Sample records for fisheries habitat inventory

  1. State-of-the-art techniques for inventory of Great Lakes aquatic habitats and resources

    USGS Publications Warehouse

    Edsall, Thomas A.; Brock, R.H.; Bukata, R.P.; Dawson, J.J.; Horvath, F.J.; Busch, W.-Dieter N.; Sly, Peter G.

    1992-01-01

    This section of the Classification and Inventory of Great Lakes Aquatic Habitat report was prepared as a series of individually authored contributions that describe, in various levels of detail, state-of-the-art techniques that can be used alone or in combination to inventory aquatic habitats and resources in the Laurentian Great Lakes system. No attempt was made to review and evaluate techniques that are used routinely in limnological and fisheries surveys and inventories because it was felt that users of this document would be familiar with them.

  2. Contributions of Estuarine Habitats to Major Fisheries

    EPA Science Inventory

    Estuaries provide unique habitat conditions that are essential to the production of major fisheries throughout the world, but quantitatively demonstrating the value of these habitats to fisheries presents some difficult problems. The questions are important, because critical hab...

  3. Connecting fishery sustainability to estuarine habitats and nutrient loading

    EPA Science Inventory

    The production of several important fishery species depends on critical estuarine habitats, including seagrasses and salt marshes. Relatively simple models can be constructed to relate fishery productivity to the extent and distribution of these habitats by linking fishery-depend...

  4. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoverson, Eric D.; Amonette, Alexandra

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meachammore » Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and

  5. Detroit River habitat inventory

    USGS Publications Warehouse

    Manny, Bruce A.

    2003-01-01

    This inventory complements a previous survey of habitat in Ontario waters of the Detroit River (OMNR,1993). It is a starting point for balanced and sustained use of the river for natural resource conservation and economic development. The objectives of the inventory were to: (1) locate candidate sites for protection and restoration of fish and wildlife habitat in Michigan waters of the Detroit River; (2) describe the ownership and size of each site, as well as its potential for habitat protection and restoration; and (3) subjectively assess the extent to which existing habitat along the river is productive of fish and wildlife and protected from land uses that have degraded or destroyed such habitat.

  6. Dynamic habitat models: using telemetry data to project fisheries bycatch

    PubMed Central

    Žydelis, Ramūnas; Lewison, Rebecca L.; Shaffer, Scott A.; Moore, Jeffrey E.; Boustany, Andre M.; Roberts, Jason J.; Sims, Michelle; Dunn, Daniel C.; Best, Benjamin D.; Tremblay, Yann; Kappes, Michelle A.; Halpin, Patrick N.; Costa, Daniel P.; Crowder, Larry B.

    2011-01-01

    Fisheries bycatch is a recognized threat to marine megafauna. Addressing bycatch of pelagic species however is challenging owing to the dynamic nature of marine environments and vagility of these organisms. In order to assess the potential for species to overlap with fisheries, we propose applying dynamic habitat models to determine relative probabilities of species occurrence for specific oceanographic conditions. We demonstrate this approach by modelling habitats for Laysan (Phoebastria immutabilis) and black-footed albatrosses (Phoebastria nigripes) using telemetry data and relating their occurrence probabilities to observations of Hawaii-based longline fisheries in 1997–2000. We found that modelled habitat preference probabilities of black-footed albatrosses were high within some areas of the fishing range of the Hawaiian fleet and such preferences were important in explaining bycatch occurrence. Conversely, modelled habitats of Laysan albatrosses overlapped little with Hawaii-based longline fisheries and did little to explain the bycatch of this species. Estimated patterns of albatross habitat overlap with the Hawaiian fleet corresponded to bycatch observations: black-footed albatrosses were more frequently caught in this fishery despite being 10 times less abundant than Laysan albatrosses. This case study demonstrates that dynamic habitat models based on telemetry data may help to project interactions with pelagic animals relative to environmental features and that such an approach can serve as a tool to guide conservation and management decisions. PMID:21429921

  7. Perceptions of fish habitat conditions in Oklahoma tailwater fisheries: a survey of fisheries managers

    USGS Publications Warehouse

    Long, James M.

    2011-01-01

    While the downstream effects of dams on fish habitat have long been recognized, broad-scale assessments of tailwater fish habitat have rarely been conducted. In this paper, I report on the status of tailwater fisheries in Oklahoma as determined through a web-based survey of fisheries biologists with the Oklahoma Department of Wildlife Conservation conducted in July 2010. Respondents addressed 38 tailwaters, encompassing all major areas of the state. The majority of fish species comprising these fisheries included blue catfish (Ictalurus furcatus), followed by white bass (Morone chrysops), channel catfish (I. punctatus) and flathead catfish (Pylodictis olivaris). Most respondents indicated no or low concerns with fish habitat in tailwaters under their management supervision; only two tailwaters (Tenkiller Ferry and Fort Gibson) had the majority of concerns with fish habitat identified as high to moderately high. Principal components analysis and subsequent correlation analysis showed that tailwaters that scored high for issues related to shoreline erosion, change in water depth, flow fluctuations, and flow timing were associated with dams with large maximum discharge ability. No other factors related to fish habitat condition in tailwaters were found. In Oklahoma, dams with maximum discharge of at least 6,767.5 m3 sec–1 were more likely to have flow-related fish habitat concerns in the tailwater.

  8. 77 FR 47356 - North Pacific Fishery Management Council; Essential Fish Habitat Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ...-XA500 North Pacific Fishery Management Council; Essential Fish Habitat Amendments AGENCY: National... Pacific Fishery Management Council submitted the following essential fish habitat (EFH) amendments to NMFS... Scallop Fishery off Alaska; and Amendment 1 to the FMP for Fish Resources of the Arctic Management Area...

  9. 77 FR 66564 - North Pacific Fishery Management Council; Essential Fish Habitat Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ...-XA500 North Pacific Fishery Management Council; Essential Fish Habitat Amendments AGENCY: National... Scallop Fishery off Alaska (Scallop FMP); and Amendment 1 to the FMP for Fish Resources of the Arctic Management Area (Arctic FMP). These amendments update the existing essential fish habitat (EFH) provisions in...

  10. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek,more » Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a

  11. Riparian-fisheries habitat responses to late spring cattle grazing

    Treesearch

    Warren P. Clary; John W. Kinney

    2000-01-01

    A grazing study was conducted on a cold, mountain meadow riparian system in central Idaho in response to cattle grazing-salmonid fisheries conflicts. Six pastures were established along a 3rd order, 2 to 3 m wide stream to study the effects on fisheries habitat of no grazing, light grazing (20 to 25% use), and medium grazing (35 to 50%) during late June. Most...

  12. Estimating fish exploitation and aquatic habitat loss across diffuse inland recreational fisheries.

    PubMed

    de Kerckhove, Derrick Tupper; Minns, Charles Kenneth; Chu, Cindy

    2015-01-01

    The current state of many freshwater fish stocks worldwide is largely unknown but suspected to be vulnerable to exploitation from recreational fisheries and habitat degradation. Both these factors, combined with complex ecological dynamics and the diffuse nature of inland fisheries could lead to an invisible collapse: the drastic decline in fish stocks without great public or management awareness. In this study we provide a method to address the pervasive knowledge gaps in regional rates of exploitation and habitat degradation, and demonstrate its use in one of North America's largest and most diffuse recreational freshwater fisheries (Ontario, Canada). We estimated that (1) fish stocks were highly exploited and in apparent danger of collapse in management zones close to large population centres, and (2) fish habitat was under a low but constant threat of degradation at rates comparable to deforestation in Ontario and throughout Canada. These findings confirm some commonly held, but difficult to quantify, beliefs in inland fisheries management but also provide some further insights including (1) large anthropogenic projects greater than one hectare could contribute much more to fish habitat loss on an area basis than the cumulative effect of smaller projects within one year, (2) hooking mortality from catch-and-release fisheries is likely a greater source of mortality than the harvest itself, and (3) in most northern management zones over 50% of the fisheries resources are not yet accessible to anglers. While this model primarily provides a framework to prioritize management decisions and further targeted stock assessments, we note that our regional estimates of fisheries productivity and exploitation were similar to broadscale monitoring efforts by the Province of Ontario. We discuss the policy implications from our results and extending the model to other jurisdictions and countries.

  13. Estimating Fish Exploitation and Aquatic Habitat Loss across Diffuse Inland Recreational Fisheries

    PubMed Central

    de Kerckhove, Derrick Tupper; Minns, Charles Kenneth; Chu, Cindy

    2015-01-01

    The current state of many freshwater fish stocks worldwide is largely unknown but suspected to be vulnerable to exploitation from recreational fisheries and habitat degradation. Both these factors, combined with complex ecological dynamics and the diffuse nature of inland fisheries could lead to an invisible collapse: the drastic decline in fish stocks without great public or management awareness. In this study we provide a method to address the pervasive knowledge gaps in regional rates of exploitation and habitat degradation, and demonstrate its use in one of North America’s largest and most diffuse recreational freshwater fisheries (Ontario, Canada). We estimated that 1) fish stocks were highly exploited and in apparent danger of collapse in management zones close to large population centres, and 2) fish habitat was under a low but constant threat of degradation at rates comparable to deforestation in Ontario and throughout Canada. These findings confirm some commonly held, but difficult to quantify, beliefs in inland fisheries management but also provide some further insights including 1) large anthropogenic projects greater than one hectare could contribute much more to fish habitat loss on an area basis than the cumulative effect of smaller projects within one year, 2) hooking mortality from catch-and-release fisheries is likely a greater source of mortality than the harvest itself, and 3) in most northern management zones over 50% of the fisheries resources are not yet accessible to anglers. While this model primarily provides a framework to prioritize management decisions and further targeted stock assessments, we note that our regional estimates of fisheries productivity and exploitation were similar to broadscale monitoring efforts by the Province of Ontario. We discuss the policy implications from our results and extending the model to other jurisdictions and countries. PMID:25875790

  14. The Pelagics Habitat Analysis Module (PHAM): Decision Support Tools for Pelagic Fisheries

    NASA Astrophysics Data System (ADS)

    Armstrong, E. M.; Harrison, D. P.; Kiefer, D.; O'Brien, F.; Hinton, M.; Kohin, S.; Snyder, S.

    2009-12-01

    PHAM is a project funded by NASA to integrate satellite imagery and circulation models into the management of commercial and threatened pelagic species. Specifically, the project merges data from fishery surveys, and fisheries catch and effort data with satellite imagery and circulation models to define the habitat of each species. This new information on habitat will then be used to inform population distribution and models of population dynamics that are used for management. During the first year of the project, we created two prototype modules. One module, which was developed for the Inter-American Tropical Tuna Commission, is designed to help improve information available to manage the tuna fisheries of the eastern Pacific Ocean. The other module, which was developed for the Coastal Pelagics Division of the Southwest Fishery Science Center, assists management of by-catch of mako, blue, and thresher sharks along the Californian coast. Both modules were built with the EASy marine geographic information system, which provides a 4 dimensional (latitude, longitude, depth, and time) home for integration of the data. The projects currently provide tools for automated downloading and geo-referencing of satellite imagery of sea surface temperature, height, and chlorophyll concentrations; output from JPL’s ECCO2 global circulation model and its ROM California current model; and gridded data from fisheries and fishery surveys. It also provides statistical tools for defining species habitat from these and other types of environmental data. These tools include unbalanced ANOVA, EOF analysis of satellite imagery, and multivariate search routines for fitting fishery data to transforms of the environmental data. Output from the projects consists of dynamic maps of the distribution of the species that are driven by the time series of satellite imagery and output from the circulation models. It also includes relationships between environmental variables and recruitment. During

  15. 76 FR 35408 - Essential Fish Habitat (EFH) Components of Fishery Management Plans (Northeast Multispecies...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Fish Habitat (EFH) Components of Fishery Management Plans (Northeast Multispecies, Atlantic Sea Scallop...). SUMMARY: The New England Fishery Management Council (Council) is in the process of preparing a programmatic EIS for an Omnibus EFH Amendment to the fishery management plans (FMPs) for Northeast (NE...

  16. Multiresource Inventories: Techniques for Evaluating Nongame Bird Habitat

    Treesearch

    Raymond M. Sheffield

    1981-01-01

    Procedures for evaluating the suitability of forest lands for the breeding habitat of individual nongame bird species and entire avian communities are presented. A multiresource inventory of South Carolina's forest resources, conducted by Renewable Resources Evaluation (formerly Forest Survey), provides the necessary habitat data. Nine nongame bird species,...

  17. Fishery Resources and Threatened Coastal Habitats in the Northern Gulf of Mexico (Abstract)

    EPA Science Inventory

    We have explored relationships between selected fishery species of the northern Gulf of Mexico and important features of their habitats. The principal goal of our research is to predict the cumulative effects of habitat alterations on coastal resources and ecosystems. Pink shrimp...

  18. Pelagic Habitat Analysis Module (PHAM) for GIS Based Fisheries Decision Support

    NASA Technical Reports Server (NTRS)

    Kiefer, D. A.; Armstrong, Edward M.; Harrison, D. P.; Hinton, M. G.; Kohin, S.; Snyder, S.; O'Brien, F. J.

    2011-01-01

    We have assembled a system that integrates satellite and model output with fisheries data We have developed tools that allow analysis of the interaction between species and key environmental variables Demonstrated the capacity to accurately map habitat of Thresher Sharks Alopias vulpinus & pelagicus. Their seasonal migration along the California Current is at least partly driven by the seasonal migration of sardine, key prey of the sharks.We have assembled a system that integrates satellite and model output with fisheries data We have developed tools that allow analysis of the interaction between species and key environmental variables Demonstrated the capacity to accurately map habitat of Thresher Sharks Alopias vulpinus nd pelagicus. Their seasonal migration along the California Current is at least partly driven by the seasonal migration of sardine, key prey of the sharks.

  19. FISHERY RESOURCES AND THREATENED HABITATS IN THE NORTHERN GULF OF MEXICO

    EPA Science Inventory

    Jordan, Steve and Darrin Dantin. 2004. Fishery Resources and Threatened Habitats in the Northern Gulf of Mexico (Abstract). Presented at the Aquatic Stressors All-Investigators Meeting, 9-11 March 2004, Washington, DC. 1 p. (ERL,GB R996).

    We have explored relationships be...

  20. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Clearwater, Salmon, Weiser, and Payette River Basins, 1934-1942, Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    should be used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.« less

  1. 76 FR 9590 - Fisheries and Habitat Conservation and Migratory Birds Programs; Draft Land-Based Wind Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ..., wildlife and their habitats resulting from construction, operation and maintenance of land-based, wind... these draft Guidelines for all wind turbines, including community scale operations. All comments we...] RIN 1018-AX45 Fisheries and Habitat Conservation and Migratory Birds Programs; Draft Land-Based Wind...

  2. Use of a seagrass residency index to apportion commercial fishery landing values and recreation fisheries expenditure to seagrass habitat service.

    PubMed

    Jackson, Emma L; Rees, Siân E; Wilding, Catherine; Attrill, Martin J

    2015-06-01

    Where they dominate coastlines, seagrass beds are thought to have a fundamental role in maintaining populations of exploited species. Thus, Mediterranean seagrass beds are afforded protection, yet no attempt to determine the contribution of these areas to both commercial fisheries landings and recreational fisheries expenditure has been made. There is evidence that seagrass extent continues to decline, but there is little understanding of the potential impacts of this decline. We used a seagrass residency index, that was trait and evidence based, to estimate the proportion of Mediterranean commercial fishery landings values and recreation fisheries total expenditure that can be attributed to seagrass during different life stages. The index was calculated as a weighted sum of the averages of the estimated residence time in seagrass (compared with other habitats) at each life stage of the fishery species found in seagrass. Seagrass-associated species were estimated to contribute 30%-40% to the value of commercial fisheries landings and approximately 29% to recreational fisheries expenditure. These species predominantly rely on seagrass to survive juvenile stages. Seagrass beds had an estimated direct annual contribution during residency of €58-91 million (4% of commercial landing values) and €112 million (6% of recreation expenditure) to commercial and recreational fisheries, respectively, despite covering <2% of the area. These results suggest there is a clear cost of seagrass degradation associated with ineffective management of seagrass beds and that policy to manage both fisheries and seagrass beds should take into account the socioeconomic implications of seagrass loss to recreational and commercial fisheries. © 2015 Society for Conservation Biology.

  3. Wildlife habitats of the north coast of California: new techniques for extensive forest inventory.

    Treesearch

    Janet L. Ohmann

    1992-01-01

    A study was undertaken to develop methods for extensive inventory and analysis of wildlife habitats. The objective was to provide information about amounts and conditions of wildlife habitats from extensive, sample based inventories so that wildlife can be better considered in forest planning and policy decisions at the regional scale. The new analytical approach...

  4. Modulation of Habitat-Based Conservation Plans by Fishery Opportunity Costs: A New Caledonia Case Study Using Fine-Scale Catch Data

    PubMed Central

    Deas, Marilyn; Andréfouët, Serge; Léopold, Marc; Guillemot, Nicolas

    2014-01-01

    Numerous threats impact coral reefs and conservation actions are urgently needed. Fast production of marine habitat maps promotes the use of habitat-only conservation plans, where a given percentage of the area of each habitat is set as conservation objectives. However, marine reserves can impact access to fishing grounds and generate opportunity costs for fishers that need to be minimized. In New Caledonia (Southwest Pacific), we used fine-scale fishery catch maps to define nineteen opportunity costs layers (expressed as biomass catch loss) considering i) total catches, ii) target fish families, iii) local marine tenure, and iv) gear type. The expected lower impacts on fishery catch when using the different cost constraints were ranked according to effectiveness in decreasing the costs generated by the habitat-only scenarios. The exercise was done for two habitat maps with different thematic richness. In most cases, habitat conservation objectives remained achievable, but effectiveness varied widely between scenarios and between habitat maps. The results provide practical guidelines for coral reef conservation and management. Habitat-only scenarios can be used to initiate conservation projects with stakeholders but the costs induced by such scenarios can be lowered by up to 50–60% when detailed exhaustive fishery data are used. When using partial data, the gain would be only in the 15–25% range. The best compromises are achieved when using local data. PMID:24835216

  5. Modulation of habitat-based conservation plans by fishery opportunity costs: a New Caledonia case study using fine-scale catch data.

    PubMed

    Deas, Marilyn; Andréfouët, Serge; Léopold, Marc; Guillemot, Nicolas

    2014-01-01

    Numerous threats impact coral reefs and conservation actions are urgently needed. Fast production of marine habitat maps promotes the use of habitat-only conservation plans, where a given percentage of the area of each habitat is set as conservation objectives. However, marine reserves can impact access to fishing grounds and generate opportunity costs for fishers that need to be minimized. In New Caledonia (Southwest Pacific), we used fine-scale fishery catch maps to define nineteen opportunity costs layers (expressed as biomass catch loss) considering i) total catches, ii) target fish families, iii) local marine tenure, and iv) gear type. The expected lower impacts on fishery catch when using the different cost constraints were ranked according to effectiveness in decreasing the costs generated by the habitat-only scenarios. The exercise was done for two habitat maps with different thematic richness. In most cases, habitat conservation objectives remained achievable, but effectiveness varied widely between scenarios and between habitat maps. The results provide practical guidelines for coral reef conservation and management. Habitat-only scenarios can be used to initiate conservation projects with stakeholders but the costs induced by such scenarios can be lowered by up to 50-60% when detailed exhaustive fishery data are used. When using partial data, the gain would be only in the 15-25% range. The best compromises are achieved when using local data.

  6. R1/R4 (Northern/Intermountain Regions) fish and fish habitat standard inventory procedures handbook

    Treesearch

    C. Kerry Overton; Sherry P. Wollrab; Bruce C. Roberts; Michael A. Radko

    1997-01-01

    This handbook describes the standard inventory procedures for collecting fish habitat and salmonid fish species data for streams managed by the Northern (R1) and Intermountain (R4) Regions of the Forest Service, U.S. Department of Agriculture. The inventory procedures are designed to define and quantify the structure, pattern, and dimensions of fish habitat; describe...

  7. Secure & Restore Critical Fisheries Habitat, Flathead Subbasin, FY2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn; Tohtz, Joel

    The construction of Hungry Horse Dam inundated 125 km of adfluvial trout habitat in the South Fork of the Flathead River and its tributaries, impacting natural fish reproduction and rearing. Rapid residential and commercial growth in the Flathead Watershed now threaten the best remaining habitats and restrict our opportunities to offset natural resource losses. Hydropower development and other land disturbances caused severe declines in the range and abundance of our focal resident fish species, bull trout and westslope cutthroat trout. Bull trout were listed as threatened in 1998 under the Endangered Species Act and westslope cutthroat were petitioned for listingmore » under ESA. Westslope cutthroat are a species of special concern in Montana and a species of special consideration by the Confederated Salish and Kootenai Tribes. The Secure & Protect Fisheries Habitat project follows the logical progression towards habitat restoration outlined in the Hungry Horse Dam Fisheries Mitigation Implementation Plan approved by the NWPPC in 1993. This project is also consistent with the 2000 Fish and Wildlife Program and the Flathead River Subbasin Plan that identifies the protection of habitats for these populations as one of the most critical needs in the subbasin and directs actions to offset habitat losses. The Flathead basin is one of the fastest growing human population centers in Montana. Riparian habitats are being rapidly developed and subdivided, causing habitat degradation and altering ecosystem functions. Remaining critical habitats in the Flathead Watershed need to be purchased or protected with conservation easements if westslope cutthroat and bull trout are to persist and expand within the subbasin. In addition, habitats degraded by past land uses need to be restored to maximize the value of remaining habitats and offset losses caused by the construction of Hungry Horse Dam. Securing and restoring remaining riparian habitat will benefit fish by shading and

  8. Amazonian freshwater habitats experiencing environmental and socioeconomic threats affecting subsistence fisheries.

    PubMed

    Alho, Cleber J R; Reis, Roberto E; Aquino, Pedro P U

    2015-09-01

    Matching the trend seen among the major large rivers of the globe, the Amazon River and its tributaries are facing aquatic ecosystem disruption that is affecting freshwater habitats and their associated biodiversity, including trends for decline in fishery resources. The Amazon's aquatic ecosystems, linked natural resources, and human communities that depend on them are increasingly at risk from a number of identified threats, including expansion of agriculture; cattle pastures; infrastructure such as hydroelectric dams, logging, mining; and overfishing. The forest, which regulates the hydrological pulse, guaranteeing the distribution of rainfall and stabilizing seasonal flooding, has been affected by deforestation. Flooding dynamics of the Amazon Rivers are a major factor in regulating the intensity and timing of aquatic organisms. This study's objective was to identify threats to the integrity of freshwater ecosystems, and to seek instruments for conservation and sustainable use, taking principally fish diversity and fisheries as factors for analysis.

  9. Investigation of the Impact of Sonar Transmission on Fisheries and Habitat in the U.S. Navy’s USWTR: Summary of Stakeholder Concerns and Appropriate Research Areas

    DTIC Science & Technology

    2007-09-01

    sonar transmission on fisheries and habitat in the U.S. Navy’s USWTR: Summary of stakeholder concerns and appropriate research areas by Dr...SUBTITLE: Title (Mix case letters) Investigation of the impact of sonar transmission on fisheries and habitat in the U.S. Navy’s USWTR: Summary of...table of specific public comments is included. 15. NUMBER OF PAGES 30 14. SUBJECT TERMS sonar, USWTR, Navy, fish, fishery , fisherman, behavior

  10. 77 FR 19230 - Western Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    .... Precious corals fishery and coral reef habitat status. iv. Update on Bio-Sampling Program data summary. v... precious coral fisheries. iv. Coral reef habitat status. v. Update on Bio-Sampling Program and Spearfishing... fisheries. iv. Precious corals fishery and coral reef habitat status. v. Update on Bio-Sampling Program Data...

  11. Fisheries indicators, freshwater

    USGS Publications Warehouse

    Kwak, Thomas J.

    2010-01-01

    Freshwater fisheries exist among diverse ecosystems and fauna, provide societal benefits, and are influenced by human activities. Fisheries scientists assess the status and sustainability of fisheries by multiple approaches, including abundance and condition indices, population parameters, community indices, modeling, and surveys of habitat and human dimensions. The future sustainability of freshwater fisheries is limited not by available methods but by society’s will.

  12. 77 FR 31327 - Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... Pacific Fishery Management Council's (Pacific Council) Habitat Committee (HC) will hold a meeting, which is open to the public, to discuss habitat issues related to Council-managed fisheries. DATES: The...

  13. 76 FR 11506 - Fisheries and Habitat Conservation and Migratory Birds Programs; Draft Land-Based Wind Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ...] RIN 1018-AX45 Fisheries and Habitat Conservation and Migratory Birds Programs; Draft Land-Based Wind... Register on February 18, 2011, announcing the availability for public comment of draft Land-Based Wind... Guidelines are intended to supersede the Service's 2003 voluntary, interim guidelines for land-based wind...

  14. Hungry Horse Dam Fisheries Mitigation : Fish Passage and Habitat Improvement in the Upper Flathead River Basin, 1991-1996 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knotek, W.Ladd; Deleray, Mark; Marotz, Brian L.

    1997-08-01

    In the past 50 years, dramatic changes have occurred in the Flathead Lake and River system. Degradation of fishery resources has been evident, in part due to deterioration of aquatic habitat and introduction of non-endemic fish and invertebrate species. Habitat loss has been attributed to many factors including the construction and operation of Hungry Horse Dam, unsound land use practices, urban development, and other anthropogenic and natural disturbances. Fish migration has also been limited by barriers such as dams and impassible culverts. Cumulatively, these factors have contributed to declines in the distribution and abundance of native fish populations. Recovery ofmore » fish populations requires that a watershed approach be developed that incorporates long-term aquatic habitat needs and promotes sound land use practices and cooperation among natural resource management agencies. In this document, the authors (1) describe completed and ongoing habitat improvement and fish passage activities under the Hungry Horse Fisheries Mitigation Program, (2) describe recently identified projects that are in the planning stage, and (3) develop a framework for identifying prioritizing, implementing, and evaluating future fish habitat improvement and passage projects.« less

  15. Continuing education needs for fishery professionals: a survey of North American fisheries administrators

    USGS Publications Warehouse

    Rassam, G.N.; Eisler, R.

    2001-01-01

    North American fishery professionals? continuing education needs were investigated in an American Fisheries Society questionnaire sent to 111 senior fishery officials in winter 2000. Based on a response rate of 52.2% (N = 58), a minimum of 2,967 individuals would benefit from additional training, especially in the areas of statistics and analysis (83% endorsement rate), restoration and enhancement (81%), population dynamics (81%), multi-species interactions (79%), and technical writing (79%). Other skills and techniques recommended by respondents included computer skills (72%), fishery modeling (69%), habitat modification (67%), watershed processes (66%), fishery management (64%), riparian and stream ecology (62%), habitat management (62%), public administration (62%), nonindigenous species (57%), and age and growth (55%). Additional comments by respondents recommended new technical courses, training in various communications skills, and courses to more effectively manage workloads.

  16. Toward Dynamic Ocean Management: Fisheries assessment and climate projections informed by community developed habitat models based on dynamic coastal oceanography

    NASA Astrophysics Data System (ADS)

    Kohut, J. T.; Manderson, J.; Palamara, L. J.; Saba, V. S.; Saba, G.; Hare, J. A.; Curchitser, E. N.; Moore, P.; Seibel, B.; DiDomenico, G.

    2016-12-01

    Through a multidisciplinary study group of experts in marine ecology, physical oceanography and stock assessment from the fishing industry, government and academia we developed a method to explicitly account for shifting habitat distributions in fish population assessments. We used data from field surveys throughout the Northwest Atlantic Ocean to develop a parametric thermal niche model for an important short-lived pelagic forage fish, Atlantic Butterfish. This niche model was coupled to a hindcast of daily bottom water temperature derived from a regional numerical ocean model in order to project daily thermal habitat suitability over the last 40 years. This ecological hindcast was used to estimate the proportion of thermal habitat suitability available on the U.S. Northeast Shelf that was sampled on fishery-independent surveys, accounting for the relative motions of thermal habitat and the trajectory of sampling on the survey. The method and habitat based estimates of availability was integrated into the catchability estimate used to scale population size in the butterfish stock assessment model accepted by the reviewers of the 59th NEFSC stock assessment review, as well as the mid-Atlantic Council's Scientific and Statistical Committee. The contribution of the availability estimate (along with an estimate of detectability) allowed for the development of fishery reference points, a change in stock status from unknown to known, and the establishment of a directed fishery with an allocation of 20,000 metric tons of quota. This presentation will describe how a community based workgroup utilized ocean observing technologies combined with ocean models to better understand the physical ocean that structures marine ecosystems. Using these approaches we will discuss opportunities to inform ecological hindcasts and climate projections with mechanistic models that link species-specific physiology to climate-based thermal scenarios.

  17. Toward Dynamic Ocean Management: Fisheries assessment and climate projections informed by community developed habitat models based on dynamic coastal oceanography

    NASA Astrophysics Data System (ADS)

    Kohut, J. T.; Manderson, J.; Palamara, L. J.; Saba, V. S.; Saba, G.; Hare, J. A.; Curchitser, E. N.; Moore, P.; Seibel, B.; DiDomenico, G.

    2016-02-01

    Through a multidisciplinary study group of experts in marine ecology, physical oceanography and stock assessment from the fishing industry, government and academia we developed a method to explicitly account for shifting habitat distributions in fish population assessments. We used data from field surveys throughout the Northwest Atlantic Ocean to develop a parametric thermal niche model for an important short-lived pelagic forage fish, Atlantic Butterfish. This niche model was coupled to a hindcast of daily bottom water temperature derived from a regional numerical ocean model in order to project daily thermal habitat suitability over the last 40 years. This ecological hindcast was used to estimate the proportion of thermal habitat suitability available on the U.S. Northeast Shelf that was sampled on fishery-independent surveys, accounting for the relative motions of thermal habitat and the trajectory of sampling on the survey. The method and habitat based estimates of availability was integrated into the catchability estimate used to scale population size in the butterfish stock assessment model accepted by the reviewers of the 59th NEFSC stock assessment review, as well as the mid-Atlantic Council's Scientific and Statistical Committee. The contribution of the availability estimate (along with an estimate of detectability) allowed for the development of fishery reference points, a change in stock status from unknown to known, and the establishment of a directed fishery with an allocation of 20,000 metric tons of quota. This presentation will describe how a community based workgroup utilized ocean observing technologies combined with ocean models to better understand the physical ocean that structures marine ecosystems. Using these approaches we will discuss opportunities to inform ecological hindcasts and climate projections with mechanistic models that link species-specific physiology to climate-based thermal scenarios.

  18. Fish habitat conditions: Using the Northern/Intermountain Regions' inventory procedures for detecting differences on two differently managed watersheds

    Treesearch

    C. Kerry Overton; Michael A. Radko; Rodger L. Nelson

    1993-01-01

    Differences in fish habitat variables between two studied watersheds may be related to differences in land management. In using the R1/R4 Watershed-Scale Fish Habitat Inventory Process, for most habitat variables, evaluations of sample sizes of at least 30 habitat units were adequate. Guidelines will help land managers in determining sample sizes required to detect...

  19. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for green turtle. 226.208 Section 226.208 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat for...

  20. Exploring the effect of the spatial scale of fishery management.

    PubMed

    Takashina, Nao; Baskett, Marissa L

    2016-02-07

    For any spatially explicit management, determining the appropriate spatial scale of management decisions is critical to success at achieving a given management goal. Specifically, managers must decide how much to subdivide a given managed region: from implementing a uniform approach across the region to considering a unique approach in each of one hundred patches and everything in between. Spatially explicit approaches, such as the implementation of marine spatial planning and marine reserves, are increasingly used in fishery management. Using a spatially explicit bioeconomic model, we quantify how the management scale affects optimal fishery profit, biomass, fishery effort, and the fraction of habitat in marine reserves. We find that, if habitats are randomly distributed, the fishery profit increases almost linearly with the number of segments. However, if habitats are positively autocorrelated, then the fishery profit increases with diminishing returns. Therefore, the true optimum in management scale given cost to subdivision depends on the habitat distribution pattern. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for hawksbill turtle. 226.209 Section 226.209 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209...

  2. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for hawksbill turtle. 226.209 Section 226.209 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209...

  3. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for green turtle. 226.208 Section 226.208 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208...

  4. 50 CFR 226.207 - Critical habitat for leatherback turtle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for leatherback turtle. 226.207 Section 226.207 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.207...

  5. 50 CFR 226.207 - Critical habitat for leatherback turtle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for leatherback turtle. 226.207 Section 226.207 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND... Critical habitat for leatherback turtle. Leatherback Sea Turtle (dermochelys coriacea) The waters adjacent...

  6. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for hawksbill turtle. 226.209 Section 226.209 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND... Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding the...

  7. Tiger sharks can connect equatorial habitats and fisheries across the Atlantic Ocean basin.

    PubMed

    Afonso, André S; Garla, Ricardo; Hazin, Fábio H V

    2017-01-01

    Increasing our knowledge about the spatial ecology of apex predators and their interactions with diverse habitats and fisheries is necessary for understanding the trophic mechanisms that underlie several aspects of marine ecosystem dynamics and for guiding informed management policies. A preliminary assessment of tiger shark (Galeocerdo cuvier) population structure off the oceanic insular system of Fernando de Noronha (FEN) and the large-scale movements performed by this species in the equatorial Atlantic Ocean was conducted using longline and handline fishing gear and satellite telemetry. A total of 25 sharks measuring 175-372 cm in total length (TL) were sampled. Most sharks were likely immature females ranging between 200 and 260 cm TL, with few individuals < 200 cm TL being caught. This contrasts greatly with the tiger shark size-distribution previously reported for coastal waters off the Brazilian mainland, where most individuals measured < 200 cm TL. Also, the movements of 8 individuals measuring 202-310 cm TL were assessed with satellite transmitters for a combined total of 757 days (mean = 94.6 days∙shark-1; SD = 65.6). These sharks exhibited a considerable variability in their horizontal movements, with three sharks showing a mostly resident behavior around FEN during the extent of the respective tracks, two sharks traveling west to the South American continent, and two sharks moving mostly along the middle of the oceanic basin, one of which ending up in the northern hemisphere. Moreover, one shark traveled east to the African continent, where it was eventually caught by fishers from Ivory Coast in less than 474 days at liberty. The present results suggest that young tiger sharks measuring < 200 cm TL make little use of insular oceanic habitats from the western South Atlantic Ocean, which agrees with a previously-hypothesized ontogenetic habitat shift from coastal to oceanic habitats experienced by juveniles of this species in this region. In addition

  8. Tiger sharks can connect equatorial habitats and fisheries across the Atlantic Ocean basin

    PubMed Central

    Garla, Ricardo; Hazin, Fábio H. V.

    2017-01-01

    Increasing our knowledge about the spatial ecology of apex predators and their interactions with diverse habitats and fisheries is necessary for understanding the trophic mechanisms that underlie several aspects of marine ecosystem dynamics and for guiding informed management policies. A preliminary assessment of tiger shark (Galeocerdo cuvier) population structure off the oceanic insular system of Fernando de Noronha (FEN) and the large-scale movements performed by this species in the equatorial Atlantic Ocean was conducted using longline and handline fishing gear and satellite telemetry. A total of 25 sharks measuring 175–372 cm in total length (TL) were sampled. Most sharks were likely immature females ranging between 200 and 260 cm TL, with few individuals < 200 cm TL being caught. This contrasts greatly with the tiger shark size-distribution previously reported for coastal waters off the Brazilian mainland, where most individuals measured < 200 cm TL. Also, the movements of 8 individuals measuring 202–310 cm TL were assessed with satellite transmitters for a combined total of 757 days (mean = 94.6 days∙shark-1; SD = 65.6). These sharks exhibited a considerable variability in their horizontal movements, with three sharks showing a mostly resident behavior around FEN during the extent of the respective tracks, two sharks traveling west to the South American continent, and two sharks moving mostly along the middle of the oceanic basin, one of which ending up in the northern hemisphere. Moreover, one shark traveled east to the African continent, where it was eventually caught by fishers from Ivory Coast in less than 474 days at liberty. The present results suggest that young tiger sharks measuring < 200 cm TL make little use of insular oceanic habitats from the western South Atlantic Ocean, which agrees with a previously-hypothesized ontogenetic habitat shift from coastal to oceanic habitats experienced by juveniles of this species in this region. In

  9. 76 FR 6402 - Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... Pacific Fishery Management Council's (Pacific Council) Groundfish Essential Fish Habitat Review Committee... issues to address, as the Pacific Council and the National Marine Fisheries Service (NMFS) conduct a...

  10. 76 FR 80890 - Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... Pacific Fishery Management Council's (Pacific Council) Ad Hoc Groundfish Essential Fish Habitat Review... Airport Hotel, 7900 NE 82nd Avenue, Portland, OR 97220. Council address: Pacific Fishery Management...

  11. California Cooperative Oceanic Fisheries Investigations Reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olfe, J.; Lang, C.; Vernet, M.

    1989-10-01

    This document contains 15 papers. Topics include a review of some California fisheries, spawning biomass of the northern anchovy, marine fisheries, habitat alterations, fishery management, reproduction, population dynamics, acoustic Doppler currents and sea lion interaction and depredation. Each paper will be indexed and entered separately on the energy data base. 54 figs., 29 tabs. (KD)

  12. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... HABITAT § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways...

  13. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... HABITAT § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways...

  14. 50 CFR 660.75 - Essential Fish Habitat (EFH).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Essential Fish Habitat (EFH). 660.75... Groundfish Fisheries § 660.75 Essential Fish Habitat (EFH). Essential fish habitat (EFH) is defined as those waters and substrate necessary to fish for spawning, breeding, feeding or growth to maturity (16 U.S.C...

  15. 50 CFR 660.75 - Essential Fish Habitat (EFH).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Essential Fish Habitat (EFH). 660.75... Groundfish Fisheries § 660.75 Essential Fish Habitat (EFH). Essential fish habitat (EFH) is defined as those waters and substrate necessary to fish for spawning, breeding, feeding or growth to maturity (16 U.S.C...

  16. 50 CFR 660.75 - Essential Fish Habitat (EFH).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Essential Fish Habitat (EFH). 660.75... Groundfish Fisheries § 660.75 Essential Fish Habitat (EFH). Essential fish habitat (EFH) is defined as those waters and substrate necessary to fish for spawning, breeding, feeding or growth to maturity (16 U.S.C...

  17. 50 CFR 660.75 - Essential Fish Habitat (EFH).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Essential Fish Habitat (EFH). 660.75... Groundfish Fisheries § 660.75 Essential Fish Habitat (EFH). Essential fish habitat (EFH) is defined as those waters and substrate necessary to fish for spawning, breeding, feeding or growth to maturity (16 U.S.C...

  18. 50 CFR 660.395 - Essential Fish Habitat (EFH)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Essential Fish Habitat (EFH) 660.395... Groundfish Fisheries § 660.395 Essential Fish Habitat (EFH) Essential fish habitat (EFH) is defined as those waters and substrate necessary to fish for spawning, breeding, feeding or growth to maturity (16 U.S.C...

  19. Defining a Safe Operating Space for inland recreational fisheries

    USGS Publications Warehouse

    Carpenter, Stephen R.; Brock, William A.; Hansen, Gretchen J. A.; Hansen, Jonathan F.; Hennessy, Joseph M.; Isermann, Daniel A.; Pedersen, Eric J.; Perales, K. Martin; Rypel, Andrew L.; Sass, Greg G.; Tunney, Tyler D.; Vander Zanden, M. Jake

    2017-01-01

    The Safe Operating Space (SOS) of a recreational fishery is the multidimensional region defined by levels of harvest, angler effort, habitat, predation and other factors in which the fishery is sustainable into the future. SOS boundaries exhibit trade-offs such that decreases in harvest can compensate to some degree for losses of habitat, increases in predation and increasing value of fishing time to anglers. Conversely, high levels of harvest can be sustained if habitat is intact, predation is low, and value of fishing effort is moderate. The SOS approach recognizes limits in several dimensions: at overly high levels of harvest, habitat loss, predation, or value of fishing effort, the stock falls to a low equilibrium biomass. Recreational fisheries managers can influence harvest and perhaps predation, but they must cope with trends that are beyond their control such as changes in climate, loss of aquatic habitat or social factors that affect the value of fishing effort for anglers. The SOS illustrates opportunities to manage harvest or predation to maintain quality fisheries in the presence of trends in climate, social preferences or other factors that are not manageable.

  20. Predictive Habitat Use of California Sea Lions and Its Implications for Fisheries Management

    NASA Astrophysics Data System (ADS)

    Briscoe, D.

    2016-02-01

    Advancements in satellite telemetry and remotely-sensed oceanography have shown that species and the environment they utilize are highly dynamic in space and time. However, biophysical features often overlap with human use. For this reason, spatially-explicit management approaches may only provide a snapshot of protection for a highly mobile species throughout its range. As a migratory species, California sea lions (Zalophus californianus) utilize dynamic oceanographic features that overlap with the California swordfish fishery, and are subject to incidental catch. The development of near-real time tools can assist in management efforts to mitigate against human impacts, such as fisheries interactions and dynamic marine species. Here, we combine near-real time remotely-sensed satellite oceanography, animal tracking data, and Generalized Additive Mixed Models (GAMMs) to: a) determine suitable habitat for 75 female California sea lions throughout their range, b) forecast when and where these non-target interactions are likely to occur, and c) validate these models with observed data of such interactions. Model results can be used to provide resource management that are highly responsive to the movement of managed species, ocean users, and underlying ocean features.

  1. Predictive Habitat Use of California Sea Lions and Its Implications for Fisheries Management

    NASA Astrophysics Data System (ADS)

    Briscoe, D.

    2016-12-01

    Advancements in satellite telemetry and remotely-sensed oceanography have shown that species and the environment they utilize are highly dynamic in space and time. However, biophysical features often overlap with human use. For this reason, spatially-explicit management approaches may only provide a snapshot of protection for a highly mobile species throughout its range. As a migratory species, California sea lions (Zalophus californianus) utilize dynamic oceanographic features that overlap with the California swordfish fishery, and are subject to incidental catch. The development of near-real time tools can assist in management efforts to mitigate against human impacts, such as fisheries interactions and dynamic marine species. Here, we combine near-real time remotely-sensed satellite oceanography, animal tracking data, and Generalized Additive Mixed Models (GAMMs) to: a) determine suitable habitat for 75 female California sea lions throughout their range, b) forecast when and where these non-target interactions are likely to occur, and c) validate these models with observed data of such interactions. Model results can be used to provide resource management that are highly responsive to the movement of managed species, ocean users, and underlying ocean features.

  2. 50 CFR 226.201 - Critical habitat for Hawaiian monk seals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for Hawaiian monk seals. 226.201 Section 226.201 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.201...

  3. 50 CFR 226.201 - Critical habitat for Hawaiian monk seals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Hawaiian monk seals. 226.201 Section 226.201 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND... Critical habitat for Hawaiian monk seals. Hawaiian Monk Seal (Monachus schauinslandi) All beach areas, sand...

  4. 50 CFR 226.201 - Critical habitat for Hawaiian monk seals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for Hawaiian monk seals. 226.201 Section 226.201 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND... Critical habitat for Hawaiian monk seals. Hawaiian Monk Seal (Monachus schauinslandi) All beach areas, sand...

  5. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: Targeting vegetated habitat restoration

    USGS Publications Warehouse

    Smith, L.M.; Nestlerode, J.A.; Harwell, L.C.; Bourgeois, P.

    2010-01-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. ?? 2010 Springer Science+Business Media B.V.

  6. Effects of Climate Change on Fishery Species in Florida

    NASA Astrophysics Data System (ADS)

    Shenker, Jonathan M.

    2009-07-01

    Recreational and commercial fishery species in Florida and elsewhere are under serious stress from overfishing and many types of habitat and water quality degradation. Climate change may add to that stress by affecting an array of biological processes, although the range of some subtropical and tropical species may expand northward in the state. It is expected to trigger sea level rise and changes in hurricanes and precipitation levels in Florida and elsewhere. Perhaps the most significant impacts of climate change on fishery species will also associated with changes in seagrasses and mangroves that function as Essential Nursery Habitats. Seagrasses in estuarine and coastal areas are limited by water depth and light penetration. Increases in sea level and in precipitation-induced turbidity may restrict the extent of seagrass habitats and their role in fishery production. Expanded efforts to reduce nutrient and sediment loading into seagrass habitats may help minimize the potential loss of a valuable fish nursery habitat. Mangroves have also been affected by human activities, and are the subject of restoration efforts in many areas. Potential sea level rise may cause an expansion of mangrove habitats in the Everglades, at the expense of freshwater habitats. This potential tradeoff of habitats should be considered by the water flow and habitat restoration programs in the Everglades.

  7. 50 CFR 226.203 - Critical habitat for northern right whales.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for northern right whales. 226.203 Section 226.203 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... § 226.203 Critical habitat for northern right whales. (a) Great South Channel. The area bounded by 41°40...

  8. 50 CFR 226.203 - Critical habitat for northern right whales.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for northern right whales. 226.203 Section 226.203 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... § 226.203 Critical habitat for northern right whales. (a) Great South Channel. The area bounded by 41°40...

  9. 50 CFR 226.203 - Critical habitat for northern right whales.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for northern right whales. 226.203 Section 226.203 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... § 226.203 Critical habitat for northern right whales. (a) Great South Channel. The area bounded by 41°40...

  10. 75 FR 78976 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... England Fishery Management Council (Council) is scheduling a public meeting of its Habitat/MPA/Ecosystem Committee, in January, 2011, to consider actions affecting New England fisheries in the exclusive economic...

  11. Commercially important species associated with horse mussel (Modiolus modiolus) biogenic reefs: A priority habitat for nature conservation and fisheries benefits.

    PubMed

    Kent, Flora E A; Mair, James M; Newton, Jason; Lindenbaum, Charles; Porter, Joanne S; Sanderson, William G

    2017-05-15

    Horse mussel reefs (Modiolus modiolus) are biodiversity hotspots afforded protection by Marine Protected Areas (MPAs) in the NE Atlantic. In this study, horse mussel reefs, cobble habitats and sandy habitats were assessed using underwater visual census and drop-down video techniques in three UK regions. Megafauna were enumerated, differences in community composition and individual species abundances were analysed. Samples of conspicuous megafauna were also collected from horse mussel reefs in Orkney for stable isotope analysis. Communities of conspicuous megafauna were different between horse mussel habitats and other habitats throughout their range. Three commercially important species: whelks (Buccinum undatum), queen scallops (Aequipecten opercularis) and spider crabs (Maja brachydactyla) were significantly more abundant (by as much as 20 times) on horse mussel reefs than elsewhere. Isotopic analysis provided insights into their trophic relationship with the horse mussel reef. Protection of M. modiolus habitat can achieve biodiversity conservation objectives whilst benefiting fisheries also. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Seafloor habitat mapping and classification in Glacier Bay, Alaska: Phase 1 & 2 1996-2004

    USGS Publications Warehouse

    Hooge, Philip N.; Carlson, Paul R.; Mondragon, Jennifer; Etherington, Lisa L.; Cochran, G.R.

    2004-01-01

    Glacier Bay is a diverse fjord ecosystem with multiple sills, numerous tidewater glaciers and a highly complex oceanographic system. The Bay was completely glaciated prior to the 1700’s and subsequently experienced the fastest glacial retreat recorded in historical times. Currently, some of the highest sedimentation rates ever observed occur in the Bay, along with rapid uplift (up to 2.5 cm/year) due to a combination of plate tectonics and isostatic rebound. Glacier Bay is the second deepest fjord in Alaska, with depths over 500 meters. This variety of physical processes and bathymetry creates many diverse habitats within a relatively small area (1,255 km2 ). Habitat can be defined as the locality, including resources and environmental conditions, occupied by a species or population of organisms (Morrison et al 1992). Mapping and characterization of benthic habitat is crucial to an understanding of marine species and can serve a variety of purposes including: understanding species distributions and improving stock assessments, designing special management areas and marine protected areas, monitoring and protecting important habitats, and assessing habitat change due to natural or human impacts. In 1996, Congress recognized the importance of understanding benthic habitat for fisheries management by reauthorizing the Magnuson-Stevens Fishery Conservation and Management Act and amending it with the Sustainable Fisheries Act (SFA). This amendment emphasizes the importance of habitat protection to healthy fisheries and requires identification of essential fish habitat in management decisions. Recently, the National Park Service’s Ocean Stewardship Strategy identified the creation of benthic habitat maps and sediment maps as crucial components to complete basic ocean park resource inventories (Davis 2003). Glacier Bay National Park managers currently have very limited knowledge about the bathymetry, sediment types, and various marine habitats of ecological

  13. 50 CFR 226.220 - Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas). 226.220 Section 226.220 Wildlife and Fisheries NATIONAL MARINE FISHERIES... CRITICAL HABITAT § 226.220 Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas...

  14. 50 CFR 226.203 - Critical habitat for northern right whales.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for northern right whales. 226.203 Section 226.203 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND... Critical habitat for northern right whales. (a) Great South Channel. The area bounded by 41°40′ N/69°45′ W...

  15. Flammulated Owl (Otus flammeolus) population and habitat inventory at its northern range limit in the Southern Interior of British Columbia

    Treesearch

    Astrid M. van Woudenberg; David A. Christie

    1997-01-01

    Flammulated Owl (Otus flammeolus) ecology at the northern limit of its range (southern interior of British Columbia) necessitates that inventory data include replicated sampling throughout and between breeding seasons for accurate population and habitat assessment. Auditory census and nest surveys must be linked to assess habitat suitability; census...

  16. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways, bottom and...

  17. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways, bottom and...

  18. 76 FR 38620 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... England Fishery Management Council (Council) is scheduling a public meeting of its Habitat/MPA/Ecosystem... economic zone (EEZ). Recommendations from this group will be brought to the full Council for formal...

  19. 78 FR 23224 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... (AP); Coral AP; Joint Meeting of the Habitat & Environmental Protection AP and Coral AP; and Deepwater.... Coral AP Agenda, Tuesday, May 7, 2013, 1 p.m. Until 5 p.m. 1. Receive an update from NOAA Fisheries Habitat Conservation Division. 2. Receive an update on Coral Nursery Restoration Work and Utilization. 3...

  20. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  1. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  2. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  3. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  4. 50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude Latitude...

  5. 50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude Latitude...

  6. 50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude Latitude...

  7. 50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude Latitude...

  8. 50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude Latitude...

  9. Coeur d'Alene Tribe Fisheries Program : Implementation of Fisheries Enhancement Opportunities on the Coeur d’Alene Reservation : 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firehammer, Jon A.; Vitale, Angelo J.; Hallock, Stephanie A.

    2009-09-08

    persistence in the face of anthropogenic influences and prospective climate change. This included recovering the lacustrine-adfluvial life history form that was historically prevalent and had served to provide both resilience and resistance to the structure of cutthroat trout populations in the Coeur d'Alene basin. To this end, the Coeur d'Alene Tribe closed Lake Creek and Benewah Creek to fishing in 1993 to initiate recovery of westslope cutthroat trout to historical levels. However, achieving sustainable cutthroat trout populations also required addressing biotic factors and habitat features in the basin that were limiting recovery. Early in the 1990s, BPA-funded surveys and inventories identified limiting factors in Tribal watersheds that would need to be remedied to restore westslope cutthroat trout populations. The limiting factors included: low-quality, low-complexity mainstem stream habitat and riparian zones; high stream temperatures in mainstem habitats; negative interactions with nonnative brook trout in tributaries; and potential survival bottlenecks in Coeur d'Alene Lake. In 1994, the Northwest Power Planning Council adopted the recommendations set forth by the Coeur d'Alene Tribe to improve the Reservation fishery (NWPPC Program Measures 10.8B.20). These recommended actions included: (1) Implement habitat restoration and enhancement measures in Alder, Benewah, Evans, and Lake Creeks; (2) Purchase critical watershed areas for protection of fisheries habitat; (3) Conduct an educational/outreach program for the general public within the Coeur d'Alene Reservation to facilitate a 'holistic' watershed protection process; (4) Develop an interim fishery for tribal and non-tribal members of the reservation through construction, operation and maintenance of five trout ponds; (5) Design, construct, operate and maintain a trout production facility; and (6) Implement a monitoring program to evaluate the effectiveness of the hatchery and habitat improvement projects. These

  10. Artificial Reefs as Surrogate Habitats for Red Snapper in the Northwestern Gulf of Mexico: A Fishery-Independent Comparison of Artificial and Natural Habitats

    NASA Astrophysics Data System (ADS)

    Streich, M.; Wetz, J. J.; Ajemian, M. J.; Stunz, G. W.

    2016-02-01

    The goal of our study was to evaluate the relative abundance, size and age structure of Red Snapper among three different habitat types (standing oil and gas platforms, artificial reefs [rigs-to-reefs], and natural banks) in the northwestern Gulf of Mexico. From May 2013 - January 2015, we conducted 140 vertical line sets and captured 1538 Red Snapper ranging in size from 251 to 855 mm TL. Ages determined for 801 of these fish ranged from 2-30 years. No differences were detected in Red Snapper CPUE among the three habitats. However, a comparison of TL and TW distributions suggested that natural banks supported a greater proportion of larger fish than artificial reefs or standing platforms (K-S test, p<0.001). Mean TW-at-age regressions for the most common age groups (ages 3-7) suggested that Red Snapper grew faster at artificial reefs and standing platforms than natural bank habitats (ANCOVA, p<0.05). Mean age was positively correlated with capture depth (r=0.79) suggesting spatial variation in age composition. These results have important implications for artificial reef development and Red Snapper management in the GOM. Further use of standardized, fishery-independent surveys and additional biological data will help elucidate the role artificial structures play in maintaining the Red Snapper population.

  11. 50 CFR Table 25 to Part 679 - Bowers Ridge Habitat Conservation Zone

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Bowers Ridge Habitat Conservation Zone 25 Table 25 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 25 Table 25 to Part 679—Bowers Ridge Habitat Conservation Zone Area number Name...

  12. 50 CFR Table 25 to Part 679 - Bowers Ridge Habitat Conservation Zone

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Bowers Ridge Habitat Conservation Zone 25 Table 25 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 25 Table 25 to Part 679—Bowers Ridge Habitat Conservation Zone Area number Name...

  13. 50 CFR Table 25 to Part 679 - Bowers Ridge Habitat Conservation Zone

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Bowers Ridge Habitat Conservation Zone 25 Table 25 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 25 Table 25 to Part 679—Bowers Ridge Habitat Conservation Zone Area number Name...

  14. 50 CFR Table 25 to Part 679 - Bowers Ridge Habitat Conservation Zone

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Bowers Ridge Habitat Conservation Zone 25 Table 25 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 25 Table 25 to Part 679—Bowers Ridge Habitat Conservation Zone Area number Name...

  15. 50 CFR Table 25 to Part 679 - Bowers Ridge Habitat Conservation Zone

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Bowers Ridge Habitat Conservation Zone 25 Table 25 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 25 Table 25 to Part 679—Bowers Ridge Habitat Conservation Zone Area number Name...

  16. Habitat planning, maintenance and management working group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Gulf of Mexico (GOM), called {open_quotes}America`s Sea,{close_quotes} is actually a small ocean basin covering over 1.5 million square kilometers. Because of the multiple uses, diversity, and size of the Gulf`s resources, management is shared by a number of governmental agencies including the Minerals Management Service, the Gulf of Mexico Fishery Management Council, the Gulf States Marine Fisheries Commission, National Marine Fisheries Service, the US Coast Guard, the US Army Corps of Engineers, and the five Gulf states fisheries agencies. All of these entities share a common goal of achieving optimum sustainable yield to maximize geological, biological, social, and economicmore » benefits from these resources. These entities also share a common theme that the successful management of the northern GOM requires maintenance and enhancement of both the quantity and quality of habitats. A closer look at the GOM shows the sediment to be clearly dominated by vast sand and mud plains. These soft bottom habitats are preferred by many groundfish and shrimp species and, thus, have given rise to large commercial fisheries on these stocks. Hard bottom and reef habitats, on the other hand, are limited to approximately 1.6% of the total area of the Gulf, so that, while there are high demands by commercial and recreational fishermen for reef associated species, the availability of habitat for these stocks is limited. The thousands of oil and gas structures placed in the Gulf have added significant amounts of new hard substrate. The rigs-to-reefs concept was a common sense idea with support from environmental user groups and the petroleum industry for preserving a limited but valuable habitat type. As long as maximizing long-term benefits from the Gulf s resources for the greatest number of users remains the goal, then programs such as Rigs-to-Reefs will remain an important tool for fisheries and habitat managers in the Gulf.« less

  17. 78 FR 68416 - South Atlantic Fishery Management Council (SAFMC); Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... Atlantic Fishery Management Council (SAFMC); Public Meeting AGENCY: National Marine Fisheries Service (NMFS... South Atlantic Fishery Management Council (Council). SUMMARY: The Council will hold a Council Member... the Habitat and Ecosystem-Based Management Committees; Protected Resources Committee, Southeast Data...

  18. 75 FR 55306 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National... New England Fishery Management Council (Council) is scheduling a public meeting of its Habitat/MPA..., 2010 at 9:30 a.m. ADDRESSES: This meeting will be held at the Hotel Viking, One Bellevue Avenue...

  19. 76 FR 43987 - Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... Pacific Fishery Management Council's (Pacific Council) ad hoc groundfish Essential Fish Habitat Review... of groundfish Essential Fish Habitat (EFH). DATES: The work session will be held Thursday, October 6...

  20. 50 CFR Figure 16 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Bering Sea Habitat Conservation Area 16 Figure 16 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Fig. 16 Figure 16 to part 679—Bering Sea Habitat Conservation Area ER25JY08.010 [73 FR...

  1. 50 CFR Figure 16 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Bering Sea Habitat Conservation Area 16 Figure 16 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Fig. 16 Figure 16 to part 679—Bering Sea Habitat Conservation Area ER25JY08.010 [73 FR...

  2. 50 CFR Figure 16 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Bering Sea Habitat Conservation Area 16 Figure 16 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Fig. 16 Figure 16 to part 679—Bering Sea Habitat Conservation Area ER25JY08.010 [73 FR...

  3. 50 CFR Figure 16 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Bering Sea Habitat Conservation Area 16 Figure 16 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Fig. 16 Figure 16 to part 679—Bering Sea Habitat Conservation Area ER25JY08.010 [73 FR...

  4. 50 CFR Figure 16 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Bering Sea Habitat Conservation Area 16 Figure 16 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Fig. 16 Figure 16 to part 679—Bering Sea Habitat Conservation Area ER25JY08.010 [73 FR...

  5. 50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat Conservation...

  6. 50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat Conservation...

  7. 50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat Conservation...

  8. 50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat Conservation...

  9. 50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat Conservation...

  10. 50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat Conservation...

  11. 50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat Conservation...

  12. 50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat Conservation...

  13. 50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat Conservation...

  14. 50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat Conservation...

  15. 75 FR 67688 - Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Pacific Fishery Management Council's (Council's) Ad Hoc Groundfish Essential Fish Habitat Review Committee... groundfish Essential Fish Habitat (EFH). DATES: The work session will be held Monday, December 20, 2010 from...

  16. 77 FR 46408 - Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... Pacific Fishery Management Council's (Council) Groundfish Essential Fish Habitat Review Committee (EFHRC... essential fish habitat (EFH). DATES: The conference call will be held August 17, 2012 between 9 a.m. and...

  17. 76 FR 66273 - Snapper-Grouper Fishery Off the Southern Atlantic States and Coral and Coral Reefs Fishery in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ...-Grouper Fishery Off the Southern Atlantic States and Coral and Coral Reefs Fishery in the South Atlantic... the South Atlantic Region and the FMP for Coral, Coral Reefs, and Live/Hard Bottom Habitats of the... Aquariums to collect, with certain conditions, various species of reef fish and live rock in Federal waters...

  18. Habitat-related specialization of lateral-line system morphology in a habitat-generalist and a habitat-specialist New Zealand eleotrid.

    PubMed

    Vanderpham, J P; Nakagawa, S; Senior, A M; Closs, G P

    2016-04-01

    An investigation of intraspecific habitat-related patterns of variation in oculoscapular lateral-line superficial neuromasts (SN) identified a decrease in the ratio of total SNs to pores, and a trend towards decreased asymmetry in SNs in the habitat-generalist common bully Gobiomorphus cotidianus from fluvial habitats compared to lacustrine habitats, suggesting habitat-related phenotypic variability. A greater ratio of pores to SNs, as well as less variation in the total number and asymmetry of SNs observed in the fluvial habitat-specialist redfin bully Gobiomorphus huttoni may provide further evidence of variations in the oculoscapular lateral-line morphology of fluvial habitat G. cotidianus individuals serving as adaptations to more turbulent environments. © 2016 The Fisheries Society of the British Isles.

  19. 77 FR 68735 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... Committee will continue to develop options and alternatives for Omnibus Essential Fish Habitat Amendment 2 (OA2). Specifically, the Committee will review Habitat Advisory Panel and Plan Development Team... England Fishery Management Council (Council) is scheduling a public meeting of its Habitat Oversight...

  20. 50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat Conservation...

  1. 50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat Conservation...

  2. 50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat Conservation...

  3. 50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat Conservation...

  4. 50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat Conservation...

  5. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  6. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  7. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  8. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  9. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  10. 50 CFR 226.220 - Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas). 226.220 Section 226.220 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.220 Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas...

  11. 50 CFR 226.220 - Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas). 226.220 Section 226.220 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.220 Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas...

  12. 50 CFR 226.220 - Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas). 226.220 Section 226.220 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.220 Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas...

  13. A Spatially Distinct History of the Development of California Groundfish Fisheries

    PubMed Central

    Miller, Rebecca R.; Field, John C.; Santora, Jarrod A.; Schroeder, Isaac D.; Huff, David D.; Key, Meisha; Pearson, Don E.; MacCall, Alec D.

    2014-01-01

    During the past century, commercial fisheries have expanded from small vessels fishing in shallow, coastal habitats to a broad suite of vessels and gears that fish virtually every marine habitat on the globe. Understanding how fisheries have developed in space and time is critical for interpreting and managing the response of ecosystems to the effects of fishing, however time series of spatially explicit data are typically rare. Recently, the 1933–1968 portion of the commercial catch dataset from the California Department of Fish and Wildlife was recovered and digitized, completing the full historical series for both commercial and recreational datasets from 1933–2010. These unique datasets include landing estimates at a coarse 10 by 10 minute “grid-block” spatial resolution and extends the entire length of coastal California up to 180 kilometers from shore. In this study, we focus on the catch history of groundfish which were mapped for each grid-block using the year at 50% cumulative catch and total historical catch per habitat area. We then constructed generalized linear models to quantify the relationship between spatiotemporal trends in groundfish catches, distance from ports, depth, percentage of days with wind speed over 15 knots, SST and ocean productivity. Our results indicate that over the history of these fisheries, catches have taken place in increasingly deeper habitat, at a greater distance from ports, and in increasingly inclement weather conditions. Understanding spatial development of groundfish fisheries and catches in California are critical for improving population models and for evaluating whether implicit stock assessment model assumptions of relative homogeneity of fisheries removals over time and space are reasonable. This newly reconstructed catch dataset and analysis provides a comprehensive appreciation for the development of groundfish fisheries with respect to commonly assumed trends of global fisheries patterns that are

  14. 76 FR 50183 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... minimize the adverse effects of fishing on essential fish habitat and will also continue development of... September meeting. The Committee will also review remaining essential fish habitat designation issues held... England Fishery Management Council (Council) is scheduling a public meeting of its Habitat/MPA/Ecosystem...

  15. 76 FR 39075 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... Committee will discuss measures to minimize the adverse effects of fishing on Essential Fish Habitat (EFH... England Fishery Management Council (Council) is scheduling a public meeting of its Habitat/MPA/Ecosystem...

  16. 77 FR 16540 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... development and analysis in Omnibus Essential Fish Habitat Amendment 2. Two types of measures will be considered at the meeting: (1) Options to minimize the adverse effects of fishing on Essential Fish Habitat... England Fishery Management Council (Council) is scheduling a public meeting of its Habitat Oversight...

  17. 77 FR 5774 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... management measures for further development and analysis in Omnibus Essential Fish Habitat Amendment 2. Two... fishing on Essential Fish Habitat and (2) alternatives to protect deep-sea corals from the impacts of... England Fishery Management Council (Council) is scheduling a public meeting of its Habitat/MPA/Ecosystem...

  18. 75 FR 43928 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... effects of fishing on Essential Fish Habitat (EFH) across all Council FMPs. These management options are being developed as part of Phase 2 of Essential Fish Habitat Omnibus Amendment 2. Broadly speaking, the... England Fishery Management Council (Council) is scheduling a public meeting of its Habitat/MPA/Ecosystem...

  19. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for green turtle. 226.208 Section 226.208 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC... green turtle. (a) Culebra Island, Puerto Rico—Waters surrounding the island of Culebra from the mean...

  20. Marine biodiversity and fishery sustainability.

    PubMed

    Shao, Kwang-Tsao

    2009-01-01

    Marine fish is one of the most important sources of animal protein for human use, especially in developing countries with coastlines. Marine fishery is also an important industry in many countries. Fifty years ago, many people believed that the ocean was so vast and so resilient that there was no way the marine environment could be changed, nor could marine fishery resources be depleted. Half a century later, we all agree that the depletion of fishery resources is happening mainly due to anthropogenic factors such as overfishing, habitat destruction, pollution, invasive species introduction, and climate change. Since overfishing can cause chain reactions that decrease marine biodiversity drastically, there will be no seafood left after 40 years if we take no action. The most effective ways to reverse this downward trend and restore fishery resources are to promote fishery conservation, establish marine-protected areas, adopt ecosystem-based management, and implement a "precautionary principle." Additionally, enhancing public awareness of marine conservation, which includes eco-labeling, fishery ban or enclosure, slow fishing, and MPA (marine protected areas) enforcement is important and effective. In this paper, we use Taiwan as an example to discuss the problems facing marine biodiversity and sustainable fisheries.

  1. A rehabilitation plan for walleye populations and habitats in Lake Superior

    USGS Publications Warehouse

    Hoff, Michael H.

    2003-01-01

    The walleye (Stizostedion vitreum vitreum) has been historically important in regional fisheries and fish communities in large bays, estuaries, and rivers of Lake Superior. Significant negative impacts on the species caused by overharvesting, habitat degradation, and pollution during the late 1800s and early 1900s have led to the preparation of a strategic rehabilitation plan. The lakewide goal is to maintain, enhance, and rehabilitate habitat for walleye and to establish self-sustaining populations in areas where walleyes historically lived. Population objectives that support the goal are to increase the abundance of juvenile and adult walleyes in selected areas. Habitat objectives that support the goal include increasing spawning and nursery habitat in four areas: enhancing fish passage, reducing sedimentation, increasing water quality, and reducing contaminants in walleyes. Progress toward achieving the habitat objectives should be measured by documenting increases in spawning and nursery habitats, resolving fish-passage issues, reducing sediments in rivers, and reducing contaminant levels in walleyes. Stocking various life stages of walleye should be considered to rehabilitate certain degraded populations. Total annual mortality of walleye populations should be less than 45% to allow populations to either increase or be maintained at target levels of abundance. Routine assessments should focus on gathering the data necessary to evaluate abundance and mortality and on taking inventories of spawning and nursery habitats. Research should be conducted to understand the specific habitat requirements for Lake Superior walleye populations and the habitat-abundance relationships for populations and for the lake as a whole.

  2. 50 CFR 17.94 - Critical habitats.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 2 2013-10-01 2013-10-01 false Critical habitats. 17.94 Section 17.94... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the lists at §§ 17.11 and 17.12 have been determined by the Director to be Critical Habitat. All Federal...

  3. 50 CFR 17.94 - Critical habitats.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 2 2012-10-01 2012-10-01 false Critical habitats. 17.94 Section 17.94... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the lists at §§ 17.11 and 17.12 have been determined by the Director to be Critical Habitat. All Federal...

  4. 50 CFR 17.94 - Critical habitats.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 2 2014-10-01 2014-10-01 false Critical habitats. 17.94 Section 17.94... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the lists at §§ 17.11 and 17.12 have been determined by the Director to be Critical Habitat. All Federal...

  5. 50 CFR 17.94 - Critical habitats.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 2 2011-10-01 2011-10-01 false Critical habitats. 17.94 Section 17.94... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the lists at §§ 17.11 and 17.12 have been determined by the Director to be Critical Habitat. All Federal...

  6. Nine proposed action areas to enhance diversity and inclusion in the American Fisheries Society

    Treesearch

    Brooke E. Penaluna; Ivan Arismendi; Christine M. Moffitt; Zachary L. Penney

    2017-01-01

    Increasing diversity in the fisheries profession, including diversity of members of the American Fisheries Society (AFS), is vital to ensuring the future relevance of fish and their habitats, fisheries, and fisheries professionals in the broader context of society. Any well-informed natural resource professional understands the value of a diverse ecosystem, and savvy...

  7. The Areal Extent of Brown Shrimp Habitat Suitability in Mobile Bay, Alabama USA: Targeting Vegetated Habitat Restoration

    EPA Science Inventory

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the U.S. Protection and management of these vital GOM habitats are critical t...

  8. Fringe benefit: Value of restoring coastal wetlands for Great Lakes fisheries

    EPA Science Inventory

    Fishery support is recognized as a valuable ecosystem service provided by Great Lakes coastal wetlands, but it is challenging to quantify because multiple species and habitats are involved. Recent studies indicate that coastal wetland area is proportional to fishery harvest among...

  9. Seascape models reveal places to focus coastal fisheries management.

    PubMed

    Stamoulis, Kostantinos A; Delevaux, Jade M S; Williams, Ivor D; Poti, Matthew; Lecky, Joey; Costa, Bryan; Kendall, Matthew S; Pittman, Simon J; Donovan, Mary K; Wedding, Lisa M; Friedlander, Alan M

    2018-06-01

    To design effective marine reserves and support fisheries, more information on fishing patterns and impacts for targeted species is needed, as well as better understanding of their key habitats. However, fishing impacts vary geographically and are difficult to disentangle from other factors that influence targeted fish distributions. We developed a set of fishing effort and habitat layers at high resolution and employed machine learning techniques to create regional-scale seascape models and predictive maps of biomass and body length of targeted reef fishes for the main Hawaiian Islands. Spatial patterns of fishing effort were shown to be highly variable and seascape models indicated a low threshold beyond which targeted fish assemblages were severely impacted. Topographic complexity, exposure, depth, and wave power were identified as key habitat variables that influenced targeted fish distributions and defined productive habitats for reef fisheries. High targeted reef fish biomass and body length were found in areas not easily accessed by humans, while model predictions when fishing effort was set to zero showed these high values to be more widely dispersed among suitable habitats. By comparing current targeted fish distributions with those predicted when fishing effort was removed, areas with high recovery potential on each island were revealed, with average biomass recovery of 517% and mean body length increases of 59% on Oahu, the most heavily fished island. Spatial protection of these areas would aid recovery of nearshore coral reef fisheries. © 2018 by the Ecological Society of America.

  10. 30 CFR 285.803 - How must I conduct my approved activities to protect essential fish habitats identified and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protect essential fish habitats identified and described under the Magnuson-Stevens Fishery Conservation... fish habitats identified and described under the Magnuson-Stevens Fishery Conservation and Management Act? (a) If, during the conduct of your approved activities, MMS finds that essential fish habitat or...

  11. 50 CFR Table 44 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 44 Table 44 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area Longitude Latitude 1651.54W 6045.54N* 1627.01W...

  12. 50 CFR Figure 21 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 21 Figure 21 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area ER25JY08.012 [73 FR 43372, July 25, 2008] ...

  13. 50 CFR Figure 21 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 21 Figure 21 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area ER25JY08.012 [73 FR 43372, July 25, 2008] ...

  14. 50 CFR Figure 21 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 21 Figure 21 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area ER25JY08.012 [73 FR 43372, July 25, 2008] ...

  15. 50 CFR Table 44 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 44 Table 44 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area Longitude Latitude 1651.54W 6045.54N* 1627.01W...

  16. 50 CFR Table 44 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 44 Table 44 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area Longitude Latitude 1651.54W 6045.54N* 1627.01W...

  17. 50 CFR Table 44 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 44 Table 44 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area Longitude Latitude 1651.54W 6045.54N* 1627.01W...

  18. 50 CFR Figure 21 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 21 Figure 21 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area ER25JY08.012 [73 FR 43372, July 25, 2008] ...

  19. 50 CFR Figure 21 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 21 Figure 21 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area ER25JY08.012 [73 FR 43372, July 25, 2008] ...

  20. 50 CFR Table 44 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 44 Table 44 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area Longitude Latitude 1651.54W 6045.54N* 1627.01W...

  1. 76 FR 36902 - Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... continue the periodic review of essential fish habitat (EFH) identification and descriptions for species... Pacific Fishery Management Council (Pacific Council) will hold a meeting of its Groundfish Essential Fish Habitat Review Committee (EFHRC). The meeting is open to the public. DATES: The CPSMT meeting will be held...

  2. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for hawksbill turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding the...

  3. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for hawksbill turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding the...

  4. 50 CFR 17.96 - Critical habitat-plants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 4 2010-10-01 2010-10-01 false Critical habitat-plants. 17.96 Section 17.96 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND...

  5. 50 CFR 17.96 - Critical habitat-plants.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 6 2012-10-01 2012-10-01 false Critical habitat-plants. 17.96 Section 17.96 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND...

  6. 50 CFR 17.96 - Critical habitat-plants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 5 2011-10-01 2011-10-01 false Critical habitat-plants. 17.96 Section 17.96 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND...

  7. 50 CFR 17.96 - Critical habitat-plants.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 6 2013-10-01 2013-10-01 false Critical habitat-plants. 17.96 Section 17.96 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND...

  8. 50 CFR 17.96 - Critical habitat-plants.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 6 2014-10-01 2014-10-01 false Critical habitat-plants. 17.96 Section 17.96 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND...

  9. Wildlife habitat, range, recreation, hydrology, and related research using Forest Inventory and Analysis surveys: a 12-year compendium

    Treesearch

    Victor A. Rudis

    1991-01-01

    More than 400 publications are listed for the period 1979 to 1990; these focus on water, range, wildlife habitat, recreation, and related studies derived from U.S. Department of Agriculture, forest Service, Forest Inventory and Analysis unit surveys conducted on private and public land in the continental United States. Included is an overview of problems and progress...

  10. No net loss of fish habitat: a review and analysis of habitat compensation in Canada.

    PubMed

    Harper, D J; Quigley, J T

    2005-09-01

    The achievement of No Net Loss (NNL) through habitat compensation has rarely been assessed in Canada. Files relating to 124 Fisheries Act Section 35(2) authorizations issued by Fisheries and Oceans Canada for the harmful alteration, disruption, and destruction of fish habitat (HADD) were collected and reviewed. Data extracted from these files were pooled and analyzed to provide an indication of the types of HADDs that have been authorized in Canada, what habitats have been affected, and what habitat management approaches have been used when compensating for HADDs and monitoring and ensuring the success of the compensation. Determinations regarding the effectiveness of habitat compensation in achieving NNL were made. Impacts to 419,562 m2 of fish habitat from the 124 authorized HADDs were offset by 1,020,388 m2 of compensatory habitat. Eighty percent of the authorizations had compensation ratios (compensation area:HADD area) of 2:1 or less, and 25% of the authorizations had a compensation ratio that was less than 1:1. In-channel and riparian habitat were the most frequently impacted habitats. Urban development and roads and highways resulted in the greatest areal loss of habitat. The compensation option that was most often selected was the creation of in-kind habitat. The mean duration of post-construction monitoring programs was 3.7 years. Determinations of NNL could only be made for 17 authorizations as a result of poor proponent compliance with monitoring requirements and the qualitative assessment procedures used by the monitoring programs. Adequate resources, proper training, and standardized approaches to data management and monitoring programs are required to ensure that the conservation goal of NNL can be achieved in Canada.

  11. Protection of fish spawning habitat for the conservation of warm temperate reef fish fisheries of shelf-edge reefs of Florida

    USGS Publications Warehouse

    Koenig, Christopher C.; Coleman, Felicia C.; Grimes, Churchill B.; Fitzhugh, Gary R.; Scanlon, Kathryn M.; Gledhill, Christopher T.; Grace, Mark

    2000-01-01

    We mapped and briefly describe the surficial geology of selected examples of shelfedge reefs (50–120 m deep) of the southeastern United States, which are apparently derived from ancient Pleistocene shorelines and are intermittently distributed throughout the region. These reefs are ecologically significant because they support a diverse array of fish and invertebrate species, and they are the only aggregation spawning sites of gag (Mycteroperca microlepis), scamp (M. phenax), and other economically important reef fish. Our studies on the east Florida shelf in the Experimental Oculina Research Reserve show that extensive damage to the habitat-structuring coral Oculina varicosa has occurred in the past, apparently from trawling and dredging activities of the 1970s and later. On damaged or destroyed Oculina habitat, reef-fish abundance and diversity are low, whereas on intact habitat, reef-fish diversity is relatively high compared to historical diversity on the same site. The abundance and biomass of the economically important reef fish was much higher in the past than it is now, and spawning aggregations of gag and scamp have been lost or greatly reduced in size. On the west Florida shelf, fishers have concentrated on shelf-edge habitats for over 100 yrs, but fishing intensity increased dramatically in the 1980s. Those reefs are characterized by low abundance of economically important species. The degree and extent of habitat damage there is unknown. We recommend marine fishery reserves to protect habitat and for use in experimentally examining the potential production of unfished communities.

  12. Protection of fish spawning habitat for the conservation of warm-temperature reef-fish fisheries of shelf-edge reefs of Florida

    USGS Publications Warehouse

    Koenig, Christopher C.; Coleman, Felicia C.; Grimes, Churchill B.; Fitzhugh, Gary R.; Scanlon, Kathryn M.; Gledhill, Christopher T.; Grace, Mark

    2000-01-01

    We mapped and briefly describe the surficial geology of selected examples of shelf-edge reefs (50–120 m deep) of the southeastern United States, which are apparently derived from ancient Pleistocene shorelines and are intermittently distributed throughout the region. These reefs are ecologically significant because they support a diverse array of fish and invertebrate species, and they are the only aggregation spawning sites of gag (Mycteroperca microlepis), scamp (M. phenax), and other economically important reef fish. Our studies on the east Florida shelf in the Experimental Oculina Research Reserve show that extensive damage to the habitat-structuring coral Oculina varicosa has occurred in the past, apparently from trawling and dredging activities of the 1970s and later. On damaged or destroyed Oculina habitat, reef-fish abundance and diversity are low, whereas on intact habitat, reef-fish diversity is relatively high compared to historical diversity on the same site. The abundance and biomass of the economically important reef fish was much higher in the past than it is now, and spawning aggregations of gag and scamp have been lost or greatly reduced in size. On the west Florida shelf, fishers have concentrated on shelf-edge habitats for over 100 yrs, but fishing intensity increased dramatically in the 1980s. Those reefs are characterized by low abundance of economically important species. The degree and extent of habitat damage there is unknown. We recommend marine fishery reserves to protect habitat and for use in experimentally examining the potential production of unfished communities.

  13. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for green turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat for green turtle. (a) Culebra Island, Puerto Rico—Waters surrounding the island of Culebra...

  14. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for green turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat for green turtle. (a) Culebra Island, Puerto Rico—Waters surrounding the island of Culebra...

  15. 76 FR 52640 - Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... Pacific Fishery Management Council's (Pacific Council) ad hoc groundfish Essential Fish Habitat Review Committee (EFHRC) will hold a conference call to continue the periodic review of groundfish Essential Fish Habitat (EFH). DATES: The conference call will be held Friday, September 9, 2011 from 9 a.m. to 11 a.m...

  16. 76 FR 13604 - Western Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... information on the Essential Fish Habitat (EFH) and Habitat of Particular Concern (HAPC) for deep slope... commissions, Federal agencies, state agencies, and other interested parties. The National Marine Fisheries Service has completed this process for deep slope bottomfish in the Main Hawaiian Islands, and the...

  17. 50 CFR 226.213 - Critical habitat for Johnson's seagrass.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Johnson's seagrass... Critical habitat for Johnson's seagrass. Critical habitat is designated to include substrate and water in... Johnson's seagrass. (a) A portion of the Indian River, Florida, north of Sebastian Inlet Channel, defined...

  18. 50 CFR 226.213 - Critical habitat for Johnson's seagrass.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Johnson's seagrass... Critical habitat for Johnson's seagrass. Critical habitat is designated to include substrate and water in... Johnson's seagrass. (a) A portion of the Indian River, Florida, north of Sebastian Inlet Channel, defined...

  19. 50 CFR 226.213 - Critical habitat for Johnson's seagrass.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for Johnson's seagrass... Critical habitat for Johnson's seagrass. Critical habitat is designated to include substrate and water in... Johnson's seagrass. (a) A portion of the Indian River, Florida, north of Sebastian Inlet Channel, defined...

  20. 50 CFR 226.213 - Critical habitat for Johnson's seagrass.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for Johnson's seagrass... Critical habitat for Johnson's seagrass. Critical habitat is designated to include substrate and water in... Johnson's seagrass. (a) A portion of the Indian River, Florida, north of Sebastian Inlet Channel, defined...

  1. 50 CFR 226.213 - Critical habitat for Johnson's seagrass.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for Johnson's seagrass... Critical habitat for Johnson's seagrass. Critical habitat is designated to include substrate and water in... Johnson's seagrass. (a) A portion of the Indian River, Florida, north of Sebastian Inlet Channel, defined...

  2. Quantifying multi-habitat support of Great Lakes fishes

    EPA Science Inventory

    Recent advances in trophic ecology have revealed the interconnectedness of diverse habitats in support of aquatic food webs. Understanding the degree to which different habitats support fish can be valuable for fisheries management and ecosystem protection. For example, stable is...

  3. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL...

  4. Rapid Global Expansion of Invertebrate Fisheries: Trends, Drivers, and Ecosystem Effects

    PubMed Central

    Anderson, Sean C.; Mills Flemming, Joanna; Watson, Reg; Lotze, Heike K.

    2011-01-01

    Background Worldwide, finfish fisheries are receiving increasing assessment and regulation, slowly leading to more sustainable exploitation and rebuilding. In their wake, invertebrate fisheries are rapidly expanding with little scientific scrutiny despite increasing socio-economic importance. Methods and Findings We provide the first global evaluation of the trends, drivers, and population and ecosystem consequences of invertebrate fisheries based on a global catch database in combination with taxa-specific reviews. We also develop new methodologies to quantify temporal and spatial trends in resource status and fishery development. Since 1950, global invertebrate catches have increased 6-fold with 1.5 times more countries fishing and double the taxa reported. By 2004, 34% of invertebrate fisheries were over-exploited, collapsed, or closed. New fisheries have developed increasingly rapidly, with a decrease of 6 years (3 years) in time to peak from the 1950s to 1990s. Moreover, some fisheries have expanded further and further away from their driving market, encompassing a global fishery by the 1990s. 71% of taxa (53% of catches) are harvested with habitat-destructive gear, and many provide important ecosystem functions including habitat, filtration, and grazing. Conclusions Our findings suggest that invertebrate species, which form an important component of the basis of marine food webs, are increasingly exploited with limited stock and ecosystem-impact assessments, and enhanced management attention is needed to avoid negative consequences for ocean ecosystems and human well-being. PMID:21408090

  5. Forecasting effects of climate change on Great Lakes fisheries: models that link habitat supply to population dynamics can help

    USGS Publications Warehouse

    Jones, Michael L.; Shuter, Brian J.; Zhao, Yingming; Stockwell, Jason D.

    2006-01-01

    Future changes to climate in the Great Lakes may have important consequences for fisheries. Evidence suggests that Great Lakes air and water temperatures have risen and the duration of ice cover has lessened during the past century. Global circulation models (GCMs) suggest future warming and increases in precipitation in the region. We present new evidence that water temperatures have risen in Lake Erie, particularly during summer and winter in the period 1965–2000. GCM forecasts coupled with physical models suggest lower annual runoff, less ice cover, and lower lake levels in the future, but the certainty of these forecasts is low. Assessment of the likely effects of climate change on fish stocks will require an integrative approach that considers several components of habitat rather than water temperature alone. We recommend using mechanistic models that couple habitat conditions to population demographics to explore integrated effects of climate-caused habitat change and illustrate this approach with a model for Lake Erie walleye (Sander vitreum). We show that the combined effect on walleye populations of plausible changes in temperature, river hydrology, lake levels, and light penetration can be quite different from that which would be expected based on consideration of only a single factor.

  6. 50 CFR Table 5 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the Upstream Extent of Critical Habitat 5 Table 5 to Part 226 Wildlife and Fisheries NATIONAL MARINE FISHERIES...

  7. 50 CFR Table 5 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the Upstream Extent of Critical Habitat 5 Table 5 to Part 226 Wildlife and Fisheries NATIONAL MARINE FISHERIES...

  8. 50 CFR Table 5 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the Upstream Extent of Critical Habitat 5 Table 5 to Part 226 Wildlife and Fisheries NATIONAL MARINE FISHERIES...

  9. 50 CFR Table 5 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the Upstream Extent of Critical Habitat 5 Table 5 to Part 226 Wildlife and Fisheries NATIONAL MARINE FISHERIES...

  10. 50 CFR Figure 17 to Part 679 - Northern Bering Sea Research Area and St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Northern Bering Sea Research Area and St. Lawrence Island Habitat Conservation Area 17 Figure 17 to part 679 Wildlife and Fisheries FISHERY... Sea Research Area and St. Lawrence Island Habitat Conservation Area ER25JY08.011 [73 FR 43371, July 25...

  11. 75 FR 74008 - Gulf of Mexico Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    .... SUMMARY: The Gulf of Mexico Fishery Management Council will convene a public meeting of the Florida.... Council address: Gulf of Mexico Fishery Management Council, 2203 North Lois Avenue, Suite 1100, Tampa, FL... Florida/Alabama group is part of a three unit Habitat Protection Advisory Panel (AP) of the Gulf of Mexico...

  12. 50 CFR 226.201 - Critical habitat for Hawaiian monk seals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Hawaiian monk seals... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.201 Critical habitat for Hawaiian monk seals. Hawaiian Monk Seal (Monachus schauinslandi) All beach areas, sand...

  13. 50 CFR 226.201 - Critical habitat for Hawaiian monk seals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for Hawaiian monk seals... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.201 Critical habitat for Hawaiian monk seals. Hawaiian Monk Seal (Monachus schauinslandi) All beach areas, sand...

  14. Marine managed areas and associated fisheries in the US Caribbean.

    PubMed

    Schärer-Umpierre, Michelle T; Mateos-Molina, Daniel; Appeldoorn, Richard; Bejarano, Ivonne; Hernández-Delgado, Edwin A; Nemeth, Richard S; Nemeth, Michael I; Valdés-Pizzini, Manuel; Smith, Tyler B

    2014-01-01

    The marine managed areas (MMAs) of the U.S. Caribbean are summarized and specific data-rich cases are examined to determine their impact upon fisheries management in the region. In this region, the productivity and connectivity of benthic habitats such as mangroves, seagrass and coral reefs is essential for many species targeted by fisheries. A minority of the 39 MMAs covering over 4000km(2) serve any detectable management or conservation function due to deficiencies in the design, objectives, compliance or enforcement. Fifty percent of the area within MMA boundaries had no-take regulations in the U.S. Virgin Islands, while Puerto Rico only had 3%. Six case studies are compared and contrasted to better understand the potential of these MMAs for fisheries management. Signs of success were associated with including sufficient areas of essential fish habitat (nursery, spawning and migration corridors), year-round no-take regulations, enforcement and isolation. These criteria have been identified as important in the conservation of marine resources, but little has been done to modify the way MMAs are designated and implemented in the region. Site-specific monitoring to measure the effects of these MMAs is needed to demonstrate the benefits to fisheries and gain local support for a greater use as a fisheries management tool.

  15. 75 FR 72790 - Gulf of Mexico Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... restoration plan, the Long Term Recovery Plan After the Deepwater Horizon Oil Spill, and the Essential Fish... Louisiana/Mississippi Habitat Protection Advisory Panel (AP). DATES: The meeting will convene at 9 a.m. on... FURTHER INFORMATION CONTACT: Jeff Rester, Habitat Support Specialist, Gulf States Marine Fisheries...

  16. An index of reservoir habitat impairment

    USGS Publications Warehouse

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  17. 78 FR 49477 - Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... Pacific Fishery Management Council (Pacific Council) will convene a meeting of its Groundfish Essential Fish Habitat Review Committee (EFHRC). DATES: The meeting will be held Wednesday September 4 through...

  18. User's guide to FBASE: Relational database software for managing R1/R4 (Northern/Intermountain Regions) fish habitat inventory data

    Treesearch

    Sherry P. Wollrab

    1999-01-01

    FBASE is a microcomputer relational database package that handles data collected using the R1/R4 Fish and Fish Habitat Standard Inventory Procedures (Overton and others 1997). FBASE contains standard data entry screens, data validations for quality control, data maintenance features, and summary report options. This program also prepares data for importation into an...

  19. Contrasting habitat selection amongst cephalopods in the Mediterranean Sea: When the environment makes the difference.

    PubMed

    Lauria, V; Garofalo, G; Gristina, M; Fiorentino, F

    2016-08-01

    Conservation of fish habitat requires a deeper knowledge of how species distribution patterns are related to environmental factors. Habitat suitability modelling is an essential tool to quantify species' realised niches and understand species-environment relationships. Cephalopods are important players in the marine food web and a significant resource for fisheries; they are also very sensitive to environmental changes. Here a time series of fishery-independent data (1998-2011) was used to construct habitat suitability models and investigate the influence of environmental variables on four commercial cephalopods: Todaropsis eblanae, Illex coindetii, Eledone moschata and Eledone cirrhosa, in the central Mediterranean Sea. The main environmental predictors of cephalopod habitat suitability were depth, seafloor morphology, chlorophyll-a concentration, sea surface temperature and surface salinity. Predictive maps highlighted contrasting habitat selection amongst species. This study identifies areas where the important commercial species of cephalopods are concentrated and provides significant information for a future spatial based approach to fisheries management in the Mediterranean Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. 75 FR 17901 - Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... June 2010 meeting of the Pacific Council. The CPSMT will also discuss the pending Essential Fish Habitat five-year review; the 2010 Stock Assessment and Fishery Evaluation document; Pacific mackerel...

  1. Marine fisheries in Tanzania.

    PubMed

    Jiddawi, Narriman S; Ohman, Marcus C

    2002-12-01

    Fishery resources are a vital source of food and make valuable economic contributions to the local communities involved in fishery activities along the 850 km stretch of the Tanzania coastline and numerous islands. Small-scale artisanal fishery accounts for the majority of fish catch produced by more than 43 000 fishermen in the country, mainly operating in shallow waters within the continental shelf, using traditional fishing vessels including small boats, dhows, canoes, outrigger canoes and dinghys. Various fishing techniques are applied using uncomplicated passive fishing gears such as basket traps, fence traps, nets as well as different hook and line techniques. Species composition and size of the fish varies with gear type and location. More than 500 species of fish are utilized for food with reef fishes being the most important category including emperors, snappers, sweetlips, parrotfish, surgeonfish, rabbitfish, groupers and goatfish. Most of the fish products are used for subsistence purposes. However, some are exported. Destructive fishing methods such as drag nets and dynamite fishing pose a serious problem as they destroy important habitats for fish and other organisms, and there is a long-term trend of overharvested fishery resources. However, fishing pressure varies within the country as fishery resources are utilized in a sustainable manner in some areas. For this report more than 340 references about Tanzanian fishery and fish ecology were covered. There are many gaps in terms of information needed for successful fishery management regarding both basic and applied research. Most research results have been presented as grey literature (57%) with limited distribution; only one-fifth were scientific publications in international journals.

  2. 50 CFR 17.95 - Critical habitat-fish and wildlife.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 2 2011-10-01 2011-10-01 false Critical habitat-fish and wildlife. 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED)...

  3. 50 CFR 17.95 - Critical habitat-fish and wildlife.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 2 2013-10-01 2013-10-01 false Critical habitat-fish and wildlife. 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED)...

  4. 50 CFR 17.95 - Critical habitat-fish and wildlife.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 2 2012-10-01 2012-10-01 false Critical habitat-fish and wildlife. 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED)...

  5. 50 CFR 17.95 - Critical habitat-fish and wildlife.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 2 2014-10-01 2014-10-01 false Critical habitat-fish and wildlife. 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED)...

  6. 50 CFR 17.95 - Critical habitat-fish and wildlife.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Critical habitat-fish and wildlife. 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED)...

  7. 50 CFR 424.19 - Final rules-impact analysis of critical habitat.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... habitat. 424.19 Section 424.19 Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE... LISTING ENDANGERED AND THREATENED SPECIES AND DESIGNATING CRITICAL HABITAT Revision of the Lists § 424.19 Final rules—impact analysis of critical habitat. The Secretary shall identify any significant activities...

  8. 50 CFR 424.19 - Final rules-impact analysis of critical habitat.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... habitat. 424.19 Section 424.19 Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE... LISTING ENDANGERED AND THREATENED SPECIES AND DESIGNATING CRITICAL HABITAT Revision of the Lists § 424.19 Final rules—impact analysis of critical habitat. The Secretary shall identify any significant activities...

  9. 76 FR 3616 - Gulf of Mexico Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... permits (EFPs), if any and hold an open public comment period regarding any fishery issue of concern... Policy; Habitat Protection; SEDAR Selection; AP Selection; Data Collection; Budget/Personnel; Shrimp... Essential Fish Habitat 5-year Review Report. 4:15 p.m.-4:45 p.m.--The Data Collection committee will meet to...

  10. Landsat TM inventory and assessment of waterbird habitat in the southern altiplano of South America

    USGS Publications Warehouse

    Boyle, T.P.; Caziani, S.M.; Waltermire, R.G.

    2004-01-01

    The diverse set of wetlands in southern altiplano of South America supports a number of endemic and migratory waterbirds. These species include endangered endemic flamingos and shorebirds that nest in North America and winter in the altiplano. This research developed maps from nine Landsat Thematic Mapper (TM) images (254,300 km2) to provide an inventory of aquatic waterbird habitats. Image processing software was used to produce a map with a classification of wetlands according to the habitat requirements of different types of waterbirds. A hierarchical procedure was used to, first, isolate the bodies of water within the TM image; second, execute an unsupervised classification on the subsetted image to produce 300 signatures of cover types, which were further subdivided as necessary. Third, each of the classifications was examined in the light of field data and personal experience for relevance to the determination of the various habitat types. Finally, the signatures were applied to the entire image and other adjacent images to yield a map depicting the location of the various waterbird habitats in the southern altiplano. The data sets referenced with a global positioning system receiver were used to test the classification system. Multivariate analysis of the bird communities censused at each lake by individual habitats indicated a salinity gradient, and then the depth of the water separated the birds. Multivariate analysis of the chemical and physical data from the lakes showed that the variation in lakes were significantly associated with difference in depth, transparency, latitude, elevation, and pH. The presence of gravel bottoms was also one of the qualities distinguishing a group of lakes. This information will be directly useful to the Flamingo Census Project and serve as an element for risk assessment for future development.

  11. 75 FR 36360 - New England Fishery Management Council; Public Hearings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... access general category fishery, adjusting the overfishing definition, modifying the essential fish habitat closed areas in the Scallop FMP, changing the scallop fishing year and several adjustments to the...

  12. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 5 2012-10-01 2012-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  13. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 4 2014-10-01 2014-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  14. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 4 2011-10-01 2011-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  15. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 3 2010-10-01 2010-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  16. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 3 2011-10-01 2011-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  17. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 3 2012-10-01 2012-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  18. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 3 2014-10-01 2014-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  19. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 3 2013-10-01 2013-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  20. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 5 2014-10-01 2014-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  1. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 5 2013-10-01 2013-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  2. Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America

    USGS Publications Warehouse

    Collingsworth, Paris D.; Bunnell, David B.; Murray, Michael W.; Kao, Yu-Chun; Feiner, Zachary S.; Claramunt, Randall M.; Lofgren, Brent M.; Höök, Tomas O.; Ludsin, Stuart A.

    2017-01-01

    The Laurentian Great Lakes of North America provide valuable ecosystem services, including fisheries, to the surrounding population. Given the prevalence of other anthropogenic stressors that have historically affected the fisheries of the Great Lakes (e.g., eutrophication, invasive species, overfishing), climate change is often viewed as a long-term stressor and, subsequently, may not always be prioritized by managers and researchers. However, climate change has the potential to negatively affect fish and fisheries in the Great Lakes through its influence on habitat. In this paper, we (1) summarize projected changes in climate and fish habitat in the Great Lakes; (2) summarize fish responses to climate change in the Great Lakes; (3) describe key interactions between climate change and other stressors relevant to Great Lakes fish, and (4) summarize how climate change can be incorporated into fisheries management. In general, fish habitat is projected to be characterized by warmer temperatures throughout the water column, less ice cover, longer periods of stratification, and more frequent and widespread periods of bottom hypoxia in productive areas of the Great Lakes. Based solely on thermal habitat, fish populations theoretically could experience prolonged optimal growth environment within a changing climate, however, models that assess physical habitat influences at specific life stages convey a more complex picture. Looking at specific interactions with other stressors, climate change may exacerbate the negative impacts of both eutrophication and invasive species for fish habitat in the Great Lakes. Although expanding monitoring and research to consider climate change interactions with currently studied stressors, may offer managers the best opportunity to keep the valuable Great Lakes fisheries sustainable, this expansion is globally applicable for large lake ecosystem dealing with multiple stressors in the face of continued human-driven changes.

  3. Pelagic habitat visualization: the need for a third (and fourth) dimension: HabitatSpace

    USGS Publications Warehouse

    Beegle-Krause, C; Vance, Tiffany; Reusser, Debbie; Stuebe, David; Howlett, Eoin

    2009-01-01

    Habitat in open water is not simply a 2-D to 2.5-D surface such as the ocean bottom or the air-water interface. Rather, pelagic habitat is a 3-D volume of water that can change over time, leading us to the term habitat space. Visualization and analysis in 2-D is well supported with GIS tools, but a new tool was needed for visualization and analysis in four dimensions. Observational data (cruise profiles (xo, yo, z, to)), numerical circulation model fields (x,y,z,t), and trajectories (larval fish, 4-D line) need to be merged together in a meaningful way for visualization and analysis. As a first step toward this new framework, UNIDATA’s Integrated Data Viewer (IDV) has been used to create a set of tools for habitat analysis in 4-D. IDV was designed for 3-D+time geospatial data in the meteorological community. NetCDF JavaTM libraries allow the tool to read many file formats including remotely located data (e.g. data available via OPeNDAP ). With this project, IDV has been adapted for use in delineating habitat space for multiple fish species in the ocean. The ability to define and visualize boundaries of a water mass, which meets specific biologically relevant criteria (e.g., volume, connectedness, and inter-annual variability) based on model results and observational data, will allow managers to investigate the survival of individual year classes of commercially important fisheries. Better understanding of the survival of these year classes will lead to improved forecasting of fisheries recruitment.

  4. 50 CFR Figure 10 to Part 679 - Pribilof Islands Area Habitat Conservation Zone in the Bering Sea

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Pribilof Islands Area Habitat Conservation Zone in the Bering Sea 10 Figure 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt....

  5. 50 CFR Figure 10 to Part 679 - Pribilof Islands Area Habitat Conservation Zone in the Bering Sea

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Pribilof Islands Area Habitat Conservation Zone in the Bering Sea 10 Figure 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt....

  6. 50 CFR Figure 10 to Part 679 - Pribilof Islands Area Habitat Conservation Zone in the Bering Sea

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Pribilof Islands Area Habitat Conservation Zone in the Bering Sea 10 Figure 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt....

  7. 50 CFR Figure 10 to Part 679 - Pribilof Islands Area Habitat Conservation Zone in the Bering Sea

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Pribilof Islands Area Habitat Conservation Zone in the Bering Sea 10 Figure 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt....

  8. 50 CFR Figure 10 to Part 679 - Pribilof Islands Area Habitat Conservation Zone in the Bering Sea

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Pribilof Islands Area Habitat Conservation Zone in the Bering Sea 10 Figure 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt....

  9. Marine Reserve Targets to Sustain and Rebuild Unregulated Fisheries.

    PubMed

    Krueck, Nils C; Ahmadia, Gabby N; Possingham, Hugh P; Riginos, Cynthia; Treml, Eric A; Mumby, Peter J

    2017-01-01

    Overfishing threatens the sustainability of coastal marine biodiversity, especially in tropical developing countries. To counter this problem, about 200 governments worldwide have committed to protecting 10%-20% of national coastal marine areas. However, associated impacts on fisheries productivity are unclear and could weaken the food security of hundreds of millions of people who depend on diverse and largely unregulated fishing activities. Here, we present a systematic theoretic analysis of the ability of reserves to rebuild fisheries under such complex conditions, and we identify maximum reserve coverages for biodiversity conservation that do not impair long-term fisheries productivity. Our analysis assumes that fishers have no viable alternative to fishing, such that total fishing effort remains constant (at best). We find that realistic reserve networks, which protect 10%-30% of fished habitats in 1-20 km wide reserves, should benefit the long-term productivity of almost any complex fishery. We discover a "rule of thumb" to safeguard against the long-term catch depletion of particular species: individual reserves should export 30% or more of locally produced larvae to adjacent fishing grounds. Specifically on coral reefs, where fishers tend to overexploit species whose dispersal distances as larvae exceed the home ranges of adults, decisions on the size of reserves needed to meet the 30% larval export rule are unlikely to compromise the protection of resident adults. Even achieving the modest Aichi Target 11 of 10% "effective protection" can then help rebuild depleted catch. However, strictly protecting 20%-30% of fished habitats is unlikely to diminish catch even if overfishing is not yet a problem while providing greater potential for biodiversity conservation and fishery rebuilding if overfishing is substantial. These findings are important because they suggest that doubling or tripling the only globally enforced marine reserve target will benefit

  10. 50 CFR 226.202 - Critical habitat for Stellar sea lions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Stellar sea lions... Critical habitat for Stellar sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska rookeries, haulouts, and associated areas. In Alaska, all major Steller sea lion rookeries identified in Table 1 and...

  11. 50 CFR 226.202 - Critical habitat for Steller sea lions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Steller sea lions... Critical habitat for Steller sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska rookeries, haulouts, and associated areas. In Alaska, all major Steller sea lion rookeries identified in Table 1 and...

  12. 50 CFR 226.202 - Critical habitat for Stellar sea lions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for Stellar sea lions... Critical habitat for Stellar sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska rookeries, haulouts, and associated areas. In Alaska, all major Steller sea lion rookeries identified in Table 1 and...

  13. 50 CFR 226.202 - Critical habitat for Stellar sea lions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for Stellar sea lions... Critical habitat for Stellar sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska rookeries, haulouts, and associated areas. In Alaska, all major Steller sea lion rookeries identified in Table 1 and...

  14. 50 CFR 226.202 - Critical habitat for Stellar sea lions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for Stellar sea lions... Critical habitat for Stellar sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska rookeries, haulouts, and associated areas. In Alaska, all major Steller sea lion rookeries identified in Table 1 and...

  15. Anticipating ocean acidification's economic consequences for commercial fisheries

    NASA Astrophysics Data System (ADS)

    Cooley, Sarah R.; Doney, Scott C.

    2009-06-01

    Ocean acidification, a consequence of rising anthropogenic CO2 emissions, is poised to change marine ecosystems profoundly by increasing dissolved CO2 and decreasing ocean pH, carbonate ion concentration, and calcium carbonate mineral saturation state worldwide. These conditions hinder growth of calcium carbonate shells and skeletons by many marine plants and animals. The first direct impact on humans may be through declining harvests and fishery revenues from shellfish, their predators, and coral reef habitats. In a case study of US commercial fishery revenues, we begin to constrain the economic effects of ocean acidification over the next 50 years using atmospheric CO2 trajectories and laboratory studies of its effects, focusing especially on mollusks. In 2007, the 3.8 billion US annual domestic ex-vessel commercial harvest ultimately contributed 34 billion to the US gross national product. Mollusks contributed 19%, or 748 million, of the ex-vessel revenues that year. Substantial revenue declines, job losses, and indirect economic costs may occur if ocean acidification broadly damages marine habitats, alters marine resource availability, and disrupts other ecosystem services. We review the implications for marine resource management and propose possible adaptation strategies designed to support fisheries and marine-resource-dependent communities, many of which already possess little economic resilience.

  16. Mesophotic depths as refuge areas for fishery-targeted species on coral reefs

    NASA Astrophysics Data System (ADS)

    Lindfield, Steven J.; Harvey, Euan S.; Halford, Andrew R.; McIlwain, Jennifer L.

    2016-03-01

    Coral reefs are subjected to unprecedented levels of disturbance with population growth and climate change combining to reduce standing coral cover and stocks of reef fishes. Most of the damage is concentrated in shallow waters (<30 m deep) where humans can comfortably operate and where physical disturbances are most disruptive to marine organisms. Yet coral reefs can extend to depths exceeding 100 m, potentially offering refuge from the threats facing shallower reefs. We deployed baited remote underwater stereo-video systems (stereo-BRUVs) at depths of 10-90 m around the southern Mariana Islands to investigate whether fish species targeted by fishing in the shallows may be accruing benefits from being at depth. We show that biomass, abundance and species richness of fishery-targeted species increased from shallow reef areas to a depth of 60 m, whereas at greater depths, a lack of live coral habitat corresponded to lower numbers of fish. The majority of targeted species were found to have distributions that ranged from shallow depths (10 m) to depths of at least 70 m, emphasising that habitat, not depth, is the limiting factor in their vertical distribution. While the gradient of abundance and biomass versus depth was steepest for predatory species, the first species usually targeted by fishing, we also found that fishery-targeted herbivores prevailed in similar biomass and species richness to 60 m. Compared to shallow marine protected areas, there was clearly greater biomass of fishery-targeted species accrued in mesophotic depths. Particularly some species typically harvested by depth-limited fishing methods (e.g., spearfishing), such as the endangered humphead wrasse Cheilinus undulatus, were found in greater abundance on deeper reefs. We conclude that mesophotic depths provide essential fish habitat and refuge for fishery-targeted species, representing crucial zones for fishery management and research into the resilience of disturbed coral reef ecosystems.

  17. Stock assessment in inland fisheries: a foundation for sustainable use and conservation

    USGS Publications Warehouse

    Lorenzen, Kai; Cowx, Ian G.; Entsua-Mensah, R. E. M.; Lester, Nigel P.; Koehn, J.D.; Randall, R.G.; So, N.; Bonar, Scott A.; Bunnell, David B.; Venturelli, Paul A.; Bower, Shannon D.; Cooke, Steven J.

    2016-01-01

    Fisheries stock assessments are essential for science-based fisheries management. Inland fisheries pose challenges, but also provide opportunities for biological assessments that differ from those encountered in large marine fisheries for which many of our assessment methods have been developed. These include the number and diversity of fisheries, high levels of ecological and environmental variation, and relative lack of institutional capacity for assessment. In addition, anthropogenic impacts on habitats, widespread presence of non-native species and the frequent use of enhancement and restoration measures such as stocking affect stock dynamics. This paper outlines various stock assessment and data collection approaches that can be adapted to a wide range of different inland fisheries and management challenges. Although this paper identifies challenges in assessment, it focuses on solutions that are practical, scalable and transferrable. A path forward is suggested in which biological assessment generates some of the critical information needed by fisheries managers to make effective decisions that benefit the resource and stakeholders.

  18. 50 CFR 226.206 - Critical habitat for the Southern Resident killer whale (Orcinus orca).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Resident killer whale (Orcinus orca). 226.206 Section 226.206 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.206 Critical habitat for the Southern Resident killer whale (Orcinus orca). Critical habitat is designated for the Southern Resident killer whale as described in this section. The...

  19. 50 CFR 226.206 - Critical habitat for the Southern Resident killer whale (Orcinus orca).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Resident killer whale (Orcinus orca). 226.206 Section 226.206 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.206 Critical habitat for the Southern Resident killer whale (Orcinus orca). Critical habitat is designated for the Southern Resident killer whale as described in this section. The...

  20. 50 CFR 226.206 - Critical habitat for the Southern Resident killer whale (Orcinus orca).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Resident killer whale (Orcinus orca). 226.206 Section 226.206 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.206 Critical habitat for the Southern Resident killer whale (Orcinus orca). Critical habitat is designated for the Southern Resident killer whale as described in this section. The...

  1. What is at stake? Status and threats to South China Sea marine fisheries.

    PubMed

    Teh, Louise S L; Witter, Allison; Cheung, William W L; Sumaila, U Rashid; Yin, Xueying

    2017-02-01

    Governance of South China Sea (SCS) fisheries remains weak despite acknowledgement of their widespread overexploitation for the past few decades. This review incorporates unreported fish catches to provide an improved baseline of the current status and societal contribution of SCS marine fisheries, so that the socio-economic and ecological consequences of continued fisheries unsustainability may be understood. Potential fisheries contribution to food and livelihoods include 11-17 million t in fisheries catch and USD 12-22 × 10 9 in fisheries landed value annually in the 2000s, and close to 3 million jobs. However, overfishing has resulted in biodiversity and habitat loss, and altered ecosystem trophic structures to a 'fished down' state. The present situation reiterates the urgency for fisheries policies that simultaneously address multiple political, social, economic, and biological dimensions at regional, national, and local scales. Importantly, improved cooperation between SCS nations, particularly in overcoming territorial disputes, is essential for effective regional fisheries governance.

  2. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sears, Sheryl

    2004-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near themore » present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville

  3. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2001-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sears, Sheryl

    2003-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near themore » present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville

  4. The fishery resources of the Mississippi River: A model for conservation and management

    USGS Publications Warehouse

    Schramm, Harold L.

    2017-01-01

    The Mississippi River is a multijurisdictional and multiuse resource that has been variously altered and is foremost managed for navigation and flood control throughout much of its 3,734‐km passage from its origin at Lake Itasca, Minnesota, to its outlet at the Gulf of Mexico. Despite alterations summarized herein, the native fish fauna remains largely intact and only five nonnative species have colonized segments of the river. Diverse habitats still remain, but loss of habitat, declining habitat suitability, and reduced floodplain functionality warrant concern. Fisheries monitoring and assessment, ecological research, and habitat rehabilitation vary from adequate in the upper reaches of the river to minimal in the lower reaches of the river, and these efforts parallel the recreational use, local values, and visibility of the river. A conceptual model is proposed to depict the value of the social, economic, and many ecosystem services the Mississippi River ecosystem offers that can be used to achieve the social and economic support needed to conserve and restore this valuable fishery resource.

  5. Towards an integrated forecasting system for fisheries on habitat-bound stocks

    NASA Astrophysics Data System (ADS)

    Christensen, A.; Butenschön, M.; Gürkan, Z.; Allen, I. J.

    2013-03-01

    First results of a coupled modelling and forecasting system for fisheries on habitat-bound stocks are being presented. The system consists currently of three mathematically, fundamentally different model subsystems coupled offline: POLCOMS providing the physical environment implemented in the domain of the north-west European shelf, the SPAM model which describes sandeel stocks in the North Sea, and the third component, the SLAM model, which connects POLCOMS and SPAM by computing the physical-biological interaction. Our major experience by the coupling model subsystems is that well-defined and generic model interfaces are very important for a successful and extendable coupled model framework. The integrated approach, simulating ecosystem dynamics from physics to fish, allows for analysis of the pathways in the ecosystem to investigate the propagation of changes in the ocean climate and to quantify the impacts on the higher trophic level, in this case the sandeel population, demonstrated here on the basis of hindcast data. The coupled forecasting system is tested for some typical scientific questions appearing in spatial fish stock management and marine spatial planning, including determination of local and basin-scale maximum sustainable yield, stock connectivity and source/sink structure. Our presented simulations indicate that sandeel stocks are currently exploited close to the maximum sustainable yield, even though periodic overfishing seems to have occurred, but large uncertainty is associated with determining stock maximum sustainable yield due to stock inherent dynamics and climatic variability. Our statistical ensemble simulations indicates that the predictive horizon set by climate interannual variability is 2-6 yr, after which only an asymptotic probability distribution of stock properties, like biomass, are predictable.

  6. 50 CFR Figure 17 to Part 679 - Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA) 17 Figure 17 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE...

  7. 50 CFR Figure 17 to Part 679 - Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA) 17 Figure 17 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE...

  8. 50 CFR Figure 17 to Part 679 - Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA) 17 Figure 17 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE...

  9. 50 CFR Figure 17 to Part 679 - Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA) 17 Figure 17 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE...

  10. 77 FR 53868 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice; public meeting. SUMMARY: The New England Fishery Management Council's (Council) Groundfish Committee will meet to consider actions... modifications to groundfish closed areas (including habitat areas). The Committee will further review a motion...

  11. Predictive habitat suitability models to aid conservation of elasmobranch diversity in the central Mediterranean Sea.

    PubMed

    Lauria, V; Gristina, M; Attrill, M J; Fiorentino, F; Garofalo, G

    2015-08-14

    Commercial fisheries have dramatically impacted elasmobranch populations worldwide. With high capture and bycatch rates, the abundance of many species is rapidly declining and around a quarter of the world's sharks and rays are threatened with extinction. At a regional scale this negative trend has also been evidenced in the central Mediterranean Sea, where bottom-trawl fisheries have affected the biomass of certain rays (e.g. Raja clavata) and sharks (e.g. Mustelus spp.). Detailed knowledge of elasmobranch habitat requirements is essential for biodiversity conservation and fisheries management, but this is often hampered by a poor understanding of their spatial ecology. Habitat suitability models were used to investigate the habitat preference of nine elasmobranch species and their overall diversity (number of species) in relation to five environmental predictors (i.e. depth, sea surface temperature, surface salinity, slope and rugosity) in the central Mediterranean Sea. Results showed that depth, seafloor morphology and sea surface temperature were the main drivers for elasmobranch habitat suitability. Predictive distribution maps revealed different species-specific patterns of suitable habitat while high assemblage diversity was predicted in deeper offshore waters (400-800 m depth). This study helps to identify priority conservation areas and diversity hot-spots for rare and endangered elasmobranchs in the Mediterranean Sea.

  12. Predictive habitat suitability models to aid conservation of elasmobranch diversity in the central Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Lauria, V.; Gristina, M.; Attrill, M. J.; Fiorentino, F.; Garofalo, G.

    2015-08-01

    Commercial fisheries have dramatically impacted elasmobranch populations worldwide. With high capture and bycatch rates, the abundance of many species is rapidly declining and around a quarter of the world’s sharks and rays are threatened with extinction. At a regional scale this negative trend has also been evidenced in the central Mediterranean Sea, where bottom-trawl fisheries have affected the biomass of certain rays (e.g. Raja clavata) and sharks (e.g. Mustelus spp.). Detailed knowledge of elasmobranch habitat requirements is essential for biodiversity conservation and fisheries management, but this is often hampered by a poor understanding of their spatial ecology. Habitat suitability models were used to investigate the habitat preference of nine elasmobranch species and their overall diversity (number of species) in relation to five environmental predictors (i.e. depth, sea surface temperature, surface salinity, slope and rugosity) in the central Mediterranean Sea. Results showed that depth, seafloor morphology and sea surface temperature were the main drivers for elasmobranch habitat suitability. Predictive distribution maps revealed different species-specific patterns of suitable habitat while high assemblage diversity was predicted in deeper offshore waters (400-800 m depth). This study helps to identify priority conservation areas and diversity hot-spots for rare and endangered elasmobranchs in the Mediterranean Sea.

  13. Marine Reserve Targets to Sustain and Rebuild Unregulated Fisheries

    PubMed Central

    Krueck, Nils C.; Ahmadia, Gabby N.; Possingham, Hugh P.; Riginos, Cynthia; Treml, Eric A.; Mumby, Peter J.

    2017-01-01

    Overfishing threatens the sustainability of coastal marine biodiversity, especially in tropical developing countries. To counter this problem, about 200 governments worldwide have committed to protecting 10%–20% of national coastal marine areas. However, associated impacts on fisheries productivity are unclear and could weaken the food security of hundreds of millions of people who depend on diverse and largely unregulated fishing activities. Here, we present a systematic theoretic analysis of the ability of reserves to rebuild fisheries under such complex conditions, and we identify maximum reserve coverages for biodiversity conservation that do not impair long-term fisheries productivity. Our analysis assumes that fishers have no viable alternative to fishing, such that total fishing effort remains constant (at best). We find that realistic reserve networks, which protect 10%–30% of fished habitats in 1–20 km wide reserves, should benefit the long-term productivity of almost any complex fishery. We discover a “rule of thumb” to safeguard against the long-term catch depletion of particular species: individual reserves should export 30% or more of locally produced larvae to adjacent fishing grounds. Specifically on coral reefs, where fishers tend to overexploit species whose dispersal distances as larvae exceed the home ranges of adults, decisions on the size of reserves needed to meet the 30% larval export rule are unlikely to compromise the protection of resident adults. Even achieving the modest Aichi Target 11 of 10% “effective protection” can then help rebuild depleted catch. However, strictly protecting 20%–30% of fished habitats is unlikely to diminish catch even if overfishing is not yet a problem while providing greater potential for biodiversity conservation and fishery rebuilding if overfishing is substantial. These findings are important because they suggest that doubling or tripling the only globally enforced marine reserve target will

  14. Impact of forest management on coho salmon (Oncorhynchus kisutch) populations of the Clearwater River, Washington: A project summary

    Treesearch

    C. J. Cederholm; L. M. Reid

    1987-01-01

    Abstract - In 1972, declining coho salmon production and visible forestry impacts on coho habitats prompted the initiation of an ongoing fisheries research project in the Clearwater River basin of the Olympic Peninsula. Heavy fishery catches have resulted in a general under-seeding of the basin, as demonstrated by stocking experiments and inventories of potential...

  15. Assessment of the Fishery Improvement Opportunities on the Pend Oreille River: Recommendations for Fisheries Enhancement: Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashe, Becky L.; Scholz, Allan T.

    1992-03-01

    This report recommends resident fish substitution projects to partially replace anadromous fish losses caused by construction of Grand Coulee and Chief Joseph Dams. These recommendations involve enhancing the resident fishery in the Pend Oreille River as a substitute for anadromous fish losses. In developing these recommendations we have intentionally attempted to minimize the impact upon the hydroelectric system and anadromous fish recovery plans. In this report we are recommending that the Northwest Power Planning Council direct Bonneville Power Administration to fund the proposed enhancement measures as resident fish substitution projects under the NPPC's Columbia Basin Fish and Wildlife Program. Themore » Pend Oreille River, located in northeast Washington, was historically a free flowing river which supported anadromous steelhead trout and chinook salmon, and large resident cutthroat trout and bull trout. In 1939, Grand Coulee Dam eliminated the anadromous species from the river. In 1955, Box Canyon Dam was constructed, inundating resident trout habitat in the river and creating many back water and slough areas. By the late 1950's the fishery in the reservoir had changed from a quality trout fishery to a warm water fishery, supporting largemouth bass, yellow perch and rough fish (tenth, suckers, squawfish). The object of this study was to examine the existing fishery, identify fishery improvement opportunities and recommend fishery enhancement projects. Three years of baseline data were collected from the Box Canyon portion of the Pend Oreille River to assess population dynamics, growth rates, feeding habits, behavior patterns and factors limiting the fishery. Fishery improvement opportunities were identified based on the results of these data. Relative abundance surveys in the reservoir resulted in the capture of 47,415 fish during the study. The most abundant species in the reservoir were yellow perch, composing 44% of the fish captured. The perch

  16. Salmon habitat assessment for conservation planning in the lower White Salmon River, Washington

    USGS Publications Warehouse

    Hardiman, Jill M.; Allen, M. Brady

    2015-01-01

    In 2011, Condit Dam was removed from the White Salmon River, Washington. Since dam removal, there has been interest among scientists (State and Federal), Tribes, non-profit organizations, and the general public in assessing Pacific salmon habitat and use in the White Salmon River for conservation planning and potential fishery management actions. The study area extended from the lower 6 miles of the White Salmon River to the confluence with the Columbia River, including the former reservoir area. The Mid-Columbia Fisheries Enhancement Group received a grant to initiate efforts to plan for salmon habitat protection in the lower 6 river miles of the White Salmon River. As part of efforts by the Mid-Columbia Fisheries Enhancement Group to conduct conservation planning, the U.S. Geological Survey (USGS) used current and historical habitat information to assist in the planning process. The USGS compiled existing georeferenced habitat data into a Geographic Information System to identify areas of high quality habitat for salmon, potential areas for restoration/improvement, and areas that could be threatened. The primary sources of georeferenced data for this project include a lidar flight contracted by PacifiCorp, bathymetry from USGS, and fall Chinook salmon redd surveys from the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife. Redd observations provided support that the study area is a migratory corridor for salmon and steelhead and that the lowest 2–3 miles had the highest concentration of documented fall Chinook salmon redds. The study area has potential for restoration/conservation areas to improve/conserve salmon habitat.

  17. 78 FR 69649 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... Essential Fish Habitat (EFH) consultation update (T)) ADF&G Report (including review of Board of Fisheries...) Report Safety report from National Institute Occupational Safety & Health (NIOSH) (T) U.S. Fish and Wildlife Service (USFWS) Report Protected Species Report (including Steller Sea Lion (SSL) Environmental...

  18. A trans-ecosystem fishery: Environmental effects on the small-scale gillnet fishery along the Río de la Plata boundary

    NASA Astrophysics Data System (ADS)

    Jaureguizar, Andrés Javier; Cortés, Federico; Milessi, Andrés Conrado; Cozzolino, Ezequiel; Allega, Lucrecia

    2015-12-01

    To improve the understanding of the environmental processes affecting small-scale gillnet fisheries along neighboring waters of estuaries, we analyzed the main climatic forcing and the environmental conditions, the fishery landing spatial and temporal variation, including the relative importance of site, distance to coast, temperature and salinity in the structuring of landed species profile. Data were collected monthly in two sites along the adjacent south coast of the Río de la Plata between October 2009 and September 2010. The gillnet fishery was dominated by four species (Cynoscion guatucupa, Micropogonias furnieri, Mustelus schmitti and Parona signata) from a total of 38 species landed, which accounted for 98.6% of total landings. The fishing effort and landings by the fishery were largely conditioned by the availability of fish species in the fishing grounds resulting from the combination of the species reproductive behavior and the predominant environmental conditions. The highest abundances for some species occurred before (M. furnieri, C. guatucupa, P. signata) or during the reproductive period (M. schmitti, Squatina guggenheim), while in other species it was associated with favorable environmental conditions during cold months (Squalus acanthias, Callorhinchus callorhynchus, Galeorhinus galeus) or warm months (Trichiurus lepturus). The predominant seasonal environmental conditions along the coast were mainly determined by the location of Río de la Plata boundary, whose spatial extent was forced by the wind patterns and freshwater discharge. The strong environmental dependence means that the small-scale fishery is in fact a seasonal trans-ecosystem fishery. This attribute, together that shared the resources with the industrial fishery and the overlap of the fishery ground with essential habitat of sharks, make this kind of small-scale gillnet fishery particularly relevant to be included in the development of a coastal ecosystem-based management approach.

  19. NOAA to develop strategy to protect coral and sponge habitat

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. National Marine Fisheries Service (NMFS) will develop a strategy to address research, conservation, and management issues regarding deep-ocean coral and sponge habitat, the agency indicated in an 11 July Federal Register notice. The Service, which is a unit of the National Oceanic and Atmospheric Administration, indicated that this strategy "eventually may result in rulemaking for some fisheries" but that "emergency rulemaking is not warranted."The NMFS announcement is in response to a 24 March 2004 petition to the Commerce Department filed by Oceana, a non-governmental organization. That petition urged the department through NMFS to "initiate immediate rulemaking" to protect coral and sponge habitats in the U.S. exclusive economic zone through mapping, monitoring, research, and enforcement measures.

  20. A Decade in Climate Changes and Marine Fisheries: Assessing the Catchment Volume in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Kamal, A. H. M.

    2016-12-01

    Global climate change variations over the past 30 years have produced numerous impacts in the abundance and production performance of marine fish and fisheries worldwide. The consequences in terms of flooding of low-lying estuarine habitats due to over rainfall, fluctuation of temperature, dilution of water parameters, devastation of feeding and breeding habitats, salinity fluctuations and acidification of waters, high siltation in coastal area, changes in the sea water table and breeding triggers have raised serious concerns for the well-being of marine fisheries and their production. This study shows that the overall total catchment of marine fisheries was decreased 38% in 2009 compared to 1998 while considers the fishing gears and vessels number used in Peninsular Malaysia. Registered vessels number was increased up to 92% in 2009 compared to 1998 which eventually increased the total catchment volume of marine fisheries. In 2009, the catching efforts and performance was far low as per vessels compared to 1998. Analysis of climate change variables shows that temperature was decreased as rainfall was increased within the year from 1998 to 2009. However, it is still early to conclude that whether climate change variables could have unpleasant impacts on fish production in the tropical seas like Malaysia. In spite of that it is predicted that the prolong exists of monsoon and increases of rainfall in this area resulting the stresses and sometimes interfering on the habitat, reproductive cycle and their related ecosystems in this coastal marine environment in tropics.

  1. Western Fisheries Research Center--Forage fish studies in Puget Sound

    USGS Publications Warehouse

    Liedtke, Theresa L.

    2012-01-01

    Researchers at the Western Fisheries Research Center are working with other U.S. Geological Survey (USGS) Centers to better understand the interconnected roles of forage fishes throughout the ecosystem of Puget Sound, Washington. Support for these studies primarily is from the USGS Coastal Habitats in Puget Sound (CHIPS) program, which supports studies of the nearshore areas of Puget Sound. Human perturbations in the nearshore area such as shoreline armoring or urban development can affect the nearshore habitats critical to forage fish.

  2. Habits and Habitats of Fishes in the Upper Mississippi River

    USGS Publications Warehouse

    Norwick, R.; Janvrin, J.; Zigler, S.; Kratt, R.

    2011-01-01

    The Upper Mississippi River consists of 26 navigation pools that provide abundant habitat for a host of natural resources, such as fish, migratory waterfowl, non-game birds, deer, beaver, muskrats, snakes, reptiles, frogs, toads, salamanders, and many others. Of all the many different types of animals that depend on the river, fish are the most diverse with over 140 different species. The sport fishery is very diverse with at least 25 species commonly harvested. Fish species, such as walleyes, largemouth bass, bluegills, and crappies are favorites of sport anglers. Others such as common carp, buffalos, and channel catfish, are harvested by commercial anglers and end up on the tables of families all over the country. Still other fishes are important because they provide food for sport or commercial species. The fishery resources in these waters contribute millions of dollars to the economy annually. Overall, the estimate impact of anglers and other recreational users exceeds $1.2 billion on the Upper Mississippi River. The fisheries in the various reaches of the river of often are adversely affected by pollution, urbanization, non-native fishes, navigation, recreational boating, fishing, dredging, and siltation. However, state and federal agencies expend considerable effort and resources to manage fisheries and restore river habitats. This pamphlet was prepared to help you better understand what fishery resources exist, what the requirements of each pecies are, and how man-induced changes that are roposed or might occur could affect them.

  3. Toward fisheries sustainability in North America: Issues, challenges, and strategies for action

    USGS Publications Warehouse

    MacDonald, D.D.; Knudsen, E.E.

    2004-01-01

    Many fisheries in North America are severely depleted and trending downwards. In an effort to find ways of reversing this disturbing situation, the American Fisheries Society and the Sustainable Fisheries Foundation invited leading experts in fisheries science and aquatic resource management to share their thoughts and insights in this book. These experts were asked to identify the factors that are currently impairing our ability to effectively manage fisheries resources and propose creative solutions for addressing the most challenging issues affecting fisheries sustainability. Based on the information that was provided by the experts (i.e., as presented in the earlier chapters of this book), it is apparent that a wide range of human activities are adversely affecting our shared fisheries resources and the aquatic habitats upon which they depend. The most challenging problems stem from causes that are largely beyond the scope of traditional fisheries management (e.g., human population growth, resource consumption patterns, global climate change, broad land-use patterns). It is also apparent that resolution of these challenges will require a new approach to fisheries management - one that effectively integrates economic, social, and environmental interests into a decision-making framework that supports fisheries sustainability. The key strategies for supporting such a transition toward a more holistic and comprehensive approach to managing the human activities that influence fisheries and aquatic resources are summarized in this chapter. ?? 2004 by the American Fisheries Society.

  4. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Right Whale (Eubalaena japonica). 226.215 Section 226.215 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica). (a) Primary Constituent Elements. The primary constituent elements of the North Pacific right whale...

  5. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Right Whale (Eubalaena japonica). 226.215 Section 226.215 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica). (a) Primary Constituent Elements. The primary constituent elements of the North Pacific right whale...

  6. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Right Whale (Eubalaena japonica). 226.215 Section 226.215 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica). (a) Primary Constituent Elements. The primary constituent elements of the North Pacific right whale...

  7. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Right Whale (Eubalaena japonica). 226.215 Section 226.215 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica). (a) Primary Constituent Elements. The primary constituent elements of the North Pacific right whale...

  8. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Right Whale (Eubalaena japonica). 226.215 Section 226.215 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica). (a) Primary Constituent Elements. The primary constituent elements of the North Pacific right whale...

  9. Habit-specific estimates of fisheries ecosystem services in Weeks Bay, Alabama

    EPA Science Inventory

    One of the challenges EPA is addressing as part of its Ecological Services Research Program (ESRP) is linking ecological services (ES) of coastal and estuarine habitat types (e.g. fishery support, nutrient processing, carbon sequestration, etc.) with economic values to inform sta...

  10. Federal Great Lakes fishery research objectives, priorities, and projects

    USGS Publications Warehouse

    Tait, Howard D.

    1973-01-01

    Fishery productivity of the Great Lakes has declined drastically since settlement of the area. Premium quality fishes of the Great Lakes such as whitefish, lake trout, and walleyes have been replaced by less desired species. This change is attributed to selective overfishing, pollution, and the extreme instability of fish populations. Sea lamprey predation is still a vexing problem but progress is being made in controlling this parasite. The federal fishery research program with headquarters in Ann Arbor, Michigan, has the objective of providing baseline information, needed in resource use decisions, about the fishes of the Great Lakes. Studies of the habitat requirements of fish are high priority. The program includes fish population assessments, studies of the effects of mercury and other contaminants on fish, thermal effects studies, and general investigation of the impact of engineering projects on Great Lakes fisheries. The work is closely coordinated with state and Canadian agencies through the Great Lakes Fishery Commission. Four small research vessels and four field stations are utilized with a staff of 90 and an annual budget of about $1.5 million.

  11. 75 FR 62507 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... Committee and Plan Development Team in October 2010 to consider actions affecting New England fisheries in... jointly with the Habitat Plan Development Team to discuss management alternatives related to minimizing... Council's EFH Omnibus Amendment 2. The goal of the meeting is to craft a series of management alternatives...

  12. Analysis of the 1996 Wisconsin forest statistics by habitat type.

    Treesearch

    John Kotar; Joseph A. Kovach; Gary Brand

    1999-01-01

    The fifth inventory of Wisconsin's forests is presented from the perspective of habitat type as a classification tool. Habitat type classifies forests based on the species composition of the understory plant community. Various forest attributes are summarized by habitat type and management implications are discussed.

  13. Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borde, Amy B.; Kaufmann, Ronald M.; Cullinan, Valerie I.

    The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends inmore » habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.« less

  14. 75 FR 44769 - Gulf of Mexico Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ...; Sustainable Fisheries/Ecosystem; Habitat; Outreach & Education; Budget/ Personnel; and Spiny Lobster/Stone... will appoint participants to the SEDAR Greater Amberjack Review workshop and the SEDAR Spiny Lobster... will receive a quarterly budget review. 9 a.m. - 11 a.m. - The Spiny Lobster Management Committee will...

  15. 75 FR 1023 - International Fisheries Regulations; Fisheries in the Western Pacific; Pelagic Fisheries; Hawaii...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    .... 080225267-91393-03] RIN 0648-AW49 International Fisheries Regulations; Fisheries in the Western Pacific; Pelagic Fisheries; Hawaii-based Shallow-set Longline Fishery; Correction AGENCY: National Marine Fisheries... process is preserved for closing the Hawaii-based shallow-set longline fishery as a result of the fishery...

  16. Age-related thermal habitat use by Pacific salmon Oncorhynchus spp.

    PubMed

    Morita, K; Fukuwaka, M; Tanimata, N

    2010-09-01

    Age-related thermal habitat use by sockeye Oncorhynchus nerka, chum Oncorhynchus keta and pink Oncorhynchus gorbuscha salmon was examined using trawl data obtained in spring in the North Pacific Ocean. Thermal habitat use differed by species and age. Larger and older fishes inhabited cooler areas, whereas smaller and younger fishes inhabited warmer areas. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.

  17. Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Stephen N. Matthews; Matthew P. Peters

    2011-01-01

    We present an approach to modeling potential climate-driven changes in habitat for tree and bird species in the eastern United States. First, we took an empirical-statistical modeling approach, using randomForest, with species abundance data from national inventories combined with soil, climate, and landscape variables, to build abundance-based habitat models for 134...

  18. Scale-dependent seasonal pool habitat use by sympatric Wild Brook Trout and Brown Trout populations

    USGS Publications Warehouse

    Davis, Lori A.; Wagner, Tyler

    2016-01-01

    Sympatric populations of native Brook Trout Salvelinus fontinalis and naturalized Brown Trout Salmo truttaexist throughout the eastern USA. An understanding of habitat use by sympatric populations is of importance for fisheries management agencies because of the close association between habitat and population dynamics. Moreover, habitat use by stream-dwelling salmonids may be further complicated by several factors, including the potential for fish to display scale-dependent habitat use. Discrete-choice models were used to (1) evaluate fall and early winter daytime habitat use by sympatric Brook Trout and Brown Trout populations based on available residual pool habitat within a stream network and (2) assess the sensitivity of inferred habitat use to changes in the spatial scale of the assumed available habitat. Trout exhibited an overall preference for pool habitats over nonpool habitats; however, the use of pools was nonlinear over time. Brook Trout displayed a greater preference for deep residual pool habitats than for shallow pool and nonpool habitats, whereas Brown Trout selected for all pool habitat categories similarly. Habitat use by both species was found to be scale dependent. At the smallest spatial scale (50 m), habitat use was primarily related to the time of year and fish weight. However, at larger spatial scales (250 and 450 m), habitat use varied over time according to the study stream in which a fish was located. Scale-dependent relationships in seasonal habitat use by Brook Trout and Brown Trout highlight the importance of considering scale when attempting to make inferences about habitat use; fisheries managers may want to consider identifying the appropriate spatial scale when devising actions to restore and protect Brook Trout populations and their habitats.

  19. 76 FR 43745 - Magnuson-Stevens Fishery Conservation and Management Act (MSA) Provisions; Fisheries of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ...NMFS hereby implements measures approved in Amendment 15 to the Scallop FMP (Amendment 15), which was developed by the New England Fishery Management Council (Council). Amendment 15 was developed primarily to implement annual catch limits (ACLs) and accountability measures (AMs) to bring the Scallop FMP into compliance with requirements of the MSA as reauthorized in 2007. Amendment 15 includes additional measures recommended by the Council, including: A revision of the overfishing definition (OFD); modification of the essential fish habitat (EFH) closed areas under the Scallop FMP; adjustments to measures for the Limited Access General Category (LAGC) individual fishing quota (IFQ) fishery; adjustments to the scallop research set- aside (RSA) program; and additions to the list of measures that can be adjusted by framework adjustments. NMFS has disapproved a provision that would have allocated additional scallop catch to the LAGC fleet because it was not consistent with National Standard 1 and the ACL requirement of the MSA.

  20. Importance of geology to fisheries management: Examples from the northeastern Gulf of Mexico

    USGS Publications Warehouse

    Scanlon, Kathryn M.; Koenig, C.C.; Coleman, F.C.; Miller, M.

    2003-01-01

    Seafloor mapping of shelf-edge habitats in the northeastern Gulf of Mexico demonstrates how sidescan-sonar imagery, seismic-reflection profiling, video data, geologic mapping, sediment sampling, and understanding the regional geologic history can enhance, support, and guide traditional fisheries research and management. New data from the Madison Swanson and Steamboat Lumps Marine Reserves reveal complex benthic habitats consisting of high-relief calcareous pinnacles, low-relief karstic hardbottom, rocky outcrops several kilometers in length, and variable thickness of fine-grained and apparently mobile coarse-grained sediments. Our data also show that certain fish alter the landscape by clearing sediment from hardbottom areas (e.g., red grouper Epinephelus morio) and by burrowing extensively in fine-grained sediment (e.g., tilefish Lopholatilus chamaeleonticeps). The seafloor imagery and geologic maps show that (a) sea level fluctuations played a dominant role in the development of the present-day regional geology, and (b) habitats (and benthic communities) are tied closely to geologic character. Understanding the geologic setting allowed for efficient and representative sampling of the biology. The geologic data can be used to set meaningful boundaries for fishery reserves and to help predict habitats in areas that are not well mapped. This interdisciplinary work added value to traditional research disciplines by providing management with integrated tools to make better decisions. 

  1. Climate change impacts on marine biodiversity, fisheries and society in the Arabian Gulf

    PubMed Central

    Lam, Vicky W. Y.; Reygondeau, Gabriel; Teh, Lydia C. L.; Al-Abdulrazzak, Dalal; Khalfallah, Myriam; Pauly, Daniel; Palomares, Maria L. Deng; Zeller, Dirk; Cheung, William W. L.

    2018-01-01

    Climate change–reflected in significant environmental changes such as warming, sea level rise, shifts in salinity, oxygen and other ocean conditions–is expected to impact marine organisms and associated fisheries. This study provides an assessment of the potential impacts on, and the vulnerability of, marine biodiversity and fisheries catches in the Arabian Gulf under climate change. To this end, using three separate niche modelling approaches under a ‘business-as-usual’ climate change scenario, we projected the future habitat suitability of the Arabian Gulf (also known as the Persian Gulf) for 55 expert-identified priority species, including charismatic and non-fish species. Second, we conducted a vulnerability assessment of national economies to climate change impacts on fisheries. The modelling outputs suggested a high rate of local extinction (up to 35% of initial species richness) by 2090 relative to 2010. Spatially, projected local extinctions are highest in the southwestern part of the Gulf, off the coast of Saudi Arabia, Qatar and the United Arab Emirates (UAE). While the projected patterns provided useful indicators of potential climate change impacts on the region’s diversity, the magnitude of changes in habitat suitability are more uncertain. Fisheries-specific results suggested reduced future catch potential for several countries on the western side of the Gulf, with projections differing only slightly among models. Qatar and the UAE were particularly affected, with more than a 26% drop in future fish catch potential. Integrating changes in catch potential with socio-economic indicators suggested the fisheries of Bahrain and Iran may be most vulnerable to climate change. We discuss limitations of the indicators and the methods used, as well as the implications of our overall findings for conservation and fisheries management policies in the region. PMID:29718919

  2. Climate change impacts on marine biodiversity, fisheries and society in the Arabian Gulf.

    PubMed

    Wabnitz, Colette C C; Lam, Vicky W Y; Reygondeau, Gabriel; Teh, Lydia C L; Al-Abdulrazzak, Dalal; Khalfallah, Myriam; Pauly, Daniel; Palomares, Maria L Deng; Zeller, Dirk; Cheung, William W L

    2018-01-01

    Climate change-reflected in significant environmental changes such as warming, sea level rise, shifts in salinity, oxygen and other ocean conditions-is expected to impact marine organisms and associated fisheries. This study provides an assessment of the potential impacts on, and the vulnerability of, marine biodiversity and fisheries catches in the Arabian Gulf under climate change. To this end, using three separate niche modelling approaches under a 'business-as-usual' climate change scenario, we projected the future habitat suitability of the Arabian Gulf (also known as the Persian Gulf) for 55 expert-identified priority species, including charismatic and non-fish species. Second, we conducted a vulnerability assessment of national economies to climate change impacts on fisheries. The modelling outputs suggested a high rate of local extinction (up to 35% of initial species richness) by 2090 relative to 2010. Spatially, projected local extinctions are highest in the southwestern part of the Gulf, off the coast of Saudi Arabia, Qatar and the United Arab Emirates (UAE). While the projected patterns provided useful indicators of potential climate change impacts on the region's diversity, the magnitude of changes in habitat suitability are more uncertain. Fisheries-specific results suggested reduced future catch potential for several countries on the western side of the Gulf, with projections differing only slightly among models. Qatar and the UAE were particularly affected, with more than a 26% drop in future fish catch potential. Integrating changes in catch potential with socio-economic indicators suggested the fisheries of Bahrain and Iran may be most vulnerable to climate change. We discuss limitations of the indicators and the methods used, as well as the implications of our overall findings for conservation and fisheries management policies in the region.

  3. Climate Change in U.S. South Atlantic, Gulf of Mexico and Caribbean Fisheries Regions

    NASA Astrophysics Data System (ADS)

    Roffer, M. A.; Hernandez, D. L.; Lamkin, J. T.; Pugliese, R.; Reichert, M.; Hall, C.

    2016-02-01

    A review of the recent evidence that climate change is affecting marine ecosystems in the U.S. fishery management zones of the South Atlantic, Gulf of Mexico and Caribbean regions will be presented. This will include affects on the living marine resources (including fish, invertebrates, marine mammals and turtles), fisheries, habitat and people. Emphasis will be given on the effects that impact managed species and the likely new challenges that they present to fishery managers. The evidence is being derived from the results of the "Climate Variability and Fisheries Workshop: Setting Research Priorities for the Gulf of Mexico, South Atlantic, and Caribbean Regions," October 26-28, 2015 in St. Petersburg Beach, Florida. Commonalities and regional differences will be presented in terms of how climate variability is likely to impact distribution, catch, catchability, socioeconomics, and management.

  4. 78 FR 51705 - Proposed Designation of Marine Critical Habitat for the Loggerhead Sea Turtle, Caretta caretta...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ..., Under the Endangered Species Act; Public Hearing AGENCY: National Marine Fisheries Service (NMFS... Habitat for the Loggerhead Sea Turtle, Caretta caretta, under the Endangered Species Act (ESA). DATES: The.../articles/2013/07/18/2013-17204/endangered-and-threatened-species-designation-of-critical-habitat-for-the...

  5. Mud Mountain Wildlife Inventory and Habitat Analysis.

    DTIC Science & Technology

    1979-01-01

    PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK Intern Program AREA & WORK UNIT NUMBERS Western Interstate Commission for...RIPARIAN ZONE CHARACTERISTICS .... .......... .26 5 SNAG SUCCESSION CHARACTERISTICS .. .. . .... ... 29 6 THREE SISTERS- GRASS MOUNTAIN AREA ...recommendations appropriate with regard to their wildlife potential. Throughout the report, essential habitat areas have been noted. Management guidelines

  6. Using standardized fishery data to inform rehabilitation efforts

    USGS Publications Warehouse

    Spurgeon, Jonathan J.; Stewart, Nathaniel T.; Pegg, Mark A.; Pope, Kevin L.; Porath, Mark T.

    2016-01-01

    Lakes and reservoirs progress through an aging process often accelerated by human activities, resulting in degradation or loss of ecosystem services. Resource managers thus attempt to slow or reverse the negative effects of aging using a myriad of rehabilitation strategies. Sustained monitoring programs to assess the efficacy of rehabilitation strategies are often limited; however, long-term standardized fishery surveys may be a valuable data source from which to begin evaluation. We present 3 case studies using standardized fishery survey data to assess rehabilitation efforts stemming from the Nebraska Aquatic Habitat Plan, a large-scale program with the mission to rehabilitate waterbodies within the state. The case studies highlight that biotic responses to rehabilitation efforts can be assessed, to an extent, using standardized fishery data; however, there were specific areas where minor increases in effort would clarify the effectiveness of rehabilitation techniques. Management of lakes and reservoirs can be streamlined by maximizing the utility of such datasets to work smarter, not harder. To facilitate such efforts, we stress collecting both biotic (e.g., fish lengths and weight) and abiotic (e.g., dissolved oxygen, pH, and turbidity) data during standardized fishery surveys and designing rehabilitation actions with an appropriate experimental design.

  7. 2011 Los Alamos National Laboratory Riparian Inventory Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, Elizabeth J.; Hansen, Leslie A.; Hathcock, Charles D.

    A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed butmore » no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.« less

  8. 75 FR 17070 - Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ...-XU60 Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery Closure AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration... commercial and non-commercial fisheries in the Main Hawaiian Islands fishery for seven deepwater bottomfish...

  9. Methods for evaluating riparian habitats with applications to management

    USGS Publications Warehouse

    Platts, William S.; Armour, C.L.; Booth, G.D.; Bryant, M.; Bufford, J.L.; Cuplin, P.; Jensen, S.; Lienkaemper, G.W.; Minshall, G.W.; Monsen, S.T.; Nelson, R.L.; Sedell, J.R.; Tuhy, J.S.

    1987-01-01

    Riparian area planning and management is a major national issues today--something that should have been the case a century ago. A century of additive effects of land use has resulted in major impacts on many riparian stream habitats and their fisheries, wildlife, and domestic livestock use. Before scientists can evaluate the influences of various land and water uses on riparian environments, they must first understand these environments. This means being able to detect and measure with confidence the natural and artificial variation and instantaneous conditions of the riparian habitat. These conditions must then be related to the production capability of riparian habitat and any extraneous factors affecting this production potential.

  10. Small-Scale Fisheries Bycatch Jeopardizes Endangered Pacific Loggerhead Turtles

    PubMed Central

    Peckham, S. Hoyt; Diaz, David Maldonado; Walli, Andreas; Ruiz, Georgita; Crowder, Larry B.; Nichols, Wallace J.

    2007-01-01

    Background Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna. Principal Findings/Methodology 30 North Pacific loggerhead turtles that we satellite-tracked from 1996–2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS). We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1) observe two small-scale fleets that operated closest to the high use area and 2) through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year−1, rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge. Conclusions/Significance Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing

  11. Small-scale fisheries bycatch jeopardizes endangered Pacific loggerhead turtles.

    PubMed

    Peckham, S Hoyt; Maldonado Diaz, David; Walli, Andreas; Ruiz, Georgita; Crowder, Larry B; Nichols, Wallace J

    2007-10-17

    Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna. 30 North Pacific loggerhead turtles that we satellite-tracked from 1996-2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS). We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1) observe two small-scale fleets that operated closest to the high use area and 2) through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year(-1), rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge. Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing coastal high use areas and mitigating bycatch in partnership with small

  12. 77 FR 38738 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Exempted Fishery for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    .... 110901554-2178-02] RIN 0648-BB35 Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Exempted Fishery for the Southern New England Skate Bait Trawl Fishery AGENCY: National Marine Fisheries.... SUMMARY: This final rule modifies the regulations implementing the Northeast (NE) Multispecies Fishery...

  13. Connectivity of a large embayment and coastal fishery: spawning aggregations in one bay source local and broad-scale fishery replenishment.

    PubMed

    Hamer, P A; Acevedo, S; Jenkins, G P; Newman, A

    2011-04-01

    Ichthyoplankton sampling and otolith chemistry were used to determine the importance of transient spawning aggregations of snapper Chrysophrys auratus (Sparidae) in a large embayment, Port Phillip Bay (PPB), Australia, as a source of local and broad-scale fishery replenishment. Ichthyoplankton sampling across five spawning seasons within PPB, across the narrow entrance to the bay and in adjacent coastal waters, indicated that although spawning may occur in coastal waters, the spawning aggregations within the bay were the primary source of larval recruitment to the bay. Otolith chemical signatures previously characterized for 0+ year C. auratus of two cohorts (2000 and 2001) were used as the baseline signatures to quantify the contribution that fish derived from reproduction in PPB make to fishery replenishment. Sampling of these cohorts over a 5 year period at various widely dispersed fishery regions, combined with maximum likelihood analyses of the chemistry of the 0+ year otolith portions of these older fish, indicated that C. auratus of 1 to 3+ years of age displayed both local residency and broad-scale emigration from PPB to populate coastal waters and an adjacent bay (Western Port). While the PPB fishery was consistently dominated (>70%) by locally derived fish irrespective of cohort or age, the contribution of fish that had originated from PPB to distant populations increased with age. At 4 to 5+ years of age, when C. auratus mature and fully recruit to the fishery, populations of both cohorts across the entire central and western Victorian fishery, including two major embayments and c. 800 km of coastal waters, were dominated (>70%) by fish that had originated from the spawning aggregations and nursery habitat within PPB. Dependence of this broadly dispersed fishery on replenishment from heavily targeted spawning aggregations within one embayment has significant implications for management and monitoring programmes. © 2011 The Authors. Journal of Fish

  14. Transitional states in marine fisheries: adapting to predicted global change

    PubMed Central

    MacNeil, M. Aaron; Graham, Nicholas A. J.; Cinner, Joshua E.; Dulvy, Nicholas K.; Loring, Philip A.; Jennings, Simon; Polunin, Nicholas V. C.; Fisk, Aaron T.; McClanahan, Tim R.

    2010-01-01

    Global climate change has the potential to substantially alter the production and community structure of marine fisheries and modify the ongoing impacts of fishing. Fish community composition is already changing in some tropical, temperate and polar ecosystems, where local combinations of warming trends and higher environmental variation anticipate the changes likely to occur more widely over coming decades. Using case studies from the Western Indian Ocean, the North Sea and the Bering Sea, we contextualize the direct and indirect effects of climate change on production and biodiversity and, in turn, on the social and economic aspects of marine fisheries. Climate warming is expected to lead to (i) yield and species losses in tropical reef fisheries, driven primarily by habitat loss; (ii) community turnover in temperate fisheries, owing to the arrival and increasing dominance of warm-water species as well as the reduced dominance and departure of cold-water species; and (iii) increased diversity and yield in Arctic fisheries, arising from invasions of southern species and increased primary production resulting from ice-free summer conditions. How societies deal with such changes will depend largely on their capacity to adapt—to plan and implement effective responses to change—a process heavily influenced by social, economic, political and cultural conditions. PMID:20980322

  15. Transitional states in marine fisheries: adapting to predicted global change.

    PubMed

    MacNeil, M Aaron; Graham, Nicholas A J; Cinner, Joshua E; Dulvy, Nicholas K; Loring, Philip A; Jennings, Simon; Polunin, Nicholas V C; Fisk, Aaron T; McClanahan, Tim R

    2010-11-27

    Global climate change has the potential to substantially alter the production and community structure of marine fisheries and modify the ongoing impacts of fishing. Fish community composition is already changing in some tropical, temperate and polar ecosystems, where local combinations of warming trends and higher environmental variation anticipate the changes likely to occur more widely over coming decades. Using case studies from the Western Indian Ocean, the North Sea and the Bering Sea, we contextualize the direct and indirect effects of climate change on production and biodiversity and, in turn, on the social and economic aspects of marine fisheries. Climate warming is expected to lead to (i) yield and species losses in tropical reef fisheries, driven primarily by habitat loss; (ii) community turnover in temperate fisheries, owing to the arrival and increasing dominance of warm-water species as well as the reduced dominance and departure of cold-water species; and (iii) increased diversity and yield in Arctic fisheries, arising from invasions of southern species and increased primary production resulting from ice-free summer conditions. How societies deal with such changes will depend largely on their capacity to adapt--to plan and implement effective responses to change--a process heavily influenced by social, economic, political and cultural conditions.

  16. Watershed Health Assessment Tools Investigating Fisheries WHAT IF Version 2: A Manager’s Guide to New Features

    EPA Pesticide Factsheets

    The CVI Watershed Health Assessment Tool Investigating Fisheries, WHAT IF version 2, currently contains five components: Regional Prioritization Tool, Hydrologic Tool, Clustering Tool, Habitat Suitability Tool, BASS model

  17. Targeting Abundant Fish Stocks while Avoiding Overfished Species: Video and Fishing Surveys to Inform Management after Long-Term Fishery Closures

    PubMed Central

    2016-01-01

    Historically, it has been difficult to balance conservation goals and yield objectives when managing multispecies fisheries that include stocks with various vulnerabilities to fishing. As managers try to maximize yield in mixed-stock fisheries, exploitation rates can lead to less productive stocks becoming overfished. In the late 1990s, population declines of several U.S. West Coast groundfish species caused the U.S. Pacific Fishery Management Council to create coast-wide fishery closures, known as Rockfish Conservation Areas, to rebuild overfished species. The fishery closures and other management measures successfully reduced fishing mortality of these species, but constrained fishing opportunities on abundant stocks. Restrictive regulations also caused the unintended consequence of reducing fishery-dependent data available to assess population status of fished species. As stocks rebuild, managers are faced with the challenge of increasing fishing opportunities while minimizing fishing mortality on rebuilding species. We designed a camera system to evaluate fishes in coastal habitats and used experimental gear and fishing techniques paired with video surveys to determine if abundant species could be caught in rocky habitats with minimal catches of co-occurring rebuilding species. We fished a total of 58 days and completed 741 sets with vertical hook-and-line fishing gear. We also conducted 299 video surveys in the same locations where fishing occurred. Comparison of fishing and stereo-video surveys indicated that fishermen could fish with modified hook-and-line gear to catch abundant species while limiting bycatch of rebuilding species. As populations of overfished species continue to recover along the U.S. West Coast, it is important to improve data collection, and video and fishing surveys may be key to assessing species that occur in rocky habitats. PMID:28002499

  18. Targeting Abundant Fish Stocks while Avoiding Overfished Species: Video and Fishing Surveys to Inform Management after Long-Term Fishery Closures.

    PubMed

    Starr, Richard M; Gleason, Mary G; Marks, Corina I; Kline, Donna; Rienecke, Steve; Denney, Christian; Tagini, Anne; Field, John C

    2016-01-01

    Historically, it has been difficult to balance conservation goals and yield objectives when managing multispecies fisheries that include stocks with various vulnerabilities to fishing. As managers try to maximize yield in mixed-stock fisheries, exploitation rates can lead to less productive stocks becoming overfished. In the late 1990s, population declines of several U.S. West Coast groundfish species caused the U.S. Pacific Fishery Management Council to create coast-wide fishery closures, known as Rockfish Conservation Areas, to rebuild overfished species. The fishery closures and other management measures successfully reduced fishing mortality of these species, but constrained fishing opportunities on abundant stocks. Restrictive regulations also caused the unintended consequence of reducing fishery-dependent data available to assess population status of fished species. As stocks rebuild, managers are faced with the challenge of increasing fishing opportunities while minimizing fishing mortality on rebuilding species. We designed a camera system to evaluate fishes in coastal habitats and used experimental gear and fishing techniques paired with video surveys to determine if abundant species could be caught in rocky habitats with minimal catches of co-occurring rebuilding species. We fished a total of 58 days and completed 741 sets with vertical hook-and-line fishing gear. We also conducted 299 video surveys in the same locations where fishing occurred. Comparison of fishing and stereo-video surveys indicated that fishermen could fish with modified hook-and-line gear to catch abundant species while limiting bycatch of rebuilding species. As populations of overfished species continue to recover along the U.S. West Coast, it is important to improve data collection, and video and fishing surveys may be key to assessing species that occur in rocky habitats.

  19. 77 FR 64305 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Exempted Fishery for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    .... 120905422-2521-01] RIN 0648-BC50 Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Exempted Fishery for the Cape Cod Spiny Dogfish Fishery AGENCY: National Marine Fisheries Service (NMFS... Fishery Management Plan (FMP) to allow vessels to fish with gillnet and longline gear from June through...

  20. 77 FR 25117 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Exempted Fishery for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    .... 120417417-2417-01] RIN 0648-BB35 Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Exempted Fishery for the Southern New England Skate Bait Trawl Fishery AGENCY: National Marine Fisheries...) Multispecies Fishery Management Plan (FMP) to allow vessels issued a Federal skate permit and a Skate Bait...

  1. Habitat preferences of baleen whales in a mid-latitude habitat

    NASA Astrophysics Data System (ADS)

    Prieto, Rui; Tobeña, Marta; Silva, Mónica A.

    2017-07-01

    Understanding the dynamics of baleen whale distribution is essential to predict how environmental changes can affect their ecology and, in turn, ecosystem functioning. Recent work showed that mid-latitude habitats along migratory routes may play an important role on the feeding ecology of baleen whales. This study aimed to investigate the function of a mid-latitude habitat for blue (Balaenoptera musculus), fin (Balaenoptera physalus) and sei (Balaenoptera borealis) whales occurring in sympatry during spring and summer months and to what extent their environmental niches overlap. We addressed those questions by developing environmental niche models (ENM) for each species and then making pairwise comparisons of niche overlap and relative habitat patch importance among the three species. ENMs were created using sightings from the Azorean Fisheries Observer Program from May to November, between 2004 and 2009, and a set of 18 predictor environmental variables. We then assessed monthly (April-July) overlap among ENMs using a modified Hellinger's distance metric (I). Results show that the habitat niches of blue and fin whales are strongly influenced by primary productivity and sea surface temperature and are highly dynamic both spatially and temporally due to the oceanography of the region. Niche overlap analyses show that blue and fin whale environmental niches are similar and that the suitable habitats for the two species have high degree of spatial coincidence. These results in combination suggest that this habitat may function as a mid-latitude feeding ground to both species while conditions are adequate. The sei whale model, on the other hand, did not include variables considered to be proxies for prey distribution and little environmental niche overlap was found between this species and the other two. We argue that these results suggest that the region holds little importance as a foraging habitat for the sei whale.

  2. Climate Change Impacts to North Pacific Pelagic Habitat Are Projected to Lower Carrying Capacity

    NASA Astrophysics Data System (ADS)

    Woodworth-Jefcoats, P. A.; Polovina, J. J.; Drazen, J.

    2016-02-01

    We use output from a suite of CMIP5 earth system models to explore the impacts of climate change on marine fisheries over the 21st century. Ocean temperatures from both the historical and RCP 8.5 projections are integrated over the upper 200 m of the water column to characterize thermal habitat in the epipelagic realm. We find that across all models the projected temperature increases lead to a redistribution of thermal habitat: temperatures that currently represent the majority of North Pacific pelagic habitat are replaced by temperatures several degrees warmer. Additionally, all models project the emergence of new thermal habitat that exceeds present-day maximum temperatures. Spatially, present-day thermal habitat retreats northward and contracts eastward as warmer habitat in the southern and western North Pacific expands. In addition to these changes in thermal habitat, zooplankton densities are projected to decline across much of the North Pacific. Taken together, warming temperatures and declining zooplankton densities create the potential for mismatches in metabolic demand and supply through the 21st century. We find that carrying capacity for tropical tunas and other commercially valuable pelagic fish may be especially vulnerable to the impacts of climate change. The waters projected to see the greatest redistribution of thermal habitat and greatest declines in zooplankton densities are primarily those targeted by the Hawaii-based and international longline fleets. Fishery managers around the North Pacific will need to incorporate these impacts of climate change into future management strategies.

  3. Radio Frequency Identification for Space Habitat Inventory and Stowage Allocation Management

    NASA Technical Reports Server (NTRS)

    Wagner, Carole Y.

    2015-01-01

    To date, the most extensive space-based inventory management operation has been the International Space Station (ISS). Approximately 20,000 items are tracked with the Inventory Management System (IMS) software application that requires both flight and ground crews to update the database daily. This audit process is manually intensive and laborious, requiring the crew to open cargo transfer bags (CTBs), then Ziplock bags therein, to retrieve individual items. This inventory process contributes greatly to the time allocated for general crew tasks.

  4. Applications of Earth Observations for Fisheries Management: An analysis of socioeconomic benefits

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Kiefer, D. A.; Turner, W.

    2013-12-01

    This paper will discuss the socioeconomic impacts of a project applying Earth observations and models to support management and conservation of tuna and other marine resources in the eastern Pacific Ocean. A project team created a software package that produces statistical analyses and dynamic maps of habitat for pelagic ocean biota. The tool integrates sea surface temperature and chlorophyll imagery from MODIS, ocean circulation models, and other data products. The project worked with the Inter-American Tropical Tuna Commission, which issues fishery management information, such as stock assessments, for the eastern Pacific region. The Commission uses the tool and broader habitat information to produce better estimates of stock and thus improve their ability to identify species that could be at risk of overfishing. The socioeconomic analysis quantified the relative value that Earth observations contributed to accurate stock size assessments through improvements in calculating population size. The analysis team calculated the first-order economic costs of a fishery collapse (or shutdown), and they calculated the benefits of improved estimates that reduce the uncertainty of stock size and thus reduce the risk of fishery collapse. The team estimated that the project reduced the probability of collapse of different fisheries, and the analysis generated net present values of risk mitigation. USC led the project with sponsorship from the NASA Earth Science Division's Applied Sciences Program, which conducted the socioeconomic impact analysis. The paper will discuss the project and focus primarily on the analytic methods, impact metrics, and the results of the socioeconomic benefits analysis.

  5. Fishery resource utilization of a restored estuarine borrow pit: a beneficial use of dredged material case study.

    PubMed

    Reine, Kevin; Clarke, Douglas; Ray, Gary; Dickerson, Charles

    2013-08-15

    Numerous pits in coastal waters are subject to degraded water quality and benthic habitat conditions, resulting in degraded fish habitat. A pit in Barnegat Bay, New Jersey (USA) was partially filled with dredged sediment to increase flushing, alleviate hypoxia, and enhance benthic assemblages. Restoration objectives were assessed in terms of benthic community parameters and fishery resource occupation. Restoration resulted in increased benthic diversity (bottom samples) and the absence of water column stratification. Fisheries resources occupied the entire water column, unlike pre-restoration conditions where finfish tended to avoid the lower water column. The partial restoration option effectively reproduced an existing borrow pit configuration (Hole #5, control), by decreasing total depth from -11 m to -5.5 m, thereby creating a habitat less susceptible to hypoxic/anoxic conditions, while retaining sufficient vertical relief to maintain associations with juvenile weakfish and other forage fishes. Partially filling pits using dredged material represents a viable restoration alternative. Published by Elsevier Ltd.

  6. A dynamic ocean management tool to reduce bycatch and support sustainable fisheries.

    PubMed

    Hazen, Elliott L; Scales, Kylie L; Maxwell, Sara M; Briscoe, Dana K; Welch, Heather; Bograd, Steven J; Bailey, Helen; Benson, Scott R; Eguchi, Tomo; Dewar, Heidi; Kohin, Suzy; Costa, Daniel P; Crowder, Larry B; Lewison, Rebecca L

    2018-05-01

    Seafood is an essential source of protein for more than 3 billion people worldwide, yet bycatch of threatened species in capture fisheries remains a major impediment to fisheries sustainability. Management measures designed to reduce bycatch often result in significant economic losses and even fisheries closures. Static spatial management approaches can also be rendered ineffective by environmental variability and climate change, as productive habitats shift and introduce new interactions between human activities and protected species. We introduce a new multispecies and dynamic approach that uses daily satellite data to track ocean features and aligns scales of management, species movement, and fisheries. To accomplish this, we create species distribution models for one target species and three bycatch-sensitive species using both satellite telemetry and fisheries observer data. We then integrate species-specific probabilities of occurrence into a single predictive surface, weighing the contribution of each species by management concern. We find that dynamic closures could be 2 to 10 times smaller than existing static closures while still providing adequate protection of endangered nontarget species. Our results highlight the opportunity to implement near real-time management strategies that would both support economically viable fisheries and meet mandated conservation objectives in the face of changing ocean conditions. With recent advances in eco-informatics, dynamic management provides a new climate-ready approach to support sustainable fisheries.

  7. Northern red oak volume growth on four northern Wisconsin habitat types

    Treesearch

    Michael Demchik; Kevin M. Schwartz; Rory Braun; Eric Scharenbrock

    2014-01-01

    Northern red oak (Quercus rubra) grows across much of Wisconsin. Using site factors to aid in prediction of volume and basal area increment facilitates management of red oak and other species of interest. Currently, habitat type (Wisconsin Habitat Type Classification System) is often determined when stands are inventoried. If habitat type were...

  8. Duck Valley Habitat Enhancement and Protection, 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodson, Guy; Pero, Vincent

    The Duck Valley Indian Reservations' Habitat Enhancement project is an ongoing project designed to enhance and protect the critical riparian areas, natural springs, and native fish spawning areas on the Reservation. The project was begun in 1997 with the hiring of a fisheries biologist and the creation of a new department for the Tribes. The project's goals are to protect and enhance the springs, Owyhee River, its tributaries, and to develop a database that can be used by other fisheries professionals which includes information on water quality and fish composition, health, abundance, and genetic makeup. One habitat portion of themore » project is a focus on protection the numerous springs that provide clean, cool water to the Owyhee River. This will be accomplished through enclosure fences of the spring heads and water troughs to provide clean cool drinking water for wildlife and livestock. Another habitat portion of the project involves protecting headwater areas of streams with native fish populations. This is accomplished through enclosure fencing and riparian plantings on any eroded or degraded banks in the enclosure area. Finally, we monitor and evaluate the areas protected and enhanced. This is accomplished through biological sampling for temperature, Oxygen, sedimentation, and measurements of water depth, bank height and undercut, and width of stream. With the habitat and biological indices we will be able to evaluate how well protective measures are doing, and where to focus future efforts.« less

  9. Natural Propagation and Habitat Improvement, Volume 1, Oregon, 1986 Final and Annual Reports.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuart, Amy

    1987-01-01

    This report describes activities implemented for fisheries habitat improvement work on priority drainages in the Clackamas and Hood River sub-basins. Separate abstracts have been prepared for the reports on individual projects. (ACR)

  10. Management history of eastside ecosystems: changes in fish habitat over 50 years, 1935-1992.

    Treesearch

    Bruce A. McIntosh; James R. Sedell; Jeanette E. Smith; Robert C. Wissmar; Sharon E. Clarke; Gordon H. Reeves; Lisa A. Brown

    1994-01-01

    From 1934 to 1942, the Bureau of Fisheries surveyed over 8000 km of streams in the Columbia River basin to determine the condition of fish habitat. To evaluate changes in stream habitat over time, a portion of the historically surveyed streams in the Grande Ronde, Methow, Wenatchee, and Yakima River basins were resurveyed from 1990 to 1992. Streams were chosen where...

  11. Identification of physical habitats limiting the production of coho salmon in western Oregon and Washington.

    Treesearch

    G.H. Reeves; F.H. Everest; T.E. Nickelson

    1989-01-01

    Fishery managers are currently spending millions of dollars per year on habitat enhancement for anadromous salmonids but often do not have the tools needed to ensure success. An analysis of factors limiting production of salmonids in streams must be completed before any habitat-enhancement program is begun. This paper outlines the first formal procedure for identifying...

  12. The role of marine reserves in achieving sustainable fisheries

    PubMed Central

    Roberts, Callum M.; Hawkins, Julie P.; Gell, Fiona R.

    2005-01-01

    Many fishery management tools currently in use have conservation value. They are designed to maintain stocks of commercially important species above target levels. However, their limitations are evident from continuing declines in fish stocks throughout the world. We make the case that to reverse fishery declines, safeguard marine life and sustain ecosystem processes, extensive marine reserves that are off limits to fishing must become part of the management strategy. Marine reserves should be incorporated into modern fishery management because they can achieve many things that conventional tools cannot. Only complete and permanent protection from fishing can protect the most sensitive habitats and vulnerable species. Only reserves will allow the development of natural, extended age structures of target species, maintain their genetic variability and prevent deleterious evolutionary change from the effects of fishing. Species with natural age structures will sustain higher rates of reproduction and will be more resilient to environmental variability. Higher stock levels maintained by reserves will provide insurance against management failure, including risk-prone quota setting, provided the broader conservation role of reserves is firmly established and legislatively protected. Fishery management measures outside protected areas are necessary to complement the protection offered by marine reserves, but cannot substitute for it. PMID:15713592

  13. Modeling sensitive elasmobranch habitats

    NASA Astrophysics Data System (ADS)

    Pennino, M. Grazia; Muñoz, Facundo; Conesa, David; López-Quílez, Antonio; Bellido, José Marí; a

    2013-10-01

    Basic information on the distribution and habitat preferences of ecologically important species is essential for their management and protection. In the Mediterranean Sea there is increasing concern over elasmobranch species because their biological (ecological) characteristics make them highly vulnerable to fishing pressure. Their removal could affect the structure and function of marine ecosystems, inducing changes in trophic interactions at the community level due to the selective elimination of predators or prey species, competitors and species replacement. In this study Bayesian hierarchical spatial models are used to map the sensitive habitats of the three most caught elasmobranch species (Galeus melastomus, Scyliorhinus canicula, Etmopterus spinax) in the western Mediterranean Sea, based on fishery-dependent bottom trawl data. Results show that habitats associated with hard substrata and sandy beds, mainly in deep waters and with a high seabed gradient, have a greater probability registering the presence of the studied species than those associated with muddy shallow waters. Temperature and chlorophyll-α concentration show a negative relationship with S. canicula occurrence. Our results identify some of the sensitive habitats for elasmobranchs in the western Mediterranean Sea (GSA06 South), providing essential and easy-to-use interpretation tools, such as predictive distribution maps, with the final aim of improving management and conservation of these vulnerable species.

  14. 77 FR 34350 - November 2010 Biological Opinion on the Effects of the Alaska Groundfish Fisheries on Steller Sea...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... habitat, risk of extinction, and recovery including in particular the findings regarding the effects of... accurately describe what is known about groundfish fishery practices and catch statistics under the current...

  15. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 5 2010-10-01 2010-10-01 true Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  16. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 7 2014-10-01 2013-10-01 true Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION,...

  17. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 7 2013-10-01 2013-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION,...

  18. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 7 2012-10-01 2012-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION,...

  19. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 4 2010-10-01 2010-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION,...

  20. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 6 2011-10-01 2011-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION,...

  1. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 7 2011-10-01 2005-10-01 true Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  2. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 8 2014-10-01 2013-10-01 true Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  3. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 8 2012-10-01 2012-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  4. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 8 2013-10-01 2013-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  5. Salmon River Habitat Enhancement. 1990 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  6. The Geomorphic Road Analysis and Inventory Package (GRAIP) Volume 2: Office Procedures

    Treesearch

    Richard M. Cissel; Thomas A. Black; Kimberly A. T. Schreuders; Ajay Prasad; Charles H. Luce; David G. Tarboton; Nathan A. Nelson

    2012-01-01

    An important first step in managing forest roads for improved water quality and aquatic habitat is the performance of an inventory. The Geomorphic Roads Analysis and Inventory Package (GRAIP) was developed as a tool for making a comprehensive inventory and analysis of the effects of forest roads on watersheds. This manual describes the data analysis and process of a...

  7. 78 FR 65887 - International Fisheries; Pacific Tuna Fisheries; 2013 Bigeye Tuna Longline Fishery Closure in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    .... 110620342-1659-03] RIN 0648-XC922 International Fisheries; Pacific Tuna Fisheries; 2013 Bigeye Tuna Longline Fishery Closure in the Eastern Pacific Ocean AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Temporary rule; fishery closure. SUMMARY...

  8. Using marine reserves to manage impact of bottom trawl fisheries requires consideration of benthic food-web interactions.

    PubMed

    van Denderen, P Daniël; Rijnsdorp, Adriaan D; van Kooten, Tobias

    2016-10-01

    Marine protected areas (MPAs) are widely used to protect exploited fish species as well as to conserve marine habitats and their biodiversity. They have also become a popular management tool for bottom trawl fisheries, a common fishing technique on continental shelves worldwide. The effects of bottom trawling go far beyond the impact on target species, as trawls also affect other components of the benthic ecosystem and the seabed itself. This means that for bottom trawl fisheries, MPAs can potentially be used not only to conserve target species but also to reduce impact of these side effects of the fishery. However, predicting the protective effects of MPAs is complicated because the side effects of trawling potentially alter the food-web interactions between target and non-target species. These changes in predatory and competitive interactions among fish and benthic invertebrates may have important ramifications for MPAs as tools to manage or mitigate the effects of bottom trawling. Yet, in current theory regarding the functioning of MPAs in relation to bottom trawl fisheries, such predatory and competitive interactions between species are generally not taken into account. In this study, we discuss how food-web interactions that are potentially affected by bottom trawling may alter the effectiveness of MPAs to protect (1) biodiversity and marine habitats, (2) fish populations, (3) fisheries yield, and (4) trophic structure of the community. We make the case that in order to be applicable for bottom trawl fisheries, guidelines for the implementation of MPAs must consider their potential food-web effects, at the risk of failing management. © 2016 by the Ecological Society of America.

  9. FIA forest inventory data for wildlife habitat assessment

    Treesearch

    David C. Chojnacky

    2000-01-01

    The Forest Inventory and Analysis (FIA) program of the USDA Forest Service maintains a network of permanent plots to monitor changing forest conditions. These plots were originally established to monitor the nation's timber supply; however, these data have great potential for evaluating other forest resources. To demonstrate a wildlife application, an assessment...

  10. Time series GHG emission estimates for residential, commercial, agriculture and fisheries sectors in India

    NASA Astrophysics Data System (ADS)

    Mohan, Riya Rachel

    2018-04-01

    Green House Gas (GHG) emissions are the major cause of global warming and climate change. Carbon dioxide (CO2) is the main GHG emitted through human activities, at the household level, by burning fuels for cooking and lighting. As per the 2006 methodology of the Inter-governmental Panel on Climate Change (IPCC), the energy sector is divided into various sectors like electricity generation, transport, fugitive, 'other' sectors, etc. The 'other' sectors under energy include residential, commercial, agriculture and fisheries. Time series GHG emission estimates were prepared for the residential, commercial, agriculture and fisheries sectors in India, for the time period 2005 to 2014, to understand the historical emission changes in 'other' sector. Sectoral activity data, with respect to fuel consumption, were collected from various ministry reports like Indian Petroleum and Natural Gas Statistics, Energy Statistics, etc. The default emission factor(s) from IPCC 2006 were used to calculate the emissions for each activity and sector-wise CO2, CH4, N2O and CO2e emissions were compiled. It was observed that the residential sector generates the highest GHG emissions, followed by the agriculture/fisheries and commercial sector. In the residential sector, LPG, kerosene, and fuelwood are the major contributors of emissions, whereas diesel is the main contributor to the commercial, agriculture and fisheries sectors. CO2e emissions have been observed to rise at a cumulative annual growth rate of 0.6%, 9.11%, 7.94% and 5.26% for the residential, commercial, agriculture and fisheries sectors, respectively. In addition to the above, a comparative study of the sectoral inventories from the national inventories, published by Ministry of Environment, Forest and Climate Change, for 2007 and 2010 was also performed.

  11. Fishes and fisheries in tropical estuaries: The last 10 years

    NASA Astrophysics Data System (ADS)

    Blaber, S. J. M.

    2013-12-01

    Since 2002 there has been an increase in knowledge of many aspects of the biology and ecology of tropical estuarine fishes, as well as significant changes to many estuarine fisheries. Analyses of literature databases (2002-2012) show that: of the c. 600 relevant papers, 52% are primarily related to ecology, 11% to conservation, 11% to anthropogenic and pollution effects on fishes, 9% to fisheries, 7% to aquaculture, 4% to study techniques, and 1% each to fish larvae, effects of fishing, taxonomy, climate change, evolution and genetics. In terms of geographic spread 17% are from North America, 15% from south Asia, 14% from the Caribbean, 13% from Australasia, 12% from Africa and 9% each from South America and SE Asia. Research papers came from 50 countries of which the dominant were USA (15%), India (12%), Australia (11%) and Brazil (7%). Increasing numbers of studies in West Africa, SE and South Asia and South America have increased basic knowledge of the ecology of estuarine fish faunas. Increases in understanding relate to: roles of salinity, turbidity and habitat diversity; connectivity between habitats; water flow; ecological drivers of spatial variability; scale dependent variation; thermal tolerances; movement patterns; food webs; larval adaptations; and the viability of areas heavily impacted by human activities. New reviews both challenge and support different aspects of the estuarine dependence paradigm - still perhaps one of the main research issues - and the protective function of estuaries and mangroves for juvenile fishes has received attention in relation to e.g. predation risks and fisheries. There have also been significant advances in the use of guilds and biodiversity models. Fishing pressures have continued unabated in most tropical estuaries and are summarised and management issues discussed. Understanding of the relationships between fisheries production and mangroves has advanced and significant differences have emerged between Indo

  12. Analysis of habitat characteristics of small pelagic fish based on generalized additive models in Kepulauan Seribu Waters

    NASA Astrophysics Data System (ADS)

    Rivai, A. A.; Siregar, V. P.; Agus, S. B.; Yasuma, H.

    2018-03-01

    One of the required information for sustainable fisheries management is about the habitat characteristics of a fish species. This information can be used to map the distribution of fish and map the potential fishing ground. This study aimed to analyze the habitat characteristics of small pelagic fishes (anchovy, squid, sardine and scads) which were mainly caught by lift net in Kepulauan Seribu waters. Research on habitat characteristics had been widely done, but the use of total suspended solid (TSS) parameters in this analysis is still lacking. TSS parameter which was extracted from Landsat 8 along with five other oceanographic parameters, CPUE data and location of fishing ground data from lift net fisheries in Kepulauan Seribu were included in this analysis. This analysis used Generalized Additive Models (GAMs) to evaluate the relationship between CPUE and oceanographic parameters. The results of the analysis showed that each fish species had different habitat characteristics. TSS and sea surface height had a great influence on the value of CPUE from each species. All the oceanographic parameters affected the CPUE of each species. This study demonstrated the effective use of GAMs to identify the essential habitat of a fish species.

  13. Spatial management of fisheries in the mediterranean sea: problematic issues and a few success stories.

    PubMed

    Pipitone, Carlo; Badalamenti, Fabio; Vega Fernández, Tomás; D'Anna, Giovanni

    2014-01-01

    Fishing has been important in the Mediterranean region for many centuries and still has a central role in its economic importance and cultural heritage. A multitude of fishery-oriented marine managed areas have been implemented under a highly complex political and legislative framework to protect fishery resources and sensitive habitats from high impact uses. However, a review of the literature revealed that few data are available to support their effectiveness, except for a few studies on fishery reserves and marine reserves. In these cases, fish biomass has increased and some evidence of ecological and socioeconomic benefits has been documented. The environmental and geopolitical complexity of the Mediterranean region as well as the dominant top-down management approaches, constitute the weakest points in the spatial management of fisheries at regional level. A coordinating role of all national and supranational bodies present in the area is desirable in the near future.

  14. Clackamas/Hood River Habitat Enhancement Program, 1987 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Ken; Cain, Thomas C.; Heller, David A.

    1988-03-01

    Fisheries habitat improvement work is being done on priority drainages in the Clackamas and Rood River sub-basins under program measure 704(c), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program. This report describes the work completed in 1987 for Bonneville Power Administration (BPA) project number 84-11, the Clackamas/Hood River Habitat Enhancement Program. The program is composed of six projects: Collawash River Habitat Improvement Project; Collawash River Falls Passage Improvement Project, Oak Grove Fork Habitat Improvement Project; Lake Branch/West Fork Hood River Habitat Improvement Project; Fifteenmile Creek Habitat Improvement Project; and Abundance, Behavior, andmore » Habitat Utilization by Coho Salmon and Steelhead Trout in Fish Creek, Oregon, As Influenced by Habitat Enhancement. This ongoing program was initiated in 1984, although some of the projects were begun with BPA funding support as early as 1983. The projects are complemented by a variety of habitat improvement and management activities funded from a variety of Forest Service sources. This report describes the activities implemented for five of the six projects. A separate annual report on the 1987 habitat improvement and monitoring/evaluation efforts in the Fish Creek drainage has been prepared. Species for management emphasis include spring chinook and coho salmon, and summer and winter steelhead trout. Project work in 1987 primarily focused on increasing the quantity and quality of available rearing habitat, and improving access at passage barriers. The underlying theme of the improvement work has been to increase habitat diversity through the introduction of ''structure''. Structure provided by logs and boulders serves to deflect, pond, or otherwise disrupt flow patterns within a stream channel. This alteration of flow patterns results in formation of an increased number of habitat niches (i.e. pools, glides, alcoves, etc. ) in which

  15. The Geomorphic Road Analysis and Inventory Package (GRAIP) Volume 1: Data Collection Method

    Treesearch

    Thomas A. Black; Richard M. Cissel; Charles H. Luce

    2012-01-01

    An important first step in managing forest roads for improved water quality and aquatic habitat is the performance of an inventory. The Geomorphic Roads Analysis and Inventory Package (GRAIP) was developed as a tool for making a comprehensive inventory and analysis of the effects of forest roads on watersheds. This manual describes the data collection and process of a...

  16. Effects of hydropower operations on spawning habitat, rearing habitat, and standing/entrapment mortality of fall Chinook salmon in the Hanford Reach of the Columbia River

    USGS Publications Warehouse

    Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard; Tiffan, Kenneth F.; Hatten, James R.; Hoffarth, Paul; Nugent, John; Benner, David; Yoshinaka, Marv

    2006-01-01

    This report describes research conducted primarily in 2003 and 2004 to evaluate the effects of upstream dam operations on spawning and rearing conditions for fall Chinook salmon, Oncorhynchus tshawytscha, in the Hanford Reach of the Columbia River. Results from habitat modeling tasks which continued in 2005 and 2006 are also included in this report. This study is focused on the effects of streamflows and streamflow fluctuations on 1) entrapment and entrapment mortality of juveniles, 2) adult spawning habitat, and 3) juvenile rearing habitat. An independent peer review was conducted on the draft version of this report utilizing three reviewers, each with different areas of expertise and different levels of knowledge regarding hydrodynamic modeling, fall Chinook biology, life history, and habitat requirements, and fishery issues relating to hydropower development and operations. Peer review comments have been incorporated into this final version.

  17. Essential coastal habitats for fish in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kraufvelin, Patrik; Pekcan-Hekim, Zeynep; Bergström, Ulf; Florin, Ann-Britt; Lehikoinen, Annukka; Mattila, Johanna; Arula, Timo; Briekmane, Laura; Brown, Elliot John; Celmer, Zuzanna; Dainys, Justas; Jokinen, Henri; Kääriä, Petra; Kallasvuo, Meri; Lappalainen, Antti; Lozys, Linas; Möller, Peter; Orio, Alessandro; Rohtla, Mehis; Saks, Lauri; Snickars, Martin; Støttrup, Josianne; Sundblad, Göran; Taal, Imre; Ustups, Didzis; Verliin, Aare; Vetemaa, Markus; Winkler, Helmut; Wozniczka, Adam; Olsson, Jens

    2018-05-01

    Many coastal and offshore fish species are highly dependent on specific habitat types for population maintenance. In the Baltic Sea, shallow productive habitats in the coastal zone such as wetlands, vegetated flads/lagoons and sheltered bays as well as more exposed rocky and sandy areas are utilized by fish across many life history stages including spawning, juvenile development, feeding and migration. Although there is general consensus about the critical importance of these essential fish habitats (EFH) for fish production along the coast, direct quantitative evidence for their specific roles in population growth and maintenance is still scarce. Nevertheless, for some coastal species, indirect evidence exists, and in many cases, sufficient data are also available to carry out further quantitative analyses. As coastal EFH in the Baltic Sea are often found in areas that are highly utilized and valued by humans, they are subjected to many different pressures. While cumulative pressures, such as eutrophication, coastal construction and development, climate change, invasive species and fisheries, impact fish in coastal areas, the conservation coverage for EFH in these areas remains poor. This is mainly due to the fact that historically, fisheries management and nature conservation are not integrated neither in research nor in management in Baltic Sea countries. Setting joint objectives for fisheries management and nature conservation would hence be pivotal for improved protection of EFH in the Baltic Sea. To properly inform management, improvements in the development of monitoring strategies and mapping methodology for EFH are also needed. Stronger international cooperation between Baltic Sea states will facilitate improved management outcomes across ecologically arbitrary boundaries. This is especially important for successful implementation of international agreements and legislative directives such as the Baltic Sea Action Plan, the Marine Strategy Framework

  18. Forest inventory: Peter T. Johnson Wildlife Mitigation Unit, Craig Mountain, Idaho. Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narolski, Steven W.

    The primary objective of this report is to determine the quantity and quality of existing forest habitat types on the 59,991-acre Peter T. Johnson Wildlife Mitigation Unit (WMU). Products from this effort include a description of the ecological condition, a map of habitat types, and an inventory of forest resources on the WMU lands. The purpose of this and other resource inventories (plant and wildlife) is to assess the current resources condition of the WMU and to provide necessary information to generate a long-term management for this area.

  19. Fishery consequences of marine reserves: short-term pain for longer-term gain.

    PubMed

    Hopf, Jess K; Jones, Geoffrey P; Williamson, David H; Connolly, Sean R

    2016-04-01

    Marine reserves are often established in areas that support fisheries. Larval export from reserves is argued to help compensate for the loss of fishable habitat; however, previous modeling studies have focused on long-term equilibrium outcomes. We examined the transient consequences of reserve establishment for fished metapopulations, considering both a well-mixed larval pool and a spatially explicit model based on a coral trout (Plectropomus spp.) metapopulation. When fishing pressure was reallocated relative to the area protected, yields decreased initially, then recovered, and ultimately exceeded pre-reserve levels. However, recovery time was on the order of several years to decades. If fishing pressure intensified to maintain pre-reserve yields, reserves were sometimes unable to support the increased mortality and the metapopulation collapsed. This was more likely when reserves were small, or located peripherally within the metapopulation. Overall, reserves can achieve positive conservation and fishery benefits, but fisheries management complementary to reserve implementation is essential.

  20. Relating FIA data to habitat classifications via tree-based models of canopy cover

    Treesearch

    Mark D. Nelson; Brian G. Tavernia; Chris Toney; Brian F. Walters

    2012-01-01

    Wildlife species-habitat matrices are used to relate lists of species with abundance of their habitats. The Forest Inventory and Analysis Program provides data on forest composition and structure, but these attributes may not correspond directly with definitions of wildlife habitats. We used FIA tree data and tree crown diameter models to estimate canopy cover, from...

  1. 76 FR 65673 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    .... 101206604-1620-01] RIN 0648-BA55 Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery Management Plan AGENCY: National Marine Fisheries Service (NMFS), National... implement Amendment 16 to the Pacific Coast Salmon Fishery Management Plan for Commercial and Recreational...

  2. Comanagement practices enhance fisheries in marine protected areas.

    PubMed

    Guidetti, Paolo; Claudet, Joachim

    2010-02-01

    Fishing activities worldwide have dramatically affected marine fish stocks and ecosystems. Marine protected areas (MPAs) with no-take zones may enhance fisheries, but empirical evidence of this is scant. We conducted a 4-year survey of fish catches around and within an MPA that was previously fully closed to fishing and then partially reopened under regulated comanaged fishing. In collaboration with the fishers and the MPA authority, we set the fishing effort and selected the gear to limit fishing impact on key fish predators, juvenile fish stage, and benthic communities and habitats. Within an adaptive comanagement framework, fishers agreed to reduce fishing effort if symptoms of overfishing were detected. We analyzed the temporal trends of catch per unit of effort (CPUE) of the whole species assemblages and CPUE of the four most valuable and frequent species observed inside the opened buffer zone and outside the MPA investigated. After the comanaged opening, CPUE first declined and then stabilized at levels more than twice that of catches obtained outside the MPA. Our results suggest that working closely with fishers can result in greater fisheries catches. Partial protection of coastal areas together with adaptive comanagement involving fishers, scientists, and managers can effectively achieve conservation and fishery management goals and benefit fishing communities and alleviate overfishing.

  3. Habitat classification modeling with incomplete data: Pushing the habitat envelope

    USGS Publications Warehouse

    Zarnetske, P.L.; Edwards, T.C.; Moisen, Gretchen G.

    2007-01-01

    Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can be used. Traditional techniques generate pseudoabsence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, thresholdindependent receiver operating characteristic (ROC) plots, adjusted deviance (Dadj2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant, suggesting

  4. The seascape of demersal fish nursery areas in the North Mediterranean Sea, a first step towards the implementation of spatial planning for trawl fisheries.

    PubMed

    Colloca, Francesco; Garofalo, Germana; Bitetto, Isabella; Facchini, Maria Teresa; Grati, Fabio; Martiradonna, Angela; Mastrantonio, Gianluca; Nikolioudakis, Nikolaos; Ordinas, Francesc; Scarcella, Giuseppe; Tserpes, George; Tugores, M Pilar; Valavanis, Vasilis; Carlucci, Roberto; Fiorentino, Fabio; Follesa, Maria C; Iglesias, Magdalena; Knittweis, Leyla; Lefkaditou, Eugenia; Lembo, Giuseppe; Manfredi, Chiara; Massutí, Enric; Pace, Marie Louise; Papadopoulou, Nadia; Sartor, Paolo; Smith, Christopher J; Spedicato, Maria Teresa

    2015-01-01

    The identification of nursery grounds and other essential fish habitats of exploited stocks is a key requirement for the development of spatial conservation planning aimed at reducing the adverse impact of fishing on the exploited populations and ecosystems. The reduction in juvenile mortality is particularly relevant in the Mediterranean and is considered as one of the main prerequisites for the future sustainability of trawl fisheries. The distribution of nursery areas of 11 important commercial species of demersal fish and shellfish was analysed in the European Union Mediterranean waters using time series of bottom trawl survey data with the aim of identifying the most persistent recruitment areas. A high interspecific spatial overlap between nursery areas was mainly found along the shelf break of many different sectors of the Northern Mediterranean indicating a high potential for the implementation of conservation measures. Overlap of the nursery grounds with existing spatial fisheries management measures and trawl fisheries restricted areas was also investigated. Spatial analyses revealed considerable variation depending on species and associated habitat/depth preferences with increased protection seen in coastal nurseries and minimal protection seen for deeper nurseries (e.g. Parapenaeus longirostris 6%). This is partly attributed to existing environmental policy instruments (e.g. Habitats Directive and Mediterranean Regulation EC 1967/2006) aiming at minimising impacts on coastal priority habitats such as seagrass, coralligenous and maerl beds. The new knowledge on the distribution and persistence of demersal nurseries provided in this study can support the application of spatial conservation measures, such as the designation of no-take Marine Protected Areas in EU Mediterranean waters and their inclusion in a conservation network. The establishment of no-take zones will be consistent with the objectives of the Common Fisheries Policy applying the ecosystem

  5. The Seascape of Demersal Fish Nursery Areas in the North Mediterranean Sea, a First Step Towards the Implementation of Spatial Planning for Trawl Fisheries

    PubMed Central

    Colloca, Francesco; Garofalo, Germana; Bitetto, Isabella; Facchini, Maria Teresa; Grati, Fabio; Martiradonna, Angela; Mastrantonio, Gianluca; Nikolioudakis, Nikolaos; Ordinas, Francesc; Scarcella, Giuseppe; Tserpes, George; Tugores, M. Pilar; Valavanis, Vasilis; Carlucci, Roberto; Fiorentino, Fabio; Follesa, Maria C.; Iglesias, Magdalena; Knittweis, Leyla; Lefkaditou, Eugenia; Lembo, Giuseppe; Manfredi, Chiara; Massutí, Enric; Pace, Marie Louise; Papadopoulou, Nadia; Sartor, Paolo; Smith, Christopher J.; Spedicato, Maria Teresa

    2015-01-01

    The identification of nursery grounds and other essential fish habitats of exploited stocks is a key requirement for the development of spatial conservation planning aimed at reducing the adverse impact of fishing on the exploited populations and ecosystems. The reduction in juvenile mortality is particularly relevant in the Mediterranean and is considered as one of the main prerequisites for the future sustainability of trawl fisheries. The distribution of nursery areas of 11 important commercial species of demersal fish and shellfish was analysed in the European Union Mediterranean waters using time series of bottom trawl survey data with the aim of identifying the most persistent recruitment areas. A high interspecific spatial overlap between nursery areas was mainly found along the shelf break of many different sectors of the Northern Mediterranean indicating a high potential for the implementation of conservation measures. Overlap of the nursery grounds with existing spatial fisheries management measures and trawl fisheries restricted areas was also investigated. Spatial analyses revealed considerable variation depending on species and associated habitat/depth preferences with increased protection seen in coastal nurseries and minimal protection seen for deeper nurseries (e.g. Parapenaeus longirostris 6%). This is partly attributed to existing environmental policy instruments (e.g. Habitats Directive and Mediterranean Regulation EC 1967/2006) aiming at minimising impacts on coastal priority habitats such as seagrass, coralligenous and maerl beds. The new knowledge on the distribution and persistence of demersal nurseries provided in this study can support the application of spatial conservation measures, such as the designation of no-take Marine Protected Areas in EU Mediterranean waters and their inclusion in a conservation network. The establishment of no-take zones will be consistent with the objectives of the Common Fisheries Policy applying the ecosystem

  6. Water quality changes and their relation to fishery resources in the upper Mississippi River

    USGS Publications Warehouse

    Holland Bartels, L. E.; Becker, C.D.; Neitzel, D.A.

    1992-01-01

    Despite a long history of human manipulation, the most dramatic changes in the upper Mississippi River occurred in the 1930s with construction of a lock and dam system to facilitate the commercial transport of commodities. In 1988, barge traffic through the system ranged from 7,500 tows per year at Lock and Dam 26 (near Alton, Illinois) to 1, 118 at Lock and Dam 1 (in Minneapolis/St. Paul). The tow-teed dam system created a diversity of lentic habitats, but it also changed the stage and sediment transport characteristics of the river. The principal fishery-related water quality issues of this modified system concern the effects of sediments and toxic contaminants from nonpoint sources. Between 42 and 99% of the streams in the five states of the Mississippi River basin fail to fully support their designated uses because of pollution. primarily from nonpoint sources (e.g., 73% in Minnesota, 98% in Wisconsin, 75% in Illinois). Annual sediment inputs into the upper Mississippi River basin range from minimal in the upper reaches to about 210.000 kg/hectare in the lower reaches. This sediment results in significant losses of fishery habitat. Although bnly 5 to 9% of the total open water area of many pools had been lost by 1975, those losses were in highly productive side channel and backwater areas. Under existing conditions, a loss of an additional 22 to 49% of existing lentic habitats is predicted within 50 years. In addition, toxic contaminants transported along with fine sediments have become more available to stream biota. Although significant interagency efforts have been made to evaluate the impacts on biotic communities of the river. present data are inadequate to determine how changes in water quality affect the fisheries. This lack of data undermines our ability to judge the success of programs initiated to control pollution from point and nonpoint sources.

  7. 75 FR 41123 - Fisheries of the Exclusive Economic Zone Off Alaska; Bering Sea Subarea

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... Bering Sea Research Area to establish the Modified Gear Trawl Zone (MGTZ) and to expand the Saint Matthew... Research Area (NBSRA) to establish the MGTZ, and would expand the Saint Matthew Island Habitat Conservation... can be more than 1,000 feet (304.8 m) in length. Based on research by the Alaska Fisheries Science...

  8. The Southern Oscillation, Hypoxia, and the Eastern Pacific Tuna Fishery

    NASA Astrophysics Data System (ADS)

    Webster, D.; Kiefer, D.; Lam, C. H.; Harrison, D. P.; Armstrong, E. M.; Hinton, M.; Luo, L.

    2012-12-01

    The Eastern Pacific tuna fishery, which is one of the world's major fisheries, covers thousands of square kilometers. The vessels of this fishery are registered in more than 30 nations and largely target bigeye (Thunnus obesus), skipjack (Katsuwonus pelamis), and yellowfin (T. albacores) tuna. In both the Pelagic Habitat Analysis Module project, which is sponsored by NASA, and the Fishscape project, which is sponsored by NSF, we have attempted to define the habitat of the three species by matching a 50 year time series on fish catch and effort with oceanographic information obtained from satellite imagery and from a global circulation model. The fishery time series, which was provided by the Inter-American Tropical Tuna Commission, provided spatial maps of catch and effort at monthly time steps; the satellite imagery of the region consisted of sea surface temperature, chlorophyll, and height from GHRSST, SEAWiFS, and AVISO products, and the modeled flow field at selected depths was output from ECCO-92 simulations from 1992 to present. All information was integrated and analyzed within the EASy marine geographic information system. This GIS will also provides a home for the Fishscape spatial simulation model of the coupled dynamics of the ocean, fish, fleets, and markets. This model will then be applied to an assessment of the potential ecological and economic impacts of climate change, technological advances in fleet operations, and increases in fuel costs. We have determined by application of EOF analysis that the ECCO-2 simulation of sea surface height fits well with that of AVISO imagery; thus, if driven properly by predictions of future air-sea exchange, the model should provide good estimates of circulation patterns. We have also found that strong El Nino events lead to strong recruitment of all three species and strong La Nina events lead to weak recruitment. Finally, we have found that the general spatial distribution of the Eastern Pacific fishing grounds

  9. Use of sand wave habitats by silver hake

    USGS Publications Warehouse

    Auster, P.J.; Lindholm, J.; Schaub, S.; Funnell, G.; Kaufman, L.S.; Valentine, P.C.

    2003-01-01

    Silver hake Merluccius bilinearis are common members of fish communities in sand wave habitats on Georges Bank and on Stellwagen Bank in the Gulf of Maine. Observations of fish size v. sand wave period showed that silver hake are not randomly distributed within sand wave landscapes. Regression analyses showed a significant positive relationship between sand wave period and fish length. Correlation coefficients, however, were low, suggesting other interactions with sand wave morphology, the range of current velocities, and available prey may also influence their distribution. Direct contact with sand wave habitats varied over diel periods, with more fish resting on the seafloor during daytime than at night. Social foraging, in the form of polarized groups of fish swimming in linear formations during crepuscular and daytime periods, was also observed. Sand wave habitats may provide shelter from current flows and mediate fish-prey interactions. ?? 2003 The Fisheries Society of the British Isles.

  10. Riparian habitat on the Humboldt River, Deeth to Elko, Nevada

    NASA Technical Reports Server (NTRS)

    Price, K. P.; Ridd, M. K.

    1983-01-01

    A map inventory of the major habitat types existing along the Humbolt River riparian zone in Nevada is described. Through aerialphotography, 16 riparian habitats are mapped that describe the ecological relationships between soil and vegetation types, flooding and soil erosion, and the various management practices employed to date. The specific land and water management techniques and their impact on the environment are considered.

  11. Using forest inventory data to assess fisher resting habitat suitability in California.

    Treesearch

    William J. Zielinski; Richard L. Truex; Jeffrey R. Dunk; Tom Gaman

    2006-01-01

    The fisher (Martes pennanti) is a forest-dwelling carnivore whose current distribution and association with late-seral forest conditions make it vulnerable to stand-altering human activities or natural disturbances. Fishers select a variety of structures for daily resting bouts. These habitat elements, together with foraging and reproductive (denning) habitat,...

  12. MAPPING THE DISTRIBUTION OF HARVESTED ESTUARINE BIVALVES WITH NATURAL HISTORY-BASED HABITAT SUITABILITY MODELS

    EPA Science Inventory

    Maps of harvested bivalve populations are invaluable for the management of fisheries species, yet the cost to produce them typically limits their availability. Here, we demonstrate a relatively low-cost approach to generate habitat maps for five species of bivalves found in many ...

  13. Coral–algal phase shifts alter fish communities and reduce fisheries production

    PubMed Central

    Ainsworth, Cameron H; Mumby, Peter J

    2015-01-01

    Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral–algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species. PMID:24953835

  14. A multi-criteria assessment of fishing gear impacts in demersal fisheries.

    PubMed

    Innes, James P; Pascoe, Sean

    2010-01-01

    Fishing gears have multiple impacts on the marine environment, and policies to reduce these impacts through modifying fishing gears are becoming common place. Different modifications result in different changes in the set of environmental impacts, and imply different sets of costs and benefits for different stakeholder groups. In this study, the analytic hierarchy process (AHP) is used to quantify the relative importance of the environmental impacts of fishing to different stakeholder groups. Forty eight individuals representing six different stakeholder groups (ecologists, biologists, economists, gear technologists, fishers and fisheries managers) were surveyed. As expected, fishers and gear technologists placed substantially greater importance on reducing discarding of commercial fish species than on habitat damage. Priorities of other stakeholder groups varied, but all placed greater priority on habitats than the commercial sector. The results suggest that management aimed at reducing environmental impacts of fishing broader than just discarding is appropriate, but such moves are likely to be opposed by the fishing industry. The derived weights also have a direct application to fisheries management, as they allow otherwise non-commensurate impacts to be aggregated into an overall impact to compare environmental benefits from alternative modifications of fishing gear. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Oceanographic Determinants of Bycatch Patterns in the California Drift Gillnet Fishery: Building an EBFM Tool for Sustainable Fisheries.

    NASA Astrophysics Data System (ADS)

    Hahlbeck, N.; Scales, K. L.; Hazen, E. L.; Bograd, S. J.

    2016-12-01

    The reduction of bycatch, or incidental capture of non-target species in a fishery, is a key objective of ecosystem-based fisheries management (EBFM) and critical to the conservation of many threatened marine species. Prediction of bycatch events is therefore of great importance to EBFM efforts. Here, bycatch of the ocean sunfish (Mola mola) and bluefin tuna (Thunnus thynnus) in the California drift gillnet fishery is modeled using a suite of remotely sensed environmental variables as predictors. Data from 8321 gillnet sets was aggregated by month to reduce zero inflation and autocorrelation among sets, and a set of a priori generalized additive models (GAMs) was created for each species based on literature review and preliminary data exploration. Each of the models was fit using a binomial family with a logit link in R, and Aikake's Information Criterion with correction (AICc) was used in the first stage of model selection. K-fold cross validation was used in the second stage of model selection and performance assessment, using the least-squares linear model of predicted vs. observed values as the performance metric. The best-performing mola model indicated a strong, nearly linear negative correlation with sea surface temperature, as well as weaker nonlinear correlations with eddy kinetic energy, chlorophyll-a concentration and rugosity. These findings are consistent with current understanding of ocean sunfish habitat use; for example, previous studies suggest seasonal movement patterns and exploitation of dynamic, highly productive areas characteristic of upwelling regions. Preliminary results from the bluefin models also indicate seasonal fluctuation and correlation with environmental variables. These models can be used with near-real time satellite data as bycatch avoidance tools for both fishers and managers, allowing for the use of more dynamic ocean management strategies to improve sustainability of the fishery.

  16. Oceanographic Determinants of Bycatch Patterns in the California Drift Gillnet Fishery: Building an EBFM Tool for Sustainable Fisheries.

    NASA Astrophysics Data System (ADS)

    Hahlbeck, N.; Scales, K. L.; Hazen, E. L.; Bograd, S. J.

    2016-02-01

    The reduction of bycatch, or incidental capture of non-target species in a fishery, is a key objective of ecosystem-based fisheries management (EBFM) and critical to the conservation of many threatened marine species. Prediction of bycatch events is therefore of great importance to EBFM efforts. Here, bycatch of the ocean sunfish (Mola mola) and bluefin tuna (Thunnus thynnus) in the California drift gillnet fishery is modeled using a suite of remotely sensed environmental variables as predictors. Data from 8321 gillnet sets was aggregated by month to reduce zero inflation and autocorrelation among sets, and a set of a priori generalized additive models (GAMs) was created for each species based on literature review and preliminary data exploration. Each of the models was fit using a binomial family with a logit link in R, and Aikake's Information Criterion with correction (AICc) was used in the first stage of model selection. K-fold cross validation was used in the second stage of model selection and performance assessment, using the least-squares linear model of predicted vs. observed values as the performance metric. The best-performing mola model indicated a strong, nearly linear negative correlation with sea surface temperature, as well as weaker nonlinear correlations with eddy kinetic energy, chlorophyll-a concentration and rugosity. These findings are consistent with current understanding of ocean sunfish habitat use; for example, previous studies suggest seasonal movement patterns and exploitation of dynamic, highly productive areas characteristic of upwelling regions. Preliminary results from the bluefin models also indicate seasonal fluctuation and correlation with environmental variables. These models can be used with near-real time satellite data as bycatch avoidance tools for both fishers and managers, allowing for the use of more dynamic ocean management strategies to improve sustainability of the fishery.

  17. Positive feedback fishery: Population consequences of `crab-tiling' on the green crab Carcinus maenas

    NASA Astrophysics Data System (ADS)

    Sheehan, E. V.; Thompson, R. C.; Coleman, R. A.; Attrill, M. J.

    2008-11-01

    Collection of marine invertebrates for use as fishing bait is a substantial activity in many parts of the world, often with unknown ecological consequences. As new fisheries develop, it is critical for environmental managers to have high quality ecological information regarding the potential impacts, in order to develop sound management strategies. Crab-tiling is a largely unregulated and un-researched fishery, which operates commercially in the south-west UK. The target species is the green crab Carcinus maenas. Those crabs which are pre-ecdysis and have a carapace width greater than 40 mm are collected to be sold to recreational anglers as bait. Collection involves laying artificial structures on intertidal sandflats and mudflats in estuaries. Crabs use these structures as refugia and are collected during low tide. However, the effect that this fishery has on populations of C. maenas is not known. The impact of crab-tiling on C. maenas population structure was determined by sampling crabs from tiled estuaries and non-tiled estuaries using baited drop-nets. A spatially and temporarily replicated, balanced design was used to compare crab abundance, sizes and sex ratios between estuaries. Typically, fisheries are associated with a reduction in the abundance of the target species. Crab-tiling, however, significantly increased C. maenas abundance. This was thought to be a result of the extra habitat in tiled estuaries, which probably provides protection from natural predators, such as birds and fish. Although crabs were more abundant in tiled estuaries than non-tiled estuaries, the overall percentage of reproductively active crabs in non-tiled estuaries was greater than in tiled estuaries. As with most exploited fisheries stocks, crabs in exploited (tiled) estuaries tended to be smaller, with a modal carapace width of 20-29 mm rather than 30-39 mm in non-tiled estuaries. The sex ratio of crabs however; was not significantly different between tiled and non

  18. Effects of recent volcanic eruptions on aquatic habitat in the Drift River, Alaska, USA: Implications at other Cook Inlet region volcanoes

    USGS Publications Warehouse

    Dorava, J.M.; Milner, A.M.

    1999-01-01

    Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano: During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano.

  19. Distribution, abundance, and habitat associations of a large bivalve (Panopea generosa) in a eutrophic, fjord estuary

    USGS Publications Warehouse

    Mcdonald, P. Sean; Essington, Timothy E.; Davis, Jonathan P.; Galloway, Aaron W.E.; Stevick, Bethany C.; Jensen, Gregory C.; VanBlaricom, Glenn R.; Armstrong, David A.

    2015-01-01

    Marine bivalves are important ecosystem constituents and frequently support valuable fisheries. In many nearshore areas, human disturbance—including declining habitat and water quality—can affect the distribution and abundance of bivalve populations, and complicate ecosystem and fishery management assessments. Infaunal bivalves, in particular, are frequently cryptic and difficult to detect; thus, assessing potential impacts on their populations requires suitable, scalable methods for estimating abundance and distribution. In this study, population size of a common benthic bivalve (the geoduck Panopea generosa) is estimated with a Bayesian habitat-based model fit to scuba and tethered camera data in Hood Canal, a fjord basin in Washington state. Densities declined more than two orders of magnitude along a north—south gradient, concomitant with patterns of deepwater dissolved oxygen, and intensity and duration of seasonal hypoxia. Across the basin, geoducks were most abundant in loose, unconsolidated, sand substrate. The current study demonstrates the utility of using scuba, tethered video, and habitat models to estimate the abundance and distribution of a large infaunal bivalve at a regional (385-km2) scale.

  20. RESEARCH: Effects of Recent Volcanic Eruptions on Aquatic Habitat in the Drift River, Alaska, USA: Implications at Other Cook Inlet Region Volcanoes.

    PubMed

    DORAVA; MILNER

    1999-02-01

    / Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano. During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano. KEY WORDS: Aquatic habitat; Volcanoes; Lahars; Lahar-runout flows; Macroinvertebrates; Community structure; Community composition

  1. Behavioural and physiological response of trout to winter habitat in tailwaters in Wyoming, USA

    USGS Publications Warehouse

    Annear, T.C.; Hubert, W.; Simpkins, D.; Hebdon, L.

    2002-01-01

    Fisheries managers have often suggested that survival of trout during the winter is a major factor affecting population densities in many stream ecosystems in the Rocky Mountains. In Wyoming, trout population reductions from fall to spring in excess of 90% have been documented in some reservoir tailwaters. Though biologists have surmised that these reductions were the result of either mortality or emigration from some river sections, the specific mechanisms have not been defined and the factors leading to the trout loss are unknown. This is a review of four studies that were conducted or funded between 1991 and 1998 by the Wyoming Game and Fish Department to understand the extent of overwinter losses, identify some of the mechanisms leading to those conditions and develop management strategies to help avoid those impacts. Winter studies were conducted on tailwater fisheries in the Green, North Platte, Bighorn and Shoshone rivers to document trout population dynamics, assess physical habitat availability, evaluate trout movement and habitat selection, and understand the relationships between food availability and bioenergetic relationships. Results indicate that winter trout losses are extreme in some years, that trout movement and habitat selection are affected by supercooled flows, and that mortality is probably not directly due to starvation. The combination of physiological impairment with frequently altered habitat availability probably leads to indirect mortality from predators and other factors. Copyright ?? 2002 John Wiley & Sons, Ltd.

  2. Inland capture fisheries

    PubMed Central

    Welcomme, Robin L.; Cowx, Ian G.; Coates, David; Béné, Christophe; Funge-Smith, Simon; Halls, Ashley; Lorenzen, Kai

    2010-01-01

    The reported annual yield from inland capture fisheries in 2008 was over 10 million tonnes, although real catches are probably considerably higher than this. Inland fisheries are extremely complex, and in many cases poorly understood. The numerous water bodies and small rivers are inhabited by a wide range of species and several types of fisher community with diversified livelihood strategies for whom inland fisheries are extremely important. Many drivers affect the fisheries, including internal fisheries management practices. There are also many drivers from outside the fishery that influence the state and functioning of the environment as well as the social and economic framework within which the fishery is pursued. The drivers affecting the various types of inland water, rivers, lakes, reservoirs and wetlands may differ, particularly with regard to ecosystem function. Many of these depend on land-use practices and demand for water which conflict with the sustainability of the fishery. Climate change is also exacerbating many of these factors. The future of inland fisheries varies between continents. In Asia and Africa the resources are very intensely exploited and there is probably little room for expansion; it is here that resources are most at risk. Inland fisheries are less heavily exploited in South and Central America, and in the North and South temperate zones inland fisheries are mostly oriented to recreation rather than food production. PMID:20713391

  3. Evaluating projects for improving fish and wildlife habitat on National Forests.

    Treesearch

    Fred H. Everest; Daniel R. Talhelm

    1982-01-01

    Recent legislation (PL. 93-452; P.L. 94-588) has emphasized improvement of fish and wildlife habitat on lands of the National Forest System. A sequential procedure has been developed for screening potential projects to identify those producing the greatest fishery benefits. The procedure—which includes program planning, project planning, and intensive benefit/cost...

  4. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679... Table 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open...

  5. Effects of marine reserves versus nursery habitat availability on structure of reef fish communities.

    PubMed

    Nagelkerken, Ivan; Grol, Monique G G; Mumby, Peter J

    2012-01-01

    No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤ 25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.

  6. Effects of Marine Reserves versus Nursery Habitat Availability on Structure of Reef Fish Communities

    PubMed Central

    Nagelkerken, Ivan; Grol, Monique G. G.; Mumby, Peter J.

    2012-01-01

    No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems. PMID:22675474

  7. Understanding the value of local ecological knowledge and practices for habitat restoration in human-altered floodplain systems: a case from Bangladesh.

    PubMed

    Mamun, Abdullah-Al

    2010-05-01

    Worldwide there is a declining trend in natural fish catch (FAO, The state of world fisheries and aquaculture. http://www.fao.org/documents/show_cdr.asp?url_file=/docrep/007/y5600e/y5600e00.htm , 2002) and Bangladesh is no exception. The vast inland fisheries of Bangladesh have been declining over the years, largely a result of human alteration of the aquatic habitats arising from human interventions in the floodplain systems such as the establishment of water control structures which favor agricultural production but reduce fish habitats. It can be assumed that conventional management measures are not adequate to conserve natural fisheries and exploring alternative knowledge systems to complement existing management is warranted. This paper focuses on local ecological knowledge and several other local practices held by fishers engaging directly with floodplain ecosystems. These knowledge systems and practices may be valuable tools for understanding ecosystems processes and related changes and developing local level responses to avert negative consequences of such changes. This may help in devising alternatives to ecosystem management and the conservation of floodplain fish habitats of Bangladesh and elsewhere in the world. This study was conducted in a natural depression (locally called beel) and its surrounding floodplain system located in north central Bangladesh which has become highly degraded. The results of the study indicate that the fishers and local users of the floodplain ecosystems are rich in local ecological knowledge concerning the hydrology of the floodplains and small lakes, the habitat preferences of fish, the role of agricultural crops on fish habitats, and the impact of habitat human interventions in aquatic ecosystems. Given the apparent inadequacy of the present management regime, this article argues for an inclusion of local knowledge and practices into habitat management as a more holistic approach to floodplain habitat restoration and

  8. Concurrent assessment of fish and habitat in warmwater streams in Wyoming

    USGS Publications Warehouse

    Quist, M.C.; Hubert, W.A.; Rahel, F.J.

    2006-01-01

    Fisheries research and management in North America have focused largely on sport fishes, but native non-game fishes have attracted increased attention due to their declines. The Warmwater Stream Assessment (WSA) was developed to evaluate simultaneously both fish and habitat in Wyoming streams by a process that includes three major components: (1) stream-reach selection and accumulation of existing information, (2) fish and habitat sampling and (3) summarisation and evaluation of fish and habitat information. Fish are sampled by electric fishing or seining and habitat is measured at reach and channel-unit (i.e. pool, run, riffle, side channel, or backwater) scales. Fish and habitat data are subsequently summarised using a data-matrix approach. Hierarchical decision trees are used to assess critical habitat requirements for each fish species expected or found in the reach. Combined measurements of available habitat and the ecology of individual species contribute to the evaluation of the observed fish assemblage. The WSA incorporates knowledge of the fish assemblage and habitat features to enable inferences of factors likely influencing both the fish assemblage and their habitat. The WSA was developed for warmwater streams in Wyoming, but its philosophy, process and conceptual basis may be applied to environmental assessments in other geographical areas. ?? 2006 Blackwell Publishing Ltd.

  9. 76 FR 10524 - Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ...-XA174 Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery Closure AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Temporary rule; closure. SUMMARY: NMFS is closing the commercial and non-commercial fisheries in the main...

  10. 76 FR 82183 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... modifies the fishery management unit (FMU) for octocorals in the South Atlantic exclusive economic zone... specifications in the South Atlantic region. CE-BA 2 also designates new Essential Fish Habitat (EFH) for... that described the economic impact of the rule. As described in the IRFA, the only action in this rule...

  11. 75 FR 14548 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... the FMP for Coastal Migratory Pelagic (CMP) Resources (CMP FMP); and the FMP for the Spiny Lobster Fishery of the Gulf of Mexico and South Atlantic (Spiny Lobster FMP), as prepared and submitted by the... bottom habitats; dolphin and wahoo; golden crab; shrimp; spiny lobster; and snapper-grouper off the...

  12. Influences of recreation influence of forest and rangeland management on anadromous fish habitat in Western North America: influences of recreation.

    Treesearch

    Roger N. Clark; Dave R. Gibbons; Gilbert B. Pauley

    1985-01-01

    Public and private lands in the United States are used by millions of people for recreational activities. Many of these activities occur in or near streams and coastal areas that produce various species of anadromous fish. A major concern of fishery managers is the possible adverse effect of recreational uses on fish habitat. Conversely, the management of fish habitats...

  13. Where the waters meet: sharing ideas and experiences between inland and marine realms to promote sustainable fisheries management

    USGS Publications Warehouse

    Cooke, Steven J.; Arlinghaus, Robert; Bartley, Devin M.; Beard, T. Douglas; Cowx, Ian G.; Essington, Timothy E.; Jensen, Olaf P.; Lynch, Abigail J.; Taylor, William W.; Watson, Reg

    2014-01-01

    Although inland and marine environments, their fisheries, fishery managers, and the realm-specific management approaches are often different, there are a surprising number of similarities that frequently go unrecognized. We contend that there is much to be gained by greater cross-fertilization and exchange of ideas and strategies between realms and the people who manage them. The purpose of this paper is to provide examples of the potential or demonstrated benefits of working across aquatic boundaries for enhanced sustainable management of the world’s fisheries resources. Examples include the need to (1) engage in habitat management and protection as the foundation for fisheries, (2) rethink institutional arrangements and management for open-access fisheries systems, (3) establish “reference points” and harvest control rules, (4) engage in integrated management approaches, (5) reap conservation benefits from the link to fish as food, and (6) reframe conservation and management of fish to better engage the public and industry. Cross-fertilization and knowledge transfer between realms could be realized using environment-independent curricula and symposia, joint scientific advisory councils for management, integrated development projects, and cross-realm policy dialogue. Given the interdependence of marine and inland fisheries, promoting discussion between the realms has the potential to promote meaningful advances in managing global fisheries.

  14. 78 FR 70002 - International Fisheries; Pacific Tuna Fisheries; 2013 Bigeye Tuna Longline Fishery Closure in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 300 [Docket No. 110620342-1659-03] RIN 0648-XC922 International Fisheries; Pacific Tuna Fisheries; 2013 Bigeye Tuna Longline...), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Temporary rule; fishery closure...

  15. 77 FR 44214 - Essential Fish Habitat Components of Fishery Management Plans; 5-Year Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... herring, skates, Atlantic salmon, and Atlantic deep- sea red crab. The Council is seeking comments about removing the range of alternatives pertaining to deep-sea corals from this action and developing them as a... effects on deep-sea corals developed under the authority granted in the fishery management plan (FMP...

  16. Global effects of local human population density and distance to markets on the condition of coral reef fisheries.

    PubMed

    Cinner, Joshua E; Graham, Nicholas A J; Huchery, Cindy; Macneil, M Aaron

    2013-06-01

    Coral reef fisheries support the livelihoods of millions of people but have been severely and negatively affected by anthropogenic activities. We conducted a systematic review of published data on the biomass of coral reef fishes to explore how the condition of reef fisheries is related to the density of local human populations, proximity of the reef to markets, and key environmental variables (including broad geomorphologic reef type, reef area, and net productivity). When only population density and environmental covariates were considered, high variability in fisheries conditions at low human population densities resulted in relatively weak explanatory models. The presence or absence of human settlements, habitat type, and distance to fish markets provided a much stronger explanatory model for the condition of reef fisheries. Fish biomass remained relatively low within 14 km of markets, then biomass increased exponentially as distance from reefs to markets increased. Our results suggest the need for an increased science and policy focus on markets as both a key driver of the condition of reef fisheries and a potential source of solutions. © 2012 Society for Conservation Biology.

  17. 50 CFR Table 24 to Part 679 - Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to Nonpelagic Trawl Fishing 24 Table 24 to Part 679 Wildlife and... 24 to Part 679—Except as Noted, Locations in the Aleutian Islands Habitat Conservation Area Open to...

  18. Relationships of field habitat measurements, visual habitat indices, and land cover to benthic macroinvertebrates in urbanized streams of the Santa Clara Valley, California

    USGS Publications Warehouse

    Fend, S.V.; Carter, J.L.; Kearns, F.R.

    2005-01-01

    We evaluated several approaches for measuring natural and anthropogenic habitat characteristics to predict benthic macroinvertebrate assemblages over a range of urban intensity at 85 stream sites in the Santa Clara Valley, California. Land cover was summarized as percentage urban land cover and impervious area within upstream buffers and the upstream subwatersheds. Field measurements characterized water chemistry, channel slope, sediment, and riparian canopy. In . addition to applying the visual-based habitat assessment in U.S. Environmental Protection Agency's rapid bioassessment protocol, we developed a simplified urban habitat assessment index based on turbidity, fine sediment deposition, riparian condition, and channel modification. Natural and anthropogenic habitat variables covaried along longitudinal stream gradients and were highly correlated with elevation. At the scale of the entire watershed, benthic macroinvertebrate measures were equally correlated with variables expressing natural gradients and urbanization effects. When natural gradients were reduced by partitioning sites into ecoregion subsection groupings, habitat variables most highly correlated with macroinvertebrate measures differed between upland and valley floor site groups. Among the valley floor sites, channel slope and physical modification of channel and riparian habitats appeared more important than upstream land cover or water quality in determining macroinvertebrate richness and ordination scores. Among upland sites, effects of upstream reservoir releases on habitat quality appeared important. Rapid habitat evaluation methods appeared to be an effective method for describing habitat features important to benthic macroinvertebrates when adapted for the region and the disturbance of interest. ?? 2005 by the American Fisheries Society.

  19. Economic Vulnerability Assessment of U.S. Fishery Revenues to Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Cooley, S. R.; Doney, S. C.

    2008-12-01

    Ocean acidification, a predictable consequence of rising anthropogenic CO2 emissions, is poised to change marine ecosystems profoundly by decreasing average ocean pH and the carbonate mineral saturation state worldwide. These conditions slow or reverse marine plant and animal calcium carbonate shell growth, thereby harming economically valuable species. In 2006, shellfish and crustaceans provided 50% of the 4 billion U.S. domestic commercial harvest value; value added to commercial fishery products contributed 35 billion to the gross national product that year. Laboratory studies have shown that ocean acidification decreases shellfish calcification; ocean acidification--driven declines in commercial shellfish and crustacean harvests between now and 2060 could decrease nationwide time-integrated primary commercial revenues by 860 million to 14 billion (net present value, 2006 dollars), depending on CO2 emissions, discount rates, biological responses, and fishery structure. This estimate excludes losses from coral reef damage and possible fishery collapses if ocean acidification pushes ecosystems past ecological tipping points. Expanding job losses and indirect economic costs will follow harvest decreases as ocean acidification broadly damages marine habitats and alters marine resource availability. Losses will harm many regions already possessing little economic resilience. The only true solution to ocean acidification is reducing atmospheric CO2 emissions, but implementing regional adaptive responses now from an ecosystem-wide, fisheries perspective will help better preserve sustainable ecosystem function and economic yields. Comprehensive management strategies must include monitoring critical fisheries, explicitly accounting for ocean acidification in management models, reducing fishing pressure and environmental stresses, and supporting regional economies most sensitive to acidification's impacts.

  20. Baseline seabed habitat and biotope mapping for a proposed marine reserve.

    PubMed

    Lee, Sonny T M; Kelly, Michelle; Langlois, Tim J; Costello, Mark J

    2015-01-01

    Seabed mapping can quantify the extent of benthic habitats that comprise marine ecosystems, and assess the impact of fisheries on an ecosystem. In this study, the distribution of seabed habitats in a proposed no-take Marine Reserve along the northeast coast of Great Barrier Island, New Zealand, was mapped using underwater video combined with bathymetry and substratum data. As a result of the boundary extending to the 12 nautical mile Territorial Limit, it would have been the largest coastal Marine Reserve in the country. Recreational and commercial fisheries occur in the region and would be expected to affect species' abundance. The seabed of the study area and adjacent coastal waters has been trawled up to five times per year. Benthic communities were grouped by multivariate cluster analysis into four biotope classes; namely (1) shallow water macroalgae Ecklonia sp. and Ulva sp. on rocky substrata (Eck.Ulv); and deeper (2) diverse epifauna of sponges and bryozoans on rocky substrata (Por.Bry), (3) brittle star Amphiura sp. and sea anemone Edwardsia sp. on muddy sand (Amph.Edw), and (4) hydroids on mud (Hyd). In biotopes Por.Bry, Amph.Edw and Hyd, there where boulders and rocks were present, and diverse sponge, bryozoan and coral communities. Fifty species were recorded in the deep water survey including significant numbers of the shallow-water hexactinellid glass sponges Symplectella rowi Dendy, 1924 and Rossella ijimai Dendy, 1924, the giant pipe demosponge Isodictya cavicornuta Dendy, 1924, black corals, and locally endemic gorgonians. The habitats identified in the waters to the northeast of Great Barrier Island are likely to be representative of similar depth ranges in northeast New Zealand. This study provides a baseline of the benthic habitats so that should the area become a Marine Reserve, any habitat change might be related to protection from fishing activities and impacts, such as recovery of epifauna following cessation of trawling. The habitat map may

  1. Vulnerability of coral reef fisheries to a loss of structural complexity.

    PubMed

    Rogers, Alice; Blanchard, Julia L; Mumby, Peter J

    2014-05-05

    Coral reefs face a diverse array of threats, from eutrophication and overfishing to climate change. As live corals are lost and their skeletons eroded, the structural complexity of reefs declines. This may have important consequences for the survival and growth of reef fish because complex habitats mediate predator-prey interactions [1, 2] and influence competition [3-5] through the provision of prey refugia. A positive correlation exists between structural complexity and reef fish abundance and diversity in both temperate and tropical ecosystems [6-10]. However, it is not clear how the diversity of available refugia interacts with individual predator-prey relationships to explain emergent properties at the community scale. Furthermore, we do not yet have the ability to predict how habitat loss might affect the productivity of whole reef communities and the fisheries they support. Using data from an unfished reserve in The Bahamas, we find that structural complexity is associated not only with increased fish biomass and abundance, but also with nonlinearities in the size spectra of fish, implying disproportionately high abundances of certain size classes. By developing a size spectrum food web model that links the vulnerability of prey to predation with the structural complexity of a reef, we show that these nonlinearities can be explained by size-structured prey refugia that reduce mortality rates and alter growth rates in different parts of the size spectrum. Fitting the model with data from a structurally complex habitat, we predict that a loss of complexity could cause more than a 3-fold reduction in fishery productivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. 50 CFR 226.216 - Critical habitat for elkhorn (Acropora palmata) and staghorn (A. cervicornis) corals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... palmata) and staghorn (A. cervicornis) corals. 226.216 Section 226.216 Wildlife and Fisheries NATIONAL... (A. cervicornis) corals. Critical habitat is designated for both elkhorn and staghorn corals as... Threatened Corals. The physical feature essential to the conservation of elkhorn and staghorn corals is...

  3. 50 CFR 226.216 - Critical habitat for elkhorn (Acropora palmata) and staghorn (A. cervicornis) corals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... palmata) and staghorn (A. cervicornis) corals. 226.216 Section 226.216 Wildlife and Fisheries NATIONAL... (A. cervicornis) corals. Critical habitat is designated for both elkhorn and staghorn corals as... Threatened Corals. The physical feature essential to the conservation of elkhorn and staghorn corals is...

  4. Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery

    PubMed Central

    Rick, Torben C.; Reeder-Myers, Leslie A.; Hofman, Courtney A.; Breitburg, Denise; Lockwood, Rowan; Henkes, Gregory; Kellogg, Lisa; Lowery, Darrin; Luckenbach, Mark W.; Mann, Roger; Ogburn, Matthew B.; Southworth, Melissa; Wah, John; Wesson, James; Hines, Anson H.

    2016-01-01

    Estuaries around the world are in a state of decline following decades or more of overfishing, pollution, and climate change. Oysters (Ostreidae), ecosystem engineers in many estuaries, influence water quality, construct habitat, and provide food for humans and wildlife. In North America’s Chesapeake Bay, once-thriving eastern oyster (Crassostrea virginica) populations have declined dramatically, making their restoration and conservation extremely challenging. Here we present data on oyster size and human harvest from Chesapeake Bay archaeological sites spanning ∼3,500 y of Native American, colonial, and historical occupation. We compare oysters from archaeological sites with Pleistocene oyster reefs that existed before human harvest, modern oyster reefs, and other records of human oyster harvest from around the world. Native American fisheries were focused on nearshore oysters and were likely harvested at a rate that was sustainable over centuries to millennia, despite changing Holocene climatic conditions and sea-level rise. These data document resilience in oyster populations under long-term Native American harvest, sea-level rise, and climate change; provide context for managing modern oyster fisheries in the Chesapeake Bay and elsewhere around the world; and demonstrate an interdisciplinary approach that can be applied broadly to other fisheries. PMID:27217572

  5. Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery.

    PubMed

    Rick, Torben C; Reeder-Myers, Leslie A; Hofman, Courtney A; Breitburg, Denise; Lockwood, Rowan; Henkes, Gregory; Kellogg, Lisa; Lowery, Darrin; Luckenbach, Mark W; Mann, Roger; Ogburn, Matthew B; Southworth, Melissa; Wah, John; Wesson, James; Hines, Anson H

    2016-06-07

    Estuaries around the world are in a state of decline following decades or more of overfishing, pollution, and climate change. Oysters (Ostreidae), ecosystem engineers in many estuaries, influence water quality, construct habitat, and provide food for humans and wildlife. In North America's Chesapeake Bay, once-thriving eastern oyster (Crassostrea virginica) populations have declined dramatically, making their restoration and conservation extremely challenging. Here we present data on oyster size and human harvest from Chesapeake Bay archaeological sites spanning ∼3,500 y of Native American, colonial, and historical occupation. We compare oysters from archaeological sites with Pleistocene oyster reefs that existed before human harvest, modern oyster reefs, and other records of human oyster harvest from around the world. Native American fisheries were focused on nearshore oysters and were likely harvested at a rate that was sustainable over centuries to millennia, despite changing Holocene climatic conditions and sea-level rise. These data document resilience in oyster populations under long-term Native American harvest, sea-level rise, and climate change; provide context for managing modern oyster fisheries in the Chesapeake Bay and elsewhere around the world; and demonstrate an interdisciplinary approach that can be applied broadly to other fisheries.

  6. 75 FR 33242 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of non-compliance findings. SUMMARY: On May 6, 2010, the Atlantic States Marine Fisheries Commission...

  7. 76 FR 40836 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    .... 0912281446-0111-02] RIN 0648-XA554 Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration..., Pacific sardine may be harvested only as part of the live bait fishery or incidental to other fisheries...

  8. 75 FR 33733 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    .... 0912281446-0111-02 RIN 0648-XW90 Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA... sardine can only be harvested as part of the live bait fishery or incidental to other fisheries; the...

  9. 77 FR 50952 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    .... 120312182-2239-02] RIN 0648-XC166 Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration..., Pacific sardine may be harvested only as part of the live bait fishery or incidental to other fisheries...

  10. 75 FR 42610 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    .... 0912281446-0111-02] RIN 0648-XX54 Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA..., Pacific sardine can only be harvested as part of the live bait fishery or incidental to other fisheries...

  11. 75 FR 59156 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    .... 0912281446-0111-02] RIN 0648-XY79 Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA..., Pacific sardine can only be harvested as part of the live bait fishery or incidental to other fisheries...

  12. 78 FR 51097 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    .... 121210694-3514-02] RIN 0648-XC783 Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration..., Pacific sardine may be harvested only as part of the live bait fishery or incidental to other fisheries...

  13. 78 FR 65959 - Proposed Designation of Marine Critical Habitat for the Loggerhead Sea Turtle, Caretta caretta...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ..., Under the Endangered Species Act; Public Hearing AGENCY: National Marine Fisheries Service (NMFS... for the Loggerhead Sea Turtle, Caretta caretta, under the Endangered Species Act (ESA). DATES: The...-17204/endangered-and-threatened-species-designation-of-critical-habitat-for-the-northwest-atlantic-ocean...

  14. One Northwest community - People, salmon, rivers, and the sea: Towards sustainable salmon fisheries

    USGS Publications Warehouse

    MacDonald, Donald D.; Steward, Cleveland R.; Knudsen, E. Eric; Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald; Williams, Jack E.; Reiser, Dudley W.

    1999-01-01

    Pacific salmon management is in crisis. Throughout their range, salmon and steelhead populations are being adversely affected by human activities. Without coordinated, effective, and timely action, the future of the Pacific salmon resource is most certainly in doubt. To address the challenges that are currently facing salmon management, concerned citizens representing a diverse array of government agencies and non-governmental organizations have agreed to cooperate in the development of a Sustainable Fisheries Strategy for west coast salmon and steelhead populations. The Strategy builds on the contents of this book, resulting from the Sustainable Fisheries Conference and subsequent community- and watershed-based citizen forums. This chapter presents the key elements of the Strategy including a common vision for the future, a series of guiding principles, and specific strategies for supporting sustainable fisheries. As such, the Strategy embraces an ecosystem-based approach to managing human activities, rather than the traditional egocentric approach to managing salmonid populations and associated habitats. A system of community-based, watershed-oriented councils, including all stakeholders and agency representatives, is proposed for effective transition to ecosystem-based salmon and steelhead management. It is our hope that everyone involved in Pacific salmon management will embrace both the spirit and the specific elements of the Sustainable Fisheries Strategy as we face the difficult challenges ahead.

  15. 75 FR 34092 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    .... 0912011421-0200-01] RIN 0648-AY41 Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration... to be more compatible with Addendum IV to Amendment 4 of the Atlantic States Marine Fisheries...

  16. Effects of habitat map generalization in biodiversity assessment

    NASA Technical Reports Server (NTRS)

    Stoms, David M.

    1992-01-01

    Species richness is being mapped as part of an inventory of biological diversity in California (i.e., gap analysis). Species distributions are modeled with a GIS on the basis of maps of each species' preferred habitats. Species richness is then tallied in equal-area sampling units. A GIS sensitivity analysis examined the effects of the level of generalization of the habitat map on the predicted distribution of species richness in the southern Sierra Nevada. As the habitat map was generalized, the number of habitat types mapped within grid cells tended to decrease with a corresponding decline in numbers of species predicted. Further, the ranking of grid cells in order of predicted numbers of species changed dramatically between levels of generalization. Areas predicted to be of greatest conservation value on the basis of species richness may therefore be sensitive to GIS data resolution.

  17. Social-ecological outcomes in recreational fisheries: The interaction of lakeshore development and stocking

    USGS Publications Warehouse

    Ziegler, Jacob P.; Golebie, Elizabeth J.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.

    2017-01-01

    Many ecosystems continue to experience rapid transformations due to processes like land use change and resource extraction. A systems approach to maintaining natural resources focuses on how interactions and feedbacks among components of complex social‐ecological systems generate social and ecological outcomes. In recreational fisheries, residential shoreline development and fish stocking are two widespread human behaviors that influence fisheries, yet emergent social‐ecological outcomes from these potentially interacting behaviors remain under explored. We applied a social‐ecological systems framework using a simulation model and empirical data to determine whether lakeshore development is likely to promote stocking through its adverse effects on coarse woody habitat and thereby also on survival of juvenile and adult fish. We demonstrate that high lakeshore development is likely to generate dependency of the ecosystem on the social system, in the form of stocking. Further, lakeshore development can interact with social‐ecological processes to create deficits for state‐level governments, which threatens the ability to fund further ecosystem subsidies. Our results highlight the value of a social‐ecological framework for maintaining ecosystem services like recreational fisheries.

  18. Enhancement and management of eel fisheries affected by hydroelectric dams in New Zealand

    USGS Publications Warehouse

    Boubee, J.; Chisnall, B.; Watene, E.; Williams, E.; Roper, D.; Haro, A.

    2003-01-01

    Two freshwater anguillid eel species, Anguilla australis and A. dieffenbachia, form the basis of important traditional, recreational, and commercial fisheries in New Zealand. These fisheries have been affected by the damming of many of the major waterways for hydroelectric generation. To create fisheries in reservoirs that would be otherwise inaccessible, elvers have been transferred from the base of dams into habitats upstream. Operations in three catchments: the Patea River (Lake Rotorangi), Waikato River (eight reservoirs notably the two lowermost, lakes Karapiro and Arapuni), and Rangitaiki River (lakes Matahina and Aniwhenua) are discussed. In all reservoirs, the transfers have successfully established fishable populations within six years of the first transfers and, in Lake Arapuni eels have reached the marketable size of 220 g in less than four years. In comparison, it typically takes from 13 to 17 years before eel populations are fishable in the lower Waikato River where direct access to the sea is available. Telemetry and monitoring at the screens and tailraces of several power stations have been used to determine migration timing, triggers, and pathways of mature eels. Successful downstream transfer of mature migrating adults has been achieved by spillway opening and netting in headraces during rain events in autumn, but means of preventing eels from impinging and entraining at the intakes are still required. An integrated, catchment-wide management system will be required to ensure sustainability of the fisheries. ?? Copyright by the American Fisheries Society 2003.

  19. Habitat use of age 0 Alabama shad in the Pascagoula River drainage, USA

    Treesearch

    P. F. Mickle; J.F. Schaefer; S.B. Adams; B.R. Kreiser

    2010-01-01

    Alabama shad (Alosa alabamae) is an anadromous species that spawns in Gulf of Mexico drainages and is a NOAA Fisheries Species of Concern. Habitat degradation and barriers to migration are considered contributing factors to range contraction that has left just the Pascagoula River drainage population in Mississippi. We studied juvenile life history and autecology in...

  20. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950-2014

    NASA Astrophysics Data System (ADS)

    Watson, Reg A.

    2017-04-01

    Global fisheries landings data from a range of public sources was harmonised and mapped to 30-min spatial cells based on the distribution of the reported taxa and the fishing fleets involved. This data was extended to include the associated fishing gear used, as well as estimates of illegal, unregulated and unreported catch (IUU) and discards at sea. Expressed as catch rates, these results also separated small-scale fisheries from other fishing operations. The dataset covers 1950 to 2014 inclusive. Mapped catch allows study of the impacts of fisheries on habitats and fauna, on overlap with the diets of marine birds and mammals, and on the related use of fuels and release of greenhouse gases. The fine-scale spatial data can be aggregated to the exclusive economic zone claims of countries and will allow study of the value of landed marine products to their economies and food security, and to those of their trading partners.

  1. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950-2014.

    PubMed

    Watson, Reg A

    2017-04-11

    Global fisheries landings data from a range of public sources was harmonised and mapped to 30-min spatial cells based on the distribution of the reported taxa and the fishing fleets involved. This data was extended to include the associated fishing gear used, as well as estimates of illegal, unregulated and unreported catch (IUU) and discards at sea. Expressed as catch rates, these results also separated small-scale fisheries from other fishing operations. The dataset covers 1950 to 2014 inclusive. Mapped catch allows study of the impacts of fisheries on habitats and fauna, on overlap with the diets of marine birds and mammals, and on the related use of fuels and release of greenhouse gases. The fine-scale spatial data can be aggregated to the exclusive economic zone claims of countries and will allow study of the value of landed marine products to their economies and food security, and to those of their trading partners.

  2. 75 FR 12141 - Magnuson-Stevens Fishery Conservation and Management Act Provisions; Fisheries of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    .... 0907221160-91412-02] RIN 0648-AY01 Magnuson-Stevens Fishery Conservation and Management Act Provisions; Fisheries of the Northeastern United States; Monkfish Fishery AGENCY: National Marine Fisheries Service...: NMFS issues this final rule to amend the Monkfish Fishery [[Page 12142

  3. Field Validation of Habitat Suitability Models for Vulnerable Marine Ecosystems in the South Pacific Ocean: Implications for the use of Broad-scale Models in Fisheries Management

    NASA Astrophysics Data System (ADS)

    Anderson, O. F.; Guinotte, J. M.; Clark, M. R.; Rowden, A. A.; Mormede, S.; Davies, A. J.; Bowden, D.

    2016-02-01

    Spatial management of vulnerable marine ecosystems requires accurate knowledge of their distribution. Predictive habitat suitability modelling, using species presence data and a suite of environmental predictor variables, has emerged as a useful tool for inferring distributions outside of known areas. However, validation of model predictions is typically performed with non-independent data. In this study, we describe the results of habitat suitability models constructed for four deep-sea reef-forming coral species across a large region of the South Pacific Ocean using MaxEnt and Boosted Regression Tree modelling approaches. In order to validate model predictions we conducted a photographic survey on a set of seamounts in an un-sampled area east of New Zealand. The likelihood of habitat suitable for reef forming corals on these seamounts was predicted to be variable, but very high in some regions, particularly where levels of aragonite saturation, dissolved oxygen, and particulate organic carbon were optimal. However, the observed frequency of coral occurrence in analyses of survey photographic data was much lower than expected, and patterns of observed versus predicted coral distribution were not highly correlated. The poor performance of these broad-scale models is attributed to lack of recorded species absences to inform the models, low precision of global bathymetry models, and lack of data on the geomorphology and substrate of the seamounts at scales appropriate to the modelled taxa. This demonstrates the need to use caution when interpreting and applying broad-scale, presence-only model results for fisheries management and conservation planning in data poor areas of the deep sea. Future improvements in the predictive performance of broad-scale models will rely on the continued advancement in modelling of environmental predictor variables, refinements in modelling approaches to deal with missing or biased inputs, and incorporation of true absence data.

  4. Modelling spatial distribution of Patagonian toothfish through life-stages and sex and its implications for the fishery on the Kerguelen Plateau

    NASA Astrophysics Data System (ADS)

    Péron, Clara; Welsford, Dirk C.; Ziegler, Philippe; Lamb, Timothy D.; Gasco, Nicolas; Chazeau, Charlotte; Sinègre, Romain; Duhamel, Guy

    2016-02-01

    Size and sex specific habitat preferences are common in animal populations and can have important implications for sound spatial management of harvested species. Patagonian toothfish (Dissostichus eleginoides) is a commercially exploited fish species characterised by its longevity (>50 yo) and its extremely broad distribution in depths ranging from 10 m to 2500 m on most of the Plateaux, banks and seamounts of the Southern Ocean. As many bentho-pelagic fish species, Patagonian toothfish exhibits sexual dimorphism and ontogenetic habitat shift towards deeper waters as they grow. In this study, we modelled the spatial structure of Patagonian toothfish population (median total length and sex composition) in a data-rich area, the Kerguelen Plateau (Southern Indian Ocean), to better understand the ecological drivers of their distributional patterns and inform current and future fishery management strategies. We applied spatially-explicit statistical models to quantify and predict the effects of the complex topography of the Kerguelen Plateau in structuring the spatial distribution of Patagonian toothfish total length and sex ratio, while controlling for gear selectivity and season. Model predictions showed that juvenile toothfish live in shallow regions (shelf and banks) and move downward progressively up to 600 m while they grow. Between 600 m and 1200 m, the downward movement stops and fish settle at their preferred depths. While in this depth range, fish are ∼75 cm long and most vulnerable to fisheries. As they approach maturity large fish move downward to deep-sea habitats (from 1200 m to >2300 m) and head towards the spawning grounds on the western side of the plateau and around Skiff Bank. Importantly, the sex ratio was not evenly distributed across the Plateau; prediction maps revealed a higher proportion of females in the South whereas a strong male-bias sex ratio (70%) occurred in the North-West. Large-scale prediction maps derived from our models assisted in

  5. 75 FR 9158 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Coastal Sharks Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... Coastal Fisheries Cooperative Management Act Provisions; Coastal Sharks Fishery AGENCY: National Marine... Commission's Interstate Fishery Management Plan (ISFMP) for Coastal Sharks. Subsequently, the Commission...-compliance review under the provisions of the Atlantic Coastal Fisheries Cooperative Management Act (Atlantic...

  6. 75 FR 81505 - Magnuson-Stevens Fishery Conservation and Management Act Provisions; Fisheries of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    .... 101116568-0608-01] RIN 0648-BA42 Magnuson-Stevens Fishery Conservation and Management Act Provisions; Fisheries of the Northeastern United States; Tilefish Fishery AGENCY: National Marine Fisheries Service... implementing the Tilefish Fishery Management Plan (FMP) to require the first year cost-recovery fee percentage...

  7. 77 FR 19138 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery Management Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    .... 110816505-2184-03] RIN 0648-BB39 Fisheries of the Northeastern United States; Northeast Multispecies Fishery... Secretarial Amendment to the Northeast Multispecies Fishery Management Plan to establish a mechanism for... Northeast Multispecies Fishery Management Plan to meet the 2011 deadline in the Magnuson-Stevens Fishery...

  8. Was everything bigger in Texas? Characterization and trends of a land-based recreational shark fishery

    USGS Publications Warehouse

    Ajemian, Matthew J.; Jose, Philip D.; Froeschke, John T.; Wildhaber, Mark L.; Stunz, Gregory W.

    2016-01-01

    Although current assessments of shark population trends involve both fishery-independent and fishery-dependent data, the latter are generally limited to commercial landings that may neglect nearshore coastal habitats. Texas has supported the longest organized land-based recreational shark fishery in the United States, yet no studies have used this “non-traditional” data source to characterize the catch composition or trends in this multidecadal fishery. We analyzed catch records from two distinct periods straddling heavy commercial exploitation of sharks in the Gulf of Mexico (historical period = 1973–1986; modern period = 2008–2015) to highlight and make available the current status and historical trends in Texas’ land-based shark fishery. Catch records describing large coastal species (>1,800 mm stretched total length [STL]) were examined using multivariate techniques to assess catch seasonality and potential temporal shifts in species composition. These fishery-dependent data revealed consistent seasonality that was independent of the data set examined, although distinct shark assemblages were evident between the two periods. Similarity percentage analysis suggested decreased contributions of Lemon Shark Negaprion brevirostris over time and a general shift toward the dominance of Bull Shark Carcharhinus leucas and Blacktip Shark C. limbatus. Comparisons of mean STL for species captured in historical and modern periods further identified significant decreases for both Bull Sharks and Lemon Sharks. Size structure analysis showed a distinct paucity of landed individuals over 2,000 mm STL in recent years. Although inherent biases in reporting and potential gear-related inconsistencies undoubtedly influenced this fishery-dependent data set, the patterns in our findings documented potential declines in the size and occurrence of select large coastal shark species off Texas, consistent with declines reported in the Gulf of Mexico. Future management efforts

  9. 78 FR 54399 - Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    .... 130104009-3416-02] RIN 0648-XC815 Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration...: Carly Bari, Fishery Management Specialist, 978-281-9224. SUPPLEMENTARY INFORMATION: Regulations...

  10. 77 FR 58969 - Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    .... 120201086-2418-02] RIN 0648-XC235 Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration...: Carly Bari, Fishery Management Specialist, 978-281-9224. SUPPLEMENTARY INFORMATION: Regulations...

  11. 78 FR 10557 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 17 to the Salmon Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... trollers, and 438-495 charter boats. Based on Pacific Coast Fisheries Information Network (PacFIN) data, a... biological opinions that address the impacts of the Council managed salmon fisheries on listed salmonids as... fisheries were not likely to jeopardize SRKW (biological opinion dated May 5, 2009). Pursuant to Executive...

  12. Spawning distribution of sockeye salmon in a glacially influenced watershed: The importance of glacial habitats

    USGS Publications Warehouse

    Young, Daniel B.; Woody, C.A.

    2007-01-01

    The spawning distribution of sockeye salmon Oncorhynchus nerka was compared between clear and glacially turbid habitats in Lake Clark, Alaska, with the use of radiotelemetry. Tracking of 241 adult sockeye salmon to 27 spawning locations revealed both essential habitats and the relationship between spawn timing and seasonal turbidity cycles. Sixty-six percent of radio-tagged sockeye salmon spawned in turbid waters (???5 nephelometric turbidity units) where visual observation was difficult. Spawning in turbid habitats coincided with seasonal temperature declines and associated declines in turbidity and suspended sediment concentration. Because spawn timing is heritable and influenced by temperature, the observed behavior suggests an adaptive response to glacier-fed habitats, as it would reduce embryonic exposure to the adverse effects of fine sediments. ?? Copyright by the American Fisheries Society 2007.

  13. 75 FR 20550 - Fisheries of the Northeastern United States; Atlantic Herring Fishery; Specifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    .... 0907301205-91207-01] RIN 0648-AY14 Fisheries of the Northeastern United States; Atlantic Herring Fishery; Specifications AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration... specifications for the Atlantic herring (herring) fishery. These proposed specifications and management measures...

  14. 76 FR 74009 - Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    .... 101228634-1149-02] RIN 0648-XA825 Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration..., 2011, through December 31, 2011. FOR FURTHER INFORMATION CONTACT: Carly Bari, Fishery Management...

  15. Potential climate change effects on the habitat of antarctic krill in the weddell quadrant of the southern ocean.

    PubMed

    Hill, Simeon L; Phillips, Tony; Atkinson, Angus

    2013-01-01

    Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0° and 90°W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2°C per decade, and projections suggest that further widespread warming of 0.27° to 1.08°C will occur by the late 21(st) century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat's ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services.

  16. Lake Roosevelt Fisheries Evaluation Program : Limnological and Fisheries Monitoring Annual Report 1999.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLellan, Holly; Lee, Chuck; Scofield, Ben

    1999-08-01

    , zooplankton and fish caused by reservoir drawdowns and low water retention times; (2) quantification of seasonal distributions, standing crop, and habitat use of fish food organisms; (3) examination of variations in fish growth and abundance in relation to reservoir operations, prey abundance and predator/prey relationships; and (4) quantification of habitat alterations due to hydrooperations. The second goal of the LRMP is to evaluate the impacts of hatchery kokanee salmon and rainbow trout on the ecosystem and to determine stocking strategies that maximize angler harvest and return of adult kokanee salmon to egg collection facilities. Major tasks of the hatchery evaluation portion of the project include conducting a year round reservoir wide creel survey, sampling the fishery during spring, summer and fall via electro-fishing and gillnet surveys, and collecting information on diet, growth, and age composition of various fish species in Lake Roosevelt.« less

  17. Influence of forest and rangeland management on anadromous fish habitat in Western North America: effects of livestock grazing.

    Treesearch

    William S. Platts

    1981-01-01

    This paper documents current knowledge on interactions of livestock and fish habitat. Included are discussions of incompatibility and compatibility between livestock grazing and fisheries, present management guidelines, information needed for problem solving, information available for problem solving, and future research needs.

  18. 77 FR 76424 - Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    .... 120201086-2418-02] RIN 0648-XC394 Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration...: Effective December 21, 2012, through December 31, 2012. FOR FURTHER INFORMATION CONTACT: Carly Bari, Fishery...

  19. 78 FR 64182 - Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    .... 130104009-3416-02] RIN 0648-XC921 Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration...: Effective October 25, 2013, through December 31, 2013. FOR FURTHER INFORMATION CONTACT: Carly Bari, Fishery...

  20. Interactions between a Trawl Fishery and Spatial Closures for Biodiversity Conservation in the Great Barrier Reef World Heritage Area, Australia

    PubMed Central

    Grech, Alana; Coles, Rob

    2011-01-01

    Background The Queensland East Coast Otter Trawl Fishery (ECOTF) for penaeid shrimp fishes within Australia's Great Barrier Reef World Heritage Area (GBRWHA). The past decade has seen the implementation of conservation and fisheries management strategies to reduce the impact of the ECOTF on the seabed and improve biodiversity conservation. New information from electronic vessel location monitoring systems (VMS) provides an opportunity to review the interactions between the ECOTF and spatial closures for biodiversity conservation. Methodology and Results We used fishing metrics and spatial information on the distribution of closures and modelled VMS data in a geographical information system (GIS) to assess change in effort of the trawl fishery from 2001–2009 and to quantify the exposure of 70 reef, non-reef and deep water bioregions to trawl fishing. The number of trawlers and the number of days fished almost halved between 2001 and 2009 and new spatial closures introduced in 2004 reduced the area zoned available for trawl fishing by 33%. However, we found that there was only a relatively minor change in the spatial footprint of the fishery as a result of new spatial closures. Non-reef bioregions benefited the most from new spatial closures followed by deep and reef bioregions. Conclusions/Significance Although the catch of non target species remains an issue of concern for fisheries management, the small spatial footprint of the ECOTF relative to the size of the GBRWHA means that the impact on benthic habitats is likely to be negligible. The decline in effort as a result of fishing industry structural adjustment, increasing variable costs and business decisions of fishers is likely to continue a trend to fish only in the most productive areas. This will provide protection for most benthic habitats without any further legislative or management intervention. PMID:21695155

  1. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014

    PubMed Central

    Watson, Reg A.

    2017-01-01

    Global fisheries landings data from a range of public sources was harmonised and mapped to 30-min spatial cells based on the distribution of the reported taxa and the fishing fleets involved. This data was extended to include the associated fishing gear used, as well as estimates of illegal, unregulated and unreported catch (IUU) and discards at sea. Expressed as catch rates, these results also separated small-scale fisheries from other fishing operations. The dataset covers 1950 to 2014 inclusive. Mapped catch allows study of the impacts of fisheries on habitats and fauna, on overlap with the diets of marine birds and mammals, and on the related use of fuels and release of greenhouse gases. The fine-scale spatial data can be aggregated to the exclusive economic zone claims of countries and will allow study of the value of landed marine products to their economies and food security, and to those of their trading partners. PMID:28398351

  2. 76 FR 15222 - Hawaii Bottomfish and Seamount Groundfish Fisheries; Modification of Fishery Closures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    .... 101210611-1185-02] RIN 0648-BA58 Hawaii Bottomfish and Seamount Groundfish Fisheries; Modification of Fishery Closures AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... period for in-season closure of the main Hawaiian Islands (MHI) Deep-7 bottomfish fishery from 14 to 7...

  3. 75 FR 48874 - Fisheries of the Northeastern United States; Atlantic Herring Fishery; Specifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    .... 0907301205-0289-02] RIN 0648-AY14 Fisheries of the Northeastern United States; Atlantic Herring Fishery; Specifications AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration... fishing years for the Atlantic herring (herring) fishery. The intent of this final rule is to conserve and...

  4. 76 FR 58720 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    .... 0912281446-0111-02] RIN 0648-XA709 Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration..., 2012, Pacific sardine may be harvested only as part of the live bait fishery or incidental to other...

  5. Inter-sectoral conflict and recreational fisheries of the developing world : opportunities and challenges for co-operation

    USGS Publications Warehouse

    Bower, Shannon D.; Nguyen, Vivian M.; Danylchuk, Andy J.; Beard, T. Douglas; Cooke, Steven J.

    2014-01-01

    The recreational fishing sector is growing rapidly in the developing world with the potential to realize economic benefits estimated at tens of billions of dollars annually. These opportunities are accompanied by numerous ecological risks such as overfishing and habitat disturbance. To date, there has been little focus on sociological issues surrounding the growth of recreational fisheries in these areas. This chapter examines sources of potential conflict among small-scale fishing sectors in the developing world with particular attention paid to identification of key issues constraining stewardship of recreational fisheries. We identified conflicts related to fisher competition for access to resources, socio-demographic change, cultural differences, and governance as areas of concern among small-scale fisheries, and offer examples of successful and failed attempts to reduce, mitigate or solve these conflicts. The reality of limited resource availability will require that communication, proactive management strategies and cooperation be encouraged among sectors to maximize resiliency of the social-ecological system and to promote sustainability of fishing practices. We recommend stewardship initiatives that include avenues for stakeholder participation and establishing adaptive management strategies, particularly for emerging recreational fisheries in the developing world.

  6. Baseline seabed habitat and biotope mapping for a proposed marine reserve

    PubMed Central

    Kelly, Michelle; Langlois, Tim J.; Costello, Mark J.

    2015-01-01

    Seabed mapping can quantify the extent of benthic habitats that comprise marine ecosystems, and assess the impact of fisheries on an ecosystem. In this study, the distribution of seabed habitats in a proposed no-take Marine Reserve along the northeast coast of Great Barrier Island, New Zealand, was mapped using underwater video combined with bathymetry and substratum data. As a result of the boundary extending to the 12 nautical mile Territorial Limit, it would have been the largest coastal Marine Reserve in the country. Recreational and commercial fisheries occur in the region and would be expected to affect species’ abundance. The seabed of the study area and adjacent coastal waters has been trawled up to five times per year. Benthic communities were grouped by multivariate cluster analysis into four biotope classes; namely (1) shallow water macroalgae Ecklonia sp. and Ulva sp. on rocky substrata (Eck.Ulv); and deeper (2) diverse epifauna of sponges and bryozoans on rocky substrata (Por.Bry), (3) brittle star Amphiura sp. and sea anemone Edwardsia sp. on muddy sand (Amph.Edw), and (4) hydroids on mud (Hyd). In biotopes Por.Bry, Amph.Edw and Hyd, there where boulders and rocks were present, and diverse sponge, bryozoan and coral communities. Fifty species were recorded in the deep water survey including significant numbers of the shallow-water hexactinellid glass sponges Symplectella rowi Dendy, 1924 and Rossella ijimai Dendy, 1924, the giant pipe demosponge Isodictya cavicornuta Dendy, 1924, black corals, and locally endemic gorgonians. The habitats identified in the waters to the northeast of Great Barrier Island are likely to be representative of similar depth ranges in northeast New Zealand. This study provides a baseline of the benthic habitats so that should the area become a Marine Reserve, any habitat change might be related to protection from fishing activities and impacts, such as recovery of epifauna following cessation of trawling. The habitat map

  7. NOAA to develop strategy to protect coral and sponge habitat

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. National Marine Fisheries Service (NMFS) will develop a strategy to address research, conservation, and management issues regarding deep-ocean coral and sponge habitat, the agency indicated in an 11 July Federal Register notice. The Service, which is a unit of the National Oceanic and Atmospheric Administration, indicated that this strategy “eventually may result in rulemaking for some fisheries” but that “emergency rulemaking is not warranted.”The NMFS announcement is in response to a 24 March 2004 petition to the Commerce Department filed by Oceana, a non-governmental organization. That petition urged the department through NMFS to “initiate immediate rulemaking” to protect coral and sponge habitats in the U.S. exclusive economic zone through mapping, monitoring, research, and enforcement measures.

  8. The fish and fisheries of Jones Bank and the wider Celtic Sea

    NASA Astrophysics Data System (ADS)

    Martinez, I.; Ellis, J. R.; Scott, B.; Tidd, A.

    2013-10-01

    The Celtic Sea is a diverse fishing ground that supports important commercial fisheries for a range of demersal fish, large and small-bodied pelagic fish and a variety of cephalopods and other shellfish. A regional overview of the main commercial fish stocks of the Celtic Sea and of the fish that occur in the vicinity of Jones Bank are provided through analyses of landings data from English and Welsh vessels, and from scientific trawl surveys. Dedicated smaller scale sampling via trawl surveys combined with baited cameras on and around the Jones Bank were also analysed to investigate the importance of sandbank habitats with attention paid to the differences in the species occurring on the top of the bank in comparison to adjacent off-bank habitats. Official landing statistics for UK (English and Welsh) vessels indicated that the predominant commercial demersal species in ICES Divisions VIIg,h (in terms of quantities landed) were anglerfish, megrim, pollack and skates (Rajidae). There were, however, regional differences in the distribution of fish and fisheries, and the area surrounding Jones Bank (ICES Rectangles 28E1 and 28E2) supports fisheries for megrim, anglerfish, skates, hake, ling and turbot, with otter trawl, gillnet and beam trawl the main gears used. Recent survey data collected with GOV (Grande Ouverture Verticale) trawl from the Celtic Sea (ICES Divisions VIIe-h, 2007-2010) were used to highlight the broad scale distribution of the main fish assemblages in the Celtic Sea. Analyses of the fish and cephalopod catches from these surveys indicated that there were four broad assemblages in the area, including (i) a region around the Cornwall (which will also be partly influenced by the necessity to use rockhopper ground gear on these rough grounds), (ii) the shallower regions of the north-western Celtic Sea (including parts of the Bristol Channel), (iii) the deeper parts of the outer shelf and (iv) the central Celtic Sea. These data also provided

  9. Commercial coral-reef fisheries across Micronesia: A need for improving management

    NASA Astrophysics Data System (ADS)

    Houk, P.; Rhodes, K.; Cuetos-Bueno, J.; Lindfield, S.; Fread, V.; McIlwain, J. L.

    2012-03-01

    A dearth of scientific data surrounding Micronesia's coral-reef fisheries has limited their formal assessment and continues to hinder local and regional management efforts. We approach this problem by comparing catch-based datasets from market landings across Micronesia to evaluate fishery status in the Commonwealth of the Northern Mariana Islands (CNMI), Guam, Yap, and Pohnpei. Initial examinations found that calm weather and low lunar illumination predicted between 6% (Yap) and 30% (CNMI) of the variances in daily commercial landings. Both environmentally driven catch success and daily catch variability increased in accordance with reef-fish demand indices. Subsequent insight from species composition and size-at-capture data supported these findings, highlighting reduced trophic levels and capture sizes where higher human-population-per-reef-area existed. Among the 12-15 target species and/or species complexes that accounted for 70% of the harvest biomass, capture sizes were consistently smallest for CNMI and Guam, often below the reported mean reproductive sizes. Comparatively, Pohnpei has the greatest potential for reef fisheries, with a large reef area (303 km2) and a moderate human population (34,000 people). However, the estimated harvest volume of 476 mt year-1 was 8-9 times higher than other jurisdictions. Even on Yap where the reef-fish demand index was lowest (67.7 people km-2 reef habitat), many target fish were harvested below their mean reproductive sizes, including the iconic green bumphead parrotfish and humphead wrasse, as well as several other herbivores. We discuss our results with respect to the contemporary doctrine surrounding size-spectra, catch composition, and catch frequencies that afford insight into fishery pressure and status. We posit that regional catch-based policies (initially) instituted at the market level, combined with area and gear-based restrictions, represent plausible vectors for improving Micronesian fisheries.

  10. Fisheries and aquatic resources of Prairie Creek, Redwood National Park

    USGS Publications Warehouse

    Wilzbach, Peggy; Ozaki, Vicki

    2017-01-01

    This report synthesizes information on the status of fisheries and aquatic resources in the Prairie Creek sub-basin of Redwood Creek in Humboldt County in northern California, founded on a bibliographic search we conducted of historic and current datasets, unpublished reports, theses, and publications. The compiled Prairie Creek Fisheries Bibliography is available at https://irma.nps.gov/DataStore/. This report describes life histories and population status of the salmonid fishes, and species occurrence of non-salmonid fishes, amphibians, macroinvertebrates, and common benthic algae in Prairie Creek. We assessed habitat conditions that may limit salmonid production in relation to recovery targets established by the National Marine Fisheries Service and the State of California. Although salmon abundance has decreased from historic levels, production of juvenile salmonids in Prairie Creek is relatively stable and robust in comparison with the rest of the Redwood Creek Basin. Carrying capacity likely differs between the undisturbed upper reaches of Prairie Creek and reaches in the lower creek, the latter of which are affected by legacy impacts from timber and agricultural activities. Increased sediment supply and lack of channel structure and floodplain connection in lower Prairie Creek appear to be the greatest stressors to salmonid production. Existing datasets on aquatic resources and environmental variables are listed, and subject areas where few data are available are identified.

  11. Setting the stage for a sustainable Pacific salmon fisheries strategy

    USGS Publications Warehouse

    MacDonald, Donald D.; Steward, Cleveland R.; Knudsen, E. Eric; Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald D.; Williams, Jack E.; Reiser, Dudley W.

    1999-01-01

    Salmon and steelhead Oncorhynchus spp., have been keystone species for ecosystems and human cultures of the North American Pacific coast for cons. Yet, in the past century, many populations have been greatly diminished and some are now extinct-the result of a combination of factors, including habitat loss and degradation, overfishing, natural variability in salmon production, negative effects of artificial propagation, and weaknesses in institutional and regulatory structures. We argue that a major shift is required, from the egocentric environmental approach (wherein each part of the ecosystem is managed as a unit) to the ecocentric ecosystem approach (wherein all parts are integrated for management). A management framework is proposed that contains-for each management unit such as a watershed-four elements: management goals; management objectives, ecosystem indicators; and a coordinated action plan. We also describe the Sustainable Fisheries Strategy, a consultative process for developing an ecosystem-based approach toward achieving sustainable Pacific salmon and steelhead populations and fisheries. This book is one of three important underpinnings of the Strategy; the other two are the Strategy itself and a manual being developed to guide community-based programs embracing the principles of sustainable fisheries. This book contains important historical perspectives as well as numerous innovative ideas for moving toward ecosystem-oriented, sustainable management of Pacific salmon and steelhead.

  12. 76 FR 39313 - Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    .... 100804323-0569-02] RIN 0648-XA523 Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries; Closure of the Directed Butterfish Fishery AGENCY: National Marine Fisheries Service...; closure. SUMMARY: NMFS announces that the directed fishery for butterfish in the Exclusive Economic Zone...

  13. 75 FR 57249 - Fisheries of the Northeastern United States; Northeast (NE) Multispecies Fishery; Charter/Party...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    .... 100830405-0405-02] RIN 0648-BA09 Fisheries of the Northeastern United States; Northeast (NE) Multispecies Fishery; Charter/Party Fishery Control Date AGENCY: National Marine Fisheries Service (NMFS), National... (ANPR). SUMMARY: NMFS and the New England Fishery Management Council (Council) announce that they are...

  14. 75 FR 1582 - Endangered and Threatened Species; Designation of Critical Habitat for the Cook Inlet Beluga Whale

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... Cook Inlet Beluga Whale AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... designate critical habitat for the endangered Cook Inlet beluga whale, Delphinapterus leucas, under the... the Cook Inlet beluga whale can be found on our Web site at: http://www.fakr.noaa.gov/ FOR FURTHER...

  15. Ecological Responses to Trout Habitat Rehabilitation in a Northern Michigan Stream

    NASA Astrophysics Data System (ADS)

    Rosi-Marshall, Emma J.; Moerke, Ashley H.; Lamberti, Gary A.

    2006-07-01

    Monitoring of stream restoration projects is often limited and success often focuses on a single taxon (e.g., salmonids), even though other aspects of stream structure and function may also respond to restoration activities. The Ottawa National Forest (ONF), Michigan, conducted a site-specific trout habitat improvement to enhance the trout fishery in Cook’s Run, a 3rd-order stream that the ONF determined was negatively affected by past logging. Our objectives were to determine if the habitat improvement increased trout abundances and enhanced other ecological variables (overall habitat quality, organic matter retention, seston concentration, periphyton abundance, sediment organic matter content, and macroinvertebrate abundance and diversity) following rehabilitation. The addition of skybooms (underbank cover structures) and k-dams (pool-creating structures) increased the relative abundance of harvestable trout (>25 cm in total length) as intended but not overall trout abundances. Both rehabilitation techniques also increased maximum channel depth and organic matter retention, but only k-dams increased overall habitat quality. Neither approach significantly affected other ecological variables. The modest ecological response to this habitat improvement likely occurred because the system was not severely degraded beforehand, and thus small, local changes in habitat did not measurably affect most physical and ecological variables measured. However, increases in habitat volume and in organic matter retention may enhance stream biota in the long term.

  16. Marine fish community structure and habitat associations on the Canadian Beaufort shelf and slope

    NASA Astrophysics Data System (ADS)

    Majewski, Andrew R.; Atchison, Sheila; MacPhee, Shannon; Eert, Jane; Niemi, Andrea; Michel, Christine; Reist, James D.

    2017-03-01

    Marine fishes in the Canadian Beaufort Sea have complex interactions with habitats and prey, and occupy a pivotal position in the food web by transferring energy between lower- and upper-trophic levels, and also within and among habitats (e.g., benthic-pelagic coupling). The distributions, habitat associations, and community structure of most Beaufort Sea marine fishes, however, are unknown thus precluding effective regulatory management of emerging offshore industries in the region (e.g., hydrocarbon development, shipping, and fisheries). Between 2012 and 2014, Fisheries and Oceans Canada conducted the first baseline survey of offshore marine fishes, their habitats, and ecological relationships in the Canadian Beaufort Sea. Benthic trawling was conducted at 45 stations spanning 18-1001 m depths across shelf and slope habitats. Physical oceanographic variables (depth, salinity, temperature, oxygen), biological variables (benthic chlorophyll and integrated water-column chlorophyll) and sediment composition (grain size) were assessed as potential explanatory variables for fish community structure using a non-parametric statistical approach. Selected stations were re-sampled in 2013 and 2014 for a preliminary assessment of inter-annual variability in the fish community. Four distinct fish assemblages were delineated on the Canadian Beaufort Shelf and slope: 1) Nearshore-shelf: <50 m depth, 2) Offshore-shelf: >50 and ≤200 m depths, 3) Upper-slope: ≥200 and ≤500 m depths, and 4) Lower-slope: ≥500 m depths. Depth was the environmental variable that best explained fish community structure, and each species assemblage was spatially associated with distinct aspects of the vertical water mass profile. Significant differences in the fish community from east to west were not detected, and the species composition of the assemblages on the Canadian Beaufort Shelf have not changed substantially over the past decade. This community analysis provides a framework for testing

  17. 77 FR 25630 - Magnuson-Stevens Fishery Conservation and Management Act Provisions; Fisheries of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    .... 120316196-2195-01] RIN 0648-BB89 Magnuson-Stevens Fishery Conservation and Management Act Provisions; Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Interim Action; Withdrawn AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA...

  18. 75 FR 24482 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2010 Management Measures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    .... 100218107-0199-01] RIN 0648-AY60 Fisheries Off West Coast States; West Coast Salmon Fisheries; 2010... rule, NMFS establishes fishery management measures for the 2010 ocean salmon fisheries off Washington, Oregon, and California and the 2011 salmon seasons opening earlier than May 1, 2011. Specific fishery...

  19. Characterizing Fishing Effort and Spatial Extent of Coastal Fisheries

    PubMed Central

    Stewart, Kelly R.; Lewison, Rebecca L.; Dunn, Daniel C.; Bjorkland, Rhema H.; Kelez, Shaleyla; Halpin, Patrick N.; Crowder, Larry B.

    2010-01-01

    Biodiverse coastal zones are often areas of intense fishing pressure due to the high relative density of fishing capacity in these nearshore regions. Although overcapacity is one of the central challenges to fisheries sustainability in coastal zones, accurate estimates of fishing pressure in coastal zones are limited, hampering the assessment of the direct and collateral impacts (e.g., habitat degradation, bycatch) of fishing. We compiled a comprehensive database of fishing effort metrics and the corresponding spatial limits of fisheries and used a spatial analysis program (FEET) to map fishing effort density (measured as boat-meters per km2) in the coastal zones of six ocean regions. We also considered the utility of a number of socioeconomic variables as indicators of fishing pressure at the national level; fishing density increased as a function of population size and decreased as a function of coastline length. Our mapping exercise points to intra and interregional ‘hotspots’ of coastal fishing pressure. The significant and intuitive relationships we found between fishing density and population size and coastline length may help with coarse regional characterizations of fishing pressure. However, spatially-delimited fishing effort data are needed to accurately map fishing hotspots, i.e., areas of intense fishing activity. We suggest that estimates of fishing effort, not just target catch or yield, serve as a necessary measure of fishing activity, which is a key link to evaluating sustainability and environmental impacts of coastal fisheries. PMID:21206903

  20. Characterizing fishing effort and spatial extent of coastal fisheries.

    PubMed

    Stewart, Kelly R; Lewison, Rebecca L; Dunn, Daniel C; Bjorkland, Rhema H; Kelez, Shaleyla; Halpin, Patrick N; Crowder, Larry B

    2010-12-29

    Biodiverse coastal zones are often areas of intense fishing pressure due to the high relative density of fishing capacity in these nearshore regions. Although overcapacity is one of the central challenges to fisheries sustainability in coastal zones, accurate estimates of fishing pressure in coastal zones are limited, hampering the assessment of the direct and collateral impacts (e.g., habitat degradation, bycatch) of fishing. We compiled a comprehensive database of fishing effort metrics and the corresponding spatial limits of fisheries and used a spatial analysis program (FEET) to map fishing effort density (measured as boat-meters per km²) in the coastal zones of six ocean regions. We also considered the utility of a number of socioeconomic variables as indicators of fishing pressure at the national level; fishing density increased as a function of population size and decreased as a function of coastline length. Our mapping exercise points to intra and interregional 'hotspots' of coastal fishing pressure. The significant and intuitive relationships we found between fishing density and population size and coastline length may help with coarse regional characterizations of fishing pressure. However, spatially-delimited fishing effort data are needed to accurately map fishing hotspots, i.e., areas of intense fishing activity. We suggest that estimates of fishing effort, not just target catch or yield, serve as a necessary measure of fishing activity, which is a key link to evaluating sustainability and environmental impacts of coastal fisheries.

  1. Marine habitat mapping at Labuan Marine Park, Federal Territory of Labuan, Malaysia

    NASA Astrophysics Data System (ADS)

    Mustajap, Fazliana; Saleh, Ejria; Madin, John; Hamid, Shahimah Abdul

    2015-06-01

    Marine habitat mapping has recently become essential in coastal marine science research. It is one of the efforts to understand marine ecosystems, and thus to protect them. Habitat mapping is integral to marine-related industries such as fisheries, aquaculture, forestry and tourism. An assessment of marine habitat mapping was conducted at Labuan Marine Park (LMP), a marine protected area in the Federal Territory of Labuan. It is surrounded by shallow water within its islands (Kuraman, Rusukan Kecil and Rusukan Besar) with an area of 39.7 km2. The objectives of the study are to identify the substrate and types of marine habitat present within the park. Side scan sonar (SSS) (Aquascan TM) was used to determine the substrates and habitat while ground truthings were done through field observation and SCUBA diving survey. Seabed classification and marine habitat was based on NOAA's biogeography program. Three substrate types (sand, rock, silt) were identified in this area. The major marine habitats identified are corals, macro algae and small patches of sea grass. The study area is an important refuge for spawning and juvenile fish and supports the livelihood of the coastal communities on Labuan Island. Therefore, proper management is crucial in order to better maintain the marine protected area. The findings are significant and provide detailed baseline information on marine habitat for conservation, protection and future management in LMP.

  2. Ecosystem services and cooperative fisheries research to address a complex fishery problem

    EPA Science Inventory

    The St. Louis River represents a complex fishery management problem. Current fishery management goals have to be developed taking into account bi-state commercial, subsistence and recreational fisheries which are valued for different characteristics by a wide range of anglers, as...

  3. Spawning habitat selection of hickory shad

    USGS Publications Warehouse

    Harris, Julianne E.; Hightower, J.E.

    2011-01-01

    We examined the spawning habitat selectivity of hickory shad Alosa mediocris, an anadromous species on the Atlantic coast of North America. Using plankton tows and artificial substrates (spawning pads), we collected hickory shad eggs in the Roanoke River, North Carolina, to identify spawning timing, temperature, and microhabitat use. Hickory shad eggs were collected by both sampling gears in March and April. The results from this and three other studies in North Carolina indicate that spawning peaks at water temperatures between 12.0??C and 14.9??C and that approximately 90% occurs between 11.0??C and 18.9??C. Hickory shad eggs were collected in run and riffle habitats. Water velocity and substrate were significantly different at spawning pads with eggs than at those without eggs, suggesting that these are important microhabitat factors for spawning. Hickory shad eggs were usually collected in velocities of at least 0.1 m/s and on all substrates except those dominated by silt. Eggs were most abundant on gravel, cobble, and boulder substrates. Hickory shad spawned further upstream in years when water discharge rates at Roanoke Rapids were approximately average during March and April (2005 and 2007), as compared with a severe drought year (2006), suggesting that water flows may affect not only spawning site selection but also the quantity and quality of spawning habitat available at a macrohabitat scale. Using our field data and a Bayesian approach to resource selection analysis, we developed a preliminary habitat suitability model for hickory shad. This Bayesian approach provides an objective framework for updating the model as future studies of hickory shad spawning habitat are conducted. ?? American Fisheries Society 2011.

  4. Stopover habitats of spring migrating surf scoters in southeast Alaska

    USGS Publications Warehouse

    Lok, E.K.; Esler, Daniel N.; Takekawa, John Y.; De La Cruz, S.W.; Sean, Boyd W.; Nysewander, D.R.; Evenson, J.R.; Ward, D.H.

    2011-01-01

    Habitat conditions and nutrient reserve levels during spring migration have been suggested as important factors affecting population declines in waterfowl, emphasizing the need to identify key sites used during spring and understand habitat features and resource availability at stopover sites. We used satellite telemetry to identify stopover sites used by surf scoters migrating through southeast Alaska during spring. We then contrasted habitat features of these sites to those of random sites to determine habitat attributes corresponding to use by migrating scoters. We identified 14 stopover sites based on use by satellite tagged surf scoters from several wintering sites. We identified Lynn Canal as a particularly important stopover site for surf scoters originating throughout the Pacific winter range; approximately half of tagged coastally migrating surf scoters used this site, many for extended periods. Stopover sites were farther from the mainland coast and closer to herring spawn sites than random sites, whereas physical shoreline habitat attributes were generally poor predictors of site use. The geography and resource availability within southeast Alaska provides unique and potentially critical stopover habitat for spring migrating surf scoters. Our work identifies specific sites and habitat resources that deserve conservation and management consideration. Aggregations of birds are vulnerable to human activity impacts such as contaminant spills and resource management decisions. This information is of value to agencies and organizations responsible for emergency response planning, herring fisheries management, and bird and ecosystem conservation.

  5. Evidence for habitat-driven segregation of an estuarine fish assemblage.

    PubMed

    Loureiro, S N; Reis-Filho, J A; Giarrizzo, T

    2016-07-01

    This study examined the spatio-temporal variability in fish assemblage structure and composition following monthly sampling (August 2006 to July 2007). Three estuarine zones (upper, middle and lower) of the unvegetated intertidal and subtidal channel habitats located in the Marapanim Estuary were investigated. In each of these zones, salinity, organic matter and sediment types were measured to assess any correlation between habitat types and the fish fauna. A total of 41 496 fishes, belonging to 76 species and 29 families, was recorded. Recurring changes in both species composition and trophic structure were attributed to seasonal variations, while habitat type played a more permanent role in modifying the structure of fish assemblages. Zooplanktivores (e.g. Lycengraulis grossidens) and herbivores (e.g. Cetengraulis edentulus) used the intertidal habitat almost exclusively and were associated with salinity and substratum composition (gravel, silt and mud). In contrast, benthophages (e.g. Cathorops spixii) and benthophage-ichthyophages (e.g. Cynoscion leiarchus) were primarily associated with the subtidal habitat throughout the estuary and were highly related to the presence of sandy substrata. This study highlighted the intricate roles that local factors (such as habitat connectivity) may have on the distribution of fishes at the assemblage level. As such, incorporating habitat sharing or segregation between species should be viewed as essential for any comparisons of estuaries over large geographic scales, and in particular for conservation planning and management measures. © 2016 The Fisheries Society of the British Isles.

  6. Social-ecological outcomes in recreational fisheries: the interaction of lakeshore development and stocking.

    PubMed

    Ziegler, Jacob P; Golebie, Elizabeth J; Jones, Stuart E; Weidel, Brian C; Solomon, Christopher T

    2017-01-01

    Many ecosystems continue to experience rapid transformations due to processes like land use change and resource extraction. A systems approach to maintaining natural resources focuses on how interactions and feedbacks among components of complex social-ecological systems generate social and ecological outcomes. In recreational fisheries, residential shoreline development and fish stocking are two widespread human behaviors that influence fisheries, yet emergent social-ecological outcomes from these potentially interacting behaviors remain under explored. We applied a social-ecological systems framework using a simulation model and empirical data to determine whether lakeshore development is likely to promote stocking through its adverse effects on coarse woody habitat and thereby also on survival of juvenile and adult fish. We demonstrate that high lakeshore development is likely to generate dependency of the ecosystem on the social system, in the form of stocking. Further, lakeshore development can interact with social-ecological processes to create deficits for state-level governments, which threatens the ability to fund further ecosystem subsidies. Our results highlight the value of a social-ecological framework for maintaining ecosystem services like recreational fisheries. © 2016 by the Ecological Society of America.

  7. Post-breeding season distribution of black-footed and Laysan albatrosses satellite-tagged in Alaska: Inter-specific differences in spatial overlap with North Pacific fisheries

    USGS Publications Warehouse

    Fischer, K.N.; Suryan, R.M.; Roby, D.D.; Balogh, G.R.

    2009-01-01

    We integrated satellite-tracking data from black-footed albatrosses (Phoebastria nigripes; n = 7) and Laysan albatrosses captured in Alaska (Phoebastria immutabilis; n = 18) with data on fishing effort and distribution from commercial fisheries in the North Pacific in order to assess potential risk from bycatch. Albatrosses were satellite-tagged at-sea in the Central Aleutian Islands, Alaska, and tracked during the post-breeding season, July-October 2005 and 2006. In Alaskan waters, fishing effort occurred almost exclusively within continental shelf and slope waters. Potential fishery interaction for black-footed albatrosses, which most often frequented shelf-slope waters, was greatest with sablefish (Anoplopoma fimbria) longline and pot fisheries and with the Pacific halibut (Hippoglossus stenolepsis) longline fishery. In contrast, Laysan albatrosses spent as much time over oceanic waters beyond the continental shelf and slope, thereby overlapping less with fisheries in Alaska than black-footed albatrosses. Regionally, Laysan albatrosses had the greatest potential fishery interaction with the Atka mackerel (Pleurogrammus monopterygius) trawl fishery in the Western Aleutian Islands and the sablefish pot fishery in the Central Aleutian Islands. Black-footed albatrosses ranged further beyond Alaskan waters than Laysan albatrosses, overlapping west coast Canada fisheries and pelagic longline fisheries in the subarctic transition domain; Laysan albatrosses remained north of these pelagic fisheries. Due to inter-specific differences in oceanic distribution and habitat use, the overlap of fisheries with the post-breeding distribution of black-footed albatrosses is greater than that for Laysan albatrosses, highlighting inter-specific differences in potential vulnerability to bycatch and risk of population-level impacts from fisheries. ?? 2008 Elsevier Ltd.

  8. Effects of timber harvest on aquatic vertebrates and habitat in the North Fork Caspar Creek

    Treesearch

    Rodney J. Nakamoto

    1998-01-01

    I examined the relationships between timber harvest, creek habitat, and vertebrate populations in the North and South forks of Caspar Creek. Habitat inventories suggested pool availability increased after the onset of timber harvest activities. Increased large woody debris in the channel was associated with an increase in the frequency of blowdown in the riparian...

  9. Potential Climate Change Effects on the Habitat of Antarctic Krill in the Weddell Quadrant of the Southern Ocean

    PubMed Central

    Hill, Simeon L.; Phillips, Tony; Atkinson, Angus

    2013-01-01

    Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0° and 90°W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2°C per decade, and projections suggest that further widespread warming of 0.27° to 1.08°C will occur by the late 21st century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat’s ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services. PMID:23991072

  10. Functional morphology of the tetra fish Astyanax lacustris differs between divergent habitats in the Pantanal wetlands.

    PubMed

    Costa-Pereira, R; Araújo, M S; Paiva, F; Tavares, L E R

    2016-08-01

    This study investigated whether the body morphology of the tetra fish Astyanax lacustris (previously Astyanax asuncionensis) varied between populations inhabiting one lagoon (a lentic, shallow environment, with great habitat complexity created by aquatic macrophytes) and an adjacent river (a deeper, lotic environment where aquatic macrophytes are scarce) in a seasonally flooded wetland, despite population mixing during the wet season. Morphological differences matched a priori predictions of the theory relating functional body morphology and swimming performance in fishes between lagoon and river habitats. Observed morphological variation could have resulted from adaptive habitat choice by tetras, predation by piscivores and adaptive phenotypic plasticity during development. © 2016 The Fisheries Society of the British Isles.

  11. Ecosystem oceanography for global change in fisheries.

    PubMed

    Cury, Philippe Maurice; Shin, Yunne-Jai; Planque, Benjamin; Durant, Joël Marcel; Fromentin, Jean-Marc; Kramer-Schadt, Stephanie; Stenseth, Nils Christian; Travers, Morgane; Grimm, Volker

    2008-06-01

    Overexploitation and climate change are increasingly causing unanticipated changes in marine ecosystems, such as higher variability in fish recruitment and shifts in species dominance. An ecosystem-based approach to fisheries attempts to address these effects by integrating populations, food webs and fish habitats at different scales. Ecosystem models represent indispensable tools to achieve this objective. However, a balanced research strategy is needed to avoid overly complex models. Ecosystem oceanography represents such a balanced strategy that relates ecosystem components and their interactions to climate change and exploitation. It aims at developing realistic and robust models at different levels of organisation and addressing specific questions in a global change context while systematically exploring the ever-increasing amount of biological and environmental data.

  12. 78 FR 75267 - Fisheries of the Northeastern United States; Summer Flounder Fishery; Commercial Quota Available...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    .... 111220786-1781-01] RIN 0648-XD012 Fisheries of the Northeastern United States; Summer Flounder Fishery... announces that the 2013 summer flounder commercial fishery in the State of New Jersey will be reopened to... Federal fisheries permit for the summer flounder fishery may land summer flounder in New Jersey until the...

  13. 76 FR 16595 - Magnuson-Stevens Fishery Conservation and Management Act Provisions; Fisheries of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ... United States; Atlantic Sea Scallop Fishery; Amendment 15 to the Atlantic Sea Scallop Fishery Management... Amendment 15 to the Atlantic Sea Scallop Fishery Management Plan (FMP) (Amendment 15), incorporating the... basis for scallop fishery specifications, including days-at-sea, access area trip allocations, and IFQs...

  14. 75 FR 81142 - Magnuson-Stevens Fishery Conservation and Management Act Provisions; Fisheries of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ...; Fisheries of the Northeastern United States; Atlantic Surfclam and Ocean Quahog Fishery; Final 2011-2013 Fishing Quotas for Atlantic Surfclam and Ocean Quahog AGENCY: National Marine Fisheries Service (NMFS... implements final quotas for the Atlantic surfclam and ocean quahog fisheries for 2011, 2012, and 2013...

  15. Pollution, habitat loss, fishing, and climate change as critical threats to penguins.

    PubMed

    Trathan, Phil N; García-Borboroglu, Pablo; Boersma, Dee; Bost, Charles-André; Crawford, Robert J M; Crossin, Glenn T; Cuthbert, Richard J; Dann, Peter; Davis, Lloyd Spencer; De La Puente, Santiago; Ellenberg, Ursula; Lynch, Heather J; Mattern, Thomas; Pütz, Klemens; Seddon, Philip J; Trivelpiece, Wayne; Wienecke, Barbara

    2015-02-01

    Cumulative human impacts across the world's oceans are considerable. We therefore examined a single model taxonomic group, the penguins (Spheniscidae), to explore how marine species and communities might be at risk of decline or extinction in the southern hemisphere. We sought to determine the most important threats to penguins and to suggest means to mitigate these threats. Our review has relevance to other taxonomic groups in the southern hemisphere and in northern latitudes, where human impacts are greater. Our review was based on an expert assessment and literature review of all 18 penguin species; 49 scientists contributed to the process. For each penguin species, we considered their range and distribution, population trends, and main anthropogenic threats over the past approximately 250 years. These threats were harvesting adults for oil, skin, and feathers and as bait for crab and rock lobster fisheries; harvesting of eggs; terrestrial habitat degradation; marine pollution; fisheries bycatch and resource competition; environmental variability and climate change; and toxic algal poisoning and disease. Habitat loss, pollution, and fishing, all factors humans can readily mitigate, remain the primary threats for penguin species. Their future resilience to further climate change impacts will almost certainly depend on addressing current threats to existing habitat degradation on land and at sea. We suggest protection of breeding habitat, linked to the designation of appropriately scaled marine reserves, including in the High Seas, will be critical for the future conservation of penguins. However, large-scale conservation zones are not always practical or politically feasible and other ecosystem-based management methods that include spatial zoning, bycatch mitigation, and robust harvest control must be developed to maintain marine biodiversity and ensure that ecosystem functioning is maintained across a variety of scales. © 2014 The Authors. Conservation Biology

  16. Seasonal distribution, aggregation, and habitat selection of common carp in Clear Lake, Iowa

    USGS Publications Warehouse

    Penne, C.R.; Pierce, C.L.

    2008-01-01

    The common carp Cyprinus carpio is widely distributed and frequently considered a nuisance species outside its native range. Common carp are abundant in Clear Lake, Iowa, where their presence is both a symptom of degradation and an impediment to improving water quality and the sport fishery. We used radiotelemetry to quantify seasonal distribution, aggregation, and habitat selection of adult and subadult common carp in Clear Lake during 2005-2006 in an effort to guide future control strategies. Over a 22-month period, we recorded 1,951 locations of 54 adults and 60 subadults implanted with radio transmitters. Adults demonstrated a clear tendency to aggregate in an offshore area during the late fall and winter and in shallow, vegetated areas before and during spring spawning. Late-fall and winter aggregations were estimated to include a larger percentage of the tracked adults than spring aggregations. Subadults aggregated in shallow, vegetated areas during the spring and early summer. Our study, when considered in combination with previous research, suggests repeatable patterns of distribution, aggregation, and habitat selection that should facilitate common carp reduction programs in Clear Lake and similar systems. ?? Copyright by the American Fisheries Society 2008.

  17. 78 FR 65888 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Trip Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... economic impacts to the common pool fishery. There is additional good cause to waive the delayed effective... Fishery; Trip Limit Adjustments for the Common Pool Fishery AGENCY: National Marine Fisheries Service... hake, and pollock for Northeast multispecies common pool vessels for the remainder of the 2013 fishing...

  18. 50 CFR 300.106 - Exploratory fisheries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Exploratory fisheries. 300.106 Section 300.106 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Antarctic Marine Living Resources § 300.106 Exploratory fisheries. (a) An exploratory fishery, for...

  19. 50 CFR 300.106 - Exploratory fisheries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Exploratory fisheries. 300.106 Section 300.106 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Antarctic Marine Living Resources § 300.106 Exploratory fisheries. (a) An exploratory fishery, for...

  20. Estimating habitat value using forest inventory data: the fisher (Martes pennanti) in northwestern California

    Treesearch

    William J. Zielinski; Jeffrey R. Dunk; Andrew N. Gray

    2012-01-01

    Managing forests for multiple objectives requires balancing timber and vegetation management objectives with needs of sensitive species. Especially challenging is how to retain the habitat elements for species that are typically associated with late-seral forests. We develop a regionally specific, multivariate model describing habitat selection that can be used – when...

  1. 78 FR 42478 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Trip Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... Fishery; Trip Limit Adjustment for the Common Pool Fishery AGENCY: National Marine Fisheries Service (NMFS... (SNE/MA) winter flounder for Northeast multispecies common pool vessels for the remainder of the 2013... Area (TAC) for the remainder of Trimester 1, through August 31, 2013, because the common pool fishery...

  2. 78 FR 45896 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Trimester Closure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... Fishery; Trimester Closure for the Common Pool Fishery AGENCY: National Marine Fisheries Service (NMFS... remainder of Trimester 1, through August 31, 2013. Based on our projection, the common pool fishery has... area for the remainder of the trimester. This action is intended to prevent an overage of the common...

  3. Stable carbon and oxygen isotope ratios of winter flounder otoliths assess connectivity between juvenile and adult habitats

    NASA Astrophysics Data System (ADS)

    Pruell, Richard; Taplin, Bryan

    2017-04-01

    Winter flounder populations (Pseudopleuronectes americanus) have significantly declined in recent years along the Rhode Island, USA coastline. The reasons for this decline are not completely clear; however, habitat loss may be a factor. Therefore, knowledge of connectivity between juvenile nearshore habitats and the adult offshore populations may be important for improved management of this fishery. This study was undertaken to determine if stable carbon (δ13C) and oxygen (δ18O) isotope ratios in otoliths could be used to differentiate the locations that serve as important juvenile habitats for winter flounder. It is generally believed that winter flounder spawn during late winter in nearshore areas, and juvenile fish reside in shallow-water habitats along the coastline during their first summer. Once young-of-the-year flounder undergo metamorphosis and settle, they remain in close proximity to that site until fall. Adult fish move offshore during the late winter and spring, and then return to their natal estuaries during the fall and winter to spawn. Juvenile flounder were collected yearly over a three-year period from 18 juvenile habitats with a wide range of salinities. Several years later adult flounder of the same cohorts were obtained from similar inshore locations and also from the offshore fishery. Sagital otoliths were removed from the adult flounder and the core of the otolith representing the juvenile period was obtained using a Micromill drilling system. These juvenile otolith cores from adult fish and whole sagittal otoliths from juvenile flounder were analyzed for δ13C and δ18O using continuous-flow isotope ratio mass spectrometry. Results from these analyses show significant differences in δ13C and δ18O signatures among water bodies (bay, coastal ponds and an estuarine river). Preliminary analysis indicates that the isotope ratios of the juvenile cores from adult flounder and whole otoliths from juvenile fish collected at the same locations

  4. Impact of Fishery Policy on Fishery Manufacture Output, Economy and Welfare in Indonesia

    NASA Astrophysics Data System (ADS)

    Firmansyah; Oktavilia, Shanty; Sugiyanto, F. X.; Hamzah, Ibnu N.

    2018-02-01

    The fisheries sector and fish manufacturing industry are the bright prospect sectors of Indonesia, due to its huge potency, which has not been worked out optimally. In facts, these sectors can generate a large amount of foreign exchange. The Government has paid significant attention to the development of these sectors. This study simulates the impact of fishery policies on the production of fish manufacturing industry, national economic and welfare in Indonesia. By employing the Input-Output Analysis approach, impacts of various government policy scenarios are developed, covering fisheries technical policy, as well as infrastructure development policies in the fisheries sector. This study indicates that the policies in the fisheries sector increase the output of fishery, the production of fish manufacturing industry, the sectoral and national outputs, as well as the level of national income.

  5. Fisheries: hope or despair?

    PubMed

    Pitcher, Tony J; Cheung, William W L

    2013-09-30

    Recent work suggesting that fisheries depletions have turned the corner is misplaced because analysis was based largely on fisheries from better-managed developed-world fisheries. Some indicators of status show improvements in the minority of fisheries subjected to formal assessment. Other indicators, such as trophic level and catch time series, have been controversial. Nevertheless, several deeper analyses of the status of the majority of world fisheries confirm the previous dismal picture: serious depletions are the norm world-wide, management quality is poor, catch per effort is still declining. The performance of stock assessment itself may stand challenged by random environmental shifts and by the need to accommodate ecosystem-level effects. The global picture for further fisheries species extinctions, the degradation of ecosystem food webs and seafood security is indeed alarming. Moreover, marine ecosystems and their embedded fisheries are challenged in parallel by climate change, acidification, metabolic disruptors and other pollutants. Attempts to remedy the situation need to be urgent, focused, innovative and global. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Umatilla River Basin Anadromus Fish Habitat Enhancement Project : 1994 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, R. Todd

    1994-05-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, Section 7.6-7.8 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower l/4 mile of Boston Canyon Creek, the lower 4more » river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994-95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation. Four 15 year riparian easements and two right-of-way agreements were secured for enhancement of one river mile on Wildhorse Creek and l/2 river mile on Meacham Creek. Enhancements implemented between river mile (RM) 9.5 and RM 10.5 Wildhorse Creek included: (1) installation of 1.43 miles of smooth wire high tensile fence line and placement of 0.43 miles of fence posts and structures to restrict livestock from the riparian corridor, (2) construction of eighteen sediment retention structures in the stream channel to speed riparian recovery by elevating the stream grade, slowing water velocities and

  7. Habitat association of larval fish assemblages in the northern Persian Gulf.

    PubMed

    Rabbaniha, Mahnaz; Molinero, Juan Carlos; López-López, Lucia; Javidpour, Jamileh; Primo, Ana Ligia; Owfi, Feryadoon; Sommer, Ulrich

    2015-08-15

    We examined the habitat use of fish larvae in the northern Persian Gulf from July 2006 to June 2007. Correspondence Analysis showed significant differences between hydrological seasons in habitat use and structure of larval fish assemblages, while no differences were found regarding abundance among coralline and non-coralline habitats. The observed configuration resulted in part from seasonal reproductive patterns of dominant fish influencing the ratio pelagic:demersal spawned larvae. The ratio increased along with temperature and chlorophyll-a concentration, which likely fostered the reproduction of pelagic spawner fish. The close covariation with temperature throughout hydrographic seasons suggests a leading role of temperature in the seasonal structure of larvae assemblages. Our results provide new insights on fish larval ecology in a traditionally sub-sampled and highly exposed zone to anthropogenic pollution, the northern Persian Gulf, and highlight the potential role of Khark and Kharko Islands in conservation and fishery management in the area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Ragweed (Ambrosia) pollen source inventory for Austria.

    PubMed

    Karrer, G; Skjøth, C A; Šikoparija, B; Smith, M; Berger, U; Essl, F

    2015-08-01

    This study improves the spatial coverage of top-down Ambrosia pollen source inventories for Europe by expanding the methodology to Austria, a country that is challenging in terms of topography and the distribution of ragweed plants. The inventory combines annual ragweed pollen counts from 19 pollen-monitoring stations in Austria (2004-2013), 657 geographical observations of Ambrosia plants, a Digital Elevation Model (DEM), local knowledge of ragweed ecology and CORINE land cover information from the source area. The highest mean annual ragweed pollen concentrations were generally recorded in the East of Austria where the highest densities of possible growth habitats for Ambrosia were situated. Approximately 99% of all observations of Ambrosia populations were below 745m. The European infection level varies from 0.1% at Freistadt in Northern Austria to 12.8% at Rosalia in Eastern Austria. More top-down Ambrosia pollen source inventories are required for other parts of Europe. A method for constructing top-down pollen source inventories for invasive ragweed plants in Austria, a country that is challenging in terms of topography and ragweed distribution. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  9. Is biodiversity friendly fisheries management possible on Issyk-Kul Lake in the Kyrgyz Republic?

    PubMed

    Alamanov, Azat; Mikkola, Heimo

    2011-07-01

    This paper aims to identify challenges, and threats, and further explore opportunities for a new Biodiversity Friendly Fisheries Management Regime on the Issyk-Kul Lake in the Kyrgyz Republic. This lake is the second largest high-altitude lake in the world providing recreational and small-scale fishing activities as well as cage culture of introduced species. The populations of several indigenous species are seriously threatened, because many of the introduced species are potential predators. We examine the root causes for overfishing and relationships of alien and endemic fish species in Issyk-Kul Lake and give possible policy options that can help remediate or mitigate the biodiversity degradation. This analysis focuses on necessary legal modifications, institutional cooperation, the protection of selected endemic fish species, control of the alien species, the sustainable extension services and management of fish ponds. Fisheries co-management is one option to explore shared stewardship and empowering user groups on the lake. A comprehensive fisheries management plan is also needed, in addition to immediate action and further studies on the following wider aspects: water management/irrigation issues, water-quality assessment near cage cultures, sociocultural issues, resource inventory, and assessing fish biology and the lake ecosystem.

  10. Variability of Suitable Habitat of Western Winter-Spring Cohort for Neon Flying Squid in the Northwest Pacific under Anomalous Environments.

    PubMed

    Yu, Wei; Chen, Xinjun; Yi, Qian; Chen, Yong; Zhang, Yang

    2015-01-01

    We developed a habitat suitability index (HSI) model to evaluate the variability of suitable habitat for neon flying squid (Ommastrephes bartramii) under anomalous environments in the Northwest Pacific Ocean. Commercial fisheries data from the Chinese squid-jigging vessels on the traditional fishing ground bounded by 35°-45°N and 150°-175°E from July to November during 1998-2009 were used for analyses, as well as the environmental variables including sea surface temperature (SST), chlorophyll-a (Chl-a) concentration, sea surface height anomaly (SSHA) and sea surface salinity (SSS). Two empirical HSI models (arithmetic mean model, AMM; geometric mean model, GMM) were established according to the frequency distribution of fishing efforts. The AMM model was found to perform better than the GMM model. The AMM-based HSI model was further validated by the fishery and environmental data in 2010. The predicted HSI values in 1998 (high catch), 2008 (average catch) and 2009 (low catch) indicated that the squid habitat quality was strongly associated with the ENSO-induced variability in the oceanic conditions on the fishing ground. The La Niña events in 1998 tended to yield warm SST and favorable range of Chl-a concentration and SSHA, resulting in high-quality habitats for O. bartramii. While the fishing ground in the El Niño year of 2009 experienced anomalous cool waters and unfavorable range of Chl-a concentration and SSHA, leading to relatively low-quality squid habitats. Our findings suggest that the La Niña event in 1998 tended to result in more favorable habitats for O. bartramii in the Northwest Pacific with the gravity centers of fishing efforts falling within the defined suitable habitat and yielding high squid catch; whereas the El Niño event in 2009 yielded less favorable habitat areas with the fishing effort distribution mismatching the suitable habitat and a dramatic decline of the catch of O. bartramii. This study might provide some potentially valuable

  11. 77 FR 22678 - Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    .... 110707371-2136-02] RIN 0648- XB145 Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries; Closure of the Trimester 1 Longfin Squid Fishery AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION...

  12. Defining fish nursery habitats: an application of otolith elemental fingerprinting in Tampa Bay, Florida

    USGS Publications Warehouse

    Ley, Janet A.; McIvor, Carole C.; Peebles, Ernst B; Rolls, Holly; Cooper, Suzanne T.

    2009-01-01

    Fishing in Tampa Bay enhances the quality of life of the area's residents and visitors. However, people's desire to settle along the Bay's shorelines and tributaries has been detrimental to the very habitat believed to be crucial to prime target fishery species. Common snook (Centropomus undecimalis) and red drum (Sciaenops ocellatus) are part of the suite of estuarine fishes that 1) are economically or ecologically prominent, and 2) have complex life cycles involving movement between open coastal waters and estuarine nursery habitats, including nursery habitats that are located within upstream, low-salinity portions of the Bay?s tidal tributaries. We are using an emerging microchemical technique -- elemental fingerprinting of fish otoliths -- to determine the degree to which specific estuarine locations contribute to adult fished populations in Tampa Bay. In ongoing monitoring surveys, over 1,000 young-of-the-year common snook and red drum have already been collected from selected Tampa Bay tributaries. Using laser ablation-inductively coupled plasma - mass spectrometry (LA-ICP-MS), we are currently processing a subsample of these archived otoliths to identify location-specific fingerprints based on elemental microchemistry. We will then analyze older fish from the local fishery in order to match them to their probable nursery areas, as defined by young-of-the-year otoliths. We expect to find that some particularly favorable nursery locations contribute disproportionately to the fished population. In contrast, other nursery areas may be degraded, or act as 'sinks', thereby decreasing their contribution to the fish population. Habitat managers can direct strategic efforts to protect any nursery locations that are found to be of prime importance in contributing to adult stocks.

  13. Developing user-friendly habitat suitability tools from regional stream fish survey data

    USGS Publications Warehouse

    Zorn, T.G.; Seelbach, P.; Wiley, M.J.

    2011-01-01

    We developed user-friendly fish habitat suitability tools (plots) for fishery managers in Michigan; these tools are based on driving habitat variables and fish population estimates for several hundred stream sites throughout the state. We generated contour plots to show patterns in fish biomass for over 60 common species (and for 120 species grouped at the family level) in relation to axes of catchment area and low-flow yield (90% exceedance flow divided by catchment area) and also in relation to axes of mean and weekly range of July temperatures. The plots showed distinct patterns in fish habitat suitability at each level of biological organization studied and were useful for quantitatively comparing river sites. We demonstrate how these plots can be used to support stream management, and we provide examples pertaining to resource assessment, trout stocking, angling regulations, chemical reclamation of marginal trout streams, indicator species, instream flow protection, and habitat restoration. These straightforward and effective tools are electronically available so that managers can easily access and incorporate them into decision protocols and presentations.

  14. 78 FR 50347 - Fisheries Off West Coast States; Modifications of the West Coast Commercial Salmon Fisheries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Commercial Salmon Fisheries; Inseason Actions 6 Through 11 AGENCY: National Marine Fisheries Service (NMFS... salmon fisheries. These inseason actions modified the commercial fisheries in the area from the U.S...: Background In the 2013 annual management measures for ocean salmon fisheries (78 FR 25865, May 3, 2013), NMFS...

  15. Umatilla River Basin Anadromous Fsh Habitat Enhancement Project : 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, R. Todd

    2001-12-31

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2000 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla River Basin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Habitat enhancement projects continued to be maintained on 44 private properties, four riparian easements and one in-stream enhancement agreement were secured, two new projects implemented and two existing projects improved to enhance anadromous fish habitat and natural fisheries production capabilitiesmore » in the Umatilla River Basin. New project locations included sites on the mid Umatilla River and Buckaroo Creek. Improvements were implemented at existing project sites on the upper Umatilla River and Wildhorse Creek. A stream bank stabilization project was implemented at approximately River Mile 37.4 Umatilla River to stabilize 760 feet of eroding stream bank and improve in-stream habitat diversity. Habitat enhancements at this site included construction of six rock barbs with one large conifer root wad incorporated into each barb, stinging approximately 10,000 native willow cuttings, planting 195 tubling willows and 1,800 basin wildrye grass plugs, and seeding 40 pounds of native grass seed. Staff time to assist in development of a subcontract and fence materials were provided to establish eight spring sites for off-stream watering and to protect wetlands within the Buckaroo Creek Watershed. A gravel bar was moved and incorporated into an adjacent point bar to reduce stream energy and stream channel confinement within the existing project area at River Mile 85 Umatilla River. Approximately 10,000 native willow cuttings were stung and trenched into the stream channel margins and stream banks, and

  16. 78 FR 43005 - Endangered and Threatened Species: Designation of Critical Habitat for the Northwest Atlantic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ...We, the National Marine Fisheries Service (NMFS), propose critical habitat for the Northwest Atlantic Ocean loggerhead sea turtle Distinct Population Segment (DPS) (Caretta caretta) within the Atlantic Ocean and the Gulf of Mexico. Specific areas proposed for designation include 36 occupied marine areas within the range of the Northwest Atlantic Ocean DPS. These areas contain one or a combination of nearshore reproductive habitat, winter area, breeding areas, and migratory corridors. We are also asking for comment on whether to include as critical habitat in the final rule some areas that contain foraging habitat and two large areas that contain Sargassum habitat. The U.S. Fish and Wildlife Service addressed terrestrial areas (nesting beaches) in a separate document. No marine areas meeting the definition of critical habitat were identified within the jurisdiction of the United States for the North Pacific Ocean DPS, and therefore we are not proposing to designate critical habitat for that DPS. We are soliciting comments from the public on all aspects of the proposal, including information on the economic, national security, and other relevant impacts. We will consider additional information received prior to making a final designation.

  17. The Influence of Angler Values, Involvement, Catch Orientation, Satisfaction, Agency Trust, and Demographics on Support for Habitat Protection and Restoration Versus Stocking in Publicly Managed Waters.

    PubMed

    Schroeder, Susan A; Fulton, David C; Altena, Eric; Baird, Heather; Dieterman, Douglas; Jennings, Martin

    2018-05-23

    Resource managers benefit from knowledge of angler support for fisheries management strategies. Factors including angler values (protection, utilitarian, and dominance), involvement (attraction, centrality, social, identity affirmation, and expression), catch-related motivations (catching some, many, and big fish, and keeping fish), satisfaction, agency trust, and demographics may relate to fisheries management preferences. Using results from a mail survey of Minnesota resident anglers, we explored how these factors were related to budget support for fish stocking relative to habitat protection/restoration. Results suggest that values, angler involvement, catch orientation, satisfaction, total and recent years fishing, age, and education influence relative support for stocking versus habitat protection/restoration. Utilitarian values, angling centrality, an orientation to catch many fish, satisfaction with the number of fish caught, number of recent years fishing, and age positively related to support for stocking over habitat management, while protection values, attraction to angling, total years fishing, and education level were negatively related to relative support for stocking.

  18. Fisheries 2016 Data

    EPA Pesticide Factsheets

    Fish collection data associated with the data analysis presented in Hoffman et al. 2016. Fisheries 41(1):26-37, DOI: 10.1080/03632415.2015.1114926This dataset is associated with the following publication:Hoffman , J., J. Schloesser, A. Trebitz , G. Peterson , M. Gutsch , H. Quinlan, and J. Kelly. Sampling design for early detection of aquatic invasive species in Great Lakes ports. FISHERIES. American Fisheries Society, Bethesda, MD, USA, 41(1): 26-37, (2016).

  19. 75 FR 18355 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Framework Adjustment 44

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Framework Adjustment 44; Final... [Docket No. 0910051338-0151-02] RIN 0648-AY29 Fisheries of the Northeastern United States; Northeast... implements measures approved under Framework Adjustment 44 (FW 44) to the Northeast (NE) Multispecies Fishery...

  20. Can functional equivalency between seagrasses and other coastal habitats offset loss of ecosystem health with reduced seagrass abundance?

    NASA Astrophysics Data System (ADS)

    Cebrian, J.; Anton, A.; Christiaen, B.; Gamble, R.; Stutes, J.

    2016-02-01

    Seagrasses provide important ecosystem services, such as habitat for fisheries, shoreline stabilization, pollution filtration, and carbon sequestration. Thus, seagrass loss may seriously compromise coastal ecosystem services worldwide. However, functional equivalency (or redundancy) between seagrasses and other components of coastal ecosystems, such as algae and marshes, can offset the loss of services under declining seagrass abundance. That is, if seagrasses are redundant with algae and marshes in their functionality, then ecosystem services may be preserved in changing coasts with declining seagrass but pervading algal and marsh communities. Here we present several instances of functional redundancy between seagrasses and other coastal components in the Northern Gulf of Mexico. We first examine how net ecosystem production, which sets a limit to carbon accumulation and export to neighbouring communities, changes with eutrophication-induced seagrass decline and concomitant increase in algal abundance. Results from comparative and manipulative field studies are congruent and show no change in net ecosystem production despite drastic shifts from seagrass to algal dominance. We further provide evidence that fringing marshes can counteract the reduction in habitat provision for structure-dependent fisheries due to seagrass loss. Using a large-scale field comparison we show that, as long as fringing marshes are preserved, the abundance and diversity of structure-dependent fisheries are maintained despite large seagrass loss. Functional redundancy for habitat provision also occurs between seagrasses and well-oxygenated macroagal stands, since canopy-dwelling faunal abundance remains unaltered if seagrasses are replaced by normoxic algal stands. In concert the results demonstrate substantial functional equivalency between seagrasses and other coastal components, and indicate seagrass loss does not necessarily result in depressed coastal ecosystem health and services.

  1. Seasonal variation in habitat use of juvenile Steelhead in a tributary of Lake Ontario

    USGS Publications Warehouse

    Studdert, Emily W.; Johnson, James H.

    2015-01-01

    We examined seasonal-habitat use by subyearling and yearling Oncorhynchus mykiss (Rainbow Trout or Steelhead) in Trout Brook, a tributary of the Salmon River, NY. We determined daytime fish-habitat use and available habitat during August and October of the same year and observed differences in habitat selection among year classes. Water depth and cover played the greatest role in Steelhead habitat use. During summer and autumn, we found yearling Steelhead in areas with deeper water and more cover than where we observed subyearling Steelhead. Both year classes sought out areas with abundant cover during both seasons; this habitat was limited within the stream reach. Subyearling Steelhead were associated with more cover during autumn, even though available cover within the stream reach was greater during summer. Principal component analysis showed that variation in seasonal-habitat use was most pronounced for subyearling Steelhead and that yearling Steelhead were more selective in their habitat use than subyearling Steelhead. The results of this study contribute to a greater understanding of how this popular sportfish is adapting to a new environment and the factors that may limit juvenile Steelhead survival. Our findings provide valuable new insights into the seasonal-habitat requirements of subyearling and yearling Steelhead that can be used by fisheries managers to enhance and protect the species throughout the Great Lakes region.

  2. Pilot Inventory of mammals, reptiles, and amphibians, Golden Gate National Recreation Area, California, 1990-1997

    USGS Publications Warehouse

    Semenoff-Irving, M.; Howell, J.A.

    2005-01-01

    The United States Geological Survey Golden Gate Field Station conducted a baseline inventory of terrestrial vertebrates within the Golden Gate National Recreation Area (GGNRA), Marin, San Francisco, and San Mateo Counties, California between 1990 and 1997. We established 456 permanent study plots in 6 major park habitats, including grassland, coastal scrub, riparian woodland, coastal wetland, broad-leaved evergreen forest, and needle-leaved evergreen forest. We tested multiple inventory methods, including live traps, track plate stations, and artificial cover boards, across all years and habitats. In most years, sampling occurred in 3?4 primary sampling sessions between July and September. In 1994, additional sampling occurred in February and May in conjunction with an assessment of Hantavirus exposure in deer mice (Peromyscus maniculatus). Overall, we detected 32 mammal, 14 reptile, and 6 amphibian species during 25,222 trap-nights of effort. The deer mouse?the most abundant species detected--accounted for 67% of total captures. We detected the Federal Endangered salt marsh harvest mouse (Reithrodontomys raviventris) at one coastal wetland plot in 1992. This project represents the first phase in the development of a comprehensive terrestrial vertebrate inventory and monitoring program for GGNRA. This report summarizes data on relative abundance, frequency of occurrence, distribution across habitat types, and trap success for terrestrial vertebrates detected during this 7-year effort. It includes comprehensive descriptions of the inventory methods and sampling strategies employed during this survey and is intended to help guide the park in the implementation of future longterm ecological monitoring programs.

  3. Pilot Inventory of Mammals, Reptiles, and Amphibians, Golden Gate National Recreation Area, California, 1990-1997

    USGS Publications Warehouse

    Semenoff-Irving, Marcia; Howell, Judd A.

    2005-01-01

    The United States Geological Survey Golden Gate Field Station conducted a baseline inventory of terrestrial vertebrates within the Golden Gate National Recreation Area (GGNRA), Marin, San Francisco, and San Mateo Counties, California between 1990 and 1997. We established 456 permanent study plots in 6 major park habitats, including grassland, coastal scrub, riparian woodland, coastal wetland, broad-leaved evergreen forest, and needle-leaved evergreen forest. We tested multiple inventory methods, including live traps, track plate stations, and artificial cover boards, across all years and habitats. In most years, sampling occurred in 3-4 primary sampling sessions between July and September. In 1994, additional sampling occurred in February and May in conjunction with an assessment of Hantavirus exposure in deer mice (Peromyscus maniculatus). Overall, we detected 32 mammal, 14 reptile, and 6 amphibian species during 25,222 trap-nights of effort. The deer mouse-the most abundant species detected--accounted for 67% of total captures. We detected the Federal Endangered salt marsh harvest mouse (Reithrodontomys raviventris) at one coastal wetland plot in 1992. This project represents the first phase in the development of a comprehensive terrestrial vertebrate inventory and monitoring program for GGNRA. This report summarizes data on relative abundance, frequency of occurrence, distribution across habitat types, and trap success for terrestrial vertebrates detected during this 7-year effort. It includes comprehensive descriptions of the inventory methods and sampling strategies employed during this survey and is intended to help guide the park in the implementation of future longterm ecological monitoring programs.

  4. 50 CFR 259.32 - Conditional fisheries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Conditional fisheries. 259.32 Section 259.32 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES CAPITAL CONSTRUCTION FUND Capital Construction Fund...

  5. 76 FR 57945 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Notice of Availability for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ...-BA55 Fisheries Off West Coast States; West Coast Salmon Fisheries; Notice of Availability for Amendment 16 to the Salmon Fishery Management Plan AGENCY: National Marine Fisheries Service (NMFS), National... [[Page 57946

  6. 78 FR 76766 - Fisheries of the Northeastern United States; Summer Flounder Fishery; Commercial Quota Harvested...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    .... 111220786-1781-01] RIN 0648-XD030 Fisheries of the Northeastern United States; Summer Flounder Fishery...: NMFS announces that the 2013 summer flounder commercial quota allocated to the State of New Jersey has been harvested. Vessels issued a commercial Federal fisheries permit for the summer flounder fishery...

  7. 77 FR 64239 - Fisheries of the Northeastern United States; Summer Flounder Fishery; Commercial Quota Harvested...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    .... 111220786-1781-01] RIN 0648-XC294 Fisheries of the Northeastern United States; Summer Flounder Fishery...: NMFS announces that the 2012 summer flounder commercial quota allocated to the State of New York has been harvested. Vessels issued a commercial Federal fisheries permit for the summer flounder fishery...

  8. 77 FR 75569 - Fisheries of the Northeastern United States; Summer Flounder Fishery; Commercial Quota Harvested...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    .... 111220786-1781-01] RIN 0648-XC404 Fisheries of the Northeastern United States; Summer Flounder Fishery...: NMFS announces that the 2012 summer flounder commercial quota allocated to the State of New Jersey has been harvested. Vessels issued a commercial Federal fisheries permit for the summer flounder fishery...

  9. 78 FR 59626 - Fisheries of the Northeastern United States; Summer Flounder Fishery; Commercial Quota Harvested...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    .... 111220786-1781-01] RIN 0648-XC878 Fisheries of the Northeastern United States; Summer Flounder Fishery...: NMFS announces that the 2013 summer flounder commercial quota allocated to the State of New York has been harvested. Vessels issued a commercial Federal fisheries permit for the summer flounder fishery...

  10. 78 FR 70890 - Fisheries of the Northeastern United States; Summer Flounder Fishery; Commercial Quota Harvested...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    .... 111220786-1781-01] RIN 0648-XC998 Fisheries of the Northeastern United States; Summer Flounder Fishery...: NMFS announces that the 2013 summer flounder commercial quota allocated to the State of New Jersey has been harvested. Vessels issued a commercial Federal fisheries permit for the summer flounder fishery...

  11. 76 FR 25246 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2011 Management Measures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    .... 110223162-1268-01] RIN 0648-XA184 Fisheries Off West Coast States; West Coast Salmon Fisheries; 2011... environmental assessment. SUMMARY: NMFS establishes fishery management measures for the 2011 ocean salmon fisheries off Washington, Oregon, and California and the 2012 salmon seasons opening earlier than May 1...

  12. 50 CFR 600.110 - Intercouncil fisheries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Intercouncil fisheries. 600.110 Section 600.110 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Regional Fishery Management Councils § 600...

  13. 50 CFR 600.110 - Intercouncil fisheries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Intercouncil fisheries. 600.110 Section 600.110 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Regional Fishery Management Councils § 600...

  14. 78 FR 25865 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2013 Management Measures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    .... 130108020-3409-01] RIN 0648-XC438 Fisheries Off West Coast States; West Coast Salmon Fisheries; 2013.... SUMMARY: Through this final rule NMFS establishes fishery management measures for the 2013 ocean salmon fisheries off Washington, Oregon, and California and the 2014 salmon seasons opening earlier than May 1...

  15. 50 CFR 635.28 - Fishery closures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Fishery closures. 635.28 Section 635.28 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE ATLANTIC HIGHLY MIGRATORY SPECIES Management Measures § 635.28 Fishery closures. (a...

  16. Using Remote Sensing Data to Evaluate Habitat Loss in the Mobile, Galveston, and Tampa Bay Watersheds

    NASA Technical Reports Server (NTRS)

    Steffen, Morgan; Estes, Maurice G.; Al-Hamdan, Mohammad

    2010-01-01

    The Gulf of Mexico has experienced dramatic wetland habitat area losses over the last two centuries. These losses not only damage species diversity, but contribute to water quality, flood control, and aspects of the Gulf coast economy. Overall wetland losses since the 1950s were examined using land cover/land use (LCLU) change analysis in three Gulf coast watershed regions: Mobile Bay, Galveston Bay, and Tampa Bay. Two primary causes of this loss, LCLU change and climate change, were then assessed using LCLU maps, U.S. census population data, and available current and historical climate data from NOAA. Sea level rise, precipitation, and temperature effects were addressed, with emphasis on analysis of the effects of sea level rise on salt marsh degradation. Ecological impacts of wetland loss, including fishery depletion, eutrophication, and hypoxia were addressed using existing literature and data available from NOAA. These ecological consequences in turn have had an affect on the Gulf coast economy, which was analyzed using fishery data and addressing public health impacts of changes in the environment caused by wetland habitat loss. While recent federal and state efforts to reduce wetland habitat loss have been relatively successful, this study implies a need for more aggressive action in the Gulf coast area, as the effects of wetland loss reach far beyond individual wetland systems themselves to the Gulf of Mexico as a whole.

  17. Evaluation of New Zealand's high-seas bottom trawl closures using predictive habitat models and quantitative risk assessment.

    PubMed

    Penney, Andrew J; Guinotte, John M

    2013-01-01

    United Nations General Assembly Resolution 61/105 on sustainable fisheries (UNGA 2007) establishes three difficult questions for participants in high-seas bottom fisheries to answer: 1) Where are vulnerable marine systems (VMEs) likely to occur?; 2) What is the likelihood of fisheries interaction with these VMEs?; and 3) What might qualify as adequate conservation and management measures to prevent significant adverse impacts? This paper develops an approach to answering these questions for bottom trawling activities in the Convention Area of the South Pacific Regional Fisheries Management Organisation (SPRFMO) within a quantitative risk assessment and cost : benefit analysis framework. The predicted distribution of deep-sea corals from habitat suitability models is used to answer the first question. Distribution of historical bottom trawl effort is used to answer the second, with estimates of seabed areas swept by bottom trawlers being used to develop discounting factors for reduced biodiversity in previously fished areas. These are used in a quantitative ecological risk assessment approach to guide spatial protection planning to address the third question. The coral VME likelihood (average, discounted, predicted coral habitat suitability) of existing spatial closures implemented by New Zealand within the SPRFMO area is evaluated. Historical catch is used as a measure of cost to industry in a cost : benefit analysis of alternative spatial closure scenarios. Results indicate that current closures within the New Zealand SPRFMO area bottom trawl footprint are suboptimal for protection of VMEs. Examples of alternative trawl closure scenarios are provided to illustrate how the approach could be used to optimise protection of VMEs under chosen management objectives, balancing protection of VMEs against economic loss to commercial fishers from closure of historically fished areas.

  18. Hudson Canyon benthic habitats characterization and mapping by integrated analysis of multidisciplinary data

    NASA Astrophysics Data System (ADS)

    Pierdomenico, Martina; Guida, Vincent G.; Rona, Peter A.; Macelloni, Leonardo; Scranton, Mary I.; Asper, Vernon; Diercks, Arne

    2013-04-01

    Hudson Canyon, about 180 km SE of New York City, is the largest eastern U.S. submarine canyon and is under consideration for HAPC (Habitat Area of Particular Concern) status, representing a fisheries and biodiversity hot spot. Interest in the area, within the perspective of ecosystem based management, marine spatial planning, habitat and species conservation, led to a joint project between NOAA Northeast Fisheries, U.S. Geological Survey (USGS), Mississippi Mineral Research Institute (MMRI), National Institute for Undersea Science and Technology (NIUST), Stony Brook and Rutgers Universities for the study of benthic habitats, that includes the assembly of existing data with newly collected ones: acoustic mapping, visual ground-truthing, hydrographic, sedimentological, and trawl data collections. Acoustic mapping, performed using AUV-mounted multibeam sonar, provided ultra-high resolution bathymetric and backscatter imagery (3m and 1m respectively) at all water depths for identification of geomorphological features and for the characterization of surficial sediments along the two thirds of the shelf portion of the canyon. Identification of benthic and demersal communities was accomplished by visual ground thruthing with underwater vehicle video and still cameras, and from trawl catch data. A CTD-rosette sampler provided water column salinity-temperature profiles and water samples for dissolved methane analysis in the vicinity of suspected bottom sources. Analysis of data revealed a complex of topographic structures and hydrological patterns that provide a wide range of physical habitats in a relatively small area. A mosaic of sandy and muddy substrates, gravel beds, rock outcrops, and semilithified clay outcrops host rich and varied faunal assemblages, including deepwater corals and sponge communities. Pockmark fields, occurring below 300 m depth, suggest that methane-based chemosynthetic carbonate deposition contributes to creation of specific hard bottom habitats

  19. Patterns in artisanal coral reef fisheries revealed through local monitoring efforts

    PubMed Central

    Teneva, Lida T.; Ogawa, Tom; Friedlander, Alan M.

    2017-01-01

    Sustainable fisheries management is key to restoring and maintaining ecological function and benefits to people, but it requires accurate information about patterns of resource use, particularly fishing pressure. In most coral reef fisheries and other data-poor contexts, obtaining such information is challenging and remains an impediment to effective management. We developed the most comprehensive regional view of shore-based fishing effort and catch published to date, to show detailed fishing patterns from across the main Hawaiian Islands (MHI). We reveal these regional patterns through fisher “creel” surveys conducted by local communities, state agencies, academics, and/or environmental organizations, at 18 sites, comprising >10,000 h of monitoring across a range of habitats and human influences throughout the MHI. All creel surveys included in this study except for one were previously published in some form (peer-reviewed articles or gray literature reports). Here, we synthesize these studies to document spatial patterns in nearshore fisheries catch, effort, catch rates (i.e., catch-per-unit-effort (CPUE)), and catch disposition (i.e., use of fish after catch is landed). This effort provides for a description of general regional patterns based on these location-specific studies. Line fishing was by far the dominant gear type employed. The most efficient gear (i.e., highest CPUE) was spear (0.64 kg h−1), followed closely by net (0.61 kg h−1), with CPUE for line (0.16 kg h−1) substantially lower than the other two methods. Creel surveys also documented illegal fishing activity across the studied locations, although these activities were not consistent across sites. Overall, most of the catch was not sold, but rather retained for home consumption or given away to extended family, which suggests that cultural practices and food security may be stronger drivers of fishing effort than commercial exploitation for coral reef fisheries in Hawai‘i. Increased

  20. Development and Validation of Spatially Explicit Habitat Models for Cavity-nesting Birds in Fishlake National Forest, Utah

    Treesearch

    Randall A., Jr. Schultz; Thomas C., Jr. Edwards; Gretchen G. Moisen; Tracey S. Frescino

    2005-01-01

    The ability of USDA Forest Service Forest Inventory and Analysis (FIA) generated spatial products to increase the predictive accuracy of spatially explicit, macroscale habitat models was examined for nest-site selection by cavity-nesting birds in Fishlake National Forest, Utah. One FIA-derived variable (percent basal area of aspen trees) was significant in the habitat...