many of which already possess little economic resilience.

  2. Assessment of the Fishery Improvement Opportunities on the Pend Oreille River: Recommendations for Fisheries Enhancement: Final Report.

    SciTech Connect

    Ashe, Becky L.; Scholz, Allan T.

    1992-03-01

    This report recommends resident fish substitution projects to partially replace anadromous fish losses caused by construction of Grand Coulee and Chief Joseph Dams. These recommendations involve enhancing the resident fishery in the Pend Oreille River as a substitute for anadromous fish losses. In developing these recommendations we have intentionally attempted to minimize the impact upon the hydroelectric system and anadromous fish recovery plans. In this report we are recommending that the Northwest Power Planning Council direct Bonneville Power Administration to fund the proposed enhancement measures as resident fish substitution projects under the NPPC's Columbia Basin Fish and Wildlife Program. The Pend Oreille River, located in northeast Washington, was historically a free flowing river which supported anadromous steelhead trout and chinook salmon, and large resident cutthroat trout and bull trout. In 1939, Grand Coulee Dam eliminated the anadromous species from the river. In 1955, Box Canyon Dam was constructed, inundating resident trout habitat in the river and creating many back water and slough areas. By the late 1950's the fishery in the reservoir had changed from a quality trout fishery to a warm water fishery, supporting largemouth bass, yellow perch and rough fish (tenth, suckers, squawfish). The object of this study was to examine the existing fishery, identify fishery improvement opportunities and recommend fishery enhancement projects. Three years of baseline data were collected from the Box Canyon portion of the Pend Oreille River to assess population dynamics, growth rates, feeding habits, behavior patterns and factors limiting the fishery. Fishery improvement opportunities were identified based on the results of these data. Relative abundance surveys in the reservoir resulted in the capture of 47,415 fish during the study. The most abundant species in the reservoir were yellow perch, composing 44% of the fish captured. The perch population in

  3. A trans-ecosystem fishery: Environmental effects on the small-scale gillnet fishery along the Río de la Plata boundary

    NASA Astrophysics Data System (ADS)

    Jaureguizar, Andrés Javier; Cortés, Federico; Milessi, Andrés Conrado; Cozzolino, Ezequiel; Allega, Lucrecia

    2015-12-01

    To improve the understanding of the environmental processes affecting small-scale gillnet fisheries along neighboring waters of estuaries, we analyzed the main climatic forcing and the environmental conditions, the fishery landing spatial and temporal variation, including the relative importance of site, distance to coast, temperature and salinity in the structuring of landed species profile. Data were collected monthly in two sites along the adjacent south coast of the Río de la Plata between October 2009 and September 2010. The gillnet fishery was dominated by four species (Cynoscion guatucupa, Micropogonias furnieri, Mustelus schmitti and Parona signata) from a total of 38 species landed, which accounted for 98.6% of total landings. The fishing effort and landings by the fishery were largely conditioned by the availability of fish species in the fishing grounds resulting from the combination of the species reproductive behavior and the predominant environmental conditions. The highest abundances for some species occurred before (M. furnieri, C. guatucupa, P. signata) or during the reproductive period (M. schmitti, Squatina guggenheim), while in other species it was associated with favorable environmental conditions during cold months (Squalus acanthias, Callorhinchus callorhynchus, Galeorhinus galeus) or warm months (Trichiurus lepturus). The predominant seasonal environmental conditions along the coast were mainly determined by the location of Río de la Plata boundary, whose spatial extent was forced by the wind patterns and freshwater discharge. The strong environmental dependence means that the small-scale fishery is in fact a seasonal trans-ecosystem fishery. This attribute, together that shared the resources with the industrial fishery and the overlap of the fishery ground with essential habitat of sharks, make this kind of small-scale gillnet fishery particularly relevant to be included in the development of a coastal ecosystem-based management approach.

  4. Fisheries Information Network in Indonesia.

    ERIC Educational Resources Information Center

    Balachandran, Sarojini

    During the early 1980s the Indonesian government made a policy decision to develop fisheries as an important sector of the national economy. In doing so, it recognized the need for the collection and dissemination of fisheries research information not only for the scientists themselves, but also for the ultimate transfer of technology through…

  5. Federal Great Lakes fishery research objectives, priorities, and projects

    USGS Publications Warehouse

    Tait, Howard D.

    1973-01-01

    Fishery productivity of the Great Lakes has declined drastically since settlement of the area. Premium quality fishes of the Great Lakes such as whitefish, lake trout, and walleyes have been replaced by less desired species. This change is attributed to selective overfishing, pollution, and the extreme instability of fish populations. Sea lamprey predation is still a vexing problem but progress is being made in controlling this parasite. The federal fishery research program with headquarters in Ann Arbor, Michigan, has the objective of providing baseline information, needed in resource use decisions, about the fishes of the Great Lakes. Studies of the habitat requirements of fish are high priority. The program includes fish population assessments, studies of the effects of mercury and other contaminants on fish, thermal effects studies, and general investigation of the impact of engineering projects on Great Lakes fisheries. The work is closely coordinated with state and Canadian agencies through the Great Lakes Fishery Commission. Four small research vessels and four field stations are utilized with a staff of 90 and an annual budget of about $1.5 million.

  6. Effects of flow alterations on trout habitat in the Cumberland River below Wolf Creek Dam, Kentucky. Final report

    SciTech Connect

    Martin, J.L.; Curtis, L.T.; Nestler, John M.

    1986-11-01

    This report relates quality of fish habitat to flow conditions (discharge) in the Cumberland River below Wolf Creek Dam, Kentucky. Fish species' life stages targeted for investigation included juvenile brown trout, adult brown trout, adult rainbow trout, and adult brook trout. The Physical Habitat Simulation Systems (PHABSIM) was used to evaluate effects of flow variations on fish habitat, to allow evaluation of fishery effects of various design and operational alternatives, and to provide information to assist in the overall management of this natural resource for power generation and fishery benefits.

  7. Assessment of Least Tern and Piping Plover Habitats on the Missouri River Using Remote Sensing

    USGS Publications Warehouse

    Strong, Larry L.

    2007-01-01

    The primary goal of this study is to develop a cost-effective method to inventory, map, estimate, monitor, and evaluate least tern and piping plover habitats for four segments of the Missouri River using remotely sensed imagery.

  8. 78 FR 65887 - International Fisheries; Pacific Tuna Fisheries; 2013 Bigeye Tuna Longline Fishery Closure in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... FR 68332, November 4, 2011, and codified at 50 CFR 300.25). NMFS monitored the retained catches of... limit (76 FR 68332, November 4, 2011). For the same reasons, there is good cause to establish an...; Pacific Tuna Fisheries; 2013 Bigeye Tuna Longline Fishery Closure in the Eastern Pacific Ocean...

  9. 78 FR 70002 - International Fisheries; Pacific Tuna Fisheries; 2013 Bigeye Tuna Longline Fishery Closure in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... November 25, 2013. Correction Accordingly, in the rule published on November 4, 2013 (78 FR 65887), on page...; Pacific Tuna Fisheries; 2013 Bigeye Tuna Longline Fishery Closure in the Eastern Pacific Ocean; Correction... rule published in the Federal Register on November 4, 2013, to close the bigeye tuna longline...

  10. 76 FR 283 - International Fisheries; Pacific Tuna Fisheries; Vessel Capacity Limit in the Purse Seine Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    .... SUPPLEMENTARY INFORMATION: On September 3, 2010, NMFS published a proposed rule in the Federal Register (75 FR... the Federal Register (70 FR 19004), which, among other things, established a fleet capacity limit of 8...; Pacific Tuna Fisheries; Vessel Capacity Limit in the Purse Seine Fishery in the Eastern Pacific...

  11. 75 FR 54078 - International Fisheries; Pacific Tuna Fisheries; Vessel Capacity Limit in the Purse Seine Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... April 12, 2005, a final rule was published in the Federal Register (70 FR 19004), which, among other... FR 61046, November 23, 2009). NMFS initially considered including a provision that would rank purse...; Pacific Tuna Fisheries; Vessel Capacity Limit in the Purse Seine Fishery in the Eastern Pacific...

  12. Western habitats - Session summary

    USGS Publications Warehouse

    Titus, K.; Fuller, M.R.

    1989-01-01

    Determining the status of all habitats in the nine western states considered in this symposium is a difficult task. The authors of habitat status papers commented that the diversity of habitat classification systems limited their ability to relate habitat status to raptors. Differences of scale, objectives and survey design have hindered integration of habitat classification methods used by land managers with the habitat relationships understood by wildlife biologists, but examples now exist for successful integration of these methods. We suggest that land managers and wildlife biologists use common survey and classification schemes so that data can be combined and that results will be applicable over broader areas.

  13. 78 FR 30780 - Fisheries Off West Coast States; Modifications of the West Coast Commercial Salmon Fisheries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... ocean salmon fisheries (78 FR 25865, May 3, 2013), the West Coast Salmon Fishery Management Plan (Salmon... measures for ocean salmon fisheries (78 FR 25865, May 3, 2013), NMFS announced the commercial and... announced for the 2013 Ocean Salmon Fisheries and 2014 fisheries opening prior to May 1, 2014 (78 FR...

  14. 76 FR 40836 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... National Oceanic and Atmospheric Administration 50 CFR Part 660 RIN 0648-XA554 Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure AGENCY: National Marine Fisheries Service (NMFS... live bait fishery or incidental to other fisheries; the incidental harvest of Pacific sardine...

  15. 77 FR 50952 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... National Oceanic and Atmospheric Administration 50 CFR Part 660 RIN 0648-XC166 Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure AGENCY: National Marine Fisheries Service (NMFS... live bait fishery or incidental to other fisheries; the incidental harvest of Pacific sardine...

  16. 78 FR 51097 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... National Oceanic and Atmospheric Administration 50 CFR Part 660 RIN 0648-XC783 Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure AGENCY: National Marine Fisheries Service (NMFS... live bait fishery or incidental to other fisheries; the incidental harvest of Pacific sardine...

  17. 76 FR 58720 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... National Oceanic and Atmospheric Administration 50 CFR Part 660 RIN 0648-XA709 Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure AGENCY: National Marine Fisheries Service (NMFS... bait fishery or incidental to other fisheries; the incidental harvest of Pacific sardine is limited...

  18. 76 FR 10524 - Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ...) of Deep 7 bottomfish (75 FR 53606; September 1, 2010). Progress toward the TAC was monitored using... Seamount Groundfish Fisheries; Fishery Closure AGENCY: National Marine Fisheries Service (NMFS), National... closing the commercial and non-commercial fisheries in the main Hawaiian Islands ] fishery for...

  19. An Expanded Perspective of Fisheries Education.

    ERIC Educational Resources Information Center

    Lin, Leslie Y.

    1980-01-01

    Described are two curriculum units from the Michigan Sea Grant Program for middle school students: The Sea Lamprey in the Great Lakes, and Great Lakes Fisheries Transition. Topics discussed include fishery rights and responsibilities, where fisheries are, the modern fishery, buying and selling fish, and preserving fish. (DS)

  20. Fish Habitat Improvement Projects in the Fifteenmile Creek and Trout Creek Basins of Central Oregon: Field Review and Management Recommendations.

    SciTech Connect

    Kauffman, J. Boone

    1993-07-01

    A field review of stream habitat improvement project sites in the lower Deschutes River Basin was conducted by riparian ecology, fisheries, and hydrology specialists. Habitat management objectives, limiting factors, project implementation, land use history, and other factors were discussed at each site. This information, in conjunction with the reviewer`s field inspections of portions of a particular habitat project, provided the basis for this report.

  1. NOAA to develop strategy to protect coral and sponge habitat

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. National Marine Fisheries Service (NMFS) will develop a strategy to address research, conservation, and management issues regarding deep-ocean coral and sponge habitat, the agency indicated in an 11 July Federal Register notice. The Service, which is a unit of the National Oceanic and Atmospheric Administration, indicated that this strategy "eventually may result in rulemaking for some fisheries" but that "emergency rulemaking is not warranted."The NMFS announcement is in response to a 24 March 2004 petition to the Commerce Department filed by Oceana, a non-governmental organization. That petition urged the department through NMFS to "initiate immediate rulemaking" to protect coral and sponge habitats in the U.S. exclusive economic zone through mapping, monitoring, research, and enforcement measures.

  2. Oyster Fisheries App

    NASA Technical Reports Server (NTRS)

    Perez Guerrero, Geraldo A.; Armstrong, Duane; Underwood, Lauren

    2015-01-01

    This project is creating a cloud-enabled, HTML 5 web application to help oyster fishermen and state agencies apply Earth science to improve the management of this important natural and economic resource. The Oyster Fisheries app gathers and analyzes environmental and water quality information, and alerts fishermen and resources managers about problems in oyster fishing waters. An intuitive interface based on Google Maps displays the geospatial information and provides familiar interactive controls to the users. Alerts can be tailored to notify users when conditions in specific leases or public fishing areas require attention. The app is hosted on the Amazon Web Services cloud. It is being developed and tested using some of the latest web development tools such as web components and Polymer.

  3. Interactive inventory monitoring

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan M. (Inventor); Udoh, Usen E. (Inventor)

    2009-01-01

    Method and system for monitoring present location and/or present status of a target inventory item, where the inventory items are located on one or more inventory shelves or other inventory receptacles that communicate with an inventory base station through use of responders such as RFIDs. A user operates a hand held interrogation and display (IAD) module that communicates with, or is part of, the base station, to provide an initial inquiry. Information on location(s) of the target inventory item is also indicated visibly and/or audibly on the receptacle(s) for the user. Status information includes an assessment of operation readiness and a time, if known, that the specified inventory item or class was last removed or examined or modified. Presentation of a user access level may be required for access to the target inventory item. Another embodiment provides inventory information for a stack as a sight-impaired or hearing-impaired person passes adjacent to that stack.

  4. Pelagic habitat visualization: the need for a third (and fourth) dimension: HabitatSpace

    USGS Publications Warehouse

    Beegle-Krause, C, J; Vance, Tiffany; Reusser, Debbie; Stuebe, David; Howlett, Eoin

    2009-01-01

    Habitat in open water is not simply a 2-D to 2.5-D surface such as the ocean bottom or the air-water interface. Rather, pelagic habitat is a 3-D volume of water that can change over time, leading us to the term habitat space. Visualization and analysis in 2-D is well supported with GIS tools, but a new tool was needed for visualization and analysis in four dimensions. Observational data (cruise profiles (xo, yo, z, to)), numerical circulation model fields (x,y,z,t), and trajectories (larval fish, 4-D line) need to be merged together in a meaningful way for visualization and analysis. As a first step toward this new framework, UNIDATA’s Integrated Data Viewer (IDV) has been used to create a set of tools for habitat analysis in 4-D. IDV was designed for 3-D+time geospatial data in the meteorological community. NetCDF JavaTM libraries allow the tool to read many file formats including remotely located data (e.g. data available via OPeNDAP ). With this project, IDV has been adapted for use in delineating habitat space for multiple fish species in the ocean. The ability to define and visualize boundaries of a water mass, which meets specific biologically relevant criteria (e.g., volume, connectedness, and inter-annual variability) based on model results and observational data, will allow managers to investigate the survival of individual year classes of commercially important fisheries. Better understanding of the survival of these year classes will lead to improved forecasting of fisheries recruitment.

  5. Predictive Seagrass Habitat Model

    EPA Science Inventory

    Restoration of ecosystem services provided by seagrass habitats in estuaries requires a firm understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We explored the application...

  6. MODELING PHYSICAL HABITAT PARAMETERS

    EPA Science Inventory

    Salmonid populations can be affected by alterations in stream physical habitat. Fish productivity is determined by the stream's physical habitat structure ( channel form, substrate distribution, riparian vegetation), water quality, flow regime and inputs from the watershed (sedim...

  7. Global habitat preferences of commercially valuable tuna

    NASA Astrophysics Data System (ADS)

    Arrizabalaga, Haritz; Dufour, Florence; Kell, Laurence; Merino, Gorka; Ibaibarriaga, Leire; Chust, Guillem; Irigoien, Xabier; Santiago, Josu; Murua, Hilario; Fraile, Igaratza; Chifflet, Marina; Goikoetxea, Nerea; Sagarminaga, Yolanda; Aumont, Olivier; Bopp, Laurent; Herrera, Miguel; Marc Fromentin, Jean; Bonhomeau, Sylvain

    2015-03-01

    In spite of its pivotal role in future implementations of the Ecosystem Approach to Fisheries Management, current knowledge about tuna habitat preferences remains fragmented and heterogeneous, because it relies mainly on regional or local studies that have used a variety of approaches making them difficult to combine. Therefore in this study we analyse data from six tuna species in the Pacific, Atlantic and Indian Oceans in order to provide a global, comparative perspective of habitat preferences. These data are longline catch per unit effort from 1958 to 2007 for albacore, Atlantic bluefin, southern bluefin, bigeye, yellowfin and skipjack tunas. Both quotient analysis and Generalised Additive Models were used to determine habitat preference with respect to eight biotic and abiotic variables. Results confirmed that, compared to temperate tunas, tropical tunas prefer warm, anoxic, stratified waters. Atlantic and southern bluefin tuna prefer higher concentrations of chlorophyll than the rest. The two species also tolerate most extreme sea surface height anomalies and highest mixed layer depths. In general, Atlantic bluefin tuna tolerates the widest range of environmental conditions. An assessment of the most important variables determining fish habitat is also provided.

  8. Urban Areas. Habitat Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of an overview, teaching guides and student data sheets for three activities, and a poster. The overview discusses the city as an ecosystem, changing urban habitats, urban wildlife habitats, values of wildlife, habitat management, and…

  9. Biodiversity: Habitat Suitability

    EPA Science Inventory

    Habitat suitability quantifies the relationship between species and habitat, and is evaluated according to the species’ fitness (i.e. proportion of birth rate to death rate). Even though it might maximize evolutionary success, species are not always in habitat that optimizes fit...

  10. NARSTO EMISSION INVENTORY ASSESSMENT

    EPA Science Inventory

    The NARSTO Emission Inventory Committee has been pursuing enhancement of the emission inventory program for North American countries--Canada, Mexico, and the United States. With the completion of the NARSTO Ozone and Particulate Matter Assessments, it was recognized that emissio...

  11. Force Concept Inventory.

    ERIC Educational Resources Information Center

    Hestenes, David; And Others

    1992-01-01

    Reports the rationale, design, validation, and uses of the "Force Concept Inventory," an instrument to assess the students' beliefs on force. Includes results and implications of two studies that compared the inventory with the "Mechanics Baseline." Includes a copy of the instrument. (MDH)

  12. Plants used in artisanal fisheries on the Western Mediterranean coasts of Italy

    PubMed Central

    2013-01-01

    Background Artisanal fisheries in the Mediterranean, especially in Italy, have been poorly investigated. There is a long history of fishing in this region, and it remains an important economic activity in many localities. Our research entails both a comprehensive review of the relevant literature and 58 field interviews with practitioners on plants used in fishing activities along the Western Mediterranean Italian coastal regions. The aims were to record traditional knowledge on plants used in fishery in these regions and to define selection criteria for plant species used in artisanal fisheries, considering ecology and intrinsic properties of plants, and to discuss the pattern of diffusion of shared uses in these areas. Methods Information was gathered both from a general review of ethnobotanical literature and from original data. A total of 58 semi-structured interviews were carried out in Liguria, Latium, Campania and Sicily (Italy). Information on plant uses related to fisheries were collected and analyzed through a chi-square residual analysis and the correspondence analysis in relation to habitat, life form and chorology. Results A total of 60 plants were discussed as being utilized in the fisheries of the Western Italian Mediterranean coastal regions, with 141 different uses mentioned. Of these 141 different uses, 32 are shared among different localities. A multivariate statistical analysis was performed on the entire dataset, resulting in details about specific selection criteria for the different usage categories (plants have different uses that can be classified into 11 main categories). In some uses, species are selected for their features (e.g., woody), or habitat (e.g., riverine), etc. The majority of uses were found to be obsolete (42%) and interviews show that traditional fishery knowledge is in decline. There are several reasons for this, such as climatic change, costs, reduction of fish stocks, etc. Conclusions Our research correlates functional

  13. Hyperspectral analysis of columbia spotted frog habitat

    USGS Publications Warehouse

    Shive, J.P.; Pilliod, D.S.; Peterson, C.R.

    2010-01-01

    Wildlife managers increasingly are using remotely sensed imagery to improve habitat delineations and sampling strategies. Advances in remote sensing technology, such as hyperspectral imagery, provide more information than previously was available with multispectral sensors. We evaluated accuracy of high-resolution hyperspectral image classifications to identify wetlands and wetland habitat features important for Columbia spotted frogs (Rana luteiventris) and compared the results to multispectral image classification and United States Geological Survey topographic maps. The study area spanned 3 lake basins in the Salmon River Mountains, Idaho, USA. Hyperspectral data were collected with an airborne sensor on 30 June 2002 and on 8 July 2006. A 12-year comprehensive ground survey of the study area for Columbia spotted frog reproduction served as validation for image classifications. Hyperspectral image classification accuracy of wetlands was high, with a producer's accuracy of 96 (44 wetlands) correctly classified with the 2002 data and 89 (41 wetlands) correctly classified with the 2006 data. We applied habitat-based rules to delineate breeding habitat from other wetlands, and successfully predicted 74 (14 wetlands) of known breeding wetlands for the Columbia spotted frog. Emergent sedge microhabitat classification showed promise for directly predicting Columbia spotted frog egg mass locations within a wetland by correctly identifying 72 (23 of 32) of known locations. Our study indicates hyperspectral imagery can be an effective tool for mapping spotted frog breeding habitat in the selected mountain basins. We conclude that this technique has potential for improving site selection for inventory and monitoring programs conducted across similar wetland habitat and can be a useful tool for delineating wildlife habitats. ?? 2010 The Wildlife Society.

  14. Clackamas/Hood River Habitat Enhancement Program, 1987 Annual Report.

    SciTech Connect

    MacDonald, Ken; Cain, Thomas C.; Heller, David A.

    1988-03-01

    Fisheries habitat improvement work is being done on priority drainages in the Clackamas and Rood River sub-basins under program measure 704(c), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program. This report describes the work completed in 1987 for Bonneville Power Administration (BPA) project number 84-11, the Clackamas/Hood River Habitat Enhancement Program. The program is composed of six projects: Collawash River Habitat Improvement Project; Collawash River Falls Passage Improvement Project, Oak Grove Fork Habitat Improvement Project; Lake Branch/West Fork Hood River Habitat Improvement Project; Fifteenmile Creek Habitat Improvement Project; and Abundance, Behavior, and Habitat Utilization by Coho Salmon and Steelhead Trout in Fish Creek, Oregon, As Influenced by Habitat Enhancement. This ongoing program was initiated in 1984, although some of the projects were begun with BPA funding support as early as 1983. The projects are complemented by a variety of habitat improvement and management activities funded from a variety of Forest Service sources. This report describes the activities implemented for five of the six projects. A separate annual report on the 1987 habitat improvement and monitoring/evaluation efforts in the Fish Creek drainage has been prepared. Species for management emphasis include spring chinook and coho salmon, and summer and winter steelhead trout. Project work in 1987 primarily focused on increasing the quantity and quality of available rearing habitat, and improving access at passage barriers. The underlying theme of the improvement work has been to increase habitat diversity through the introduction of ''structure''. Structure provided by logs and boulders serves to deflect, pond, or otherwise disrupt flow patterns within a stream channel. This alteration of flow patterns results in formation of an increased number of habitat niches (i.e. pools, glides, alcoves, etc. ) in which a

  15. Interactive Inventory Monitoring

    NASA Technical Reports Server (NTRS)

    Garud, Sumedha

    2013-01-01

    Method and system for monitoring present location and/or present status of a target inventory item, where the inventory items are located on one or more inventory shelves or other inventory receptacles that communicate with an inventory base station through use of responders such as RFIDs. A user operates a hand held interrogation and display (lAD) module that communicates with, or is part of the base station to provide an initial inquiry. lnformation on location(s) of the larget invenlory item is also indicated visibly and/or audibly on the receptacle(s) for the user. Status information includes an assessment of operation readiness and a time, if known, that the specified inventory item or class was last removed or examined or modified. Presentation of a user access level may be required for access to the target inventgory item. Another embodiment provides inventory informatin for a stack as a sight-impaired or hearing-impaired person adjacent to that stack.

  16. Lake Roosevelt Fisheries Evaluation Program, Part A; Fisheries Creel Survey and Population Status Analysis, 1998 Annual Report.

    SciTech Connect

    Spotts, Jim; Shields, John; Underwood, Keith

    2002-05-01

    The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. Creel and angler surveys estimated that anglers made 196,775 trips to Lake Roosevelt during 1998, with an economic value of $8.0 million dollars, based on the Consumer Price Index (CPI). In 1998 it was estimated that 9,980 kokanee salmon, 226,809 rainbow trout, 119,346 walleye, and over 14,000 smallmouth bass and other species were harvested. Creel data indicates that hatchery reared rainbow trout contribute substantially to the Lake Roosevelt fishery. The contribution of kokanee salmon to the creel has not met the expectations of fishery managers to date, and is limited by entrainment from the reservoir, predation, and possible fish culture obstacles. The 1998 Lake Roosevelt Fisheries Creel and Population Analysis Annual Report includes analyses of the relative abundance of fish species, and reservoir habitat relationships (1990-1998). Fisheries surveys (1990-1998) indicate that walleye and burbot populations appear to be increasing, while yellow perch, a preferred walleye prey species, and other prey species are decreasing in abundance. The long term decreasing abundance of yellow perch and other prey species are suspected to be the result of the lack of suitable multiple reservoir elevation spawning and rearing refugia for spring spawning reservoir prey species, resulting from seasonal spring-early summer reservoir elevation manipulations, and walleye predation. Reservoir water management is both directly, and indirectly influencing the success of mitigation hatchery production of kokanee salmon and rainbow trout. Tag return data suggested excessive entrainment occurred in

  17. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2009

    SciTech Connect

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, John R.; Dawley, Earl M.; Coleman, Andre M.

    2010-08-01

    This report describes the 2009 research conducted under the U.S. Army Corps of Engineers (USACE or Corps) project EST-09-P-01, titled “Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary.” The research was conducted by the Pacific Northwest National Laboratory, Marine Science Laboratory and Hydrology Group, in partnership with the University of Washington, School of Aquatic and Fishery Sciences, Columbia Basin Research, and Earl Dawley (NOAA Fisheries, retired). This Columbia River Fish Mitigation Program project, referred to as “Salmonid Benefits,” was started in FY 2009 to evaluate the state-of-the science regarding the ability to quantify the benefits to listed salmonids1 of habitat restoration actions in the lower Columbia River and estuary.

  18. Timber inventory using Landsat

    NASA Technical Reports Server (NTRS)

    Strahler, A. H.

    1984-01-01

    The results of recent efforts to apply Landsat MSS imagery, in concert with topological maps, to forestry timber inventories via the FOCIS program are reported. FOCIS (Forests Classification and Inventory System) was defined for inventorying the lumber volume of coniferous tree types in rugged terrain regions. Data from four bands serve as input for unsupervised clustering and iterative labeling of the elevation, slope angle, and subregions of interest. Simulated photographic maps are generated which serve as overlays for regular maps for assessing timber harvests and sales goals. Sample procedures followed in mapping the Eldorado region forests in the Sierra Nevada mountains are discussed.

  19. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679 Wildlife and... 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open...

  20. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679... Table 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area...

  1. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679... Table 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area...

  2. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679... Table 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area...

  3. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679... Table 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area...

  4. Characterizing Fishing Effort and Spatial Extent of Coastal Fisheries

    PubMed Central

    Stewart, Kelly R.; Lewison, Rebecca L.; Dunn, Daniel C.; Bjorkland, Rhema H.; Kelez, Shaleyla; Halpin, Patrick N.; Crowder, Larry B.

    2010-01-01

    Biodiverse coastal zones are often areas of intense fishing pressure due to the high relative density of fishing capacity in these nearshore regions. Although overcapacity is one of the central challenges to fisheries sustainability in coastal zones, accurate estimates of fishing pressure in coastal zones are limited, hampering the assessment of the direct and collateral impacts (e.g., habitat degradation, bycatch) of fishing. We compiled a comprehensive database of fishing effort metrics and the corresponding spatial limits of fisheries and used a spatial analysis program (FEET) to map fishing effort density (measured as boat-meters per km2) in the coastal zones of six ocean regions. We also considered the utility of a number of socioeconomic variables as indicators of fishing pressure at the national level; fishing density increased as a function of population size and decreased as a function of coastline length. Our mapping exercise points to intra and interregional ‘hotspots’ of coastal fishing pressure. The significant and intuitive relationships we found between fishing density and population size and coastline length may help with coarse regional characterizations of fishing pressure. However, spatially-delimited fishing effort data are needed to accurately map fishing hotspots, i.e., areas of intense fishing activity. We suggest that estimates of fishing effort, not just target catch or yield, serve as a necessary measure of fishing activity, which is a key link to evaluating sustainability and environmental impacts of coastal fisheries. PMID:21206903

  5. 75 FR 9864 - Fisheries of the Caribbean, Gulf of Mexico and South Atlantic; Comprehensive Ecosystem-Based...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... Region (Coral FMP); the FMP for the Dolphin and Wahoo Fishery off the Atlantic States (Dolphin and Wahoo... Migratory Pelagics, Golden Crab, Spiny Lobster, Dolphin-Wahoo, and Snapper-Grouper FMPs to provide spatial... coastal migratory pelagics; coral, coral reefs, and live/hard bottom habitats; dolphin and wahoo;...

  6. Luring anglers to enhance fisheries.

    PubMed

    Martin, Dustin R; Pope, Kevin L

    2011-05-01

    Current fisheries management is, unfortunately, reactive rather than proactive to changes in fishery characteristics. Furthermore, anglers do not act independently on waterbodies, and thus, fisheries are complex socio-ecological systems. Proactive management of these complex systems necessitates an approach--adaptive fisheries management--that allows learning to occur simultaneously with management. A promising area for implementation of adaptive fisheries management is the study of luring anglers to or from specific waterbodies to meet management goals. Purposeful manipulation of anglers, and its associated field of study, is nonexistent in past management. Evaluation of different management practices (i.e., hypotheses) through an iterative adaptive management process should include both a biological and sociological survey to address changes in fish populations and changes in angler satisfaction related to changes in management. We believe adaptive management is ideal for development and assessment of management strategies targeted at angler participation. Moreover these concepts and understandings should be applicable to other natural resource users such as hunters and hikers. PMID:20965644

  7. 75 FR 319 - Endangered and Threatened Species: Proposed Rule To Revise the Critical Habitat Designation for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ...We, the National Marine Fisheries Service (NMFS), propose revising the current critical habitat for the leatherback sea turtle (Dermochelys coriacea) by designating additional areas within the Pacific Ocean. Specific areas proposed for designation include two adjacent marine areas totaling approximately 46,100 square miles (119,400 square km) stretching along the California coast from Point......

  8. Post-breeding season distribution of black-footed and Laysan albatrosses satellite-tagged in Alaska: Inter-specific differences in spatial overlap with North Pacific fisheries

    USGS Publications Warehouse

    Fischer, K.N.; Suryan, R.M.; Roby, D.D.; Balogh, G.R.

    2009-01-01

    We integrated satellite-tracking data from black-footed albatrosses (Phoebastria nigripes; n = 7) and Laysan albatrosses captured in Alaska (Phoebastria immutabilis; n = 18) with data on fishing effort and distribution from commercial fisheries in the North Pacific in order to assess potential risk from bycatch. Albatrosses were satellite-tagged at-sea in the Central Aleutian Islands, Alaska, and tracked during the post-breeding season, July-October 2005 and 2006. In Alaskan waters, fishing effort occurred almost exclusively within continental shelf and slope waters. Potential fishery interaction for black-footed albatrosses, which most often frequented shelf-slope waters, was greatest with sablefish (Anoplopoma fimbria) longline and pot fisheries and with the Pacific halibut (Hippoglossus stenolepsis) longline fishery. In contrast, Laysan albatrosses spent as much time over oceanic waters beyond the continental shelf and slope, thereby overlapping less with fisheries in Alaska than black-footed albatrosses. Regionally, Laysan albatrosses had the greatest potential fishery interaction with the Atka mackerel (Pleurogrammus monopterygius) trawl fishery in the Western Aleutian Islands and the sablefish pot fishery in the Central Aleutian Islands. Black-footed albatrosses ranged further beyond Alaskan waters than Laysan albatrosses, overlapping west coast Canada fisheries and pelagic longline fisheries in the subarctic transition domain; Laysan albatrosses remained north of these pelagic fisheries. Due to inter-specific differences in oceanic distribution and habitat use, the overlap of fisheries with the post-breeding distribution of black-footed albatrosses is greater than that for Laysan albatrosses, highlighting inter-specific differences in potential vulnerability to bycatch and risk of population-level impacts from fisheries. ?? 2008 Elsevier Ltd.

  9. Duck Valley Habitat Enhancement and Protection, 2000 Annual Report.

    SciTech Connect

    Dodson, Guy; Pero, Vincent

    2000-01-01

    The Duck Valley Indian Reservations' Habitat Enhancement project is an ongoing project designed to enhance and protect the critical riparian areas, natural springs, and native fish spawning areas on the Reservation. The project was begun in 1997 with the hiring of a fisheries biologist and the creation of a new department for the Tribes. The project's goals are to protect and enhance the springs, Owyhee River, its tributaries, and to develop a database that can be used by other fisheries professionals which includes information on water quality and fish composition, health, abundance, and genetic makeup. One habitat portion of the project is a focus on protection the numerous springs that provide clean, cool water to the Owyhee River. This will be accomplished through enclosure fences of the spring heads and water troughs to provide clean cool drinking water for wildlife and livestock. Another habitat portion of the project involves protecting headwater areas of streams with native fish populations. This is accomplished through enclosure fencing and riparian plantings on any eroded or degraded banks in the enclosure area. Finally, we monitor and evaluate the areas protected and enhanced. This is accomplished through biological sampling for temperature, Oxygen, sedimentation, and measurements of water depth, bank height and undercut, and width of stream. With the habitat and biological indices we will be able to evaluate how well protective measures are doing, and where to focus future efforts.

  10. The Southern Oscillation, Hypoxia, and the Eastern Pacific Tuna Fishery

    NASA Astrophysics Data System (ADS)

    Webster, D.; Kiefer, D.; Lam, C. H.; Harrison, D. P.; Armstrong, E. M.; Hinton, M.; Luo, L.

    2012-12-01

    The Eastern Pacific tuna fishery, which is one of the world's major fisheries, covers thousands of square kilometers. The vessels of this fishery are registered in more than 30 nations and largely target bigeye (Thunnus obesus), skipjack (Katsuwonus pelamis), and yellowfin (T. albacores) tuna. In both the Pelagic Habitat Analysis Module project, which is sponsored by NASA, and the Fishscape project, which is sponsored by NSF, we have attempted to define the habitat of the three species by matching a 50 year time series on fish catch and effort with oceanographic information obtained from satellite imagery and from a global circulation model. The fishery time series, which was provided by the Inter-American Tropical Tuna Commission, provided spatial maps of catch and effort at monthly time steps; the satellite imagery of the region consisted of sea surface temperature, chlorophyll, and height from GHRSST, SEAWiFS, and AVISO products, and the modeled flow field at selected depths was output from ECCO-92 simulations from 1992 to present. All information was integrated and analyzed within the EASy marine geographic information system. This GIS will also provides a home for the Fishscape spatial simulation model of the coupled dynamics of the ocean, fish, fleets, and markets. This model will then be applied to an assessment of the potential ecological and economic impacts of climate change, technological advances in fleet operations, and increases in fuel costs. We have determined by application of EOF analysis that the ECCO-2 simulation of sea surface height fits well with that of AVISO imagery; thus, if driven properly by predictions of future air-sea exchange, the model should provide good estimates of circulation patterns. We have also found that strong El Nino events lead to strong recruitment of all three species and strong La Nina events lead to weak recruitment. Finally, we have found that the general spatial distribution of the Eastern Pacific fishing grounds

  11. Fishes and fisheries in tropical estuaries: The last 10 years

    NASA Astrophysics Data System (ADS)

    Blaber, S. J. M.

    2013-12-01

    Since 2002 there has been an increase in knowledge of many aspects of the biology and ecology of tropical estuarine fishes, as well as significant changes to many estuarine fisheries. Analyses of literature databases (2002-2012) show that: of the c. 600 relevant papers, 52% are primarily related to ecology, 11% to conservation, 11% to anthropogenic and pollution effects on fishes, 9% to fisheries, 7% to aquaculture, 4% to study techniques, and 1% each to fish larvae, effects of fishing, taxonomy, climate change, evolution and genetics. In terms of geographic spread 17% are from North America, 15% from south Asia, 14% from the Caribbean, 13% from Australasia, 12% from Africa and 9% each from South America and SE Asia. Research papers came from 50 countries of which the dominant were USA (15%), India (12%), Australia (11%) and Brazil (7%). Increasing numbers of studies in West Africa, SE and South Asia and South America have increased basic knowledge of the ecology of estuarine fish faunas. Increases in understanding relate to: roles of salinity, turbidity and habitat diversity; connectivity between habitats; water flow; ecological drivers of spatial variability; scale dependent variation; thermal tolerances; movement patterns; food webs; larval adaptations; and the viability of areas heavily impacted by human activities. New reviews both challenge and support different aspects of the estuarine dependence paradigm - still perhaps one of the main research issues - and the protective function of estuaries and mangroves for juvenile fishes has received attention in relation to e.g. predation risks and fisheries. There have also been significant advances in the use of guilds and biodiversity models. Fishing pressures have continued unabated in most tropical estuaries and are summarised and management issues discussed. Understanding of the relationships between fisheries production and mangroves has advanced and significant differences have emerged between Indo

  12. 50 CFR 660.384 - Recreational fishery management measures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Recreational fishery management measures. 660.384 Section 660.384 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West Coast Groundfish Fisheries §...

  13. 50 CFR 660.130 - Trawl fishery-management measures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Trawl fishery-management measures. 660.130 Section 660.130 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West Coast Groundfish-Limited Entry Trawl Fisheries §...

  14. 50 CFR 300.25 - Eastern Pacific fisheries management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 11 2012-10-01 2012-10-01 false Eastern Pacific fisheries management. 300... FISHERIES REGULATIONS Eastern Pacific Tuna Fisheries § 300.25 Eastern Pacific fisheries management. (a) Notification of IATTC recommendations and resolutions. Fishery management resolutions made by the IATTC...

  15. 50 CFR 300.25 - Eastern Pacific fisheries management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Eastern Pacific fisheries management. 300... FISHERIES REGULATIONS Pacific Tuna Fisheries § 300.25 Eastern Pacific fisheries management. (a) Notification of IATTC recommendations and resolutions. Fishery management resolutions made by the IATTC...

  16. 50 CFR 660.130 - Trawl fishery-management measures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Trawl fishery-management measures. 660.130 Section 660.130 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West Coast Groundfish-Limited Entry Trawl Fisheries...

  17. 50 CFR 300.25 - Eastern Pacific fisheries management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Eastern Pacific fisheries management. 300... FISHERIES REGULATIONS Eastern Pacific Tuna Fisheries § 300.25 Eastern Pacific fisheries management. (a) Notification of IATTC recommendations and resolutions. Fishery management resolutions made by the IATTC...

  18. 50 CFR 300.25 - Eastern Pacific fisheries management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Eastern Pacific fisheries management. 300... FISHERIES REGULATIONS Eastern Pacific Tuna Fisheries § 300.25 Eastern Pacific fisheries management. (a) Notification of IATTC recommendations and resolutions. Fishery management resolutions made by the IATTC...

  19. 50 CFR 600.511 - Fishery closure procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Fishery closure procedures. 600.511 Section 600.511 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fishery closure procedures. (a) Activity Codes 1 and 2 for a fishery are automatically canceled in...

  20. 50 CFR 300.105 - Initiating a new fishery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 11 2012-10-01 2012-10-01 false Initiating a new fishery. 300.105 Section 300.105 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Antarctic Marine Living Resources § 300.105 Initiating a new fishery. (a) A new fishery,...

  1. 50 CFR 300.105 - Initiating a new fishery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 11 2014-10-01 2014-10-01 false Initiating a new fishery. 300.105 Section 300.105 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Antarctic Marine Living Resources § 300.105 Initiating a new fishery. (a) A new fishery,...

  2. 50 CFR 600.511 - Fishery closure procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Fishery closure procedures. 600.511 Section 600.511 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fishery closure procedures. (a) Activity Codes 1 and 2 for a fishery are automatically canceled in...

  3. 50 CFR 660.715 - Harpoon fishery. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Harpoon fishery. 660.715 Section 660.715 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES Highly Migratory Fisheries §...

  4. 50 CFR 660.715 - Harpoon fishery. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Harpoon fishery. 660.715 Section 660.715 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES Highly Migratory Fisheries §...

  5. 50 CFR 600.511 - Fishery closure procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Fishery closure procedures. 600.511 Section 600.511 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fishery closure procedures. (a) Activity Codes 1 and 2 for a fishery are automatically canceled in...

  6. 50 CFR 660.715 - Harpoon fishery. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Harpoon fishery. 660.715 Section 660.715 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES Highly Migratory Fisheries §...

  7. 50 CFR 600.511 - Fishery closure procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Fishery closure procedures. 600.511 Section 600.511 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fishery closure procedures. (a) Activity Codes 1 and 2 for a fishery are automatically canceled in...

  8. 50 CFR 300.105 - Initiating a new fishery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Initiating a new fishery. 300.105 Section 300.105 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Antarctic Marine Living Resources § 300.105 Initiating a new fishery. (a) A new fishery,...

  9. 50 CFR 300.105 - Initiating a new fishery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Initiating a new fishery. 300.105 Section 300.105 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Antarctic Marine Living Resources § 300.105 Initiating a new fishery. (a) A new fishery,...

  10. 50 CFR 600.511 - Fishery closure procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Fishery closure procedures. 600.511 Section 600.511 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fishery closure procedures. (a) Activity Codes 1 and 2 for a fishery are automatically canceled in...

  11. 50 CFR 660.715 - Harpoon fishery. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Harpoon fishery. 660.715 Section 660.715 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES Highly Migratory Fisheries §...

  12. 50 CFR 660.715 - Harpoon fishery. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Harpoon fishery. 660.715 Section 660.715 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES Highly Migratory Fisheries §...

  13. 50 CFR 665.260 - Hawaii precious coral fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Hawaii precious coral fisheries. 665.260 Section 665.260 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.260 Hawaii precious coral fisheries....

  14. 50 CFR 665.260 - Hawaii precious coral fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Hawaii precious coral fisheries. 665.260 Section 665.260 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.260 Hawaii precious coral fisheries....

  15. 50 CFR 665.660 - PRIA precious coral fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false PRIA precious coral fisheries. 665.660 Section 665.660 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.660 PRIA precious coral fisheries....

  16. 50 CFR 665.660 - PRIA precious coral fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false PRIA precious coral fisheries. 665.660 Section 665.660 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.660 PRIA precious coral fisheries....

  17. 50 CFR 665.460 - Mariana precious coral fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Mariana precious coral fisheries. 665.460 Section 665.460 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Archipelago Fisheries § 665.460 Mariana precious coral fisheries....

  18. 50 CFR 665.460 - Mariana precious coral fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Mariana precious coral fisheries. 665.460 Section 665.460 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Archipelago Fisheries § 665.460 Mariana precious coral fisheries....

  19. 50 CFR 665.440 - Mariana crustacean fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Mariana crustacean fisheries. 665.440 Section 665.440 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Archipelago Fisheries § 665.440 Mariana crustacean fisheries....

  20. 50 CFR 665.240 - Hawaii crustacean fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Hawaii crustacean fisheries. 665.240 Section 665.240 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.240 Hawaii crustacean fisheries....

  1. 50 CFR 665.640 - PRIA crustacean fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false PRIA crustacean fisheries. 665.640 Section 665.640 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.640 PRIA crustacean fisheries....

  2. 50 CFR 665.240 - Hawaii crustacean fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Hawaii crustacean fisheries. 665.240 Section 665.240 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.240 Hawaii crustacean fisheries....

  3. 50 CFR 665.140 - American Samoa Crustacean Fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false American Samoa Crustacean Fisheries. 665.140 Section 665.140 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.140 American Samoa Crustacean Fisheries....

  4. 50 CFR 665.640 - PRIA crustacean fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false PRIA crustacean fisheries. 665.640 Section 665.640 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.640 PRIA crustacean fisheries....

  5. 50 CFR 665.440 - Mariana crustacean fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Mariana crustacean fisheries. 665.440 Section 665.440 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Archipelago Fisheries § 665.440 Mariana crustacean fisheries....

  6. 50 CFR 665.140 - American Samoa Crustacean Fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false American Samoa Crustacean Fisheries. 665.140 Section 665.140 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.140 American Samoa Crustacean Fisheries....

  7. Inventory count strategies.

    PubMed

    Springer, W H

    1996-02-01

    An important principle of accounting is that asset inventory needs to be correctly valued to ensure that the financial statements of the institution are accurate. Errors is recording the value of ending inventory in one fiscal year result in errors to published financial statements for that year as well as the subsequent fiscal year. Therefore, it is important that accurate physical counts be periodically taken. It is equally important that any system being used to generate inventory valuation, reordering or management reports be based on consistently accurate on-hand balances. At the foundation of conducting an accurate physical count of an inventory is a comprehensive understanding of the process coupled with a written plan. This article presents a guideline of the physical count processes involved in a traditional double-count approach. PMID:10165241

  8. Software Document Inventory Program

    NASA Technical Reports Server (NTRS)

    Merwarth, P. D.

    1984-01-01

    Program offers ways to file and locate sources of reference. DOCLIB system consists of two parts to serve needs of two type of users: general user and librarian. DOCLIB systems provides user with interactive, menudriven document inventory capability.

  9. Health protection well inventory

    SciTech Connect

    Janssen, J.

    1989-03-01

    This report is an inventory of the wells contained in Health Protection (HP) documents since the startup of the Savannah River Plan (SRP) and includes wells monitored by special request and SRL research wells.

  10. Shuttle Inventory Management

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Inventory Management System (SIMS) consists of series of integrated support programs providing supply support for both Shuttle program and Kennedy Space Center base opeations SIMS controls all supply activities and requirements from single point. Programs written in COBOL.

  11. TOXICS RELEASE INVENTORY (TRI)

    EPA Science Inventory

    The Toxics Release Inventory (TRI) site is designed to provide information on toxic chemical releases including collected data, guidance documents, program planning, background, history, and, program contacts, among other things. The data included in this homepage have been submi...

  12. NATIONAL HEALTH PROVIDER INVENTORY

    EPA Science Inventory

    The National Health Provider Inventory provides data on services, location, staff, capacity, and other characteristics of selected health care providers in the United States. Information is collected via mail questionnaire with telephone follow up to all providers (100% census) o...

  13. 75 FR 13081 - Fisheries off West Coast States; Pacific Coast Groundfish Fishery; Trawl Rationalization Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... National Oceanic and Atmospheric Administration RIN 0648-XRO1 Fisheries off West Coast States; Pacific Coast Groundfish Fishery; Trawl Rationalization Program AGENCY: National Marine Fisheries Service (NMFS... trawl rationalization program that would affect the limited entry trawl fishery of the Pacific...

  14. 77 FR 6785 - Proposed Information Collection; Comment Request; List of Gear by Fisheries and Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... Gear by Fisheries and Fishery Management Council AGENCY: National Oceanic and Atmospheric... Secretary takes no action to prohibit such a fishery or use of such a gear, the person may proceed. II...-Stevens Fishery and Conservation and Management Act (Magnuson-Stevens Act) [16 U.S.C. 1801 et seq.],...

  15. 78 FR 65888 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Trip Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... Northeastern United States; Northeast Multispecies Fishery; Trip Limit Adjustments for the Common Pool Fishery... common pool fishery to catch more of its quota for these stocks. DATES: Effective October 30, 2013, through April 30, 2014. FOR FURTHER INFORMATION CONTACT: Liz Sullivan, Fishery Management Specialist,...

  16. 78 FR 11788 - Atlantic Highly Migratory Species; Atlantic Bluefin Tuna Fisheries; General Category Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... Species Fishery Management Plan (Consolidated HMS FMP) (71 FR 58058, October 2, 2006) and subsequent... Species; Atlantic Bluefin Tuna Fisheries; General Category Fishery AGENCY: National Marine Fisheries... tuna (BFT) until the General category reopens on June 1, 2013. This action is being taken to...

  17. 77 FR 3637 - Atlantic Highly Migratory Species; Atlantic Bluefin Tuna Fisheries; General Category Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... Highly Migratory Species Fishery Management Plan (Consolidated HMS FMP) (71 FR 58058, October 2, 2006... Species; Atlantic Bluefin Tuna Fisheries; General Category Fishery AGENCY: National Marine Fisheries... tuna (BFT) until the General category reopens on June 1, 2012. This action is being taken to...

  18. 75 FR 57249 - Fisheries of the Northeastern United States; Northeast (NE) Multispecies Fishery; Charter/Party...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... National Oceanic and Atmospheric Administration 50 CFR Part 648 RIN 0648-BA09 Fisheries of the Northeastern United States; Northeast (NE) Multispecies Fishery; Charter/Party Fishery Control Date AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce....

  19. 75 FR 20550 - Fisheries of the Northeastern United States; Atlantic Herring Fishery; Specifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... National Oceanic and Atmospheric Administration 50 CFR Part 648 RIN 0648-AY14 Fisheries of the Northeastern United States; Atlantic Herring Fishery; Specifications AGENCY: National Marine Fisheries Service (NMFS... comments. SUMMARY: NMFS proposes 2010-2012 specifications for the Atlantic herring (herring) fishery....

  20. 76 FR 15222 - Hawaii Bottomfish and Seamount Groundfish Fisheries; Modification of Fishery Closures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... (76 FR 8330). Briefly, reducing the advance notification period for a closure of the Deep 7 bottomfish... Seamount Groundfish Fisheries; Modification of Fishery Closures AGENCY: National Marine Fisheries Service... Islands (MHI) Deep-7 bottomfish fishery from 14 to 7 days. The intent of the change is to...

  1. 77 FR 58969 - Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... Fishery Management Plan, which was published on July 26, 2000 (65 FR 45844), provided a mechanism for... National Oceanic and Atmospheric Administration 50 CFR Part 648 RIN 0648-XC235 Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer AGENCY: National Marine Fisheries Service...

  2. 78 FR 54399 - Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... Fishery Management Plan, which was published on July 26, 2000 (65 FR 45844), provided a mechanism for... National Oceanic and Atmospheric Administration 50 CFR Part 648 RIN 0648-XC815 Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer AGENCY: National Marine Fisheries Service...

  3. 78 FR 25865 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2013 Management Measures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ...Through this final rule NMFS establishes fishery management measures for the 2013 ocean salmon fisheries off Washington, Oregon, and California and the 2014 salmon seasons opening earlier than May 1, 2014. Specific fishery management measures vary by fishery and by area. The measures establish fishing areas, seasons, quotas, legal gear, recreational fishing days and catch limits, possession......

  4. Hypoxia, Nitrogen, and Fisheries: Integrating Effects Across Local and Global Landscapes

    NASA Astrophysics Data System (ADS)

    Breitburg, Denise L.; Hondorp, Darryl W.; Davias, Lori A.; Diaz, Robert J.

    2009-01-01

    Anthropogenic nutrient enrichment and physical characteristics result in low dissolved oxygen concentrations (hypoxia) in estuaries and semienclosed seas throughout the world. Published research indicates that within and near oxygen-depleted waters, finfish and mobile macroinvertebrates experience negative effects that range from mortality to altered trophic interactions. Chronic exposure to hypoxia and fluctuating oxygen concentrations impair reproduction, immune responses, and growth. We present an analysis of hypoxia, nitrogen loadings, and fisheries landings in 30 estuaries and semienclosed seas worldwide. Our results suggest that hypoxia does not typically reduce systemwide fisheries landings below what would be predicted from nitrogen loadings, except where raw sewage is released or particularly sensitive species lose critical habitat. A number of compensatory mechanisms limit the translation of local-scale effects of hypoxia to the scale of the whole system. Hypoxia is, however, a serious environmental challenge that should be considered in fisheries management strategies and be a direct target of environmental restoration.

  5. Fishery consequences of marine reserves: short-term pain for longer-term gain.

    PubMed

    Hopf, Jess K; Jones, Geoffrey P; Williamson, David H; Connolly, Sean R

    2016-04-01

    Marine reserves are often established in areas that support fisheries. Larval export from reserves is argued to help compensate for the loss of fishable habitat; however, previous modeling studies have focused on long-term equilibrium outcomes. We examined the transient consequences of reserve establishment for fished metapopulations, considering both a well-mixed larval pool and a spatially explicit model based on a coral trout (Plectropomus spp.) metapopulation. When fishing pressure was reallocated relative to the area protected, yields decreased initially, then recovered, and ultimately exceeded pre-reserve levels. However, recovery time was on the order of several years to decades. If fishing pressure intensified to maintain pre-reserve yields, reserves were sometimes unable to support the increased mortality and the metapopulation collapsed. This was more likely when reserves were small, or located peripherally within the metapopulation. Overall, reserves can achieve positive conservation and fishery benefits, but fisheries management complementary to reserve implementation is essential. PMID:27411253

  6. Surface Habitat Systems

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  7. 19 CFR 4.96 - Fisheries.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Fisheries. 4.96 Section 4.96 Customs Duties U.S... FOREIGN AND DOMESTIC TRADES General § 4.96 Fisheries. (a) As used in this section: (1) The term... engaged only in the North Pacific halibut fishery and which is therefore entitled to the...

  8. 19 CFR 4.96 - Fisheries.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Fisheries. 4.96 Section 4.96 Customs Duties U.S... FOREIGN AND DOMESTIC TRADES General § 4.96 Fisheries. (a) As used in this section: (1) The term... engaged only in the North Pacific halibut fishery and which is therefore entitled to the...

  9. 2011 Los Alamos National Laboratory Riparian Inventory Results

    SciTech Connect

    Norris, Elizabeth J.; Hansen, Leslie A.; Hathcock, Charles D.; Keller, David C.; Zemlick, Catherine M.

    2012-03-29

    A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed but no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.

  10. Mesophotic depths as refuge areas for fishery-targeted species on coral reefs

    NASA Astrophysics Data System (ADS)

    Lindfield, Steven J.; Harvey, Euan S.; Halford, Andrew R.; McIlwain, Jennifer L.

    2016-03-01

    Coral reefs are subjected to unprecedented levels of disturbance with population growth and climate change combining to reduce standing coral cover and stocks of reef fishes. Most of the damage is concentrated in shallow waters (<30 m deep) where humans can comfortably operate and where physical disturbances are most disruptive to marine organisms. Yet coral reefs can extend to depths exceeding 100 m, potentially offering refuge from the threats facing shallower reefs. We deployed baited remote underwater stereo-video systems (stereo-BRUVs) at depths of 10-90 m around the southern Mariana Islands to investigate whether fish species targeted by fishing in the shallows may be accruing benefits from being at depth. We show that biomass, abundance and species richness of fishery-targeted species increased from shallow reef areas to a depth of 60 m, whereas at greater depths, a lack of live coral habitat corresponded to lower numbers of fish. The majority of targeted species were found to have distributions that ranged from shallow depths (10 m) to depths of at least 70 m, emphasising that habitat, not depth, is the limiting factor in their vertical distribution. While the gradient of abundance and biomass versus depth was steepest for predatory species, the first species usually targeted by fishing, we also found that fishery-targeted herbivores prevailed in similar biomass and species richness to 60 m. Compared to shallow marine protected areas, there was clearly greater biomass of fishery-targeted species accrued in mesophotic depths. Particularly some species typically harvested by depth-limited fishing methods (e.g., spearfishing), such as the endangered humphead wrasse Cheilinus undulatus, were found in greater abundance on deeper reefs. We conclude that mesophotic depths provide essential fish habitat and refuge for fishery-targeted species, representing crucial zones for fishery management and research into the resilience of disturbed coral reef ecosystems.

  11. Harvest control rules for a sustainable orange roughy fishery

    NASA Astrophysics Data System (ADS)

    Doonan, Ian J.; Fu, Dan; Dunn, Matthew R.

    2015-04-01

    Some of the best described examples of unsustainable deep-sea fisheries have been for the orange roughy, Hoplostethus atlanticus. Nevertheless, fisheries for orange roughy around New Zealand have persisted for more than 30 years, and some stocks that were overfished and substantially depleted now appear to be recovering. Scientific advice on the status of New Zealand orange roughy stocks has historically used population models fitted to various observational data, but this approach has proved problematic, largely due to uncertainty in recruitment, to the extent that from 2008 these models were replaced by a simple harvest control rule (HCR). The catches taken under this HCR were a fixed proportion of the weight of the mature stock, estimated principally from acoustic surveys. We test the performance of the current HCR, and some alternative HCRs, using a simulation model. The model simulates long-term single-species orange roughy stock dynamics, stock monitoring surveys, and management decisions. We allow for uncertainty in model parameters, but focus on the effects of changes in mean recruitment and recruitment variability, because the latter have been considered the primary source of uncertainty in future stock status. Results show that the current HCR is likely to lead to a sustainable fishery. Nevertheless, there are alternative HCRs that could out-perform the existing HCR. With a reliable series of biomass estimates from acoustic surveys, good knowledge of biological parameters (natural mortality in particular), some revision of a HCR to control catch, and spatial management to control habitat damage, it appears that an orange roughy fishery might achieve best-practice sustainability and environmental standards.

  12. Methods of inventory control.

    PubMed

    Lindley, C; Mackowiak, J

    1985-01-01

    Various methods for controlling inventory are described, and the advantages and disadvantages of each are discussed. The open-to-buy (OTB) budget method limits purchases to a specific amount of funds available for purchasing pharmaceuticals during a specified period. The emphasis of the OTB method is financial control of the pharmacy inventory. Although it is useful in monitoring and adjusting the dollar value of the inventory, it should be combined with other methods for a total inventory control system. The primary emphasis of the short-list method is to provide accurate and timely inventory information to the person responsible for order placement. The short list identifies the items that are in short supply. It is the most common feedback and control mechanism in use, but it is best suited for settings where duplicate or reserve stock is maintained and monitored by more rigorous methods. The main objective of the minimum and maximum method is to determine when and how much to order of each item. It also provides limited dollar control. The major disadvantage of this method is the time it requires to establish the minimum and maximum levels and to update them regularly to reflect changes in demand. The stock record card method is used to record information on the movement of goods in and out of the storage area. Stock cards can also be used to monitor inventory levels and facilitate order initiation. It is probably the optimum method to be used alone. The most effective system of inventory control is one employing a combination of these methods tailored to meet the institution's needs and available resources. PMID:3970028

  13. Initial Radionuclide Inventories

    SciTech Connect

    Miller, H

    2005-07-12

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclear fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as

  14. Initial Radionuclide Inventories

    SciTech Connect

    H. Miller

    2004-09-19

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclear fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as

  15. Where the waters meet: sharing ideas and experiences between inland and marine realms to promote sustainable fisheries management

    USGS Publications Warehouse

    Cooke, Steven J.; Arlinghaus, Robert; Bartley, Devin M.; Beard, T. Douglas, Jr.; Cowx, Ian G.; Essington, Timothy E.; Jensen, Olaf P.; Lynch, Abigail J.; Taylor, William W.; Watson, Reg

    2014-01-01

    Although inland and marine environments, their fisheries, fishery managers, and the realm-specific management approaches are often different, there are a surprising number of similarities that frequently go unrecognized. We contend that there is much to be gained by greater cross-fertilization and exchange of ideas and strategies between realms and the people who manage them. The purpose of this paper is to provide examples of the potential or demonstrated benefits of working across aquatic boundaries for enhanced sustainable management of the world’s fisheries resources. Examples include the need to (1) engage in habitat management and protection as the foundation for fisheries, (2) rethink institutional arrangements and management for open-access fisheries systems, (3) establish “reference points” and harvest control rules, (4) engage in integrated management approaches, (5) reap conservation benefits from the link to fish as food, and (6) reframe conservation and management of fish to better engage the public and industry. Cross-fertilization and knowledge transfer between realms could be realized using environment-independent curricula and symposia, joint scientific advisory councils for management, integrated development projects, and cross-realm policy dialogue. Given the interdependence of marine and inland fisheries, promoting discussion between the realms has the potential to promote meaningful advances in managing global fisheries.

  16. The Habitat Project

    ERIC Educational Resources Information Center

    Hein, Annamae J.

    2011-01-01

    The Habitat Project is a multiday, differentiated, interdisciplinary environmental science lesson that incorporates skill-building and motivational strategies to internalize ecosystem vocabulary. Middle school students research an animal, display its physical characteristics on a poster, build a three-dimensional habitat and present their work…

  17. Advanced Plant Habitat (APH)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Reed, David W.

    2016-01-01

    The Advanced Plant Habitat (APH) hardware will be a large growth volume plant habitat, capable of hosting multigenerational studies, in which environmental variables (e.g., temperature, relative humidity, carbon dioxide level light intensity and spectral quality) can be tracked and controlled in support of whole plant physiological testing and Bio-regenerative Life Support System investigations.

  18. Schoolyard Habitat Project Guide.

    ERIC Educational Resources Information Center

    Mason, Rich

    This project aims to provide basic steps for students to restore and create wildlife habitats on school grounds. Four chapters are included in this guide, and each chapter is divided into teacher and student sections. Chapter 1 provides necessary information for starting a habitat project. Chapters 2, 3, and 4 discuss the details for the Forest…

  19. Applications of Earth Observations for Fisheries Management: An analysis of socioeconomic benefits

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Kiefer, D. A.; Turner, W.

    2013-12-01

    This paper will discuss the socioeconomic impacts of a project applying Earth observations and models to support management and conservation of tuna and other marine resources in the eastern Pacific Ocean. A project team created a software package that produces statistical analyses and dynamic maps of habitat for pelagic ocean biota. The tool integrates sea surface temperature and chlorophyll imagery from MODIS, ocean circulation models, and other data products. The project worked with the Inter-American Tropical Tuna Commission, which issues fishery management information, such as stock assessments, for the eastern Pacific region. The Commission uses the tool and broader habitat information to produce better estimates of stock and thus improve their ability to identify species that could be at risk of overfishing. The socioeconomic analysis quantified the relative value that Earth observations contributed to accurate stock size assessments through improvements in calculating population size. The analysis team calculated the first-order economic costs of a fishery collapse (or shutdown), and they calculated the benefits of improved estimates that reduce the uncertainty of stock size and thus reduce the risk of fishery collapse. The team estimated that the project reduced the probability of collapse of different fisheries, and the analysis generated net present values of risk mitigation. USC led the project with sponsorship from the NASA Earth Science Division's Applied Sciences Program, which conducted the socioeconomic impact analysis. The paper will discuss the project and focus primarily on the analytic methods, impact metrics, and the results of the socioeconomic benefits analysis.

  20. Contrasting habitat selection amongst cephalopods in the Mediterranean Sea: When the environment makes the difference.

    PubMed

    Lauria, V; Garofalo, G; Gristina, M; Fiorentino, F

    2016-08-01

    Conservation of fish habitat requires a deeper knowledge of how species distribution patterns are related to environmental factors. Habitat suitability modelling is an essential tool to quantify species' realised niches and understand species-environment relationships. Cephalopods are important players in the marine food web and a significant resource for fisheries; they are also very sensitive to environmental changes. Here a time series of fishery-independent data (1998-2011) was used to construct habitat suitability models and investigate the influence of environmental variables on four commercial cephalopods: Todaropsis eblanae, Illex coindetii, Eledone moschata and Eledone cirrhosa, in the central Mediterranean Sea. The main environmental predictors of cephalopod habitat suitability were depth, seafloor morphology, chlorophyll-a concentration, sea surface temperature and surface salinity. Predictive maps highlighted contrasting habitat selection amongst species. This study identifies areas where the important commercial species of cephalopods are concentrated and provides significant information for a future spatial based approach to fisheries management in the Mediterranean Sea. PMID:27371813

  1. Predictive habitat suitability models to aid conservation of elasmobranch diversity in the central Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Lauria, V.; Gristina, M.; Attrill, M. J.; Fiorentino, F.; Garofalo, G.

    2015-08-01

    Commercial fisheries have dramatically impacted elasmobranch populations worldwide. With high capture and bycatch rates, the abundance of many species is rapidly declining and around a quarter of the world’s sharks and rays are threatened with extinction. At a regional scale this negative trend has also been evidenced in the central Mediterranean Sea, where bottom-trawl fisheries have affected the biomass of certain rays (e.g. Raja clavata) and sharks (e.g. Mustelus spp.). Detailed knowledge of elasmobranch habitat requirements is essential for biodiversity conservation and fisheries management, but this is often hampered by a poor understanding of their spatial ecology. Habitat suitability models were used to investigate the habitat preference of nine elasmobranch species and their overall diversity (number of species) in relation to five environmental predictors (i.e. depth, sea surface temperature, surface salinity, slope and rugosity) in the central Mediterranean Sea. Results showed that depth, seafloor morphology and sea surface temperature were the main drivers for elasmobranch habitat suitability. Predictive distribution maps revealed different species-specific patterns of suitable habitat while high assemblage diversity was predicted in deeper offshore waters (400-800 m depth). This study helps to identify priority conservation areas and diversity hot-spots for rare and endangered elasmobranchs in the Mediterranean Sea.

  2. Predictive habitat suitability models to aid conservation of elasmobranch diversity in the central Mediterranean Sea.

    PubMed

    Lauria, V; Gristina, M; Attrill, M J; Fiorentino, F; Garofalo, G

    2015-01-01

    Commercial fisheries have dramatically impacted elasmobranch populations worldwide. With high capture and bycatch rates, the abundance of many species is rapidly declining and around a quarter of the world's sharks and rays are threatened with extinction. At a regional scale this negative trend has also been evidenced in the central Mediterranean Sea, where bottom-trawl fisheries have affected the biomass of certain rays (e.g. Raja clavata) and sharks (e.g. Mustelus spp.). Detailed knowledge of elasmobranch habitat requirements is essential for biodiversity conservation and fisheries management, but this is often hampered by a poor understanding of their spatial ecology. Habitat suitability models were used to investigate the habitat preference of nine elasmobranch species and their overall diversity (number of species) in relation to five environmental predictors (i.e. depth, sea surface temperature, surface salinity, slope and rugosity) in the central Mediterranean Sea. Results showed that depth, seafloor morphology and sea surface temperature were the main drivers for elasmobranch habitat suitability. Predictive distribution maps revealed different species-specific patterns of suitable habitat while high assemblage diversity was predicted in deeper offshore waters (400-800 m depth). This study helps to identify priority conservation areas and diversity hot-spots for rare and endangered elasmobranchs in the Mediterranean Sea. PMID:26272502

  3. Predictive habitat suitability models to aid conservation of elasmobranch diversity in the central Mediterranean Sea

    PubMed Central

    Lauria, V.; Gristina, M.; Attrill, M. J.; Fiorentino, F.; Garofalo, G.

    2015-01-01

    Commercial fisheries have dramatically impacted elasmobranch populations worldwide. With high capture and bycatch rates, the abundance of many species is rapidly declining and around a quarter of the world’s sharks and rays are threatened with extinction. At a regional scale this negative trend has also been evidenced in the central Mediterranean Sea, where bottom-trawl fisheries have affected the biomass of certain rays (e.g. Raja clavata) and sharks (e.g. Mustelus spp.). Detailed knowledge of elasmobranch habitat requirements is essential for biodiversity conservation and fisheries management, but this is often hampered by a poor understanding of their spatial ecology. Habitat suitability models were used to investigate the habitat preference of nine elasmobranch species and their overall diversity (number of species) in relation to five environmental predictors (i.e. depth, sea surface temperature, surface salinity, slope and rugosity) in the central Mediterranean Sea. Results showed that depth, seafloor morphology and sea surface temperature were the main drivers for elasmobranch habitat suitability. Predictive distribution maps revealed different species-specific patterns of suitable habitat while high assemblage diversity was predicted in deeper offshore waters (400–800 m depth). This study helps to identify priority conservation areas and diversity hot-spots for rare and endangered elasmobranchs in the Mediterranean Sea. PMID:26272502

  4. Effects of habitat map generalization in biodiversity assessment

    SciTech Connect

    Stoms, D.M. )

    1992-11-01

    Species richness is being mapped as part of an inventory of biological diversity in California (i.e., gap analysis). Species distributions are modeled with a GIS on the basis of maps of each species' preferred habitats. Species richness is then tallied in equal-area sampling units. A GIS sensitivity analysis examined the effects of the level of generalization of the habitat map on the predicted distribution of species richness in the southern Sierra Nevada. As the habitat map was generalized, the number of habitat types mapped within grid cells tended to decrease with a corresponding decline in numbers of species predicted. Further, the ranking of grid cells in order of predicted numbers of species changed dramatically between levels of generalization. Areas predicted to be of greatest conservation value on the basis of species richness may therefore be sensitive to GIS data resolution. 17 refs.

  5. Effects of habitat map generalization in biodiversity assessment

    NASA Technical Reports Server (NTRS)

    Stoms, David M.

    1992-01-01

    Species richness is being mapped as part of an inventory of biological diversity in California (i.e., gap analysis). Species distributions are modeled with a GIS on the basis of maps of each species' preferred habitats. Species richness is then tallied in equal-area sampling units. A GIS sensitivity analysis examined the effects of the level of generalization of the habitat map on the predicted distribution of species richness in the southern Sierra Nevada. As the habitat map was generalized, the number of habitat types mapped within grid cells tended to decrease with a corresponding decline in numbers of species predicted. Further, the ranking of grid cells in order of predicted numbers of species changed dramatically between levels of generalization. Areas predicted to be of greatest conservation value on the basis of species richness may therefore be sensitive to GIS data resolution.

  6. Paleolithic vs. Epipaleolithic fisheries in northern Iberia

    NASA Astrophysics Data System (ADS)

    Turrero, Pablo; Ardura, Alba; García-Vázquez, Eva

    2014-07-01

    A comparison of Paleolithic and Epipaleolithic fisheries in NW Iberia shows an overall high trophic level of catch. Freshwater fisheries (and thus their impacts) are ca. 8000 yr older than marine fisheries and have suffered virtually no changes in the region except for the increase in numbers, being focused on two families (Salmonidae, and Anguillidae to a very minor extent). Marine fisheries in the Paleolithic likely had a low impact but rapidly increased in importance, raising the average trophic level of the catch, the number of affected taxa and the proportion of marine to freshwater fisheries with time.

  7. Sustainable Fisheries Management: Pacific Salmon

    USGS Publications Warehouse

    Knudsen, E. Eric; Steward, C.R.; MacDonald, Donald; Williams, J.E.

    2000-01-01

    What has happened to the salmon resource in the Pacific Northwest? Who is responsible and what can be done to reverse the decline in salmon populations? The responsibly falls on everyone involved - fishermen, resource managers and concerned citizens alike - to take the steps necessary to ensure that salmon populations make a full recovery. This collection of papers examines the state of the salmon fisheries in the Pacific Northwest. They cover existing methods and supply model approaches for alternative solutions. The editors stress the importance of input from and cooperation with all parties involved to create a viable solution. Grass roots education and participation is the key to public support - and ultimately the success - of whatever management solutions are developed. A unique and valuable scientific publication, Sustainable Fisheries Management: Pacific Salmon clearly articulates the current state of the Pacific salmon resource, describes the key features of its management, and provides important guidance on how we can make the transition towards sustainable fisheries. The solutions presented in this book provide the basis of a strategy for sustainable fisheries, requiring society and governmental agencies to establish a shared vision, common policies, and a process for collaborative management.

  8. Relationships of field habitat measurements, visual habitat indices, and land cover to benthic macroinvertebrates in urbanized streams of the Santa Clara Valley, California

    USGS Publications Warehouse

    Fend, S.V.; Carter, J.L.; Kearns, F.R.

    2005-01-01

    We evaluated several approaches for measuring natural and anthropogenic habitat characteristics to predict benthic macroinvertebrate assemblages over a range of urban intensity at 85 stream sites in the Santa Clara Valley, California. Land cover was summarized as percentage urban land cover and impervious area within upstream buffers and the upstream subwatersheds. Field measurements characterized water chemistry, channel slope, sediment, and riparian canopy. In . addition to applying the visual-based habitat assessment in U.S. Environmental Protection Agency's rapid bioassessment protocol, we developed a simplified urban habitat assessment index based on turbidity, fine sediment deposition, riparian condition, and channel modification. Natural and anthropogenic habitat variables covaried along longitudinal stream gradients and were highly correlated with elevation. At the scale of the entire watershed, benthic macroinvertebrate measures were equally correlated with variables expressing natural gradients and urbanization effects. When natural gradients were reduced by partitioning sites into ecoregion subsection groupings, habitat variables most highly correlated with macroinvertebrate measures differed between upland and valley floor site groups. Among the valley floor sites, channel slope and physical modification of channel and riparian habitats appeared more important than upstream land cover or water quality in determining macroinvertebrate richness and ordination scores. Among upland sites, effects of upstream reservoir releases on habitat quality appeared important. Rapid habitat evaluation methods appeared to be an effective method for describing habitat features important to benthic macroinvertebrates when adapted for the region and the disturbance of interest. ?? 2005 by the American Fisheries Society.

  9. Yakima Tributary Access and Habitat Program, 2002-2003 Annual Report.

    SciTech Connect

    Myra, D.; Ready, C.

    2003-12-01

    The Yakima Tributary Access and Habitat Program (YTAHP) was organized to restore salmonid passage to Yakima tributaries that historically supported salmonids and to improve habitat in areas where access is restored. This program intends to (a) screen unscreened diversion structures to prevent fish entrainment into artificial waterways; (b) provide for fish passage at man-made barriers, such as diversion dams, culverts, siphons and bridges; and (c) provide information and assistance to landowners interested in to contributing to the improvement of water quality, water reliability and stream habitat. The YTAHP developed from a number of groups actively engaged in watershed management, and/or habitat restoration within the Yakima River Basin. These groups include the Washington State Fish and Wildlife (WDFW), Kittitas County Conservation District (KCCD), North Yakima Conservation District (NYCD), Kittitas County Water Purveyors (KCWP), and Ahtanum Irrigation District (AID). The US Bureau of Reclamation (Reclamation) and Yakama Nation (YN) both participated in the development of the objectives of YTAHP. Other entities that will be involved during permitting or project review may include the YN, the federal Natural Resources Conservation Service (NRCS), the US Fish and Wildlife Service (USFWS), the National Marine Fisheries Service (NMFS), and US Army Corps of Engineers (COE). The objectives of YTAHP are listed below and also include subtasks detailed in the report: (1) Conduct Early Action Projects; (2) Review Strategic Plan; (3) Restore Access, including stream inventory, prioritization, implementation; and (4) Provide opportunities to improve habitat and conserve resources. The BPA YTAHP funding supported activities of the program which are described in this report. These activities are primarily related to objective 1 (conduct early action projects) and parts of objectives 2-4. The work supported by YTAHP funding will support a series of scheduled projects and be

  10. Inventory-driven costs.

    PubMed

    Callioni, Gianpaolo; de Montgros, Xavier; Slagmulder, Regine; Van Wassenhove, Luk N; Wright, Linda

    2005-03-01

    In the 199os, Hewlett-Packard's PC business was struggling to turn a dollar, despite the company's success in winning market share. By 1997, margins on its PCs were as thin as a silicon wafer, and some product lines hadn't turned a profit since 1993. The problem had everything to do with the PC industry's notoriously short product cycles and brutal product and component price deflation. A common rule of thumb was that the value of a fully assembled PC decreased 1% a week. In such an environment, inventory costs become critical. But not just the inventory costs companies traditionally track, HP found, after a thorough review of the problem. The standard "holding cost of inventory"--the capital and physical costs of inventory--accounted for only about 10% of HP's inventory costs. The greater risks, it turned out, resided in four other, essentially hidden costs, which stemmed from mismatches between demand and supply: Component devaluation costs for components still held in production; Price protection costs incurred when product prices drop on the goods distributors still have on their shelves; Product return costs that have to be absorbed when distributors return and receive refunds on overstock items, and; Obsolescence costs for products still unsold when new models are introduced. By developing metrics to track those costs in a consistent way throughout the PC division, HP has found it can manage its supply chains with much more sophistication. Gone are the days of across-the-board measures such as,"Everyone must cut inventories by 20% by the end of the year," which usually resulted in a flurry of cookie-cutter lean production and just-in-time initiatives. Now, each product group is free to choose the supply chain configuration that best suits its needs. Other companies can follow HP's example. PMID:15768682

  11. Enhancement and management of eel fisheries affected by hydroelectric dams in New Zealand

    USGS Publications Warehouse

    Boubee, J.; Chisnall, B.; Watene, E.; Williams, E.; Roper, D.; Haro, A.

    2003-01-01

    Two freshwater anguillid eel species, Anguilla australis and A. dieffenbachia, form the basis of important traditional, recreational, and commercial fisheries in New Zealand. These fisheries have been affected by the damming of many of the major waterways for hydroelectric generation. To create fisheries in reservoirs that would be otherwise inaccessible, elvers have been transferred from the base of dams into habitats upstream. Operations in three catchments: the Patea River (Lake Rotorangi), Waikato River (eight reservoirs notably the two lowermost, lakes Karapiro and Arapuni), and Rangitaiki River (lakes Matahina and Aniwhenua) are discussed. In all reservoirs, the transfers have successfully established fishable populations within six years of the first transfers and, in Lake Arapuni eels have reached the marketable size of 220 g in less than four years. In comparison, it typically takes from 13 to 17 years before eel populations are fishable in the lower Waikato River where direct access to the sea is available. Telemetry and monitoring at the screens and tailraces of several power stations have been used to determine migration timing, triggers, and pathways of mature eels. Successful downstream transfer of mature migrating adults has been achieved by spillway opening and netting in headraces during rain events in autumn, but means of preventing eels from impinging and entraining at the intakes are still required. An integrated, catchment-wide management system will be required to ensure sustainability of the fisheries. ?? Copyright by the American Fisheries Society 2003.

  12. 77 FR 64305 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Exempted Fishery for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ..., implementing Framework Adjustment 9 (60 FR 19364, April 18, 1995) and expanded under Amendment 7 to the FMP (61 FR 27710, May 31, 1996), contain a NE multispecies fishing mortality and bycatch reduction measure... National Oceanic and Atmospheric Administration 50 CFR Part 648 RIN 0648-BC50 Fisheries of the...

  13. Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat

    NASA Technical Reports Server (NTRS)

    Howe, Alan; Kennedy, Kriss J.; Gill, Tracy R.; Tri, Terry O.; Toups, Larry; Howard, Robert I.; Spexarth, Gary R.; Cavanaugh, Stephen; Langford, William M.; Dorsey, John T.

    2014-01-01

    NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mobility that uses small, highly mobile pressurized rovers supported by portable habitat modules that can be carried between locations of interest on the lunar surface. A compact vertical cylinder characterizes the habitat concept, where the large diameter maximizes usable flat floor area optimized for a gravity environment and allows for efficient internal layout. The module was sized to fit into payload fairings for the Constellation Ares V launch vehicle, and optimized for surface transport carried by the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) mobility system. Launch and other loads are carried through the barrel to a top and bottom truss that interfaces with a structural support unit (SSU). The SSU contains self-leveling feet and docking interfaces for Tri-ATHLETE grasping and heavy lift. A pressurized module needed to be created that was appropriate for the lunar environment, could be easily relocated to new locations, and could be docked together in multiples for expanding pressurized volume in a lunar outpost. It was determined that horizontally oriented pressure vessels did not optimize floor area, which takes advantage of the gravity vector for full use. Hybrid hard-inflatable habitats added an unproven degree of complexity that may eventually be worked out. Other versions of vertically oriented pressure vessels were either too big, bulky, or did not optimize floor area. The purpose of the HDU vertical habitat module is to provide pressurized units that can be docked together in a modular way for lunar outpost pressurized volume expansion, and allow for other vehicles, rovers, and modules to be attached to the outpost to allow for IVA (intra-vehicular activity) transfer between them. The module is a vertically oriented cylinder with a large radius to allow for maximal floor area and use of volume. The modular, 5- m-diameter HDU vertical habitat

  14. New national emission inventory for navigation in Denmark

    NASA Astrophysics Data System (ADS)

    Winther, Morten

    This article explains the new emission inventory for navigation in Denmark, covering national sea transport, fisheries and international sea transport. For national sea transport, the new Danish inventory distinguishes between regional ferries, local ferries and other national sea transport. Detailed traffic and technical data lie behind the fleet activity-based fuel consumption and emission calculations for regional ferries. For local ferries and other national sea transport, the new inventory is partly fleet activity based; fuel consumption estimates are calculated for single years, and full fuel consumption coverage is established in a time series by means of appropriate assumptions. For fisheries and international sea transport, the new inventory remains fuel based, using fuel sales data from the Danish Energy Authority (DEA). The new Danish inventory uses specific fuel consumption (sfc) and NO x emission factors as a function of engine type and production year. These factors, which are used directly for regional ferries and, for the remaining navigation categories, are derived by means of appropriate assumptions, serve as a major inventory improvement, necessary for making proper emission trend assessments. International sea transport is the most important fuel consumption and emission source for navigation, and the contributions are large even compared with the overall Danish totals. If the contributions from international sea transport were included in the Danish all-sector totals, the extra contributions in 2005 from fuel consumption (and CO 2), NO x and SO 2 would be 5%, 34% and 167%, respectively. The 1990-2005 changes in fuel consumption as well as NO x and SO 2 emissions for national sea transport (-45, -45, -81), fisheries (-18, 6, -18) and international sea transport (-14, 1, -14) reflect changes in fleet activity/fuel consumption and emission factors. The 2006-2020 emission forecasts demonstrate a need for stricter fuel quality and NO x emission

  15. THE PRESCHOOL INVENTORY.

    ERIC Educational Resources Information Center

    CALDWELL, BETTYE M.; SOULE, DONALD

    THE PRESCHOOL INVENTORY BEGAN AS AN ANSWER TO THE NEED FOR SOME TYPE OF INSTRUMENT THAT WOULD PROVIDE AN INDICATION OF HOW MUCH A DISADVANTAGED CHILD, PRIOR TO HIS INTRODUCTION TO HEAD START, HAD ACHIEVED IN AREAS REGARDED AS NECESSARY FOUNDATIONS FOR SUBSEQUENT SUCCESS IN SCHOOL. MEASURING BASIC INTELLIGENCE WAS NOT THE GOAL. RATHER, THE…

  16. Cluster Interest Inventory.

    ERIC Educational Resources Information Center

    Herzog, Douglas

    The Cluster Interest Inventory is designed to familiarize students with representative occupations in 13 career clusters: (1) agribusiness and natural resources, (2) business marketing, and office occupations, (3) communications and media, (4) consumer and homemaker, (5) fine arts and humanities, (6) health, (7) manufacturing and processing, (8)…

  17. Biogenic Emissions Inventory System

    EPA Science Inventory

    ***BEIS3 is now embedded in the CMAQ model***

    The Biogenic Emissions Inventory System, Version 3 (BEIS3) is being developed to support the needs of regional and urban-scale air quality simulation models. BEIS3 is designed to be incorporated into the Sparse Matrix Op...

  18. Digital Collections Inventory Report.

    ERIC Educational Resources Information Center

    McClung, Patricia A.

    This report is intended to inform and stimulate discussion on digital library programs as well as the potential usefulness, scope, and desired features of future inventories of online digital collections. It describes a joint project by the Commission on Preservation and Access and the Council on Library Resources to determine the extent to which…

  19. Natural vegetation inventory

    NASA Technical Reports Server (NTRS)

    Schrumpf, B. J.

    1973-01-01

    Unique characteristics of ERTS imagery can be used to inventory natural vegetation. While satellite images can seldom be interpreted and identified directly in terms of vegetation types, such types can be inferred by interpretation of physical terrain features and through an understanding of the ecology of the vegetation.

  20. The Learning Preference Inventory.

    ERIC Educational Resources Information Center

    Rezler, Agnes G.; Rezmovic, Victor

    1981-01-01

    Describes the development, validity, and reliability of the Learning Preference Inventory (LPI) and its use with health professions students and practitioners. Use of the LPI allows identification of individual learning preferences with a fair degree of accuracy. Ways to improve motivation for learning are suggested. (JOW)