Science.gov

Sample records for fission fuels

  1. Fission-product retention in HTGR fuels

    SciTech Connect

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed.

  2. Optimally moderated nuclear fission reactor and fuel source therefor

    DOEpatents

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  3. A fission gas release correlation for uranium nitride fuel pins

    NASA Technical Reports Server (NTRS)

    Weinstein, M. B.; Davison, H. W.

    1973-01-01

    A model was developed to predict fission gas releases from UN fuel pins clad with various materials. The model was correlated with total release data obtained by different experimentors, over a range of fuel temperatures primarily between 1250 and 1660 K, and fuel burnups up to 4.6 percent. In the model, fission gas is transported by diffusion mechanisms to the grain boundaries where the volume grows and eventually interconnects with the outside surface of the fuel. The within grain diffusion coefficients are found from fission gas release rate data obtained using a sweep gas facility.

  4. (Fuel, fission product, and graphite technology)

    SciTech Connect

    Stansfield, O.M.

    1990-07-25

    Travel to the Forschungszentrum (KFA) -- Juelich described in this report was for the purpose of participating in the annual meeting of subprogram managers for the US/DOE Umbrella Agreement for Fuel, Fission Product, and Graphite Technology. At this meeting the highlights of the cooperative exchange were reviewed for the time period June 1989 through June 1990. The program continues to contribute technology in an effective way for both countries. Revision 15 of the Subprogram Plan will be issued as a result of the meeting. There was interest expressed by KFA management in the level of support received from the NPR program and in potential participation in the COMEDIE loop experiment being conducted at the CEA.

  5. Fission product release from irradiated LWR fuel under accident conditions

    SciTech Connect

    Strain, R.V.; Sanecki, J.E.; Osborne, M.F.

    1984-01-01

    Fission product release from irradiated LWR fuel is being studied by heating fuel rod segments in flowing steam and an inert carrier gas to simulate accident conditions. Fuels with a range of irradiation histories are being subjected to several steam flow rates over a wide range of temperatures. Fission product release during each test is measured by gamma spectroscopy and by detailed examination of the collection apparatus after the test has been completed. These release results are complemented by a detailed posttest examination of samples of the fuel rod segment. Results of release measurements and fuel rod characterizations for tests at 1400 through 2000/sup 0/C are presented in this paper.

  6. Fission-product SiC reaction in HTGR fuel

    SciTech Connect

    Montgomery, F.

    1981-07-13

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels.

  7. Fission product release from nuclear fuel by recoil and knockout

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.

    1987-03-01

    An analytical model has been developed to describe the fission product release from nuclear fuel arising from the surface-fission release mechanisms of recoil and knockout. Release expressions are evaluated and compared to the short-lived activity measurements from in-reactor experiments with intact operating fuel. Recoil is shown to be an important process for releasing fission products from free UO 2 surfaces into the fuel-to-sheath gap. The model is also applied to tramp uranium in a power reactor primary heat transport circuit where it is demonstrated that recoil is the dominant release mechanism for small particles of fuel which are deposited on in-core surfaces. A methodology is established whereby release from surface contamination can be distinguished from that of fuel pin failure.

  8. Fission product release from TRIGA-LEU reactor fuels

    SciTech Connect

    Baldwin, N.L.; Foushee, F.C.; Greenwood, J.S

    1980-07-01

    Due to present international concerns over nuclear proliferation, TRIGA reactor fuels will utilize only low-enriched uranium (LEU) (enrichment <20%). This requires increased total uranium loading per unit volume of fuel in order to maintain the appropriate fissile loading. Tests were conducted to determine the fractional release of gaseous and metallic fission products from typical uranium-zirconium hydride TRIGA fuels containing up to 45 wt-% uranium. These tests, performed in late 1977 and early 1978, were similar to those conducted earlier on TRIGA fuels with 8.5 wt-% U. Fission gas release measurements were made on prototypic specimens from room temperature to 1100 deg. C in the TRIGA King Furnace Facility. The fuel specimens were irradiated in the TRIGA reactor at a low power level. The fractional releases of the gaseous nuclides of krypton and xenon were measured under steady-state operating conditions. Clean helium was used to sweep the fission gases released during irradiation from the furnace into a standard gas collection trap for gamma counting. The results of these tests on TRIGA-LEU fuel agree well with data from the similar, earlier tests on TRIGA fuel. The correlation used to calculate the release of fission products from 8.5 wt-% U TRIGA fuel applies equally well for U contents up to 45 wt-%. (author)

  9. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    SciTech Connect

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in the critical reactors

  10. Fission-product release from TRIGA-LEU reactor fuels

    SciTech Connect

    Baldwin, N.L.; Foushee, F.C.; Greenwood, J.S.

    1980-11-01

    The release of fission products, both gaseous and volatile metals, from TRIGA fuel is important for the analysis of possible accident conditions related to reactor operation and the design of future TRIGA fuel systems. Because of present national concerns over nuclear proliferation, it has become clear that future reactor fuels will, of necessity, utilize low-enriched uranium (LEU, enrichment <20%). This will require increasing the total uranium loading per unit volume of the higher-loaded TRIGA fuels for the purpose of maintaining the appropriate fissile loading. Because of these new developments, tests were conducted to determine the fractional release of gaseous and metallic fission products from typical uranium-zirconium hydride TRIGA fuels containing 8.5 to 45 wt % uranium.

  11. Fission induced swelling of U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Jeong, G. Y.; Park, J. M.; Robinson, A. B.

    2015-10-01

    Fission-induced swelling of U-Mo/Al dispersion fuel meat was measured using microscopy images obtained from post-irradiation examination. The data of reduced-size plate-type test samples and rod-type test samples were employed for this work. A model to predict the meat swelling of U-Mo/Al dispersion fuel was developed. This model is composed of several submodels including a model for interaction layer (IL) growth between U-Mo and Al matrix, a model for IL thickness to IL volume conversion, a correlation for the fission-induced swelling of U-Mo alloy particles, a correlation for the fission-induced swelling of IL, and models of U-Mo and Al consumption by IL growth. The model was validated using full-size plate data that were not included in the model development.

  12. AFC-1 Fuel Rodlet Fission Power Deposition Validation in ATR

    SciTech Connect

    G. S. Chang; M. A. Lillo; D. J. Utterbeck

    2008-11-01

    One of the viable options of long-term geological disposal of the nuclear power reactors generated spent fuel is to extract plutonium, the minor actinides (MA) and potentially long-lived fission products from the spent fuel and transmute them into short-lived or stable radionuclides in an appropriate reactor for the reduction of the radiological toxicity of the nuclear waste stream. An important component of that technology will be a non-fertile / low-fertile actinide transmutation fuel form containing the plutonium, neptunium, americium (and possibly curium) isotopes to be transmuted. Such advanced fuel forms, especially ones enriched in the long-life minor actinide (LLMA) elements (i.e., Np, Am, Cm), have minimal irradiation performance data available from which to establish a transmutation fuel form design. Recognizing these needs, an Advanced Fuel Cycle test series-1 (AFC-1) irradiation test on a variety of candidate fuel forms is now being conducted in Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). The first advanced fuel experiment (AFC-1) has been finalized and the test assembly analyzed for insertion and irradiation in ATR. The ATR core consists of a serpentine and rotationally symmetric fuel assembly about the z-axis of the core center. The plan view of the ATR core configuration is shown in Fig. 5, in Ref. 1. A cadmium filter with a 0.178 cm (0.045") thickness and 121.5 cm (48") in length, is currently used in the actinide-fuel capsule design for the East Flux Trap (EFT) position in ATR, to depress the linear heat generation rate (LHGR) lower than the project’s 330 W/cm limit for the experimental fuel rodlets. The LHGR is proportional to the fission power deposited in the fuel rodlets from the neutron fissions. The fraction of the fission power generated from the neutron fission reactions deposited in the fuel rodlet is an important parameter for test assembly thermal analysis, which will be validated in this summary.

  13. FUEL ELEMENTS FOR THERMAL-FISSION NUCLEAR REACTORS

    DOEpatents

    Flint, O.

    1961-01-10

    Fuel elements for thermal-fission nuclear reactors are described. The fuel element is comprised of a core of alumina, a film of a metal of the class consisting of copper, silver, and nickel on the outer face of the core, and a coating of an oxide of a metal isotope of the class consisting of Un/sup 235/, U/ sup 233/, and Pu/sup 239/ on the metal f ilm.

  14. Release of fission tritium through Zircaloy-4 fuel cladding tubes

    NASA Astrophysics Data System (ADS)

    Andrieu, C.; Ravel, S.; Ducros, G.; Lemaignan, C.

    2005-12-01

    In order to analyse a potential fission tritium migration from the fuel to the coolant trough the cladding, two experiments of effusion and permeation types, have been performed on 3H release from Zry4 claddings. During the tests at 350 °C, the 3H released activities were measured at regular intervals. In both cases, very fast release rates have been obtained in the first few days, followed by more steady release rates. A correlation has been obtained between the 3H releases measured and the oxide formation kinetics after the initial burst. A mechanism of 3H transport is proposed based on the behaviour of the precipitates during the oxidation of Zry4. Applied to the conditions of PWR fuels, the measurements performed and the mechanisms considered lead to an insignificant contribution of fission tritium permeation to the total inventory of the tritium in the primary coolant.

  15. Recoil release of fission products from nuclear fuel

    NASA Astrophysics Data System (ADS)

    Wise, C.

    1985-10-01

    An analytical approximation is developed for calculating recoil release from nuclear fuel into gas filled interspaces. This expression is evaluated for a number of interspace geometries and shown to be generally accurate to within about 10% by comparison with numerical calculations. The results are applied to situations of physical interest and it is demonstrated that recoil can be important when modelling fission product release from low temperature CAGR pin failures. Furthermore, recoil can contribute significantly in experiments on low temperature fission product release, particularly where oxidation enhancement of this release is measured by exposing the fuel to CO 2. The calculations presented here are one way of allowing for this, other methods are suggested.

  16. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    SciTech Connect

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  17. Micro-Pocket Fission Detectors (MPFD) For Fuel Assembly Analysis

    SciTech Connect

    Troy Unruh; Michael Reichenberger; Phillip Ugorowski

    2013-09-01

    Neutron sensors capable of real-time measurement of thermal flux, fast flux, and temperature in a single miniaturized probe are needed in irradiation tests required to demonstrate the performance of candidate new fuels, and cladding materials. In-core ceramic-based miniature neutron detectors or “Micro-Pocket Fission Detectors” (MPFDs) have been studied at Kansas State University (KSU). The first MPFD prototypes were tested in various neutron fields at the KSU TRIGA research reactor with successful results. Currently, a United States Department of Energy-sponsored joint KSU/Idaho National Laboratory (INL) effort is underway to develop a high-temperature, high-pressure version of the MPFD using radiation-resistant, high temperature materials, which would be capable of withstanding irradiation test conditions in high performance material and test reactors (MTRs). Ultimately, this more compact, more accurate, and longer lifetime flux sensor for critical mock-ups, existing and advanced reactor designs, high performance MTRs, and transient test reactors has the potential to lead to higher accuracy and resolution data from irradiation testing, more detailed core flux measurements and enhanced fuel assembly processing. Prior evaluations by KSU indicate that these sensors could also be used to monitor burn-up of nuclear fuel. If integrated into nuclear fuel assemblies, MPFDs offer several advantages to current spent fuel management systems.

  18. Fission gas release from UO{sub 2+x} in defective light water reactor fuel rods

    SciTech Connect

    Skim, Y. S.

    1999-11-12

    A simplified semi-empirical model predicting fission gas release form UO{sub 2+x} fuel to the fuel rod plenum as a function of stoichiometry excess (x) is developed to apply to the fuel of a defective LWR fuel rod in operation. The effect of fuel oxidation in enhancing gas diffusion is included as a parabolic dependence of the stoichiometry excess. The increase of fission gas release in a defective BWR fuel rod is at the most 3 times higher than in an intact fuel rod because of small extent of UO{sub 2} oxidation. The major enhancement contributor in fission gas release of UO{sub 2+x} fuel is the increased diffusivity due to stoichiometry excess rather than the higher temperature caused by degraded fuel thermal conductivity.

  19. Fission induced swelling and creep of U–Mo alloy fuel

    SciTech Connect

    Yeon Soo Kim; G. L. Hofman; J. S. Cheon; A. B. Robinson; D. M. Wachs

    2013-06-01

    Tapering of U–Mo alloy fuel at the end of plates is attributed to lateral mass transfer by fission induced creep, by which fuel mass is relocated away from the fuel end region where fission product induced fuel swelling is in fact the highest. This mechanism permits U–Mo fuel to achieve high burnup by effectively relieving stresses at the fuel end region, where peak stresses are otherwise expected because peak fission product induced fuel swelling occurs there. ABAQUS FEA was employed to examine whether the observed phenomenon can be simulated using physical–mechanical data available in the literature. The simulation results obtained for several plates with different fuel fabrication and loading scheme showed that the measured data were able to be simulated with a reasonable creep rate coefficient. The obtained creep rate constant lies between values for pure uranium and MOX, and is greater than all other ceramic uranium fuels.

  20. Fission product release and fuel cladding interaction in severe-accident tests of LWR fuel

    SciTech Connect

    Strain, R.V.; Osborne, M.F.

    1983-11-01

    The examination of these samples indicated a correlation between the posttest fuel microstructure and the fission product release during the test. As expected, structural changes in the fuel and fission product release increased with test temperature. The effect of steam flow rate, which controls the extent of cladding oxidation, however, was less clear. The amount of fuel-cladding reaction and liquefaction was greatest in the test with a low steam flow rate, which was also the highest temperature test. Other data indicate, however, that extensive fuel-cladding reaction and liquefaction would be expected at approx. 1700/sup 0/C with reduced steam flow rate (i.e., with reduced oxidation). The similar gas release values and fuel microstructures for the 1700 and 2000/sup 0/C test are somewhat surprising, but may indicate the influence of the steam conditions on gas release as well as on fuel-cladding reaction. The extent of fuel-cladding interaction in these tests, and the resulting intermediate phases, appear to be consistent with the observations of Hofmann and Kerwin-Peck.

  1. Thermal release of volatile fission products from irradiated nuclear fuel

    SciTech Connect

    Bray, L.A.; Burger, L.L.; Morgan, L.G.; Baldwin, D.L.

    1983-06-01

    An effective procedure for removing /sup 3/H, Xe and Kr from irradiated fuels was demonstrated using Shippingport UO/sub 2/ fuel. The release characteristics of /sup 3/H, Kr, Xe, and I from irradiated nuclear fuel have been determined as a function of temperature and gaseous environment. Vacuum outgassing and a flowing gas stream have been used to vary the gaseous environment. Vacuum outgassing released about 99% of the /sup 3/H and 20% of both Kr and Xe within a 3 h at 1500/sup 0/C. Similar results were obtained using a carrier gas of He containing 6% H/sub 2/. However, a carrier gas containing only He resulted in the release of approximately 80% of the /sup 3/H and 99% of both Kr and Xe. These results indicate that the release of these volatile fission products from irradiated nuclear fuel is a function of the chemical composition of the gaseous environment. The rate of tritium release increased with increasing temperature (1100 to 1500/sup 0/C) and with the addition of hydrogen to the gas stream. Using crushed UO/sub 2/ fuel without cladding and He as the carrier gas, Kr was completely released at 1500/sup 0/C in 2.5 h. Below 1350/sup 0/C, no Kr-Xe release was observed. Approximately 86% of the /sup 129/I and 95% of the cesium was released from a piece (3.9 g) of UO/sub 2/ fuel at 1500/sup 0/C in He. The zirconium cladding was observed to fracture during heat treatment. A large-scale thermal outgassing system was conceptually designed by the General Atomic Company from an engineering analysis of available experimental data. The direct cost of a 0.5 metric/ton day thermal outgassing system is estimated to be $1,926,000 (1982 dollars), including equipment, installation, instrumentation and controls, piping, and services. The thermal outgassing process was determined to be a technically feasible and cost-competitive process to remove tritium in the head-end portion of a LWR fuel reprocessing plant. Additional laboratory-scale development has been recommended.

  2. Fuel failure and fission gas release in high burnup PWR fuels under RIA conditions

    NASA Astrophysics Data System (ADS)

    Fuketa, Toyoshi; Sasajima, Hideo; Mori, Yukihide; Ishijima, Kiyomi

    1997-09-01

    To study the fuel behavior and to evaluate the fuel enthalpy threshold of fuel rod failure under reactivity initiated accident (RIA) conditions, a series of experiments using pulse irradiation capability of the Nuclear Safety Research Reactor (NSRR) has been performed. During the experiments with 50 MWd/kg U PWR fuel rods (HBO test series; an acronym for high burnup fuels irradiated in Ohi unit 1 reactor), significant cladding failure occurred. The energy deposition level at the instant of the fuel failure in the test is 60 cal/g fuel, and is considerably lower than those expected and pre-evaluated. The result suggests that mechanical interaction between the fuel pellets and the cladding tube with decreased integrity due to hydrogen embrittlement causes fuel failure at the low energy deposition level. After the pulse irradiation, the fuel pellets were found as fragmented debris in the coolant water, and most of these were finely fragmented. This paper describes several key observations in the NSRR experiments, which include cladding failure at the lower enthalpy level, possible post-failure events and large fission gas release.

  3. Molten salt considerations for accelerator-driven subcritical fission to close the nuclear fuel cycle

    SciTech Connect

    Sooby, Elizabeth; Baty, Austin; Gerity, James; McIntyre, Peter; Melconian, Karie; Pogue, Nathaniel; Sattarov, Akhdiyor; Adams, Marvin; Tsevkov, Pavel; Phongikaroon, Supathorn; Simpson, Michael; Tripathy, Prabhat

    2013-04-19

    The host salt selection, molecular modeling, physical chemistry, and processing chemistry are presented here for an accelerator-driven subcritical fission in a molten salt core (ADSMS). The core is fueled solely with the transuranics (TRU) and long-lived fission products (LFP) from used nuclear fuel. The neutronics and salt composition are optimized to destroy the transuranics by fission and the long-lived fission products by transmutation. The cores are driven by proton beams from a strong-focusing cyclotron stack. One such ADSMS system can destroy the transuranics in the used nuclear fuel produced by a 1GWe conventional reactor. It uniquely provides a method to close the nuclear fuel cycle for green nuclear energy.

  4. Fundamental Studies of Irradiation-Induced Defect Formation and Fission Product Dynamics in Oxide Fuels

    SciTech Connect

    Stubbins, James

    2012-12-19

    The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmute minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.

  5. Thermal stability of fission gas bubble superlattice in irradiated U–10Mo fuel

    SciTech Connect

    Gan, J.; Keiser, D. D.; Miller, B. D.; Robinson, A. B.; Wachs, D. M.; Meyer, M. K.

    2015-09-01

    To investigate the thermal stability of the fission gas bubble superlattice, a key microstructural feature in both irradiated U-7Mo dispersion and U-10Mo monolithic fuel plates, a FIB-TEM sample of the irradiated U-10Mo fuel with a local fission density of 3.5×1021 fissions/cm3 was used for an in-situ heating TEM experiment. The temperature of the heating holder was raised at a ramp rate of approximately 10 ºC/min up to ~700 ºC, kept at that temperature for about 34 min, continued to 850 ºC with a reduced rate of 5 ºC/min. The result shows a high thermal stability of the fission gas bubble superlattice. The implication of this observation on the fuel microstructural evolution and performance under irradiation is discussed.

  6. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    DOE PAGESBeta

    Pastore, Giovanni; Swiler, L. P.; Hales, Jason D.; Novascone, Stephen R.; Perez, Danielle M.; Spencer, Benjamin W.; Luzzi, Lelio; Uffelen, Paul Van; Williamson, Richard L.

    2014-10-12

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertaintymore » in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.« less

  7. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    NASA Astrophysics Data System (ADS)

    Pastore, Giovanni; Swiler, L. P.; Hales, J. D.; Novascone, S. R.; Perez, D. M.; Spencer, B. W.; Luzzi, L.; Van Uffelen, P.; Williamson, R. L.

    2015-01-01

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code with a recently implemented physics-based model for fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information in the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior predictions with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, significantly higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  8. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    SciTech Connect

    Pastore, Giovanni; Swiler, L. P.; Hales, Jason D.; Novascone, Stephen R.; Perez, Danielle M.; Spencer, Benjamin W.; Luzzi, Lelio; Uffelen, Paul Van; Williamson, Richard L.

    2014-10-12

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  9. The chemical state of fission products in oxide fuels at different stages of the nuclear fuel cycle

    SciTech Connect

    Kleykamp, H.

    1988-03-01

    A survey of work at the Kernforschungszentrum Karlsruhe is presented on the chemical state of selected fission products that are relevant in the fuel cycle of light water reactor (LWR) and fast breeder reactor fuels. The influence of fuel type and irradiation progress on the composition of the Mo-Tc-Ru-Rh-Pd fission product alloys precipitated in the oxide matrix is examined using the respective multicomponent phase diagrams. The kinetics of dissolution of these phases in nitric acid at the reprocessing stage is discussed. Composition and structure of the residues, and the reprecipitation phenomena from highly active waste (HAW), are elucidated. A second metamorphosis of the fission products is recognized during the vitrification process. The formation of Ru(Rh) oxide and Pd(Rh, U, Te) alloys in simulated vitrified HAW concentrate and in HAW concentrate from the reprocessing of irradiated LWR fuels in interpreted on the basis of heterogeneous equilibria.

  10. Mass spectrometric study of the release of volatile fission products from irradiated LWR fuel

    SciTech Connect

    Johnson, I.; Steidl, D.V.; Johnson, C.E.

    1984-01-01

    The objective of these studies is to experimentally determine the chemical form and the rate of release of volatile fission product species from defected irradiated LWR reactor fuel pins. After release from the defected fuel pin the gaseous species immediately enters the ionizer of a quadrupole mass spectrometer thus ensuring that their chemical form is not likely to be changed prior to identification and measurement. These studies differ from prior studies in that: (1) the chemical form of the volatile fission products will be determined; and (2) the detection and measurement method does not depend on the radioactivity of the fission product element. Information on the chemical form of the released fission product species will enable a more accurate description of their transport and reaction in the primary system. These studies are also expected to yield information on the reaction of fission products after release from the fuel oxide with the zircaloy cladding. The results of these studies are expected to increase the understanding of the first step in the release of fission products by irradiated fuel and therefore help in the accurate prediction of source terms.

  11. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    SciTech Connect

    McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel; Wirth, Brian; Kennedy, Rory

    2014-04-07

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

  12. COPAR-FD. Release of Metallic Fission Products from Coated Nuclear Fuel Particles

    SciTech Connect

    Tzung, F.; Richards, M.

    1992-09-01

    COPAR-FD is used to calculate the release of metallic fission products from coated nuclear fuel particles, using a finite-difference solution of the governing partial differential equation. COPAR-FD interfaces with the TRAMP and TRAFIC codes for calculating transport in and release from graphite fuel blocks.

  13. Evaluation of fission product worth margins in PWR spent nuclear fuel burnup credit calculations.

    SciTech Connect

    Blomquist, R.N.; Finck, P.J.; Jammes, C.; Stenberg, C.G.

    1999-02-17

    Current criticality safety calculations for the transportation of irradiated LWR fuel make the very conservative assumption that the fuel is fresh. This results in a very substantial overprediction of the actual k{sub eff} of the transportation casks; in certain cases, this decreases the amount of spent fuel which can be loaded in a cask, and increases the cost of transporting the spent fuel to the repository. Accounting for the change of reactivity due to fuel depletion is usually referred to as ''burnup credit.'' The US DOE is currently funding a program aimed at establishing an actinide only burnup credit methodology (in this case, the calculated reactivity takes into account the buildup or depletion of a limited number of actinides). This work is undergoing NRC review. While this methodology is being validated on a significant experimental basis, it implicitly relies on additional margins: in particular, the absorption of neutrons by certain actinides and by all fission products is not taken into account. This provides an important additional margin and helps guarantee that the methodology is conservative provided these neglected absorption are known with reasonable accuracy. This report establishes the accuracy of fission product absorption rate calculations: (1) the analysis of European fission product worth experiments demonstrates that fission product cross-sections available in the US provide very good predictions of fission product worth; (2) this is confirmed by a direct comparison of European and US cross section evaluations; (3) accuracy of Spent Nuclear Fuel (SNF) fission product content predictions is established in a recent ORNL report where several SNF isotopic assays are analyzed; and (4) these data are then combined to establish in a conservative manner the fraction of the predicted total fission product absorption which can be guaranteed based on available experimental data.

  14. Performance of the fissionTPC and the Potential to Advance the Thorium Fuel Cycle

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; Niffte Collaboration

    2014-09-01

    The NIFFTE fission Time Projection Chamber (fissionTPC) is a powerful tool that is being developed to take precision measurements of neutron-induced fission cross sections of transuranic elements. During the last run at the Los Alamos Neutron Science Center (LANSCE) the fully instrumented TPC took data for the first time. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow cross section systematics to be controlled at the level of 1%. The fissionTPC performance from this run will be shared. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors including the abundance of thorium verses uranium, minimizing radioactive waste, improved reactor safety, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium fueled nuclear reactors will also be discussed.

  15. Fission gas release restrictor for breached fuel rod

    DOEpatents

    Kadambi, N. Prasad; Tilbrook, Roger W.; Spencer, Daniel R.; Schwallie, Ambrose L.

    1986-01-01

    In the event of a breach in the cladding of a rod in an operating liquid metal fast breeder reactor, the rapid release of high-pressure gas from the fission gas plenum may result in a gas blanketing of the breached rod and rods adjacent thereto which impairs the heat transfer to the liquid metal coolant. In order to control the release rate of fission gas in the event of a breached rod, the substantial portion of the conventional fission gas plenum is formed as a gas bottle means which includes a gas pervious means in a small portion thereof. During normal reactor operation, as the fission gas pressure gradually increases, the gas pressure interiorly of and exteriorly of the gas bottle means equalizes. In the event of a breach in the cladding, the gas pervious means in the gas bottle means constitutes a sufficient restriction to the rapid flow of gas therethrough that under maximum design pressure differential conditions, the fission gas flow through the breach will not significantly reduce the heat transfer from the affected rod and adjacent rods to the liquid metal heat transfer fluid flowing therebetween.

  16. Radiation re-solution of fission gas in non-oxide nuclear fuel

    SciTech Connect

    Matthews, Christopher; Schwen, Daniel; Klein, Andrew C.

    2015-02-01

    Renewed interest in fast nuclear reactors is creating a need for better understanding of fission gas bubble behavior in non-oxide fuels to support very long fuel lifetimes. Collisions between fission fragments and their subsequent cascades can knock fission gas atoms out of bubbles and back into the fuel lattice. We showed that these collisions can be treated as using the so-called ‘‘homogenous’’ atom-by-atom re-solution theory and calculated using the Binary Collision Approximation code 3DOT. The calculations showed that there is a decrease in the re-solution parameter as bubble radius increases until about 50 nm, at which the re-solution parameter stays nearly constant. Furthermore, our model shows ion cascades created in the fuel result in many more implanted fission gas atoms than collisions directly with fission fragments. This calculated re-solution parameter can be used to find a re-solution rate for future bubble simulations.

  17. Validation of ATR Fission Power Deposition Fraction in HEU and LEU Fuel Plates

    SciTech Connect

    G. S. Chang

    2008-09-01

    The Advanced Test Reactor (ATR) is a high power (250 MW), high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum unperturbed thermal neutron flux rating of 1.0 x 1015 n/cm2–s. Because of its high power and large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. A detailed plate-by-plate MCNP ATR full core model has been developed and validated for the low-enriched uranium (LEU) fuel conversion feasibility study. Using this model, an analysis has been performed to determine the LEU density and U-235 enrichment required in the fuel meat to yield equivalent K-eff versus effective full power days (EFPDs) between the HEU and LEU cores. This model has also been used to optimize U-235 content of the LEU core, minimizing the differences in K-eff and heat flux profile between the HEU and LEU cores at 115 MW total core power for 125 EFPDs. The LEU core conversion feasibility study evaluated foil type (U-10Mo) fuel with the LEU reference design of 19.7 wt% U-235 enrichment. The LEU reference design has a fixed fuel meat thickness of 0.330 mm and can sustain the same operating cycle length as the HEU fuel. Heat flux and fission power density are parameters that are proportional to the fraction of fission power deposited in fuel. Thus, the accurate determination of the fraction of fission power deposited in the fuel is important to ATR nuclear safety. In this work, a new approach was developed and validated, the Tally Fuel Cells Only (TFCO) method. This method calculates and compares the fission power deposition fraction between HEU and LEU fuel plates. Due to the high density of the U-10Mo LEU fuel, the fission ?-energy deposition fraction is 37.12%, which is larger than the HEU’s ?-energy deposition fraction of 19.7%. As a result, the fuel decay heat cooling will need to be improved

  18. Fission Product Removal From Spent Oxide Fuel By Head-End Processing

    SciTech Connect

    B. R. Westphal; K. J. Bateman; R. P. Lind; K. L. Howden; G. D. Del Cul

    2005-10-01

    The development of a head-end processing step for spent oxide fuel that applies to both aqueous and pyrometallurgical technologies is being performed by the Idaho National Laboratory, the Oak Ridge National Laboratory, and the Korean Atomic Energy Research Institute through a joint International Nuclear Energy Research Initiative. The processing step employs high temperatures and oxidative gases to promote the oxidation of UO2 to U3O8. Potential benefits of the head-end step include the removal or reduction of fission products as well as separation of the fuel from cladding. Experiments have been performed with irradiated oxide fuel to evaluate the removal of fission products. During these experiments, operating parameters such as temperature and pressure have been varied to discern their effects on the behavior of specific fission products. In general, the extent of removal increases with increasing operating temperature and decreasing pressure. Removal efficiencies as high as 98% have been achieved during testing. Given the results of testing, an explanation of the likely fission product species being removed during the test program is also provided. In addition, experiments have been performed with other oxidative gases (steam and ozone) on surrogates to determine their potential benefit for removal of fission products.

  19. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    SciTech Connect

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated.

  20. Neutronics of accelerator-driven subcritical fission for burning transuranics in used nuclear fuel

    SciTech Connect

    Sattarov, A.; Assadi, S.; Badgley, K.; Baty, A.; Comeaux, J.; Gerity, J.; Kellams, J.; Mcintyre, P.; Pogue, N.; Sooby, E.; Tsvetkov, P.; Rosaire, G.; Mann, T.

    2013-04-19

    We report the development of a conceptual design for accelerator-driven subcritical fission in a molten salt core (ADSMS). ADSMS is capable of destroying all of the transuranics at the same rate and proportion as they are produced in a conventional nuclear power plant. The ADSMS core is fueled solely by transuranics extracted from used nuclear fuel and reduces its radiotoxicity by a factor 10,000. ADSMS offers a way to close the nuclear fuel cycle so that the full energy potential in the fertile fuels uranium and thorium can be recovered.

  1. Neutronics of accelerator-driven subcritical fission for burning transuranics in used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Sattarov, A.; Assadi, S.; Badgley, K.; Baty, A.; Comeaux, J.; Gerity, J.; Kellams, J.; Mcintyre, P.; Pogue, N.; Sooby, E.; Tsvetkov, P.; Rosaire, G.; Mann, T.

    2013-04-01

    We report the development of a conceptual design for accelerator-driven subcritical fission in a molten salt core (ADSMS). ADSMS is capable of destroying all of the transuranics at the same rate and proportion as they are produced in a conventional nuclear power plant. The ADSMS core is fueled solely by transuranics extracted from used nuclear fuel and reduces its radiotoxicity by a factor 10,000. ADSMS offers a way to close the nuclear fuel cycle so that the full energy potential in the fertile fuels uranium and thorium can be recovered.

  2. Measurement and analysis of fission gas release from BNFL's SBR MOX fuel

    NASA Astrophysics Data System (ADS)

    White, R. J.; Fisher, S. B.; Cook, P. M. A.; Stratton, R.; Walker, C. T.; Palmer, I. D.

    2001-01-01

    Puncture results are presented for seven SBR MOX fuel rods from the first prototypical commercial irradiation that was carried out in the Beznau-1 PWR. The rod average burn-up ranged from 31.2 to 35.6 MWd/kgHM. Comparison is made with the percentage of gas released from French MOX fuels and UO 2 fuel. The results show that in the burn-up range investigated, SBR MOX fuel and MIMAS MOX fuel perform similarly, releasing up to about 1% of the fission gas inventory. Comparisons with the Halden Criterion show that SBR MOX has the same release threshold as UO 2 and this suggests that the mechanisms of release in the two fuels are similar. This is further supported by calculations made with the ENIGMA fuel performance code. It is concluded that the apparent differences in fission gas release between SBR MOX and UO 2 fuel, at least in the early stages of release, can be explained by the higher temperatures experienced by MOX fuel.

  3. Transmission electron microscopy characterization of the fission gas bubble superlattice in irradiated U-7wt% Mo dispersion fuels

    SciTech Connect

    B.D. Miller; J. Gan; D.D. Keiser Jr.; A.B. Robinson; J.-F. Jue; J.W. Madden; P.G. Medvedev

    2015-03-01

    Transmission electron microscopy characterization of irradiated U-7wt% Mo dispersion fuel was performed on various samples to understand the effect of irradiation parameters (fission density, fission rate, and temperature) on the self-organized fission-gas-bubble superlattice that forms in the irradiated U-Mo fuel. The bubble superlattice was seen to form a face-centered cubic structure coherent with the host U-7wt% Mo body centered cubic structure. At a fission density between 3.0 and 4.5 x 1021 fiss/cm3, the superlattice bubbles appear to have reached a saturation size with additional fission gas associated with increasing burnup predominately accumulating along grain boundaries. At a fission density of ~4.5x1021 fiss/cm3, the U-7wt% Mo microstructure undergoes grain subdivision and can no longer support the ordered bubble superlattice. The fuel grains are primarily less than 500 nm in diameter with micron-size fission-gas bubbles present on the grain boundaries. Solid fission products decorate the inside surface of the micron-sized fission-gas bubbles. Residual superlattice bubbles are seen in areas where fuel grains remain micron sized. Potential mechanisms of the formation and collapse of the bubble superlattice are discussed.

  4. A delayed neutron technique for measuring induced fission rates in fresh and burnt LWR fuel

    NASA Astrophysics Data System (ADS)

    Jordan, K. A.; Perret, G.

    2011-04-01

    The LIFE@PROTEUS program at the Paul Scherrer Institut is being undertaken to characterize the interfaces between burnt and fresh fuel assemblies in modern LWRs. Techniques are being developed to measure fission rates in burnt fuel following re-irradiation in the zero-power PROTEUS research reactor. One such technique utilizes the measurement of delayed neutrons. To demonstrate the feasibility of the delayed neutron technique, fresh and burnt UO 2 fuel samples were irradiated in different positions in the PROTEUS reactor, and their neutron outputs were recorded shortly after irradiation. Fission rate ratios of the same sample irradiated in two different positions (inter-positional) and of two different samples irradiated in the same position (inter-sample) were derived from the measurements and compared with Monte Carlo predictions. Derivation of fission rate ratios from the delayed neutron measured signal requires correcting the signal for the delayed neutron source properties, the efficiency of the measurement setup, and the time dependency of the signal. In particular, delayed neutron source properties strongly depend on the fissile and fertile isotopes present in the irradiated sample and must be accounted for when deriving inter-sample fission rate ratios. Measured inter-positional fission rate ratios generally agree within 1σ uncertainty (on the order of 1.0%) with the calculation predictions. For a particular irradiation position, however, a bias of about 2% is observed and is currently under investigation. Calculated and measured inter-sample fission rate ratios have C/E values deviating from unity by less than 1% and within 2σ of the statistical uncertainties. Uncertainty arising from delayed neutron data is also assessed, and is found to give an additional 3% uncertainty factor. The measurement data indicate that uncertainty is overestimated.

  5. Characterization and chemistry of fission products released from LWR fuel under accident conditions

    SciTech Connect

    Norwood, K.S.; Collins, J.L.; Osborne, M.F.; Lorenz, R.A.; Wichner, R.P.

    1984-01-01

    Segments from commercial LWR fuel rods have been tested at temperatures between 1400 and 2000/sup 0/C in a flowing steam-helium atmosphere to simulate severe accident conditions. The primary goals of the tests were to determine the rate of fission product release and to characterize the chemical behavior. This paper is concerned primarily with the identification and chemical behavior of the released fission products with emphasis on antimony, cesium, iodine, and silver. The iodine appeared to behave primarily as cesium iodide and the antimony and silver as elements, while cesium behavior was much more complex. 17 refs., 7 figs., 1 tab.

  6. Measurement of fission gas release from irradiated U–Mo monolithic fuel samples

    SciTech Connect

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.; Luscher, Walter G.; Rice, Francine J.; Pool, Karl N.

    2015-06-01

    The uranium–molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An apparatus capable of heating post-irradiated small-scale samples cut from larger fuel segments according to specified thermal profiles under a controlled atmosphere has been installed into a hot cell. Results show that optimized experimental parameters to investigate fission product release from small samples have been established. Initial measurements conducted on aluminum alloy clad uranium–molybdenum monolithic fuel samples reveal three clear fission gas release events over the temperature range of 30-1000 °C. The mechanisms responsible for these events are discussed, and the results have been compared with available information in the literature.

  7. Measurement of Fission Gas Release from Irradiated U-Mo Monolithic Fuel Samples

    SciTech Connect

    Burkes, Douglas; Casella, Amanda J.; Casella, Andrew M.; Luscher, Walter G.; Rice, Francine; Pool, Karl N.

    2015-06-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An apparatus capable of annealing post-irradiated small-scale samples cut from larger fuel segments according to specified thermal profiles under a controlled atmosphere has been installed into a hot cell. Results show that optimized experimental parameters to investigate fission product release from small samples have been established. Initial measurements conducted on aluminum alloy clad uranium-molybdenum monolithic fuel samples reveal three clear fission gas release events over the temperature range of 30-1050 C. The mechanisms responsible for these events are discussed, and the results have been compared with available information in literature.

  8. Measurement of fission gas release from irradiated U-Mo monolithic fuel samples

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.; Luscher, Walter G.; Rice, Francine J.; Pool, Karl N.

    2015-06-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An apparatus capable of heating post-irradiated small-scale samples cut from larger fuel segments according to specified thermal profiles under a controlled atmosphere has been installed into a hot cell. Results show that optimized experimental parameters to investigate fission product release from small samples have been established. Initial measurements conducted on aluminum alloy clad uranium-molybdenum monolithic fuel samples reveal three clear fission gas release events over the temperature range of 30-1000 °C. The mechanisms responsible for these events are discussed, and the results have been compared with available information in the literature.

  9. On-site gamma-ray spectroscopic measurements of fission gas release in irradiated nuclear fuel.

    PubMed

    Matsson, I; Grapengiesser, B; Andersson, B

    2007-01-01

    An experimental, non-destructive in-pool, method for measuring fission gas release (FGR) in irradiated nuclear fuel has been developed. Using the method, a significant number of experiments have been performed in-pool at several nuclear power plants of the BWR type. The method utilises the 514 keV gamma-radiation from the gaseous fission product (85)Kr captured in the fuel rod plenum volume. A submergible measuring device (LOKET) consisting of an HPGe-detector and a collimator system was utilised allowing for single rod measurements on virtually all types of BWR fuel. A FGR database covering a wide range of burn-ups (up to average rod burn-up well above 60 MWd/kgU), irradiation history, fuel rod position in cross section and fuel designs has been compiled and used for computer code benchmarking, fuel performance analysis and feedback to reactor operators. Measurements clearly indicate the low FGR in more modern fuel designs in comparison to older fuel types. PMID:16949295

  10. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John K Hartwell; John B. Walter

    2008-09-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  11. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John K. Hartwell; John b. Walter

    2010-10-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  12. Fission Product Release from Molten U/Al Alloy Fuel: A Vapor Transpiration Model

    SciTech Connect

    Whitkop, P.G.

    2001-06-26

    This report describes the application of a vapor transportation model to fission product release data obtained for uranium/aluminum alloy fuel during early Oak Ridge fuel melt experiments. The Oak Ridge data validates the vapor transpiration model and suggests that iodine and cesium are released from the molten fuel surface in elemental form while tellurium and ruthenium are released as oxides. Cesium iodide is postulated to form in the vapor phase outside of the fuel matrix. Kinetic data indicates that cesium iodide can form from Cs atoms and diatomic iodine in the vapor phase. Temperatures lower than those capable of melting fuel are necessary in order to maintain a sufficient I2 concentration. At temperatures near the fuel melting point, cesium can react with iodine atoms to form CsI only on solid surfaces such as aerosols.

  13. Measurement of fission gas release from irradiated Usbnd Mo dispersion fuel samples

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.

    2016-09-01

    The uranium-molybdenum (Usbnd Mo) alloy dispersed in an Alsbnd Si matrix has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. In this paper, two irradiated samples containing 53.9 vol% U-7wt% Mo fuel particles dispersed in an Al-2wt% Si matrix were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Measurements revealed three distinct fission gas release events for the samples from 400 to 700 °C, as well as a number of minor fission gas releases below and above this temperature range. The mechanisms responsible for these events are discussed, and the results have been compared with available information in the literature with exceptional agreement.

  14. A long term radiological risk model for plutonium-fueled and fission reactor space nuclear system

    SciTech Connect

    Bartram, B.W.; Dougherty, D.K.

    1987-01-01

    This report describes the optimization of the RISK III mathematical model, which provides risk assessment for the use of a plutonium-fueled, fission reactor in space systems. The report discusses possible scenarios leading to radiation releases on the ground; distinctions are made for an intact reactor and a dispersed reactor. Also included are projected dose equivalents for various accident situations. 54 refs., 31 figs., 11 tabs. (TEM)

  15. Separation of the rare-earth fission product poisons from spent nuclear fuel

    DOEpatents

    Christian, Jerry D.; Sterbentz, James W.

    2016-08-30

    A method for the separation of the rare-earth fission product poisons comprising providing a spent nuclear fuel. The spent nuclear fuel comprises UO.sub.2 and rare-earth oxides, preferably Sm, Gd, Nd, Eu oxides, with other elements depending on the fuel composition. Preferably, the provided nuclear fuel is a powder, preferably formed by crushing the nuclear fuel or using one or more oxidation-reduction cycles. A compound comprising Th or Zr, preferably metal, is provided. The provided nuclear fuel is mixed with the Th or Zr, thereby creating a mixture. The mixture is then heated to a temperature sufficient to reduce the UO.sub.2 in the nuclear fuel, preferably to at least to 850.degree. C. for Th and up to 600.degree. C. for Zr. Rare-earth metals are then extracted to form the heated mixture thereby producing a treated nuclear fuel. The treated nuclear fuel comprises the provided nuclear fuel having a significant reduction in rare-earths.

  16. Fuel age impacts on gaseous fission product capture during separations

    SciTech Connect

    Jubin, Robert T.; Soelberg, Nicolas R.; Strachan, Denis M.; Ilas, G.

    2012-09-21

    As a result of fuel reprocessing, volatile radionuclides will be released from the facility stack if no processes are put in place to remove them. The radionuclides that are of concern in this document are 3H, 14C, 85Kr, and 129 Rosnick 2007 I. The question we attempt to answer is how efficient must this removal process be for each of these radionuclides? To answer this question, we examine the three regulations that may impact the degree to which these radionuclides must be reduced before process gases can be released from the facility. These regulations are 40 CFR 61 (EPA 2010a), 40 CFR 190(EPA 2010b), and 10 CFR 20 (NRC 2012), and they apply to the total radonuclide release and to the dose to a particular organ – the thyroid. Because these doses can be divided amongst all the radionuclides in different ways and even within the four radionuclides in question, several cases are studied. These cases consider for the four analyzed radionuclides inventories produced for three fuel types—pressurized water reactor uranium oxide (PWR UOX), pressurized water reactor mixed oxide (PWR MOX), and advanced high-temperature gascooled reactor (AHTGR)—several burnup values and time out of reactor extending to 200 y. Doses to the maximum exposed individual (MEI) are calculated with the EPA code CAP-88 ( , 1992). Two dose cases are considered. The first case, perhaps unrealistic, assumes that all of the allowable dose is assigned to the volatile radionuclides. In lieu of this, for the second case a value of 10% of the allowable dose is arbitrarily selected to be assigned to the volatile radionuclides. The required decontamination factors (DFs) are calculated for both of these cases, including the case for the thyroid dose for which 14C and 129I are the main contributors. However, for completeness, for one fuel type and burnup, additional cases are provided, allowing 25% and 50% of the allowable dose to be assigned to the volatile radionuclides. Because 3H and 85Kr have

  17. Fission gas release from oxide fuels at high burnups (AWBA development program)

    SciTech Connect

    Dollins, C.C.

    1981-02-01

    The steady state gas release, swelling and densification model previously developed for oxide fuels has been modified to accommodate the slow transients in temperature, temperature gradient, fission rate and pressure that are encountered in normal reactor operation. The gas release predictions made by the model were then compared to gas release data on LMFBR-EBRII fuels obtained by Dutt and Baker and reported by Meyer, Beyer, and Voglewede. Good agreement between the model and the data was found. A comparison between the model and three other sets of gas release data is also shown, again with good agreement.

  18. Characterization of intergranular fission gas bubbles in U-Mo fuel.

    SciTech Connect

    Kim, Y. S.; Hofman, G.; Rest, J.; Shevlyakov, G. V.; Nuclear Engineering Division; SSCR RIAR

    2008-04-14

    This report can be divided into two parts: the first part, which is composed of sections 1, 2, and 3, is devoted to report the analyses of fission gas bubbles; the second part, which is in section 4, is allocated to describe the mechanistic model development. Swelling data of irradiated U-Mo alloy typically show that the kinetics of fission gas bubbles is composed of two different rates: lower initially and higher later. The transition corresponds to a burnup of {approx}0 at% U-235 (LEU) or a fission density of {approx}3 x 10{sup 21} fissions/cm{sup 3}. Scanning electron microscopy (SEM) shows that gas bubbles appear only on the grain boundaries in the pretransition regime. At intermediate burnup where the transition begins, gas bubbles are observed to spread into the intragranular regions. At high burnup, they are uniformly distributed throughout fuel. In highly irradiated U-Mo alloy fuel large-scale gas bubbles form on some fuel particle peripheries. In some cases, these bubbles appear to be interconnected and occupy the interface region between fuel and the aluminum matrix for dispersion fuel, and fuel and cladding for monolithic fuel, respectively. This is a potential performance limit for U-Mo alloy fuel. Microscopic characterization of the evolution of fission gas bubbles is necessary to understand the underlying phenomena of the macroscopic behavior of fission gas swelling that can lead to a counter measure to potential performance limit. The microscopic characterization data, particularly in the pre-transition regime, can also be used in developing a mechanistic model that predicts fission gas bubble behavior as a function of burnup and helps identify critical physical properties for the future tests. Analyses of grain and grain boundary morphology were performed. Optical micrographs and scanning electron micrographs of irradiated fuel from RERTR-1, 2, 3 and 5 tests were used. Micrographic comparisons between as-fabricated and as-irradiated fuel revealed

  19. Analysis of fission gas release in LWR fuel using the BISON code

    SciTech Connect

    G. Pastore; J.D. Hales; S.R. Novascone; D.M. Perez; B.W. Spencer; R.L. Williamson

    2013-09-01

    Recent advances in the development of the finite-element based, multidimensional fuel performance code BISON of Idaho National Laboratory are presented. Specifically, the development, implementation and testing of a new model for the analysis of fission gas behavior in LWR-UO2 fuel during irradiation are summarized. While retaining a physics-based description of the relevant mechanisms, the model is characterized by a level of complexity suitable for application to engineering-scale nuclear fuel analysis and consistent with the uncertainties pertaining to some parameters. The treatment includes the fundamental features of fission gas behavior, among which are gas diffusion and precipitation in fuel grains, growth and coalescence of gas bubbles at grain faces, grain growth and grain boundary sweeping effects, thermal, athermal, and transient gas release. The BISON code incorporating the new model is applied to the simulation of irradiation experiments from the OECD/NEA International Fuel Performance Experiments database, also included in the IAEA coordinated research projects FUMEX-II and FUMEX-III. The comparison of the results with the available experimental data at moderate burn-up is presented, pointing out an encouraging predictive accuracy, without any fitting applied to the model parameters.

  20. Partitioning of selected fission products from irradiated oxide fuel induced by thermal treatment

    NASA Astrophysics Data System (ADS)

    Shcherbina, Natalia; Kivel, Niko; Günther-Leopold, Ines

    2013-06-01

    The release of fission products (FPs) from spent nuclear fuel (SNF) has been studied as a function of the temperature and redox conditions. The present paper concerns essentially the high temperature separation of Cs and Sr from irradiated pressurized (PWR) and boiling water reactor (BWR) fuel of different burn-up levels with use of an in-house designed system for inductive vaporization (InVap). Using thermodynamic calculations with the Module of Fission Product Release (MFPR) code along with annealing experiments on SNF in the InVap it was shown that the speciation of Cs and Sr, hence their release behavior at high temperature, is sensitive to the redox conditions during thermal treatment. It was demonstrated that annealing conditions in the InVap can be adjusted in the way to promote the release of selected FPs without significant loss of the fuel matrix or actinides: complete release of Cs and I was achieved during treatment of irradiated fuel at 1800 °C under reducing atmosphere (0.7% H2/Ar mixture). The developed partitioning procedure can be used for the SNF pretreatment as an advanced head-end step in the hydrometallurgical or pyrochemical reprocessing technology.

  1. Radioactive Fission Product Release from Defective Light Water Reactor Fuel Elements

    SciTech Connect

    Konyashov, Vadim V.; Krasnov, Alexander M.

    2002-04-15

    Results are provided of the experimental investigation of radioactive fission product (RFP) release, i.e., krypton, xenon, and iodine radionuclides from fuel elements with initial defects during long-term (3 to 5 yr) irradiation under low linear power (5 to 12 kW/m) and during special experiments in the VK-50 vessel-type boiling water reactor.The calculation model for the RFP release from the fuel-to-cladding gap of the defective fuel element into coolant was developed. It takes into account the convective transport in the fuel-to-cladding gap and RFP sorption on the internal cladding surface and is in good agreement with the available experimental data. An approximate analytical solution of the transport equation is given. The calculation dependencies of the RFP release coefficients on the main parameters such as defect size, fuel-to-cladding gap, temperature of the internal cladding surface, and radioactive decay constant were analyzed.It is shown that the change of the RFP release from the fuel elements with the initial defects during long-term irradiation is, mainly, caused by fuel swelling followed by reduction of the fuel-to-cladding gap and the fuel temperature. The calculation model for the RFP release from defective fuel elements applicable to light water reactors (LWRs) was developed. It takes into account the change of the defective fuel element parameters during long-term irradiation. The calculation error according to the program does not exceed 30% over all the linear power change range of the LWR fuel elements (from 5 to 26 kW/m)

  2. Rapid aqueous release of fission products from high burn-up LWR fuel: Experimental results and correlations with fission gas release

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Günther-Leopold, I.; Kobler Waldis, J.; Linder, H. P.; Low, J.; Cui, D.; Ekeroth, E.; Spahiu, K.; Evins, L. Z.

    2012-01-01

    Studies of the rapid aqueous release of fission products from UO 2 and MOX fuel are of interest for the assessment of the safety of geological disposal of spent fuel, because of the associated potential contribution to dose in radiological safety assessment. Studies have shown that correlations between fission gas release (FGR) and the fraction rapidly leached of various long-lived fission products can provide a useful method to obtain some of this information. Previously, these studies have been limited largely to fuel with burn-up values below 50 MWd/kg U. Collaborative studies involving SKB, Studsvik, Nagra and PSI have provided new data on short-term release of 137Cs and 129I for a number of fuels irradiated to burn-ups of 50-75 MWd/kgU. In addition a method for analysis of leaching solutions for 79Se was developed. The results of the studies show that the fractional release of 137Cs is usually much lower than the FGR covering the entire range of burn-ups studied. Fractional 129I releases are somewhat larger, but only in cases in which the fuel was forcibly extracted from the cladding. Despite the expected high degree of segregation of fission gas (and by association 137Cs and 129I) in the high burn-up rim, no evidence was found for a significant contribution to release from the rim region. The method for 79Se analysis developed did not permit its detection. Nonetheless, based on the detection limit, the results suggest that 79Se is not preferentially leached from spent fuel.

  3. Investigation of the Feasibility of Utilizing Gamma Emission Computed Tomography in Evaluating Fission Product Migration in Irradiated TRISO Fuel Experiments

    SciTech Connect

    Jason M. Harp; Paul A. Demkowicz

    2014-10-01

    In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10-4 to 10-5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materials is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.

  4. Method and device for fabricating dispersion fuel comprising fission product collection spaces

    SciTech Connect

    Shaber, Eric L; Fielding, Randall S

    2015-05-05

    A method of fabricating a nuclear fuel comprising a fissile material, one or more hollow microballoons, a phenolic resin, and metal matrix. The fissile material, phenolic resin and the one or more hollow microballoons are combined. The combined fissile material, phenolic resin and the hollow microballoons are heated sufficiently to form at least some fissile material carbides creating a nuclear fuel particle. The resulting nuclear fuel particle comprises one or more fission product collection spaces. In a preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by forming the fissile material into microspheres. The fissile material microspheres are then overcoated with the phenolic resin and microballoon. In another preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by overcoating the microballoon with the fissile material, and phenolic resin.

  5. IMPACT OF FISSION PRODUCTS IMPURITY ON THE PLUTONIUM CONTENT IN PWR MOX FUELS

    SciTech Connect

    Gilles Youinou; Andrea Alfonsi

    2012-03-01

    This report presents the results of a neutronics analysis done in response to the charter IFCA-SAT-2 entitled 'Fuel impurity physics calculations'. This charter specifies that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies (UOX SNF) is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate PWR MOX fuel assemblies. Only non-gaseous FP have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1). This mixture of Pu and FP is called PuFP. Note that, in this preliminary analysis, the FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

  6. Fission product partitioning in aerosol release from simulated spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Di Lemma, F. G.; Colle, J. Y.; Rasmussen, G.; Konings, R. J. M.

    2015-10-01

    Aerosols created by the vaporization of simulated spent nuclear fuel (simfuel) were produced by laser heating techniques and characterised by a wide range of post-analyses. In particular attention has been focused on determining the fission product behaviour in the aerosols, in order to improve the evaluation of the source term and consequently the risk associated with release from spent fuel sabotage or accidents. Different simulated spent fuels were tested with burn-up up to 8 at. %. The results from the aerosol characterisation were compared with studies of the vaporization process by Knudsen Effusion Mass Spectrometry and thermochemical equilibrium calculations. These studies permit an understanding of the aerosol gaseous precursors and the gaseous reactions taking place during the aerosol formation process.

  7. Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy

    SciTech Connect

    McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Sattarov, Akhdiyor; Sooby, Elizabeth; Tsvetkov, Pavel; Phongikaroon, Supathorn; Simpson, Michael

    2013-04-19

    A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

  8. Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy

    NASA Astrophysics Data System (ADS)

    McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Phongikaroon, Supathorn; Sattarov, Akhdiyor; Simpson, Michael; Sooby, Elizabeth; Tsvetkov, Pavel

    2013-04-01

    A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

  9. Analyzing Losses: Transuranics into Waste and Fission Products into Recycled Fuel

    SciTech Connect

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert E. Cherry; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros; Candido Pereira; Denia Djokic

    2010-11-01

    All mass streams from separations and fuel fabrication are products that must meet criteria. Those headed for disposal must meet waste acceptance criteria (WAC) for the eventual disposal sites corresponding to their waste classification. Those headed for reuse must meet fuel or target impurity limits. A “loss” is any material that ends up where it is undesired. The various types of losses are linked in the sense that as the loss of transuranic (TRU) material into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. We have analyzed four separation options and two fuel fabrication options in a generic fuel cycle. The separation options are aqueous uranium extraction plus (UREX+1), electrochemical, Atomics International reduction oxidation separation (AIROX), and melt refining. UREX+1 and electrochemical are traditional, full separation techniques. AIROX and melt refining are taken as examples of limited separations, also known as minimum fuel treatment. The fuels are oxide and metal. To define a generic fuel cycle, a fuel recycling loop is fed from used light water reactor (LWR) uranium oxide fuel (UOX) at 51 MWth-day/kg-iHM burnup. The recycling loop uses a fast reactor with TRU conversion ratio (CR) of 0.50. Excess recovered uranium is put into storage. Only waste, not used fuel, is disposed – unless the impurities accumulate to a level so that it is impossible to make new fuel for the fast reactor. Impurities accumulate as dictated by separation removal and fission product generation. Our model approximates adjustment to fast reactor fuel stream blending of TRU and U products from incoming LWR UOX and recycling FR fuel to compensate for impurity accumulation by adjusting TRU:U ratios. Our mass flow model ignores postulated fuel impurity limits; we compare the calculated impurity values with those limits to identify elements of concern. AIROX and melt refining cannot be used to separate used LWR UOX-51 because they cannot

  10. A physical description of fission product behavior fuels for advanced power reactors.

    SciTech Connect

    Kaganas, G.; Rest, J.; Nuclear Engineering Division; Florida International Univ.

    2007-10-18

    The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuels under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.

  11. Fission product release and survivability of UN-kernel LWR TRISO fuel

    NASA Astrophysics Data System (ADS)

    Besmann, T. M.; Ferber, M. K.; Lin, H.-T.; Collin, B. P.

    2014-05-01

    A thermomechanical assessment of the LWR application of TRISO fuel with UN kernels was performed. Fission product release under operational and transient temperature conditions was determined by extrapolation from fission product recoil calculations and limited data from irradiated UN pellets. Both fission recoil and diffusive release were considered and internal particle pressures computed for both 650 and 800 μm diameter kernels as a function of buffer layer thickness. These pressures were used in conjunction with a finite element program to compute the radial and tangential stresses generated within a TRISO particle undergoing burnup. Creep and swelling of the inner and outer pyrolytic carbon layers were included in the analyses. A measure of reliability of the TRISO particle was obtained by computing the probability of survival of the SiC barrier layer and the maximum tensile stress generated in the pyrolytic carbon layers from internal pressure and thermomechanics of the layers. These reliability estimates were obtained as functions of the kernel diameter, buffer layer thickness, and pyrolytic carbon layer thickness. The value of the probability of survival at the end of irradiation was inversely proportional to the maximum pressure.

  12. Fission product release and survivability of UN-kernel LWR TRISO fuel

    SciTech Connect

    T. M. Besmann; M. K. Ferber; H.-T. Lin; B. P. Collin

    2014-05-01

    A thermomechanical assessment of the LWR application of TRISO fuel with UN kernels was performed. Fission product release under operational and transient temperature conditions was determined by extrapolation from fission product recoil calculations and limited data from irradiated UN pellets. Both fission recoil and diffusive release were considered and internal particle pressures computed for both 650 and 800 um diameter kernels as a function of buffer layer thickness. These pressures were used in conjunction with a finite element program to compute the radial and tangential stresses generated within a TRISO particle undergoing burnup. Creep and swelling of the inner and outer pyrolytic carbon layers were included in the analyses. A measure of reliability of the TRISO particle was obtained by computing the probability of survival of the SiC barrier layer and the maximum tensile stress generated in the pyrolytic carbon layers from internal pressure and thermomechanics of the layers. These reliability estimates were obtained as functions of the kernel diameter, buffer layer thickness, and pyrolytic carbon layer thickness. The value of the probability of survival at the end of irradiation was inversely proportional to the maximum pressure.

  13. On the combination of delayed neutron and delayed gamma techniques for fission rate measurement in nuclear fuel

    SciTech Connect

    Perret, G.; Jordan, K. A.

    2011-07-01

    Novel techniques to measure newly induced fissions in spent fuel after re-irradiation at low power have been developed and tested at the Proteus zero-power research reactor. The two techniques are based on the detection of high energy gamma-rays emitted by short-lived fission products and delayed neutrons. The two techniques relate the measured signals to the total fission rate, the isotopic composition of the fuel, and nuclear data. They can be combined to derive better estimates on each of these parameters. This has potential for improvement in many areas. Spent fuel characterisation and safeguard applications can benefit from these techniques for non-destructive assay of plutonium content. Another application of choice is the reduction of uncertainties on nuclear data. As a first application of the combination of the delayed neutron and gamma measurement techniques, this paper shows how to reduce the uncertainties on the relative abundances of the longest delayed neutron group for thermal fissions in {sup 235}U, {sup 239}Pu and fast fissions in {sup 238}U. The proposed experiments are easily achievable in zero-power research reactors using fresh UO{sub 2} and MOX fuel and do not require fast extraction systems. The relative uncertainties (1{sigma}) on the relative abundances are expected to be reduced from 13% to 4%, 16% to 5%, and 38% to 12% for {sup 235}U, {sup 238}U and {sup 239}Pu, respectively. (authors)

  14. Hybrid Technique in SCALE for Fission Source Convergence Applied to Used Nuclear Fuel Analysis

    SciTech Connect

    Ibrahim, Ahmad M; Peplow, Douglas E.; Bekar, Kursat B; Celik, Cihangir; Scaglione, John M; Ilas, Dan; Wagner, John C

    2013-01-01

    The new hybrid SOURCE ConveRgence accelERator (SOURCERER) sequence in SCALE deterministically computes a fission distribution and uses it as the starting source in a Monte Carlo eigenvalue criticality calculation. In addition to taking the guesswork out of defining an appropriate, problem-dependent starting source, the more accurate starting source provided by the deterministic calculation decreases the probability of producing inaccurate tally estimates associated with undersampling problems caused by inadequate source convergence. Furthermore, SOURCERER can increase the efficiency of the overall simulation by decreasing the number of cycles that has to be skipped before the keff accumulation. SOURCERER was applied to a representative example for a used nuclear fuel cask utilized at the Maine Yankee storage site {Scaglione and Ilas}. Because of the time constraints of the Used Fuel Research, Development, and Demonstration project, it was found that using more than 30,000 neutrons per cycle will lead to inaccurate Monte Carlo calculation of keff due to the inevitable decrease in the number of skipped and active cycles used with this problem. For a fixed uncertainty objective and by using 30,000 neutron per cycle, the use of SOURCERER increased the efficiency of the keff calculation by 60%compared to a Monte Carlo calculation that used a starting source distributed uniformly in fissionable regions, even with the inclusion of the extra computational time required by the deterministic calculation. Additionally, the use of SOURCERER increased the reliability of keff calculation using any number of skipped cycles below 350.

  15. Partitioning of fission products from irradiated nitride fuel using inductive vaporization

    SciTech Connect

    Shcherbina, N.; Kulik, D.A.; Kivel, N.; Potthast, H.D.; Guenther-Leopold, I.

    2013-07-01

    Irradiated nitride fuel (Pu{sub 0.3}Zr{sub 0.7})N fabricated at PSI in frame of the CONFIRM project and having a burn-up of 10.4 % FIMA (Fission per Initial Metal Atom) has been investigated by means of inductive vaporization. The study of thermal stability and release behavior of Pu, Am, Zr and fission products (FPs) was performed in a wide temperature range (up to 2300 C. degrees) and on different redox conditions. On-line monitoring by ICP-MS detected low nitride stability and significant loss of Pu and Am at T>1900 C. degrees during annealing under inert atmosphere (Ar). The oxidative pre-treatment of nitride fuel on air at 1000 C. degrees resulted in strong retention of Pu and Am in the solid, as well as of most FPs. Thermodynamic modelling of elemental speciation using GEM-Selektor v.3 code (Gibbs Energy Minimization Selektor), supported by a comprehensive literature review on thermodynamics of actinides and FPs, revealed a number of binary compounds of Cs, Mo, Te, Sr and Ba to occur in the solid. Speciation of some FPs in the fuel is discussed and compared to earlier results of electron probe microanalysis (EPMA). Predominant vapor species predicted by GEM-Selektor calculations were Pu(g), Am(g) and N{sub 2}. Nitrogen can be completely released from the fuel after complete oxidation at 1000 C. degrees. With regard to the irradiated nitride reprocessing technology, this result can have an important practical application as an alternative way for {sup 15}N recovery. (authors)

  16. Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)

    SciTech Connect

    Powers, J; Abbott, R; Fratoni, M; Kramer, K; Latkowski, J; Seifried, J; Taylor, J

    2010-03-08

    The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine design with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.

  17. Application of U10Mo Fuel for Space Fission Power Applications - White Paper

    SciTech Connect

    James Werner

    2014-07-01

    A novel reactor design has been proposed for space applications to provide hundreds of watts to one or two kilowatts of electrical power. The reactor concept proposed uses the alloy U10Mo (uranium with 10 weight percent molybdenum) as the fuel. This fuel was selected for its high uranium density, high thermal conductivity, and excellent neutronic characteristics for this application. The core is surrounded by a BeO reflector. Heat is carried from the reactor by liquid metal heat pipes. A shadow shield of LiH tungsten is also utilized to reduce the neutron and gamma radiation dose to the rest of the spacecraft. This design represents a best effort at minimizing the complexity of the fission system and reducing the mass of the system. The compact nature of the block UMo core and BeO radial reflector allows the reactor diameter to be as small as practical while still meeting the neutronic and thermal power demands. This directly results in a reduced shield mass since the reactor diameter dictates the footprint of the radiation shield. The use of heat pipes offers a straightforward primary heat transport approach using proven liquid-metal heat pipe technology. Further, the elimination of a liquid core coolant system heat transport components, both at the reactor side and radiator side, contributes to reducing the total part-count and lowering system mass. The proposed reactor is using a fuel that is being developed by DOE, but there are significant differences in the fuels enrichment, operating conditions and the physical shape of the fuel itself. This paper attempts to highlight some of the basic consideration and needs that would be expected to be met in developing this fuel and qualifying it for use.

  18. Fission Product Release and Survivability of UN-Kernel LWR TRISO Fuel

    SciTech Connect

    Besmann, Theodore M; Ferber, Mattison K; Lin, Hua-Tay

    2014-01-01

    A thermomechanical assessment of the LWR application of TRISO fuel with UN kernels was performed. Fission product release under operational and transient temperature conditions was determined by extrapolation from range calculations and limited data from irradiated UN pellets. Both fission recoil and diffusive release were considered and internal particle pressures computed for both 650 and 800 m diameter kernels as a function of buffer layer thickness. These pressures were used in conjunction with a finite element program to compute the radial and tangential stresses generated with a TRISO particle as a function of fluence. Creep and swelling of the inner and outer pyrolytic carbon layers were included in the analyses. A measure of reliability of the TRISO particle was obtained by measuring the probability of survival of the SiC barrier layer and the maximum tensile stress generated in the pyrolytic carbon layers as a function of fluence. These reliability estimates were obtained as functions of the kernel diameter, buffer layer thickness, and pyrolytic carbon layer thickness. The value of the probability of survival at the end of irradiation was inversely proportional to the maximum pressure.

  19. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)

    SciTech Connect

    Moir, R W; Shaw, H F; Caro, A; Kaufman, L; Latkowski, J F; Powers, J; Turchi, P A

    2008-10-24

    Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of {sup 238}U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF{sub 4}, whose melting point is 490 C. The use of {sup 232}Th as a fuel is also being studied. ({sup 232}Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be {approx}550 C at the inlet (60 C above the solidus temperature) and {approx}650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount ({approx}1 mol%) of UF{sub 3}. The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu{sup 3+} in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus {sup 233}U production rate is {approx}0

  20. Current status of the FASTGRASS/PARAGRASS models for fission product release from LWR fuel during normal and accident conditions

    SciTech Connect

    Rest, J.; Zawadski, S.A.; Piasecka, M.

    1983-10-01

    The theoretical FASTGRASS model for the prediction of the behavior of the gaseous and volatile fission products in nuclear fuels under normal and transient conditions has undergone substantial improvements. The major improvements have been in the atomistic and bubble diffusive flow models, in the models for the behavior of gas bubbles on grain surfaces, and in the models for the behavior of the volatile fission products iodine and cesium. The thoery has received extensive verification over a wide range of fuel operating conditions, and can be regarded as a state-of-the-art model based on our current level of understanding of fission product behavior. PARAGRASS is an extremely efficient, mechanistic computer code with the capability of modeling steady-state and transient fission-product behavior. The models in PARAGRASS are based on the more detailed ones in FASTGRASS. PARAGRASS updates for the FRAPCON (PNL), FRAP-T (INEL), and SCDAP (INEL) codes have recently been completed and implemented. Results from an extensive FASTGRASS verification are presented and discussed for steady-state and transient conditions. In addition, FASTGRASS predictions for fission product release rate constants are compared with those in NUREG-0772. 21 references, 13 figures.

  1. A model for the influence of microstructure, precipitate pinning and fission gas behavior on irradiation-induced recrystallization of nuclear fuels

    NASA Astrophysics Data System (ADS)

    Rest, J.

    2004-03-01

    Irradiation-induced recrystallization appears to be a general phenomenon in that it is observed to occur in a variety of nuclear fuel types, e.g. U-xMo, UO2, and U3O8. For temperatures below that where significant thermal annealing of defects occurs, an expression is derived for the fission density at which irradiation-induced recrystallization is initiated that is athermal and weakly dependent on fission rate. The initiation of recrystallization is to be distinguished from the subsequent progression and eventual consumption of the original fuel grain. The formulation takes into account the observed microstructural evolution of the fuel, the role of precipitate pinning and fission gas bubbles, and the triggering event for recrystallization. The calculated dislocation density, fission gas bubble-size distribution, and fission density at which recrystallization first appears are compared to measured quantities.

  2. Fission product retention in TRISCO coated UO sub 2 particle fuels subjected to HTR simulated core heating tests

    SciTech Connect

    Baldwin, C.A.; Kania, M.J.

    1990-11-01

    Results of the examination and analysis of 25,730 individual microspheres from spherical fuel elements HFR-K3/1 and HFR-K3/3 are reported. The parent spheres were irradiated in excess of end-of-life exposure and subsequently subjected to simulated core heating tests in a special high-temperature furnace at Forschungszentrum, Juelich, GmbH (KFA). Following the heating tests, the spheres were electrolytically deconsolidated to obtain unbonded fuel particles for Irradiated Microsphere Gamma Analyzer (IMGA) analysis. For sphere HFR-K3/1, which was heated for 500 h at 1600{degree}C, only four particles were identified as having released fission products. The remaining particles from the sphere showed no statistical evidence of fission product release. Scanning Electron Microscopy (SEM) examination showed that three of the defect particles had large sections of the TRISO coating missing, while the fourth appeared normal. For sphere HFR-K3/3, which was heated for 100 h at 1800{degree}C, the IMGA data revealed that fission product release (cesium) from individual particles was significant and that there was large particle-to-particle variation in retention capabilities. Individual particle release (cesium) averaged ten times the KFA-measured integral spherical fuel element release value. In addition, the bimodal distribution of the individual particle data indicated that two distinct modes of failure at fuel temperatures of 1800{degree}C and above may exist. 6 refs., 6 figs., 4 tabs.

  3. Fission product release and microstructure changes of irradiated MOX fuel at high temperatures

    NASA Astrophysics Data System (ADS)

    Colle, J.-Y.; Hiernaut, J.-P.; Wiss, T.; Beneš, O.; Thiele, H.; Papaioannou, D.; Rondinella, V. V.; Sasahara, A.; Sonoda, T.; Konings, R. J. M.

    2013-11-01

    Samples of irradiated MOX fuel of 44.5 GWd/tHM mean burn-up were prepared by core drilling at three different radial positions of a fuel pellet. They were subsequently heated in a Knudsen effusion mass spectrometer up to complete vaporisation of the sample (˜2600 K) and the release of fission gas (krypton and xenon) as well as helium was measured. Scanning electron microscopy was used in parallel to investigate the evolution of the microstructure of a sample heated under the same condition up to given key temperatures as determined from the gas release profiles. A clear initial difference for fission gas release and microstructure was observed as a function of the radial position of the samples and therefore of irradiation temperature. A good correlation between the microstructure evolution and the gas release peaks could be established as a function of the temperature of irradiation and (laboratory) heating. The region closest to the cladding (0.58 < r/r0 < 0.96), designated as sample type A in Fig. 1. It represents the "cooler" part of the fuel pellet. The irradiation temperatures (Tirrad) in this range are from 854 to 1312 K (ΔT: 458 K). The intermediate radial zone of the pellet (0.42 < r/r0 < 0.81), designated sample type B in Fig. 1, has a Tirrad ranging from 1068 to 1434 K (ΔT: 365 K). The central zone of the pellet (0.003 < r/r0 < 0.41), designated sample type C in Fig. 1, which was close to the hottest part of the pellet, has a Tirrad ranging from 1442 to 1572 K (ΔT: 131 K). The sample irradiation temperatures were determined from the calculated temperature profile (exponential function) knowing the core temperature of the fuel (1573 K) [11], the standard temperature for this type of fuel at the inner side of the cladding (800 K). The average burnup was calculated with TRANSURANUS code [12] and the PA burnup is the average burnup multiplied by the ratio of the fissile Pu concentration in PA over average fissile Pu concentration in fuel [11]. Calculated

  4. An analytical study of volatile metallic fission product release from very high temperature gas-cooled reactor fuel and core

    SciTech Connect

    Mitake, S.; Okamoto, F.

    1988-04-01

    Release characteristics of volatile metallic fission products from the coated fuel particle and the reactor core for a very high temperature gas-cooled reactor during its power operation has been studied using numerical analysis. A computer code FORNAX, based on Fick's diffusion law and the evaporation mass transfer relation, has been developed, which considers, in particular, distribution and time histories of power density, fuel temperature, and failed and degraded fuel particle fractions in the core. Applicability of the code to evaluate the core design has been shown and the following have been indicated on the release of cesium from the reactor: 1. The release from the intact fuel particles by diffusion through their intact coatings shows larger contribution in the total core release at higher temperature. 2. The diffusion release from the intact particle is governed not only by the diffusion in the silicon carbide layer but also by that in the fuel kernel.

  5. Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors

    SciTech Connect

    Hikaru Hiruta; Gilles Youinou

    2013-09-01

    This short report presents the neutronic analysis to evaluate the impact of fission product impurity on the Pu content of Sodium-cooled Fast Reactor (SFR) metal- and oxide- fuel fabrication. The similar work has been previously done for PWR MOX fuel [1]. The analysis will be performed based on the assumption that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate SFR fuels. Only non-gaseous FPs have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1 of Reference 1). Throughout of this report, we define the mixture of Pu and FPs as PuFP. The main objective of this analysis is to quantify the increase of the Pu content of SFR fuels necessary to maintain the same average burnup at discharge independently of the amount of FP in the Pu stream, i.e. independently of the PuFP composition. The FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

  6. A separate effect study of the influence of metallic fission products on CsI radioactive release from nuclear fuel

    NASA Astrophysics Data System (ADS)

    Di Lemma, F. G.; Colle, J. Y.; Beneš, O.; Konings, R. J. M.

    2015-10-01

    The chemistry of cesium and iodine is of main importance to quantify the radioactive release in case of a nuclear reactor accident, or sabotage involving irradiated nuclear materials. We studied the interaction of CsI with different metallic fission products such as Mo and Ru. These elements can be released from nuclear fuel when exposed to oxidising conditions, as in the case of contact of overheated nuclear fuel with air (e.g. in a spent fuel cask sabotage, uncovering of a spent fuel pond, or air ingress accidents). Experiments were performed by vaporizing mixtures of the compounds in air, and analysing the produced aerosols in view of a possible gas-gas and gas-aerosol reactions between the compounds. These results were compared with the gaseous species predicted by thermochemical equilibrium calculations and experimental equilibrium vaporization tests using Knudsen Effusion Mass Spectrometry.

  7. Microstructural Characterization of a Mg Matrix U-Mo Dispersion Fuel Plate Irradiated in the Advanced Test Reactor to High Fission Density: SEM Results

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon D.; Gan, Jian; Robinson, Adam B.; Medvedev, Pavel G.; Madden, James W.; Moore, Glenn A.

    2016-04-01

    Low-enriched (U-235 <20 pct) U-Mo dispersion fuel is being developed for use in research and test reactors. In most cases, fuel plates with Al or Al-Si alloy matrices have been tested in the Advanced Test Reactor to support this development. In addition, fuel plates with Mg as the matrix have also been tested. The benefit of using Mg as the matrix is that it potentially will not chemically interact with the U-Mo fuel particles during fabrication or irradiation, whereas with Al and Al-Si alloys such interactions will occur. Fuel plate R9R010 is a Mg matrix fuel plate that was aggressively irradiated in ATR. This fuel plate was irradiated as part of the RERTR-8 experiment at high temperature, high fission rate, and high power, up to high fission density. This paper describes the results of the scanning electron microscopy (SEM) analysis of an irradiated fuel plate using polished samples and those produced with a focused ion beam. A follow-up paper will discuss the results of transmission electron microscopy (TEM) analysis. Using SEM, it was observed that even at very aggressive irradiation conditions, negligible chemical interaction occurred between the irradiated U-7Mo fuel particles and Mg matrix; no interconnection of fission gas bubbles from fuel particle to fuel particle was observed; the interconnected fission gas bubbles that were observed in the irradiated U-7Mo particles resulted in some transport of solid fission products to the U-7Mo/Mg interface; the presence of microstructural pathways in some U-9.1 Mo particles that could allow for transport of fission gases did not result in the apparent presence of large porosity at the U-7Mo/Mg interface; and, the Mg-Al interaction layers that were present at the Mg matrix/Al 6061 cladding interface exhibited good radiation stability, i.e. no large pores.

  8. Microstructural Characterization of a Mg Matrix U-Mo Dispersion Fuel Plate Irradiated in the Advanced Test Reactor to High Fission Density: SEM Results

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon D.; Gan, Jian; Robinson, Adam B.; Medvedev, Pavel G.; Madden, James W.; Moore, Glenn A.

    2016-06-01

    Low-enriched (U-235 <20 pct) U-Mo dispersion fuel is being developed for use in research and test reactors. In most cases, fuel plates with Al or Al-Si alloy matrices have been tested in the Advanced Test Reactor to support this development. In addition, fuel plates with Mg as the matrix have also been tested. The benefit of using Mg as the matrix is that it potentially will not chemically interact with the U-Mo fuel particles during fabrication or irradiation, whereas with Al and Al-Si alloys such interactions will occur. Fuel plate R9R010 is a Mg matrix fuel plate that was aggressively irradiated in ATR. This fuel plate was irradiated as part of the RERTR-8 experiment at high temperature, high fission rate, and high power, up to high fission density. This paper describes the results of the scanning electron microscopy (SEM) analysis of an irradiated fuel plate using polished samples and those produced with a focused ion beam. A follow-up paper will discuss the results of transmission electron microscopy (TEM) analysis. Using SEM, it was observed that even at very aggressive irradiation conditions, negligible chemical interaction occurred between the irradiated U-7Mo fuel particles and Mg matrix; no interconnection of fission gas bubbles from fuel particle to fuel particle was observed; the interconnected fission gas bubbles that were observed in the irradiated U-7Mo particles resulted in some transport of solid fission products to the U-7Mo/Mg interface; the presence of microstructural pathways in some U-9.1 Mo particles that could allow for transport of fission gases did not result in the apparent presence of large porosity at the U-7Mo/Mg interface; and, the Mg-Al interaction layers that were present at the Mg matrix/Al 6061 cladding interface exhibited good radiation stability, i.e. no large pores.

  9. STEM-EDS analysis of fission products in neutron-irradiated TRISO fuel particles from AGR-1 experiment

    NASA Astrophysics Data System (ADS)

    Leng, B.; van Rooyen, I. J.; Wu, Y. Q.; Szlufarska, I.; Sridharan, K.

    2016-07-01

    Historic and recent post-irradiation-examination from the German AVR and Advanced Gas Reactor Fuel Development and Qualification Project have shown that 110 m Ag is released from intact tristructural isotropic (TRISO) fuel. Although TRISO fuel particle research has been performed over the last few decades, little is known about how metallic fission products are transported through the SiC layer, and it was not until March 2013 that Ag was first identified in the SiC layer of a neutron-irradiated TRISO fuel particle. The existence of Pd- and Ag-rich grain boundary precipitates, triple junction precipitates, and Pd nano-sized intragranular precipitates in neutron-irradiated TRISO particle coatings was investigated using Scanning Transmission Electron Microscopy and Energy Dispersive Spectroscopy analysis to obtain more information on the chemical composition of the fission product precipitates. A U-rich fission product honeycomb shape precipitate network was found near a micron-sized precipitate in a SiC grain about ∼5 μm from the SiC-inner pyrolytic carbon interlayer, indicating a possible intragranular transport path for uranium. A single Ag-Pd nano-sized precipitate was found inside a SiC grain, and this is the first research showing such finding in irradiated SiC. This finding may possibly suggest a possible Pd-assisted intragranular transport mechanism for Ag and may be related to void or dislocation networks inside SiC grains. Preliminary semi-quantitative analysis indicated the micron-sized precipitates to be Pd2Si2U with carbon existing inside these precipitates. However, the results of such analysis for nano-sized precipitates may be influenced by the SiC matrix. The results reported in this paper confirm the co-existence of Cd with Ag in triple points reported previously.

  10. Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    SciTech Connect

    Dawn Scates

    2010-10-01

    A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000ºC in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

  11. Gamma-ray spectrometric measurements of fission rate ratios between fresh and burnt fuel following irradiation in a zero-power reactor

    NASA Astrophysics Data System (ADS)

    Kröhnert, H.; Perret, G.; Murphy, M. F.; Chawla, R.

    2013-01-01

    The gamma-ray activity from short-lived fission products has been measured in fresh and burnt UO2 fuel samples after irradiation in a zero-power reactor. For the first time, short-lived gamma-ray activity from fresh and burnt fuel has been compared and fresh-to-burnt fuel fission rate ratios have been derived. For the measurements, well characterized fresh and burnt fuel samples, with burn-ups up to 46 GWd/t, were irradiated in the zero-power research reactor PROTEUS. Fission rate ratios were derived based on the counting of high-energy gamma-rays above 2200 keV, in order to discriminate against the high intrinsic activity of the burnt fuel. This paper presents the measured fresh-to-burnt fuel fission rate ratios based on the 142La (2542 keV), 89Rb (2570 keV), 138Cs (2640 keV) and 95Y (3576 keV) high-energy gamma-ray lines. Comparisons are made with the results of Monte Carlo modeling of the experimental configuration, carried out using the MCNPX code. The measured fission rate ratios have 1σ uncertainties of 1.7-3.4%. The comparisons with calculated predictions show an agreement within 1-3σ, although there appears to be a slight bias (∼3%).

  12. Delayed fission product gamma-ray transmission through low enriched uranium dioxide fuel pin lattices in air

    NASA Astrophysics Data System (ADS)

    Trumbull, Timothy H.

    The transmission of delayed fission-product gamma rays through various arrangements of low-enriched UO2 fuel pin lattices in an air medium was studied. Experimental measurements, point-kernel and Monte Carlo photon transport calculations were performed to demonstrate the shielding effect of ordered lattices of fuel pins on the resulting gamma-ray dose to a detector outside the lattice. The variation of the gamma-ray dose on the outside of the lattice as a function of radial position, the so-called "channeling" effect, was analyzed. Techniques for performing experimental measurements and data reduction at Rensselaer Polytechnic Institute's Reactor Critical Facility (RCF) were derived. An experimental apparatus was constructed to hold the arrangements of fuel pins for the measurements. A gamma-ray spectroscopy system consisting of a sodium-iodide scintillation detector was used to collect data. Measurements were made with and without a collimator installed. A point-kernel transport code was developed to map the radial dependence of the gamma-ray flux. Input files for the Monte Carlo code, MCNP, were also developed to accurately model the experimental measurements. The results of the calculations were compared to the experimental measurements. In order to determine the delayed fission-product gamma-ray source for the calculations, a technique was developed using a previously written code, DELBG and the reactor state-point data obtained during the experimental measurements. Calculations were performed demonstrating the effects of material homogenization on the gamma-ray transmission through the fuel pin lattice. Homogeneous and heterogeneous calculations were performed for all RCF fuel pin lattices as well as for a typical commercial pressurized water reactor fuel bundle. The results of the study demonstrated the effectiveness of the experimental measurements to isolate the channeling effect of delayed fission-product gamma-rays through lattices of RCF fuel pins in an

  13. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    SciTech Connect

    Shamasundar, B.I.; Fehrenbach, M.E.

    1981-05-01

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations.

  14. Licensing topical report: the measurement and modelling of time-dependent fission product release from failed HTGR fuel particles under accident conditions

    SciTech Connect

    Myers, B.F.; Morrissey, R.E.

    1980-04-01

    The release of fission products from failed fuel particles was measured under simulated accident (core heatup) conditions. A generic model and specific model parameters that describe delayed fission product release from the kernels of failed HTGR fuel particles were developed from the experimental results. The release of fission products was measured from laser-failed BISO ThO/sub 2/ and highly enriched (HEU) TRISO UC/sub 2/ particles that had been irradiated to a range of kernel burnups. The burnups were 0.25, 1.4, and 15.7% FIMA for ThO/sub 2/ particles and 23.5 and 74% FIMA for UC/sub 2/ particles. The fission products measured were nuclides of xenon, iodine, krypton, tellurium, and cesium.

  15. Effects of radiation and fission product incorporation in a yttria-stabilized zirconia based inert matrix fuel

    NASA Astrophysics Data System (ADS)

    Zhu, Sha

    This work has investigated the irradiation and incorporation effects of fission products in a yttria-stabilized zirconia (YSZ) based inert matrix fuel (IMF). The concept of inert matrix fuel is based on a new strategy for disposition of plutonium generated from the reprocessing of commercial nuclear fuel and the dismantling of nuclear weapons, i.e. using uranium-free oxides to "burn" plutonium and other actinides (Np, Cm, and Am) in reactors. This approach allows direct disposal, without reprocessing, after once-through burn-up. YSZ and MgAl2O4-YSZ composites are among the potential ceramics for IMF due to their high chemical durability and radiation resistance. The research involved investigating the production, nature, and accumulation of irradiation-induced defects, the behavior of the fission products in the ceramics, the structural stability and amorphization resistance of the YSZ during implantation. Ion implantations were conducted with 200--400 keV Cs+, Sr+, I+, Xe+ and Ti+ up to fluences of 1 x 1017/cm 2 at both room temperature and temperatures of 600--700°C. Thermal annealing was subsequently completed after room temperature ion implantations. In situ and ex situ transmission electron microscopy (TEM), optical absorption spectroscopy, photo-luminescence spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy were employed to characterize the irradiation induced defect evolution and analyze the defect structures. Various irradiation effects were observed and determined in the experiments, such as point defects (F type and V type color centers), defect clusters (dislocation loops), cavities (voids and bubbles), the crystalline-to-amorphous transition, and the phase transformation from fluorite to pyrochlore structure. The ion irradiation-induced amorphization mechanism, the retention ability of the fission products, and structural stability of YSZ are discussed in terms of ion incorporation effects, implanted ion radii, and the solubility

  16. Determining fissile content in PWR spent fuel assemblies using a passive neutron Albedo reactivity with fission chambers technique

    SciTech Connect

    Conlin, Jeremy Lloyd; Tobin, Stephen J

    2010-01-01

    State regulatory bodies and organizations such as the IAEA that are concerned with preventing the proliferation of nuclear weapons are interested in a means of quantifying the amount of plutonium in a given spent fuel assembly. The complexity of spent nuclear fuel makes the measurement of plutonium content challenging. There are a variety of techniques that can measure various properties of spent nuclear fuel including burnup, and mass of fissile content. No single technique can provide all desired information, necessitating an approach using multiple detector systems and types. This paper presents our analysis of the Passive Neutron Albedo Reactivity Fission Chamber (PNAR-FC) detector system. PNAR-FC is a simplified version of the PNAR technique originally developed in 1997. This earlier research was performed with a high efficiency, {sup 3}He-based system (PNAR-3He) with which multiplicty analysis was performed. With the PNAR technique a portion of the spent fuel assembly is wrapped in a 1 mm thick cadmium liner. Neutron count rates are measured both with and without the cadmium liner present. The ratio of the count rate with the cadmium liner to the count rate without the cadmium liner is calculated and called the cadmium ratio. In the PNAR-3He technique, multiplicity measurements were made and the cadmium ratio was shown to scale with the fissile content of the material being measured. PNAR-FC simplifies the PNAR technique by using only a few fission chambers instead of many {sup 3}He tubes. Using a simplified PNAR-FC technique provides for a cheaper, lighter, and thus more portable detector system than was possible with the PNAR-3He system. The challenge with the PNAR-FC system are two-fold: (1) the change in the cadmium ratio is weaker as a afunction of the changing fissile content relative to multiplicity count rates, and (2) the efficiency for the fission chamber based system are poorer than for the {sup 3}He based detectors. In this paper, we present our

  17. Stochastic simulation of fission product activity in primary coolant due to fuel rod failures in typical PWRs under power transients

    NASA Astrophysics Data System (ADS)

    Javed Iqbal, M.; Mirza, Nasir M.; Mirza, Sikander M.

    2008-01-01

    During normal operation of PWRs, routine fuel rods failures result in release of radioactive fission products (RFPs) in the primary coolant of PWRs. In this work, a stochastic model has been developed for simulation of failure time sequences and release rates for the estimation of fission product activity in primary coolant of a typical PWR under power perturbations. In the first part, a stochastic approach is developed, based on generation of fuel failure event sequences by sampling the time dependent intensity functions. Then a three-stage model based deterministic methodology of the FPCART code has been extended to include failure sequences and random release rates in a computer code FPCART-ST, which uses state-of-the-art LEOPARD and ODMUG codes as its subroutines. The value of the 131I activity in primary coolant predicted by FPCART-ST code has been found in good agreement with the corresponding values measured at ANGRA-1 nuclear power plant. The predictions of FPCART-ST code with constant release option have also been found to have good agreement with corresponding experimental values for time dependent 135I, 135Xe and 89Kr concentrations in primary coolant measured during EDITHMOX-1 experiments.

  18. Freshly induced short-lived gamma-ray activity as a measure of fission rates in lightly re-irradiated spent fuel

    NASA Astrophysics Data System (ADS)

    Kröhnert, H.; Perret, G.; Murphy, M. F.; Chawla, R.

    2010-12-01

    A new measurement technique has been developed to determine fission rates in burnt fuel, following re-irradiation in a zero-power research reactor. The development has been made in the frame of the LIFE@PROTEUS program at the Paul Scherrer Institute, which aims at characterizing the interfaces between fresh and highly burnt fuel assemblies in modern LWRs. To discriminate against the high intrinsic gamma-ray activity of the burnt fuel, the proposed measurement technique uses high-energy gamma-rays, above 2000 keV, emitted by short-lived fission products freshly produced in the fuel. To demonstrate the feasibility of this technique, a fresh UO 2 sample and a 36 GWd/t burnt UO 2 sample were irradiated in the PROTEUS reactor and their gamma-ray activities were recorded directly after irradiation. For both fresh and the burnt fuel samples, relative fission rates were derived for different core positions, based on the short-lived 142La (2542 keV), 89Rb (2570 keV), 138Cs (2640 keV) and 95Y (3576 keV) gamma-ray lines. Uncertainties on the inter-position fission rate ratios were mainly due to the uncertainties on the net-area of the gamma-ray peaks and were about 1-3% for the fresh sample, and 3-6% for the burnt one. Thus, for the first time, it has been shown that the short-lived gamma-ray activity, induced in burnt fuel by irradiation in a zero-power reactor, can be used as a quantitative measure of the fission rate. For both fresh and burnt fuel, the measured results agreed, within the uncertainties, with Monte Carlo (MCNPX) predictions.

  19. Interaction of fission products and SiC in TRISO fuel particles: a limiting HTGR design parameter

    SciTech Connect

    Stansfield, O.M.; Homan, F.J.; Simon, W.A.; Turner, R.F.

    1983-09-01

    The fuel particle system for the steam cycle cogeneration HTGR being developed in the US consists of 20% enriched UC/sub 0/./sub 3/O/sub 1/./sub 7/ and ThO/sub 2/ kernels with TRISO coatings. The reaction of fission products with the SiC coating is the limiting thermochemical coating failure mechanism affecting performance. The attack of the SiC by palladium (Pd) is considered the controlling reaction with systems of either oxide or carbide fuels. The lanthanides, such as cerium, neodymium, and praseodymium, also attack SiC in carbide fuel particles. In reactor design, the time-temperature relationships at local points in the core are used to calculate the depth of SiC-Pd reaction. The depth of penetration into the SiC during service varies with core power density, power distribution, outlet gas temperature, and fuel residence time. These parameters are adjusted in specifying the core design to avoid SiC coating failure.

  20. On the effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Trummer, Martin; Nilsson, Sara; Jonsson, Mats

    2008-08-01

    Radiation induced oxidative dissolution of UO 2 is a key process for the safety assessment of future geological repositories for spent nuclear fuel. This process is expected to govern the rate of radionuclide release to the biosphere. In this work, we have studied the catalytic effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel. The experimental studies were performed using UO 2 pellets containing 0%, 0.1%, 1% and 3% Pd as a model for spent nuclear fuel. H 2O 2 was used as a model for radiolytical oxidants (previous studies have shown that H 2O 2 is the most important oxidant in such systems). The pellets were immersed in aqueous solution containing H 2O 2 and HCO3- and the consumption of H 2O 2 and the dissolution of uranium were analyzed as a function of H 2 pressure (0-40 bar). The noble metal inclusions were found to catalyze oxidation of UO 2 as well as reduction of surface bound oxidized UO 2 by H 2. In both cases the rate of the process increases with increasing Pd content. The reduction process was found to be close to diffusion controlled. This process can fully account for the inhibiting effect of H 2 observed in several studies on spent nuclear fuel dissolution.

  1. Experimental validation of CASMO-4E and CASMO-5M for radial fission rate distributions in a westinghouse SVEA-96 Optima2 BWR fuel assembly

    SciTech Connect

    Grimm, P.; Perret, G.

    2012-07-01

    Measured and calculated radial total fission rate distributions are compared for the three axial sections of a Westinghouse SVEA-96 Optima2 BWR fuel assembly, comprising 96, 92 and 84 fuel rods, respectively. The measurements were performed on a full-size fuel assembly in the PROTEUS zero-power experimental facility. The measured fission rates are compared to the results of the CASMO-4E and CASMO-5M fuel assembly codes. Detailed measured geometrical data were used in the models, and effects of the surrounding zones of the reactor were taken into account by correction factors derived from MCNPX calculations. The results of the calculations agree well with those of the experiments, with root-mean-square deviations between 1.2% and 1.5% and maximum deviations of 3-4%. The quality of the predictions by CASMO-4E and CASMO-5M is comparable. (authors)

  2. Advances in Development of the Fission Product Extraction Process for the Separation of Cesium and Strontium from Spent Nuclear Fuel

    SciTech Connect

    JAck D. Law

    2007-09-01

    The Fission Product Extraction (FPEX) Process is being developed as part of the United States Department of Energy Advanced Fuel Cycle Initiative for the simultaneous separation of cesium (Cs) and strontium (Sr) from spent light water reactor (LWR) fuel. Separation of the Cs and Sr will reduce the short-term heat load in a geological repository, and when combined with the separation of americium (Am) and curium (Cm), could increase the capacity of the geological repository by a factor of approximately 100. The FPEX process is based on two highly specific extractants: 4,4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. Results of flowsheet testing of the FPEX process with a simulated feed solution in 3.3-cm centrifugal contactors are detailed. Removal efficiencies, distribution coefficient data, coextraction of metals, and process hydrodynamic performance are discussed along with recommendations for future flowsheet testing with actual spent nuclear fuel.

  3. Fission gas detection system

    DOEpatents

    Colburn, Richard P.

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  4. I-NERI ANNUAL TECHNICAL PROGRESS REPORT: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels

    SciTech Connect

    S. Frank

    2009-09-01

    An attractive alternative to the once-through disposal of electrorefiner salt is to selectively remove the active fission products from the salt and recycle the salt back to the electrorefiner (ER). This would allow salt reuse for some number of cycles before ultimate disposal of the salt in a ceramic waste form. Reuse of ER salt would, thus, greatly reduce the volume of ceramic waste produced during the pyroprocessing of spent nuclear fuel. This final portion of the joint I-NERI research project is to demonstrate the separation of fission products from molten ER salt by two methods previously selected during phase two (FY-08) of this project. The two methods selected were salt/zeolite contacting and rare-earth fission product precipitation by oxygen bubbling. The ER salt used in these tests came from the Mark-IV electrorefiner used to anodically dissolved driver fuel from the EBR-II reactor on the INL site. The tests were performed using the Hot Fuel Dissolution Apparatus (HFDA) located in the main cell of the Hot Fuels Examination Facility (HFEF) at the Materials and Fuels complex on the INL site. Results from these tests were evaluated during a joint meeting of KAERI and INL investigators to provide recommendations as to the future direction of fission product removal from electrorefiner salt that accumulate during spent fuel treatment. Additionally, work continued on kinetic measurements of surrogate quaternary salt systems to provide fundamental kinetics on the ion exchange system and to expand the equilibrium model system developed during the first two phases of this project. The specific objectives of the FY09 I-NERI research activities at the INL include the following: • Perform demonstration tests of the selected KAERI precipitation and INL salt/zeolite contacting processes for fission product removal using radioactive, fission product loaded ER salt • Continue kinetic studies of the quaternary Cs/Sr-LiCl-KCl system to determine the rate of ion

  5. Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel

    NASA Astrophysics Data System (ADS)

    Lillo, T. M.; van Rooyen, I. J.

    2016-05-01

    In this study, the fission product precipitates at silicon carbide grain boundaries from an irradiated TRISO particle were identified and correlated with the associated grain boundary characteristics. Precession electron diffraction in the transmission electron microscope provided the crystallographic information needed to identify grain boundary misorientation and boundary type (i.e., low angle, random high angle or coincident site lattice (CSL)-related). The silicon carbide layer was found to be composed mainly of twin boundaries and small fractions of random high angle and low angle grain boundaries. Most fission products were found at random, high-angle grain boundaries, with small fractions at low-angle and CSL-related grain boundaries. Palladium (Pd) was found at all types of grain boundaries while Pd-uranium and Pd-silver precipitates were only associated with CSL-related and random, high-angle grain boundaries. Precipitates containing only Ag were found only at random, high-angle grain boundaries, but not at low angle or CSL-related grain boundaries.

  6. Fuel efficient hydrodynamic containment for gas core fission reactor rocket propulsion. Final report, September 30, 1992--May 31, 1995

    SciTech Connect

    Sforza, P.M.; Cresci, R.J.

    1997-05-31

    Gas core reactors can form the basis for advanced nuclear thermal propulsion (NTP) systems capable of providing specific impulse levels of more than 2,000 sec., but containment of the hot uranium plasma is a major problem. The initial phase of an experimental study of hydrodynamic confinement of the fuel cloud in a gas core fission reactor by means of an innovative application of a base injection stabilized recirculation bubble is presented. The development of the experimental facility, a simulated thrust chamber approximately 0.4 m in diameter and 1 m long, is described. The flow rate of propellant simulant (air) can be varied up to about 2 kg/sec and that of fuel simulant (air, air-sulfur hexafluoride) up to about 0.2 kg/sec. This scale leads to chamber Reynolds numbers on the same order of magnitude as those anticipated in a full-scale nuclear rocket engine. The experimental program introduced here is focused on determining the size, geometry, and stability of the recirculation region as a function of the bleed ratio, i.e. the ratio of the injected mass flux to the free stream mass flux. A concurrent CFD study is being carried out to aid in demonstrating that the proposed technique is practical.

  7. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    SciTech Connect

    Powers, Jeffrey James

    2011-11-30

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated

  8. Part I. Fuel-motion diagnostics in support of fast-reactor safety experiments. Part II. Fission product detection system in support of fast reactor safety experiments

    SciTech Connect

    Devolpi, A.; Doerner, R.C.; Fink, C.L.; Regis, J.P.; Rhodes, E.A.; Stanford, G.S.; Braid, T.H.; Boyar, R.E.

    1986-05-01

    In all destructive fast-reactor safety experiments at TREAT, fuel motion and cladding failure have been monitored by the fast-neutron/gamma-ray hodoscope, providing experimental results that are directly applicable to design, modeling, and validation in fast-reactor safety. Hodoscope contributions to the safety program can be considered to fall into several groupings: pre-failure fuel motion, cladding failure, post-failure fuel motion, steel blockages, pretest and posttest radiography, axial-power-profile variations, and power-coupling monitoring. High-quality results in fuel motion have been achieved, and motion sequences have been reconstructed in qualitative and quantitative visual forms. A collimated detection system has been used to observe fission products in the upper regions of a test loop in the TREAT reactor. Particular regions of the loop are targeted through any of five channels in a rotatable assembly in a horizontal hole through the biological shield. A well-type neutron detector, optimized for delayed neutrons, and two GeLi gamma ray spectrometers have been used in several experiments. Data are presented showing a time history of the transport of Dn emitters, of gamma spectra identifying volatile fission products deposited as aerosols, and of fission gas isotopes released from the coolant.

  9. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  10. Nano-Scale Fission Product Phases in an Irradiated U-7Mo Alloy Nuclear Fuel

    SciTech Connect

    Dennis Keiser, Jr.; Brandon Miller; James Madden; Jan-Fong Jue; Jian Gan

    2014-09-01

    Irradiated nuclear fuel is a very difficult material to characterize. Due to the large radiation fields associated with these materials, they are hard to handle and typically have to be contained in large hot cells. Even the equipment used for performing characterization is housed in hot cells or shielded glove boxes. The result is not only a limitation in the techniques that can be employed for characterization, but also a limitation in the size of features that can be resolved The most standard characterization techniques include light optical metallography (WM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). These techniques are applied to samples that are typically prepared using grinding and polishing approaches that will always generate some mechanical damage on the sample surface. As a result, when performing SEM analysis, for example, the analysis is limited by the quality of the sample surface that can be prepared. However, a new approach for characterizing irradiated nuclear fuel has recently been developed at the Idaho National Laboratory (INL) in Idaho Falls, Idaho. It allows for a dramatic improvement in the quality of characterization that can be performed when using an instrument like an SEM. This new approach uses a dual-beam scanning microscope, where one of the beams isa focused ion beam (FIB), which can be used to generate specimens of irradiated fuel (-10µm x 10µm) for microstructural characterization, and the other beam is the electron beam of an SEM. One significant benefit of this approach is that the specimen surface being characterized has received much less damage (and smearing) than is caused by the more traditional approaches, which enables the imaging of nanometer­ sized microstructural features in the SEM. The process details are for an irradiated low-enriched uranium (LEU) U-Mo alloy fuel Another type of irradiated fuel that has been characterized using this technique is a mixed oxide fuel.

  11. The GDT-based 14MeV neutron source for fission fuel systems

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexander

    2009-11-01

    The gas dynamic trap (GDT) is an axisymmetric mirror device with a high mirror ratio and with a mirror to mirror length exceeding a mean free path for the ion scattering into loss cone. A version of GDT with multi-component plasma was proposed for generation of high D-T neutron flux in localized zones to serve the needs of fusion material tests [1]. Conceptual studies demonstrated that the D-T neutron flux would reach ˜2MW/m^2 in these zones if the device consumes 60MW. This approach can only be realized if the high beta plasma in the GDT with anisotropic fast ions is stable against MHD and kinetic instabilities. This has been already proven both theoretically and experimentally. Recently, application of the GDT neutron source as a driver for a fission --fusion hybrid and minor actinides burner was considered. This requires certain modifications to be introduced into the initial approach, since then overall efficiency of the driver becomes important. These physical and technical modifications are discussed in the paper. [4pt] [1] I.A.Kotelnikov,V.V.Mirnov, V.P.Nagorny, D.D.Ryutov, In: Plasma Phys. Controll. Fusion Res., 2, IAEA, Vienna, p.309, 1985

  12. Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution

    DOEpatents

    Tomczuk, Zygmunt; Miller, William E.; Wolson, Raymond D.; Gay, Eddie C.

    1991-01-01

    An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.

  13. The DART dispersion analysis research tool: A mechanistic model for predicting fission-product-induced swelling of aluminum dispersion fuels. User`s guide for mainframe, workstation, and personal computer applications

    SciTech Connect

    Rest, J.

    1995-08-01

    This report describes the primary physical models that form the basis of the DART mechanistic computer model for calculating fission-product-induced swelling of aluminum dispersion fuels; the calculated results are compared with test data. In addition, DART calculates irradiation-induced changes in the thermal conductivity of the dispersion fuel, as well as fuel restructuring due to aluminum fuel reaction, amorphization, and recrystallization. Input instructions for execution on mainframe, workstation, and personal computers are provided, as is a description of DART output. The theory of fission gas behavior and its effect on fuel swelling is discussed. The behavior of these fission products in both crystalline and amorphous fuel and in the presence of irradiation-induced recrystallization and crystalline-to-amorphous-phase change phenomena is presented, as are models for these irradiation-induced processes.

  14. FEMAXI-V benchmarking study on peak temperature and fission gas release prediction of PWR rod fuel

    SciTech Connect

    Suwardi; Dewayatna, W.; Briyatmoko, B.

    2012-06-06

    The present paper reports a study of FEMAXI-V code and related report on code benchmarking. Capabilities of the FEMAXI-V code to predict the thermal and fission gas release have been tested on MOX fuels in LWRs which has been done in SCK{center_dot}CEN and Belgonucleaire by using PRIMO MOX rod BD8 irradiation experiment after V Sobolev as reported O. J. Ott. Base irradiation in the BR3 reactor, the BD8 rod was transported to CEA-Saclay for irradiation in the OSIRIS reactor (ramp power excursion). The irradiation device used for the PRIMO ramps was the ISABELLE 1 loop, installed on a movable structure of the core periphery. The power variations were obtained by inwards/backwards movements of the loop in the core water. The preconditioning phase for rod BD8 occurred at a peak power level of 189 W/cm with a hold time of 27 hours. The subsequent power excursion rate amounted to 77 W/ (cm.min), reaching a terminal peak power level of 395 W/cm that lasted for 20 hours.

  15. Modelling of fission gas release from irradiated UO2 fuel under high-temperature annealing conditions

    NASA Astrophysics Data System (ADS)

    Veshchunov, M. S.; Shestak, V. E.

    2012-11-01

    The new model for the vacancy field evolution in grains during annealing of irradiated fuel was developed and implemented in the MFPR code. The model simulates time and spatial variation of the vacancy concentration in the presence of extended vacancy sources (grain boundaries and dislocations) and sinks (growing intragranular bubbles). Being combined with the models for dislocation creep and for bubbles biased migration in the vacancy gradient, the new model self-consistently describes the processes of gas release and microstructure evolution observed in the annealing tests.

  16. Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO2 +/- x: Implications for nuclear fuel performance modeling

    SciTech Connect

    Giovanni Pastore; Michael R. Tonks; Derek R. Gaston; Richard L. Williamson; David Andrs; Richard Martineau

    2014-03-01

    Based on density functional theory (DFT) and empirical potential calculations, the diffusivity of fission gas atoms (Xe) in UO2 nuclear fuel has been calculated for a range of non-stoichiometry (i.e. UO2x), under both out-of-pile (no irradiation) and in-pile (irradiation) conditions. This was achieved by first deriving expressions for the activation energy that account for the type of trap site that the fission gas atoms occupy, which includes the corresponding type of mobile cluster, the charge state of these defects and the chemistry acting as boundary condition. In the next step DFT calculations were used to estimate migration barriers and internal energy contributions to the thermodynamic properties and calculations based on empirical potentials were used to estimate defect formation and migration entropies (i.e. pre-exponentials). The diffusivities calculated for out-of-pile conditions as function of the UO2x nonstoichiometrywere used to validate the accuracy of the diffusion models and the DFT calculations against available experimental data. The Xe diffusivity is predicted to depend strongly on the UO2x non-stoichiometry due to a combination of changes in the preferred Xe trap site and in the concentration of uranium vacancies enabling Xe diffusion, which is consistent with experiments. After establishing the validity of the modeling approach, it was used for studying Xe diffusion under in-pile conditions, for which experimental data is very scarce. The radiation-enhanced Xe diffusivity is compared to existing empirical models. Finally, the predicted fission gas diffusion rates were implemented in the BISON fuel performance code and fission gas release from a Risø fuel rod irradiation experiment was simulated. 2014 Elsevier B.V. All rights

  17. Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO2±x: Implications for nuclear fuel performance modeling

    NASA Astrophysics Data System (ADS)

    Andersson, D. A.; Garcia, P.; Liu, X.-Y.; Pastore, G.; Tonks, M.; Millett, P.; Dorado, B.; Gaston, D. R.; Andrs, D.; Williamson, R. L.; Martineau, R. C.; Uberuaga, B. P.; Stanek, C. R.

    2014-08-01

    Based on density functional theory (DFT) and empirical potential calculations, the diffusivity of fission gas atoms (Xe) in UO2 nuclear fuel has been calculated for a range of non-stoichiometry (i.e. UO2±x), under both out-of-pile (no irradiation) and in-pile (irradiation) conditions. This was achieved by first deriving expressions for the activation energy that account for the type of trap site that the fission gas atoms occupy, which includes the corresponding type of mobile cluster, the charge state of these defects and the chemistry acting as boundary condition. In the next step DFT calculations were used to estimate migration barriers and internal energy contributions to the thermodynamic properties and calculations based on empirical potentials were used to estimate defect formation and migration entropies (i.e. pre-exponentials). The diffusivities calculated for out-of-pile conditions as function of the UO2±x non-stoichiometry were used to validate the accuracy of the diffusion models and the DFT calculations against available experimental data. The Xe diffusivity is predicted to depend strongly on the UO2±x non-stoichiometry due to a combination of changes in the preferred Xe trap site and in the concentration of uranium vacancies enabling Xe diffusion, which is consistent with experiments. After establishing the validity of the modeling approach, it was used for studying Xe diffusion under in-pile conditions, for which experimental data is very scarce. The radiation-enhanced Xe diffusivity is compared to existing empirical models. Finally, the predicted fission gas diffusion rates were implemented in the BISON fuel performance code and fission gas release from a Risø fuel rod irradiation experiment was simulated.

  18. Computer program FPIP-REV calculates fission product inventory for U-235 fission

    NASA Technical Reports Server (NTRS)

    Brown, W. S.; Call, D. W.

    1967-01-01

    Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.

  19. Fuel and fission product behaviour in early phases of a severe accident. Part II: Interpretation of the experimental results of the PHEBUS FPT2 test

    NASA Astrophysics Data System (ADS)

    Dubourg, R.; Barrachin, M.; Ducher, R.; Gavillet, D.; De Bremaecker, A.

    2014-10-01

    One objective of the FPT2 test of the PHEBUS FP Program was to study the degradation of an irradiated UO2 fuel bundle and the fission product behaviour under conditions of low steam flow. The results of the post-irradiation examinations (PIE) at the upper levels (823 mm and 900 mm) of the test section previously reported are interpreted in the present paper. Solid state interactions between fuel and cladding have been compared with the characteristics of interaction identified in the previous separate-effect tests. Corium resulting from the interaction between fuel and cladding was formed. The uranium concentration in the corium is compared to analytical tests and a scenario for the corium formation is proposed. The analysis showed that, despite the rather low fuel burn up, the conditions of temperature and oxygen potential reached during the starvation phase are able to give an early very significant release fraction of caesium. A significant part (but not all) of the molybdenum was segregated at grain boundaries and trapped in metallic inclusions from which they were totally removed in the final part of the experiment. During the steam starvation phase, the conditions of oxygen potential were favourable for the formation of simple Ba and BaO chemical forms but the temperature was too low to provoke their volatility. This is one important difference with out-of-pile experiments such as VERCORS for which only a combination of high temperature and low oxygen potential induced a significant barium release. Finally another significant difference with analytical out-of-pile experiments comes from the formation of foamy zones due to the fission gas presence in FPT2-type experiments which give an additional possibility for the formation of stable fission product compounds.

  20. Thermo-Mechanical Response of a TRISO Fuel Particle in a Fusion/Fission Engine for Incineration of Weapons Grade Plutonium

    SciTech Connect

    Caro, M; DeMange, P; Marian, J; Caro, A

    2009-12-08

    The Laser Inertial Fusion-based (LIFE) engine is an advanced energy concept under development at Lawrence Livermore National Laboratory (LLNL). LIFE engine could be used to drive a subcritical fission blanket with fertile or fissile fuel. Current LIFE engine designs envisages fuel in pebble bed form with TRISO (tristructural isotropic) particles embedded in a graphite matrix, and pebbles flowing in molten salt Flibe (2LiF+BeF{sub 2}) coolant at T {approx} 700C. Weapons-grade plutonium (WGPu) fuel is an attractive option for LIFE engine involving the achievement of high fractional burnups in a short lifetime frame. However, WGPu LIFE engine operating conditions of high neutron fast fluence, high radiation damage, and high Helium and Hydrogen production pose severe challenges for typical TRISO particles. The thermo-mechanical fuel performance code HUPPCO (High burn-Up fuel Pebble Performance COde) currently under development accounts for spatial and time dependence of the material elastic properties, temperature, and irradiation swelling and creep mechanisms. In this work, some aspects of the thermo-mechanical response of TRISO particles used for incineration of weapons grade fuel in LIFE engine are analyzed. Preliminary results show the importance of developing reliable high-fidelity models of the performance of these new fuel designs and the need of new experimental data relevant to WGPu LIFE conditions.

  1. Fission Product Decay Heat Calculations for Neutron Fission of 232Th

    NASA Astrophysics Data System (ADS)

    Son, P. N.; Hai, N. X.

    2016-06-01

    Precise information on the decay heat from fission products following times after a fission reaction is necessary for safety designs and operations of nuclear-power reactors, fuel storage, transport flasks, and for spent fuel management and processing. In this study, the timing distributions of fission products' concentrations and their integrated decay heat as function of time following a fast neutron fission reaction of 232Th were exactly calculated by the numerical method with using the DHP code.

  2. Neutronic Model of a Mirror Based Fusion-Fission Hybrid for the Incineration of Spent Nuclear Fuel and with Potential for Energy Amplification

    NASA Astrophysics Data System (ADS)

    Noack, Klaus; Moiseenko, V. E.; Agren, O.; Hagnestall, A.

    2010-11-01

    In the last decade the Georgia Institute of Technology (Georgia Tech) published several design concepts of tokamak based fusion-fission hybrids which use solid fuels consisting of transuranic elements of the spent nuclear fuel from Light-Water-Reactors. The objectives of the hybrids are the incineration of the transuranic elements and an additional net energy production under the condition of tritium self-sufficiency. The present paper presents a preliminary scientific design of the blanket of a mirror based hybrid which was derived from the results of Monte Carlo neutron transport calculations. The main operation parameters of two hybrid options were specified. One is the analog to Georgia Techs first version of a ``fusion transmutation of waste reactor'' (FTWR) and the other is a possible near-term option which requires minimal fusion power. The latter version shows considerably better performance parameters.

  3. Thermodynamics of fission products in dispersion fuel designs - first principles modeling of defect behavior in bulk and at interfaces

    SciTech Connect

    Liu, Xiang-yand; Uberuaga, Blas P; Nerikar, Pankaj; Sickafus, Kurt E; Stanek, Chris R

    2009-01-01

    Density functional theory (DFT) calculations of fission product (Xe, Sr, and Cs) incorporation and segregation in alkaline earth metal oxides, HfO{sub 2} and UO{sub 2} oxides, and the MgO/(U, Hf, Ce)O{sub 2} interfaces have been carried out. In the case of UO{sub 2}, the calculations were performed using spin polarization and with a Hubbard U term characterizing the on-sit Coulomb repulsion between the localized 5f electrons. The fission product solution energies in bulk UO{sub 2{+-}x} have been calculated as a function of non-stoichiometry x, and were compared to that in MgO. These calculations demonstrate that the fission product incorporation energies in MgO are higher than in HfO{sub 2}. However, this trend is reversed or reduced for alkaline earth oxides with larger cation sizes. The solution energies of fission products in MgO are substantially higher than in UO{sub 2{+-}x}, except for the case of Sr in the hypostoichiometric case. Due to size effects, the thermodynamic driving force of segregation for Xe and Cs from bulk MgO to the MgO/fluorite interface is strong. However, this driving force is relatively weak for Sr.

  4. SHAPED FISSIONABLE METAL BODIES

    DOEpatents

    Wigner, E.P.; Williamson, R.R.; Young, G.J.

    1958-10-14

    A technique is presented for grooving the surface of fissionable fuel elements so that expansion can take place without damage to the interior structure of the fuel element. The fissionable body tends to develop internal stressing when it is heated internally by the operation of the nuclear reactor and at the same time is subjected to surface cooling by the circulating coolant. By producing a grooved or waffle-like surface texture, the annular lines of tension stress are disrupted at equally spaced intervals by the grooves, thereby relieving the tension stresses in the outer portions of the body while also facilitating the removal of accumulated heat from the interior portion of the fuel element.

  5. Heterogeneous UO2 fuel irradiated up to a high burn-up: Investigation of the HBS and of fission product releases

    NASA Astrophysics Data System (ADS)

    Noirot, J.; Lamontagne, J.; Nakae, N.; Kitagawa, T.; Kosaka, Y.; Tverberg, T.

    2013-11-01

    A UO2 fuel with a heterogeneous distribution of 235U was irradiated up to a high burn-up in the Halden Boiling Water Reactor (HBWR). The last 100 days of irradiation were performed with an increased level of linear power. The effect of the heterogeneous fissile isotope distribution on the formation of the HBS was studied free of the possible influence of Pu which exists in heterogeneous MOX fuels. The HBS formed in 235U-rich agglomerates and its main characteristics were very similar to those of the HBS formed in Pu-rich agglomerates of heterogeneous MOX fuels. The maximum local contents of Nd and Xe before HBS formation were studied in this fuel. In addition to a Pu effect that promotes the HBS phenomenon, comparison with previous results for heterogeneous MOX fuels showed that the local fission product concentration was not the only parameter that has to be taken into consideration. It appears that the local actinide depletion by fission and/or the energy locally deposited through electronic interactions in the fission fragment recoils also have an effect on the HBS formation threshold. Moreover, a major release of fission gases from the peripheral 235U-rich agglomerates of HBS bubbles and a Cs radial movement are also evidenced in this heterogeneous UO2. Cs deposits on the peripheral grain boundaries, including the HBS grain boundaries, are considered to reveal the release paths. SUP>235U-rich agglomerates, SUP>235U-poor areas, an intermediate phase with intermediate 235U concentrations. Short fuel rods were fabricated with these pellets. The main characteristics of these fuel rods are shown in Table 1.These rods were irradiated to high burn-ups in the IFA-609/626 of the HBWR and then one was irradiated in the IFA-702 for 100 days. Fig. 2 shows the irradiation history of this fuel. The final average burn-up of the rod was 69 GWd/tU. Due to the flux differences along the rod, however, the average burn-up of the cross section examined was 63 GWd/tU. This fuel

  6. Nuclear Power from Fission Reactors. An Introduction.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  7. Spontaneous Fission

    DOE R&D Accomplishments Database

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  8. Potentials of fissioning plasmas

    NASA Technical Reports Server (NTRS)

    Thom, K.

    1979-01-01

    Successful experiments with the nuclear pumping of lasers have demonstrated that in a gaseous medium the kinetic energy of fission fragments can be converted directly into nonequilibrium optical radiation. This confirms the concept that the fissioning medium in a gas-phase nuclear reactor shows an internal structure such as a plasma in near thermal equilibrium varying up to a state of extreme nonequilibrium. During 20 years of research under NASA support major elements of the fissioning plasma reactor were demonstrated in theory and experiment, culminating in a proof-of-principle reactor test conducted at the Los Alamos Scientific Laboratory. It is concluded that the construction of a gaseous fuel reactor power plant is within the reach of present technology.

  9. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  10. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    SciTech Connect

    Shmelev, A. N. Kulikov, G. G. Kurnaev, V. A. Salahutdinov, G. H. Kulikov, E. G. Apse, V. A.

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  11. Uraninite: A 2 Ga spent nuclear fuel from the natural fission reactor at Bangombe in Gabon, West Africa

    SciTech Connect

    Jensen, K.A.; Ewing, R.C.; Gauthier-Lafaye, F.

    1997-12-31

    Uraninites from the Bangombe natural fission reactor (RZB) and normal uranium-ore occur as fine veins in the sandstone host-rock as well as altered, broken, and slightly displaced grains in an illitic matrix, and in nodules and veins of solid bitumen. Inclusions of galena, (Y,Gd)-rich phosphates, a Pb-oxide and a Ti-oxide? were observed. Uraninites just below RZB were partially altered to a uranyl-sulfate. Three generations of uraninite were identified based on their PbO-contents of 8--11.06 wt%, 6 wt% (the largest population), and a younger generation with 3 wt%. Diffusional loss of Pb is indicated by the presence of a Pb-oxide at the interface to the uraninites. The behavior of the metallic fission products, incompatible with the uraninite structure, may mimic the behavior of Pb in these uraninites. The averaged impurity-content ranges from 4.29 to 6.89 wt%, and consists mainly of SiO{sub 2}, TiO{sub 2}, ZrO{sub 2}, FeO, CaO, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5}. The averaged content of Y{sub 2}O{sub 3} and the Ln`s is less than 0.78 wt% and there is a scattered positive correlation with P{sub 2}O{sub 5}. The content of Y + Ln`s is generally highest in the uraninites from RZB. Uraninite hydration and the formation of uranopelite/zippeite have caused complete loss of Y and the Ln`s. The analytical results indicate that Y and the Ln`s, which are high yield fission products, may be released from uraninite during alteration in the presence of P.

  12. Fission Yield Measurements by Inductively Coupled Plasma Mass-Spectrometry

    SciTech Connect

    Irina Glagolenko; Bruce Hilton; Jeffrey Giglio; Daniel Cummings; Karl Grimm; Richard McKnight

    2009-11-01

    Correct prediction of the fission products inventory in irradiated nuclear fuels is essential for accurate estimation of fuel burnup, establishing proper requirements for spent fuel transportation and storage, materials accountability and nuclear forensics. Such prediction is impossible without accurate knowledge of neutron induced fission yields. Unfortunately, the accuracy of the fission yields reported in the ENDF/B-VII.0 library is not uniform across all of the data and much of the improvement is desired for certain isotopes and fission products. We discuss our measurements of cumulative fission yields in nuclear fuels irradiated in thermal and fast reactor spectra using Inductively Coupled Plasma Mass Spectrometry.

  13. Nuclear Fission Research at IRMM

    SciTech Connect

    Hambsch, Franz-Josef

    2005-05-24

    The Institute for Reference Materials and Measurements (IRMM) will celebrate its 45th anniversary in 2005. With its 150-MeV Geel Electron Linear Accelerator (GELINA) and 7-MV Van de Graaff accelerator as multi-purpose neutron sources, it served the nuclear physics community for this period.The research in the field of nuclear fission was focused in recent years on both the measurement and calculation of fission cross sections, and the measurement of fission fragment properties.Fission cross sections were determined for 233Pa and 234U; the fission process was studied in the resolved resonance region of 239Pu(n,f) and for 251Cf(nth,f). These measurements derive their interest from accelerator driven systems, the thorium fuel cycle, high temperature reactors, safety issues of current reactors, and basic physics. The measurements are supported by several modeling efforts that aim at improving model codes and nuclear data evaluation.

  14. Background radiation from fission pulses

    SciTech Connect

    England, T.R.; Arthur, E.D.; Brady, M.C.; LaBauve, R.J.

    1988-05-01

    Extensive source terms for beta, gamma, and neutrons following fission pulses are presented in various tabular and graphical forms. Neutron results from a wide range of fissioning nuclides (42) are examined and detailed information is provided for four fuels: /sup 235/U, /sup 238/U, /sup 232/Th, and /sup 239/Pu; these bracket the range of the delayed spectra. Results at several cooling (decay) times are presented. For ..beta../sup -/ and ..gamma.. spectra, only /sup 235/U and /sup 239/Pu results are given; fission-product data are currently inadequate for other fuels. The data base consists of all known measured data for individual fission products extensively supplemented with nuclear model results. The process is evolutionary, and therefore, the current base is summarized in sufficient detail for users to judge its quality. Comparisons with recent delayed neutron experiments and total ..beta../sup -/ and ..gamma.. decay energies are included. 27 refs., 47 figs., 9 tabs.

  15. Experiments and Theoretical Data for Studying the Impact of Fission Yield Uncertainties on the Nuclear Fuel Cycle with TALYS/GEF and the Total Monte Carlo Method

    SciTech Connect

    Pomp, S.; Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Hellesen, C.; Koning, A.J.; Lantz, M.; Österlund, M.; Rochman, D.; Simutkin, V.; Sjöstrand, H.; Solders, A.

    2015-01-15

    We describe the research program of the nuclear reactions research group at Uppsala University concerning experimental and theoretical efforts to quantify and reduce nuclear data uncertainties relevant for the nuclear fuel cycle. We briefly describe the Total Monte Carlo (TMC) methodology and how it can be used to study fuel cycle and accident scenarios, and summarize our relevant experimental activities. Input from the latter is to be used to guide the nuclear models and constrain parameter space for TMC. The TMC method relies on the availability of good nuclear models. For this we use the TALYS code which is currently being extended to include the GEF model for the fission channel. We present results from TALYS-1.6 using different versions of GEF with both default and randomized input parameters and compare calculations with experimental data for {sup 234}U(n,f) in the fast energy range. These preliminary studies reveal some systematic differences between experimental data and calculations but give overall good and promising results.

  16. Experiments and Theoretical Data for Studying the Impact of Fission Yield Uncertainties on the Nuclear Fuel Cycle with TALYS/GEF and the Total Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Pomp, S.; Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Hellesen, C.; Koning, A. J.; Lantz, M.; Österlund, M.; Rochman, D.; Simutkin, V.; Sjöstrand, H.; Solders, A.

    2015-01-01

    We describe the research program of the nuclear reactions research group at Uppsala University concerning experimental and theoretical efforts to quantify and reduce nuclear data uncertainties relevant for the nuclear fuel cycle. We briefly describe the Total Monte Carlo (TMC) methodology and how it can be used to study fuel cycle and accident scenarios, and summarize our relevant experimental activities. Input from the latter is to be used to guide the nuclear models and constrain parameter space for TMC. The TMC method relies on the availability of good nuclear models. For this we use the TALYS code which is currently being extended to include the GEF model for the fission channel. We present results from TALYS-1.6 using different versions of GEF with both default and randomized input parameters and compare calculations with experimental data for 234U(n,f) in the fast energy range. These preliminary studies reveal some systematic differences between experimental data and calculations but give overall good and promising results.

  17. The effect of water vapor on the release of fission gas from the fuel elements of high temperature, gas-cooled reactors: A preliminary assessment of experiments HRB-17, HFR-B1, HFR-K6 and KORA

    SciTech Connect

    Myers, B.F.

    1995-09-01

    The effect of water vapor on the release of fission gas from the fuel elements of high temperature, gas-cooled reactors has been measured in different laboratories under both irradiation and post irradiation conditions. The data from experiments HRB-17, HFR-B1, HFR-K6, and in the KORA facility are compared to assess their consistency and complimentarily. The experiments are consistent under comparable experimental conditions and reveal two general mechanisms involving exposed fuel kernels embedded in carbonaceous materials. One is manifest as a strong dependence of fission gas release on the partial pressure of water vapor below 1 kPa and the other, as a weak dependence above 1 kPa.

  18. Benchmarking nuclear fission theory

    SciTech Connect

    Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.

    2015-05-14

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  19. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  20. Analysis of fission and activation radionuclides produced by a uranium-fueled nuclear detonation and identification of the top dose-producing radionuclides.

    PubMed

    Kraus, Terry; Foster, Kevin

    2014-08-01

    The radiological assessment of the nuclear fallout (i.e., fission and neutron-activation radionuclides) from a nuclear detonation is complicated by the large number of fallout radionuclides. This paper provides the initial isotopic source term inventory of the fallout from a uranium-fueled nuclear detonation and identifies the significant and insignificant radiological dose producing radionuclides over 11 dose integration time periods (time phases) of interest. A primary goal of this work is to produce a set of consistent, time phase-dependent lists of the top dose-producing radionuclides that can be used to prepare radiological assessment calculations and data products (e.g., maps of areas that exceed protective action guidelines) in support of public and worker protection decisions. The ranked lists of top dose-producing radionuclides enable assessors to perform atmospheric dispersion modeling and radiological dose assessment modeling more quickly by using relatively short lists of radionuclides without significantly compromising the accuracy of the modeling and the dose projections. This paper also provides a superset-list of the top dose-producing fallout radionuclides from a uranium-fueled nuclear detonation that can be used to perform radiological assessments over any desired time phase. Furthermore, this paper provides information that may be useful to monitoring and sampling and laboratory analysis personnel to help understand which radionuclides are of primary concern. Finally, this paper may be useful to public protection decision makers because it shows the importance of quickly initiating public protection actions to minimize the radiological dose from fallout. PMID:24978286

  1. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  2. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep spare or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start - addressing this issue through proper system design is straightforward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission system. While space fission system were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if Ae are to reap the benefits of advanced space fission systems.

  3. DESIGN OF AN ON-LINE, MULTI-SPECTROMETER FISSION PRODUCT MONITORING SYSTEM (FPMS) TO SUPPORT ADVANCED GAS REACTOR (AGR) FUEL TESTING AND QUALIFICATION IN THE ADVANCED TEST REACTOR

    SciTech Connect

    J. K. Hartwell; D. M. Scates; M. W. Drigert

    2005-11-01

    The US Department of Energy (DOE) is embarking on a series of tests of coated-particle reactor fuel for the Advanced Gas Reactor (AGR). As one part of this fuel development program a series of eight (8) fuel irradiation tests are planned for the Idaho National Laboratory’s (INL’s) Advanced Test Reactor (ATR). The first test in this series (AGR-1) will incorporate six separate “capsules” irradiated simultaneously, each containing about 51,000 TRISO-coated fuel particles supported in a graphite matrix and continuously swept with inert gas during irradiation. The effluent gas from each of the six capsules must be independently monitored in near real time and the activity of various fission gas nuclides determined and reported. A set of seven heavily-shielded high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based total radiation detectors have been designed, and are being configured and tested for use during the AGR-1 experiment. The AGR-1 test specification requires that the AGR-1 fission product measurement system (FPMS) have sufficient sensitivity to detect the failure of a single coated fuel particle and sufficient range to allow it to “count” multiple (up to 250) successive particle failures. This paper describes the design and expected performance of the AGR-1 FPMS.

  4. Fission fusion hybrids- recent progress

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2012-03-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power, and can do this at a much lower level of technical development than a competitive fusion power plant- so it could be a nearer term application. For waste incineration, hybrids can burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs) with far fewer hybrid reactors than a comparable system within the realm of fission alone. For fuel production, hybrids can produce fuel for ˜4 times as many LWRs with NO fuel reprocessing. For both waste incineration or fuel production, the most severe kind of nuclear accident- runaway criticality- can be excluded, unlike either fast reactors or typical accelerator based reactors. The proliferation risks for hybrid fuel production are, we strongly believe, far less than any other fuel production method, including today's gas centrifuges. US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ˜ 2.5-3.5 m), which is made feasible by the super-X divertor.

  5. Neutronics for critical fission reactors and subcritical fission in hybrids

    SciTech Connect

    Salvatores, Massimo

    2012-06-19

    The requirements of future innovative nuclear fuel cycles will focus on safety, sustainability and radioactive waste minimization. Critical fast neutron reactors and sub-critical, external source driven systems (accelerator driven and fusion-fission hybrids) have a potential role to meet these requirements in view of their physics characteristics. This paper provides a short introduction to these features.

  6. Neutronics for critical fission reactors and subcritical fission in hybrids

    NASA Astrophysics Data System (ADS)

    Salvatores, Massimo

    2012-06-01

    The requirements of future innovative nuclear fuel cycles will focus on safety, sustainability and radioactive waste minimization. Critical fast neutron reactors and sub-critical, external source driven systems (accelerator driven and fusion-fission hybrids) have a potential role to meet these requirements in view of their physics characteristics. This paper provides a short introduction to these features.

  7. A hemi-fission intermediate links two mechanistically distinct stages of membrane fission

    PubMed Central

    Sundborger, Anna C.; Hortelano, Eva Rodriguez; Fuhrmans, Marc; Neumann, Sylvia; Müller, Marcus; Hinshaw, Jenny E.; Schmid, Sandra L.; Frolov, Vadim A.

    2015-01-01

    Fusion and fission drive all vesicular transport. Although topologically opposite, these reactions pass through the same hemi-fusion/fission intermediate1,2, characterized by a ‘stalk’ in which only the inner monolayers of the two compartments have merged to form a localized non-bilayer connection1-3. Formation of the hemi-fission intermediate requires energy input from proteins catalyzing membrane remodeling; however the relationship between protein conformational rearrangements and hemi-fusion/fission remains obscure. Here we analyzed how the GTPase cycle of dynamin, the prototypical membrane fission catalyst4-6, is directly coupled to membrane remodeling. We used intra-molecular chemical cross-linking to stabilize dynamin in its GDP•AlF4--bound transition-state. In the absence of GTP this conformer produced stable hemi-fission, but failed to progress to complete fission, even in the presence of GTP. Further analysis revealed that the pleckstrin homology domain (PHD) locked in its membrane-inserted state facilitated hemi-fission. A second mode of dynamin activity, fueled by GTP hydrolysis, couples dynamin disassembly with cooperative diminishing of the PHD wedging, thus destabilizing the hemi-fission intermediate to complete fission. Molecular simulations corroborate the bimodal character of dynamin action and indicate radial and axial forces as dominant, although not independent drivers of hemi-fission and fission transformations, respectively. Mirrored in the fusion reaction7-8, the force bimodality might constitute a general paradigm for leakage-free membrane remodeling. PMID:26123023

  8. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, M.; Van Dyke, M. K.; Godfroy, T. J.; Pedersen, K. W.; Martin, J. J.; Dickens, R.; Williams, E.; Harper, R.; Salvail, P.; Hrbud, I.

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep space or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start. Addressing this issue through proper system design is straight-forward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission systems. While space fission systems were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of advanced space fission systems. NASA's Marshall Space Flight Center, working with Los Alamos National Laboratory (LANL), Sandia National Laboratories, and others, has conducted preliminary research related to a Safe Affordable Fission Engine (SAFE). An unfueled core has been fabricated by LANL, and resistance heaters used to verify predicted core thermal performance by closely mimicking heat from fission. The core is designed to use only established nuclear technology and be highly testable. In FY01 an energy conversion system and thruster will be coupled to the core, resulting in an 'end-to-end' nuclear electric propulsion demonstrator being tested using resistance heaters to closely mimic heat from fission. Results of the SAFE test program will be presented. The applicability

  9. Fission meter

    DOEpatents

    Rowland, Mark S.; Snyderman, Neal J.

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  10. Simulated Atomic Fission Engine (S.A.F.E)

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa

    1999-01-01

    This paper presents viewgraphs of S.A.F.E. (Simulated Atomic Fission Engine). The topics include: 1) Why Space Fission Propulsion? 2) History of Fission System Development; 3) New Approach to Space Fission Propulsion System Development; 4) Propulsion Flight Demonstrator Schematic Flight Configuration; 5) Ongoing Propellant Energy Source Tests; 6) First Generation Propulsion System Status; 7) Tungsten Fuel Pin Simulator Tests; 8) Full Module Test (High Efficiency Mode); and 9) First Generation Propulsion Flight Demonstrator Status.

  11. Installation and Final Testing of an On-Line, Multi-Spectrometer Fission Product Monitoring System (FPMS) to Support Advanced Gas Reactor (AGR) Fuel Testing and Qualification in the Advanced Test Reactor

    SciTech Connect

    J. K. Hartwell; D. M. Scates; M. W. Drigert; J. B. Walter

    2006-10-01

    The US Department of Energy (DOE) is initiating tests of reactor fuel for use in an Advanced Gas Reactor (AGR). The AGR will use helium coolant, a low-power-density ceramic core, and coated-particle fuel. A series of eight (8) fuel irradiation tests are planned for the Idaho National Laboratory’s (INL’s) Advanced Test Reactor (ATR). One important measure of fuel performance in these tests is quantification of the fission gas releases over the nominal 2-year duration of each irradiation experiment. This test objective will be met using the AGR Fission Product Monitoring System (FPMS) which includes seven (7) on-line detection stations viewing each of the six test capsule effluent lines (plus one spare). Each station incorporates both a heavily-shielded high-purity germanium (HPGe) gamma-ray spectrometer for quantification of the isotopic releases, and a NaI(Tl) scintillation detector to monitor the total count rate and identify the timing of the releases. The AGR-1 experiment will begin irradiation after October 1, 2006. To support this experiment, the FPMS has been completely assembled, tested, and calibrated in a laboratory at the INL, and then reassembled and tested in its final location in the ATR reactor basement. This paper presents the details of the equipment performance, the control and acquisition software, the test plan for the irradiation monitoring, and the installation in the ATR basement. Preliminary on-line data may be available by the Conference date.

  12. Preliminary Results of an On-Line, Multi-Spectrometer Fission Product Monitoring System to Support Advanced Gas Reactor Fuel Testing and Qualification in the Advanced Test Reactor at the Idaho National Laboratory

    SciTech Connect

    Dawn M. Scates; John K. Hartwell; John B. Walter; Mark W. Drigert

    2007-10-01

    The Advanced Gas Reactor -1 (AGR-1) experiment is the first experiment in a series of eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments scheduled for placement in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and will continue irradiation for about 2.5 years. During this time six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The goals of the irradiation experiment is to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. This paper presents the preliminary test details of the fuel performance, as measured by the control and acquisition software.

  13. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  14. Technical Application of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  15. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, Vladimir

    1986-01-01

    This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

  16. Fission-suppressed hybrid reactor: the fusion breeder

    SciTech Connect

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a /sup 233/U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed.

  17. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  18. Italian hybrid and fission reactors scenario analysis

    SciTech Connect

    Ciotti, M.; Manzano, J.; Sepielli, M.

    2012-06-19

    Italy is a country where a long tradition of studies both in the fission and fusion field is consolidated; nevertheless a strong public opinion concerned with the destination of the Spent Nuclear Fuel hinders the development of nuclear power. The possibility to a severe reduction of the NSF mass generated from a fleet of nuclear reactors employing an hypothetical fusionfission hybrid reactor has been investigated in the Italian framework. The possibility to produce nuclear fuel for the fission nuclear reactors with the hybrid reactor was analyzed too.

  19. Italian hybrid and fission reactors scenario analysis

    NASA Astrophysics Data System (ADS)

    Ciotti, M.; Manzano, J.; Sepielli, M.

    2012-06-01

    Italy is a country where a long tradition of studies both in the fission and fusion field is consolidated; nevertheless a strong public opinion concerned with the destination of the Spent Nuclear Fuel hinders the development of nuclear power. The possibility to a severe reduction of the NSF mass generated from a fleet of nuclear reactors employing an hypothetical fusionfission hybrid reactor has been investigated in the Italian framework. The possibility to produce nuclear fuel for the fission nuclear reactors with the hybrid reactor was analyzed too.

  20. Microstructural Characterization of Irradiated U-7Mo/Al-5Si Dispersion to High Fission Density

    SciTech Connect

    J. Gan; B. D. Miller; D. D. Keiser, Jr.; A. B. Robinson; J. W. Madden; P. G. Medvedev; D. M. Wachs

    2014-11-01

    The fuel development program for research and test reactors calls for improved knowledge on the effect of microstructure on fuel performance in reactors. This work summarizes the recent TEM microstructural characterization of an irradiated U-7Mo/Al-5Si dispersion fuel plate (R3R050) irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory to 5.2×1021 fissions/cm3. While a large fraction of the fuel grains is decorated with large bubbles, there is no evidence showing interlinking of these large bubbles at the specified fission density. The attachment of solid fission product precipitates to the bubbles is likely the result of fission product diffusion into these bubbles. The process of fission gas bubble superlattice collapse appears through bubble coalescence. The results are compared with the previous TEM work of the dispersion fuels irradiated to lower fission density from the same fuel plate.

  1. Theoretical Description of the Fission Process

    SciTech Connect

    Witold Nazarewicz

    2009-10-25

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation’s nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic

  2. FUEL-BREEDER FUEL ELEMENT FOR NUCLEAR REACTOR

    DOEpatents

    Abbott, W.E.; Balent, R.

    1958-09-16

    A fuel element design to facilitate breeding reactor fuel is described. The fuel element is comprised of a coatainer, a central core of fertile material in the container, a first bonding material surrounding the core, a sheet of fissionable material immediately surrounding the first bonding material, and a second bonding material surrounding the fissionable material and being in coniact with said container.

  3. Tandem mirror fusion-fission hybrid studies

    NASA Astrophysics Data System (ADS)

    Lee, J. D.

    1980-04-01

    The concept of combining nuclear fusion and nuclear fission techniques is discussed. Initial tandem mirror hybrid studies predict the ability to produce large amounts of fissile fuel (2 to 7 tons U233 per year from a 4000 MW plant) at a cost that adds less than 25% to the cost of power from a light water reactor.

  4. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, V.

    1984-06-13

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  5. Development of quality control data base ``DANTE'' and relational analysis between fission gas release behavior and plutonium homogeneity in mixed oxide fuel by DANTE

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Kamimura, K.; Yamaguchi, T.; Masuda, S.

    1988-04-01

    The PNC Plutonium Fabrication Facility (PPFF) of Tokai Works of the "Power Reactor and Nuclear Fuel Development Corporation" (PNC) has produced several types of mixed oxide fuels which have been used as the fuels for the Advanced Thermal Reactor FUGEN, and the Experimental Fast Reactor JOYO. Accumulated production of MOX fuel is about 58000 pins as of December, 1986. PPFF production technique is so reliable that no failure of driver fuel pins has been found in the FUGEN and JOYO. This is based on the adequate process control and quality control. In this paper the outline of quality control method applied to MOX fuels in our facility will be reviewed. The discussion is done mainly on the viewpoint of the software system including data gathering, data analysis and data storage, etc. The code system, Data Analysing Technology for Engineers, DANTE, has been developed for this purpose. The DANTE code system is consisted of real time system having relational data base. It is possible to refer the data base relationally and to make tables and figures of the analyzed results on real time by using the DANTE code system. The DANTE code system contributes to quality assurance in the MOX Fuel production facility by evaluating overall data which come from each process such as production and inspection processes.

  6. Fission gas release behaviour of a 103 GWd/tHM fuel disc during a 1200 °C annealing test

    NASA Astrophysics Data System (ADS)

    Noirot, J.; Pontillon, Y.; Yagnik, S.; Turnbull, J. A.; Tverberg, T.

    2014-03-01

    Within the Nuclear Fuel Industry Research (NFIR) program, several fuel variants, in the form of thin circular discs, were irradiated in the Halden Boiling Water Reactor (HBWR) to a range of burn-ups ˜100 GWd/tHM. The design of the assembly was similar to that used in other HBWR programs: the assembly contained several rods with fuel discs sandwiched between Mo discs, which limited temperature gradients within the fuel discs. One such rod contained standard grain UO2 discs (3D grain size = 18 μm) reaching a burn-up of 103 GWd/tHM. After the irradiation, the gas release upon rod puncturing was measured to be 2.9%.

  7. Sensitivity analysis of the fission gas behavior model in BISON.

    SciTech Connect

    Swiler, Laura Painton; Pastore, Giovanni; Perez, Danielle; Williamson, Richard

    2013-05-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of a new model for the fission gas behavior (release and swelling) in the BISON fuel performance code of Idaho National Laboratory. Using the new model in BISON, the sensitivity of the calculated fission gas release and swelling to the involved parameters and the associated uncertainties is investigated. The study results in a quantitative assessment of the role of intrinsic uncertainties in the analysis of fission gas behavior in nuclear fuel.

  8. Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel

    SciTech Connect

    Schwantes, Jon M.; Orton, Christopher R.; Clark, Richard A.

    2012-09-10

    Measurements of several radionuclides within environmental samples taken from the Fukushima Daiichi nuclear facility and reported on the Tokyo Electric Power Company website following the recent tsunami-initiated catastrophe were evaluated for the purpose of identifying the source term, reconstructing the release mechanisms, and estimating the extent of the release. 136Cs/137Cs and 134Cs/137Cs ratios identified Units 1-3 as the major source of radioactive contamination to the surface soil close to the facility. A trend was observed between the fraction of the total core inventory released for a number of fission product isotopes and their corresponding Gibbs Free Energy of formation for the primary oxide form of the isotope, suggesting that release was dictated primarily by chemical volatility driven by temperature and reduction potential within the primary containment vessels of the vented reactors. The absence of any major fractionation beyond volatilization suggested all coolant had evaporated by the time of venting. High estimates for the fraction of the total inventory released of more volatile species (Te, Cs, I) indicated the damage to fuel bundles was likely extensive, minimizing any potential containment due to physical migration of these species through the fuel matrix and across the cladding wall. 238Pu/239,240Pu ratios close-in and at 30 km from the facility indicated that the damaged reactors were the major contributor of Pu to surface soil at the source but that this contribution likely decreased rapidly with distance from the facility. The fraction of the total Pu inventory released to the environment from venting units 1 and 3 was estimated to be ~0.003% based upon Pu/Cs isotope ratios relative to the within-reactor modeled inventory prior to venting and was consistent with an independent model evaluation that considered chemical volatility based upon measured fission product release trends. Significant volatile radionuclides within the spent fuel

  9. Correlation of recent fission product release data

    SciTech Connect

    Kress, T.S.; Lorenz, R.A.; Nakamura, T.; Osborne, M.F.

    1989-01-01

    For the calculation of source terms associated with severe accidents, it is necessary to model the release of fission products from fuel as it heats and melts. Perhaps the most definitive model for fission product release is that of the FASTGRASS computer code developed at Argonne National Laboratory. There is persuasive evidence that these processes, as well as additional chemical and gas phase mass transport processes, are important in the release of fission products from fuel. Nevertheless, it has been found convenient to have simplified fission product release correlations that may not be as definitive as models like FASTGRASS but which attempt in some simple way to capture the essence of the mechanisms. One of the most widely used such correlation is called CORSOR-M which is the present fission product/aerosol release model used in the NRC Source Term Code Package. CORSOR has been criticized as having too much uncertainty in the calculated releases and as not accurately reproducing some experimental data. It is currently believed that these discrepancies between CORSOR and the more recent data have resulted because of the better time resolution of the more recent data compared to the data base that went into the CORSOR correlation. This document discusses a simple correlational model for use in connection with NUREG risk uncertainty exercises. 8 refs., 4 figs., 1 tab.

  10. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS FROM NEUTRON- BOMBARDED URANIUM

    DOEpatents

    Martin, A.E.; Johnson, I.; Burris, L. Jr.; Winsch, I.O.; Feder, H.M.

    1962-11-13

    A process is given for removing plutonium and/or fission products from uranium fuel. The fuel is dissolved in molten zinc--magnesium (10 to 18% Mg) alloy, more magnesium is added to obtain eutectic composition whereby uranium precipitates, and the uranium are separated from the Plutoniumand fission-product- containing eutectic. (AEC)

  11. The Fission Barrier Landscape

    SciTech Connect

    Phair, L.; Moretto, L. G.

    2008-04-17

    Fission excitation functions have been measured for a chain of neighboring compound nuclei from {sup 207}Po to {sup 212}Po. We present a new analysis which provides a determination of the fission barriers and ground state shell effects with nearly spectroscopic accuracy. The accuracy achieved in this analysis may lead to a future detailed exploration of the saddle mass surface and its spectroscopy.

  12. Fission Spectrum Related Uncertainties

    SciTech Connect

    G. Aliberti; I. Kodeli; G. Palmiotti; M. Salvatores

    2007-10-01

    The paper presents a preliminary uncertainty analysis related to potential uncertainties on the fission spectrum data. Consistent results are shown for a reference fast reactor design configuration and for experimental thermal configurations. However the results obtained indicate the need for further analysis, in particular in terms of fission spectrum uncertainty data assessment.

  13. Fission Xenon on Mars

    NASA Technical Reports Server (NTRS)

    Mathew, K. J.; Marti, K.; Marty, B.

    2002-01-01

    Fission Xe components due to Pu-244 decay in the early history of Mars have been identified in nakhlites; as in the case of ALH84001 and Chassigny the fission gas was assimilated into indigenous solar-type Xe. Additional information is contained in the original extended abstract.

  14. Biomodal spontaneous fission

    SciTech Connect

    Hulet, E.K. )

    1989-09-26

    Investigations of mass and kinetic-energy distributions from spontaneous fission have been extended in recent years to an isotope of element 104 and, for half-lives, to an isotope of element 108. The results have been surprising in that spontaneous fission half-lives have turned out to be much longer than expected and mass and kinetic- energy distributions were found to abruptly shift away from those of the lighter actinides, showing two modes of fission. These new developments have caused a re-evaluation of our understanding of the fission process, bringing an even deeper appreciation of the role played by nuclear shell effects upon spontaneous fission properties. 16 refs., 10 figs.

  15. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  16. FUEL ELEMENT CONSTRUCTION

    DOEpatents

    Zumwalt, L.R.

    1961-08-01

    Fuel elements having a solid core of fissionable material encased in a cladding material are described. A conversion material is provided within the cladding to react with the fission products to form stable, relatively non- volatile compounds thereby minimizing the migration of the fission products into the coolant. The conversion material is preferably a metallic fluoride, such as lead difluoride, and may be in the form of a coating on the fuel core or interior of the cladding, or dispersed within the fuel core. (AEC)

  17. Approaches to Future Generation Photovoltaics and Solar Fuels: Multiple Exciton Generation in Quantum Dots, Quantum Dot Arrays, Molecular Singlet Fission, and Quantum Dot Solar Cells

    SciTech Connect

    Nozik, A. J.; Beard, M. C.; Johnson, J. C.; Hanna, M. C.; Luther, J. M.; Midgett, A.; Semonin, O.; Michel, J.

    2012-01-01

    One potential, long-term approach to more efficient future generation solar cells is to utilize the unique properties of quantum dots (QDs) and unique molecular chromophores to control the relaxation pathways of excited states to produce enhanced conversion efficiency through efficient multiple electron-hole pair generation from single photons . We have observed efficient multiple exciton generation (MEG) in PbSe, PbS, PbTe, and Si QDs and efficient singlet fission (SF) in molecules that satisfy specific requirements for their excited state energy level structure to achieve carrier multiplication. We have studied MEG in close-packed QD arrays where the QDs are electronically coupled in the films and thus exhibit good transport while still maintaining quantization and MEG. We have developed simple, all-inorganic QD solar cells that produce large short-circuit photocurrents and power conversion efficiencies in the 3-5% range via both nanocrystalline Schottky junctions and nanocrystalline p-n junctions. These solar cells also show QYs for photocurrent that exceed 100% in the photon energy regions where MEG is possible; the photocurrent MEG QYs as a function of photon energy match those determined via time-resolved spectroscopy. We have also observed very efficient SF in thin films of molecular crystals of 1,3 diphenylisobenzofuran with quantum yields of 200% at the optimum SF threshold of 2Eg (HOMO-LUMO for S{sub 0}-S{sub 1}), reflecting the creation of two excited triplet states from the first excited singlet state. Various possible configurations for novel solar cells based on MEG in QDs and SF in molecules that could produce high conversion efficiencies will be presented, along with progress in developing such new types of solar cells. Recent analyses of the effect of MEG or SF combined with solar concentration on the conversion efficiency of solar cells will be discussed.

  18. Fission induced plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1977-01-01

    The possibility of creating a plasma from fission fragments was investigated, as well as the probability of utilizing the energy of these particles to create population inversion leading to laser action. Eventually, it is hoped that the same medium could be used for both fissioning and lasing, thus avoiding inefficiences in converting one form of energy to the other. A central problem in understanding a fission induced plasma is to obtain an accurate model of the electron behavior; some calculations are presented to this end. The calculations are simple, providing a compendium of processes for reference.

  19. Hydrothermal synthesis of Ni 2FeBO 5 in near-supercritical PWR coolant and possible effects of neutron-induced 10B fission in fuel crud

    NASA Astrophysics Data System (ADS)

    Sawicki, Jerzy A.

    2011-08-01

    The hydrothermal synthesis of a nickel-iron oxyborate, Ni 2FeBO 5, known as bonaccordite, was investigated at pressures and temperatures that might occur at the surface of high-power fuel rods in PWR cores and in supercritical water reactors, especially during localized departures from nucleate boiling and dry-outs. The tests were performed using aqueous mixtures of nickel and iron oxides with boric acid or boron oxide, and as a function of lithium hydroxide addition, temperature and time of heating. At subcritical temperatures nickel ferrite NiFe 2O 4 was always the primary reaction product. High yield of Ni 2FeBO 5 synthesis started near critical water temperature and was strongly promoted by additions of LiOH up to Li/Fe and Li/B molar ratios in a range 0.1-1. The synthesis of bonaccordite was also promoted by other alkalis such as NaOH and KOH. The bonaccordite particles were likely formed by dissolution and re-crystallization by means of an intermediate nickel ferrite phase. It is postulated that the formation of Ni 2FeBO 5 in deposits of borated nickel and iron oxides on PWR fuel cladding can be accelerated by lithium produced in thermal neutron capture 10B(n,α) 7Li reactions. The process may also be aided in the reactor core by kinetic energy of α-particles and 7Li ions dissipated in the crud layer.

  20. Analysis of fission product release behavior during the TMI-2 accident

    SciTech Connect

    Petti, D. A.; Adams, J. P.; Anderson, J. L.; Hobbins, R. R.

    1987-01-01

    An analysis of fission product release during the Three Mile Island Unit 2 (TMI-2) accident has been initiated to provide an understanding of fission product behavior that is consistent with both the best estimate accident scenario and fission product results from the ongoing sample acquisition and examination efforts. ''First principles'' fission product release models are used to describe release from intact, disrupted, and molten fuel. Conclusions relating to fission product release, transport, and chemical form are drawn. 35 refs., 12 figs., 7 tabs.

  1. Postirradiation examination of HTR fuel

    SciTech Connect

    Nabielek, H.; Reitsamer, G.; Kania, M.J.

    1986-01-01

    Fuel for the High Temperature Reactor (HTR) consists of 1 mm diameter coated particles uniformly distributed in a graphite matrix within a cold-molded 60 mm diameter spherical fuel element. Fuel performance demonstrations under simulated normal operation conditions are conducted in accelerated neutron environments available in Material Test Reactors and in real-time environments such as the Arbeitsgemeinschaft Versuchsreaktor (AVR) Juelich. Postirradiation examinations are then used to assess fuel element behavior and the detailed performance of the coated particles. The emphasis in postirradiation examination and accident testing is on assessment of the capability for fuel elements and individual coated particles to retain fission products and actinide fuel materials. To accomplish this task, techniques have been developed which measures fission product and fuel material distributions within or exterior to the particle: Hot Gas Chlorination - provides an accurate method to measure total fuel material concentration outside intact particles; Profile Electrolytic Deconsolidation - permits determination of fission product distribution along fuel element diameter and retrieval of fuel particles from positions within element; Gamma Spectrometry - provides nondestructive method to measure defect particle fractions based on retention of volatile metallic fission products; Particle Cracking - permits a measure of the partitioning of fission products between fuel kernel and particle coatings, and the derivation of diffusion parameters in fuel materials; Micro Gas Analysis - provides gaseous fission product and reactive gas inventory within free volume of single particles; and Mass-spectrometric Burnup Determination - utilizes isotope dilution for the measurement of heavy metal isotope abundances.

  2. Fission Systems for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne

    2012-01-01

    Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.

  3. Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations

    NASA Astrophysics Data System (ADS)

    Tonks, Michael R.; Millett, Paul C.; Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.; Gaston, Derek; Andrs, David; Williamson, Richard

    2013-09-01

    Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory's BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release.

  4. Fissioning uranium plasmas and nuclear-pumped lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.

    1975-01-01

    Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.

  5. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on 239Pu, 235U, 238U

    NASA Astrophysics Data System (ADS)

    Selby, H. D.; Mac Innes, M. R.; Barr, D. W.; Keksis, A. L.; Meade, R. A.; Burns, C. J.; Chadwick, M. B.; Wallstrom, T. C.

    2010-12-01

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for 99Mo, 95Zr, 137Cs, 140Ba, 141,143Ce, and 147Nd. Modest incident-energy dependence exists for the 147Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by ˜5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried over to the ENDF/B-VII.0 library, except for 99Mo

  6. Fission Surface Power Technology Development Update

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power

  7. Singlet exciton fission photovoltaics.

    PubMed

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses

  8. Vented nuclear fuel element

    DOEpatents

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  9. Calculations on fission gas behaviour in the high burnup structure

    NASA Astrophysics Data System (ADS)

    Blair, P.; Romano, A.; Hellwig, Ch.; Chawla, R.

    2006-05-01

    The behaviour of fission gas in high burnup fuel during steady-state and transient conditions is of special interest for safety reasons. Despite this, mechanistic models that reflect the fission gas transport processes and reliably predict the evolution of the remaining fission gas in the high burnup structure (HBS) are largely missing today. We start to address this problem by developing a one-dimensional, mass balance model and apply it to LWR UO 2 fuel at the moderate temperatures found in the rim region. We examine the quantity of gas remaining in the HBS fuel matrix at steady state and compare it with experimental values. We find that the current model reproduces the 0.2 wt% observed xenon concentration under certain conditions, viz. fast grain boundary diffusion and an effective volume diffusion coefficient. A sensitivity analysis is also conducted for the model parameters, the relative importance for which is not well established a priori.

  10. FUEL ELEMENT CONSTRUCTION

    DOEpatents

    Simnad, M.T.

    1961-08-15

    A method of preventing diffusible and volatile fission products from diffusing through a fuel element container and contaminating reactor coolant is described. More specifically, relatively volatile and diffusible fission products either are adsorbed by or react with magnesium fluoride or difluoride to form stable, less volatile, less diffusible forms. The magnesium fluoride or difluoride is disposed anywhere inwardly from the outer surface of the fuel element container in order to be contacted by the fission products before they reach and contaminate the reactor coolant. (AEC)

  11. Nuclear reactor fuel element

    DOEpatents

    Johnson, Carl E.; Crouthamel, Carl E.

    1980-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of oxygen gettering material on the inner surface of the cladding. The gettering material reacts with oxygen released by the fissionable material during irradiation of the core thereby preventing the oxygen from reacting with and corroding the cladding. Also described is an improved method for coating the inner surface of the cladding with a layer of gettering material.

  12. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    SciTech Connect

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  13. Fission modelling with FIFRELIN

    NASA Astrophysics Data System (ADS)

    Litaize, Olivier; Serot, Olivier; Berge, Léonie

    2015-12-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  14. Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations

    SciTech Connect

    Gauld, I.C.

    2005-08-12

    U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 (ISG-8) for burnup credit covers actinides only, a position based primarily on the lack of definitive critical experiments and adequate radiochemical assay data that can be used to quantify the uncertainty associated with fission product credit. The accuracy of fission product neutron cross sections is paramount to the accuracy of criticality analyses that credit fission products in two respects: (1) the microscopic cross sections determine the reactivity worth of the fission products in spent fuel and (2) the cross sections determine the reaction rates during irradiation and thus influence the accuracy of predicted final concentrations of the fission products in the spent fuel. This report evaluates and quantifies the importance of the fission product cross sections in predicting concentrations of fission products proposed for use in burnup credit. The study includes an assessment of the major fission products in burnup credit and their production precursors. Finally, the cross-section importances, or sensitivities, are combined with the importance of each major fission product to the system eigenvalue (k{sub eff}) to determine the net importance of cross sections to k{sub eff}. The importances established the following fission products, listed in descending order of priority, that are most likely to benefit burnup credit when their cross-section uncertainties are reduced: {sup 151}Sm, {sup 103}Rh, {sup 155}Eu, {sup 150}Sm, {sup 152}Sm, {sup 153}Eu, {sup 154}Eu, and {sup 143}Nd.

  15. Process for treating fission waste

    DOEpatents

    Rohrmann, Charles A.; Wick, Oswald J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  16. FUEL ELEMENT

    DOEpatents

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  17. Feasibility of an antiproton catalyzed fission fragment rocket

    SciTech Connect

    Hdinger, D.S.

    1992-03-01

    The purpose of this project was to investigate the feasibility of an antiproton catalyzed fission fragment rocket (FFR). The FFR is characterized by the extraction of fission fragments from the fissile fuel, and the utilization of their kinetic energy for thrust generation. A significant drawback to previous FFR designs was the requirement to maintain a critical nuclear pile as the fission fragment source. The author examined the possibility of replacing the critical pile with a sub-critical pile driven by antiprotons. Recent experiments have revealed that antiprotons stimulate highly energetic fissions in {sup 238}U, with a neutron multiplicity of 13.7 neutrons per fission. This interaction was used as a throttled neutron source. The pile consisted of layers of fissile coated fibers which are designed to allow fission fragments to escape them, where the fragments collide with a fluid. The heated fluid is then ejected from the rocket to provide thrust. The calculations performed indicate that each antiproton injected into the pile can stimulate 8 or more fissions while maintaining a neutron multiplication of less than 0.4. Based on the results seen, the engine design presented is inadequate. Limitations introduced by the reaction fluid far outweigh the simplicity-of-design gained. Despite this, the basic idea of using the antiproton-U interaction as a source of spacecraft propulsion warrants further study.

  18. Feasibility of an antiproton catalyzed fission fragment rocket

    NASA Astrophysics Data System (ADS)

    Hidinger, David S.

    1992-03-01

    The purpose of this project was to investigate the feasibility of an antiproton catalyzed fission fragment rocket (FFR). The FFR is characterized by the extraction of fission fragments from the fuel, and the utilization of their kinetic energy for thrust generation. A significant drawback to previous FFR designs was the required critical nuclear pile as the fission fragment source. The author examined the possibility of replacing the critical pile with a sub-critical pile driven by antiprotons. Recent experiments have revealed that antiprotons stimulate highly energetic fissions in 238U, with a neutron multiplicity of 13.7 neutrons per fissions. This interaction was used as a throttled neutron source. The pile consisted of layers of fissile coated fibers which are designed to allow fission fragments to escape them, where the fragments collide with a fluid. The heated fluid is then ejected from the rocket to provide thrust. The calculations performed indicate that each antiproton injected into the pile can stimulate 8 or more fissions while maintaining a neutron multiplication of less than 0.4. Based on the results, the specific design presented was inadequate. Despite this, the concept of using the antiproton-U interaction as a source of thrust warrants further study.

  19. Student Experiments in Spontaneous Fission.

    ERIC Educational Resources Information Center

    Becchetti, F. D.; Ying, J. S.

    1981-01-01

    Advanced undergraduate experiments utilizing a commercially available, thin spontaneous fission source are described, including studies of the energy and mass distribution of the fission fragments and their energy and angular correlation. The experiments provide a useful introduction to fission, nuclear mass equations, heavy-ion physics, and…

  20. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-11-21

    A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

  1. Control of a laser inertial confinement fusion-fission power plant

    DOEpatents

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  2. Lanl Neutron-Induced Fission Cross Section Measurement Program

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Tovesson, F.; Hill, T. S.

    2014-09-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). Combining measurements at two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR), cover neutron energies over 10 orders of magnitude: from sub-thermal up to 200 MeV. A parallel-plate fission ionization chamber was used as a fission fragment detector. The 235U(n,f) standard was used as the reference. Fission cross sections have been measured for multiple actinides. The new data presented here completes the suite of long-lived Uranium isotopes that were investigated with this experimental approach. The cross section data are presented in comparison with existing evaluations and previous measurements.

  3. Fusion-fission hybrid studies in the United States

    SciTech Connect

    Moir, R.W.; Lee, J.D.; Berwald, D.H.; Cheng, E.T.; Delene, J.G.; Jassby, D.L.

    1986-05-20

    Systems and conceptual design studies have been carried out on the following three hybrid types: (1) The fission-suppressed hybrid, which maximizes fissile material produced (Pu or /sup 233/U) per unit of total nuclear power by suppressing the fission process and multiplying neutrons by (n,2n) reactions in materials like beryllium. (2) The fast-fission hybrid, which maximizes fissile material produced per unit of fusion power by maximizing fission of /sup 238/U (Pu is produced) in which twice the fissile atoms per unit of fusion power (but only a third per unit of nuclear power) are made. (3) The power hybrid, which amplifies power in the blanket for power production but does not produce fuel to sell. All three types must sell electrical power to be economical.

  4. Thermodynamics of fission products in UO2+-x

    SciTech Connect

    Nerikar, Pankaj V

    2009-01-01

    The stabilities of selected fission products - Xe, Cs, and Sr - are investigated as a function of non-stoichiometry x in UO{sub 2{+-}x}. In particular, density functional theory (OFT) is used to calculate the incorporation and solution energies of these fission products at the anion and cation vacancy sites, at the divacancy, and at the bound Schottky defect. In order to reproduce the correct insulating state of UO{sub 2}, the DFT calculations are performed using spin polarization and with the Hubbard U tenn. In general, higher charge defects are more soluble in the fuel matrix and the solubility of fission products increases as the hyperstoichiometry increases. The solubility of fission product oxides is also explored. CS{sub 2}O is observed as a second stable phase and SrO is found to be soluble in the UO{sub 2} matrix for all stoichiometries. These observations mirror experimentally observed phenomena.

  5. Radiation Detection from Fission

    SciTech Connect

    Mihalczo, J.

    2004-11-17

    This report briefly describes the neutrons and gamma rays emitted in fission, briefly discusses measurement methods, briefly discusses sources and detectors relevant to detection of shielded HEU in sealand containers, and lists the measurement possibilities for the various sources. The brief descriptions are supplemented by reference.

  6. ORNL fission product release tests VI-6

    SciTech Connect

    Osborne, M.F.; Lorenz, R.A.; Collins, J.L.; Lee, C.S.

    1991-01-01

    The ORNL fission product release tests investigate release and transport of the major fission products from high-burnup fuel under LWR accident conditions. The two most recent tests (VI-4 and VI-5) were conducted in hydrogen. In three previous tests in this series (VI-1, VI-2, and VI-3), which had been conducted in steam, the oxidized Zircaloy cladding remained largely intact and acted as a barrier to steam reaction with the UO{sub 2}. Test VI-6 was designed to insure significant oxidation of the UO{sub 2} fuel, which has been shown to enhance release of certain fission products, especially molybdenum and ruthenium. The BR3 fuel specimen used in test VI-6 will be heated in hydrogen to 2300 K; the Zircaloy cladding is expected to melt and runoff at {approximately}2150 K. Upon reaching the 2300 K test temperature, the test atmosphere will be changed to steam, and that temperature will be maintained for 60 min, with the three collection trains being operated for 2-, 18-, and 40-min periods. The releases of {sup 85}Kr and {sup 137}Cs will be monitored continuously throughout the test. Posttest analyses of the material collected on the three trains will provide results on the release and transport of Mo, Ru, Sb, Te, Ba, Ce, and Eu as a function of time at 2300 K. Continuous monitoring of the hydrogen produced during the steam atmosphere period at high temperature will provide a measure of the oxidation rate of the cladding and fuel. Following delays in approval of the safety documentation and in decontamination of the hot cell and test apparatus, test VI-6 will be conducted in late May.

  7. System Concepts for Affordable Fission Surface Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Poston, David; Qualls, Louis

    2008-01-01

    This paper presents an overview of an affordable Fission Surface Power (FSP) system that could be used for NASA applications on the Moon and Mars. The proposed FSP system uses a low temperature, uranium dioxide-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The concept was determined by a 12 month NASA/DOE study that examined design options and development strategies based on affordability and risk. The system is considered a low development risk based on the use of terrestrial-derived reactor technology, high efficiency power conversion, and conventional materials. The low-risk approach was selected over other options that could offer higher performance and/or lower mass.

  8. Fusion-fission energy systems evaluation

    SciTech Connect

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  9. Mechanistic prediction of fission product release under normal and accident conditions: key uncertainties that need better resolution

    SciTech Connect

    Rest, J.

    1983-09-01

    A theoretical model has been used for predicting the behavior of fission gas and volatile fission products (VFPs) in UO/sub 2/-base fuels during steady-state and transient conditions. This model represents an attempt to develop an efficient predictive capability for the full range of possible reactor operating conditions. Fission products released from the fuel are assumed to reach the fuel surface by successively diffusing (via atomic and gas-bubble mobility) from the grains to grain faces and then to the grain edges, where the fission products are released through a network of interconnected tunnels of fission-gas induced and fabricated porosity. The model provides for a multi-region calculation and uses only one size class to characterize a distribution of fission gas bubbles.

  10. Mechanistic prediction of fission-product release under normal and accident conditions: key uncertainties that need better resolution. [PWR; BWR

    SciTech Connect

    Rest, J.

    1983-09-01

    A theoretical model has been used for predicting the behavior of fission gas and volatile fission products (VFPs) in UO/sub 2/-base fuels during steady-state and transient conditions. This model represents an attempt to develop an efficient predictive capability for the full range of possible reactor operating conditions. Fission products released from the fuel are assumed to reach the fuel surface by successively diffusing (via atomic and gas-bubble mobility) from the grains to grain faces and then to the grain edges, where the fission products are released through a network of interconnected tunnels of fission-gas induced and fabricated porosity. The model provides for a multi-region calculation and uses only one size class to characterize a distribution of fission gas bubbles.

  11. Elastocapillary Instability in Mitochondrial Fission

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  12. Neutron induced fission of 234U

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Al-Adili, A.; Oberstedt, S.; Pomp, S.

    2012-02-01

    The fission fragment properties of 234U(n,f) were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f) is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE) as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f). The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the standard 1 (S1) mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean TKE is dropping

  13. Causes, consequences, and kin bias of human group fissions.

    PubMed

    Walker, Robert S; Hill, Kim R

    2014-12-01

    Fissions of human communities are monumental occasions with consequences for cultural and genetic variation and divergence through time by means of serial founder effects. An ethnographic review shows that most human group fissions are fueled primarily by internal political conflict and secondarily by resource scarcity. As found for other social animals, human fissions lead to subgroups that have higher levels of relatedness as compared with the original community because of kin-biased assortment known as the lineal effect. Fission processes that increase the average relatedness of subgroups are important because relatedness governs how strongly kin/group selection favors social behaviors such as warfare, peacekeeping, and other forms of collection action. However, random individual assortment is not an appropriate null model for evaluating lineage assortment because nuclear families and extended households are expected to remain together, which in and of itself forces higher relatedness in smaller subgroups. We develop a lineage assortment index where low values represent subgroups with coefficients of relatedness near those expected if nuclear and extended households had chosen to associate into random groupings. Two fissions of Ache villages (Paraguay) are examples of this type of fission with a low lineage assortment index not significantly different from zero as evaluated with controlled simulations. On the other extreme, a lineage assortment index near unity represents a lineal fission that maximizes the relatedness of subgroups such as the perfect split of a lineage into sublineages. A fission of Piaroa (Venezuela) fits this scenario. While previous discussions of fission have emphasized similarities among human studies and even other social mammals, we highlight the full range of potential kin bias in the formation of new communities. PMID:25056829

  14. Clusterization in Ternary Fission

    NASA Astrophysics Data System (ADS)

    Kamanin, D. V.; Pyatkov, Y. V.

    This lecture notes are devoted to the new kind of ternary decay of low excited heavy nuclei called by us "collinear cluster tri-partition" (CCT) due to the features of the effect observed, namely, decay partners fly away almost collinearly and at least one of them has magic nucleon composition. At the early stage of our work the process of "true ternary fission" (fission of the nucleus into three fragments of comparable masses) was considered to be undiscovered for low excited heavy nuclei. Another possible prototype—three body cluster radioactivity—was also unknown. The most close to the CCT phenomenon, at least cinematically, stands so called "polar emission", but only very light ions (up to isotopes of Be) were observed so far.

  15. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1963-06-11

    A fuel plate is designed for incorporation into control rods of the type utilized in high-flux test reactors. The fuel plate is designed so that the portion nearest the poison section of the control rod contains about one-half as much fissionable material as in the rest of the plate, thereby eliminating dangerous flux peaking in that portion. (AEC)

  16. Extended optical model for fission

    DOE PAGESBeta

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less

  17. Extended optical model for fission

    NASA Astrophysics Data System (ADS)

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-01

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for U,235234(n ,f ) , while a double-humped fission barrier is used for 238U(n ,f ) and 239Pu(n ,f ) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n ,f ) reactions. The 239Pu(n ,f ) reaction can be calculated in the complete damping approximation. Calculated cross sections for U,238235(n ,f ) and 239Pu(n ,f ) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. The extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  18. Fission-induced plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Shiu, Y. J.

    1979-01-01

    The possibility of creating a plasma from fission fragments, and to utilize the energy of the particles to create population inversion that would lead to laser action is investigated. An investigation was made of various laser materials which could be used for nuclear-pumped lasing. The most likely candidate for a fissioning material in the gaseous form is uranium hexafluoride - UF6, and experiments were performed to investigate materials that would be compatible with it. One of the central problems in understanding a fission-induced plasma is to obtain a model of the electron behavior, and some preliminary calculations are presented. In particular, the rates of various processes are discussed. A simple intuitive model of the electron energy distribution function is also shown. The results were useful for considering a mathematical model of a nuclear-pumped laser. Next a theoretical model of a (3)He-Ar nuclear-pumped laser is presented. The theory showed good qualitative agreement with the experimental results.

  19. Phase 1 space fission propulsion system testing and development progress

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter

    2001-02-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified, MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired, they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans. .

  20. Space Fission Propulsion Testing and Development Progress. Phase 1

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems we expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans.

  1. Fission Yields and Other Diagnostics for Nuclear Performance

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.

    2014-06-01

    I summarize advances in our understanding of basic nuclear physics cross sections and decay properties that are needed to characterize the magnitude and energy-dependence of a neutron flux, and to determine the amount of fission burnup in plutonium fuel. The number of fissions that have occurred in a neutron environment can be deduced from measurements of the fission products created, providing that the fission product yields are known accurately. I describe how our understanding of plutonium fission product yields has improved in recent years through a meta-analysis of various measured data, and through identification of fission product yield incident-energy dependencies over the 0.2-2 MeV fast energy region. This led to the resolution of a previous discrepancy between the Los Alamos and Lawrence Livermore National Laboratories in their plutonium yield assessments in the fast energy region, although more experimental work is still needed to resolve discrepancies at 14 MeV. Work is also described that has improved our understanding of (n,2n) cross sections that are used as diagnostics of the high-energy neutron spectrum - both on plutonium and americium, and on the radiochemical detectors yttrium, iridium, and thulium. Finally, some observations are made on the importance of continuing to develop our Evaluated Nuclear Data Files (ENDF) database using physics insights from differential cross section and integral laboratory experiments and from nuclear theory advances.

  2. Fission Yields and Other Diagnostics for Nuclear Performance

    SciTech Connect

    Chadwick, M.B.

    2014-06-15

    I summarize advances in our understanding of basic nuclear physics cross sections and decay properties that are needed to characterize the magnitude and energy-dependence of a neutron flux, and to determine the amount of fission burnup in plutonium fuel. The number of fissions that have occurred in a neutron environment can be deduced from measurements of the fission products created, providing that the fission product yields are known accurately. I describe how our understanding of plutonium fission product yields has improved in recent years through a meta-analysis of various measured data, and through identification of fission product yield incident-energy dependencies over the 0.2-2 MeV fast energy region. This led to the resolution of a previous discrepancy between the Los Alamos and Lawrence Livermore National Laboratories in their plutonium yield assessments in the fast energy region, although more experimental work is still needed to resolve discrepancies at 14 MeV. Work is also described that has improved our understanding of (n,2n) cross sections that are used as diagnostics of the high-energy neutron spectrum – both on plutonium and americium, and on the radiochemical detectors yttrium, iridium, and thulium. Finally, some observations are made on the importance of continuing to develop our Evaluated Nuclear Data Files (ENDF) database using physics insights from differential cross section and integral laboratory experiments and from nuclear theory advances.

  3. The behavior of fission products during nuclear rocket reactor tests

    SciTech Connect

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    The experience base regarding fission product behavior developed during the Rover program, the nuclear rocket development program of 1955--1972, will be useful in planning a renewed nuclear rocket program. During the Rover program, 20 reactors were tested at the Nuclear Rocket Development Station in Nevada. Nineteen of these discharged effluent directly into the atmosphere; the last reactor tested, a non-flight-prototypic, fuel-element-testing reactor called the Nuclear Furnace (NF-1) was connected to an effluent cleanup system that removed fission products before the hydrogen coolant (propellant) was discharged to the atmosphere. In general, we are able to increase both test duration and fuel temperature during the test series. Therefore fission product data from the later part of the program are more interesting and more applicable to future reactors. We have collected fission product retention (and release) data reported in both formal and informal publications for six of the later reactor tests; five of these were Los Alamos reactors that were firsts of a kind in configuration or operating conditions. We have also, with the cooperation of Westinghouse, included fission product data from the NRX-A6 reactor, the final member of series of developmental reactors with the same basic geometry, but with significant design and fabrication improvements as the series continued. Table 1 lists the six selected reactors and the test parameters for each.

  4. Modeling of Fission Gas Release in UO2

    SciTech Connect

    MH Krohn

    2006-01-23

    A two-stage gas release model was examined to determine if it could provide a physically realistic and accurate model for fission gas release under Prometheus conditions. The single-stage Booth model [1], which is often used to calculate fission gas release, is considered to be oversimplified and not representative of the mechanisms that occur during fission gas release. Two-stage gas release models require saturation at the grain boundaries before gas is release, leading to a time delay in release of gases generated in the fuel. Two versions of a two-stage model developed by Forsberg and Massih [2] were implemented using Mathcad [3]. The original Forsbers and Massih model [2] and a modified version of the Forsberg and Massih model that is used in a commercially available fuel performance code (FRAPCON-3) [4] were examined. After an examination of these models, it is apparent that without further development and validation neither of these models should be used to calculate fission gas release under Prometheus-type conditions. There is too much uncertainty in the input parameters used in the models. In addition. the data used to tune the modified Forsberg and Massih model (FRAPCON-3) was collected under commercial reactor conditions, which will have higher fission rates relative to Prometheus conditions [4].

  5. Thermal Performance of Deep-Burn Fusion-Fission Hybrid Waste in a Repository

    SciTech Connect

    Blink, J A; Chipman, V; Farmer, J; Shaw, H; Zhao, P

    2008-11-25

    The Laser Inertial Confinement Fusion Fission Energy (LIFE) Engine [1] combines a neutron-rich but energy-poor inertial fusion system with an energy-rich but neutron-poor subcritical fission blanket. Because approximately 80% of the LIFE Engine energy is produced from fission, the requirements for laser efficiency and fusion target performance are relaxed, compared to a pure-fusion system, and hence a LIFE Engine prototype can be based on target performance in the first few years of operation of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Similarly, because of the copious fusion neutrons, the fission blanket can be run in a subcritical, driven, mode, without the need for control rods or other sophisticated reactivity control systems. Further, because the fission blanket is inherently subcritical, fission fuels that can be used in LIFE Engine designs include thorium, depleted uranium, natural uranium, spent light water reactor fuel, highly enriched uranium, and plutonium. Neither enrichment nor reprocessing is required for the LIFE Engine fuel cycle, and burnups to 99% fraction of initial metal atoms (FIMA) being fissioned are envisioned. This paper discusses initial calculations of the thermal behavior of spent LIFE fuel following completion of operation in the LIFE Engine [2]. The three time periods of interest for thermal calculations are during interim storage (probably at the LIFE Engine site), during the preclosure operational period of a geologic repository, and after closure of the repository.

  6. FUEL ELEMENTS FOR NEUTRONIC REACTORS

    DOEpatents

    Foote, F.G.; Jette, E.R.

    1963-05-01

    A fuel element for a nuclear reactor is described that consists of a jacket containing a unitary core of fissionable material and a filling of a metal of the group consisting of sodium and sodium-potassium alloys. (AEC)

  7. Fission-Fusion Neutron Source Progress Report Sept 30, 2009

    SciTech Connect

    Chapline, G F; Daffin, F; Clark, R

    2010-02-19

    In this report the authors describe the progress made in FY09 in evaluating the feasibility of a new concept for using the DT fusion reaction to produce intense pulses of 14 MeV neutrons. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet confinement fusion schemes or lasers in inertial confinement schemes. As a source of fission fragments they propose using a dust reactor concept introduced some time ago by one of us (RC). An attractive feature of this approach is that there is no need for a large auxiliary power source to heat the DT plasma to the point where self-sustaining fusion become possible. Their scheme does require pulsed magnetic fields, but generating these fields requires only a modest power source. The dust reactor that they propose using for their neutron source would use micron-sized UC pellets suspended in a vacuum as the reactor fuel. Surrounding the fuel with a moderator such as heavy water (D{sub 2}O) would allow the reactor to operate as a thermal reactor and require only modest amounts of HEU. The scheme for using fission fragments to generate intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core could be guided out of the reactor by large magnetic fields used to form a 'rocket exhaust'. Their adaptation of this idea for the purposes of making a neutron source involves using the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  8. EXPERIMENTAL LIQUID METAL FUEL REACTOR

    DOEpatents

    Happell, J.J.; Thomas, G.R.; Denise, R.P.; Bunts, J.L. Jr.

    1962-01-23

    A liquid metal fuel nuclear fission reactor is designed in which the fissionable material is dissolved or suspended in a liquid metal moderator and coolant. The liquid suspension flows into a chamber in which a critical amount of fissionable material is obtained. The fluid leaves the chamber and the heat of fission is extracted for power or other utilization. The improvement is in the support arrangement for a segrnented graphite core to permit dif ferential thermal expansion, effective sealing between main and blanket liquid metal flows, and avoidance of excessive stress development in the graphite segments. (AEC)

  9. ''Subthreshold'' reactions involving nuclear fission

    SciTech Connect

    Goldhaber, M.; Shrock, R.

    2001-02-01

    We analyze reactions of several types that are naively below threshold but can proceed because of the release of binding energy from nuclear fission and occasionally the formation of Coulombic bound states. These reactions include (i) photofission with pion production and (ii) charged current neutrino-nucleus reactions that lead to fission and/or formation of a Coulomb bound state of a {mu}{sup -} with the nucleus of a fission fragment. We comment on the possible experimental observation of these reactions.

  10. Data summary report for fission product release test VI-6

    SciTech Connect

    Osborne, M.F.; Lorenz, R.A.; Travis, J.R.; Webster, C.S.; Collins, J.L.

    1994-03-01

    Test VI-6 was the sixth test in the VI series conducted in the vertical furnace. The fuel specimen was a 15.2-cm-long section of a fuel rod from the BR3 reactor in Belgium. The fuel had experienced a burnup of {approximately}42 MWd/kg, with inert gas release during irradiation of {approximately}2%. The fuel specimen was heated in an induction furnace at 2300 K for 60 min, initially in hydrogen, then in a steam atmosphere. The released fission products were collected in three sequentially operated collection trains designed to facilitate sampling and analysis. The fission product inventories in the fuel were measured directly by gamma-ray spectrometry, where possible, and were calculated by ORIGEN2. Integral releases were 75% for {sup 85}Kr, 67% for {sup 129}I, 64% for {sup 125}Sb, 80% for both {sup 134}Cs and {sup 137}Cs, 14% for {sup 154}Eu, 63% for Te, 32% for Ba, 13% for Mo, and 5.8% for Sr. Of the totals released from the fuel, 43% of the Cs, 32% of the Sb, and 98% of the Eu were deposited in the outlet end of the furnace. During the heatup in hydrogen, the Zircaloy cladding melted, ran down, and reacted with some of the UO{sub 2} and fission products, especially Te and Sb. The total mass released from the furnace to the collection system, including fission products, fuel, and structural materials, was 0.57 g, almost equally divided between thermal gradient tubes and filters. The release behaviors for the most volatile elements, Kr and Cs, were in good agreement with the ORNL Diffusion Model.

  11. Early Flight Fission Test Facilities (EFF-TF) and Concepts That Support Near-Term Space Fission Missions

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Martin, James

    2003-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fusion propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system pe$ormance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the Early Flight Fission Test Facilities (EFF-TF) at the Marshall Space Flight Center. The EFF-TF is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers.

  12. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    SciTech Connect

    Paul A. Demkowicz; David V. Laug; Dawn M. Scates; Edward L. Reber; Lyle G. Roybal; John B. Walter; Jason M. Harp; Robert N. Morris

    2012-10-01

    The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 degrees C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated fission gas monitoring system, as well as preliminary system calibration results.

  13. Fission yield measurements at IGISOL

    NASA Astrophysics Data System (ADS)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  14. Safety characteristics of a suspended-pellet fission reactor system

    NASA Astrophysics Data System (ADS)

    Kingdon, David Ross

    A new fission reactor system with passive safety characteristics to eliminate the occurrence of loss-of-coolant accidents, reduce reactivity excursion effects, and which also provides for closure of the nuclear fuel cycle through on-site spent fuel management is examined. The concept uses multi-coated fuel pellets which are suspended by an upward moving coolant in vertical columns of the reactor core and electro-refining elemental separation to remove selected fission products prior to actinide recycling. The possibility of fuel melt following a loss-of-coolant is avoided as a decrease in coolant flow results in the removal of fuel from the core through the action of gravity alone. Average fluid velocities in the columns which are necessary to suspend the pellets are calculated and found to be consistent with the necessary heat extraction to yield ˜1--10 Wth per column. The total output power of such suspended pellet-type reactors is compared to the power necessary to provide the suspending fluid flow, yielding favourable ratios of ˜102--103. The reduction of reactivity excursion tendencies is envisaged through an ablative layer of material in the pellets which sublimates at temperatures above normal operating conditions. In the event of a power or temperature increase the particles fragment and thereby change their hydrodynamic drag characteristics, thus leading to fuel removal from the core by elutriation. Comparison of nuclear-to-thermal response times and elutriation rates for limiting power transients indicate that the present design assists in reactivity excursion mitigation. Closure of the nuclear fuel cycle is attained through a spent fuel management strategy which requires only on-site storage of a fraction of the fission products produced during reactor operation. Electro-refining separation of selected fission products combined with complete actinide recycling yields no isolation of plutonium or highly enriched uranium during the procedure. The out

  15. REACTOR FUEL SCAVENGING MEANS

    DOEpatents

    Coffinberry, A.S.

    1962-04-10

    A process for removing fission products from reactor liquid fuel without interfering with the reactor's normal operation or causing a significant change in its fuel composition is described. The process consists of mixing a liquid scavenger alloy composed of about 44 at.% plutoniunm, 33 at.% lanthanum, and 23 at.% nickel or cobalt with a plutonium alloy reactor fuel containing about 3 at.% lanthanum; removing a portion of the fuel and scavenger alloy from the reactor core and replacing it with an equal amount of the fresh scavenger alloy; transferring the portion to a quiescent zone where the scavenger and the plutonium fuel form two distinct liquid layers with the fission products being dissolved in the lanthanum-rich scavenger layer; and the clean plutonium-rich fuel layer being returned to the reactor core. (AEC)

  16. Fast fission phenomenon

    NASA Astrophysics Data System (ADS)

    In these lectures we have described two different phenomena occuring in dissipative heavy ion collisions : neutron-proton asymmetry and fast fission. Neutron-proton asymmetry has provided us with an example of a fast collective motion. As a consequence quantum fluctuations can be observed. The observation of quantum or statistical fluctuations is directly connected to the comparison between the phonon energy and the temperature of the intrinsic system. This means that this mode might also provide a good example for the investigation of the transition between quantum and statistical fluctuations which might occur when the bombarding energy is raised above 10 MeV/A. However it is by no means sure that in this energy domain enough excitation energy can be put into the system in order to reach such high temperatures over the all system. The other interest in investigating neutron-proton asymmetry above 10 MeV/A is that the interaction time between the two incident nuclei will decrease. Consequently, if some collective motion should still be observed, it will be one of the last which can be seen. Fast fission corresponds on the contrary to long interaction times. The experimental indications are still rather weak and mainly consist of experimental data which cannot be understood in the framework of standard dissipative models. We have seen that a model which can describe both the entrance and the exit configuration gives this mechanism in a natural way and that the experimental data can, to a good extend, be explained. The nicest thing is probably that our old understanding of dissipative heavy ion collisions is not changed at all except for the problems that can now be understood in terms of fast fission. Nevertheless this area desserve further studies, especially on the experimental side to be sure that the consistent picture which we have on dissipative heavy ion collisions still remain coherent in the future.

  17. The SPIDER fission fragment spectrometer for fission product yield measurements

    NASA Astrophysics Data System (ADS)

    Meierbachtol, K.; Tovesson, F.; Shields, D.; Arnold, C.; Blakeley, R.; Bredeweg, T.; Devlin, M.; Hecht, A. A.; Heffern, L. E.; Jorgenson, J.; Laptev, A.; Mader, D.; O`Donnell, J. M.; Sierk, A.; White, M.

    2015-07-01

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E-2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from 252Cf spontaneous fission products are reported from an E-v measurement.

  18. The SPIDER fission fragment spectrometer for fission product yield measurements

    SciTech Connect

    Meierbachtol, K.; Tovesson, F.; Shields, D.; Arnold, C.; Blakeley, R.; Bredeweg, T.; Devlin, M.; Hecht, A. A.; Heffern, L. E.; Jorgenson, J.; Laptev, A.; Mader, D.; O׳Donnell, J. M.; Sierk, A.; White, M.

    2015-04-01

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Finally, individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). These mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.

  19. The SPIDER fission fragment spectrometer for fission product yield measurements

    DOE PAGESBeta

    Meierbachtol, K.; Tovesson, F.; Shields, D.; Arnold, C.; Blakeley, R.; Bredeweg, T.; Devlin, M.; Hecht, A. A.; Heffern, L. E.; Jorgenson, J.; et al

    2015-04-01

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Finally,more » individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). These mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.« less

  20. Fission-Based Electric Propulsion for Interstellar Precursor Missions

    SciTech Connect

    HOUTS,MICHAEL G.; LENARD,ROGER X.; LIPINSKI,RONALD J.; PATTON,BRUCE; POSTON,DAVID; WRIGHT,STEVEN A.

    1999-11-03

    This paper reviews the technology options for a fission-based electric propulsion system for interstellar precursor missions. To achieve a total {Delta}V of more than 100 km/s in less than a decade of thrusting with an electric propulsion system of 10,000s Isp requires a specific mass for the power system of less than 35 kg/kWe. Three possible configurations are described: (1) a UZrH-fueled,NaK-cooled reactor with a steam Rankine conversion system,(2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heat pipe-cooled reactor with a recuperated Brayton conversion system. All three of these systems have the potential to meet the specific mass requirements for interstellar precursor missions in the near term. Advanced versions of a fission-based electric propulsion system might travel as much as several light years in 200 years.

  1. JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS

    DOEpatents

    Szilard, L.; Wigner, E.P.; Creutz, E.C.

    1959-05-12

    Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.

  2. Fission products stability in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Brillant, G.; Gupta, F.; Pasturel, A.

    2011-05-01

    Fission product stability in nuclear fuels is investigated using density functional theory (DFT). In particular, incorporation and solution energies of He, Kr, Xe, I, Te, Ru, Sr and Ce in pre-existing trap sites of UO 2 (vacancies, interstitials, U-O divacancy, and Schottky trio defects) are calculated using the projector-augmented-wave method as implemented in the Vienna ab initio simulation package. Correlation effects are taken into account within the DFT+U approach. The stability of many binary and ternary compounds in comparison to soluted atoms is also explored. Finally the involvement of FP in the formation of metallic and oxide precipitates in oxide fuels is discussed in the light of experimental results.

  3. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on {sup 239}Pu, {sup 235}U, {sup 238}U

    SciTech Connect

    Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Keksis, A.L.; Meade, R.A.; Burns, C.J.; Chadwick, M.B.; Wallstrom, T.C.

    2010-12-15

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for {sup 99}Mo, {sup 95}Zr, {sup 137}Cs, {sup 140}Ba, {sup 141,143}Ce, and {sup 147}Nd. Modest incident-energy dependence exists for the {sup 147}Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by {approx}5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried

  4. TREATMENT OF FISSION PRODUCT WASTE

    DOEpatents

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  5. Fission Particle Emission Multiplicity Simulation

    Energy Science and Technology Software Center (ESTSC)

    2006-09-27

    Simulates discrete neutron and gamma-ray emission from the fission of heavy nuclei that is either spontaneous or neutron induced. This is a function library that encapsulates the fission physics and is intended to be called Monte Carlo transport code.

  6. Fission fragment driven neutron source

    DOEpatents

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  7. Ternary fission of nuclei into comparable fragments

    SciTech Connect

    Karpeshin, F. F.

    2015-07-15

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values.

  8. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-01

    A nuclear reactor fuel element comprising high density ceramic fissionable material enclosed in a tubular cladding of corrosion-resistant material is described. The fissionable material is in the form of segments of a tube which have cooperating tapered interfaces which produce outward radial displacement when the segments are urged axially together. A resilient means is provided within the tubular housing to constantly urge the fuel segments axially. This design maintains the fuel material in tight contacting engagement against the inner surface of the outer cladding tube to eliminate any gap therebetween which may be caused by differential thermal expansion between the fuel material and the material of the tube.

  9. Spent fuel data for waste storage programs

    SciTech Connect

    Greene, E M

    1980-09-01

    Data on LWR spent fuel were compiled for dissemination to participants in DOE-sponsored waste storage programs. Included are mechanical descriptions of the existing major types of LWR fuel assemblies, spent LWR fuel fission product inventories and decay heat data, and inventories of LWR spent fuel currently in storage, with projections of future quantities.

  10. A threshold for dissipative fission

    SciTech Connect

    Thoennessen, M.; Bertsch, G.F.

    1993-09-21

    The empirical domain of validity of statistical theory is examined as applied to fission data on pre-fission data on pre-fission neutron, charged particle, and {gamma}-ray multiplicities. Systematics are found of the threshold excitation energy for the appearance of nonstatistical fission. From the data on systems with not too high fissility, the relevant phenomenological parameter is the ratio of the threshold temperature T{sub thresh} to the (temperature-dependent) fission barrier height E{sub Bar}(T). The statistical model reproduces the data for T{sub thresh}/E{sub Bar}(T) < 0.26 {plus_minus} 0.05, but underpredicts the multiplicities at higher T{sub thresh}/E{sub Bar}(T) independent of mass and fissility of the systems.