Sample records for fjord west greenland

  1. Bathymetry data reveal glaciers vulnerable to ice-ocean interaction in Uummannaq and Vaigat glacial fjords, west Greenland

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Fenty, I.; Xu, Y.; Cai, C.; Velicogna, I.; Cofaigh, C. Ó.; Dowdeswell, J. A.; Weinrebe, W.; Catania, G.; Duncan, D.

    2016-03-01

    Marine-terminating glaciers play a critical role in controlling Greenland's ice sheet mass balance. Their frontal margins interact vigorously with the ocean, but our understanding of this interaction is limited, in part, by a lack of bathymetry data. Here we present a multibeam echo sounding survey of 14 glacial fjords in the Uummannaq and Vaigat fjords, west Greenland, which extends from the continental shelf to the glacier fronts. The data reveal valleys with shallow sills, overdeepenings (>1300 m) from glacial erosion, and seafloor depths 100-1000 m deeper than in existing charts. Where fjords are deep enough, we detect the pervasive presence of warm, salty Atlantic Water (AW) (>2.5°C) with high melt potential, but we also find numerous glaciers grounded on shallow (<200 m) sills, standing in cold (<1°C) waters in otherwise deep fjords, i.e., with reduced melt potential. Bathymetric observations extending to the glacier fronts are critical to understand the glacier evolution.

  2. Contamination of arctic Fjord sediments by Pb-Zn mining at Maarmorilik in central West Greenland.

    PubMed

    Perner, K; Leipe, Th; Dellwig, O; Kuijpers, A; Mikkelsen, N; Andersen, T J; Harff, J

    2010-07-01

    This study focuses on heavy metal contamination of arctic sediments from a small Fjord system adjacent to the Pb-Zn "Black Angel" mine (West Greenland) to investigate the temporal and spatial development of contamination and to provide baseline levels before the mines re-opening in January 2009. For this purpose we collected multi-cores along a transect from Affarlikassaa Fjord, which received high amounts of tailings from 1973 to 1990, to the mouth of Qaumarujuk Fjord. Along with radiochemical dating by (210)Pb and (137)Cs, geochemical analyses of heavy metals (e.g. As, Cd, Hg, Pb, and Zn) were carried out. Maximum contents were found at 12 cm depth in Affarlikassaa. After 17 years the mine last closed, specific local hydrographic conditions continue to disperse heavy metal enriched material derived from the Affarlikassaa into Qaumarujuk. Total Hg profiles from multi-cores along the transect clearly illustrate this transport and spatial distribution pattern of the contaminated material. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Resolving bathymetry from airborne gravity along Greenland fjords

    USGS Publications Warehouse

    Boghosian, Alexandra; Tinto, Kirsty; Cochran, James R.; Porter, David; Elieff, Stefan; Burton, Bethany L.; Bell, Robin E.

    2015-01-01

    Recent glacier mass loss in Greenland has been attributed to encroaching warming waters, but knowledge of fjord bathymetry is required to investigate this mechanism. The bathymetry in many Greenland fjords is unmapped and difficult to measure. From 2010 to 2012, National Aeronautics and Space Administration's Operation IceBridge collected a unique set of airborne gravity, magnetic, radar, and lidar data along the major outlet glaciers and fjords in Greenland. We applied a consistent technique using the IceBridge gravity data to create 90 bathymetric profiles along 54 Greenland fjords. We also used this technique to recover subice topography where warm or crevassed ice prevents the radar system from imaging the bed. Here we discuss our methodology, basic assumptions and error analysis. We present the new bathymetry data and discuss observations in six major regions of Greenland covered by IceBridge. The gravity models provide a total of 1950 line kilometers of bathymetry, 875 line kilometers of subice topography, and 12 new grounding line depths.

  4. Geodetic Imaging and Tsunami Modeling of the 2017 Coupled Landslide-Tsunami Event in Karrat Fjord, West Greenland.

    NASA Astrophysics Data System (ADS)

    Barba, M.; Willis, M. J.; Tiampo, K. F.; Lynett, P. J.; Mätzler, E.; Thorsøe, K.; Higman, B. M.; Thompson, J. A.; Morin, P. J.

    2017-12-01

    We use a combination of geodetic imaging techniques and modelling efforts to examine the June 2017 Karrat Fjord, West Greenland, landslide and tsunami event. Our efforts include analysis of pre-cursor motions extracted from Sentinal SAR interferometry that we improved with high-resolution Digital Surface Models derived from commercial imagery and geo-coded Structure from Motion analyses. We produce well constrained estimates of landslide volume through DSM differencing by improving the ArcticDEM coverage of the region, and provide modeled tsunami run-up estimates at villages around the region, constrained with in-situ observations provided by the Greenlandic authorities. Estimates of run-up at unoccupied coasts are derived using a blend of high resolution imagery and elevation models. We further detail post-failure slope stability for areas of interest around the Karrat Fjord region. Warming trends in the region from model and satellite analysis are combined with optical imagery to ascertain whether the influence of melting permafrost and the formation of small springs on a slight bench on the mountainside that eventually failed can be used as indicators of future events.

  5. Oceanic response to buoyancy, wind and tidal forcing in a Greenlandic glacial fjord

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Sutherland, D.; Shroyer, E.; Nash, J. D.

    2013-12-01

    The Greenland Ice Sheet is losing mass at an accelerating rate. This acceleration may in part be due to changes in oceanic heat transport to marine-terminating outlet glaciers. Ocean heat transport to glaciers depends upon fjord dynamics, which include buoyancy-driven estuarine exchange flow, tides, internal waves, turbulent mixing, and connections to the continental shelf. A 3D model of Rink Isbrae fjord in West Greenland is used to investigate the role of ocean forcing on heat transport to the glacier face. Initial conditions are prescribed from oceanographic field data collected in Summer 2013; wind and tidal forcing, along with meltwater flux, are varied in individual model runs. Subglacial meltwater flux values range from 25-500 m3 s-1. For low discharge values, a subsurface plume drives circulation in the fjord. Our simulations indicate that offshore wind forcing is the dominant mechanism for exchange flow between the fjord and the continental shelf. These results show that glacial fjord circulation is a complex, 3D process with multi-cell estuarine circulation and large velocity shears due to coastal winds. Our results are a first step towards a realistic 3D representation of a high-latitude glacial fjord in a numerical model, and will provide insight to future observational studies.

  6. Seasonal changes in Fe along a glaciated Greenlandic fjord.

    NASA Astrophysics Data System (ADS)

    Hopwood, Mark; Connelly, Douglas; Arendt, Kristine; Juul-Pedersen, Thomas; Stinchcombe, Mark; Meire, Lorenz; Esposito, Mario; Krishna, Ram

    2016-03-01

    Greenland's ice sheet is the second largest on Earth, and is under threat from a warming Arctic climate. An increase in freshwater discharge from Greenland has the potential to strongly influence the composition of adjacent water masses with the largest impact on marine ecosystems likely to be found within the glaciated fjords. Here we demonstrate that physical and chemical estuarine processes within a large Greenlandic fjord are critical factors in determining the fate of meltwater derived nutrients and particles, especially for non-conservative elements such as Fe. Concentrations of Fe and macronutrients in surface waters along Godthåbsfjord, a southwest Greenlandic fjord with freshwater input from 6 glaciers, changed markedly between the onset and peak of the meltwater season due to the development of a thin (<10 m), outflowing, low-salinity surface layer. Dissolved (<0.2 µm) Fe concentrations in meltwater entering Godthåbsfjord (200 nM), in freshly melted glacial ice (mean 38 nM) and in surface waters close to a land terminating glacial system (80 nM) all indicated high Fe inputs into the fjord in summer. Total dissolvable (unfiltered at pH <2.0) Fe was similarly high with concentrations always in excess of 100 nM throughout the fjord and reaching up to 5.0 µM close to glacial outflows in summer. Yet, despite the large seasonal freshwater influx into the fjord, Fe concentrations near the fjord mouth in the out-flowing surface layer were similar in summer to those measured before the meltwater season. Furthermore, turbidity profiles indicated that sub-glacial particulate Fe inputs may not actually mix into the outflowing surface layer of this fjord. Emphasis has previously been placed on the possibility of increased Fe export from Greenland as meltwater fluxes increase. Here we suggest that in-fjord processes may be effective at removing Fe from surface waters before it can be exported to coastal seas.

  7. Field Survey of the 17 June 2017 Landslide and Tsunami in Karrat Fjord, Greenland

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Giachetti, T.; Anderson, S.; Gauthier, D.

    2017-12-01

    On 17 June 2017 a massive landslide generated tsunami impacted Karrat Fjord and the Uummannaq fjord system located some 280 km north of Ilulissat in western Greenland. The eastern of two easily recognized landslides detached completely and fell approximately 1 km to sea level, before plunging into the Karrat Fjord and generating a tsunami within the fjord system. The landslide generated tsunami washed 4 victims and several houses into the fjord at Nuugaatsiaq, about 30 km west of the landslide. Eyewitnesses at Nuugaatsiaq and Illorsuit recorded the tsunami inundation on videos. The active western landslide features a back scarp and large cracks, and therefore remains a threat in Karrat Fjord. The villages of Nuugaatsiaq and Illorsuit remain evacuated. The Geotechnical Extreme Events Reconnaissance (GEER) survey team deployed to Greenland from July 6 to 9, 2017. The reconnaissance on July 8 involved approximately 800 km of helicopter flight and landings in several key locations. The survey focused on the landslides and coastlines within 30 km of the landslide in either fjord direction. The aerial reconnaissance collected high quality oblique aerial photogrammetry (OAP) of the landslide, scarp, and debris avalanche track. The 3D model of the landslide provides the ability to study the morphology of the slope on July 8, it provides a baseline model for future surveys, and it can be used to compare to earlier imagery to estimate what happened on June 17. Change detection using prior satellite imagery indicates an approximate 55 million m3 total landslide volume of which 45 million m3 plunged into the fjord from elevations up to 1200 m above the water surface. The ground based tsunami survey documented flow depths, runup heights, inundation distances, sediment deposition, damage patterns at various scales, performance of the man-made infrastructure, and impact on the natural and glacial environment. Perishable high-water marks include changes in vegetation and damage to

  8. Multibeam Mapping of Remote Fjords in Southeast-Greenland

    NASA Astrophysics Data System (ADS)

    Weinrebe, W.; Kjaer, K. H.; Kjeldsen, K. K.; Bjork, A. A.

    2015-12-01

    The fjords of Southeast-Greenland are among the most remote areas of the Northern Hemisphere. Access to this area is hampered by a broad belt of sea ice floating along the East-Greenland coast from North to South. Consequently, the majority of those fjords have never been surveyed in detail until now. During an expedition by the Center of GeoGenetics of the University of Copenhagen in summer of 2014 we were able to map the Skjoldungen Fjord system with multibeam bathymetry. The topsail schooner ACTIV, built 1951 as a cargo ship to supply remote settlements in Greenland was chosen for the expedition. Though a vintage vessel, the ACTIV was well suited to cross the belt of sea ice and to cruise the ice covered fjords. A portable ELAC-Seabeam 1050 multibeam system was temporarily installed on the vessel. The two transducer of the system were mounted at the lower end of a 6 m long pole attached outboard at port side to the hull of the vessel. Though the installation was quite demanding without any winches or cranes, the construction was sufficiently stable and easy to manage throughout the entire cruise. Nearly the entire fjord system, leaving only a small gap of 5 km at the innermost part and small stripes close to the shorelines could be surveyed during the cruise. For the first time, a comprehensive map of Skjoldungen Fjord is now available. The map displays water depths from close to zero up to 800 m, the deepest part along a stretch of about 10 km in the Southwest. The bathymetry of the northern fjord is remarkably different from the southern fjord: the southern fjord features an outer deep part showing water depths between 500 m and 800 m and a shallow inner part with depths less than 300 m and a prominent sill in between. The northern fjord shows a more gradual increase of water depths from 200 m in the inner part to 600 m at the entrance.

  9. Greenland's glacial fjords and their role in regional biogeochemical dynamics.

    NASA Astrophysics Data System (ADS)

    Crosby, J.; Arndt, S.

    2017-12-01

    Greenland's coastal fjords serve as important pathways that connect the Greenland Ice Sheet (GrIS) and the surrounding oceans. They export seasonal glacial meltwater whilst being significant sites of primary production. These fjords are home to some of the most productive ecosystems in the world and possess high socio-economic value via fisheries. A growing number of studies have proposed the GrIS as an underappreciated yet significant source of nutrients to surrounding oceans. Acting as both transfer routes and sinks for glacial nutrient export, fjords have the potential to act as significant biogeochemical processors, yet remain underexplored. Critically, an understanding of the quantitative contribution of fjords to carbon and nutrient budgets is lacking, with large uncertainties associated with limited availability of field data and the lack of robust upscaling approaches. To close this knowledge gap we developed a coupled 2D physical-biogeochemical model of the Godthåbsfjord system, a sub-Arctic sill fjord in southwest Greenland, to quantitatively assess the impact of nutrients exported from the GrIS on fjord primary productivity and biogeochemical dynamics. Glacial meltwater is found to be a key driver of fjord-scale circulation patterns, whilst tracer simulations reveal the relative nutrient contributions from meltwater-driven upwelling and meltwater export from the GrIS. Hydrodynamic circulation patterns and freshwater transit times are explored to provide a first understanding of the glacier-fjord-ocean continuum, demonstrating the complex pattern of carbon and nutrient cycling at this critical land-ocean interface.

  10. Observed Spatial and Temporal Variability of Subglacial Discharge-Driven Plumes in Greenland's Outlet Glacial Fjords

    NASA Astrophysics Data System (ADS)

    Sutherland, D.; Carroll, D.; Nash, J. D.; Shroyer, E.; Mickett, J.; Stearns, L. A.; Fried, M.; Bartholomaus, T.; Catania, G. A.

    2015-12-01

    Hydrographic and velocity observations in Greenland's outlet glacier fjords have revealed, unsurprisingly, a rich set of dynamics over a range of spatial and temporal scales. Through teasing apart the distinct processes that control circulation within these fjords, we are likely to better understand the impact of fjord circulation on modulating outlet glacier dynamics, and thus, changes in Greenland Ice Sheet mass balance. Here, we report on data from the summers of 2013-2015 in two neighboring fjords in the Uummannaq Bay region of west Greenland: Kangerlussuup Sermia (KS) and Rink Isbræ (RI). We find strong subglacial discharge driven plumes in both systems that evolve on synoptic and seasonal time scales, without the complicating presence of other circulation processes. The plumes both modify fjord water properties and respond to differences in ambient water properties, supporting the notion that a feedback exists between subglacial discharge plume circulation and water mass properties. This feedback between subglacial discharge and water properties potentially influences submarine melt rates at the glacier termini. Observed plume properties, including the vertical structure of velocity, and temperature and salinity anomalies, are compared favorably to model estimates. In KS, we find a near-surface intensified plume with high sediment content that slows and widens as it evolves downstream. In contrast, the plume in RI is entirely subsurface, ranging from 100-300 m depth at its core during summer, although it shows similar temperature, salinity, and optical backscatter signals to the KS plume. Importantly, the distinct vertical plume structures imprint on the overall water mass properties found in each fjord, raising the minimum temperatures by up to 1-2°C in the case of RI.

  11. Bathymetry and geology of Greenlandic fjords from Operation IceBridge airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Cochran, J. R.; Bell, R. E.; Charles, K.; Dube, J.; McLeish, M.; Burton, B. L.

    2011-12-01

    The Greenland Ice Sheet is drained by outlet glaciers that commonly flow into long, deep fjords. Glacier flow is controlled in part by the topography and geology of the glacier bed, and is also affected by the interaction between ice and sea water in the fjords. This interaction depends on the bathymetry of the fjords, and particularly on the presence of bathymetric sills, which can control the influx of warm, saline water towards the grounding zone. The bathymetry and geology of these fjords provide boundary conditions for models of the behaviour of the glaciers and ice sheet. Greenlandic fjords can be over 100 km long and up to 1000 m deep, with sills a few hundred metres above the bottom of the fjord. Where bathymetry is not well known, the scale of these features makes them appropriate targets for aerogravity surveys. Where bathymetry is known, aerogravity can provide information on the geology of the fjord, but the sometimes narrow, sinuous fjords present challenges for both data acquisition and interpretation. In 2010 and 2011 Operation IceBridge flew the Sander Geophysics AIRGrav system along the axes of more than 40 outlet glaciers distributed around the coast of Greenland. The AIRGrav system has high precision, fast recovery from turns and the capacity for draped flights, all of which improve the quality of data acquisition along fjord axes. Operation IceBridge survey flights are conducted at or lower than 500 m above ground surface, at speeds of ~140 m/s, allowing full amplitude resolution of features larger than ~5 km, and detection of smaller scale features. Fjord axis data are commonly of lower quality than data from grid-based gravity surveys. Interpretation of these data is improved by combining repeated survey lines from both seasons as well as incorporating other datasets, such as radar, and magnetic data from Operation IceBridge, digital elevation models and geological maps. While most fjords were surveyed by a single axial track, surveys of

  12. The northern Uummannaq Ice Stream System, West Greenland: ice dynamics and and controls upon deglaciation

    NASA Astrophysics Data System (ADS)

    Lane, Timothy; Roberts, David; Rea, Brice; Cofaigh, Colm Ó.; Vieli, Andreas

    2013-04-01

    At the Last Glacial Maximum (LGM), the Uummannaq Ice Stream System comprised a series coalescent outlet glaciers which extended along the trough to the shelf edge, draining a large proportion of the West Greenland Ice Sheet. Geomorphological mapping, terrestrial cosmogenic nuclide (TCN) exposure dating, and radiocarbon dating constrain warm-based ice stream activity in the north of the system to 1400 m a.s.l. during the LGM. Intervening plateaux areas (~ 2000 m a.s.l.) either remained ice free, or were covered by cold-based icefields, preventing diffluent or confluent flow throughout the inner to outer fjord region. Beyond the fjords, a topographic sill north of Ubekendt Ejland prevented the majority of westward ice flow, forcing it south through Igdlorssuit Sund, and into the Uummannaq Trough. Here it coalesced with ice from the south, forming the trunk zone of the UISS. Deglaciation of the UISS began at 14.9 cal. ka BP, rapidly retreating through the overdeepened Uummannaq Trough. Once beyond Ubekendt Ejland, the northern UISS retreated northwards, separating from the south. Retreat continued, and ice reached the present fjord confines in northern Uummannaq by 11.6 kyr. Both geomorphological (termino-lateral moraines) and geochronological (14C and TCN) data provide evidence for an ice marginal stabilisation at within Karrat-Rink Fjord, at Karrat Island, from 11.6-6.9 kyr. The Karrat moraines appear similar in both fjord position and form to 'Fjord Stade' moraines identified throughout West Greenland. Though chronologies constraining moraine formation are overlapping (Fjord Stade moraines - 9.3-8.2 kyr, Karrat moraines - 11.6-6.9 kyr), these moraines have not been correlated. This ice margin stabilisation was able to persist during the Holocene Thermal Maximum (~7.2 - 5 kyr). It overrode climatic and oceanic forcings, remaining on Karrat Island throughout peaks of air temperature and relative sea-level, and during the influx of the warm West Greenland Current into

  13. Calculating Freshwater Input from Iceberg Melt in Greenlandic Fjords by Combining In Situ Observations of Iceberg Movement with High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Sulak, D. J.; Sutherland, D.; Stearns, L. A.; Hamilton, G. S.

    2015-12-01

    Understanding fjord circulation in Greenland's outlet glacial fjords is crucial to explaining recent temporal and spatial variability in glacier dynamics, as well as freshwater transport on the continental shelf. The fjords are commonly assumed to exhibit a plume driven circulation that draws in warmer and saltier Atlantic-origin water toward the glacier at depth. Freshwater input at glacier termini directly drives this circulation and significantly influences water column stratification, which indirectly feeds back on the plume driven circulation. Previous work has focused on freshwater inputs from surface runoff and submarine melting, but the contribution from iceberg melt, a potentially important freshwater source, has not been quantified. Here, we develop a new technique combining in situ observations of movement from iceberg-mounted GPS units with multispectral satellite imagery from Landsat 8. The combination of datasets allows us to examine the details of iceberg movement and quantify mean residence times in a given fjord. We then use common melt rate parameterizations to estimate freshwater input for a given iceberg, utilizing novel satellite-derived iceberg distributions to scale up to a fjord-wide freshwater contribution. We apply this technique to Rink Isbræ and Kangerlussuup Sermia in west Greenland, and Helheim Glacier in southeast Greenland. The analysis can be rapidly expanded to look at other systems as well as seasonal and interannual changes in how icebergs affect the circulation and stratification of Greenland's outlet glacial fjords. Ultimately, this work will lead to a more complete understanding of the wide range of factors that control the observed regional variability in Greenland's glaciers.

  14. Export of Strongly Diluted Greenland Meltwater From a Major Glacial Fjord

    NASA Astrophysics Data System (ADS)

    Beaird, Nicholas L.; Straneo, Fiammetta; Jenkins, William

    2018-05-01

    The Greenland Ice Sheet has been, and will continue, losing mass at an accelerating rate. The influence of this anomalous meltwater discharge on the regional and large-scale ocean could be considerable but remains poorly understood. This uncertainty is in part a consequence of challenges in observing water mass transformation and meltwater spreading in coastal Greenland. Here we use tracer observations that enable unprecedented quantification of the export, mixing, and vertical distribution of meltwaters leaving one of Greenland's major glacial fjords. We find that the primarily subsurface meltwater input results in the upwelling of the deep fjord waters and an export of a meltwater/deepwater mixture that is 30 times larger than the initial meltwater release. Using these tracer data, the vertical structure of Greenland's summer meltwater export is defined for the first time showing that half the meltwater export occurs below 65 m.

  15. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Sutherland, D. A.; Hudson, B.; Moon, T.; Catania, G. A.; Shroyer, E. L.; Nash, J. D.; Bartholomaus, T. C.; Felikson, D.; Stearns, L. A.; Noël, B. P. Y.; Broeke, M. R.

    2016-09-01

    Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes enhance melt and undercutting, leading to calving and potential glacier destabilization. Here we systematically evaluate how simulated plume structure and submarine melt during summer months depends on realistic ranges of subglacial discharge, glacier depth, and ocean stratification from 12 Greenland fjords. Our results show that grounding line depth is a strong control on plume-induced submarine melt: deep glaciers produce warm, salty subsurface plumes that undercut termini, and shallow glaciers produce cold, fresh surface-trapped plumes that can overcut termini. Due to sustained upwelling velocities, plumes in cold, shallow fjords can induce equivalent depth-averaged melt rates compared to warm, deep fjords. These results detail a direct ocean-ice feedback that can affect the Greenland Ice Sheet.

  16. Ocean Warming of Petermann Fjord and Glacier, North Greenland

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Washam, P.; Padman, L.; Nicholls, K. W.

    2016-02-01

    Petermann Fjord connects one of the largest floating ice shelves of Greenland to Nares Strait between northern Canada and Greenland. First ocean temperatures under the ice shelf and in the fjord were recorded in 2002 and 2003, respectively. Last observations were taken in August of 2015 as part of an interdisciplinary experiment of US, Swedish, and British scientists. The new ocean data include hydrographic sections along and across the 450-m deep sill at the entrance of the fjord, sections along and across the 200-m thick terminus of the glacier, and time series from three ocean-weather stations that collect ocean temperature, salinity, and pressure data from under the ice shelf of Petermann Gletscher in near real time. Our ocean data cover the entire 2002-2015 time period when we find statistically significant changes of ocean properties in space and time. The ocean under the ice shelf connects to ambient Nares Strait and to the grounding zone of the glacier at daily to weekly time scales via temperature and salinity correlation. More specifically, we find 1. substantial and significant ocean warming of deep fjord waters at Interannual time scales, 2. intense and rapid renewal of bottom waters inside the 1000-m deep fjord, and 3. large fluctuations of temperature and salinity within about 30-m of the glacier ice-ocean interface at daily to weekly time scales. Figure: Map of the study area with 2015 locations of CTD casts (blue and green dots), ocean-weather stations (green dots), and differential GPS (red triangles). Red contours are bottom depths at 500 and 1000-m while thick black line indicates the grounding zone where the glacier connects to the bed rock below.

  17. Observed Hydrographic Variability Connecting the Continental Shelf to the Marine-Terminating Glaciers of Uummannaq Bay, West Greenland

    NASA Astrophysics Data System (ADS)

    Sutherland, D.; de Steur, L.; Nash, J. D.; Shroyer, E.; Mickett, J.

    2016-02-01

    Large-scale changes in ocean forcing, such as increased upper ocean heat content or variations in subpolar gyre circulation, are commonly implicated as factors causing the widespread retreat of Greenland's outlet glaciers. A recent surge in observational and modeling studies has shown how temperature increases and a changing subglacial discharge determine melt rates at glacier termini, driving a vigorous buoyancy-driven circulation. However, we still lack knowledge of what controls ambient water properties in the fjords themselves, i.e., how does the subpolar gyre communicate across the continental shelf towards the glacier termini. Here, we present a two-year mooring record of hydrographic variability in the Uummannaq Bay region of west Greenland. We focus on observations inside Rink Isbræ and Kangerlussuup Sermia fjords coupled with an outer mooring located in the submarine trough cutting across the shelf. We show how water properties vary seasonally inside the fjords and how they connect to variability in the trough. The two fjords exhibit large differences in temperature and salinity variability, which is possibly due to differences in the plume circulation driven by the glaciers themselves. We put these limited observations in temporal context by comparing them with observations from the nearby Davis Strait time array, and spatial context by comparing them with recent mooring records from Sermilik Fjord in southeast Greenland.

  18. Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland

    NASA Astrophysics Data System (ADS)

    Kjellerup Kjeldsen, Kristian; Weinrebe, Reimer Wilhelm; Bendtsen, Jørgen; Anker Bjørk, Anders; Kjær, Kurt Henrik

    2017-08-01

    We present bathymetry and hydrological observations collected in the summer of 2014 from two fjord systems in southeastern Greenland with a multibeam sonar system. Our results provide a detailed bathymetric map of the fjord complex around the island of Skjoldungen in Skjoldungen Fjord and the outer part of Timmiarmiut Fjord and show far greater depths compared to the International Bathymetric Chart of the Arctic Ocean. The hydrography collected shows different properties in the fjords with the bottom water masses below 240 m in Timmiarmiut Fjord being 1-2 °C warmer than in the two fjords around Skjoldungen, but data also illustrate the influence of sills on the exchange of deeper water masses within fjords. Moreover, evidence of subglacial discharge in Timmiarmiut Fjord, which is consistent with satellite observations of ice mélange set into motion, adds to our increasing understanding of the distribution of subglacial meltwater. Data are available through the PANGAEA website at https://doi.pangaea.de/10.1594/PANGAEA.860627.

  19. Archean metamorphic sequence and surfaces, Kangerdlugssuaq Fjord, East Greenland

    NASA Technical Reports Server (NTRS)

    Kays, M. A.

    1986-01-01

    The characteristics of Archean metamorphic surfaces and fabrics of a mapped sequence of rocks older than about 3000 Ma provide information basic to an understanding of the structural evolution and metamorphic history in Kangerdlugssuaq Fjord, east Greenland. This information and the additional results of petrologic and geochemical studies have culminated in an extended chronology of Archean plutonic, metamorphic, and tectonic events. The basis for the chronology is considered, especially the nature of the metamorphic fabrics and surfaces in the Archean sequence. The surfaces, which are planar mineral parageneses, may prove to be mappable outside Kangerdlugssuaq Fjord, and if so, will be helpful in extending the events that they represent to other Archean sequences in east Greenland. The surfaces will become especially important reference planes if the absolute ages of their metamorphic assemblages can be determined in at least one location where strain was low subsequent to their recrystallization. Once an isochron is obtained, the dynamothermal age of the regionally identifiable metamorphic surface is determined everywhere it can be mapped.

  20. Numerical Simulation and Sensitivity Analysis of Subglacial Meltwater Plumes: Implications for Ocean-Glacier Coupling in Rink Isbrae, West Greenland

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Sutherland, D.; Shroyer, E.; Nash, J. D.

    2014-12-01

    The rate of mass loss from the Greenland Ice Sheet quadrupled over the last two decades and may be due in part to changes in ocean heat transport to marine-terminating outlet glaciers. Meltwater commonly discharges at the grounding line in these outlet glacier fjords, generating a turbulent upwelling plume that separates from the glacier face when it reaches neutral density. This mechanism is the current paradigm for setting the magnitude of net heat transport in Greenland's glacial fjords. However, sufficient observations of meltwater plumes are not available to test the buoyancy-driven circulation hypothesis. Here, we use an ocean general circulation model (MITgcm) of the near-glacier field to investigate how plume water properties, terminal height, centerline velocity and volume transport depend on the initial conditions and numerical parameter choices in the model. These results are compared to a hydrodynamic mixing model (CORMIX), typically used in civil engineering applications. Experiments using stratification profiles from the continental shelf quantify the errors associated with using far-field observatons to initialize near-glacier plume models. The plume-scale model results are then integrated with a 3-D fjord-scale model of the Rink Isbrae glacier/fjord system in west Greenland. We find that variability in the near-glacier plume structure can strongly control the resulting fjord-scale circulation. The fjord model is forced with wind and tides to examine how oceanic and atmospheric forcing influence net heat transport to the glacier.

  1. Modeling the Impact of Fjord-glacier Geometry on Subglacial Plume, Wind, and Tidally-forced Circulation in Outlet Glacier Fjords

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Sutherland, D.; Nash, J. D.; Shroyer, E.; de Steur, L.; Catania, G. A.; Stearns, L. A.

    2016-12-01

    The acceleration, retreat, and thinning of Greenland's outlet glaciers coincided with a warming of Atlantic waters, suggesting that marine-terminating glaciers are sensitive to ocean forcing. However, we still lack a precise understanding of what factors control the variability of ocean heat transport toward the glacier terminus. Here we use an idealized ocean general circulation model (3D MITgcm) to systematically evaluate how fjord circulation driven by subglacial plumes, wind stress (along-fjord and along-shelf), and tides depends on grounding line depth, fjord width, sill height, and latitude. Our results indicate that while subglacial plumes in deeply grounded systems can draw shelf waters over a sill and toward the glacier, shallowly grounded systems require external forcing to renew basin waters. We use a coupled sea ice model to explore the competing influence of tidal mixing and surface buoyancy forcing on fjord stratification. Passive tracers injected in the plume, fjord basin, and shelf waters are used to quantify turnover timescales. Finally, we compare our model results with a two-year mooring record to explain fundamental differences in observed circulation and hydrography in Rink Isbræ and Kangerlussuup Sermia fjords in west Greenland. Our results underscore the first-order effect that geometry has in controlling fjord circulation and, thus, ocean heat flux to the ice.

  2. Heavy metal contamination of a Greenland Fjord system by mine wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loring, D.H.; Asmund, G.

    Since 1973, about 500,000 tons/yr of metal-rich particulate tailings from a lead/zinc flotation mill have been discharged through a submarine outfall into a two-fjord system on the west coast of Greenland. Differential solubilization of particulate metals by seawater, seasonal water mixing, and sill exchange tailings dispersal processes have resulted in high, but seasonally variable, Zn, Cd, and Pb contamination of the water and suspended particulate matter (SPM). Chemical partition of the SPM shows that most of the Pb, but relatively low proportions of Zn and Cd are weakly bound to the SPM. Such particulate metal characteristics allow the real timemore » effects of tailings discharges and dispersal on the system to be traced even in the sediments where tailings accumulation is very slow. Fjord seaweeds and blue mussels also contain varying amounts of Zn, Pb, and Cd, depending on the metal and their location relative to the tailings outfall. They apparently responded almost instantly to the metal contamination as did the water and SPM. High Pb concentrations in the fjord mussels most likely derive from the preferential uptake of available particulate Pb, whereas the seaweeds appear to derive most of their heavy metal concentrations from the dissolved phase. The evidence from this and other sites, and from experimental work, indicates that any discharge of Pb-particles into the marine environment, either directly as mine wastes or indirectly from natural runoff from current and former lead mining sites, results in immediate lead contamination of the in situ mussel population. 20 refs., 4 figs., 5 tab.« less

  3. Only skin deep?: Evaluating the utility of remotely sensed sea surface temperatures in Greenland fjords

    NASA Astrophysics Data System (ADS)

    Snow, T.; Shepherd, B.; Skinner, S.; Abdalati, W.; Scambos, T. A.

    2017-12-01

    The Greenland ice sheet (GIS) contributes one-quarter of the globe's total sea level rise each year and one-third of its mass loss occurs at outlet glaciers. One mechanism for this loss is through melting at the ice-ocean boundary through interactions with relatively warm ocean water. In situ ocean measurements serve as the predominant method for studying these harsh and remote fjord environments, but have often only been acquired within the last decade in most Greenland fjords. Since many outlet glaciers began to accelerate and retreat before that period, the lack of earlier measurements requires us to rely on an understanding of contemporary fjord processes and inference of past conditions to evaluate the ocean's role in observed glacier change. Remotely sensed sea surface temperature (SST) have been widely unused in studies of glacial fjords and may hold clues to fjord circulation and ice-ocean interactions spanning before rapid change began at the turn of the century. However, the utility of this method in studying glacial fjords has not been thoroughly explored. In this study, we compare remotely sensed SSTs to previously published in situ ocean temperature measurements taken from 2009 to present at the Sermilik Fjord and 2015-2016 at the Petermann, in order to determine the utility of SSTs in studying polar fjord waters. SSTs were derived from Landsat 7 and 8 thermal infrared imagery to produce a time series of the fjord surface. The time series was correlated with coincident mooring and shipboard ocean temperature measurements using various lags and spatial offsets. Sermilik Fjord SSTs frequently gave temperatures 2C warmer than adjacent surface in situ measurements, while Petermann temperatures show much closer relationships. These trends are likely driven by variability in wind velocities and density gradients that influence mixing within the surface layer of the ocean. However, variability in the offsets between SSTs and in situ measurements also provides

  4. A Century of Stability of Avannarleq and Kujalleq Glaciers, West Greenland, Explained Using High-Resolution Airborne Gravity and Other Data

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E.; Mouginot, J.; Millan, R.

    2018-04-01

    The evolution of Greenland glaciers in a warming climate depends on their depth below sea level, flow speed, surface melt, and ocean-induced undercutting at the calving front. We present an innovative mapping of bed topography in the frontal regions of Sermeq Avannarleq and Kujalleq, two major glaciers flowing into the ice-choked Torssukatak Fjord, central west Greenland. The mapping combines a mass conservation algorithm inland, multibeam echo sounding data in the fjord, and high-resolution airborne gravity data at the ice-ocean transition where other approaches have traditionally failed. We obtain a reliable, precision (±40 m) solution for bed topography across the ice-ocean boundary. The results reveal a 700 m deep fjord that abruptly ends on a 100-300 m deep sill along the calving fronts. The shallow sills explain the presence of stranded icebergs, the resilience of the glaciers to ocean-induced undercutting by warm Atlantic water, and their remarkable stability over the past century.

  5. Circulation and fjord-shelf exchange during the ice-covered period in Young Sound-Tyrolerfjord, Northeast Greenland (74°N)

    NASA Astrophysics Data System (ADS)

    Boone, W.; Rysgaard, S.; Kirillov, S.; Dmitrenko, I.; Bendtsen, J.; Mortensen, J.; Meire, L.; Petrusevich, V.; Barber, D. G.

    2017-07-01

    Fjords around Greenland connect the Greenland Ice Sheet to the ocean and their hydrography and circulation are determined by the interplay between atmospheric forcing, runoff, topography, fjord-shelf exchange, tides, waves, and seasonal growth and melt of sea ice. Limited knowledge exists on circulation in high-Arctic fjords, particularly those not impacted by tidewater glaciers, and especially during winter, when they are covered with sea-ice and freshwater input is low. Here, we present and analyze seasonal observations of circulation, hydrography and cross-sill exchange of the Young Sound-Tyrolerfjord system (74°N) in Northeast Greenland. Distinct seasonal circulation phases are identified and related to polynya activity, meltwater and inflow of coastal water masses. Renewal of basin water in the fjord is a relatively slow process that modifies the fjord water masses on a seasonal timescale. By the end of winter, there is two-layer circulation, with outflow in the upper 45 m and inflow extending down to approximately 150 m. Tidal analysis showed that tidal currents above the sill were almost barotropic and dominated by the M2 tidal constituent (0.26 m s-1), and that residual currents (∼0.02 m s-1) were relatively small during the ice-covered period. Tidal pumping, a tidally driven fjord-shelf exchange mechanism, drives a salt flux that is estimated to range between 145 kg s-1 and 603 kg s-1. Extrapolation of these values over the ice-covered period indicates that tidal pumping is likely a major source of dense water and driver of fjord circulation during the ice-covered period.

  6. Seasonal sea surface and sea ice signal in the fjords of Eastern Greenland from CryoSat-2 SARin altimetry

    NASA Astrophysics Data System (ADS)

    Abulaitijiang, Adili; Baltazar Andersen, Ole; Stenseng, Lars

    2014-05-01

    Cryosat-2 offers the first ever possibility to perform coastal altimetric studies using SAR-Interferometry. This enabled qualified measurements of sea surface height (SST) in the fjords in Greenland. Scoresbysund fjord on the east coast of Greenland is the largest fjord in the world which is also covered by CryoSat-2 SAR-In mask making it a good test region. Also, the tide gauge operated by DTU Space is sitting in Scoresbysund bay, which provides solid ground-based sea level variation records throughout the year. We perform an investigation into sea surface height variation since the start of the Cryosat-2 mission using SAR-In L1B data processed with baseline B processing. We have employed a new develop method for projecting all SAR-In observations in the Fjord onto a centerline up the Fjord. Hereby we can make solid estimates of the annual and (semi-) annual signal in sea level/sea ice freeboard within the Fjord. These seasonal height variations enable us to derive sea ice freeboard changes in the fjord from satellite altimetry. Derived sea level and sea-ice freeboard can be validated by comparison with the tide gauge observations for sea level and output from the Microwave Radiometer derived observations of sea ice freeboard developed at the Danish Meteorological Institute.

  7. Glacial meltwater influences on plankton community structure and the importance of top-down control (of primary production) in a NE Greenland fjord

    NASA Astrophysics Data System (ADS)

    Arendt, Kristine Engel; Agersted, Mette Dalgaard; Sejr, Mikael Kristian; Juul-Pedersen, Thomas

    2016-12-01

    Freshwater runoff from the Greenland Ice Sheet (GIS) can be an important driver influencing plankton community structure in Greenland fjords. In the present study, we describe physical, taxonomic and functional differences in the plankton community in Young Sound, a NE Greenland fjord, from the inner fjord close to the GIS towards the coastal region in late summer. The fjord is influenced by runoff from land-terminating glaciers that separated the surface layer from cold underlying waters. The highest chlorophyll a concentration (<2.5 μg l-1) was found in the coastal region at 20-50 m depth. The most profound difference in the mesozooplankton community structure along the section was seen in the abundance of the copepods Microcalanus spp., which were present in the coastal region in the upper 100 m, and Pseudocalanus spp., which only occurred in the surface layers and mainly in the inner part of the fjord. In addition to this, both species have been observed to change in abundance within the last decade. Calanus spp. copepods made up > 74.9% of the total copepod biomass at all stations, and their grazing impact was the highest among the copepod groups. Copepod grazing impact on the phytoplankton standing stock, however, was exceeded by microzooplankton grazing, investigated by dilution experiments, with the highest grazing impact on the phytoplankton standing stock of 63% d-1 in the inner part of the fjord. In spite of high phytoplankton instantaneous growth rates at the innermost fjord station, proto-zooplankton was capable of controlling the phytoplankton production. The study showed functional differences within the system and provides indications of how dynamic the coastal ecosystem of Greenland can be.

  8. Coastal Freshening Prevents Fjord Bottom Water Renewal in Northeast Greenland: A Mooring Study From 2003 to 2015

    NASA Astrophysics Data System (ADS)

    Boone, Wieter; Rysgaard, Søren; Carlson, Daniel F.; Meire, Lorenz; Kirillov, Sergei; Mortensen, John; Dmitrenko, Igor; Vergeynst, Leendert; Sejr, Mikael K.

    2018-03-01

    The freshwater content of the Arctic Ocean and its bordering seas has recently increased. Observing freshening events is an important step toward identifying the drivers and understanding the effects of freshening on ocean circulation and marine ecosystems. Here we present a 13 year (2003-2015) record of temperature and salinity in Young Sound-Tyrolerfjord (74°N) in Northeast Greenland. Our observations show that strong freshening occurred from August 2005 to August 2007 (-0.92 psu or -0.46 psu yr-1) and from August 2009 to August 2013 (-0.66 psu or -0.17 psu yr-1). Furthermore, temperature-salinity analysis from 2004 to 2014 shows that freshening of the coastal water ( range at sill depth: 33.3 psu in 2005 to 31.4 psu in 2007) prevented renewal of the fjord's bottom water. These data provide critical observations of interannual freshening rates in a remote fjord in Greenland and in the adjacent coastal waters and show that coastal freshening impacts the fjord hydrography, which may impact the ecosystem dynamics in the long term.

  9. Sediment thicknesses and holocene glacial marine sedimentation rates in three east Greenland fjords (ca. 68°N)

    USGS Publications Warehouse

    Andrews, J.T.; Milliman, John D.; Jennings, A.E.; Rynes, N.; Dwyer, J.

    1994-01-01

    We compared measured and estimated sediment budgets in heavily glaciated fjords in East Greenland. Mass balance calculations and regional glacio-climatic conditions suggest that the sediment flux to the seafloor in Kangerdlugssuaq and Nansen fjords should be dominated by iceberg rafting and not by the rain-out of suspended particulates in meltwater, as the glacier calving flux is estimated at 15 and $2 km^{3}/yr$, compared to meltwater volumes of 4.4 and $1.7 km^{3}/yr$, respectively. Gravity cores in the three fjords indicate that the uppermost 1-2.5 m of sediment consists of diamictons or fine-grained laminated muds. AMS radiocarbon dates on calcareous foramininfera or shells (16 total) indicate sedimentation rates of 110 to 340 cm/ka within the fjords over the last 1 ka, and 10-20 cm/ka during the Holecene on the inner and middle shelf. Annual sediment discharge is around $0.67 \\times 10^{6}$ tonnes/yr within the Kangerdlugssuaq Fjord and Trough system, which translates into an average basin-wide rate of denudation of 0.01 mm/yr (0.01 m/ka). Air gun and deep-towed (Huntec) seismic profiling was carried out in Kangerdlugssuaq and Nansen fjords, East Greenland, and showed that sediment fills averaged 500 and 350 m respectively; they consist primarily of acoustically stratified sediments. If the sediment fills are entirely Holocene in age then the required average sediment accumulation rates of 35-50 m/ka are an order of magnitude larger than the $^{14}C $controlled rates of the last 1-2 ka. This raises the possibility that fjord sediments may be by-passed and not always recycled during glacial advances; this will affect sedimentation rates on adjacent shelves and deep-sea areas during successive glaciations

  10. Subsurface iceberg melt key to Greenland fjord freshwater budget

    NASA Astrophysics Data System (ADS)

    Moon, T.; Sutherland, D. A.; Carroll, D.; Felikson, D.; Kehrl, L.; Straneo, F.

    2018-01-01

    Liquid freshwater fluxes from the Greenland ice sheet affect ocean water properties and circulation on local, regional and basin-wide scales, with associated biosphere effects. The exact impact, however, depends on the volume, timing and location of freshwater releases, which are poorly known. In particular, the transformation of icebergs, which make up roughly 30-50% of the loss of the ice-sheet mass to liquid freshwater, is not well understood. Here we estimate the spatial and temporal distribution of the freshwater flux for the Helheim-Sermilik glacier-fjord system in southeast Greenland using an iceberg-melt model that resolves the subsurface iceberg melt. By estimating seasonal variations in all the freshwater sources, we confirm quantitatively that iceberg melt is the largest annual freshwater source in this system type. We also show that 68-78% of the iceberg melt is released below a depth of 20 m and, seasonally, about 40-100% of that melt is likely to remain at depth, in contrast with the usual model assumptions. Iceberg melt also peaks two months after all the other freshwater sources peak. Our methods provide a framework to assess individual freshwater sources in any tidewater system, and our results are particularly applicable to coastal regions with a high solid-ice discharge in Greenland.

  11. Landslide and Tsunami in Karrat Fjord, Greenland, 2017; the Event, the Response and the Future

    NASA Astrophysics Data System (ADS)

    Langley, K.; Mätzler, E.; Barba, M.; Bojesen, M. H.; Caduff, R.; O'Cofaigh, C.; Dehls, J. F.; 1, G. W. G.; Glimsdal, S.; Harbitz, C. B.; Hermanns, R. L.; Kaab, A.; Kibenich, B.; Kvistedal, Y.; Langeland, H.; Larsen, Y.; Løvholt, F.; Lynett, P. J.; Morin, P. J.; Odermatt, L.; Rignot, E. J.; Sparrevik, P.; Wiesmann, A.; Willis, M.; Zinglersen, K. B.

    2017-12-01

    On the evening of 17 June 2017, a landslide released from a rock slope in the Karrat Fjord, West Greenland. A section 800 m in breadth detached from an elevation of 1000 m a.s.l. and plunged into the fjord below causing a tsunami. The result was loss of life and injury, devastation and evacuation of local villages, and the revelation that the mountain side is unstable in other places. The humanitarian effort, both locally and international to ease the situation for locals has been outstanding. Here we describe how the sequence of events surrounding the landslide unfolded and, thanks to the rapid response and cooperation by a multi-disciplinary, international team of geoscientists, crucial information could be provided to the Greenlandic authorities that supported and aided decision making. Photography and video from the first response teams showed the path of the landslide. Initial analysis of optical (Planet Cubesat constellation, Sentinel-2), SAR (Sentinel-1) and photogrammetric data from before and after the event confirmed the location of the landslide and the area that had detached. By extending the time series of Sentinel-1 data, it was possible to show that the section had been active since March 2017 with displacement accelerating towards failure. The new ArcticDEM was used to give an estimate of area and volume displacement in the main slide. The area where material was lost covered 760 x103 m2 and amounted to a displaced volume of >50 mio m3. These approaches all identified other parts of the mountain side that are in motion. Tsunami modelling was used to predict the on land inundation with simulations based on the landslide dimensions and a bathymetry model from multi beam surveys. The model results matched extremely well with reconstructed run-up heights manually interpreted from video and photographic footage and seismic analyses. For optimizing the guidance of the Greenlandic authorities, all results and experience from the many involved scientists

  12. Increasing freshwater runoff and tidal action influences on spatial mixing patterns in Søndre Strømfjord, West Greenland.

    NASA Astrophysics Data System (ADS)

    Smiley, Crystal; Kamenos, Nick; Hoey, Trevor; Cottier, Finlo; Ellam, Rob

    2015-04-01

    Greenland Ice Sheet melt has the potential to affect global sea levels and the strength of the thermohaline circulation (THC). Investigating spatial mixing patterns of seawater in Greenlandic fjords can help reveal characteristics of changes in runoff from the GrIS; for example higher runoff may be associated with lower salinity within GrIS fjords, which can be recorded by palaeoenvironmental proxies (Kamenos et al 2012). The Kangerlussuaq Drainage Basin mirrors melt patterns of the whole GrIS and drains into Søndre Strømfjord, a 170km long fjord on the west coast of Greenland. Temperature and salinity profiles to 40m depth were obtained at 11 stations along Søndre Strømfjord during the 2014 melt season. Each station was sampled twice once at high KDB runoff and once at low KDB runoff. With increasing freshwater runoff, salinity decreased by 1.65 - 2.91 and temperature increased by 0.47oC- 2.34oC at each station over a 7 hour time period. Higher salinities occurred at low run-off. In addition, with increasing run-off, the disparity between surface and deeper water (30m) salinity became greater with a 19.3 difference between the surface and 30m. This information was integrated with oxygen and deuterium isotopic signatures collected at 10 m depth from each station to pinpoint the exact source of the runoff causing salinity reductions. With increasing freshwater runoff, the chemistry of the fjord exhibits an enrichment of the heavier isotope. δ18Ovsmow values enrich by 7.40 permil while δDvsmow enrich 53.26 permil. Our data shows a relationship between KDB runoff, salinity, and oxygen, hydrogen isotopic chemistry of Søndre Strømfjord, data that will enable further calibration of marine proxies of GrIS melt. References Kamenos, N.A, Hoey, T.B, Nienow, P., Fallick, A.E., & Claverie, T., 2012: Reconstructing Greenland Ice Sheet runoff using coralline algae; Geological Society of America, Geology, doi: 10.1130/G33405.1

  13. Glacimarine sedimentation in Petermann Fjord and Nares Strait, NW Greenland

    NASA Astrophysics Data System (ADS)

    Hogan, Kelly; Jakobsson, Martin; Mayer, Larry; Mix, Alan; Nielsen, Tove; Kamla, Elina; Reilly, Brendan; Heirman, Katrina An; Stranne, Christian; Mohammed, Rezwan; Eriksson, Bjorn; Jerram, Kevin

    2017-04-01

    Here we build on preliminary results from 6500 line-km of high-resolution chirp sub-bottom profiles (2-7 kHz) acquired in Petermann Fjord and Nares Strait during the Petermann 2015 Expedition of the Swedish icebreaker Oden. We map the unlithified sediment cover in Peterman Fjord, which consists of up to 3 conformable "drape" units and calculate volumes of this assumed "post-glacial" fill. In Nares Strait we have mapped sediment volumes in local basins just beyond the sill at the Petermann Fjord-mouth: do these sediments represent material flushed out from the grounding zone of Petermann Glacier when it was grounded at the sill? In this vein, and interestingly, some of the thickest sediments that we observe are found close to a grounding-zone wedge (GZW) in Nares Strait that represents a former grounding zone of ice retreating southwards through the strait. We also map conformable units across Nares Strait and consider the similarities between these and the sediment units in the fjord. Do the strong reflections between the units represent the same climatic, oceanographic or process-shift both inside and outside the fjord? We also aim to tie our new acoustic stratigraphy to sediment-core data (lithofacies, dates) and, therefore, to comment on the age of the mapped sediment units and present ideas on the glacimarine flux of material to the Petermann-Nares system. Primary sediment delivery to the seafloor in this environment is thought to be predominantly through sedimentation from meltwater plumes but also of iceberg-rafted debris (IRD). However, sediment redeposition by slope failures on a variety of scales also occurs and has focussed sediments into discrete basins where the seafloor is rugged. This work - which aims to relate past sediment, meltwater and iceberg fluxes to changes in climate - will help us to identify how the system has responded to a past global warming event, namely the last deglaciation. This is particularly relevant in light of the recent

  14. A New Ice-sheet / Ocean Interaction Model for Greenland Fjords using High-Order Discontinuous Galerkin Methods

    NASA Astrophysics Data System (ADS)

    Kopera, M. A.; Maslowski, W.; Giraldo, F.

    2015-12-01

    One of the key outstanding challenges in modeling of climate change and sea-level rise is the ice-sheet/ocean interaction in narrow, elongated and geometrically complicated fjords around Greenland. To address this challenge we propose a new approach, a separate fjord model using discontinuous Galerkin (DG) methods, or FDG. The goal of this project is to build a separate, high-resolution module for use in Earth System Models (ESMs) to realistically represent the fjord bathymetry, coastlines, exchanges with the outside ocean, circulation and fine-scale processes occurring within the fjord and interactions at the ice shelf interface. FDG is currently at the first stage of development. The DG method provides FDG with high-order accuracy as well as geometrical flexibility, including the capacity to handle non-conforming adaptive mesh refinement to resolve the processes occurring near the ice-sheet/ocean interface without introducing prohibitive computational costs. Another benefit of this method is its excellent performance on multi- and many-core architectures, which allows for utilizing modern high performance computing systems for high-resolution simulations. The non-hydrostatic model of the incompressible Navier-Stokes equation will account for the stationary ice-shelf with sub-shelf ocean interaction, basal melting and subglacial meltwater influx and with boundary conditions at the surface to account for floating sea ice. The boundary conditions will be provided to FDG via a flux coupler to emulate the integration with an ESM. Initially, FDG will be tested for the Sermilik Fjord settings, using real bathymetry, boundary and initial conditions, and evaluated against available observations and other model results for this fjord. The overarching goal of the project is to be able to resolve the ice-sheet/ocean interactions around the entire coast of Greenland and two-way coupling with regional and global climate models such as the Regional Arctic System Model (RASM

  15. Increasing Freshwater Runoff and Tidal Action Influences on Spatial Mixing Patterns in Søndre Strømfjord, West Greenland

    NASA Astrophysics Data System (ADS)

    Smiley, C. R.; Kamenos, N.; Hoey, T.; Cottier, F.; Ellam, R. M.

    2014-12-01

    Greenland Ice Sheet melt has the potential to affect global sea levels and the strength of the thermohaline circulation (THC). Investigating spatial mixing patterns of seawater in Greenlandic fjords can help reveal characteristics of changes in runoff from the GrIS; for example higher runoff may be associated with lower salinity within GrIS fjords, which can be recorded by palaeoenvironmental proxies (Kamenos et al 2012). The Kangerlussuaq Drainage Basin mirrors melt patterns of the whole GrIS and drains into Søndre Strømfjord, a 170km long fjord on the west coast of Greenland. Temperature and salinity profiles to 40m depth were obtained at 11 stations along Søndre Strømfjord during the 2014 melt season. Each station was sampled twice once at high KDB runoff and once at low KDB runoff. With increasing freshwater runoff, salinity decreases by 1.65 - 2.91 at each station over a 7 hour time period. Higher salinities occur at low run-off. In addition, with increasing run-off, the disparity between surface and deeper water (30m) becomes greater with a 19.3 difference between the surface and 30m. With higher KDB runoff temperature increases by 0.47oC - 2.34oC. This information will be integrated with oxygen and deuterium isotope patterns to pinpoint the exact source of the runoff causing salinity reductions. Our data show a relationship between KDB runoff and salinity of Søndre Strømfjord, data that will enable further calibration of marine proxies of GrIS melt.

  16. Mapping and classifying the seabed of the West Greenland continental shelf

    NASA Astrophysics Data System (ADS)

    Gougeon, S.; Kemp, K. M.; Blicher, M. E.; Yesson, C.

    2017-03-01

    Marine benthic habitats support a diversity of marine organisms that are both economically and intrinsically valuable. Our knowledge of the distribution of these habitats is largely incomplete, particularly in deeper water and at higher latitudes. The western continental shelf of Greenland is one example of a deep (more than 500 m) Arctic region with limited information available. This study uses an adaptation of the EUNIS seabed classification scheme to document benthic habitats in the region of the West Greenland shrimp trawl fishery from 60°N to 72°N in depths of 61-725 m. More than 2000 images collected at 224 stations between 2011 and 2015 were grouped into 7 habitat classes. A classification model was developed using environmental proxies to make habitat predictions for the entire western shelf (200-700 m below 72°N). The spatial distribution of habitats correlates with temperature and latitude. Muddy sediments appear in northern and colder areas whereas sandy and rocky areas dominate in the south. Southern regions are also warmer and have stronger currents. The Mud habitat is the most widespread, covering around a third of the study area. There is a general pattern that deep channels and basins are dominated by muddy sediments, many of which are fed by glacial sedimentation and outlets from fjords, while shallow banks and shelf have a mix of more complex habitats. This first habitat classification map of the West Greenland shelf will be a useful tool for researchers, management and conservationists.

  17. Dynamics of a vertical turbulent plume in a stratification typical of Greenland fjords: an idealized model of subglacial discharge

    NASA Astrophysics Data System (ADS)

    Stenberg, Erik; Ezhova, Ekaterina; Cenedese, Claudia; Brandt, Luca

    2017-04-01

    We the report results of large eddy simulations of a turbulent buoyant plume in a configuration providing an idealized model of subglacial discharge from a submarine glacier in stratifications typical of Greenland Fjords. We neglect a horizontal momentum of the plume and assume that its influence on the plume dynamics is small and important only close to the source. Moreover, idealized models have considered the plume adjacent to the glacier as a half-conical plume (e.g., [1]). Thus, to compare the results for such plume with the classical plume theory, developed for free plumes entraining ambient fluid from all directions, it is convenient to add the second half-conical part and consider a free plume with double the total discharge as a model. Given the estimate of the total subglacial discharge for Helheim Glacier in Sermilik Fjord [2], we perform simulations with double the total discharge in order to investigate the dynamics of the flow in typical winter and summer stratifications in Greenland fjords [3]. The plume is discharged from a round source of various diameters. In winter, when the stratification is similar to an idealised two-layers case, turbulent entrainment and generation of internal waves by the plume top are in agreement with the theoretical and numerical results obtained for turbulent jets in a two-layer stratification. In summer, instead, the stratification is more complex and turbulent entrainment is significantly reduced. The subsurface layer in summer is characterized by a strong density gradient and the oscillating plume generates non-linear internal waves which are able to mix this layer even if the plume does not penetrate to the surface. The classical theory for the integral parameters of a turbulent plume in a homogeneous fluid gives accurate predictions of the plume parameters in the weakly stratified lower layer up to the pycnocline. [1] Mankoff, K. D., F. Straneo, C. Cenedese, S. B. Das, C. D. Richards, and H. Singh, 2016: Structure

  18. Shoreline changes and its impact on archaeological sites in West Greenland

    NASA Astrophysics Data System (ADS)

    Fenger-Nielsen, R.; Kroon, A.; Elberling, B.; Hollesen, J.

    2017-12-01

    Coastal erosion is regarded as a major threat to archaeological sites in the Arctic region. The problem arises because the predominantly marine-focused lifeways of Arctic people means that the majority of archaeological sites are found near the coast. On a Pan-Arctic scale, coastal erosion is often explained by long-term processes such as sea level rise, lengthening of open water periods due to a decline in sea ice, and a predicted increase in the frequency of major storms. However, on a local scale other short-term processes may be important parameters determining the coastal development. In this study, we focus on the Nuuk fjord system in West Greenland, which has been inhabited over the past 4000 years by different cultures and holds around 260 registered archaeological settlements. The fjord is characterized by its large branching of narrow deep-water and well-shaded water bodies, where tidal processes and local sources of sediment supply by rivers are observed to be the dominant factors determining the coastal development. We present a regional model showing the vulnerability of the shoreline and archeological sites due to coastal processes. The model is based on a) levelling surveys and historical aerial photographs of nine specific sites distributed in the region, b) water level measurements at three sites representing the inner-, middle- and outer fjord system, c) aerial photographs, satellite images and meteorological data of the entire region used to up-scale our local information at a specific settlement scale towards a regional scale. This deals with spatial and temporal variability in erosion and accumulation patterns along the shores in fjords and open seas.

  19. The Ocean's Role in Outlet Glacier Variability: A Case Study from Uummannaq, Greenland

    NASA Astrophysics Data System (ADS)

    Sutherland, D.; Catania, G. A.; Bartholomaus, T. C.; Nash, J. D.; Shroyer, E.; Walker, R. T.; Stearns, L. A.

    2014-12-01

    The dynamics controlling the coupling between fjord circulation and outlet glacier movement are poorly understood. Here, we use oceanographic data collected from 2013-2014 from two west Greenland fjords, Rink Isbrae and Kangerdlugssup Sermerssua, to constrain the spatial and temporal variability observed in fjord circulation. We aim to quantify the ocean's role, if any, in explaining the marked differences in glacier behavior from two systems that are in close proximity to one another. Combining time series data from a set of subsurface moorings with repeat transects in each fjord allows an unprecedented look at the temporal and spatial variability in circulation. We find significant differences in the variability in each fjord and discuss the implications for the glaciers.

  20. Quantifying ocean and ice sheet contributions to nutrient fluxes in Sermilik Fjord, Southeast Greenland

    NASA Astrophysics Data System (ADS)

    Cape, M. R.; Straneo, F.; Beaird, N.; Bundy, R.; Charette, M. A.

    2016-12-01

    Meltwater discharged at the margins of the Greenland Ice Sheet (GrIS) represents a potential source of nutrients to biological communities downstream. In Greenland's glacial fjords, this discharge occurs at depth below and along the face of deeply grounded marine-terminating glaciers. This process drives vigorous circulation and mixing between melt and ambient waters at the ice-ocean margins, giving rise to a new glacially modified water mass (GMW) which constitutes the primary vehicle for transport of meltwater in the marine environment. While previous field studies have noted nutrient enrichment in GMW with respect to unmodified waters along the shelf, the source of this enrichment, whether due to entrainment of deep ambient waters or input by meltwater, remains poorly understood. This knowledge is however critical in order to evaluate the current and future contributions of the GrIS to marine biogeochemical cycling. Here we shed light on the distribution, composition, and properties of GMW along the GrIS margin by analyzing integrated physical and chemical measurements collected in August 2015 in Sermilik Fjord, a major glacial freshwater export pathway. Our results document up to a doubling of nutrient concentrations (nitrate, silicate, phosphate, and iron) in GMW, which is distributed in the top 300 m of the water column throughout the fjord. Partitioning of ocean and ice sheet contributions to GMW nutrient load demonstrates that upwelled waters are the primary source of macro-nutrients to GMW. We expand on these results to discuss the magnitude of fluxes in context of previous observations along the GrIS margins, export pathways of GMW to the shelf, and knowledge gaps needed to be addressed to better constrain ice sheet contributions to marine ecosystem processes.

  1. Insights into ice-ocean interactions and fjord circulation from fjord sea surface temperatures at the Petermann Glacier, Greenland

    NASA Astrophysics Data System (ADS)

    Snow, T.; Shepherd, B.; Abdalati, W.; Scambos, T. A.

    2016-12-01

    Dynamic processes at marine-terminating outlet glaciers are responsible for over one-third of Greenland Ice Sheet (GIS) mass loss. Enhanced intrusion of warm ocean waters at the termini of these glaciers has contributed to elevated rates of ice thinning and terminus retreat over the last two decades. In situ oceanographic measurements and modeling studies show that basal melting of glaciers and subglacial discharge can cause buoyant plumes of water to rise to the fjord surface and influence fjord circulation characteristics. The temperature of these surface waters holds clues about ice-ocean interactions and small-scale circulation features along the glacier terminus that could contribute to outlet glacier mass loss, but the magnitude and duration of temperature variability remains uncertain. Satellite remote sensing has proven very effectiver for acquiring sea surface temperatuer (SST) data from these remote regions on a long-term, consistent basis and shows promise for identifying temperature anomalies at the ice front. However, these data sets have not been widely utilized to date. Here, we use satellite-derived sea surface temperatures to identify fjord surface outflow characteristics from 2000 to present at the Petermann Glacier, which drains 4% of the GIS and is experiencing 80% of its mass loss from basal melt. We find a general SST warming trend that coincides with early sea ice breakup and precedes two major calving events and ice speedup that began in 2010. Persistent SST anomalies along the terminus provide evidence of warm outflow that is consistent with buoyant plume model predictions. However, the anomalies are not evident early in the time series, suggesting that ocean inflow and ice-ocean interactions have experienced a regime shift since 2000. Our results provide valuable insight into fjord circulation patterns and the forcing mechanisms that contribute to terminus retreat. Comparing our results to ongoing modeling experiments, time series from

  2. Ocean circulation and properties in Petermann Fjord, Greenland

    NASA Astrophysics Data System (ADS)

    Johnson, H. L.; Münchow, A.; Falkner, K. K.; Melling, H.

    2011-01-01

    The floating ice shelf of Petermann glacier interacts directly with the ocean and is thought to lose at least 80% of its mass through basal melting. Based on three opportunistic ocean surveys in Petermann Fjord we describe the basic oceanography: the circulation at the fjord mouth, the hydrographic structure beneath the ice shelf, the oceanic heat delivered to the under-ice cavity, and the fate of the resulting melt water. The 1100 m deep fjord is separated from neighboring Hall Basin by a sill between 350 and 450 m deep. Fjord bottom waters are renewed by episodic spillover at the sill of Atlantic water from the Arctic. Glacial melt water appears on the northeast side of the fjord at depths between 200 m and that of the glacier's grounding line (about 500 m). The fjord circulation is fundamentally three-dimensional; satellite imagery and geostrophic calculations suggest a cyclonic gyre within the fjord mouth, with outflow on the northeast side. Tidal flows are similar in magnitude to the geostrophic flow. The oceanic heat flux into the fjord appears more than sufficient to account for the observed rate of basal melting. Cold, low-salinity water originating in the surface layer of Nares Strait in winter intrudes far under the ice. This may limit basal melting to the inland half of the shelf. The melt rate and long-term stability of Petermann ice shelf may depend on regional sea ice cover and fjord geometry, in addition to the supply of oceanic heat entering the fjord.

  3. Atmospheric Circulation and West Greenland Precipitation

    NASA Astrophysics Data System (ADS)

    Auger, J.; Birkel, S. D.; Maasch, K. A.; Schuenemann, K. C.; Mayewski, P. A.; Osterberg, E. C.; Hawley, R. L.; Marshall, H. P.

    2016-12-01

    The surface mass balance of the Greenland Ice Sheet has declined substantially in recent decades across West Greenland with important implications for global sea level and freshwater resources. Here, we investigate changes in heat and moisture delivery to West Greenland through changes in atmospheric circulation in order to gain insight into possible future climate. Particular focus is placed on the role of known climate variability, including the North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO), in influencing the intensity, frequency, and track of cyclones across the North Atlantic. This study utilizes multiple daily climate reanalysis models (CFSR, ERA-Interim, JRA-55) in addition to observational data. Preliminary results indicate a primary influence from the NAO, with a secondary influence from the low frequency oscillation connected to the AMO. Work is ongoing, and a complete synthesis will be presented at the fall meeting.

  4. Bathymetry of Torssukatak fjord and one century of glacier stability

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E. J.; Morlighem, M.

    2017-12-01

    Marine-terminating glaciers dominate the evolution of the Greenland Ice Sheet(GrIS) mass balance as they control 90% of the ice discharge into the ocean. Warm air temperatures thin the glaciers from the top to unground ice fronts from the bed. Warm oceans erode the submerged grounded ice, causing the grounding line to retreat. To interpret the recent and future evolution of two outlet glaciers, Sermeq Avangnardleq (AVA) and Sermeq Kujatdleq (KUJ) in central West Greenland, flowing into the ice-choked Torssukatak fjord (TOR), we need to know their ice thickness and bed topography and the fjord bathymetry. Here, we present a novel mapping of the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line using high resolution airborne gravity data from AIRGrav collected in August 2012 with a helicopter platform, at 500 m spacing grid, 50 knots ground speed, 80 m ground clearance, with submilligal accuracy, i.e. higher than NASA Operation IceBridge (OIB)'s 5.2 km resolution, 290 knots, and 450 m clearance. We also employ MultiBeam Echo Sounding data (MBES) collected in the fjord since 2009. We had to wait until the summer of 2016, during Ocean Melting Greenland (OMG), to map the fjord bathymetry near the ice fronts for the first time. We constrain the 3D inversion of the gravity data with MBES in the fjord and a reconstruction of the glacier bed topography using mass conservation (MC) on land ice. The seamless topography obtained across the grounding line reveal the presence of a 300-m sill for AVA, which explains why this glacier has been stable for a century, despite changes in surface melt and ocean-induced melt and the presence of a deep fjord (800 m) in front of the glacier. For KUJ, we also reveal the presence of a wide sill (300 m depth) near the current ice front which explains its stability and the stranding of iceberg debris in front of the glacier. The results shed new light on the evolution of these glaciers and explain their

  5. Seismic stratigraphic architecture of the Disko Bay trough-mouth fan system, West Greenland

    NASA Astrophysics Data System (ADS)

    Hofmann, Julia C.; Knutz, Paul C.

    2015-04-01

    Spatial and temporal changes of the Greenland Ice Sheet on the continental shelf bordering Baffin Bay remain poorly constrained. Then as now, fast-flowing ice streams and outlet glaciers have played a key role for the mass balance and stability of polar ice sheets. Despite their significance for Greenland Ice Sheet dynamics and evolution, our understanding of their long-term behaviour is limited. The central West Greenland margin is characterized by a broad continental shelf where a series of troughs extend from fjords to the shelf margin, acting as focal points for trough-mouth fan (TMF) accummulations. The sea-ward bulging morphology and abrupt shelf-break of these major depositional systems is generated by prograding depocentres that formed during glacial maxima when ice streams reached the shelf edge, delivering large amounts of subglacial sediment onto the continental slope (Ó Cofaigh et al., 2013). The aim of this study is to unravel the seismic stratigraphic architecture and depositional processes of the Disko Bay TMF, aerially the largest single sedimentary system in West Greenland, using 2D and 3D seismic reflection data, seabed bathymetry and stratigraphic information from exploration well Hellefisk-1. The south-west Disko Bay is intersected by a deep, narrow trough, Egedesminde Dyb, which extends towards the southwest and links to the shallower and broader cross-shelf Disko Trough (maximum water depths of > 1000 m and a trough length of c. 370 km). Another trough-like depression (trough length of c. 120 km) in the northern part of the TMF, indicating a previous position of the ice stream, can be distinguished on the seabed topographic map and the seismic images. The Disko Bay TMF itself extends from the shelf edge down to the abyssal plain (abyssal floor depths of 2000 m) of the southern Baffin Bay. Based on seismic stratigraphic configurations relating to reflection terminations, erosive patterns and seismic facies (Mitchum et al., 1977), the TMF

  6. Glacimarine Sedimentary Processes and Deposits at Fjord-Terminating Tidewater Glacier Margins

    NASA Astrophysics Data System (ADS)

    Streuff, K.; O'Cofaigh, C.; Lloyd, J. M.; Noormets, R.; Nielsen, T.; Kuijpers, A.

    2016-12-01

    Many fjords along Arctic coasts are influenced by tidewater glaciers, some of them fast-flowing ice sheet outlets. Such glaciers provide important links between terrestrial and marine environments, and, due to their susceptibility to climatic and oceanographic changes, have undergone a complex history of advance and retreat since the last glacial maximum (LGM). Although a growing body of evidence has led to a better understanding of the deglacial dynamics of individual glaciers since the LGM, their overall Holocene glacimarine processes and associated sedimentary and geomorphological products often remain poorly understood. This study addresses this through a detailed analysis of sediment cores, swath bathymetric and sub-bottom profiler data collected from seven fjords in Spitsbergen and west Greenland. The sediment cores preserve a complex set of lithofacies, which include laminated and massive muds in ice-proximal, and bioturbated mud in more ice-distal settings, diamicton in iceberg-dominated areas and massive sand occurring as lenses, laminae and thick beds. These facies record the interplay of three main glacimarine processes, suspension settling, iceberg rafting and sediment gravity flows, and collectively emphasise the dominance of glacial meltwater delivery to sedimentation in high Arctic fjords. The seafloor geomorphology in the fjords shows a range of landforms that include glacial lineations associated with fast ice-flow, terminal moraines and debris lobes marking former maximum glacier extents, and small transverse moraines formed during deglaciation by glaciotectonic deformation at the grounding line and crevasse-squeezing. Additional landforms such as iceberg ploughmarks, submarine channels, pockmarks, and debris lobes formed during or after deglaciation by iceberg calving, erosion by meltwater, and sediment reworking. We present here a new model for sedimentary and geomorphological processes in front of contemporary tidewater glaciers, which

  7. Direct Measurements of Iceberg Melt in Greenland Tidewater Glacier Fjords

    NASA Astrophysics Data System (ADS)

    Schild, K. M.; Sutherland, D.; Straneo, F.; Elosegui, P.

    2017-12-01

    The increasing input of freshwater to the subpolar North Atlantic, both through glacier meltwater runoff and the melting of calved icebergs, has significant implications for the Atlantic meridional overturning circulation and regional scale circulation. However, the magnitude and timing of this meltwater input has been challenging to quantify because iceberg melt rates are largely unknown. Here we use data from a simultaneous glaciological and oceanographic field campaign conducted in Sermilik Fjord, southeast Greenland, during July 2017 to map the surface and submarine geometry of large icebergs and use repeat surveys to directly measure iceberg melt rates. We use a combination of coincident ship-based multibeam submarine scans, ocean hydrography measurements, aerial drone mapping, and high precision iceberg-mounted GPS measurements to construct a detailed picture of iceberg geometry and melt. This synthesis of in situ iceberg melt measurements is amongst the first of its kind. Here, we will discuss the results of the 2017 field campaign, the implications of variable iceberg meltwater input throughout the water column, and comparisons to standard melt rate parameterizations and tidewater glacier submarine melt rate calculations.

  8. Evaluation of the use of common sculpin (Myoxocephalus scorpius) organ histology as bioindicator for element exposure in the fjord of the mining area Maarmorilik, West Greenland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonne, Christian, E-mail: csh@dmu.dk; Bach, Lis; Søndergaard, Jens

    The former Black Angel lead–zinc mine in Maarmorilik, West Greenland, is a historic example of how mining activity may result in a significant impact on the surrounding fjord system in terms of elevated concentrations of especially lead (Pb) and zinc (Zn) in seawater, sediments and surrounding biota. In order to shed light on the present contamination and possible effects in the fjord we initiated a range of studies including a pilot study on gill and liver morphology of common sculpins (Myoxocephalus scorpius) around Maarmorilik. Sculpins were caught and sampled at five different stations known to represent a gradient of Pbmore » concentrations. Fish livers from all specimens were analyzed for relevant elements in the area: Fe, Zn, As, Cu, Se, Cd, Pb, Ag, Hg, Co and Ni. Lead, As and Hg showed significant differences among the five stations. For 20% of the sculpins, Hg concentrations were in the range of lowest observed effect dose (LOED) of 0.1–0.5 μg/g ww for toxic threshold on reproduction and subclinical endpoints. Likewise LOEDs for tissue lesions, LOEDs for biochemistry, growth, survival and reproduction were exceeded for Cd (0.42–1.8 μg/g ww) and for As (11.6 μg/g ww) in 28% and 85% of the sculpins, respectively. Similar to this, the no observed effect dose (NOED) for biochemistry was exceeded for Pb (0.32 μg/g ww) and for growth, mortality and reproduction for Zn (60–68 μg/g ww) in 33% and 24% of the sculpins, respectively. For all sculpins, females were significantly larger than males and for five of the elements (Fe, Co, Ni, Cu, Se) females had higher concentrations. The chronic lesions observed in liver (mononuclear cell infiltrates, necrosis, vacuolar hepatocytes, portal fibrosis, bile duct hyperplasia, active melanomacrophage centers) and gills (fusion and edema of secondary lamellae, laminar telangiectasis, mononuclear cell infiltrates, blebs) were similar to those in the literature studies for both wild and laboratory exposed sculpins

  9. Bathymetry and retreat of Southeast Greenland glaciers from Operation IceBridge and Ocean Melting Greenland data

    NASA Astrophysics Data System (ADS)

    Millan, R.; Rignot, E. J.; Morlighem, M.; Bjork, A. A.; Mouginot, J.; Wood, M.

    2017-12-01

    Southeast Greenland has been one of the largest contributors to ice mass loss in Greenland in part because of significant changes in glacier dynamics. The leading hypothesis for the changes in glacier dynamics is that enhanced thermal forcing from the ocean has dislodged a number of glaciers from their anchoring positions and some of them retreated rapidly along a reverse bed. The glaciers response has been observed to vary significantly from one fjord to the next, but until now there was not enough data to understand or interpret these changes. In particular, there was no data on glacier bed topography and seafloor bathymetry in the fjords. Here we present the results of new fjord mapping by the NASA Ocean Melting Greenland mission combined with a recent high-resolution airborne gravity survey by NASA Operation IceBridge. We combine these data with a reconstruction of the bed using a mass conservation approach upstream extending into the glacial fjords for the first time. In the fjord and along the ice-ocean transition, we employ a 3D inversion of gravity data to infer the bed elevation along a set of 9 survey boxes spanning south of Helheim Glacier to the southern tip of Southeast Greenland. We combine the results with an analysis of the glacier front history since the 1930's and Conductivity Temperature Depth data obtained in the fjord by OMG in 2016. The data reveals bed elevations several 100-m deeper than previously thought, for almost all the glaciers, up to 500 m for some of them. For many glaciers, the bed profiles help to completely understand the history of retreat of the glaciers. For instance, glaciers stranded on sills have been stable; glaciers on a reverse slope have retreated rapidly; and glaciers with a normal slope have retreated slowly. The mapping also helps document the extent of the marine portion of the glacier basins. In many of the fjords, we document the presence of warm, salty Atlantic Water which fuels large melt rates. We employ

  10. New insights into West Greenland ice sheet/stream dynamics during the last glacial cycle.

    NASA Astrophysics Data System (ADS)

    Roberts, David; Lane, Tim; Rea, Brice; Cofaigh, Colm O.; Jamieson, Stewart; Vieli, Andreas; Rodes, Angel

    2015-04-01

    Onshore and offshore geomorphological mapping and deglacial chronologies from West Greenland constrain the nature and magnitude of ice advance and decay of the Greenland Ice Sheet (GrIS) during the last glacial cycle. Several ice stream troughs are known to have fed ice to the shelf edge during the last glacial cycle. Their offshore expression suggests that many were coalescent systems fed by smaller outlet glaciers and ice streams onshore but their central flow pathways were also controlled by geology and preglacial topography. The bed morphology of these large ice streams shows they operated over soft, deforming beds with drumlins, mega-scale glacial lineations and grounding zone wedges marking an offshore transition from predominant areal scour onshore. Records of offshore deglacial chronology remain sparse but the Uummannaq and Disko Bugt ice stream corridors are now well constrained. The Uummannaq ice stream (UIS) completely deglaciated from the continental shelf between 14.8 ka and 11.0 ka in response to rising air temperatures, increasing JJA solar radiation and sea-level rise, but temporary standstills and the asynchronous retreat history of its feeder zones suggest that topography/bathymetry strongly modulated retreat rates as ice became 'locked' back into the coastal fjord system. Initial reconstructions of behaviour UIS discounted an oceanic role in early deglaciation and favoured retreat from the mid-shelf and inner-shelf prior to the Younger Dryas but both these concepts remain under investigation. In Disko Bugt, Jakobshavn Isbrae deglaciated later than the UIS and remained on the outer shelf during the Younger Dyras stadial (12.8 - 11.7 cal. kyrs BP) only reaching in the inner coast fjords at approximately 10.0 ka. The later deglaciation of the Disko system (despite similar external forcing mechanisms) was controlled by regional topographic/bathymetric contrasts in their respective trough morphologies. This hypothesis is supported by recent model

  11. Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity.

    PubMed

    Grange, Laura J; Smith, Craig R

    2013-01-01

    Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436-725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400-700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the

  12. Megafaunal Communities in Rapidly Warming Fjords along the West Antarctic Peninsula: Hotspots of Abundance and Beta Diversity

    PubMed Central

    Grange, Laura J.; Smith, Craig R.

    2013-01-01

    Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436–725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400–700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the

  13. Effect of fjord geometry on Greenland mass loss in a warming climate (Invited)

    NASA Astrophysics Data System (ADS)

    Nick, F. M.; Vieli, A.; Andersen, M. L.; Joughin, I. R.

    2013-12-01

    Over the past decade, ice loss from the Greenland Ice Sheet increased as a result of both increased surface melting and ice discharge through the narrow outlet glaciers. The complicated behaviour of narrow outlet glaciers has not yet been fully captured by the ice-sheet models used to predict Greenland's contribution to future sea level. Here we try to quantify the future dynamic contribution of four major marine terminating outlet glaciers to sea-level rise. We use a glacier flow line model that includes a fully dynamic treatment of marine termini to simulate behavior of Helheim, Kangerdlugssuaq, Petermann and Jakobshavn Isbræ. The contribution from these glaciers to sea-level rise is largely (80%) dynamic in origin and is caused by several episodic retreats past overdeepenings in outlet glacier troughs. Model results show that the shape of the glacier and its fjord can alter how the glacier will respond to a changing climate. Dynamic losses are mainly related to channel geometry and occur when an ice front retreats from a basal high through an overdeepening. Subsequent decelerations in retreat and mass loss mostly coincide with a decrease in water depth as the glacier retreats or re-advances to a new or previous bathymetric high. In some cases, channel narrowing may temporarily slowdown the terminus retreat even when the terminus is located on an upward bed slope.

  14. Seasonal surface layer dynamics and sensitivity to runoff in a high Arctic fjord (Young Sound/Tyrolerfjord, 74°N)

    NASA Astrophysics Data System (ADS)

    Bendtsen, Jørgen; Mortensen, John; Rysgaard, Søren

    2014-09-01

    Runoff from the Greenland Ice Sheet, local glaciers, and snowmelt along the northeastern Greenland coastline has a significant impact on coastal water masses flowing south toward Denmark Strait. Very few direct measurements of runoff currently exist in this large area, and the water masses near the coast are also difficult to measure due to the presence of icebergs and sea ice. Measurements from the Zackenberg Research station, located in Young Sound/Tyrolerfjord in northeast Greenland (74°N), provide some of the few observations of hydrographic, hydrologic, and atmospheric parameters from this remote area. Here we analyze measurements from the fjord and also measurements in the ambient water masses, which are found in the outer fjord and between the fjord and the East Greenland Current and validate and apply a numerical model of the fjord. A model sensitivity study allows us to constrain runoff estimates for the area. We also show that a total runoff between 0.9 and 1.4 km3 in 2006 is in accordance with observed surface salinities and calculated freshwater content in the fjord. This indicates that earlier reported runoff to the area is significantly underestimated and that melt from glaciers and the Greenland Ice Sheet in this region may be up to 50% larger than the current estimate. Model simulations indicate the presence of a cold low-saline coastal water mass formed by runoff from fjords north of the Young Sound/Tyrolerfjord system. Simulations of passive and age tracers show that residence time of river water during the summer period is about 1 month in the inner part of the fjord. This article was corrected on 10 OCT 2014. See the end of the full text for details.

  15. Controls on Seasonal Terminus Positions at Central West Greenland Tidewater Glaciers

    NASA Astrophysics Data System (ADS)

    Fried, M.; Catania, G. A.; Bartholomaus, T. C.; Stearns, L. A.; Sutherland, D.; Shroyer, E.; Nash, J. D.; Carroll, D.

    2016-12-01

    Each year, tidewater glaciers in Greenland undergo seasonal terminus position cycles, characterized by wintertime advance and summertime retreat. In many cases, this seasonal cycle is superimposed on top of long-term terminus retreat. Understanding the mechanisms that control the seasonal cycle - and how such controls differ between glaciers - might elucidate how tidewater glaciers regulate dynamic ice loss on these longer timescales. However, the controls on terminus position are numerous and complex, making it difficult to identify the dominant process controlling terminus position. To address this, we examine satellite-derived terminus position time series for a suite of glaciers in central west Greenland in conjunction with observations of environmental forcings. In particular, we focus on estimated runoff at the glacier grounding line, mélange conditions in the proglacial fjord and (where possible) in-situ measurements of ocean temperature. We find that seasonal terminus advance and retreat more closely follow the presence or absence of runoff than mélange conditions and, where studied, ocean forcing. At the majority of glaciers studied, localized terminus ablation occurs where runoff-driven submarine melt emerges at the grounding line. This often induces heterogeneous rates of retreat across the glacier front and leads to the formation of local terminus embayments. Calving accelerates in these embayments allowing for local runoff to influence the magnitude and timing of mean seasonal retreat. At glaciers with grounding line depths in excess of 500 m, localized retreat due to submarine melt can be outstripped by large slab rotation calving events, likely initiated by different forcing mechanisms. Our observations emphasize that across-flow heterogeneities in terminus position are diagnostic of how runoff-induced melt helps control seasonal terminus cycles.

  16. One million years of glaciation and denudation history in west Greenland

    PubMed Central

    Strunk, Astrid; Knudsen, Mads Faurschou; Egholm, David L.; Jansen, John D.; Levy, Laura B.; Jacobsen, Bo H.; Larsen, Nicolaj K.

    2017-01-01

    The influence of major Quaternary climatic changes on growth and decay of the Greenland Ice Sheet, and associated erosional impact on the landscapes, is virtually unknown beyond the last deglaciation. Here we quantify exposure and denudation histories in west Greenland by applying a novel Markov-Chain Monte Carlo modelling approach to all available paired cosmogenic 10Be-26Al bedrock data from Greenland. We find that long-term denudation rates in west Greenland range from >50 m Myr−1 in low-lying areas to ∼2 m Myr−1 at high elevations, hereby quantifying systematic variations in denudation rate among different glacial landforms caused by variations in ice thickness across the landscape. We furthermore show that the present day ice-free areas only were ice covered ca. 45% of the past 1 million years, and even less at high-elevation sites, implying that the Greenland Ice Sheet for much of the time was of similar size or even smaller than today. PMID:28098141

  17. Ocean forcing of Ice Sheet retreat in central west Greenland from LGM to the early Holocene

    NASA Astrophysics Data System (ADS)

    Jennings, Anne E.; Andrews, John T.; Ó Cofaigh, Colm; Onge, Guillaume St.; Sheldon, Christina; Belt, Simon T.; Cabedo-Sanz, Patricia; Hillaire-Marcel, Claude

    2017-08-01

    Three radiocarbon dated sediment cores from trough mouth fans on the central west Greenland continental slope were studied to determine the timing and processes of Greenland Ice Sheet (GIS) retreat from the shelf edge during the last deglaciation and to test the role of ocean forcing (i.e. warm ocean water) thereon. Analyses of lithofacies, quantitative x-ray diffraction mineralogy, benthic foraminiferal assemblages, the sea-ice biomarker IP25, and δ18 O of the planktonic foraminifera Neogloboquadrina pachyderma sinistral from sediments in the interval from 17.5-10.8 cal ka BP provide consistent evidence for ocean and ice sheet interactions during central west Greenland (CWG) deglaciation. The Disko and Uummannaq ice streams both retreated from the shelf edge after the last glacial maximum (LGM) under the influence of subsurface, warm Atlantic Water. The warm subsurface water was limited to depths below the ice stream grounding lines during the LGM, when the GIS terminated as a floating ice shelf in a sea-ice covered Baffin Bay. The deeper Uummannaq ice stream retreated first (ca. 17.1 cal ka BP), while the shallower Disko ice stream retreated at ca. 16.2 cal ka BP. The grounding lines were protected from accelerating mass loss (calving) by a buttressing ice shelf and by landward shallowing bathymetry on the outer shelf. Calving retreat was delayed until ca. 15.3 cal ka BP in the Uummannaq Trough and until 15.1 cal ka BP in the Disko Trough, during another interval of ocean warming. Instabilities in the Laurentide, Innuitian and Greenland ice sheets with outlets draining into northern Baffin Bay periodically released cold, fresh water that enhanced sea ice formation and slowed GIS melt. During the Younger Dryas, the CWG records document strong cooling, lack of GIS meltwater, and an increase in iceberg rafted material from northern Baffin Bay. The ice sheet remained in the cross-shelf troughs until the early Holocene, when it retreated rapidly by calving and strong

  18. Bed elevation of Jakobshavn Isbræ, West Greenland, from high-resolution airborne gravity and other data

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E.; Elieff, S.; Morlighem, M.; Millan, R.; Mouginot, J.; Holland, D. M.; Holland, D.; Paden, J.

    2017-04-01

    Jakobshavn Isbræ, West Greenland, which holds a 0.6 m sea level volume equivalent, has been speeding up and retreating since the late 1990s. Interpretation of its retreat has been hindered by difficulties in measuring its ice thickness with airborne radar depth sounders. Here we employ high-resolution, helicopter-borne gravity data from 2012 to reconstruct its bed elevation within 50 km of the ocean margin using a three-dimensional inversion constrained by fjord bathymetry data offshore and a mass conservation algorithm inland. We find the glacier trough to be asymmetric and several 100 m deeper than estimated previously in the lower part. From 1996 to 2016, the grounding line migrated at 0.6 km/yr from 700 m to 1100 m depth. Upstream, the bed drops to 1600 m over 10 km then slowly climbs to 1200 m depth in 40 km. Jakobshavn Isbræ will continue to retreat along a retrograde slope for decades to come.

  19. Observations and modelling of subglacial discharge and heat transport in Godthåbsfjord (Greenland, 64 °N)

    NASA Astrophysics Data System (ADS)

    Bendtsen, Jørgen; Mortensen, John; Rysgaard, Søren

    2017-04-01

    had a minor dynamical effect on the fjord circulation. However, mixing of bottom water by subglacial discharge also brings large amounts of nutrients to the surface and estimates of the potential nutrient transport show that this may have a significant impact on the biological production in front of tidewater outlet glaciers. Related publications: Bendtsen, J., Mortensen, J., Lennert, K. and S. Rysgaard (2015), Heat sources for glacial ice melt in a West Greenland tidewater outlet glacier fjord: the role of subglacial freshwater discharge, Geophys. Res. Lett., 42, doi:10.1002/2015GL063846. Bendtsen, J., Mortensen, J., and Rysgaard, S. (2015), Modelling subglacial discharge and its influence on ocean heat transport in Arctic fjords, Ocean Dynamics, 65, 1535-1546, 10.1007/s10236-015-0883-1. Mortensen, J., J. Bendtsen, K. Lennert, and S. Rysgaard (2014), Seasonal variability of the circulation system in a west Greenland tidewater outlet glacier fjord, Godthåbsfjord (64°N), J. Geophys. Res. Earth Surf., 119, 2591-2603, doi:10.1002/2014JF003267. Mortensen, J., Bendtsen, J., Motyka, R. J., Lennert, K., Truffer, M., Fahnestock, M. and S. Rysgaard (2013), On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. J. Geophys. Res. 118, 1-14, doi:10.1002/jgrc.20134.

  20. Pathways of Petermann Glacier's Meltwaters, Greenland

    NASA Astrophysics Data System (ADS)

    Heuzé, C.; Wahlin, A.; Johnson, H. L.; Muenchow, A.

    2016-02-01

    Radar and satellite observations suggest that the floating ice shelf of Petermann glacier, north Greenland, loses up to 80% of its mass through basal melting, caused by the intrusion of warm Atlantic water into the fjord and under the ice shelf. Although Greenland meltwaters are key to sea level rise projections and can potentially disrupt the whole ocean circulation, the fate of Petermann's glacial meltwater is still largely unknown. It is investigated here, using hydrographic observations collected during a research cruise onboard I/B Oden in August 2015. Two layers are found: one at 200 m (i.e. terminus depth) mostly on the eastern side of the fjord where a calving event occurred this summer, and one around 500 m depth (i.e. the grounding line) on the western side. At the sill, approximately 3 mSv of freshwater leave the fjord around 150 m on the eastern side. On the western side, a more complex circulation occurs as waters intrude in. Outside of the fjord in Hall Basin, only one layer is found, around 300 m, but its oxygen content and T-S properties suggests it is a mixture between Petermann's meltwater, meltwater from the neighbouring glaciers, surface run-off and sea ice. As Atlantic water warms up, it is key to monitor Greenland melting glaciers to properly assess sea level rise.

  1. College Fjord, Prince Williams Sound

    NASA Image and Video Library

    2001-07-21

    The College Fjord with its glaciers was imaged by ASTER on June 24, 2000. This image covers an area 20 kilometers (13 miles) wide and 24 kilometers (15 miles) long in three bands of the reflected visible and infrared wavelength region. College Fjord is located in Prince Williams Sound, east of Seward, Alaska. Vegetation is in red, and snow and ice are white and blue. Ice bergs calved off of the glaciers can be seen as white dots in the water. At the head of the fjord, Harvard Glacier (left) is one of the few advancing glaciers in the area; dark streaks on the glacier are medial moraines: rock and dirt that indicate the incorporated margins of merging glaciers. Yale Glacier to the right is retreating, exposing (now vegetated) bedrock where once there was ice. On the west edge of the fjord, several small glaciers enter the water. This fjord is a favorite stop for cruise ships plying Alaska's inland passage. This image is located at 61.2 degrees north latitude and 147.7 degrees west longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02664

  2. Ocean forces Greenland and Greenland forces the ocean: a two-way exchange at Greenland's marine margins

    NASA Astrophysics Data System (ADS)

    Straneo, F.

    2017-12-01

    The widespread speed up of Greenland's glaciers, over the last two decades, was unpredicted, revealing major gaps in our understanding of how ice sheets respond to a changing climate. Increased submarine melting at the edge of glaciers has emerged as a key trigger - indicating that glacier/ocean exchanges must be accounted for in ice sheet variability reconstructions and predictions. In parallel, the increasing freshwater discharge into the ocean, associated with Greenland's ice loss, has the potential to impact the North Atlantic's circulation and climate. Thus glacier/ocean exchanges are also relevant to understanding drivers of past and future changes in the North Atlantic Ocean's circulation. Here, I present recent findings from observations collected at the edge of several Greenland glaciers that reveal how melting is caused by intrusions of warm, subtropical waters into the fjords and enhanced by the release of surface melt hundreds of meters below sea level. Similarly, hydrographic and tracer data collected at the glaciers' margins, and within the glacial fjords, reveal how Greenland meltwater are exported in the form of highly diluted glacially modified waters, often subsurface, and temporally lagged with respect to the meltwater release. These findings underline the need for improved representation of ice/ocean exchanges in models in order understand and predict the ice sheet's impact on the ocean and the ocean's impact on the ice sheet.

  3. Ocean forces Greenland and Greenland forces the ocean: a two-way exchange at Greenland's marine margins

    NASA Astrophysics Data System (ADS)

    Stanley, V.; Schoephoester, P.; Lodge, R. W. D.

    2016-12-01

    The widespread speed up of Greenland's glaciers, over the last two decades, was unpredicted, revealing major gaps in our understanding of how ice sheets respond to a changing climate. Increased submarine melting at the edge of glaciers has emerged as a key trigger - indicating that glacier/ocean exchanges must be accounted for in ice sheet variability reconstructions and predictions. In parallel, the increasing freshwater discharge into the ocean, associated with Greenland's ice loss, has the potential to impact the North Atlantic's circulation and climate. Thus glacier/ocean exchanges are also relevant to understanding drivers of past and future changes in the North Atlantic Ocean's circulation. Here, I present recent findings from observations collected at the edge of several Greenland glaciers that reveal how melting is caused by intrusions of warm, subtropical waters into the fjords and enhanced by the release of surface melt hundreds of meters below sea level. Similarly, hydrographic and tracer data collected at the glaciers' margins, and within the glacial fjords, reveal how Greenland meltwater are exported in the form of highly diluted glacially modified waters, often subsurface, and temporally lagged with respect to the meltwater release. These findings underline the need for improved representation of ice/ocean exchanges in models in order understand and predict the ice sheet's impact on the ocean and the ocean's impact on the ice sheet.

  4. Assessment of Undiscovered Oil and Gas Resources of the West Greenland-East Canada Province, 2008

    USGS Publications Warehouse

    Schenk, Christopher J.; Bird, Kenneth J.; Brown, Philip J.; Charpentier, Ronald R.; Gautier, Donald L.; Houseknecht, David W.; Klett, Timothy R.; Pawlewicz, Mark J.; Shah, Anjana; Tennyson, Marilyn E.

    2008-01-01

    The U.S. Geological Survey (USGS) recently assessed the undiscovered oil and gas potential of the West Greenland?East Canada Province as part of the USGS Circum-Arctic Oil and Gas Resource Appraisal effort. The West Greenland?East Canada Province is essentially the offshore area between west Greenland and east Canada and includes Baffin Bay, Davis Strait, Lancaster Sound, and Nares Strait west of and including Kane Basin. The tectonic evolution of the West Greenland?East Canada Province led to the formation of several major structural domains that are the geologic basis for the five assessment units (AU) defined in this study. The five AUs encompass the entire province. Each AU was assessed in its entirety for undiscovered, technically recoverable (assuming absence of sea ice) oil and gas resources, but the assessment results reported here are only for those portions of each AU that are north of the Arctic Circle, as that latitude defines the area of the Circum-Arctic oil and gas assessment.

  5. The Role of Silicon Limitation in Phytoplankton Phenology in a Sub-Arctic Fjord System

    NASA Astrophysics Data System (ADS)

    Dobbins, W.; Krause, J. W.; Agustí, S.; Duarte, C. M.; Schulz, I. K.; Winding, M.; Rowe, K. A.; Sejr, M.

    2017-12-01

    Bacillariophyceae (diatoms) are a significant driver of the biological pump and thus various chemical cycles in high latitude ecosystems. Diatoms have an obligate silicon requirement that has been established as a growth-limiting factor in a variety of ecosystems, and silicon availability likely plays an important role in the temporal evolution of high latitude phytoplankton blooms. However, no previous work has been done to assess the progression of this limitation across a full bloom cycle in the West Greenlandic Nuup Kangerlua fjord or equivalent systems with rapidly evolving land-sea-ice interfaces. Here we provide experimental evidence that the Nuup Kangerlua spring bloom is both diatom driven and strongly silicon constrained. Chlorophyll concentration and growth rates derived from biogenic silica measurements peaked contemporaneously; indicating diatoms were primary members of the phytoplankton assemblage. Moreover, incubation experiments revealed strong biomass increases in response to silicon additions during the bloom period. This work shows silicon availability may play a significant role in bloom phenology in the Nuup Kangerlua fjord.

  6. Baffin Island and West Greenland Current Systems in northern Baffin Bay

    NASA Astrophysics Data System (ADS)

    Münchow, Andreas; Falkner, Kelly K.; Melling, Humfrey

    2015-03-01

    Temperature, salinity, and direct velocity observations from northern Baffin Bay are presented from a summer 2003 survey. The data reveal interactions between fresh and cold Arctic waters advected southward along Baffin Island and salty and warm Atlantic waters advected northward along western Greenland. Geostrophic currents estimated from hydrography are compared to measured ocean currents above 600 m depth. The Baffin Island Current is well constrained by the geostrophic thermal wind relation, but the West Greenland Current is not. Furthermore, both currents are better described as current systems that contain multiple velocity cores and eddies. We describe a surface-intensified Baffin Island Current seaward of the continental slope off Canada and a bottom-intensified West Greenland Current over the continental slope off Greenland. Acoustic Doppler current profiler observations suggest that the West Greenland Current System advected about 3.8 ± 0.27 Sv (Sv = 106 m3 s-1) towards the north-west at this time. The most prominent features were a surface intensified coastal current advecting 0.5 Sv and a bottom intensified slope current advecting about 2.5 Sv in the same direction. Most of this north-westward circulation turned southward in the Baffin Island Current System. The Baffin Island system was transporting 5.1 ± 0.24 Sv to the south-east at the time that includes additional contributions from Nares Strait to the north (1.0 ± 0.2 Sv) and Lancaster Sound to the east (1.0 ± 0.2 Sv). Net freshwater fluxes were 72 and 187 mSv for the West Greenland and Baffin Island Currents, respectively. Empirical uncertainty arises from unknown temporal variations at weekly time scales and pertubations introduced by unresolved eddies. Eddies with 10 km horizontal and 400 m vertical scales were common and recirculated up to 1 Sv. Our 2003 observations represent conditions when the North-Atlantic Oscillation index (NAO) was close to zero. Analysis of historical hydrographic

  7. Ice-Ocean Interactions to the North-West of Greenland: Glaciers, Straits, Ice Bridges, and the Rossby Radius (Invited)

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Falkner, K. K.; Melling, H.; Johnson, H. L.; Huntley, H. S.; Ryan, P.; Friends Of Petermann

    2010-12-01

    Petermann Glacier at 81 N latitude is a major outlet glacier adjacent to Nares Strait. It terminates in a long (70 km), narrow (16 km) and thin (50 m) floating tongue and has a grounding line more than 500 m below sea level. A calving event in 2010 reduced the floating area by 25% and produced a single 240 km2 ice island currently moving south in Nares Strait where it will likely interact with island to potentially create a temporary polynya in Nares Strait. The 2010 calving from Petermann Glacier contributes <10% to its mass balance as more than 80% is lost due to basal melting by the ocean. Hence the largely unexplored physics at the ice-ocean interface determine how a changing climate impacts this outlet glacier. Conducting exploratory surveys inside Petermann Fjord in 2003, 2007, and 2009, we find a 1100 m deep fjord connected to Nares Strait via a sill at 350-450 m depth. The fjord receives about 3 times the amount of heat required for the basal melt rates. Furthermore, limited data and analytical modeling suggests a 3-dimensional circulation over the upper 300-m of the water column with a coastally trapped buoyant outflow. We integrate these findings with more complete oceanic time series data from an array moored in Nares Strait from 2003 through 2009 near 80.5 N. In the past Nares Strait and Petermann Fjord were covered by land fast sea ice during the 9-10 month long winter season. Archeological and remotely sensed records indicate that an ice bridge formed regularly at the southern end of Nares Strait creating the North-Water polynya near 79 N latitude. Since 2006 this ice bridge has largely failed to form, leading, perhaps, to the occasional formation of a secondary ice bridge 300 km to the north where Nares Strait connects to the Arctic Ocean. However, this ice bridge appears to form for shorter periods only. Consequently Arctic sea ice can now exit the Arctic in winter via pathways to the west of Greenland all year. We speculate that this changed ocean

  8. Late Holocene glacial history of Petermann Fjord, Northwest Greenland: Non-destructive CT, XRF, and magnetic results from OD1507 sediment cores

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Mix, A. C.; Jakobsson, M.; Jennings, A. E.; Walczak, M.; Dyke, L. M.; Cheseby, M.; Albert, S. W.; Wiest, J.

    2016-12-01

    An international and interdisciplinary expedition to Nares Strait and Petermann Fjord, Northwest Greenland, onboard the Swedish Icebreaker Oden July-September 2015 (OD1507) sought to understand the Holocene history of the Petermann glacial system among other research objectives. Petermann Glacier, which terminates as a floating ice-tongue in Petermann Fjord, is thought to be especially sensitive to ice-ocean interactions. While limited historical observations dating back to 1876 suggest the Petermann Ice Tongue extends about 70-90 km from the grounding-line, large calving events in 2010 and 2012 reduced the ice-tongue extent to about 45 km from the grounding-line. A suite of 14 marine sediment cores recovered a range of glacio-marine facies that form an along fjord (15-80 km from the grounding-line) and an across fjord depth (473-1041 meters water depth) transect. CT scans clearly identify four primary fjord facies, including bioturbated, IRD-rich, laminated and mud with stratified graded sand layers. The latter of these occurs near the modern grounding-line. Additionally, a new MATLAB routine is used to quantify clasts >2 mm in size from the CT scans. XRF sediment geochemical changes mirror magnetic mineral concentrations and are driven by varying contribution of Ca-rich and Ca-poor sources, which we interpret as a reflection of the mixing of the local carbonate rocks and crystalline basement excavated by the ice sheet. Initial paleomagnetic results isolate a strong and stable characteristic remanent magnetization which show remarkable similarity to paleosecular variation (PSV) recorded in nearby mid-late Holocene varved lakes on Ellesmere Island. This non-destructive dataset provides robust correlations, indicating a coherent and dynamic record of changes in the Petermann glacial system during the late Holocene, including evidence for a significant grounding-line retreat followed by the growth and relative paleo-extent of the modern Petermann Ice Tongue.

  9. What sediment plumes at tide water glaciers can tell us about fjord circulation and subglacial hydrology

    NASA Astrophysics Data System (ADS)

    Schild, K. M.; Hawley, R. L.

    2013-12-01

    Marine-terminating outlet glaciers discharge most of Greenland's mass, but the subglacial transport of meltwater is not well understood. The coincident rise in both ice velocity and surface melt during the last decade points to a possible link between the amount of surface melt, glacier velocities, and discharge rates through processes including basal lubrication and/or an increase in melt at the terminus due to discharge plume enhanced entrainment of warm ocean waters. Characterizing the response of the Greenland Ice Sheet to increasing melt is limited in part by the lack of direct observation of the subglacial system. We use ground-based observations (time lapse cameras, DMI weather stations) and satellite remote sensing (MODIS) to infer the subglacial hydrological evolution of a tidewater glacier by identifying the lag between meltwater availability, inferred from warm temperatures and supraglacial lake drainage, and the appearance of a sediment plume at the terminus. The detection of sediment plumes is constrained by melange presence in the spring and decreasing solar illumination in the fall. At Rink Isbræ, West Greenland, we find the appearance of sediment plumes lagging the onset of positive temperatures from 2007-2011 by approximately 44 days, but the plumes are present as the melange clears suggesting this lag may be much shorter but is undetectable. We also observe an abundance of sediment plumes each season (11-25 individual events), which indicates supraglacial drainage events are not the sole source for all sediment plumes. These findings suggest multiple passageways exist from the surface to the subglacial system and the presence of a well-established drainage network early in the melt season. In this poster, we will discuss potential mechanisms for the episodic nature of the recorded plume events; whether they are the product of variable subglacial water supply (suggesting the presence of pulse drainages from subglacial storage basins), highly

  10. Use of Glacial Fronts by Narwhals (Monodon monoceros) in West Greenland

    NASA Astrophysics Data System (ADS)

    Laidre, K. L.

    2015-12-01

    Glacial fronts in Greenland are known to be important summer habitat for narwhals (Monodon monoceros), as freshwater runoff and sediment discharge may aggregate prey at the terminus. We investigated the importance of glacial habitat characteristics in determining narwhal visitation. Narwhals (n=18) were instrumented with satellite transmitters in September 1993-1994 and 2006-2007 in Melville Bay, West Greenland. Daily narwhal locations were interpolated using a correlated random walk based on observed filtered locations and associated positional error. We also compiled a database on physical features of 41 glaciers along the northwest Greenland coast. This covered the entire coastal region with narwhal activity. Parameters included glacier ice velocity (km/yr) from radar satellite data, glacier front advance and retreat, and glacier width (km) at the ice-ocean interface derived using front position data digitized from 20-100m resolution radar image mosaics and Landsat imagery. We also quantified relative volumes and extent of glacial ice discharge, thickness of the glacial ice at the terminus (m), and water depth at the terminus (m) from gravity and airborne radar data, sediment flux from satellite-based analysis, and freshwater runoff from a regional atmospheric climate model (RACMO2.3). We quantified whale visits to glaciers at three distances (5, 7, and 10 km) and conducted proximity analyses on annual and monthly time steps. We estimated 1) narwhal presence or absence, 2) the number of 24 h periods spent at glaciers, and 3) the fraction of study animals that visited each glacier. The use of glacial habitat by narwhals expanded to the north and south between the 1990s (n=9 unique glaciers visited) and the 2000s (n=30 visited), likely due to loss of summer fast ice and later fall freeze-up trends (3.5 weeks later since 1979). We used a generalized linear mixed effects framework to quantify the glacier and fjord habitat characteristics preferred by narwhals.

  11. First Younger Dryas moraines in Greenland

    NASA Astrophysics Data System (ADS)

    Funder, Svend; Larsen, Nicolaj K.; Linge, Henriette; Möller, Per; Schomacker, Anders; Fabel, Derek; Kjær, Kurt H.; Xu, Sheng

    2016-04-01

    Over the Greenland ice sheet the Younger Dryas (YD) cold climate oscillation (12.9-11.7 kaBP) began with up to 10°C drop in temperatures and ended with up to 12°C abrupt warming. In the light of the present warming and melting of the ice sheet, and its importance for future climate change, the ice sheet's response to these dramatic changes in the past is of great interest. However, even though much effort has gone into charting YD ice margin behaviour around Greenland in recent years, no clear-cut signal of response to the oscillation has been uncovered. Here we show evidence to suggest that three major outlets from a local ice cap at Greenland's north coast advanced and retreated synchronously during YD. The evidence comprises OSL (optically stimulated luminescence) dates from a marine transgression of the coastal valleys that preceded the advance, and exposure ages from boulders on the moraines, formed by glaciers that overrode the marine sediment. The OSL ages suggest a maximum age of 12.4 ±0.6 kaBP for the marine incursion, and 10 exposure ages on boulders from the three moraines provide an average minimum age of 12.5 ±0.7 kaBP for the moraines, implying that the moraines were formed within the interval 11.8-13.0 kaBP. Elsewhere in Greenland evidence for readvance has been recorded in two areas. Most notably, in the East Greenland fjord zone outlet glaciers over a stretch of 800 km coast advanced through the fjords. In Scoresby Sund, where the moraines form a wide belt, an extensive 14C and exposure dating programme has shown that the readvance here probably culminated before YD, while cessation of moraine formation and rapid retreat from the moraine belt did not commence until c. 11.5 kaBP, but no moraines have so far been dated to YD. Readvance is also seen in Disko Bugt, the largest ice sheet outlet in West Greenland. However, here the advance and retreat of the ice stream took place in mid YD times, and lasted only a few hundred years, while YD in

  12. In-Situ Observations of a Subglacial Outflow Plume in a Greenland Fjord

    NASA Astrophysics Data System (ADS)

    Mankoff, K. D.; Straneo, F.; Singh, H.; Das, S. B.

    2014-12-01

    We present oceanographic observations collected in and immediately outside of a buoyant, fresh, sediment-laden subglacial outflow plume rising up the marine-terminating front of Sarqardleq Glacier, Greenland (68.9 N, 50.4 W). Subglacial outflow plumes, associated with the discharge at depth of upstream glacial surface melt, entrain the relatively warm fjord waters and are correlated with enhanced submarine melt and increased calving. Few in-situ observations exist due to the challenges of making measurements at the calving front of glaciers. Our data were collected using a small boat, a helicopter, and a JetYak (a remote-controlled jet-ski-powered kayak). Temperature and salinity profiles in, around, and far from the plume are used to described its oceanographic properties, spatial extent, and temporal variability. This plume rises vertically up the ice front expanding laterally and away from the ice, over-shoots its stable isopycnal and reaches the surface. Its surface expression is identified by colder, saltier, sediment-laden water flowing at ~5 m/s away from the ice face. Within ~300 m from the ice it submerges as it seeks buoyant stability.

  13. Phytoplankton Productivity in an Arctic Fjord (West Greenland): Estimating Electron Requirements for Carbon Fixation and Oxygen Production

    PubMed Central

    Hancke, Kasper; Dalsgaard, Tage; Sejr, Mikael Kristian; Markager, Stiig; Glud, Ronnie Nøhr

    2015-01-01

    Accurate quantification of pelagic primary production is essential for quantifying the marine carbon turnover and the energy supply to the food web. Knowing the electron requirement (Κ) for carbon (C) fixation (Κ C) and oxygen (O2) production (Κ O2), variable fluorescence has the potential to quantify primary production in microalgae, and hereby increasing spatial and temporal resolution of measurements compared to traditional methods. Here we quantify Κ C and Κ O2 through measures of Pulse Amplitude Modulated (PAM) fluorometry, C fixation and O2 production in an Arctic fjord (Godthåbsfjorden, W Greenland). Through short- (2h) and long-term (24h) experiments, rates of electron transfer (ETRPSII), C fixation and/or O2 production were quantified and compared. Absolute rates of ETR were derived by accounting for Photosystem II light absorption and spectral light composition. Two-hour incubations revealed a linear relationship between ETRPSII and gross 14C fixation (R2 = 0.81) during light-limited photosynthesis, giving a Κ C of 7.6 ± 0.6 (mean ± S.E.) mol é (mol C)−1. Diel net rates also demonstrated a linear relationship between ETRPSII and C fixation giving a Κ C of 11.2 ± 1.3 mol é (mol C)−1 (R2 = 0.86). For net O2 production the electron requirement was lower than for net C fixation giving 6.5 ± 0.9 mol é (mol O2)−1 (R2 = 0.94). This, however, still is an electron requirement 1.6 times higher than the theoretical minimum for O2 production [i.e. 4 mol é (mol O2)−1]. The discrepancy is explained by respiratory activity and non-photochemical electron requirements and the variability is discussed. In conclusion, the bio-optical method and derived electron requirement support conversion of ETR to units of C or O2, paving the road for improved spatial and temporal resolution of primary production estimates. PMID:26218096

  14. Distribution of an Acoustic Scattering Layer, Petermann Fjord, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    Heffron, E.; Mayer, L. A.; Jakobsson, M.; Hogan, K.; Jerram, K.

    2017-12-01

    The Petermann 2015 Expedition was a comprehensive paleoceanographic and paleoclimatological study of the marine-terminating Petermann Glacier and its outlet system in Northwest Greenland carried out July-August 2015. The purpose was the reconstruction of glacial history and current glacial processes in Petermann Fjord to better understand the fate of the Petermann Glacier and its floating ice tongue that acts as a critical buttressing force to the outlet glacier draining about 4% of the Greenland Ice Sheet. Seafloor mapping was a critical component of the study and an EM122 multibeam sonar was utilized for this purpose; additionally, water column data were acquired with this sonar and an EK80 split-beam echosounder. During the expedition, the mapping team noted an acoustic scattering layer in the EK80 and EM122 water column data which was observed to change depth in a spatially consistent manner that appeared to be related to location. Initial onboard processing revealed what appears to be a strong spatial coherence in the layer distribution that corresponds to our understanding of the complex circulation pattern in the study area, including inflow of warmer Atlantic waters and outflow of subglacial waters. This initial processing was limited to observations at 46 discrete locations that corresponded to CTD stations, a very small subset of the 4800 line kilometers of data collected by each sonar. Both sonars were run 24 hours per day over the 30-day expedition, providing continuous time-varying acoustic coverage of the study area. Post-cruise additional data has been processed to extract the acoustic returns from the scattering layer using a combination of commercial sonar processing software and specialized MATLAB and Python routines. 3-D surfaces have been generated from the extracted points in order to visualize the continuous spatial and temporal distribution of the scattering layer across the entire study area. Multiple crossings of the same location at

  15. High export of dissolved silica from the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Meire, L.; Meire, P.; Struyf, E.; Krawczyk, D. W.; Arendt, K. E.; Yde, J. C.; Juul Pedersen, T.; Hopwood, M. J.; Rysgaard, S.; Meysman, F. J. R.

    2016-09-01

    Silica is an essential element for marine life and plays a key role in the biogeochemistry of the ocean. Glacial activity stimulates rock weathering, generating dissolved silica that is exported to coastal areas along with meltwater. The magnitude of the dissolved silica export from large glacial areas such as the Greenland Ice Sheet is presently poorly quantified and not accounted for in global budgets. Here we present data from two fjord systems adjacent to the Greenland Ice Sheet which reveal a large export of dissolved silica by glacial meltwater relative to other macronutrients. Upscaled to the entire Greenland Ice Sheet, the export of dissolved silica equals 22 ± 10 Gmol Si yr-1. When the silicate-rich meltwater mixes with upwelled deep water, either inside or outside Greenland's fjords, primary production takes place at increased silicate to nitrate ratios. This likely stimulates the growth of diatoms relative to other phytoplankton groups.

  16. Abrupt Holocene climate change as an important factor for human migration in West Greenland

    PubMed Central

    D’Andrea, William J.; Huang, Yongsong; Fritz, Sherilyn C.; Anderson, N. John

    2011-01-01

    West Greenland has had multiple episodes of human colonization and cultural transitions over the past 4,500 y. However, the explanations for these large-scale human migrations are varied, including climatic factors, resistance to adaptation, economic marginalization, mercantile exploration, and hostile neighborhood interactions. Evaluating the potential role of climate change is complicated by the lack of quantitative paleoclimate reconstructions near settlement areas and by the relative stability of Holocene temperature derived from ice cores atop the Greenland ice sheet. Here we present high-resolution records of temperature over the past 5,600 y based on alkenone unsaturation in sediments of two lakes in West Greenland. We find that major temperature changes in the past 4,500 y occurred abruptly (within decades), and were coeval in timing with the archaeological records of settlement and abandonment of the Saqqaq, Dorset, and Norse cultures, which suggests that abrupt temperature changes profoundly impacted human civilization in the region. Temperature variations in West Greenland display an antiphased relationship to temperature changes in Ireland over centennial to millennial timescales, resembling the interannual to multidecadal temperature seesaw associated with the North Atlantic Oscillation. PMID:21628586

  17. Sensitivity of the marine-terminating margins to Holocene climate change in south and southeast Greenland

    NASA Astrophysics Data System (ADS)

    Levy, L.; Larsen, N. K.; Kjaer, K. H.; Bjork, A. A.; Kjeldsen, K. K.; Funder, S.; Kelly, M. A.; Howley, J. A.

    2016-12-01

    The marine-terminating glaciers of the Greenland Ice Sheet (GrIS) are responding rapidly to present-day climate change. More than one-third of the GrIS's discharge flows to the ocean through the marine-terminating outlet glaciers of southeastern Greenland, making it a potentially important region of the ice sheet. Documenting how these outlet glaciers have responded to longer-term past climate change (i.e. the Holocene) allows for more accurate predictions of their response to future climate changes. Here, we present 36 new 10Be ages on boulders perched on bedrock and on bedrock that record the timing of ice marginal fluctuations in several fjords in southeast and south Greenland, a region where little is known about past ice fluctuations due to its relative inaccessibility. We show that at Skjoldungen Sund (63.4N), deglaciation was rapid, beginning by 10.1 ± 0.4 ka. Deglaciation occurred concurrently at Timmiarmiut Fjord (62.7N), 100 km to the south, at 10.3 ± 0.4 ka. We suggest that this was in response to the warming ocean and air temperatures of the early Holocene. Additionally, 10Be ages on boulders perched on bedrock just distal to the historic­ moraines in Timmiarmiut Fjord date to 1.7 ± 0.1 ka, indicating the presence of a late Holocene advance prior to the Little Ice Age. In southern Greenland, deglaciation at Lindenow Fjord (60.6N), which drains the Julienhåb ice cap, occurred at 11.2 ± 0.4 ka. The ice then retreated up-fjord at a rate of 70-100 m yr-1, comparable with modern retreat rates of 30-100 m yr-1. We hypothesize that the earlier deglaciation at Lindenow Fjord by 1 ka may indicate that the Julienhåb ice cap was more sensitive to early Holocene warming than the GrIS. Additional 10Be ages from Prins Christen Fjord and near Qaqortoq are forthcoming. These new 10Be ages provide a longer-term perspective of marine-terminating outlet glacier fluctuations in Greenland and show that the ice sheet responded sensitively to Holocene climate change.

  18. Bathymetry in Petermann fjord from Operation IceBridge aerogravity

    NASA Astrophysics Data System (ADS)

    Tinto, Kirsty J.; Bell, Robin E.; Cochran, James R.; Münchow, Andreas

    2015-07-01

    Petermann Glacier is a major glacier in northern Greenland, maintaining one of the few remaining floating ice tongues in Greenland. Monitoring programs, such as NASA's Operation IceBridge have surveyed Petermann Glacier over several decades and have found it to be stable in terms of mass balance, velocity and grounding-line position. The future vulnerability of this large glacier to changing ocean temperatures and climate depends on the ocean-ice interactions beneath its floating tongue. These cannot currently be predicted due to a lack of knowledge of the bathymetry underneath the ice tongue. Here we use aerogravity data from Operation IceBridge, together with airborne radar and laser data and shipborne bathymetry-soundings to model the bathymetry beneath the Petermann ice tongue. We find a basement-cored inner sill at 540-610 m depth that results in a water cavity with minimum thickness of 400 m about 25 km from the grounding line. The sill is coincident with the location of the melt rate minimum. Seaward of the sill the fjord is strongly asymmetric. The deepest point occurs on the eastern side of the fjord at 1150 m, 600 m deeper than on the western side. This asymmetry is due to a sedimentary deposit on the western side of the fjord. A 350-410 m-deep outer sill, also mapped by marine surveys, marks the seaward end of the fjord. This outer sill is aligned with the proposed Last Glacial Maximum (LGM) grounding-line position for Petermann Glacier. The inner sill likely provided a stable pinning point for the grounding line in the past, punctuating the retreat of Petermann Glacier since the LGM.

  19. Greenland as seen by the STS-66 shuttle Atlantis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This north-looking view of southwestern Greenland was taken in November, 1994, and shows numerous indentations, many of which contain small settlements. These fjords were carved by the glaciers of the last ice age 10,000 years ago. Even today, the ice in the center of Greenland is nearly 3,500 meters (11,000 feet) thick and great rivers of ice continuously flow down toward the sea, where they melt or break off as icebergs. Some Icebergs exceed the size of small islands, weigh several million tons, and rise several hundred feet above the sea surface. Cape Farewell is visible toward the bottom right of the view. Julianehab Bay and the Bredev fjord can be seen toward the center of the photograph. Godthab, the main settlement on Greenland, is barely visible to the north of the Frederikeshabs Icefield near the left center of the view.

  20. Greenland as seen by the STS-66 shuttle Atlantis

    NASA Image and Video Library

    1994-11-14

    This north-looking view of southwestern Greenland was taken in November, 1994, and shows numerous indentations, many of which contain small settlements. These fjords were carved by the glaciers of the last ice age 10,000 years ago. Even today, the ice in the center of Greenland is nearly 3,500 meters (11,000 feet) thick and great rivers of ice continuously flow down toward the sea, where they melt or break off as icebergs. Some Icebergs exceed the size of small islands, weigh several million tons, and rise several hundred feet above the sea surface. Cape Farewell is visible toward the bottom right of the view. Julianehab Bay and the Bredev fjord can be seen toward the center of the photograph. Godthab, the main settlement on Greenland, is barely visible to the north of the Frederikeshabs Icefield near the left center of the view.

  1. Using Icebergs to Constrain Fjord Circulation and Link to Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Sutherland, D.; Straneo, F.; Hamilton, G. S.; Stearns, L. A.; Roth, G.

    2014-12-01

    The importance of icebergs is increasingly being recognized in the ocean-glacier interactions community. Icebergs are ubiquitous in Greenland's outlet glacial fjords and provide a physical link between the glacier and the ocean into which they melt. The iceberg shape is influenced by glacier size and calving mechanics, while the amount of melt produced depends on ambient water properties and the residence time of the iceberg in the fjord. Here, we use hourly positions of icebergs tracked with helicopter deployed GPS sensors to calculate velocities in the Sermilik Fjord/Helheim Glacier system. Data comes from three summertime deployments in 2012-2014, where icebergs were tagged in the ice mélange and moved through the fjord and onto the continental shelf. The iceberg-derived velocities provide information on ice mélange movement, fjord variability, and coastal currents on the shelf. Using simple melt rate parameterizations, we estimate the total freshwater input due to iceberg melt in Sermilik Fjord based on the observed residence times and satellite-derived iceberg distributions. These observations complement conventional oceanographic and glaciological data, and can quickly, and relatively inexpensively, characterize circulation throughout any given glacier-ocean system.

  2. Recent oxygen depletion and benthic faunal change in shallow areas of Sannäs Fjord, Swedish west coast

    NASA Astrophysics Data System (ADS)

    Nordberg, Kjell; Polovodova Asteman, Irina; Gallagher, Timothy M.; Robijn, Ardo

    2017-09-01

    Sannäs Fjord is a shallow fjord (< 32 m w.d.) with a sill depth of 8 m, located at the Swedish west coast of the Skagerrak (North Sea). The anthropogenic impact on the fjord represents combination of sewage from the local village of Sannäs and land run-off from agricultural areas. Sewage impact has been reduced since 1991 and today the fjord is included into several nature conservation programs administrated by the European Union. Yet, observations during the summers of 2008-2011 show that the shallow inner fjord inlet experiences severe oxygen depletion at 5-12 m water depth. To explore if the oxygen depletion is only a recent phenomenon and to evaluate the potential of fjord sediments to archive such environmental changes, in 2008 and 2009 seven sediment cores were taken along a transect oriented lengthwise in the fjord. The cores were analysed for organic carbon, C/N, benthic foraminifera and lead pollution records (as relative age marker). Carbon content increases in most of the cores since the 1970-80s, while C/N ratio decreases from the core base upward since 1995. Foraminiferal assemblages in most core stratigraphies are dominated by agglutinated species. Calcareous species (mainly elphidiids) have become dominant in the upper part of the records since the late 1990s or 2000 (the inner fjord and the deepest basin) and since the 1950-70s (the outer fjord). In the inner Sannäs Fjord, an increase of agglutinated foraminiferal species (e.g. Eggerelloides scaber) and organic inner linings occurred since the 1970s, suggesting an intensification of taphonomic processes affecting postmortem calcareous shell preservation. A study of living vs. dead foraminiferal assemblages undertaken during June-August 2013 demonstrates that in the shallow inner fjord, strong carbonate dissolution occurs within 1-3 months following the foraminiferal growth. The dissolution is linked to corrosive conditions present within the sediment - bottom water interface, and is likely caused

  3. Oceanic Transport of Surface Meltwater from the Southern Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.

    2016-01-01

    The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamic1 and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.

  4. New constraints on the deglaciation chronology of the southeastern margin of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Levy, L.; Larsen, N. K.; Kjaer, K. H.; Bjork, A. A.; Kjeldsen, K. K.; Funder, S.; Kelly, M. A.; Howley, J. A.; Zimmerman, S. R. H.

    2015-12-01

    The Greenland Ice Sheet (GrIS) is responding rapidly to climate change. Marine terminating outlet glaciers that drain the GrIS have responded especially sensitively to present-day climate change by accelerating, thinning and retreating. In southeastern Greenland several outlet glaciers are undergoing rapid changes in mass balance and ice dynamics. To improve our understanding of the future, long-term response of these marine-terminating outlet glaciers to climate change, we focus on the response of three outlet glaciers to climate change since the Last Glacial Maximum. The timing and rates of late-glacial and early Holocene deglaciation of the southeastern sector of the GrIS are relatively unconstrained due to the inaccessibility of the region. Using a helicopter and a sailboat, we collected samples for 10Be surface exposure dating from three fjords in southeastern Greenland: Skjoldungen (63.4N), Uvtorsiutit (62.7N), and Lindenow (60.6N). These fjords drain marine terminating glaciers of the GrIS. Here we present 18 new 10Be ages from ~50 km long transects along these fjords that mark the timing of deglaciation from the outer coast inland to the present-day GrIS margin. Together with previously constrained deglaciation chronologies from Bernstorffs, Sermilik, and Kangerdlussuaq fjords in southeastern Greenland, these new chronologies offer insight into the late-glacial and early Holocene dynamics of the southeastern GrIS outlet glaciers. We compare the timing and rate of deglaciation in southeastern Greenland to climate records from the region to examine the mechanisms that drove deglaciation during late-glacial and early Holocene time. These new 10Be ages provide a longer-term perspective of marine terminating outlet glacier fluctuations in southeastern Greenland and can be used to model the ice sheet's response to late-glacial and early Holocene climate changes.

  5. Chapter 41: Geology and petroleum potential of the West Greenland-East Canada Province

    USGS Publications Warehouse

    Schenk, C.J.

    2011-01-01

    The US Geological Survey (USGS) assessed the potential for undiscovered oil and gas resources of the West Greenland-East Canada Province as part of the USGS Circum-Arctic Resource Appraisal programme. The province lies in the offshore area between western Greenland and eastern Canada and includes Baffin Bay, Davis Strait, Lancaster Sound and Nares Strait west of and including part of Kane Basin. A series of major tectonic events led to the formation of several distinct structural domains that are the geological basis for defining five assessment units (AU) in the province, all of which are within the Mesozoic-Cenozoic Composite Petroleum System. Potential petroleum source rocks include strata of Ordovician, Lower and Upper Cretaceous, and Palaeogene ages. The five AUs defined for this study - the Eurekan Structures AU, NW Greenland Rifted Margin AU, NE Canada Rifted Margin AU, Baffin Bay Basin AU and the Greater Ungava Fault Zone AU - encompass the entire province and were assessed for undiscovered technically recoverable resources. The mean volumes of undiscovered resources for the West Greenland-East Canada Province are 10.7 ?? 109 barrels of oil, 75 ?? 1012 cubic feet of gas, and 1.7 ?? 109 barrels of natural gas liquids. For the part of the province that is north of the Arctic Circle, the estimated mean volumes of these undiscovered resources are 7.3 ?? 109 barrels of oil, 52 ?? 1012 cubic feet of natural gas, and 1.1 ?? 109 barrels of natural gas liquids. ?? 2011 The Geological Society of London.

  6. Oxic to anoxic transition in bottom waters during formation of the Citronen Fjord sediment-hosted Zn-Pb deposit, North Greenland

    USGS Publications Warehouse

    Slack, John F.; Rosa, Diogo; Falck, Hendrik

    2015-01-01

    Bulk geochemical data acquired for host sedimentary rocks to the Late Ordovician Citronen Fjord sediment-hosted Zn-Pb deposit in North Greenland constrain the redox state of bottom waters prior to and during sulphide mineralization. Downhole profiles for one drill core show trends for redox proxies (MnO, Mo, Ce anomalies) that suggest the local basin bottom waters were initially oxic, changing to anoxic and locally sulphidic concurrent with sulphide mineralization. We propose that this major redox change was caused by two broadly coeval processes (1) emplacement of debris-flow conglomerates that sealed off the basin from oxic seawater, and (2) venting of reduced hydrothermal fluids into the basin. Both processes may have increased H2S in bottom waters and thus prevented the oxidation of sulphides on the sea floor.

  7. Measurement campaign for wind power potential in west Greenland

    NASA Astrophysics Data System (ADS)

    Rønnow Jakobsen, Kasper

    2013-04-01

    Experiences and results from a wind resource exploring campaign 2003- in west Greenland. Like many other countries, Greenland is trying to reduce its dependency of fossil fuel by implementing renewable energy. The main challenge is that the people live on the coast in scattered settlements, without power infrastructure. Based on this a wind power potential project was established in 2002, funded by the Greenlandic government and the Technical University of Denmark. We present results and experiences of the campaign. 1 Field campaign There were only a few climate stations in or close to settlements and due to their positioning and instrumentation, they were not usable for wind resource estimation. To establish met stations in Arctic areas with complex topography, there are some challenges to face; mast positioning in complex terrain, severe weather conditions, instrumentation, data handling, installation and maintenance budget. The terrain in the ice free and populated part, mainly consists of mountains of different heights and shapes, separated by deep fjords going from the ice cap to the sea. With a generally low wind resource the focus was on the most exposed positions close to the settlements. Data from the nearest existing climate stations was studied for background estimations of predominant wind directions and extreme wind speeds, and based on that the first 10m masts were erected in 2003. 2 Instruments The first installations used standard NRG systems with low cost NRG instruments. For most of the sites this low cost setup did a good job, but there were some problems with the first design, including instrument and boom strains. In subsequent years, the systems were updated several times to be able to operate in the extreme conditions. Different types of instruments, data logger and boom systems were tested to get better data quality and reliability. Today 11 stations with heights ranging from 10-50m are installed and equipped according to the IEC standard

  8. Vulnerability of Southeast Greenland Glaciers to Warm Atlantic Water From Operation IceBridge and Ocean Melting Greenland Data

    NASA Astrophysics Data System (ADS)

    Millan, R.; Rignot, E.; Mouginot, J.; Wood, M.; Bjørk, A. A.; Morlighem, M.

    2018-03-01

    We employ National Aeronautics and Space Administration (NASA)'s Operation IceBridge high-resolution airborne gravity from 2016, NASA's Ocean Melting Greenland bathymetry from 2015, ice thickness from Operation IceBridge from 2010 to 2015, and BedMachine v3 to analyze 20 major southeast Greenland glaciers. The results reveal glacial fjords several hundreds of meters deeper than previously thought; the full extent of the marine-based portions of the glaciers; deep troughs enabling warm, salty Atlantic Water (AW) to reach the glacier fronts and melt them from below; and few shallow sills that limit the access of AW. The new oceanographic and topographic data help to fully resolve the complex pattern of historical ice front positions from the 1930s to 2017: glaciers exposed to AW and resting on retrograde beds have retreated rapidly, while glaciers perched on shallow sills or standing in colder waters or with major sills in the fjords have remained stable.

  9. Novel Measurements and Techniques for Outlet Glacier Fjord Ice/Ocean Interactions

    NASA Astrophysics Data System (ADS)

    Behar, A.; Howat, I. M.; Holland, D. M.; Ahlstrom, A. P.; Larsen, S. H.

    2014-12-01

    Glacier fjord bathymetry and conditions indicate that they play fundamental roles for outlet glacier dynamics and thus knowledge of these parameters is extremely beneficial to upcoming models that predict changes. In particular, the bathymetry of a fjord gives important information about the exchange between fjord waters close to marine-terminating glaciers and the shelf and ocean. Currently, only sparse bathymetric data near the ice fronts are available for the majority of fjords in Greenland. The challenge in obtaining these measurements is that the fjord melange environment is a terrible one for mechanical gear, or ship or any other kind of access. There is hope however, and this work focuses on novel ways of obtaining this data using a multitude of upcoming technologies and techniques that are now being tested and planned. The span of the techniques described include but are not limited to: 1) manned helicopter-based live-reading instruments and deployable/retriavable sensor packages http://www.motionterra.com/fjord/ 2) remote or autonomous unmanned miniature boats (Depth/CTD), and 3) UAV's that either read live data or deploy small sensors that can telemeter their data (ice-flow trackers, image acquisition, etc.). A review of current results obtained at Jakobshavn and Upernavik Glaciers will be given as well as a description of the techniques and hardware used.

  10. When Does the Warmest Water Reach Greenland?

    NASA Astrophysics Data System (ADS)

    Grist, J. P.; Josey, S. A.; Boehme, L.; Meredith, M. P.; Laidre, K. L.; Heide-Jørgensen, M. P.; Kovacs, K. M.; Lydersen, C.; Davidson, F. J. M.; Stenson, G. B.; Hammill, M. O.; Marsh, R.; Coward, A.

    2016-02-01

    The warmest water reaching the east and west coast of Greenland is found between 200 and 600 m, in the warm Atlantic Water Layer (WL). Temperature changes within the WL have been highlighted as a possible cause of accelerated melting of tidewater glaciers and therefore are an important consideration for understanding global sea level rise. However, a limited number of winter observations of the WL have prohibited determining its seasonal variability. To address this, temperature data from Argo profiling floats, a range of sources within the World Ocean Database, and unprecedented coverage from marine-mammal borne sensors have been analyzed for the period 2002-2011. A significant seasonal range in temperature ( 1-2°C) is found in the warm layer, in contrast to most of the surrounding ocean. The magnitude of the seasonal cycle is thus comparable with the 1990s warming that was associated with an increased melt rate in a marine terminating glacier of West Greenland. The phase of the seasonal cycle exhibits considerable spatial variability; with high-resolution ocean model trajectory analysis suggesting it is determined by the time taken for waters to be advected from the subduction site in the Irminger Basin. For western Greenland, the annual temperature maximum occurs near or after the turn of the calendar year. This is significant because a recent study suggested that it is in the non-summer months when fjord-shelf exchanges allow the WL to most strongly influence glacier melt rate. However this is also the time of the year when the WL is least well observed. It is therefore clear that year-round subsurface temperature measurements are still required for a complete description of the WL seasonality, and in particular to ensure that the ice-melting potential of the WL is not underestimated.

  11. Pathways of Petermann Glacier meltwater, Greenland

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline; Wåhlin, Anna; Johnson, Helen; Münchow, Andreas

    2016-04-01

    Radar and satellite observations suggest that the floating ice shelf of Petermann Glacier loses up to 80% of its mass through basal melting, caused by the intrusion of warm Atlantic Water into the fjord and under the ice shelf. The fate of Petermann's glacial meltwater is still largely unknown. It is investigated here, using hydrographic observations collected during a research cruise on board I/B Oden in August 2015. Two methods are used to detect the meltwater from Petermann: a mathematical one that provides the concentration of ice shelf meltwater, and a geometrical one to distinguish the meltwater from Petermann and the meltwater from other ice shelves. The meltwater from Petermann mostly circulates on the north side of the fjord. At the sill, 0.5 mSv of meltwater leave the fjord, mostly on the northeastern side between 100 and 350 m depth, but also in the central channel, albeit with a lesser concentration. Meltwater from Petermann is found in all the casts in Hall Basin, notably north of the sill by Greenland coast. The geometrical method reveals that the casts closest to the Canadian side mostly contain meltwater from other, unidentified glaciers. As Atlantic Water warms up, it is key to monitor Greenland melting glaciers and track their meltwater to properly assess their impact on the ocean circulation and sea level rise.

  12. Atlantic water variability on the SE Greenland continental shelf and its relationship to SST

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Straneo, F.; Rosing-Asvid, A.; Stenson, G.; Davidson, F. J.; Hammill, M.

    2012-12-01

    Interaction of warm, Atlantic-origin water (AW) and colder, polar origin water (PW) advecting southward in the East Greenland Current (EGC) influences the heat content of water entering Greenland's outlet glacial fjords. Here we use depth and temperature data derived from deep-diving seals to map out water mass variability across the continental shelf and to augment existing bathymetric products. We find two dominant modes in the vertical temperature structure: a cold mode, with the typical AW/PW layering observed in the EGC, and a warm mode, where AW is present throughout the water column. The prevalence of these modes varies seasonally and spatially across the continental shelf, implying distinct AW pathways. In addition, we find that satellite sea surface temperatures (SST) correlate significantly with temperatures in the upper 50 m (R=0.54), but this correlation decreases with depth (R=0.22 at 200 m), and becomes insignificant below 250 m. Thus, care must be taken in using SST as a proxy for heat content, as AW mainly resides in these deeper layers. Regional map showing the location of all seal tracks originating from Canada and Greenland (stars). Tracks passing inside (red) or outside (blue) the SE Greenland region (black) were subdivided into continental shelf regions (green boxes) near Sermilik Fjord (SF), Cape Farewell (CF) and Kangerdlugssuaq Fjord (KG). GEBCO bathymetry is contoured at 200, 1000, 2000, and 3000 m.

  13. TopoGreenland: crustal structure in central-eastern Greenland along a new refraction profile

    NASA Astrophysics Data System (ADS)

    Shulgin, Alexey; Thybo, Hans; Field Team TopoGreenland

    2013-04-01

    We present the seismic structure in the interior of Greenland based on the first measurements by the seismic refraction/wide angle reflection method. Previous seismic surveys have only been carried out offshore and near the coast of Greenland, where the crustal structure is affected by oceanic break-up and may not be representative of the interior of the island. Acquisition of geophysical data in onshore Greenland is logistically complicated by the presence of an up to 3.4 km thick ice sheet, permanently covering most of the land mass. The seismic data was acquired by a team of six people during a two-month long experiment in summer of 2011 on the ice cap in the interior of central-eastern Greenland. The EW-trending profile extends 310 km inland from the approximate edge of the stable ice cap near Scoresby Sund across the center of the ice cap. The planned extension of the profile by use of OBSs and air gun shooting in Scoresbysund Fjord to the east coast of Greenland was unfortunately canceled, because navigation was prevented by ice drift. 350 Reftek Texan receivers recorded high-quality seismic data from 8 equidistant shots along the profile. Explosive charge sizes were 1 ton at the ends and ca. 500 kg along the profile, loaded with about 125 kg at 35-85 m depth in individual boreholes. Two-dimensional velocity model based on tomographic inversion and forward ray tracing modeling shows a decrease of crustal thickness from 47 km below the center of Greenland in the western part to 40 km in the eastern part of the profile. Earlier studies show that crustal thickness further decreases eastward to ca. 30 km below the fjord system, but details of the changes are unknown. Relatively high lower crustal velocities (Vp 6.8 - 7.3) in the western part of the TopoGreenland profile may indicate past collision tectonics or may be related or to the passage of the Iceland mantle plume. The origin of the pronounced circum-Atlantic mountain ranges in Norway and eastern Greenland

  14. Measurement of spectral sea ice albedo at Qaanaaq fjord in northwest Greenland

    NASA Astrophysics Data System (ADS)

    Tanikawa, T.

    2017-12-01

    The spectral albedos of sea ice were measured at Qaanaaq fjord in northwest Greenland. Spectral measurements were conducted for sea ice covered with snow and sea ice without snow where snow was artificially removed around measurement point. Thickness of the sea ice was approximately 1.3 m with 5 cm of snow over the sea ice. The measurements show that the spectral albedos of the sea ice with snow were lower than those of natural pure snow especially in the visible regions though the spectral shapes were similar to each other. This is because the spectral albedos in the visible region have information of not only the snow but also the sea ice under the snow. The spectral albedos of the sea ice without the snow were approximately 0.4 - 0.5 in the visible region, 0.05-0.25 in the near-infrared region and almost constant of approximately 0.05 in the region of 1500 - 2500 nm. In the visible region, it would be due to multiple scattering by an air bubble within the sea ice. In contrast, in the near-infrared and shortwave infrared wavelengths, surface reflection at the sea ice surface would be dominant. Since a light absorption by the ice in these regions is relatively strong comparing to the visible region, the light could not be penetrated deeply within the sea ice, resulting that surface reflection based on Fresnel reflection would be dominant. In this presentation we also show the results of comparison between the radiative transfer calculation and spectral measurement data.

  15. The Subglacial Access and Fast Ice Research Experiment - SAFIRE - on Store Glacier, West Greenland

    NASA Astrophysics Data System (ADS)

    Christoffersen, P.; Hubbard, B. P.; Doyle, S. H.; Young, T. J.; Hofstede, C. M.; Bougamont, M. H.; Todd, J.; Toberg, N.; Nicholls, K. W.; Box, J.; Walter, J. I.; Hubbard, A.

    2015-12-01

    Marine-terminating outlet glaciers drain 90 percent of the Greenland Ice Sheet and are responsible for about half of the ice sheet's net annual mass loss, which currently raises global sea level by 1 mm per year. The basal controls on these fast-flowing glaciers are, however, poorly understood, with the implication that numerical ice sheet models needed to predict future dynamic ice loss from Greenland relies on uncertain and often untested basal parameterizations. The Subglacial Access and Fast Ice Research Experiment - SAFIRE - is addressing this paucity of observational constraints by drilling to the bed of Store Glacier, a fast-flowing outlet glacier terminating in Uummannaq Fjord, West Greenland. In 2014, we gained access to the bed in four boreholes drilled to depths of 603-616 m near the center of the glacier, 30 km inland from the calving terminus where ice flows at a rate of 700 m/year. A seismic survey showed the glacier bed to consist of water-saturated, soft sediment. The water level in all four boreholes nevertheless dropped rapidly to 80 m below the ice surface when the drill connected with a basal water system, indicating effective drainage over a sedimentary bed. We were able to install wired sensor strings at the bed (water pressure, temperature, electrical conductivity and turbidity) and within the glacier (temperature and tilt) in three boreholes. The sensors operated for up to 80+ days before cables stretched and ultimately snapped due to high internal strain. The data collected during this sensor deployment show ice as cold as -21 degrees Celcius; yet, temperature of water in the basal water system was persistently above the local freezing point. With diurnal variations detected in several sensor records, we hypothesise that surface water lubricates the ice flow while also warming basal ice. The fast basal motion of Store Glacier not only occurs by basal sliding, but from high rates of concentrated strain in the bottom third of the glacier

  16. Modelling the ocean circulation on the West Greenland shelf with special emphasis on northern shrimp recruitment

    NASA Astrophysics Data System (ADS)

    Hvid Ribergaard, Mads; Anker Pedersen, Søren; Ådlandsvik, Bjørn; Kliem, Nicolai

    2004-08-01

    The ocean circulation on the West Greenland shelf are modelled using a 3D finite element circulation model forced by wind data from the Danish Meteorological Institute-High-Resolution Limited Area Model operational atmospheric model for the Greenland area and tides at the open boundary. Residual anticyclonic eddies are generated around the shelf banks north of 64∘N and areas of permanent upwelling are located west of the shelf banks. The potential distances of shrimp larvae transport from larval release to settling at the bottom were studied, using a particle-tracking model. Particles released (hatched shrimp larvae) south of 62∘N had a probability of about 2% of being lost to the Canadian Shelf, whereas for particles released north of 64∘N almost none were lost from the West Greenland Shelf. The particles tended to have long retention times at the shelf banks caused by the residual anticyclonic eddies. The retention times increased slightly for particles tracked at depths from 80 to 30 m with minor implications for potential transport distances of larval shrimp and plankton.

  17. Long-term dynamics of a tidewater outlet glacier in West Greenland and its relation to external forcing

    NASA Astrophysics Data System (ADS)

    Vieli, Andreas; Luethi, Martin; Moreau, Luc; Reisser, Moritz; Ian, Joughin

    2015-04-01

    Dynamic changes of ocean-terminating outlet glaciers such as terminus retreat and flow acceleration are responsible for about half of the current mass loss of the Greenland ice sheet. Although these changes seem related to the general warming in recent decades, the detailed link between external forcing from the atmosphere and/or ocean and glacier response is not well understood. Further, existing observations of tidewater outlet glacier change also show strong temporal fluctuations and are mostly limited to the last two decades of satellite observations. It is therefore difficult to derive and interpret long-term trends in outlet glacier change which is relevant in the context of century scale predictions. Here we present and analyse a detailed long-term record of flow and geometry evolution of Eqi Sermia, a ocean terminating outlet glacier in West Greenland. This record starts in 1912 and has, due to its proximity to the main access route for early expeditions to the ice sheet, a decadal and smaller resolution. This historic record is supplemented by data from satellites and ground based radar interferometry for deriving front positions and flow velocities in the two recent decades. The front and flow speed of Eqi Sermia was more or less stable between 1912 with aslow retreat phase between 1920 to the 1960, followed by a slight readvance in the 1980s. In 2007 the terminus started to retreat very rapidly, retreated 3 km since and in a step wise fashion and almost quadrupled its flow speed at the terminus. A comparison with surface mass balance and temperature records suggests a close relation of the long-term evolution of Egi Sermia to atmospheric forcing rather than oceanic, perhaps reflecting the relatively shallow fjord depths. In contrast, the recent rapid retreat and acceleration may be due to a changing regime in the calving process and geometric effects.

  18. Increased ocean-induced melting triggers glacier retreat in northwest and southeast Greenland

    NASA Astrophysics Data System (ADS)

    Wood, M.; Rignot, E. J.; Fenty, I. G.; Menemenlis, D.; Millan, R.; Morlighem, M.; Mouginot, J.

    2017-12-01

    Over the past 30 years, the tidewater glaciers of northwest, central west, and southeast Greenland have exhibited widespread retreat, yet we observe different behaviors from one glacier to the next, sometimes within the same fjord. This retreat has been synchronous with oceanic warming in Baffin Bay and the Irminger Sea. Here, we estimate the ocean-induced melt rate of marine-terminating glaciers in these sectors of the Greenland Ice Sheet using simulations from the MITgcm ocean model for various water depths, ocean thermal forcing (TF) and subglacial water fluxes (SG). We use water depth from Ocean Melting Greenland (OMG) bathymetry and inverted airborne gravity, ocean thermal forcing from the Estimating the Circulation and Climate of the Ocean (Phase II, ECCO2) combined with CTD data from 2012 and 2015, and time series of subglacial water flux combining runoff production from the 1-km Regional Atmospheric Climate Model (RACMO2.3) with basal melt beneath land ice from the JPL/UCI ISSM model. Time series of melt rates are formed as a function of grounding line depth, SG flux and TF. We compare the results with the history of ice velocity and ice front retreat to quantify the impact of ice melt by the ocean over past three decades. We find that the timing of ice front retreat coincides with enhanced ocean-induced melt and that abrupt retreat is induced when additional ablation exceeds the magnitude of natural seasonal variations of the glacier front. Sverdrup Gletscher, Umiamako Isbrae, and the northern branch Puisortoq Gletscher in northwest, central west, and southwest Greenland, respectively, began multi-kilometer retreats coincident with ocean warming and enhanced melt. Limited retreat is observed where the bathymetry is shallow, on a prograde slope or glacier is stuck on a sill, e.g. Ussing Braeer in the northwest, Sermeq Avannarleq in central west, and Skinfaxe Gletscher in the southeast. These results illustrate the sensitivity of glaciers to changes in

  19. On the impact of fjord geometry on grounding line stability

    NASA Astrophysics Data System (ADS)

    Åkesson, H.; Nick, F. M.; Morlighem, M.; Nisancioglu, K. H.

    2016-12-01

    Observations and reconstructions of Antarctic and Greenland marine-terminating glaciers and their grounding lines show that their response to external forcings is highly dependent on the geometry of individual glaciers, such as fjord geometry. While recent retreat of these glaciers is broadly consistent with warmer atmospheric and oceanic conditions, we observe considerable spatial and temporal variability, with diverse glacier behavior within the same regions. The relatively short observational record of marine-terminating glaciers also needs to be placed in a long-term context. Reconstructions of marine-terminating glaciers, however, indicate highly asynchronous retreat histories despite being subject to similar climatic forcings. These lines of evidence suggest that regional climate forcing alone cannot explain marine-terminating glacier behavior, and that these glaciers cannot be used uncritically as indicators of past climates because of their heterogeneous response to climate change. Here we use a dynamic flowline model with a physical treatment of iceberg calving to assess the effect of fjord geometry on grounding line stability on decadal and longer time scales. The model includes driving and resistive stresses of ice flow and is applied to idealized fjord geometries representing different real-world glaciers. We find that the geometry can override the signal from the ambient forcing over multiple centuries, resulting in non-linear, rapid grounding line migration. In particular we highlight the importance of fjord width, which has received relatively little attention in terms of marine ice sheet instability. Our findings provide new insights into grounding line behavior and may explain some of the documented heterogeneous, asynchronous patterns of marine-terminating glaciers in Greenland, Antarctica, Alaska and elsewhere. Further, we investigate the geometric influence on the reversibility and hysteresis of grounding line migration, relevant for oscillatory

  20. Greenland iceberg melt variability from high-resolution satellite observations

    NASA Astrophysics Data System (ADS)

    Enderlin, Ellyn M.; Carrigan, Caroline J.; Kochtitzky, William H.; Cuadros, Alexandra; Moon, Twila; Hamilton, Gordon S.

    2018-02-01

    Iceberg discharge from the Greenland Ice Sheet accounts for up to half of the freshwater flux to surrounding fjords and ocean basins, yet the spatial distribution of iceberg meltwater fluxes is poorly understood. One of the primary limitations for mapping iceberg meltwater fluxes, and changes over time, is the dearth of iceberg submarine melt rate estimates. Here we use a remote sensing approach to estimate submarine melt rates during 2011-2016 for 637 icebergs discharged from seven marine-terminating glaciers fringing the Greenland Ice Sheet. We find that spatial variations in iceberg melt rates generally follow expected patterns based on hydrographic observations, including a decrease in melt rate with latitude and an increase in melt rate with iceberg draft. However, we find no longitudinal variations in melt rates within individual fjords. We do not resolve coherent seasonal to interannual patterns in melt rates across all study sites, though we attribute a 4-fold melt rate increase from March to April 2011 near Jakobshavn Isbræ to fjord circulation changes induced by the seasonal onset of iceberg calving. Overall, our results suggest that remotely sensed iceberg melt rates can be used to characterize spatial and temporal variations in oceanic forcing near often inaccessible marine-terminating glaciers.

  1. The Influence of Subglacial Hydrology on Arctic Tidewater Glaciers and Fjords

    NASA Astrophysics Data System (ADS)

    Schild, Kristin M.

    Mass loss from the Greenland Ice Sheet has accelerated throughout the last decade, predominantly due to a quadrupling of ice discharge by iceberg calving, submarine melting, and meltwater runoff at marine-terminating outlet glaciers. The recent acceleration has been linked to the transport of increasing amounts of meltwater, fuelled by warming temperatures. These processes include enhanced basal sliding, inefficient subglacial drainage networks, and a warming of ocean waters in contact with the glacier terminus. Understanding the impact of meltwater on tidewater glacier dynamics, both subglacially and proglacially, is a key component in predicting glacier health and future sea level rise. However, the spatial and temporal magnitude of this meltwater impact is poorly understood. The goals of this dissertation are to identify how meltwater travels subglacially through a tidewater glacier system, establish a method to monitor tidewater glacier discharge remotely, and calculate the impact of subglacial discharge on terminus stability.. The inaccessibility of subglacial and terminus environments prohibits direct hydrological observations. We use combinations of remote sensing, reanalysis models, and in situ fjord data to accomplish these research goals by measuring indicators of subglacial meltwater discharge and fjord circulation (sediment plumes exiting the terminus and the movement of small icebergs in the fjord). By monitoring the timing and duration of plumes exiting a fast-flowing Greenland tidewater glacier, we found short-term variability in meltwater discharge, persistent subglacial pathways, and evidence of over-winter subglacial storage. Using glaciers in Svalbard, we established a new method to determine sediment concentration from Landsat-8 spectral reflectance, and used this sediment concentration to quantify relative seasonal meltwater discharge at tidewater glaciers. Finally, we used the movement of icebergs and ocean temperatures to establish a terminus

  2. Geologic Assessment of Undiscovered Oil and Gas Resources of the West Greenland-East Canada Province

    USGS Publications Warehouse

    Schenk, Christopher J.

    2010-01-01

    The U.S. Geological Survey (USGS) recently assessed the potential for undiscovered oil and gas resources of the West Greenland-East Canada Province as part of the USGS Circum-Arctic Resource Appraisal program. The province lies in the offshore area between western Greenland and eastern Canada and includes Baffin Bay, Davis Strait, Lancaster Sound, and Nares Strait west of and including part of Kane Basin. A series of major tectonic events led to the formation of several distinct structural domains that are the geologic basis for defining five assessment units (AU) in the province, all of which are within the Mesozoic-Cenozoic Composite Total Petroleum System (TPS). Potential petroleum source rocks within the TPS include strata of Ordovician, Early and Late Cretaceous, and Paleogene ages. The five AUs defined for this study-the Eurekan Structures AU, Northwest Greenland Rifted Margin AU, Northeast Canada Rifted Margin AU, Baffin Bay Basin AU, and the Greater Ungava Fault Zone AU-encompass the entire province and were assessed for undiscovered, technically recoverable resources.

  3. Nuuk, Greenland

    NASA Image and Video Library

    2008-05-23

    Nuuk or Gadthab is the capital and largest city of Greenland. It is located at the mouth of the Nuup Kangerlua inlet on the west coast of Greenland. This image was acquired August 2, 2004 by NASA Terra spacecraft.

  4. Working With Greenlandic Fishermen: A New Approach to Citizen Science

    NASA Astrophysics Data System (ADS)

    Turrin, M.; Porter, D. F.; Greve, S.

    2014-12-01

    'Leveraging Local Knowledge to Measure Greenland Fjords' is a science project designed with local knowledge sharing and data collection at its core. Citizen Science can take many different forms but in each instance it incorporates active participation of the general public in science research through integrating outreach, instruction, information gathering and data exchange. The strongest projects focus on two-way information exchange with both the citizen scientist and the professional scientist learning when they share their knowledge. Working in cooperation with both teachers and fishermen in a small local community in northwest Greenland, we collected novel oceanographic measurements from a small 5 m fishing boat in the local fjord. We established connections with the local school for developing education initiatives, sharing maps and other resources, and worked through the teachers to connect with the village residents. We hosted a community meeting to provide a forum for a two-way information exchange with the science team providing background on the research project and the local residents providing both narrative information on local environmental change over the last one to three decades, and more quantitative and immediately useful information on fjord depths, iceberg flow directions and timing of seasonal ice break up and move out. The local fishermen were intimately familiar with the local environment, having intrinsically collected data on fjord depth from their regular lowering of fishing line to catch Greenlandic halibut, a benthic fish. For our first trip they worked with us locating the deep and shallow parts of the fjord from many seasons of watching icebergs ground on the shallow shoals, and showed us how to navigate into the ice packed glacial front through the dense ice mélange. The local community interest in the project and in learning how to use the equipment we had brought encouraged us to discuss a long-term data gathering relationship

  5. Controls on bedrock bedform development at the base of the Uummannaq Ice Stream System, West Greenland

    NASA Astrophysics Data System (ADS)

    Lane, Tim; Roberts, David; Rea, Brice; Cofaigh, Colm Ó.

    2014-05-01

    This research investigates the glacial and non-glacial controls on glacially eroded bedrock bedforms beneath the topographically confined upstream fjord region of the Uummannaq Ice Stream (UIS), West Greenland. The UIS was a cross-shelf ice stream system that operated during the Last Glacial Maximum (LGM), formed of 10 coalescent outlet glaciers. Reconstructions suggest that palaeo-glaciological conditions were similar for all sites in the study, characterised by thick, fast flowing ice moving over a rigid bedrock bed. Areally scoured terrain were mapped using remotely sensed imagery to assess regional-scale patterns of glacial erosion and to select suitable field locations. In the field, bedform measurements were taken from four discrete areas within two neighbouring fjords in the northern Uummannaq region (Rink-Karrat and Ingia). Classic bedrock bedforms indicative of glacially eroded terrain were mapped, including p-forms, roche moutonnées, and whalebacks. Bedform long axes and plucked face orientations display close correlation with palaeo-ice flow directions inferred from striae measurements. Across all sites, elongation ratios (length to width) varied by an order of magnitude between 0.8:1 and 8.4:1. Bedform properties (length, height, width, and long axis orientation) from the four sample areas form individual morphometrically distinct populations. However, bedform populations display high inter-area variability despite their close proximity, and hypothesised similarity in palaeo-glaciological conditions. The relationship of bedforms to palaeo-glaciological conditions in this study is not simple, having been complicated by bedrock properties. Geological structures including: joint frequency; joint dip; joint orientation; bedding plane thickness; and bedding plane dip have provided lines of geological weakness along which glacial erosion has been able to focus, controlling bedform length and width. Lateral plucking, a mechanism previously described for the

  6. Divergent parasite faunas in adjacent populations of West Greenland caribou: suggested natural and anthropogenic influences

    USDA-ARS?s Scientific Manuscript database

    Gastrointestinal parasite diversity was characterized for two adjacent populations of west Greenland caribou (Rangifer tarandus groenlandicus) through examinations of abomasa and small intestines of adult and subadult females collected during late winter. Three trichostrongyline (Trichostrongylina: ...

  7. Outbreak of trichinellosis associated with consumption of game meat in West Greenland.

    PubMed

    Møller, Lone Nukâraq; Petersen, Eskild; Kapel, Christian M O; Melbye, Mads; Koch, Anders

    2005-09-05

    The Inuit population of the Arctic has always been at risk of acquiring trichinellosis and severe outbreaks have been recorded in Alaska and Canada. In West Greenland, a number of large outbreaks took place during the 1940s and 1950s; they involved total 420 cases including 37 deaths. Since then only sporadic cases have been reported. Here, we describe an outbreak of infection with Trichinella spp. after consumption of infected meat presumably from walrus or polar bear caught in western Greenland. Six persons who had eaten of the walrus and polar bear meat were two males and four females, age range 6--47 years. Using ELISA and Western blot analysis (Trichinella-specific IgG antibodies against excreted/secreted antigen and synthetic tyvelose antigen, respectively) four of these persons were found to be sero-positive for Trichinella antibodies, with three of these having clinical symptoms compatible with trichinellosis. On re-test, 12--14 months later one of the two sero-negative persons had sero-converted, probably due to a new, unrelated infection. This study demonstrates that acquiring Trichinella from the consumption of marine mammals remains a possibility in Greenland, and that cases may go undetected. Trichinellosis in Greenland can be prevented by the implementation of public health measures.

  8. College Fjord, Prince Williams Sound

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The College Fjord with its glaciers was imaged by ASTER on June 24, 2000.

    This image covers an area 20 kilometers (13 miles) wide and 24 kilometers (15 miles) long in three bands of the reflected visible and infrared wavelength region. College Fjord is located in Prince Williams Sound, east of Seward, Alaska. Vegetation is in red, and snow and ice are white and blue. Ice bergs calved off of the glaciers can be seen as white dots in the water. At the head of the fjord, Harvard Glacier (left) is one of the few advancing glaciers in the area; dark streaks on the glacier are medial moraines: rock and dirt that indicate the incorporated margins of merging glaciers. Yale Glacier to the right is retreating, exposing (now vegetated) bedrock where once there was ice. On the west edge of the fjord, several small glaciers enter the water. This fjord is a favorite stop for cruise ships plying Alaska's inland passage.

    This image is located at 61.2 degrees north latitude and 147.7 degrees west longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in

  9. Greenland to gather more exploration data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-28

    Danish authorities are taking steps to make more exploration data available on Greenland in advance of a possible West Greenland shelf licensing round in 1993. Seismic data acquisition and other studies continue toward more fully evaluating Greenland's oil and gas potential. Geological Survey of Greenland (GGU), Copenhagen, Denmark, is processing 2,041 line miles of reflection seismic data shot on the West Greenland shelf in August and September of 1990. Sixty-fold stacks and migrations will be obtained. Total field magnetic data were also recorded during the survey, known as project Syd Vest Seis. Early work is under way to kick offmore » the multicompany Kanumas seismic acquisition project, proposed in 1986, during 1991. Meanwhile, the Mineral Resources Administration for Greenland (MRA), Copenhagen, the Danish and Greenland governments aim to sweeten Greenland's exploration regulations prior to making areas available.« less

  10. Ice Core Records of West Greenland Melt and Climate Forcing

    NASA Astrophysics Data System (ADS)

    Graeter, K. A.; Osterberg, E. C.; Ferris, D. G.; Hawley, R. L.; Marshall, H. P.; Lewis, G.; Meehan, T.; McCarthy, F.; Overly, T.; Birkel, S. D.

    2018-04-01

    Remote sensing observations and climate models indicate that the Greenland Ice Sheet (GrIS) has been losing mass since the late 1990s, mostly due to enhanced surface melting from rising summer temperatures. However, in situ observational records of GrIS melt rates over recent decades are rare. Here we develop a record of frozen meltwater in the west GrIS percolation zone preserved in seven firn cores. Quantifying ice layer distribution as a melt feature percentage (MFP), we find significant increases in MFP in the southernmost five cores over the past 50 years to unprecedented modern levels (since 1550 CE). Annual to decadal changes in summer temperatures and MFP are closely tied to changes in Greenland summer blocking activity and North Atlantic sea surface temperatures since 1870. However, summer warming of 1.2°C since 1870-1900, in addition to warming attributable to recent sea surface temperature and blocking variability, is a critical driver of high modern MFP levels.

  11. Modeling of water masses exchange between Brepolen and the main fjord in the Western Svalbard fjord - Hornsund

    NASA Astrophysics Data System (ADS)

    Jakacki, Jaromir; Przyborska, Anna; Sunfjord, Arild; Albertsen, Jon; Białoskórski, Michał; Pliszka, Bartosz

    2016-04-01

    Hornsund is the southernmost fjord of the Svalbard archipelago island - Spitsbergen. It is under the influence of two main currents - the coastal Sørkapp Current (SC) carrying fresher and colder water masses from the Barents Sea and the West Spitsbergen Current (WSC), which is the branch of the Norwegian Atlantic Current (NwAC) and carries warm and salty waters from the North Atlantic. The main local forcing, which is tidal motion, brings shelf waters into the central fjord basin and then the transformed masses are carried into the easternmost part of the fjord, Brepolen. For the purpose of studying circulation and water exchange in this area a three-dimensional hydrodynamic model has been implemented and validated. The model is based on MIKE by DHI product and covers the Hornsund fjord with the shelf area, which is the fjord foreground. It is sigma a coordinate model (in our case 35 vertical levels) with variable horizontal resolution (mesh grid). The smallest cell has a horizontal dimension less than one hundred meters and the largest cells about 5 km. In spite of model limitations, the model reproduces the main circulation and water pathways in the Brepolen area. Seasonal and annual volume, heat and salt exchanges have been also estimated. The influence of freshwater discharge on shelf-fjord exchange will be also analyzed. The model results allow to study full horizontal and vertical fields of physical parameters (temperature, salinity, sea level variations and currents). The model integration covers only years 2005-2010 and the presented results will be based on this simulation. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018

  12. Geology and assessment of undiscovered oil and gas resources of the West Greenland-East Canada Province, 2008

    USGS Publications Warehouse

    Schenk, Christopher J.; Moore, Thomas E.; Gautier, Donald L.

    2018-01-05

    The U.S. Geological Survey (USGS) recently assessed the potential for undiscovered oil and gas resources of the West Greenland-East Canada Province as part of the USGS Circum-Arctic Resource Appraisal program. The province lies in the offshore area between western Greenland and eastern Canada and includes Baffin Bay, Davis Strait, Lancaster Sound, and Nares Strait west of, and including, part of Kane Basin. A series of major tectonic events led to the formation of several distinct structural domains that are the geologic basis for defining five assessment units (AU ) in the province, all of which are within the Mesozoic-Cenozoic Composite Total Petroleum System (TPS). Potential petroleum source rocks within the TPS include strata of Ordovician, Lower and Upper Cretaceous, and Paleogene ages. The five AUs defined for this study—the Eurekan Structures AU, Northwest Greenland Rifted Margin AU, Northeast Canada Rifted Margin AU, Baffin Bay Basin AU, and the Greater Ungava Fault Zone AU— encompass the entire province and were assessed for undiscovered, technically recoverable resources. The estimated mean volumes of undiscovered resources for the West GreenlandEast Canada Province are 10.7 billion barrels of oil, 75 trillion cubic feet of gas, and 1.7 billion barrels of natural gas liquids. For the part of the province that is north of the Arctic Circle, the estimated mean volumes of these undiscovered resources are 7.3 billion barrels of oil, 52 trillion cubic feet of natural gas, and 1.1 billion barrels of natural-gas liquids.

  13. Interactions of the Greenland Petermann Glacier with the ocean: An initial perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Falkner, K. K.; Johnson, H. L.; Melling, H.; Muenchow, A.; Samelson, R. M.; Friends Of Petermann

    2010-12-01

    Petermann Glacier is major outlet glacier that drains 6% of the area of the Greenland Ice Sheet in western North Greenland. It is one of four major outlet glaciers on Greenland with a grounding line substantially below sea level (about 500m) and one of two such glaciers to retain a substantial floating tongue. The floating ice tongue of Petermann glacier is thought to lose at least 80% of its mass through ocean interaction. Based on three opportunistic ocean surveys in Petermann Fjord, we present an overview of circulation at the fjord mouth, hydrographic structure beneath the ice tongue, oceanic heat delivered to the under-ice cavity and the fate of the resulting melt water. We also present an historical perspective on the August 2010 major calving event. The 1100m-deep fjord is separated from neighboring Hall Basin by a sill that is inferred to lie between 350m and 450m deep. Hall Basin is a section of Nares Strait that connects the Arctic Ocean (at the Lincoln Sea proceeding southward through Robeson Channel, Hall Basin, Kennedy Channel, Kane Basin and Smith Sound) to Baffin Bay. Sills in the Lincoln Sea (290m) and in Kane Basin (220m) restrict communication with the Arctic Ocean and Baffin Bay. The net flux of seawater through Nares Strait is southward and relatively fresh, conditioned by sources and processes within the Arctic Ocean and locally. Within Petermann Fjord, glacial melt water appears on the northeast side at 200-600m. A cyclonic gyre occurs within the fjord mouth, with outflow on the northeast side. Oceanic heat fluxes into the fjord are sufficient to account for the observed rate of basal melting. Cold, low salinity water intrudes far under the ice and likely limits basal melting to the inland half of the tongue. The recent major calving event resulted in a loss of 300 km2 or about 20% of the total area of the floating tongue, most of which remained intact as an ice island that garnered much media attention. Available observations show calving to

  14. Estimating spring terminus submarine melt rates at a Greenlandic tidewater glacier using satellite imagery

    NASA Astrophysics Data System (ADS)

    Moyer, Alexis N.; Nienow, Peter W.; Gourmelen, Noel; Sole, Andrew J.; Slater, Donald A.

    2017-12-01

    Oceanic forcing of the Greenland Ice Sheet is believed to promote widespread thinning at tidewater glaciers, with submarine melting proposed as a potential trigger of increased glacier calving, retreat, and subsequent acceleration. The precise mechanism(s) driving glacier instability, however, remain poorly understood, and while increasing evidence points to the importance of submarine melting, estimates of melt rates are uncertain. Here we estimate submarine melt rate by examining freeboard changes in the seasonal ice tongue of Kangiata Nunaata Sermia at the head of Kangersuneq Fjord, southwest Greenland. We calculate melt rates for March and May 2013 by differencing along-fjord surface elevation, derived from high-resolution TanDEM-X digital elevation models, in combination with ice velocities derived from offset tracking applied to TerraSAR-X imagery. Estimated steady state melt rates reach up to 1.4 ± 0.5 m d^-1 near the glacier grounding line, with mean values of up to 0.8 ± 0.3 and 0.7 ± 0.3 m d^1 for the eastern and western parts of the ice tongue, respectively. Melt rates decrease with distance from the ice front and vary across the fjord. This methodology reveals spatio-temporal variations in submarine melt rates at tidewater glaciers which develop floating termini, and can be used to improve our understanding of ice-ocean interactions and submarine melting in glacial fjords.

  15. Influence of Barrier Wind Forcing on Heat Delivery Toward the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Fraser, Neil J.; Inall, Mark E.

    2018-04-01

    A high-resolution numerical hydrodynamic model of Kangerdlugssuaq Fjord and the adjacent southeast Greenland shelf region was constructed in order to investigate the dynamics of fjord-shelf exchange. Recent studies have suggested that rapid exchange flows, driven by along-shelf barrier wind events, are the dominant agent of exchange between fjord and shelf. These events are prone to occur during the winter, when freshwater forcing is minimal and observations of the fjord interior are scarce. Subglacial freshwater discharge was held at zero, so that any buoyancy-driven overturning circulation was driven by melting alone. The model described a geostrophically balanced background flow transporting water masses between the fjord mouth and the glacier terminus, indicating that rotational effects are of order-one importance. Barrier wind events were found to trigger coastally trapped internal wave activity within fjord, temporarily enhancing exchange and vertical mixing, and causing warm water to oscillate in the along-fjord direction. These internal waves were also found to enhance the background flow via Stokes' drift. Heat delivery through the fjord mouth was smaller than that recorded in summer observations, however the system is more effective at delivering this heat to the head of the fjord. There exists the potential for wintertime melting at the ice-ocean interface to be significant to the same order as summertime melting.

  16. Sedimentary organic matter sources, benthic consumption and burial in west Spitsbergen fjords - Signs of maturing of Arctic fjordic systems?

    NASA Astrophysics Data System (ADS)

    Zaborska, Agata; Włodarska-Kowalczuk, Maria; Legeżyńska, Joanna; Jankowska, Emilia; Winogradow, Aleksandra; Deja, Kajetan

    2018-04-01

    Mature ecosystems sequester little organic carbon (Corg) in sediments, as the complex and effective food webs consume most available organic matter within the water column and sediment, in contrast to young systems, where a large proportion of Corg is buried in deeper sediment layers. In this paper we hypothesize that "warmer" Atlantic water influenced fjord exhibits the 'mature' system features as compared to "cooler" Arctic water influenced fjord. Corg concentrations, sources and burial rates, as well as macrobenthic community standing stocks, taxonomic and functional composition and carbon demand, were compared in two west Spitsbergen fjords that are to different extents influenced by Atlantic water and can be treated as representing a cold one (Hornsund) and a warm one (Kongsfjorden). Water, sediments and macrofauna were collected at three stations in the central basin of each fjord. Corg, Ntot, δ13Corg and δ15N were measured in suspended matter, sediment cores and possible organic matter sources. The composition of sources of sedimentary organic matter was modeled by Mix-SIAR Bayesian stable isotope mixing models. The 210Pb method was used to calculate sediment accumulation rates, Corg accumulation and burial rates. The sedimentary Corg concentration and accumulation rate were larger in Hornsund than in Kongsfjorden. The contributions of pelagic sources to the Corg in sediments were similar in both fjords, macroalgal detritus had a higher importance in Kongsfjorden, while terrestrial sources were more important in Hornsund. Similar density and species richness were noted in both fjords, but higher biomass, individual biomass, production and carbon demand of benthic communities were noted in Kongsfjorden despite the lower amounts of Corg in sediments, indicating that macrobenthos responds to quality rather than quantity of available food. Subsurface tube-building conveyer belt detritus feeders (maldanids and oweniids) were responsible for higher standing

  17. Retarded deglaciation of north-Spitsbergen fjords during the last glacial - an example of bathymetric controls on the dynamics of retreating glaciers

    NASA Astrophysics Data System (ADS)

    Forwick, M.; Vorren, T. O.; Hass, H.; Vogt, C. M.

    2012-12-01

    North and west Spitsbergen fjords acted as pathways for fast-flowing ice streams during the last glacial (e.g. Ottesen et al., 2005). The deglaciation of west Spitsbergen fjords occurred stepwise and the ice retreat terminated around 11,200 cal. years BP (calendar years before the present; e.g. Forwick & Vorren, 2009, 2011, and references therein; Baeten et al., 2010). However, the deglaciation dynamics and chronology of north Spitsbergen fjords still remain poorly understood. We present swath-bathymetry, high-resolution seismic data and two sediment cores from the approx. 110 km long, N-S oriented Wijdefjorden-Austfjorden fjord system, the largest fjord system on northern Spitsbergen. The data indicate that - as in the fjords on west Spitsbergen - multiple halts and/or readvances interrupted the retreat of the ice front during the final phase of the last glacial. However, even though the study area and several west Spitsbergen fjords are fed by the same glacier source (the ice field Lomonosovfonna), the final deglaciation of Wijdefjorden-Austfjorden took place after 9300 cal. years BP, i.e. at least approx. 2000 years later than in the west. We assume that the retarded deglaciation in the north is mainly related to the fjord bathymetry, i.e. a more than 35 km wide and up to 60 m high area in the central parts of the study area (approx. 45 km beyond the present fjord head) that acted as pinning point for the grounded glacier. Multiple, relatively large and partly stacked moraine ridges and sediment wedges are suggested to reflected that the ice front retreated slowly across this shallow area and that repeated readvances interrupted this retreat. The absence of larger sediment wedges in the deeper parts between the shallow area and the fjord head may indicate that the final retreat occurred relatively rapid. References: Baeten, N.J., Forwick, M., Vogt, C. & Vorren, T.O., 2010. Late Weichselian and Holocene sedimentary environments and glacial activity in

  18. Cryostratigraphy, sedimentology, and the late Quaternary evolution of the Zackenberg River delta, northeast Greenland

    NASA Astrophysics Data System (ADS)

    Gilbert, Graham L.; Cable, Stefanie; Thiel, Christine; Christiansen, Hanne H.; Elberling, Bo

    2017-05-01

    The Zackenberg River delta is located in northeast Greenland (74°30' N, 20°30' E) at the outlet of the Zackenberg fjord valley. The fjord-valley fill consists of a series of terraced deltaic deposits (ca. 2 km2) formed during relative sea-level (RSL) fall. We investigated the deposits using sedimentological and cryostratigraphic techniques together with optically stimulated luminescence (OSL) dating. We identify four facies associations in sections (4 to 22 m in height) exposed along the modern Zackenberg River and coast. Facies associations relate to (I) overriding glaciers, (II) retreating glaciers and quiescent glaciomarine conditions, (III) delta progradation in a fjord valley, and (IV) fluvial activity and niveo-aeolian processes. Pore, layered, and suspended cryofacies are identified in two 20 m deep ice-bonded sediment cores. The cryofacies distribution, together with low overall ground-ice content, indicates that permafrost is predominately epigenetic in these deposits. Fourteen OSL ages constrain the deposition of the cored deposits to between approximately 13 and 11 ka, immediately following deglaciation. The timing of permafrost aggradation was closely related to delta progradation and began following the subaerial exposure of the delta plain (ca. 11 ka). Our results reveal information concerning the interplay between deglaciation, RSL change, sedimentation, permafrost aggradation, and the timing of these events. These findings have implications for the timing and mode of permafrost aggradation in other fjord valleys in northeast Greenland.

  19. Molecular diversity patterns among various phytoplankton size-fractions in West Greenland in late summer

    NASA Astrophysics Data System (ADS)

    Elferink, Stephanie; Neuhaus, Stefan; Wohlrab, Sylke; Toebe, Kerstin; Voß, Daniela; Gottschling, Marc; Lundholm, Nina; Krock, Bernd; Koch, Boris P.; Zielinski, Oliver; Cembella, Allan; John, Uwe

    2017-03-01

    Arctic regions have experienced pronounced biological and biophysical transformations as a result of global change processes over the last several decades. Current hypotheses propose an elevated impact of those environmental changes on the biodiversity, community composition and metabolic processes of species. The effects on ecosystem function and services, particularly when invasive or toxigenic harmful species become dominant, can be expressed over a wide range of temporal and spatial scales in plankton communities. Our study focused on the comparison of molecular biodiversity of three size-fractions (micro-, nano-, picoplankton) in the coastal pelagic zone of West Greenland and their association with environmental parameters. Molecular diversity was assessed via parallel amplicon sequencing the 28S rRNA hypervariable D1/D2 region. We showed that biodiversity distribution within the area of Uummannaq Fjord, Vaigat Strait and Disko Bay differed markedly within and among size-fractions. In general, we observed a higher diversity within the picoplankton size fraction compared to the nano- and microplankton. In multidimensional scaling analysis, community composition of all three size fractions correlated with cell size, silicate and phosphate, chlorophyll a (chl a) and dinophysistoxin (DTX). Individually, each size fraction community composition also correlated with other different environmental parameters, i.e. temperature and nitrate. We observed a more homogeneous community of the picoplankton across all stations compared to the larger size classes, despite different prevailing environmental conditions of the sampling areas. This suggests that habitat niche occupation for larger-celled species may lead to higher functional trait plasticity expressed as an enhanced range of phenotypes, whereas smaller organisms may compensate for lower potential plasticity with higher diversity. The presence of recently identified toxigenic harmful algal bloom (HAB) species (such

  20. Biomarker-based reconstruction of late Holocene sea-ice variability: East versus West Greenland continental shelf.

    NASA Astrophysics Data System (ADS)

    Kolling, H. M.; Stein, R. H.; Fahl, K.

    2016-12-01

    Sea is a critical component of the climate system and its role is not yet fully understood e.g. the recent rapid decrease in sea ice is not clearly reflected in climate models. This illustrates the need for high-resolution proxy-based sea-ice reconstructions going beyond the time scale of direct measurements in order to understand the processes controlling present and past natural variability of sea ice on short time scales. Here we present the first comparison of two high-resolution biomarker records from the East and West Greenland Shelf for the late Holocene. Both areas are highly sensitive to sea-ice changes as they are influenced by the East Greenland Current, the main exporter of Arctic freshwater and sea ice. On the East Greenland Shelf, we do not find any clear evidence for a long-term increase of sea ice during the late Holocene Neoglacial. This sea-ice record seems to be more sensitive to short-term climate events, such as the Roman Warm Period, the Dark Ages, the Medieval Warm Period and the Little Ice Age. In contrary, the West Greenland Shelf record shows a strong and gradual increase in sea ice concentration and a reduction in marine productivity markers starting near 1.6 ka. In general, the increase in sea ice seems to follow the decreasing solar insolation trend. Short-term events are not as clearly pronounced as on the East Greenland Shelf. A comparison to recently published foraminiferal records from the same cores (Perner et al., 2011, 2015) illuminates the differences of biomarker and micropaleontoligical proxies. It seems that the general trend is reflected in both proxies but the signal of small-scale events is preserved rather differently, pointing towards different environmental requirements of the species behind both proxies. References: Perner, K., et al., 2011. Quat. Sci. Revs. 30, 2815-2826 Perner, K., et al., 2015. Quat. Sci. Revs. 129, 296-307

  1. Tidewater dynamics at Store Glacier, West Greenland from daily repeat UAV surveys

    NASA Astrophysics Data System (ADS)

    Ryan, Jonathan; Hubbard, Alun; Toberg, Nick; Box, Jason; Todd, Joe; Christoffersen, Poul; Neal, Snooke

    2017-04-01

    A significant component of the Greenland ice sheet's mass wasteage to sea level rise is attributed to the acceleration and dynamic thinning at its tidewater margins. To improve understanding of the rapid mass loss processes occurring at large tidewater glaciers, we conducted a suite of daily repeat aerial surveys across the terminus of Store Glacier, a large outlet draining the western Greenland Ice Sheet, from May to July 2014 (https://www.youtube.com/watch?v=-y8kauAVAfE). The unmanned aerial vehicles (UAVs) were equipped with digital cameras, which, in combination with onboard GPS, enabled production of high spatial resolution orthophotos and digital elevation models (DEMs) using standard structure-from-motion techniques. These data provide insight into the short-term dynamics of Store Glacier surrounding the break-up of the sea-ice mélange that occurred between 4 and 7 June. Feature tracking of the orthophotos reveals that mean speed of the terminus is 16 - 18 m per day, which was independently verified against a high temporal resolution time-series derived from an expendable/telemetric GPS deployed at the terminus. Differencing the surface area of successive orthophotos enable quantification of daily calving rates, which significantly increase just after melange break-up. Likewise, by differencing bulk freeboard volume of icebergs through time we could also constrain the magnitude and variation of submarine melt. We calculate a mean submarine melt rate of 0.18 m per day throughout the spring period with relatively little supraglacial runoff and no active meltwater plumes to stimulate fjord circulation and upwelling of deeper, warmer water masses. Finally, we relate calving rates to the zonation and depth of water-filled crevasses, which were prominent across parts of the terminus from June onwards.

  2. Understanding changes in ice dynamics of southeast Greenland glaciers from high resolution gravimetry data and satellite remote sensing observations

    NASA Astrophysics Data System (ADS)

    Millan, R.; Rignot, E. J.; Mouginot, J.; Menemenlis, D.; Morlighem, M.; Wood, M.

    2016-12-01

    Southeast Greenland has been one of the largest contributors to ice mass losses in Greenland in the last few decades mostly as a result of changes in ice dynamics, and to a lesser extent due to the steady increase in runoff. In 1996, the region was thinning up to the ice divide (Krabill et al., 1999) and the change were clearly of ice dynamics nature. Ice-ocean interactions played a central role in triggering a faster, systematic retreat around year 2002-2005 as water of Atlantic origin started to intrude the fjords in larger amounts due to a change in oceanic circulation in the Irminger sea. The glacier response varied significantly from one glacier to the next in response to the oceanic change, which we attribute to variatioins in fjord bathymetry, geometry control on the glaciers and calving speed of the glaciers. This region is however characterized by a dearth of topography data: the fjords have never been mapped and bed topography is challenging to obtain with radio echo sounding techniques. Here, we employ a combination of Operation IceBridge (OIB) high-resolution airborne gravity from 2016, Ocean Melting Greenland (OMG) EVS-2 mission low resolution gravity from 2016, and OMG bathymetry data from 2016 to map the bed elevation of the glaciers and fjords over the entire southeast Greenland combining gravity, thickness, and bathymetry. The data reveal the true depth of the fjords and the glacier thickness at the ice front, in a seamless fashion. We combine these data with a history of ice discharge combining estimates of ice thickness with a time series of ice velocity going back to the early 1990s. We form a time series of ice discharge, glacier per glacier, which is compared with surface mass balance from the RACMO 1-km downscaled model. We compare the results with simulations of ice melt along the calving faces of the glaciers to draw conclusions about the sensitivity of each glacier to climate forcing and re-interpret their pattern of retreat in the last

  3. Ice-ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers

    NASA Astrophysics Data System (ADS)

    Chauché, N.; Hubbard, A.; Gascard, J.-C.; Box, J. E.; Bates, R.; Koppes, M.; Sole, A.; Christoffersen, P.; Patton, H.

    2014-08-01

    Warm, subtropical-originating Atlantic water (AW) has been identified as a primary driver of mass loss across the marine sectors of the Greenland Ice Sheet (GrIS), yet the specific processes by which this water mass interacts with and erodes the calving front of tidewater glaciers is frequently modelled and much speculated upon but remains largely unobserved. We present a suite of fjord salinity, temperature, turbidity versus depth casts along with glacial runoff estimation from Rink and Store glaciers, two major marine outlets draining the western sector of the GrIS during 2009 and 2010. We characterise the main water bodies present and interpret their interaction with their respective calving fronts. We identify two distinct processes of ice-ocean interaction which have distinct spatial and temporal footprints: (1) homogenous free convective melting which occurs across the calving front where AW is in direct contact with the ice mass, and (2) localised upwelling-driven melt by turbulent subglacial runoff mixing with fjord water which occurs at distinct injection points across the calving front. Throughout the study, AW at 2.8 ± 0.2 °C was consistently observed in contact with both glaciers below 450 m depth, yielding homogenous, free convective submarine melting up to ~200 m depth. Above this bottom layer, multiple interactions are identified, primarily controlled by the rate of subglacial fresh-water discharge which results in localised and discrete upwelling plumes. In the record melt year of 2010, the Store Glacier calving face was dominated by these runoff-driven plumes which led to a highly crenulated frontal geometry characterised by large embayments at the subglacial portals separated by headlands which are dominated by calving. Rink Glacier, which is significantly deeper than Store has a larger proportion of its submerged calving face exposed to AW, which results in a uniform, relatively flat overall frontal geometry.

  4. A 70-year record of outlet glacier retreat in northern Greenland

    NASA Astrophysics Data System (ADS)

    Hill, Emily; Carr, Rachel; Stokes, Chris; Gudmundsson, Hilmar

    2017-04-01

    Over the past two decades, the Greenland Ice Sheet (GrIS) has undergone accelerated mass loss increasing its contribution to sea level rise. This is partly attributed to increased mass loss from dynamic marine-terminating outlet glaciers. Despite marine-terminating outlet glaciers in northern Greenland draining 40% of the ice sheet by area, they are comparatively less well-studied than other regions of the ice sheet (e.g. central west or south-east). This region could be susceptible to marine-ice sheet instability due to large proportions of the bedrock rested below sea level and is also unique in the presence of large floating ice tongues. Here, we use a range of satellite imagery sources, accompanied by historical maps, to examine multi-decadal front position changes at 21 outlet glaciers in northern Greenland between 1948 and 2016. We accompany these terminus changes, with annual records of ice velocity, climate-ocean forcing data, and glacier-specific factors (e.g. fjord-width and basal topography) to understand the dominant forcing on glacier dynamics in the region. Over the last 70 years, there has been a clear pattern of glacier retreat in northern Greenland. This is particularly notable during the last two decades, where 62% of our study glaciers showed accelerated retreat. This was most notable at Humboldt, Tracy, Hagen Brae, C. H. Ostenfeld and Petermann Glaciers, and in the case of the latter three glaciers, this involved substantial retreat of their floating ice tongues (> 10 km). Alongside retreat, several study glaciers underwent simultaneous velocity increases. However, the collapse of floating ice tongues did not always result in increased velocity. Similar to other regions of the ice sheet, recent glacier retreat in the northern regions of the Greenland Ice Sheet could be linked to climatic-oceanic forcing, but at this stage this remains largely unknown. This response to external forcing is further complicated by the presence of glacier

  5. Towards quantifying the glacial runoff signal in the freshwater input to Tyrolerfjord-Young Sound, NE Greenland.

    PubMed

    Citterio, Michele; Sejr, Mikael K; Langen, Peter L; Mottram, Ruth H; Abermann, Jakob; Hillerup Larsen, Signe; Skov, Kirstine; Lund, Magnus

    2017-02-01

    Terrestrial freshwater runoff strongly influences physical and biogeochemical processes at the fjord scale and can have global impacts when considered at the Greenland scale. We investigate the performance of the HIRHAM5 regional climate model over the catchments delivering freshwater to Tyrolerfjord and Young Sound by comparing to the unique Greenland Ecological Monitoring database of in situ observations from this region. Based on these findings, we estimate and discuss the fraction of runoff originating from glacierized and non-glacierized land delivered at the daily scale between 1996 and 2008. We find that glaciers contributed on average 50-80% of annual terrestrial runoff when considering different sections of Tyrolerfjord-Young Sound, but snowpack depletion on land and consequently runoff happens about one month earlier in the model than observed in the field. The temporal shift in the model is a likely explanation why summer surface salinity in the inner fjord did not correlate to modelled runoff.

  6. Extension of short-term variation study of Kangilerngata Sermia, Greenland

    NASA Astrophysics Data System (ADS)

    Kane, E.; Rignot, E. J.; Mouginot, J.

    2017-12-01

    Iceberg calving is an important but not well-understood aspect of predicting future sea level rise, mostly due to lack of observations. In this study a Gamma Portable Radar Interferometer (GPRI) was deployed for three weeks to observe short-term variations at Kangilerngata Sermia, West Greenland, with the goal of increasing observations of calving events and short-term velocity variations. A diurnal velocity cycle was measured and attributed to melt water production increasing basal lubrication. Many iceberg calving events were observed; one of which was immediately followed by a velocity increase of 35% that lasted 5 hours. We propose that this event was grounded ice and that the removal of basal drag associated with the calving allowed for acceleration of the glacier. Other calving from the region of floating ice had no effect on glacier speed. CTD data from 2008-2016 in the glacier fjord is analyzed to investigate ice-ocean interactions and the role of warm Atlantic water in glacial retreat. This work was funded by a grant from NASA Cryosphere Science and by the UC Irvine Donald Bren fund.

  7. Investigations on soil organic carbon stocks and active layer thickness in West Greenland

    NASA Astrophysics Data System (ADS)

    Gries, Philipp; Wagner, Julia; Kandolf, Lorenz; Henkner, Jessica; Kühn, Peter; Scholten, Thomas; Schmidt, Karsten

    2017-04-01

    The soil organic carbon (SOC) pool in the first 300 cm of arctic soils includes about 50 % of the estimated global terrestrial belowground organic carbon, which makes about 1024 Pg C and up to 496 Pg within the upper permafrost one meter. Being a sensible ecosystem, the Arctic is sensitive to climate change. Hence, thawing of permafrost-affected soils to greater depth and for longer periods increases the release of CO2 and CH4 to the atmosphere, which queries soils as an important carbon pool. Especially in arctic environments, sparse soil data and limited knowledge of soil processes cause underestimation of SOC stocks. Due to different regional climatic conditions, changing soil-environmental conditions result in varying soil organic carbon contents in Greenland. In West Greenland, coastal oceanic conditions turn into continental climate at the ice margin showing less precipitation, higher insolation and increasing permafrost thickness. The objectives of this study are (i) to determine SOC stocks and active layer thickness (ALT), (ii) to identify main environmental factors influencing SOC stocks and ALT, and (iii) to specify differences of SOC stocks, ALT and influencing factors induced by a climatic trend in West Greenland. Respecting different climatic conditions, one study area is situated next to the ice margin in the Kangerlussuaq area and the second one is located near Sisimiut at the coast. Both study areas (2 km2) are representative for each region and have similar environmental settings. Soil samples were taken from depth increments (0-25, 25-50, 50-100, and 100-200 cm) at 80 sampling locations in each study area. Additionally, we addressed soil moisture content (TDR-measurements), ALT, and soil horizons, vegetation (types, coverage), and terrain characteristics (aspect, geomorphology) at each sampling point. As a preliminary result, at the coast the average SOC stock is 13.1 kg/m2 in the upper 25 cm and about 35.9 kg/m2 in the first 200 cm. The amount of

  8. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Hudson, B. D.; Syvitski, J. P. M.; Mikkelsen, A. B.; Hasholt, B.; van den Broeke, M. R.; Noël, B. P. Y.; Morlighem, M.

    2017-11-01

    Limited measurements along Greenland's remote coastline hamper quantification of the sediment and associated nutrients draining the Greenland ice sheet, despite the potential influence of river-transported suspended sediment on phytoplankton blooms and carbon sequestration. Here we calibrate satellite imagery to estimate suspended sediment concentration for 160 proglacial rivers across Greenland. Combining these suspended sediment reconstructions with numerical calculations of meltwater runoff, we quantify the amount and spatial pattern of sediment export from the ice sheet. We find that, although runoff from Greenland represents only 1.1% of the Earth's freshwater flux, the Greenland ice sheet produces approximately 8% of the modern fluvial export of suspended sediment to the global ocean. Sediment loads are highly variable between rivers, consistent with observed differences in ice dynamics and thus with control by glacial erosion. Rivers that originate from deeply incised, fast-moving glacial tongues form distinct sediment-export hotspots: just 15% of Greenland's rivers transport 80% of the total sediment load of the ice sheet. We conclude that future acceleration of melt and ice sheet flow may increase sediment delivery from Greenland to its fjords and the nearby ocean.

  9. Observed Characteristics and Origins of Meltwaters Exported from Jakobshavn and Ilulissat Icefjord, Greenland

    NASA Astrophysics Data System (ADS)

    Beaird, N.; Straneo, F.; Jenkins, W. J.

    2017-12-01

    Jakobshavn Isbrae has undergone rapid retreat in recent decades and is now among the largest sources of anomalous ice discharge from Greenland's shrinking ice sheet. The characteristics, distribution, and pathways of meltwater sourced from Jakobshavn can have important impacts on ecosystems and regional, perhaps global, ocean circulation. Here we report on novel geochemical (noble gas) observations that enable a quantitative description of the meltwaters exiting Ilulissat Icefjord into Disko Bay, including the partition into Submarine Meltwater sources and Subglacial Discharge sources. We identify a coastally-trapped plume outside of the fjord mouth consistent with a coastal current flowing north. The plume extends to 100 m depth, and 10 km offshore. Temperature and salinity profiles inside the fjord suggest a deep-reaching buoyancy-forced overturning feeding this outflow. Relatively high Submarine Meltwater concentration (2.5%) imply a substantial contribution of iceberg meltwater to the fjord. Subglacial Discharge concentrations in the plume reach 6%.

  10. Collaborating with the local community of Kullorsuaq, Greenland to obtain high-quality hydrographic measurements near Alison Glacier

    NASA Astrophysics Data System (ADS)

    Porter, D. F.; Turrin, M.; Tinto, K. J.; Giulivi, C. F.; Cochran, J. R.; Bell, R. E.

    2014-12-01

    Warming ocean waters around Greenland have been implicated, along with warmer air temperatures, in the rapid increase of melt of the tidewater glaciers that drain the ice sheet. Most available regional oceanographic measurements have been collected during the summer seasons and are concentrated near the largest and most accessible glaciers. In order to gain a more comprehensive picture of the changing environment around the entirety of Greenland, more fjords, especially in the north, must be sampled. In July 2014, we travelled to Kullorsuaq in Northwest Greenland in order to foster a partnership with the local community to obtain new hydrographic data from CTD casts near Alison Glacier (74.6N, 57W). The terminus of this glacier abruptly retreated 10 km between 2000 and 2006. Although adequate observations from that time period are unavailable, our recently collected temperature and salinity data suggests that the deep water near Alison is similar to the waters further south, where near-synchronous ocean warming and glacial acceleration has been documented. Over the course of two sampling days, a hand-operated winch from a small boat was used to make standard CTD casts in front of Alison Glacier. We find evidence of glacial and mélange melt and the signature of both Polar and Atlantic Water masses at depth. Along-fjord casts illustrate how the ocean waters are modified as they circulate in and out of the fjord and the interaction of this water with the melting glacial front. At 500m depths, ocean temperatures are about 3°C above the in-situ freezing point of seawater, suggesting a possible influence of warm ocean waters on the mass loss of Alison Glacier. Using NASA Operation IceBridge and satellite altimetry data, we relate our new hydrographic data to the observed recent changes in Alison Glacier. An additional important result is that this short field campaign uncovered the possibility of working with local Greenlandic communities to aid scientists in both

  11. High geothermal heat flux in close proximity to the Northeast Greenland Ice Stream.

    PubMed

    Rysgaard, Søren; Bendtsen, Jørgen; Mortensen, John; Sejr, Mikael K

    2018-01-22

    The Greenland ice sheet (GIS) is losing mass at an increasing rate due to surface melt and flow acceleration in outlet glaciers. Currently, there is a large disagreement between observed and simulated ice flow, which may arise from inaccurate parameterization of basal motion, subglacial hydrology or geothermal heat sources. Recently it was suggested that there may be a hidden heat source beneath GIS caused by a higher than expected geothermal heat flux (GHF) from the Earth's interior. Here we present the first direct measurements of GHF from beneath a deep fjord basin in Northeast Greenland. Temperature and salinity time series (2005-2015) in the deep stagnant basin water are used to quantify a GHF of 93 ± 21 mW m -2 which confirm previous indirect estimated values below GIS. A compilation of heat flux recordings from Greenland show the existence of geothermal heat sources beneath GIS and could explain high glacial ice speed areas such as the Northeast Greenland ice stream.

  12. Fatty Acid Composition of Muscle, Adipose Tissue and Liver from Muskoxen (Ovibos moschatus) Living in West Greenland

    PubMed Central

    Alves, Susana P.; Raundrup, Katrine; Cabo, Ângelo; Bessa, Rui J. B.; Almeida, André M.

    2015-01-01

    Information about lipid content and fatty acid (FA) composition of muskoxen (Ovibos moschatos) edible tissues is very limited in comparison to other meat sources. Thus, this work aims to present the first in-depth characterization of the FA profile of meat, subcutaneous adipose tissue and liver of muskoxen living in West Greenland. Furthermore, we aim to evaluate the effect of sex in the FA composition of these edible tissues. Samples from muscle (Longissimus dorsi), subcutaneous adipose tissue and liver were collected from female and male muskoxen, which were delivered at the butchery in Kangerlussuaq (West Greenland) during the winter hunting season. The lipid content of muscle, adipose tissue and liver averaged 284, 846 and 173 mg/g of dry tissue, respectively. This large lipid contents confirms that in late winter, when forage availability is scarce, muskoxen from West Greenland still have high fat reserves, demonstrating that they are well adapted to seasonal feed restriction. A detailed characterization of FA and dimethylacetal composition of muskoxen muscle, subcutaneous adipose tissue and liver showed that there are little differences on FA composition between sexes. Nevertheless, the 18:1cis-9 was the most abundant FA in muscle and adipose tissue, reaching 43% of total FA in muscle. The high content of 18:1cis-9 suggests that it can be selectively stored in muskoxen tissues. Regarding the nutritional composition of muskoxen edible tissues, they are not a good source of polyunsaturated FA; however, they may contribute to a higher fat intake. Information about the FA composition of muskoxen meat and liver is scarce, so this work can contribute to the characterization of the nutritional fat properties of muskoxen edible tissues and can be also useful to update food composition databases. PMID:26678792

  13. Geometry and kinematics of the Triassic rift basin in Jameson Land (East Greenland)

    NASA Astrophysics Data System (ADS)

    Guarnieri, Pierpaolo; Brethes, Anaïs.; Rasmussen, Thorkild M.

    2017-04-01

    The Triassic rift basin along the east Greenland margin described in this paper is represented by NE-SW trending basins and highs segmented by NW-SE trending transfer zones. Coarse-grained sediments along the eastern side of Jameson Land are shown to be hosted in half-graben structures belonging to the Carlsberg Fjord Basin that is bounded by NW dipping normal faults mapped and described after fieldwork in the Klitdal area in Liverpool Land. New aeromagnetic and electromagnetic data together with new drill cores allow the reinterpretation of available seismic lines showing the continuation of the Triassic rift basin toward the SW where it is buried under the Upper Triassic postrift sediments and the Jurassic successions of the Jameson Land Basin. The N-S trending Liverpool Land, interpreted as the boundary block of the Triassic basin, is shown to represent a structural high inherited from the Late Carboniferous tectonics and faulted during the Triassic rifting. The Carlsberg Fjord Basin and the Klitdal Fault System described in this paper should be seen as analogues to the Helgeland Basin in the Norwegian offshore that is bounded by the Ylvingen Fault Zone and to the Papa and West of Shetlands Basins that are bounded by the Spine Fault. The Triassic rift zone and transfer faults on both conjugate margins show a straightforward correlation with the trends of the initial spreading line and fracture zones of the northeast Atlantic indicating a possible inheritance of the Triassic rifting.

  14. Life on Earth before 3.83 Ga? Carbonaceous Inclusions from Akilia (West Greenland)

    NASA Astrophysics Data System (ADS)

    Mojzsis, S. J.; Papineau, D.; Adam, J. D.; Harrison, T. M.

    2005-12-01

    The earliest records of life on Earth have been obscured by the intense metamorphism experienced by all known terranes older than ca. 3600 Ma; fragile microfossil shapes become obliterated, and chemical/isotopic biosignatures are potentially blurred, overprinted, mimicked or erased. Prior studies sought to overcome this dilemma utilizing chemofossils ~ biosignatures resistant to physical and chemical change since formation ~ in the search for possible traces of a biosphere in pre-3.8 Ga rocks. Interpreting the geology, age and origin of the oldest rocks is fraught with difficulty, yet new field- and laboratory-based techniques permit direct assessment of proposed evidence for early life in the >3.83 Ga paragneisses of the Akilia association in southern West Greenland. A comprehensive program of sampling guided by 1:100 scale mapping of these highly deformed units coupled with structural, geochemical and geochronological analyses, provides a basis for understanding of the petrogenesis of the Akilia rocks (Manning et al., in press). The new studies resolve existing controversies over this complex terrane and (i) corroborate a sedimentary rather than metasomatic origin for Fe-rich quartz pyroxene ( Aqp) units as supported by separate trace element, REE, δ18O, δ33S/δ34S and δ56Fe isotope studies; (ii) validate a >3.83 Ga age for Aqp units on Akilia and related units in southern West Greenland as among the oldest known rocks of sedimentary origin; and (iii) verify the presence of apatite-hosted graphite in Aqp units (cf. Lepland et al., 2005; Moorbath, 2005). This growing list of results lend support to our original interpretation (Mojzsis et al., 1996) that the simplest explanation for depleted 13C in carbonaceous inclusions in apatite from Akilia is that life had emerged on Earth prior to 3.83 Ga. Manning, C.E., Mojzsis, S.J. and Harrison, T.M. (2005) Geology, age and origin of supracrustal rocks, Akilia, Greenland (Amer. J. Sci. in press).

  15. Origin of cratonic lithospheric mantle roots: A geochemical study of peridotites from the North Atlantic Craton, West Greenland

    NASA Astrophysics Data System (ADS)

    Wittig, N.; Pearson, D. G.; Webb, M.; Ottley, C. J.; Irvine, G. J.; Kopylova, M.; Jensen, S. M.; Nowell, G. M.

    2008-09-01

    A critical examination of the extent to which geodynamic information on the initial mantle depletion and accretion event(s) is preserved in kimberlite-borne cratonic SCLM peridotite xenoliths is attempted by using new major and trace element data of whole-rock peridotites ( n = 55) sampled across the North Atlantic Craton (NAC; West Greenland). We also present additional whole-rock trace element data of mantle xenoliths from Somerset Island, the Slave and Kaapvaal cratons for comparison. Peridotites comprising the West Greenland SCLM are distinctly more olivine-rich and orthopyroxene-poor than most other cratonic peridotites, in particular those from the Kaapvaal craton. The West Greenland peridotites have higher Mg/Si but lower Al/Si, Al 2O 3 and CaO than cratonic mantle from the Kaapvaal Craton. We suggest that the more orthopyroxene depleted, harzburgite to dunite character of the NAC peridotites reflects more of the original melting history than peridotites from other cratons and in that sense may be more typical of cratonic lithosphere compositions prior to extensive modification. Despite this, some modal and cryptic metasomatism has clearly taken place in the West Greenland lithosphere. The insensitivity of major elements to pressure of melting at high degrees of melt extraction combined with the ease with which these elements may be changed by modal metasomatism mean that we cannot confidently constrain the depth of melting of peridotites using this approach. Mildly incompatible trace elements offer much more promise in terms of providing geodynamic information about the original Archean melting regime. The very low, systematically varying heavy REE abundances in NAC whole-rock peridotites and in peridotites from all other cratons where high-quality data are available provide ubiquitous evidence for a shallow melting regime in the absence of, or to the exhaustion of garnet. This finding explicitly excludes large extents of deep (iso- and polybaric) melting

  16. Slope Stability Analysis and Event Reconstruction of the Karrat Fjord (W Greenland) Rock Avalanche from June 2017 using Sentinel-1 and Sentinel-2 data

    NASA Astrophysics Data System (ADS)

    Langley, K.; Caduff, R.; Wiesmann, A.; Mätzler, E.

    2017-12-01

    A massive rock slope failure that led to a rock avalanche in the Karrat Fjord, Western Greenland, caused a tsunami on 17 June 2017. The tsunami reached local villages and resulted in loss of life and damage to infrastructure. The length of the rock avalanche detachment zone is on the order of 800 m. It is located at an elevation of 1'000 m above the fjord with a slant distance of 2'000 m to the shore line. Since very little information was available on the state of the originating mountain slope, satellite based information was gathered immediately after the event in order to assess the processes on the slope. Thanks to the quick data distribution through Copernicus, we could process the entire available datasets of the Synthetic Aperture Radar (SAR) sensors Sentinel-1A/B and the optical sensor Sentinel-2. The pre-, syn, and post-event history could be reconstructed using ascending orbit Sentinel-1 data, available from October 2014 in 12 and from early 2017 on in 6d interval. We looked at the differential interferograms to detect coherent surface displacements in line-of-sight (LOS). Coherent interferograms after the snow-melt in May 2017 revealed surface displacements of 10-15 cm/year with accelerating trend in the later detachment zone. The known limitation for interferometry in wet-snow condition hinders the determination of areas undergoing surface deformation. However, a detailed coherence analysis showed that during the previous winter, a large avalanche type process must have happened in the later detachment zone. A radar backscatter analysis showed, that significant changes in the corridor of 500 m of the area affected by the rock avalanche can be dated between 5 and 11 November 2016. The traces of the event could be verified with optical imagery from Sentinel-2 dating from 23 May 2017. An overall analysis on the mountain side revealed the presence of a number of active zones. An inventory of the outlines of the moving areas containing information on the

  17. Bowhead whale springtime song off West Greenland.

    PubMed

    Stafford, Kathleen M; Moore, Sue E; Laidre, Kristin L; Heide-Jørgensen, M P

    2008-11-01

    Three songs were recorded from bowhead whales (Balaena mysticetus) in Disko Bay, West Greenland, during 59 h of recordings via sonobuoys deployed on seven days between 5 and 14 April 2007. Song elements were defined by units following the protocol of previous description of bowhead whale song. The two most prominent songs were loud, complex, and repeated in long bouts on multiple recording days while the third song was much simpler and recorded on only one day. Bowhead whale simple calls and faint song elements were also recorded using digital audio tape recorders and a dipping hydrophone deployed from the sea ice approximately 100-150 km southwest of Disko Bay on three separate days suggesting that song is also produced in the central portion of Baffin Bay in winter. Songs recorded in Disko Bay are from an area where approximately 85% of the whales have been determined to be adult females. Although it is not known which sex was singing, we speculate that, as in humpback whales (Megaptera novaeangliae), male bowhead whales may sing to mediate sexual competition or mate selection behaviors. This is the first detailed description of springtime songs for bowhead whales in the eastern Arctic.

  18. Nuuk, Greenland

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Nuuk (or Gadthab) is the capital and largest city of Greenland. It is located at the mouth of the Nuup Kangerlua inlet on the west coast of Greenland. It has a population of about 15,000. The site has a long history of different inhabitation: first by the Inuit people around 2000 B.C., later by Viking explorers in the 10th century. Inuit and Vikings lived together for about 500 years until about 1500, when human habitation suddenly stopped, most likely due to change in climate and vegetation.

    The image was acquired August 2, 2004, covers an area of 22.7 x 26 km, and is located at 64.2 degrees north latitude, 51.8 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  19. Significance of the late Archaean granulite facies terrain boundaries, Southern West Greenland

    NASA Technical Reports Server (NTRS)

    Friend, C. R. L.; Nutman, A. P.; Mcgregor, V. R.

    1988-01-01

    Three distinct episodes and occurrences of granulite metamorphism in West Greenland are described: (1) the oldest fragmentary granulites occur within the 3.6-Ga Amitsoq gneisses and appear to have formed 200 Ma after the continental crust in which they lie (Spatially associated rapakivi granites have zircon cores as old as 3.8 Ga, but Rb-Sr, whole-rock Pb-Pb, and all other systems give 3.6 Ga, so these granulites apparently represent a later metamorphic event); (2) 3.0-Ga granulites of the Nordlandet Peninsula NW of Godthaab, developed immediately after crustal formation in hot, dry conditions, are carbonate-free, associated with voluminous tonalite, and formed at peak metamorphic conditions of 800 C and 7 to 8 kbar (Synmetamorphic trondhjemite abounds and the activity of H2O has been indicated by Pilar to have varied greatly); and (3) 2.8-Ga granulites south of Godthaab, lie to the south of retrogressed amphibolite terranes. Prograde amphibolite-granulite transitions are clearly preserved only locally at the southern end of this block, near Bjornesund, south of Fiskenaesset. Progressively deeper parts of the crust are exposed from south to north as a major thrust fault is approached. Characteristic big hornblende pegmatites, which outcrop close to the thrust in the east, have been formed by replacement of orthopyroxene. Comparable features were not seen in South Indian granulites. It was concluded that no one mechanism accounts for the origin of all granulites in West Greenland. Various processes have interacted in different ways, and what happened in individual areas must be worked out by considering all possible processes.

  20. The lively Aysén fjord, Chile: Records of multiple geological processes

    NASA Astrophysics Data System (ADS)

    Lastras, Galderic; Amblas, David; Calafat, Antoni; Canals, Miquel; Frigola, Jaime; Hermanns, Reginald L.; Lafuerza, Sara; Longva, Oddvar; Micallef, Aaron; Sepúlveda, Sergio A.; Vargas, Gabriel; Azpiroz, María; Bascuñán, Ignacio; Duhart, Paul; Iglesias, Olaia; Kempf, Philipp; Rayo, Xavier

    2014-05-01

    The Aysén fjord is a 65 km long, east-west oriented fjord in Chilean Patagonia, located approximately at 45.4ºS and 73.2ºW, with a maximum water depth of 345 m. The fjord receives at present the riverine input of Aysén, Pescado, Condor and Cuervo rivers, which drain the surrounding up to 2000 m high Patagonian Andes. The fjord is crossed by a number of faults associated to the seismically active Liquiñe-Ofqui Fault Zone, a major trench parallel intra-arc fault system. After a four-month period of moderate seismicity, an Mw 6.2 earthquake on 21 April 2007 triggered dozens of subaerial landslides along the fjord flanks. Some of the landslides reached the fjord water mass, generating a series of tsunami-like displacement waves that impacted the adjacent coastlines with 3-12 m, locally over 50 m high run-ups, causing ten fatalities and severe damage to salmon farms. The research cruise DETSUFA on board BIO Hespérides in March 2013 mapped the submerged morphology of the fjord and gathered air-gun seismic profiles and sediment gravity cores in order to characterise the footprint of the landslides in the fjord floor. Very-high resolution multibeam bathymetry (4 m cell size) clearly shows the deformation structures created by the landslides in the inner fjord. The landslides descended and accelerated down the submerged fjord flanks, and reached the fjord floor at approx. 200 m water depth generating large, 1 to 10 m deep impact depressions. Sediment removed from these depressions moved radially and piled up in deformation rings formed by compressional ridges 10-15 m in height, block fields and a narrow frontal depression. Up to six >1.5 square km of these structures can be identified in the fjord. In addition, the DETSUFA survey extended beyond the SE-NW-oriented inner fjord past the Cuervo Ridge, located in front of the Cuervo river delta. The ridge, previously interpreted as a volcanic transverse structure, has most probably acted as a limit for grounding ice in

  1. Fjord dynamics and glacio-marine interactions on Northern Ellesmere Island, Canada

    NASA Astrophysics Data System (ADS)

    Hamilton, A.; Mueller, D.; Laval, B.

    2012-12-01

    Despite the existence of ice shelves and glacier tongues along the northern coast of Ellesmere Island, Canada, for the majority of the past 4000 years (Evans and England, 1992; Antoniades et al., 2011) recent atmospheric warming has contributed to collapse of the remaining ice shelves and the loss of rare ice-shelf dammed lakes (epishelf lakes) (Mueller et al., 2003, 2008; Copland et al., 2007). These studies have primarily addressed surface processes as the causal factors for ice shelf breakup, but changes in ocean stratification and heat flux, meltwater input, and subglacial thermodynamics may strongly influence the integrity and fate of these systems. Despite the growing evidence of the importance of oceanic processes on tidewater glacier mass balance in Greenlandic fjords (Holland et al., 2008; Johnson et al., 2011; Straneo et al., 2011) these processes remain poorly studied on related systems in the Canadian Arctic Archipelago (CAA). In addition, the recent sharp increase in mass loss from the glaciers and ice caps of the CAA, primarily in the form of meltwater runoff (Gardner et al., 2011) suggest understanding the aquatic and oceanic factors contributing to ice shelf and glacier tongue integrity and epishelf lake formation is critical. We will present observations from the Milne Fjord ice shelf, epishelf lake, and glacier tongue system on the northern coast of Ellesmere Island, Canada (Fig. 1). Two years of field observations include a 15-month under-ice ocean mooring deployment, through-ice oceanographic CTD and current velocity profiles, and ice mass balance estimates from ablation stake and GPR surveys. We will present the first ever observations of the seasonal and episodic oceanographic variations of Milne Fjord, with particular focus on ocean-epishelf lake-ice shelf dynamics. We aim to understand how all ice and ocean components interact to determine the evolution and stability of the system, with the goal of understanding and perhaps predicting large

  2. Carbon Dynamics Along a Temperate Fjord-Head Delta: Linkages With Carbon Burial in Fjords

    NASA Astrophysics Data System (ADS)

    Cui, Xingqian; Bianchi, Thomas S.; Kenney, William F.; Wang, Jiaze; Curtis, Jason H.; Xu, Kehui; Savage, Candida

    2017-12-01

    We used seven 210Pb-dated sediment cores from the Gaer Arm in the Doubtful Sound fjord complex, Fiordland, New Zealand to evaluate organic carbon (OC) dynamics in a temperate fjord-head delta. The highly dynamic spatial features of this delta were clearly evident in the observed sediment properties such as mass accumulation rates that varied by a factor of 14, sediment grain size by a factor 5, and sedimentary OC content by a factor 6. Low lignin concentrations (e.g., 2.95 mg (100 mg OC)-1) and syringic/vanillic ratios of lignin phenols (S/V; e.g., 0.44) at the upper deltaic stations were representative of substantial autochthonous OC contributions to delta sediments. Significantly higher acid/aldehyde ratios of vanillic phenols [(Ad/Al)v] at the deltaic stations (0.45-0.82) than the surface grabs (0.26-0.30) indicated rapid degradation of OC within the delta. Despite being a "hot spot" for OC oxidation, the delta likely improves OC preservation in the adjacent fjord by filtering out coarse-grained particles and exporting fine-grained particles to fjord sediments. Our results showed that fjord-head deltas can influence sedimentation and OC dynamics in select regions of fjords and thus warrant more examination of fjord-head processes, particularly in areas where they are expanding. In particular, as Earth warms and glaciers retreat, the newly exposed fjord-head platforms in high-latitude environments may evolve into similar "hot spots" of OC oxidation, thereby altering the dynamics of OC burial in these systems.

  3. IceBridge Survey Flight Over Saunders Island and Wolstenholme Fjord

    NASA Image and Video Library

    2017-12-08

    This image of Saunders Island and Wolstenholme Fjord with Kap Atholl in the background was taken during an Operation IceBridge survey flight in April, 2013. Sea ice coverage in the fjord ranges from thicker, white ice seen in the background, to thinner grease ice and leads showing open ocean water in the foreground. In March 2013, NASA's Operation IceBridge scientists began another season of research activity over Arctic ice sheets and sea ice. IceBridge, a six-year NASA mission, is the largest airborne survey of Earth's polar ice ever flown. It will yield an unprecedented three-dimensional view of Arctic and Antarctic ice sheets, ice shelves and sea ice. These flights will provide a yearly, multi-instrument look at the behavior of the rapidly changing features of the Greenland and Antarctic ice. Image Credit: NASA / Michael Studinger Read more about the mission here: www.nasa.gov/mission_pages/icebridge/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Precursory Seismicity Associated With Landslides, Including the 2017 Tsunamigenic Landslide in the Karrat Fjord, Greenland

    NASA Astrophysics Data System (ADS)

    Caplan-Auerbach, J.

    2017-12-01

    On the evening of June 17 2017, a massive landslide fell from the wall of the Karrat Fjord, Greenland, generating a tsunami that caused the deaths of four residents in the nearby village of Nuugaatsiaq. The slide took place at a bluff 30 km from the village, where a broadband seismometer (DK.NUUG) is permanently deployed. The landslide generated a seismic signal initially interpreted as a magnitude 4.1 earthquake, as well as a tsunami that initially reached heights exceeding 100 m. Prior to the large seismic signal, however, station NUUG detected a series of several dozen small pulses, most of which were highly similar in time series. The pulses occur more frequently with time, until they effectively merge with the seismic signal of the landslide. The pulses were not detected on any other seismic stations, so their source locations cannot be calculated, but particle motions suggest that they were coming from an azimuth of 30o, consistent with the location of the landslide relative to Nuugaatsiaq. This particular sequence, in which small, repeating earthquakes occur with increasing frequency prior to a landslide, has been observed in at least four other locations: (1) on Mt. Baker (Washington) during an ice avalanche in 1976 (Weaver and Malone, 1979), (2) repeatedly on Iliamna volcano (Alaska) in association with glacial avalanches (Caplan-Auerbach and Huggel, 2007), (3) on Mt. Stellar (Alaska) prior to a 2006 rockfall (Huggel et al., 2010), and (4) as part of the Kausu landslide (Japan), in 2015 (Yamada et al., 2016). In all cases the precursory events exhibited waveform similarity, indicative of a repeating point of failure. These events represent stick-slip behavior at the landslide base. The precursory sequences last several hours, suggesting that detection of these events could provide a means of warning prior to failure. This may be useful in areas where instabilities or incipient failures are evident.

  5. Evidence of local and regional freshening of Northeast Greenland coastal waters.

    PubMed

    Sejr, Mikael K; Stedmon, Colin A; Bendtsen, Jørgen; Abermann, Jakob; Juul-Pedersen, Thomas; Mortensen, John; Rysgaard, Søren

    2017-10-13

    The supply of freshwater to fjord systems in Greenland is increasing as a result of climate change-induced acceleration in ice sheet melt. However, insight into the marine implications of the melt water is impaired by lack of observations demonstrating the fate of freshwater along the Greenland coast and providing evaluation basis for ocean models. Here we present 13 years of summer measurements along a 120 km transect in Young Sound, Northeast Greenland and show that sub-surface coastal waters are decreasing in salinity with an average rate of 0.12 ± 0.05 per year. This is the first observational evidence of a significant freshening on decadal scale of the waters surrounding the ice sheet and comes from a region where ice sheet melt has been less significant. It implies that ice sheet dynamics in Northeast Greenland could be of key importance as freshwater is retained in southward flowing coastal currents thus reducing density of water masses influencing major deep water formation areas in the Subarctic Atlantic Ocean. Ultimately, the observed freshening could have implications for the Atlantic meridional overturning circulation.

  6. Identifying and assessing the role of warm air advection (Atmospheric Rivers) along the west coast of Greenland comparing various reanalyses for the period 2000-2012

    NASA Astrophysics Data System (ADS)

    Neff, William; Shupe, Matthew; Compo, Gilbert P.

    2017-04-01

    Neff et al. (2014) examined the 2012 summer Greenland melt episode and compared it to the last episode in 1889 using the Twentieth Century Reanalysis (20CR, Compo et al. 2011). A key factor in both 2012 and 1889 was the presence of an Atmospheric River (AR) that transported warm air over the Atlantic Ocean and thence to the west coast of Greenland. ARs are thin filaments of high-moisture air occurring at frontal boundaries and represent an efficient poleward transport mechanism for warm moist air (Newell et al. 1992) to the Arctic (Bonne et al. 2015; Neff et al. 2014) and the Antarctic (Gorodetskaya et al. 2014). The cases in 1889 and 2012 share a similar synoptic situation with lows just south and/or west of Baffin Island and highs to the southeast of Greenland. Although the details in the position of the moisture plumes are different, they both produce an anomaly in integrated water vapor (IWV) just off the southwest coast of Greenland suggesting this location as a key diagnostic location for potential AR impact on west Greenland. As part of a long-term goal to assess the frequency of such events that affect the surface energy budget of Greenland back to 1871 using the 20CR, we have compared in more detail transport signatures using 20CR, ERA-I, and NCEP-NCAR reanalyses for the period 2000-2012. In particular, we used reanalysis data at 50oW, 60oN, which lies just off the southwest coast of Greenland. These data included wind speed and direction, integrated precipitable water vapor (IWV), and specific humidity (q) at 850 hPa (which is a nominal height for the southerly coastal jet identified in previous AR events (Neff et al. 2014).) We found substantial agreement in the various reanalyses in terms of wind direction and speed distributions. We found IWV spatial distributions during southerly wind speed and IWV maxima that range from "blobs" to well-organized transport events. Using compositing techniques we also have examined the subsequence evolution of

  7. Arctic Outflow West of Greenland: Mass and Freshwater Fluxes at Davis Strait

    NASA Astrophysics Data System (ADS)

    Lee, Craig; Curry, Beth; Petrie, Brian; Azetsu-Scott, Kumiko; Gobat, Jason

    2014-05-01

    Eberhard Fahrbach worked to understand the communication between the Arctic and subpolar oceans and its role in modulating Arctic change. This included long-standing leadership in the Arctic-Subarctic Ocean Flux program and the long-term quantification of fluxes east of Greenland, through Fram Strait, the primary pathway for Atlantic water passing into the Arctic and one of two gateways for freshwater flowing out. Freshwater also exits the Arctic west of Greenland, though the Canadian Arctic Archipelago and, to the south, Davis Strait. The strait provides a convenient choke point for monitoring temporal and spatial variability of Arctic outflow while also characterizing a critical upstream boundary condition for Labrador Sea convection. Fluxes through the Strait represent the net integrated Canadian Archipelago throughflow, over 50% of the Arctic's liquid freshwater discharge, modified by terrestrial inputs and oceanic processes during its southward transit through Baffin Bay. By the time they reach Davis Strait, Arctic waters already embody most of the transformations they undergo prior to exerting their influence on the deepwater formation sites in the Labrador Sea. An ongoing program has characterized Davis Strait volume, freshwater and heat flux since September 2004. Measurements include continuous velocity, temperature and salinity time series collected by a moored array, autumn ship-based hydrographic sections and high-resolution sections occupied by autonomous gliders. Moored instrumentation includes novel new instruments that provide temperature and salinity measurements in the critical region neat the ice-ocean interface and measurements over the shallow Baffin and West Greenland shelves, while gliders have captured the first high-resolution wintertime sections across the Strait. These data show large interannual variability in volume and freshwater transport, with no clear trends observed between 2004-2010. Average volume, liquid freshwater and sea ice

  8. Larval outbreaks in West Greenland: Instant and subsequent effects on tundra ecosystem productivity and CO2 exchange.

    PubMed

    Lund, Magnus; Raundrup, Katrine; Westergaard-Nielsen, Andreas; López-Blanco, Efrén; Nymand, Josephine; Aastrup, Peter

    2017-02-01

    Insect outbreaks can have important consequences for tundra ecosystems. In this study, we synthesise available information on outbreaks of larvae of the noctuid moth Eurois occulta in Greenland. Based on an extensive dataset from a monitoring programme in Kobbefjord, West Greenland, we demonstrate effects of a larval outbreak in 2011 on vegetation productivity and CO 2 exchange. We estimate a decreased carbon (C) sink strength in the order of 118-143 g C m -2 , corresponding to 1210-1470 tonnes C at the Kobbefjord catchment scale. The decreased C sink was, however, counteracted the following years by increased primary production, probably facilitated by the larval outbreak increasing nutrient turnover rates. Furthermore, we demonstrate for the first time in tundra ecosystems, the potential for using remote sensing to detect and map insect outbreak events.

  9. Earthquakes, Subaerial and Submarine Landslides, Tsunamis and Volcanoes in Aysén Fjord, Chile

    NASA Astrophysics Data System (ADS)

    Lastras, G.; Amblas, D.; Calafat-Frau, A. M.; Canals, M.; Frigola, J.; Hermanns, R. L.; Lafuerza, S.; Longva, O.; Micallef, A.; Sepulveda, S. A.; Vargas Easton, G.; Azpiroz, M.; Bascuñán, I.; Duhart, P.; Iglesias, O.; Kempf, P.; Rayo, X.

    2014-12-01

    The Aysén fjord, 65 km long and east-west oriented, is located at 45.4ºS and 73.2ºW in Chilean Patagonia. It has a maximum water depth of 345 m. It collects the inputs of Aysén, Pescado, Condor and Cuervo rivers, which drain the surrounding Patagonian Andes. The fjord is crossed by the Liquiñe-Ofqui Fault Zone, a seismically active trench parallel intra-arc fault system. On 21 April 2007, an Mw 6.2 earthquake triggered numerous subaerial and submarine landslides along the fjord flanks. Some of the subaerial landslides reached the water mass, generating tsunami-like displacement waves that flooded the adjacent coastlines, withlocal >50 m high run-ups, causing ten fatalities and damage to salmon farms. The research cruise DETSUFA on board BIO Hespérides in March 2013, aiming to characterise the landslides and their effects, mapped with great detail the submerged morphology of the fjord. Multibeam data display deformation structures created by the impact of the landslides in the inner fjord floor. Landslide material descended and accelerated down the highly sloping fjord flanks, and reached the fjord floor at 200 m water depth generating large, 10-m-deep impact depressions. Fjord floor sediment was pushed and piled up in arcuate deformation areas formed by 15-m-high compressional ridges, block fields and a narrow frontal depression. Up to six >1.5 km2 of these structures have been identified. In addition, the cruise mapped the outer fjord floor beyond the Cuervo ridge. This ridge, previously interpreted as a volcanic transverse structure, most probably acted as a limit for grounding ice in the past, as suggested by the presence of a melt-water channel. The fjord smoothens and deepens to more than 330 m forming an enclosed basin, before turning SW across a field of streamlined hills of glacial origin. Three volcanic cones, one of them forming Isla Colorada and the other two totally submerged and previously unknown, have been mapped in the outer fjord. The largest

  10. The Petermann Glacier Experiment, NW Greenland

    NASA Astrophysics Data System (ADS)

    Mix, A. C.; Jakobsson, M.; Andrews, J. T.; Jennings, A. E.; Mayer, L. A.; Marcott, S. A.; Muenchow, A.; Stoner, J. S.; Andresen, C. S.; Nicholls, K. W.; Anderson, S. T.; Brook, E.; Ceperley, E. G.; Cheseby, M.; Clark, J.; Dalerum, F.; Dyke, L. M.; Einarsson, D.; Eriksson, B.; Frojd, C.; Glueder, A.; Hedman, U.; Heirman, K.; Heuzé, C.; Hogan, K.; Holden, R.; Holm, C.; Jerram, K.; Krutzfeldt, J.; Nicolas, L.; Par, L.; Lomac-MacNair, K.; Madlener, S.; McKay, J. L.; Meijer, T.; Meiton, A.; Brian, M.; Mohammed, R.; Molin, M.; Moser, C.; Normark, E.; Padman, J.; Pecnerova, P.; Reilly, B.; Reusche, M.; Ross, A.; Stranne, C.; Trinhammer, P.; Walczak, M. H.; Walczak, P.; Washam, P.; Karasti, M.; Anker, P.

    2016-12-01

    The Petermann Glacier Experiment is a comprehensive study on land, ocean, and ice in Northwest Greenland, staged from Swedish Icebreaker Oden in 2015 as a collaboration between the US, Sweden, UK, and Denmark. This talk introduces the strategic goals of the experiment and connects the various scientific results. Petermann Glacier drains a significant marine-based sector of the northern Greenland Ice Sheet and terminates in a floating ice tongue, one of the largest remaining systems of its kind in the northern hemisphere. Records of the modern state of Petermann Glacier and its past variations are of interest to understand the sensitivity of marine terminating outlet glaciers to change, and to constrain the rates and extent of changes that have actually occurred. With this case study we are learning the rules of large scale dynamics that cannot be understood from modern observations alone. Although past behavior is not an simple analog for the future, and no single system captures all possible behaviors, insights from these case studies can be applied through models to better project how similar systems may change in the future. The Petermann Expedition developed the first comprehensive bathymetric maps of the region, drilled through the floating ice tongue to obtain sub-shelf sediment cores near the grounding line and to monitor sub-ice conditions, recovered a broad array of sediment cores documenting changing oceanic conditions in Petermann Fjord, Hall Basin, and Nares Strait, measured watercolumn properties to trace subsurface watermasses that bring heat from the Arctic Ocean into deep Petermann Fjord to melt the base of the floating ice tongue, developed a detailed record of relative sealevel change on land to constrain past ice loads, and recovered pristine boulders for cosmogenic exposure dating of areal ice retreat on land. Together, these studies are shedding new light on the dynamics of past glaciation in Northwest Greenland, and contributing to fundamental

  11. Vertical motions of passive margins of Greenland: influence of ice sheet, glacial erosion, and sediment transport

    NASA Astrophysics Data System (ADS)

    Souche, A.; Medvedev, S.; Hartz, E. H.

    2009-04-01

    The sub-ice topography of Greenland is characterized by a central depression below the sea level and by elevated (in some places significantly) margins. Whereas the central depression may be explained by significant load of the Greenland ice sheet, the origin of the peripheral relief remains unclear. We analyze the influence of formation of the ice sheet and carving by glacial erosion on the evolution of topography along the margins of Greenland. Our analysis shows that: (1) The heavy ice loading in the central part of Greenland and consecutive peripheral bulging has a negligible effect on amplitude of the uplifted Greenland margins. (2) First order estimates of uplift due to isostatic readjustment caused by glacial erosion and unloading in the fjord systems is up to 1.1 km. (3) The increase of accuracy of topographic data (comparing several data sets of resolution with grid size from 5 km to 50 m) results in increase of the isostatic response in the model. (4) The analysis of mass redistribution during erosion-sedimentation process and data on age of offshore sediments allows us to estimate the timing of erosion along the margins of Greenland. This ongoing analysis, however, requires careful account for the link between sources (localized glacial erosion) and sinks (offshore sedimentary basins around Greenland).

  12. IGLOO: an Intermediate Complexity Framework to Simulate Greenland Ice-Ocean Interactions

    NASA Astrophysics Data System (ADS)

    Perrette, M.; Calov, R.; Beckmann, J.; Alexander, D.; Beyer, S.; Ganopolski, A.

    2017-12-01

    The Greenland ice-sheet is a major contributor to current and future sea level rise associated to climate warming. It is widely believed that over a century time scale, surface melting is the main driver of Greenland ice volume change, in contrast to melting by the ocean. It is due to relatively warmer air and less ice area exposed to melting by ocean water compared to Antarctica, its southern, larger twin. Yet most modeling studies do not have adequate grid resolution to represent fine-scale outlet glaciers and fjords at the margin of the ice sheet, where ice-ocean interaction occurs, and must use rather crude parameterizations to represent this process. Additionally, the ice-sheet area grounded below sea level has been reassessed upwards in the most recent estimates of bedrock elevation under the Greenland ice sheet, revealing a larger potential for marine-mediated melting than previously thought. In this work, we develop an original approach to estimate potential Greenland ice sheet contribution to sea level rise from ocean melting, in an intermediate complexity framework, IGLOO. We use a medium-resolution (5km) ice-sheet model coupled interactively to a number of 1-D flowline models for the individual outlet glaciers. We propose a semi-objective methodology to derive 1-D glacier geometries from 2-D Greenland datasets, as well as preliminary results of coupled ice-sheet-glaciers simulations with IGLOO.

  13. BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation

    NASA Astrophysics Data System (ADS)

    Morlighem, M.; Williams, C. N.; Rignot, E.; An, L.; Arndt, J. E.; Bamber, J. L.; Catania, G.; Chauché, N.; Dowdeswell, J. A.; Dorschel, B.; Fenty, I.; Hogan, K.; Howat, I.; Hubbard, A.; Jakobsson, M.; Jordan, T. M.; Kjeldsen, K. K.; Millan, R.; Mayer, L.; Mouginot, J.; Noël, B. P. Y.; O'Cofaigh, C.; Palmer, S.; Rysgaard, S.; Seroussi, H.; Siegert, M. J.; Slabon, P.; Straneo, F.; van den Broeke, M. R.; Weinrebe, W.; Wood, M.; Zinglersen, K. B.

    2017-11-01

    Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine-terminating glaciers. Here we present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation approach. A new 150 m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface, yielding major improvements over previous data sets, particularly in the marine-terminating sectors of northwest and southeast Greenland. Our map reveals that the total sea level potential of the Greenland ice sheet is 7.42 ± 0.05 m, which is 7 cm greater than previous estimates. Furthermore, it explains recent calving front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers with marine-based basins, thereby highlighting sectors of Greenland that are most vulnerable to future oceanic forcing.

  14. Mapping tide-water glacier dynamics in east Greenland using landsat data

    USGS Publications Warehouse

    Dwyer, John L.

    1995-01-01

    Landsat multispectral scanner and thematic mapper images were co-registered For the Kangerdlugssuaq Fjord region in East Greenland and were used to map glacier drainage-basin areas, changes in the positions of tide-water glacier termini and to estimate surface velocities of the larger tide-water glaciers. Statistics were compiled to document distance and area changes to glacier termini. The methodologies developed in this study are broadly applicable to the investigation of tide-water glaciers in other areas. The number of images available for consecutive years and the accuracy with which images are co-registered are key factors that influence the degree to which regional glacier dynamics can be characterized using remotely sensed data.Three domains of glacier state were interpreted: net increase in terminus area in the southern part of the study area, net loss of terminus area for glaciers in upper Kangerdlugssuaq Fjord and a slight loss of glacier terminus area northward from Ryberg Fjord. Local increases in the concentrations of drifting icebergs in the fjords coincide with the observed extension of glacier termini positions Ice-surface velocity estimates were derived for several glaciers using automated image cross-correlation techniques The velocity determined for Kangerdlugssuaq Gletscher is approximately 5.0 km a−1 and that for Kong Christian IV Gletscher is 0.9 km a−1. The continuous presence of icebergs and brash ice in front of these glaciers indicates sustained rates of ice-front calving.

  15. The Swiss Seismological Service in Greenland: Network Building and Research Initiatives

    NASA Astrophysics Data System (ADS)

    Husen, S.; Clinton, J. F.; Olivieri, M.; Giardini, D.

    2010-12-01

    In recent years the Swiss Seismological Service (SED) at the ETH Zürich has begun active work in NW Greenland. As part of the GreenLand Ice Sheet monitoring Network (GLISN), a new international, broadband seismic capability for Greenland, the SED has installed 3 observation quality stations, recording in realtime, with data freely open to the community. Each site is located at a village - two are within 60km of productive calving glacier fronts (Rink and Jakobshavn); the other station is 30km from inland ice calving directly into the ocean. This paper presents the stations and discusses the data quality. The capability of broadband seismic sensors at local distances to record a wide spectrum of ground motion induced by large calving events is becoming clear. Associated with a major calving event, we observe energy at 1. high frequencies (1-5Hz) due to ice fracture; 2. at mid periods (40-60s - visible at teleseismic distances) likely due to large, rapid displacement of the calved ice across the fjord floor; and 3. at longer periods (100-1000s) measuring fjord seiche generated by the calved iceberg. We are developing an automated detector for events using the GLISN dataset, with focus on the Swiss stations. Additionally, the SED, with the ETH Glaciology unit, intend to operate a broadband / short period seismic network on the ice near SwissCamp in summer 2011. The goal is to improve understanding of how sub-glacial water affects glacial bed coupling. We aim to generate an icequake catalogue with characterized sources, and to model transient changes in ice structure than may be indicative of water flow. We present a summary of the proposed work and installation plans.

  16. The Role of Biological Soil Crusts in Nitrogen Cycling and Soil Deflation in West Greenland

    NASA Astrophysics Data System (ADS)

    Heindel, R. C.; Governali, F. C.; Spickard, A. M.; Virginia, R. A.

    2017-12-01

    Although shrub expansion has been observed across the Arctic in moist tundra habitat, shrubs may be prevented from expanding in arid Arctic regions due to low soil moisture or soil erosion. This may be the case in Kangerlussuaq, West Greenland, where katabatic winds off the Greenland Ice Sheet have eroded distinct patches of mixed shrub tundra, resulting in nearly barren low productivity areas dominated by biological soil crusts (biocrusts) and graminoids. The future trajectory of these bare patches - persisting in a low biomass state or returning to a shrub-dominated state - depends on the role of the biocrust as either a long-term landscape cover limiting revegetation or as a successional facilitator. Prior to this study, little was known about the physical and ecological development of West Greenland biocrusts and how they may influence future vegetation dynamics. We found that biocrusts took 230 ± 48 years to fully develop, and that later stages of biocrust development were related to increased thickness and penetration resistance and decreased soil moisture, factors limiting shrub seedling establishment. The nitrogen (N) fixing lichen Stereocaulon sp. was found throughout the study region at all stages of biocrust development. Natural 15N abundance suggests that Stereocaulon sp. obtains about half of its N from biological fixation, and that some biologically-fixed N is incorporated into the underlying soils over time. Although soil N and C concentrations increased slightly with biocrust development, their levels under the most developed biocrusts remained low compared to the surrounding shrub and graminoid tundra. Our results suggest that deflation patches, triggered by long-term variations in climate, may remain in a low-productivity ecosystem state for hundreds to thousands of years, if precipitation and temperature regimes do not dramatically alter the vegetation potential of the region. However, if future climate change in the Arctic favors greater

  17. Modeling of Ice Flow and Internal Layers Along a Flow Line Through Swiss Camp in West Greenland

    NASA Technical Reports Server (NTRS)

    Wang, W. L.; Zwally, H. Jay; Abdalati, W.; Luo, S.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    An anisotropic ice flow line model is applied to a flow line through Swiss Camp (69.57 N, 49.28 W) in West Greenland to estimate the dates of internal layers detected by Radio-Echo Sounding measurements. The effect of an anisotropic ice fabric on ice flow is incorporated into the steady state flow line model. The stress-strain rate relationship for anisotropic ice is characterized by an enhancement factor based on the laboratory observations of ice deformation under combined compression and shear stresses. By using present-day data of accumulation rate, surface temperature, surface elevation and ice thickness along the flow line as model inputs, a very close agreement is found between the isochrones generated from the model and the observed internal layers with confirmed dates. The results indicate that this part of Greenland ice sheet is primarily in steady state.

  18. Bed topography of Jakobshavn Isbræ, Greenland from high-resolution gravity data

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E. J.; Morlighem, M.; Paden, J. D.; Holland, D. M.

    2015-12-01

    Jakobshavn Isbræ (JKS) is one of the largest marine terminating outlet glaciers in Greenland, feeding a fjord about 800 m deep in the west coast. JKS sped up more than twofold since 2002 and contributed nearly 1 mm of global sea level rise during the period from 2000 to 2011. Holland et al. (2008) posit that these changes coincided with a change in ocean conditions beneath the former ice tongue, yet little is known about the depth of the glacier at its grounding line and upstream of the grounding line and the sea floor depth of the fjord is not well known either. Here, we present a new approach to infer the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line of JKS using high-resolution airborne gravity data from AirGRAV. AirGRAV data were collected in August 2012 from a helicopter platform. The data combined with radio echo sounding data, discrete point soundings in the fjord and the mass conservation approach on land ice. AirGRAV acquired a 500m spacing grid of free-air gravity data at 50 knots with sub-milligal accuracy, i.e. much higher than NASA Operation IceBridge (OIB)'s 5.2km resolution at 290 knots. We use a 3D inversion of the gravity data combining our observations and a forward modeling of the surrounding gravity field, and constrained at the boundary by radar echo soundings and point bathymetry. We reconstruct seamless bed topography at the grounding line that matches interior data and the sea floor bathymetry. The results reveal the true depth at the elbow of the terminal valley and the bed reversal in the proximity of the current grounding line. The analysis provides guidelines for future gravity survey of narrow fjords in terms of spatial resolution and gravity precision. The results also demonstrate the practicality of using high resolution gravity survey to resolve bed topography near glacier snouts, in places where radar sounding has been significantly challenged in the past. The inversion results are critical

  19. Morphology and sedimentology of glacigenic submarine fans on the west Greenland continental margin

    NASA Astrophysics Data System (ADS)

    O'Cofaigh, Colm; Hogan, Kelly A.; Dowdeswell, Julian A.; Jennings, Anne E.; Noormets, Riko; Evans, Jeffrey

    2014-05-01

    Along the West Greenland continental margin adjoining Baffin Bay, bathymetric data show a series of large submarine fans located at the mouths of cross-shelf troughs. Two of these fans, the Uummannaq Fan and the Disko Fan are trough-mouth fans built largely of debris delivered from ice sheet outlets of the Greenland Ice Sheet during past glacial maxima. On the Uummannaq Fan glacigenic debris flow deposits occur on the upper slope and extend to at least 1800 m water depth in front of the trough-mouth. The debris flow deposits are related to the remobilisation of subglacial debris that was delivered onto the upper slope at times when an ice stream was positioned at the shelf edge. In contrast, sedimentary facies from the northern sector of the fan are characterised by hemipelagic and ice-rafted sediments and turbidites; glacigenic debris flows are notably absent in cores from this region. Further south along the Greenland continental margin the surface of the Disko Fan is prominently channelised and associated sediments are acoustically stratified. Although glacigenic debris flow deposits do occur on the upper Disko Fan, sediments recovered in cores from elsewhere on the fan record the influence of turbidity current and meltwater sedimentation. The channelised form of the Disko fan contrasts markedly with that of the Uummannaq Fan and, more widely, with trough mouth fans from the Polar North Atlantic. Collectively these data highlight the variability of glacimarine depositional processes operating on trough-mouth fans on high-latitude continental slopes and show that glacigenic debris flows are but one of a number of mechanisms by which such large glacially-influenced depocentres form.

  20. Automated Ground-based Time-lapse Camera Monitoring of West Greenland ice sheet outlet Glaciers: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    Ahn, Y.; Box, J. E.; Balog, J.; Lewinter, A.

    2008-12-01

    Monitoring Greenland outlet glaciers using remotely sensed data has drawn a great attention in earth science communities for decades and time series analysis of sensory data has provided important variability information of glacier flow by detecting speed and thickness changes, tracking features and acquiring model input. Thanks to advancements of commercial digital camera technology and increased solid state storage, we activated automatic ground-based time-lapse camera stations with high spatial/temporal resolution in west Greenland outlet and collected one-hour interval data continuous for more than one year at some but not all sites. We believe that important information of ice dynamics are contained in these data and that terrestrial mono-/stereo-photogrammetry can provide theoretical/practical fundamentals in data processing along with digital image processing techniques. Time-lapse images over periods in west Greenland indicate various phenomenon. Problematic is rain, snow, fog, shadows, freezing of water on camera enclosure window, image over-exposure, camera motion, sensor platform drift, and fox chewing of instrument cables, and the pecking of plastic window by ravens. Other problems include: feature identification, camera orientation, image registration, feature matching in image pairs, and feature tracking. Another obstacle is that non-metric digital camera contains large distortion to be compensated for precise photogrammetric use. Further, a massive number of images need to be processed in a way that is sufficiently computationally efficient. We meet these challenges by 1) identifying problems in possible photogrammetric processes, 2) categorizing them based on feasibility, and 3) clarifying limitation and alternatives, while emphasizing displacement computation and analyzing regional/temporal variability. We experiment with mono and stereo photogrammetric techniques in the aide of automatic correlation matching for efficiently handling the enormous

  1. Past collapse and late Holocene reestablishment of the Petermann Ice Tongue, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Mix, A. C.; Jakobsson, M.; Jennings, A. E.; Walczak, M.; Dyke, L. M.

    2017-12-01

    Petermann Glacier, Northwest Greenland, has been a stable outlet glacier of the Greenland Ice Sheet on historical timescales. Yet, anomalous calving events in 2010 and 2012 and oceanographic studies over the last decade indicate that Petermann Glacier and its ice tongue are especially sensitive to ice-ocean interactions, leading many to speculate on its future stability. To place these observations in the context of a longer timeframe and better understand the sensitivity of Petermann Glacier to future climate change, a 2015 international and interdisciplinary expedition of the Icebreaker Oden collected a suite of sediment cores from Petermann Fjord, spanning the mid to late Holocene and forming a transect from beneath the modern ice tongue to the mouth of the fjord (25 - 80 km from the modern grounding line). We characterize the stratigraphy ( 5.5 - 6.5 m at piston core sites) using a combination of X-ray fluorescence (XRF) scanning geochemistry, computed tomography (CT) scanning, and particle-size specific magnetic measurements on these cores and nearby terrestrial samples. Age-depth modeling, based on radiocarbon dated benthic foraminifera, is in progress with reservoir age corrections assessed using paleomagnetic comparisons to regional and global records. We observe changes in the composition and spatial pattern of ice rafted debris (IRD) and sediment fabric that reveal a dynamic history. Following early Holocene deglaciation of the region, a paleo-ice tongue broke up and an extended period of seasonally open marine conditions ensued through the middle Holocene. This ice-tongue collapse was followed by a large increase in the relative abundance of Petermann sourced IRD of non-local granitic composition. This granitic IRD component steadily declined through the middle Holocene, reaching negligible contributions when the ice tongue was reestablished in the late Holocene. Regional paleoenvironmental studies suggest warmer oceanographic and atmospheric conditions

  2. Subglacial discharge-driven renewal of tidewater glacier fjords

    NASA Astrophysics Data System (ADS)

    Carroll, Dustin; Sutherland, David A.; Shroyer, Emily L.; Nash, Jonathan D.; Catania, Ginny A.; Stearns, Leigh A.

    2017-08-01

    The classic model of fjord renewal is complicated by tidewater glacier fjords, where submarine melt and subglacial discharge provide substantial buoyancy forcing at depth. Here we use a suite of idealized, high-resolution numerical ocean simulations to investigate how fjord circulation driven by subglacial plumes, tides, and wind stress depends on fjord width, grounding line depth, and sill height. We find that the depth of the grounding line compared to the sill is a primary control on plume-driven renewal of basin waters. In wide fjords the plume exhibits strong lateral recirculation, increasing the dilution and residence time of glacially-modified waters. Rapid drawdown of basin waters by the subglacial plume in narrow fjords allows for shelf waters to cascade deep into the basin; wide fjords result in a thin, boundary current of shelf waters that flow toward the terminus slightly below sill depth. Wind forcing amplifies the plume-driven exchange flow; however, wind-induced vertical mixing is limited to near-surface waters. Tidal mixing over the sill increases in-fjord transport of deep shelf waters and erodes basin stratification above the sill depth. These results underscore the first-order importances of fjord-glacier geometry in controlling circulation in tidewater glacier fjords and, thus, ocean heat transport to the ice.

  3. The glacimarine sediment budget of the Nares Strait-Petermann Fjord area since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Hogan, K.; Mayer, L. A.; Mix, A. C.; Nielsen, T.; Kamla, E.; Stranne, C.; Eriksson, B.; Jerram, K.

    2016-12-01

    During the Petermann 2015 Expedition of the Swedish icebreaker Oden more than 6500 line-km of high-resolution chirp sub-bottom profiles (2-7 kHz) were acquired in Petermann Fjord and Nares Strait in the area immediately outside of the fjord. The sub-bottom profiles reveal a highly-variable distribution of post-glacial sediment that appears to be largely controlled by the rugged relief of the underlying bedrock. Sediment thicknesses are between 0-60 m above bedrock and comprise predominantly acoustically-stratified, homogeneous to transparent acoustic facies. In Petermann Fjord itself unlithified sediment cover typically comprises two units: an underlying acoustically-transparent unit overlain by an acoustically-stratified unit. Both of these units are conformable over scoured and fairly flat bedrock terrain; small basins are present only locally. Outside of the fjord are a few local sedimentary basins containing up to 40 m of stratified basin-fill deposits, and several areas of stacked mass-flow deposits. Glacial lineations both in the fjord and Nares Strait are formed in an acoustically-homogenous unit that underlies stratified and transparent units. In addition to the sub-bottom profiles, approximately 780 line-km of 2D seismic reflection profiles were acquired using an airgun (210 cu in.) and a 300-m long streamer. These profiles have allowed us to map full unlithified sediment thicknesses down to basement in the area. Here we present the results of this mapping and we calculate the volumes of a prominent grounding-zone wedge at the mouth of Petermann Fjord, and smaller GZWs in Kennedy Channel. These features demarcate former still-stand positions of grounded ice retreating through this system, both towards the present-day grounding line of Petermann Glacier and southwards through Nares Strait. Post-glacial sediment volumes are also calculated and the sedimentary processes responsible for their distribution examined. These data, when combined with chronological

  4. Marine benthic habitat mapping of the West Arm, Glacier Bay National Park and Preserve, Alaska

    USGS Publications Warehouse

    Hodson, Timothy O.; Cochrane, Guy R.; Powell, Ross D.

    2013-01-01

    Seafloor geology and potential benthic habitats were mapped in West Arm, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, groundtruthed observations, and geological interpretations. The West Arm of Glacier Bay is a recently deglaciated fjord system under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the recently developed Coastal and Marine Ecological Classification Standard (CMECS) by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Due to the high flux of glacially sourced fines, mud is the dominant substrate within the West Arm. Water-column characteristics are addressed using a combination of CTD and circulation model results. We also present sediment accumulation data derived from differential bathymetry. These data show the West Arm is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The results of these analyses serve as a test of the CMECS classification scheme and as a baseline for ongoing and future mapping efforts and correlations between seafloor substrate, benthic habitats, and glacimarine processes.

  5. Long-Term Changes In The Behaviour Of Jakobshavns Isbrae, West Greenland During The Late Quaternary-Holocene

    NASA Astrophysics Data System (ADS)

    O'Cofaigh, C.; Jennings, A.; Moros, M.; Andrews, J. T.; Kilfeather, A.; Dowdeswell, J. A.; Richter, T.

    2008-12-01

    This poster shows the initial results of a joint scientific project to reconstruct the Late Quaternary-Holocene behavior of Jakobshavns Isbrae in central west Greenland, one of the largest ice streams draining the modern Greenland Ice Sheet. The underlying rationale for this research is to determine if recent observed changes to the mass balance of the Greenland Ice Sheet are part of the natural variability in ice-sheet dynamics, or if they relate to anthropogenically-induced climate warming. Key to resolving this question is an understanding of long-term changes in ice sheet behavior during the Late Quaternary and the Holocene. This research will allow assessment of the links between deglaciation and internal and external environmental controls, such as the influence of inflowing Atlantic Water, and will facilitate modelling of the likely future behavior of the GIS. Currently, four marine sediment cores arrayed along a transect from the Disko Bugt Fan to Disko Bay are providing information on changes in sediment flux and sedimentation style, such as abrupt intervals of iceberg-rafting vs. "normal" hemipelagic sedimentation, as well as the paleoceanographic setting and ice sheet-ocean interactions. The cores are being analysed using a variety of proxies including IRD, mineralogy, oxygen isotopes, foraminiferal assemblages, lithofacies analysis and AMS radiocarbon dating. Data are presented from two piston cores from the continental slope at the trough-mouth fan collected during the HE0006 'shakedown' cruise to Baffin Bay and from two gravity cores recovered in 2007 during MS Merian cruise MSM 05/03 to West Greenland. Slope cores contain sequences of laminated facies interpreted as fine-grained turbidites and intervals of massive, bioturbated, hemipelagic mud. The two Merian cores, contributed to this project by the Baltic Sea Research Institute, were collected from the southern entrance to Disko Bugt and the Vaigat channel north of Disko. Radiocarbon dates from the

  6. The Subglacial Access and Fast Ice Research Experiment (SAFIRE): 1. Programme of investigation on Store Glacier, West Greenland

    NASA Astrophysics Data System (ADS)

    Christoffersen, Poul; Hubbard, Bryn; Bougamont, Marion; Doyle, Samuel; Young, Tun Jan; Hofstede, Coen; Nicholls, Keith; Todd, Joe; Box, Jason; Ryan, Johnny; Toberg, Nick; Walter, Jacob; Hubbard, Alun

    2015-04-01

    Marine-terminating outlet glaciers drain 90 percent of the Greenland Ice Sheet and are responsible for about half of the ice sheet's net annual mass loss, which currently raises global sea level by almost 1 mm per year. Understanding the processes that drive the fast flow of these glaciers is crucial because a growing body of evidence points to a strong, but spatially varied and often complex, response to oceanographic as well as atmospheric forcing. While the bed of glaciers elsewhere is known to strongly influence the flow of ice, no observations have ever been made at the bed of a marine-terminating glacier in Greenland. The flow of ice in numerical models of the Greenland Ice Sheet consequently rely on untested basal parameterisations, which form a likely and potentially significant source of error in the prediction of sea level rise over the coming decades and century. The Subglacial Access and Fast Ice Research Experiment (SAFIRE) is addressing this paucity of observational constraints by gaining access to the bed of Store Glacier, a marine-terminating outlet of the Greenland Ice Sheet which has a drainage basin of 35,000 square kilometres and terminates in Uummannaq Fjord. In 2014, the SAFIRE programme drilled four boreholes in a region where ice flows at a rate of 700 m per year and where a seismic survey revealed a bed consisting of soft sediment. (See joint abstract by Hofstede et al. for details.) The boreholes were 603-616 m deep and direct access to the bed was confirmed by a clear hydrological connectivity with a basal water system. (See joint abstract by Doyle et al. for details.) With sensors deployed englacially (temperature and tilt) and at the bed (water pressure, turbidity, electrical conductivity), the SAFIRE will inform the ratio of internal ice deformation and basal slip, vertical strain, ice temperature, and fluctuations in water pressure linked to supraglacial lake drainage as well as diurnal drainage into moulins. In 2015, we plan to

  7. The Subglacial Access and Fast Ice Research Experiment (SAFIRE): 2. High magnitude englacial strain detected with autonomous phase-sensitive FMCW radar on Store Glacier, West Greenland

    NASA Astrophysics Data System (ADS)

    Young, Tun Jan; Christoffersen, Poul; Nicholls, Keith; Bun Lok, Lai; Doyle, Samuel; Hubbard, Bryn; Stewart, Craig; Hofstede, Coen; Bougamont, Marion; Todd, Joseph; Brennan, Paul; Hubbard, Alun

    2016-04-01

    Fast-flowing outlet glaciers terminating in the sea drain 90% of the Greenland Ice Sheet. It is well-known that these glaciers flow rapidly due to fast basal motion, but its contributing processes and mechanisms are, however, poorly understood. In particular, there is a paucity of data to quantify the extent to which basal sliding and internal ice deformation by viscous creep contribute to the fast motion of Greenland outlet glaciers. To study these processes, we installed a network of global positioning system (GPS) receivers around an autonomous phase-sensitive radio-echo sounder (ApRES) capable of imaging internal reflectors and the glacier bed. The ApRES system, including antennas, were custom-designed to monitor and image ice sheets and ice shelves in monostatic and multiple-input multiple-output (MIMO) modes. Specifically, the system transmits a frequency-modulated continuous-wave (FMCW) that increases linearly from 200 to 400 MHz over a period of 1 second. We installed this system 30 km up-flow of the tidewater terminus of Store Glacier, which flows into Uummannaq Fjord in West Greenland, and data were recorded every hour from 06 May to 16 July 2014 and every 4 hours from 26 July to 11 December 2014. The same site was used to instrument 600 m deep boreholes drilled to the bed as part of the SAFIRE research programme. With range and reflector distances captured at high temporal (hourly) and spatial (millimetre) resolutions, we obtained a unique, 6-month-long time series of strain through the vertical ice column at the drill site where tilt was independently recorded in a borehole. Our results show variable, but persistently high vertical strain. In the upper three-fourths of the ice column, we have calculated strain rates on the order of a few percent per year, and the strain regime curiously shifts from vertical thinning in winter to vertical thickening at the onset of summer melt. In the basal ice layer we observed high-magnitude vertical strain rates on

  8. On the response of the horizontal mean vertical density distribution in a fjord to low-frequency density fluctuations in the coastal water

    NASA Astrophysics Data System (ADS)

    Stigebrandt, Anders

    1990-10-01

    Baroclinic water exchange through a fjord mouth, driven by a slowly varying density field outside the mouth, is modelled by a simple quasi-steady frictionless model. It is assumed that a certain fraction of the horizontal pressure difference between the coastal water and the fjord is used to accelerate the fluid into the mouth. The continuous vertical density distribution in the fjord, which changes in response to the water exchange, is modelled using a time-dependent, one-dimensional advective-diffusive 'filling-box' type of model. The model has been tested against an almost one-year-long time series of salinity and temperature from the Ørsta fjord (horizontal surface area about 15km2) on the Norwegian west coast. It is found that for this particular fjord, the mean externally forced baroclinic water exchange is one order of magnitude greater than the mean water exchange driven by the estuarine circulation (600 and 60m3 s-1 respectively). Such a vigorous water exchange between a fjord and the external area implies that the time-averaged concentrations of many biological and chemical species above the sill level in the fjord are approximately equal to those in the coastal water outside the fjords.

  9. Multi-decadal and seasonal variability of dust observations in West Greenland.

    NASA Astrophysics Data System (ADS)

    Bullard, Joanna E.; Mockford, Tom

    2017-04-01

    Since the early 1900s expedition records from west Greenland have reported local dust storms. The Kangerlussuaq region, near the inland ice, is dry (mean annual precipitation <160 mm) with, on average, 150 snow-free days per year. The main local dust sources are active, proglacial outwash plains although reworking of loess deposits may also be important. This paper presents an analysis of 70-years of dust storm observations (1945-2015) based on WMO weather codes 6 (dust haze), 7 (raised dust or sand) and 9 (distant or past dust storm) and associated wind data. The 70-year average number of dust observations days is 5 per year but variable ranging from 0 observations to 23 observations in 1985. Over the past 7 decades the number of dust days has increased from <30 in 1945-54 to >75 in 1995-2004 and 2005-2015. The seasonality of dust observations has remained consistent throughout most of the period. Dust days occur all year round but are most frequent in May-June and September-October and are associated with minimum snow cover and glacial meltwater-driven sediment supply to the outwash plains during spring and fall flood events. Wind regime is bimodal dominated by katabatic winds from the northeast, which are strongest and most frequent during winter months (Nov-Jan), with less frequent, southwesterly winds generated by Atlantic storms mostly confined to spring (May, June). The southwesterly winds are those most likely to transport dust onto the Greenland ice sheet.

  10. Geomicrobiology of subglacial meltwater samples from Store Landgletscher and Russell Glacier, West Greenland

    NASA Astrophysics Data System (ADS)

    Cameron, K. A.; Dieser, M.; Choquette, K.; Christner, B. C.; Hagedorn, B.; Harrold, Z.; Liu, L.; Sletten, R. S.; Junge, K.

    2012-12-01

    The melting of the Greenland Ice Sheet provides direct connections between atmospheric, supraglacial and subglacial environments. The intraglacial hydrological pathways that result are believed to accommodate the microbial colonization of subglacial environments; however, little is known about the abundance, diversity and activity of microorganisms within these niches. The Greenland Ice Sheet (1.7 million square kilometers) and its associated surpaglacial and subglacial ecosystems may contribute significantly to biogeochemical cycling processes. We analyzed subglacial microbial assemblages in subglacial outflows, near Thule and Kangerlussuaq, West Greenland. The investigative approach included correlating microbial diversity, inferred function, abundance, melt water chemistry, O-18 water isotope ratios, alkalinity and sediment load. Using Illumina sequencing, bacterial small subunit ribosomal RNA hypervariable regions have been targeted and amplified from both extracted DNA and reverse transcribed rRNA. Over 3 billion sequence reads have been generated to create a comprehensive diversity profile. Total abundances ranged from 2.24E+04 to 1.58E+06 cells mL-1. In comparison, the total abundance of supraglacial early season snow samples ranged from 3.35E+02 to 2.8E+04 cells mL-1. 65 % of samples incubated with cyano ditoyl tetrazolium chloride (CTC), used to identify actively respiring cells, contained CTC-positive cells. On average, these cells represented 1.9 % of the estimated total abundance (1.86E+02 to 2.19E+03 CTC positive cells mL-1; 1.39E+03 cells mL-1 standard deviation); comparative to those measured in temperate freshwater lakes. The overarching objective of our research is to provide data that indicates the role of microbial communities, associated with ice sheets, in elemental cycling and in the release of biomass and nutrients to the surrounding marine biome.

  11. The metamorphic record of subduction-accretion processes in the Neoarchaean: the Nuuk region, southern West Greenland.

    NASA Astrophysics Data System (ADS)

    Dziggel, Annika; Kolb, Jochen

    2013-04-01

    The Nuuk region of southern West Greenland exposes an exceptionally well preserved section through Archaean mid- to lower continental crust, and therefore provides a natural laboratory to study the tectonic processes in the Archaean. The area mainly consists of amphibolite to granulite facies TTG gneisses, narrow supracrustal belts, and minor late-tectonic granites. It is made up of several distinct terranes, including, from NW to SE, the Færingehavn, Tre Brødre, and Tasiusarsuaq terranes. Extensive high-grade metamorphism and a clockwise PT evolution of the Færingehavn terrane in the Neoarchaean (2.72-2.71 Ga) have been interpreted as a result of crustal thickening and thrusting of the Tasiusarsuaq terrane on top of the Tre Brødre and Færingehavn terranes (Nutman and Friend, 2007). Prior to final collision, the Tasiusarsuaq terrane (the upper plate in a plate tectonic model) underwent a prolonged period of compressive deformation between 2.8 and 2.72 Ga (Kolb et al., 2012). The structural evolution was associated with near-isobaric cooling from medium-pressure granulite facies conditions of ca. 850°C and 7.5 kbar to amphibolite facies conditions of ca. 700°C and 6.5-7 kbar (Dziggel et al., 2012). Despite this long period of crustal convergence, there is no evidence for exhumation and/or loading, pointing to a rheologically weak and unstable Archaean crust perhaps due to low density differences and ongoing melt extraction. Rocks of the structurally underlying Færingehavn terrane record a distinctly different metamorphic evolution. Although generally more strongly retrogressed, relict higher-pressure mineral assemblages in mafic granulites and felsic gneisses record conditions of > 8-9 kbar and >= 750°C, indicating burial to depths of at least 30 km along an apparent geothermal gradient of 20-25°C/km. The peak of metamorphism was followed by isothermal decompression at ca. 2.715 Ga (Nutman and Friend, 2007), indicating rapid exhumation of lower crustal

  12. Runoff simulations from the Greenland ice sheet at Kangerlussuaq from 2006-2007 to 2007/08. West Greenland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mernild, Sebastian Haugard; Hasholt, Bent; Van Den Broeke, Michiel

    2009-01-01

    This study focuses on runoff from a large sector of the Greenland Ice Sheet (GrIS) - the Kangerlussuaq drainage area, West Greenland - for the runoff observation period 2006/07 to 2007/08. SnowModel, a state-of-the-art snow-evolution modeling system, was used to simulate winter accumulation and summer ablation processes, including runoff. Independent in situ end-of-winter snow depth and high-resolution runoff observations were used for validation of simulated accumulation and ablation processes. Runoff was modeled on both daily and hourly time steps, filling a data gap of runoff exiting part of the GrIS. Using hourly meteorological driving data instead of smoothed daily-averaged datamore » produced more realistic meteorological conditions in relation to snow and melt threshold surface processes, and produced 6-17% higher annual cumulative runoff. The simulated runoff series yielded useful insights into the present conditions of inter-seasonal and inter-annual variability of Kangerlussuaq runoff, and provided an acceptable degree of agreement between simulated and observed runoff. The simulated spatial runoff distributions, in some areas of the GrIS terminus, were as high as 2,750 mm w.eq. of runoff for 2006/07, while only 900 mm w.eq was simulated for 2007/08. The simulated total runoff from Kangerlussuaq was 1.9 km{sup 3} for 2006/07 and 1.2 km{sup 3} for 2007/08, indicating a reduction of 35-40% caused by the climate conditions and changes in the GrIS freshwater storage. The reduction in runoff from 2006/07 to 2007/08 occurred simultaneously with the reduction in the overall pattern of satellite-derived GrIS surface melt from 2007 to 2008.« less

  13. A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Wang, Lu; Appel, Peter W. U.

    2015-11-01

    The Archean craton of West Greenland consists of many fault-bounded Eoarchean to Neoarchean tectonic terranes (crustal blocks). These tectonic terranes are composed mainly of tonalite-trondhjemite-granodiorite (TTG) gneisses, granitic gneisses, metavolcanic-dominated supracrustal belts, layered anorthositic complexes, and late- to post-tectonic granites. Rock assemblages and geochemical signatures in these terranes suggest that they represent fragments of dismembered oceanic island arcs, consisting mainly of TTG plutons, tholeiitic to calc-alkaline basalts, boninites, picrites, and cumulate layers of ultramafic rocks, gabbros, leucogabbros and anorthosites, with minor sedimentary rocks. The structural characteristics of the terrane boundaries are consistent with the assembly of these island arcs through modern style of horizontal tectonics, suggesting that the Archean craton of West Greenland grew at convergent plate margins. Several supracrustal belts that occur at or near the terrane boundaries are interpreted as relict accretionary prisms. The terranes display fold and thrust structures and contain numerous 10 cm to 20 m wide bifurcating, ductile shear zones that are characterized by a variety of structures including transposed and redistributed isoclinal folds. Geometrically these structures are similar to those occurring on regional scales, suggesting that the Archean craton of West Greenland can be interpreted as a continental scale accretionary complex, such as the Paleozoic Altaids. Melting of metavolcanic rocks during tectonic thickening in the arcs played an important role in the generation of TTGs. Non-uniformitarian models proposed for the origin of Archean terranes have no analogs in the geologic record and are inconsistent with structural, lithological, petrological and geochemical data collected from Archean terranes over the last four decades. The style of deformation and generation of felsic rocks on outcrop scales in the Archean craton of West

  14. Continuous monitoring of deep groundwater at the ice margin, Kangerlussuaq, West Greenland

    NASA Astrophysics Data System (ADS)

    Claesson Liljedahl, L.; Lehtinen, A. M.; Ruskeeniemi, T.; Engström, J.; Hansson, K.; Sundberg, J.; Henkemans, E.; Frape, S.; Johansson, S.; Acuna, J.

    2012-12-01

    The deep geologic repository (DGR) concept for the long-term management of used nuclear fuel involves the containment and isolation of used nuclear fuel at depths of approximately 500-1000 m below ground surface within a suitable geological formation for hundreds of thousands of years. A key objective of the used fuel DGR research programs of the Swedish, Finnish and Canadian nuclear waste management organizations (SKB, POSIVA and NWMO, respectively) is to further understanding of geosphere stability and long-term evolution. Future glaciation represents an intense external perturbation of a DGR situated in northern latitudes. To advance the understanding of processes associated with glaciation and their impact on the long-term performance of a DGR, the Greenland Analogue Project (GAP) was initiated by SKB, POSIVA and NWMO. The GAP was initiated in 2008 as a four-year field and modelling study utilizing the Greenland ice sheet and sub-surface conditions in West Greenland as an analogue for the conditions expected to prevail in Fennoscandia and Canada during future glacial cycles. One of the main aims of the GAP is to improve the understanding of how groundwater flow and water chemistry is influenced by an existing ice sheet and continuous permafrost. One way to study this is by monitoring deep drillholes. A 645 m deep drillhole (DH-GAP04) was drilled and instrumented in July 2011 at the ice-sheet margin in Kangerlussuaq, West Greenland to investigate the hydrogeochemical and hydrogeological conditions of a subglacial environment. Of particular interest is the recharge of glacial meltwater, and understanding to what depth it intrudes into the bedrock and whether it affects the chemistry and physico-chemical properties of the deep groundwater. DH-GAP04 is instrumented with a two-packer multi-sensor system, installed at a depth of 560 m, dividing the hole into three sections. The upper section extends from the base of permafrost (about 350 m) down to the upper packer

  15. Sub-tidal Circulation in a deep-silled fjord: Douglas Channel, British Columbia (Canada)

    NASA Astrophysics Data System (ADS)

    Wan, Di; Hannah, Charles; Foreman, Mike

    2016-04-01

    Douglas Channel, a deep fjord on the west coast of British Columbia, Canada, is the main waterway in Kitimat fjord system that opens to Queen Charlotte Sound and Hecate Strait. The fjord is separated from the open shelf by a broad sill that is about 150 m deep, and there is another sill (200 m) that separates the fjord into an outer and an inner basin. This study examines the low-frequency (from seasonal to meteorological bands) circulation in Douglas Channel from data collected from three moorings deployed during 2013-2015, and the water property observations collected during six cruises (2014 and 2015). Estuarine flow dominates the circulation above the sill-depth. The deep flows are dominated by a yearly renewal that takes place from early June to September, and this dense water renews both basins in the form of gravity currents at 0.1 - 0.2 m/s with a thickness of 100 m. At other times of the year, the deep flow structures and water properties suggest horizontal and vertical processes and support the re-circulation idea in the inner and the outer basins. The near surface current velocity fluctuations are dominated by the along-channel wind. Overall, the circulation in the meteorological band is a mix of the estuarine flow, direct wind driven flow, and the baroclinic response to changes to the surface pressure gradient caused by the wind driven currents.

  16. New geoid of Greenland - a case study of terrain and ice effects, GOCE and local sea level data

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Jensen, T.

    2014-12-01

    Making an accurate geoid model of Greenland has always been a challenge due to the ice sheet and glaciers, and the rough topography and deep fjords in the ice free parts. Terrestrial gravity coverage has for the same reasons been relatively sparse, with an older NRL high-level airborne survey of the interior being the only gravity field data over the interior, and terrain and ice thickness models being insufficient both in terms of resolution and accuracy. This data situation has in the later years changed substantially, first of all due to GOCE, but also due to new DTU-Space and NASA IceBridge airborne gravity, ice thickness data from IceBridge and European airborne measurements, and new terrain models from ASTER, SPOT-5 and digital photogrammetry. In the paper we use all available data to make a new geoid of Greenland and surrounding ocean regions, using remove-restore techniques for ice and topography, spherical FFT techniques and downward continuation by least squares collocation. The impact of GOCE and the new terrestrial data yielded a much improved geoid. Due to the lack of of levelling data connecting scattered towns, the new geoid is validated by local sea level and dynamic ocean topography data, and specially collected GPS-tide gauge profile data along fjords. The comparisons show significant improvements over EGM08 and older geoid models, and also highlight the problems of global sea level models, especially in sea ice covered regions, and the definition of a new consistent vertical datum of Greenland.

  17. Laboratory Experiments Investigating Glacier Submarine Melt Rates and Circulation in an East Greenland Fjord

    NASA Astrophysics Data System (ADS)

    Cenedese, C.

    2014-12-01

    Idealized laboratory experiments investigate the glacier-ocean boundary dynamics near a vertical 'glacier' (i.e. no floating ice tongue) in a two-layer stratified fluid, similar to Sermilik Fjord where Helheim Glacier terminates. In summer, the discharge of surface runoff at the base of the glacier (subglacial discharge) intensifies the circulation near the glacier and increases the melt rate with respect to that in winter. In the laboratory, the effect of subglacial discharge is simulated by introducing fresh water at melting temperatures from either point or line sources at the base of an ice block representing the glacier. The circulation pattern observed both with and without subglacial discharge resembles those observed in previous studies. The buoyant plume of cold meltwater and subglacial discharge water entrains ambient water and rises vertically until it finds either the interface between the two layers or the free surface. The results suggest that the meltwater deposits within the interior of the water column and not entirely at the free surface, as confirmed by field observations. The submarine melt rate increases with the subglacial discharge rate. Furthermore, the same subglacial discharge causes greater submarine melting if it exits from a point source rather than from a line source. When the subglacial discharge exits from two point sources, two buoyant plumes are formed which rise vertically and interact. The results suggest that the distance between the two subglacial discharges influences the entrainment in the plumes and consequently the amount of submarine melting and the final location of the meltwater within the water column. Hence, the distribution and number of sources of subglacial discharge may play an important role in glacial melt rates and fjord stratification and circulation. Support was given by NSF project OCE-113008.

  18. Greenland's 20th Century retreat illuminated - great spatial variability with strong connections to subglacial topography and fjord bathymetry

    NASA Astrophysics Data System (ADS)

    Bjork, A. A.; Kjeldsen, K. K.; Boeckel, M. V.; Korsgaard, N. J.; Fenty, I. G.; Khan, S. A.; Mouginot, J.; Morlighem, M.; Rignot, E. J.; Dowdeswell, J. A.; Kjaer, K. H.

    2017-12-01

    Mass loss acceleration from the Greenland Ice Sheet is a dominant contributor in recent global sea-level rise, and has been for several decades. While ice sheet wide mass loss has recently been documented from the end of the Little Ice Age (c. 1900 CE) to the 1980s, the detailed changes during this period remain poorly known. In this study, we map glacier margins of Greenland's 310 largest outlet glaciers in order to get the full picture of the 20th Century mass loss. We take advantage of the rich history of aerial photography over Greenland and combine photos from archives in Denmark, Norway, United Kingdom, and United States. We supplement the historical aerial photographs with declassified US spy satellite imagery and recent satellite imagery to document glacial retreat and advance on a decadal scale. With recent advances in bathymetry mapping and subglacial topography mapping, we are able to show that spatial differences in retreat throughout the last 100 years are largely controlled by the underlying topography. Our study further highlights hotspots of past rapid mass loss in Greenland, and discusses implications for periods of regional stability and advance.

  19. Rise in central west Greenland surface melt unprecedented over the last three centuries

    NASA Astrophysics Data System (ADS)

    Trusel, Luke; Das, Sarah; Osman, Matthew; Evans, Matthew; Smith, Ben; McConnell, Joe; Noël, Brice; van den Broeke, Michiel

    2017-04-01

    Greenland Ice Sheet surface melting has intensified and expanded over the last several decades and is now a leading component of ice sheet mass loss. Here, we constrain the multi-century temporal evolution of surface melt across central west Greenland by quantifying layers of refrozen melt within well-dated firn and ice cores collected in 2014 and 2015, as well as from a core collected in 2004. We find significant agreement among ice core, satellite, and regional climate model melt datasets over recent decades, confirming the fidelity of the ice core melt stratigraphy as a reliable record of past variability in the magnitude of surface melt. We also find a significant correlation between the melt records derived from our new 100-m GC-2015 core (2436 m.a.s.l.) and the older (2004) 150-m D5 core (2472 m.a.s.l.) located 50 km to the southeast. This agreement demonstrates the robustness of the ice core-derived melt histories and the potential for reconstructing regional melt evolution from a single site, despite local variability in melt percolation and refreeze processes. Our array of upper percolation zone cores reveals that although the overall frequency of melt at these sites has not increased, the intensification of melt over the last three decades is unprecedented within at least the last 365 years. Utilizing the regional climate model RACMO 2.3, we show that this melt intensification is a nonlinear response to warming summer air temperatures, thus underscoring the heightened sensitivity of this sector of Greenland to further climate warming. Finally, we examine spatial correlations between the ice core melt records and modeled melt fields across the ice sheet to assess the broader representation of each ice core record. This analysis reveals wide-ranging significant correlations, including to modeled meltwater runoff. As such, our ice core melt records may furthermore offer unique, observationally-constrained insights into past variability in ice sheet mass loss.

  20. Strong Seasonality of Marine Microbial Eukaryotes in a High-Arctic Fjord (Isfjorden, in West Spitsbergen, Norway)

    PubMed Central

    Vader, Anna; Stübner, Eike I.; Reigstad, Marit

    2016-01-01

    The Adventfjorden time series station (IsA) in Isfjorden, West Spitsbergen, Norway, was sampled frequently from December 2011 to December 2012. The community composition of microbial eukaryotes (size, 0.45 to 10 μm) from a depth of 25 m was determined using 454 sequencing of the 18S V4 region amplified from both DNA and RNA. The compositional changes throughout the year were assessed in relation to in situ fjord environmental conditions. Size fractionation analyses of chlorophyll a showed that the photosynthetic biomass was dominated by small cells (<10 μm) most of the year but that larger cells dominated during the spring and summer. The winter and early-spring communities were more diverse than the spring and summer/autumn communities. Dinophyceae were predominant throughout the year. The Arctic Micromonas ecotype was abundant mostly in the early-bloom and fall periods, whereas heterotrophs, such as marine stramenopiles (MASTs), Picozoa, and the parasitoid marine alveolates (MALVs), displayed higher relative abundance in the winter than in other seasons. Our results emphasize the extreme seasonality of Arctic microbial eukaryotic communities driven by the light regime and nutrient availability but point to the necessity of a thorough knowledge of hydrography for full understanding of their succession and variability. PMID:26746718

  1. A fjord-glacier coupled system model

    NASA Astrophysics Data System (ADS)

    de Andrés, Eva; Otero, Jaime; Navarro, Francisco; Prominska, Agnieszka; Lapazaran, Javier; Walczowski, Waldemar

    2017-04-01

    With the aim of studying the processes occurring at the front of marine-terminating glaciers, we couple a fjord circulation model with a flowline glacier dynamics model, with subglacial discharge and calving, which allows the calculation of submarine melt and its influence on calving processes. For ocean modelling, we use a general circulation model, MITgcm, to simulate water circulation driven by both fjord conditions and subglacial discharge, and for calculating submarine melt rates at the glacier front. To constrain freshwater input to the fjord, we use estimations from European Arctic Reanalysis (EAR). To determine the optimal values for each run period, we perform a sensitivity analysis of the model to subglacial discharge variability, aimed to get the best fit of model results to observed temperature and salinity profiles in the fjord for each of these periods. Then, we establish initial and boundary fjord conditions, which we vary weekly-fortnightly, and calculate the submarine melt rate as a function of depth at the calving front. These data are entered into the glacier-flow model, Elmer/Ice, which has been added a crevasse-depth calving model, to estimate the glacier terminus position at a weekly time resolution. We focus our study on the Hansbreen Glacier-Hansbukta Fjord system, in Southern Spitsbergen, Svalbard, where a large set of data are available for both glacier and fjord. The bathymetry of the entire system has been determined from ground penetrating radar and sonar data. In the fjord we have got temperature and salinity data from CTDs (May to September, 2010-2014) and from a mooring (September to May, 2011-2012). For Hansbreen, we use glacier surface topography data from the SPIRIT DEM, surface mass balance from EAR, centre line glacier velocities from stake measurements (May 2005-April 2011), weekly terminus positions from time-lapse photos (Sept. 2009-Sept. 2011), and sea-ice concentrations from time-lapse photos and Nimbus-7 SMMR and DMSP SSM

  2. Lu-Hf total-rock age for the Amitsoq gneisses, West Greenland

    NASA Technical Reports Server (NTRS)

    Pettingill, H. S.; Patchett, P. J.

    1981-01-01

    Lu-Hf total-rock data for the Amitsoq gneisses of West Greenland yield an age of 3.55 + or - 0.22 billion years, based on the decay constant for Lu-176 of 1.96 x 10 to the -11th/year, and an initial Hf-176/Hf-177 ratio of 0.280482 + or - 33. The result is in good agreement with Rb-Sr total-rock and U-Pb zircon ages. In spite of severe metamorphism of the area at 2.9 billion years, zircons from two of the samples have remained on the total-rock line, and define points close to the initial Hf ratio. The initial Hf-176/Hf-177 lies close to a chondritic Hf isotopic evolution curve from 4.55 billion years to present. This is consistent with the igneous precursors to the Amitsoq gneisses having been derived from the mantle at or shortly before 3.6 billion years. Anomalous relationships between Hf concentration and the Lu-176/Hf-177 ratio may suggest that trace element abundances in the Amitsoq gneisses are partly controlled by processes related to metamorphism.

  3. Glacial Earthquakes: Monitoring Greenland's Glaciers Using Broadband Seismic Data

    NASA Astrophysics Data System (ADS)

    Olsen, K.; Nettles, M.

    2017-12-01

    The Greenland ice sheet currently loses 400 Gt of ice per year, and up to half of that mass loss comes from icebergs calving from marine-terminating glaciers (Enderlin et al., 2014). Some of the largest icebergs produced by Greenland's glaciers generate magnitude 5 seismic signals when they calve. These glacial earthquakes are recorded by seismic stations around the world. Full-waveform inversion and analysis of glacial earthquakes provides a low-cost tool to identify where and when gigaton-sized icebergs calve, and to track this important mass-loss mechanism in near-real-time. Fifteen glaciers in Greenland are known to have produced glacial earthquakes, and the annual number of these events has increased by a factor of six over the past two decades (e.g., Ekström et al., 2006; Olsen and Nettles, 2017). Since 2000, the number of glacial earthquakes on Greenland's west coast has increased dramatically. Our analysis of three recent years of data shows that more glacial earthquakes occurred on Greenland's west coast from 2011 - 2013 than ever before. In some cases, glacial-earthquake force orientations allow us to identify which section of a glacier terminus produced the iceberg associated with a particular event. We are able to track the timing of major changes in calving-front orientation at several glaciers around Greenland, as well as progressive failure along a single calving front over the course of hours to days. Additionally, the presence of glacial earthquakes resolves a glacier's grounded state, as glacial earthquakes occur only when a glacier terminates close to its grounding line.

  4. Greenland elders and high school students offer perspectives on climate change and science

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-08-01

    KANGERLUSSUAQ, GREENLAND—This small town in central western Greenland, which has a population of about 650 and a major airstrip dating from World War II, is a center for scientific research and a starting point for scientists working in the region and on Greenland's ice sheet to study climate change and other issues. The town, just north of the Arctic Circle, sits at the edge of the 190-kilometer-long Kangerlussuaq Fjord and straddles the Qinnguata Kuussua River estuary, whose source water is the Russell Glacier, about 20 kilometers to the east. Between Kanger—as some refer to the town—and the glacier, some Eskimo-Kalaallit elders held a traditional gathering last month and also offered their perspectives on climate change during an impromptu 14 July meeting with high school students and other visitors. The evening before that meeting, Ole Olsvig, Kurt Olsen, Avaruna Mathaeussen, and other high schoolers from Greenland were in a makeshift classroom at the back of a renovated former U.S. Army barracks in Kanger, which had served as a U.S. military base. The students, who said they care deeply about their traditional culture and also are very aware of recent changes in climate, were helping to make presentations about their summer science projects. A total of 16 high schoolers from Greenland, 3 from Denmark, and 5 from the United States were there, participating in Joint Science Education Project (JSEP) activities; JSEP is an international collaborative polar science education effort between Greenland, Denmark, and the United States that receives support from the U.S. National Science Foundation (NSF).

  5. In situ Dynamics of O2, pH, Light, and Photosynthesis in Ikaite Tufa Columns (Ikka Fjord, Greenland)-A Unique Microbial Habitat.

    PubMed

    Trampe, Erik C L; Larsen, Jens E N; Glaring, Mikkel A; Stougaard, Peter; Kühl, Michael

    2016-01-01

    The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1-2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals.

  6. Helicopter-based Photography for use in SfM over the West Greenland Ablation Zone

    NASA Astrophysics Data System (ADS)

    Mote, T. L.; Tedesco, M.; Astuti, I.; Cotten, D.; Jordan, T.; Rennermalm, A. K.

    2015-12-01

    Results of low-elevation high-resolution aerial photography from a helicopter are reported for a supraglacial watershed in West Greenland. Data were collected at the end of July 2015 over a supraglacial watershed terminating in the Kangerlussuaq region of Greenland and following the Utrecht University K-Transect of meteorological stations. The aerial photography reported here were complementary observations used to support hyperspectral measurements of albedo, discussed in the Greenland Ice sheet hydrology session of this AGU Fall meeting. A compact digital camera was installed inside a pod mounted on the side of the helicopter together with gyroscopes and accelerometers that were used to estimate the relative orientation. Continuous video was collected on 19 and 21 July flights, and frames extracted from the videos are used to create a series of aerial photos. Individual geo-located aerial photos were also taken on a 24 July flight. We demonstrate that by maintaining a constant flight elevation and a near constant ground speed, a helicopter with a mounted camera can produce 3-D structure of the ablation zone of the ice sheet at unprecedented spatial resolution of the order of 5 - 10 cm. By setting the intervalometer on the camera to 2 seconds, the images obtained provide sufficient overlap (>60%) for digital image alignment, even at a flight elevation of ~170m. As a result, very accurate point matching between photographs can be achieved and an extremely dense RGB encoded point cloud can be extracted. Overlapping images provide a series of stereopairs that can be used to create point cloud data consisting of 3 position and 3 color variables, X, Y, Z, R, G, and B. This point cloud is then used to create orthophotos or large scale digital elevation models, thus accurately displaying ice structure. The geo-referenced images provide a ground spatial resolution of approximately 6 cm, permitting analysis of detailed features, such as cryoconite holes, evolving small

  7. A High-Resolution Record of Warm Water Inflow and Iceberg Calving in Upernavik Isfjord During the Past 150 Years.

    NASA Astrophysics Data System (ADS)

    Vermassen, F.; Andresen, C. S.; Sabine, S.; Holtvoeth, J.; Cordua, A. E.; Wangner, D. J.; Dyke, L. M.; Kjaer, K. H.; Kokfelt, U.; Haubner, K.

    2016-12-01

    There is a growing body of evidence demonstrating that changes in warm water inflow to Greenlandic fjords are linked to the rapid retreat of marine-terminating outlet glaciers. This process is thought to be responsible for a substantial component of the increased mass loss from the Greenland Ice Sheet over the last two decades. Sediment cores from glaciated fjords provide high-resolution sedimentological and biological proxy records which can be used to evaluate the interplay of warm water inflow and glacier calving over recent time scales. In this study, multiple short cores ( 2 m) from Upernavik Isfjord, West Greenland, were analysed to establish a multi-proxy record of glacier behaviour and oceanographic conditions that spans the past 150 years. The down-core variation in the amount of ice-rafted debris reveals periods of increased glacier calving, and biomarker proxies are used to reconstruct variability in the inflow of warm, Atlantic-sourced water to the fjord. Measurements of the sortable silt grain size are used to reconstruct bottom-current strength; periods of vigorous current flow are assumed to be due to enhanced warm water inflow. Finally, a record of glacier terminus position changes, derived from historical observations and satellite imagery, allows comparison of our new proxy records with the retreat of the ice margin from 1849 onwards. We use these data to assess the relative importance of mechanisms controlling the (rapid) retreat of marine-terminating glaciers in Upernavik Isfjord.

  8. Palynofacies assemblages reflect sources of organic matter in New Zealand fjords

    NASA Astrophysics Data System (ADS)

    Prebble, Joseph G.; Hinojosa, Jessica L.; Moy, Christopher M.

    2018-02-01

    Understanding sources and transport pathways of organic carbon in fjord systems is important to quantify carbon cycling in coastal settings. Provenance of surficial sediment organic carbon in Fiordland National Park (southwestern New Zealand) has previously been estimated using a range of techniques, including mixing models derived from stable isotopes and lipid biomarker distributions. Here, we present the first application of palynofacies to explore the sources of particulate organic carbon to five fjords along the SW margin of New Zealand, to further discriminate the provenance of organic carbon in the fjords. We find good correlation between isotopic-and biomarker-derived proxies for organic carbon provenance and our new palynofacies observations. We observe strong down-fjord gradients of decreasing terrestrially derived organic carbon further from the river inflow at fjord heads. Fjords with small catchments and minor fresh water inflow exhibit reversed gradients, indicating that volume of freshwater entering at the fjord head is a primary mechanism to transport particulates down fjord rather than local transport from fjord sides. The palynofacies data also confirmed previously recorded latitudinal trends (i.e. between fjords), of less frequent and more weathered terrestrially derived organic carbon in the southern fjords, consistent with enhanced marine inflow and longer transport times in the southern catchments. Dinocyst assemblages also exhibit a strong latitudinal gradient, with assemblages dominated by heterotrophic forms in the north. In addition to providing support for previous studies, this approach allows finer discrimination of terrestrial organic carbon than previously, for example variation of leaf material. This study demonstrates that visual palynofacies analysis is a valuable tool to pinpoint origins of organic carbon in fjord systems, providing different but complementary information to other proxies.

  9. Land cover heterogeneity and soil respiration in a west Greenland tundra landscape

    NASA Astrophysics Data System (ADS)

    Bradley-Cook, J. I.; Burzynski, A.; Hammond, C. R.; Virginia, R. A.

    2011-12-01

    Multiple direct and indirect pathways underlie the association between land cover classification, temperature and soil respiration. Temperature is a main control of the biological processes that constitute soil respiration, yet the effect of changing atmospheric temperatures on soil carbon flux is unresolved. This study examines associations amongst land cover, soil carbon characteristics, soil respiration, and temperature in an Arctic tundra landscape in western Greenland. We used a 1.34 meter resolution multi-spectral WorldView2 satellite image to conduct an unsupervised multi-staged ISODATA classification to characterize land cover heterogeneity. The four band image was taken on July 10th, 2010, and captures an 18 km by 15 km area in the vicinity of Kangerlussuaq. The four major terrestrial land cover classes identified were: shrub-dominated, graminoid-dominated, mixed vegetation, and bare soil. The bare soil class was comprised of patches where surface soil has been deflated by wind and ridge-top fellfield. We hypothesize that soil respiration and soil carbon storage are associated with land cover classification and temperature. We set up a hierarchical field sampling design to directly observe spatial variation between and within land cover classes along a 20 km temperature gradient extending west from Russell Glacier on the margin of the Greenland Ice Sheet. We used the land cover classification map and ground verification to select nine sites, each containing patches of the four land cover classes. Within each patch we collected soil samples from a 50 cm pit, quantified vegetation, measured active layer depth and determined landscape characteristics. From a subset of field sites we collected additional 10 cm surface soil samples to estimate soil heterogeneity within patches and measured soil respiration using a LiCor 8100 Infrared Gas Analyzer. Soil respiration rates varied with land cover classes, with values ranging from 0.2 mg C/m^2/hr in the bare soil

  10. Gyrfalcon diet in central west Greenland during the nesting period

    USGS Publications Warehouse

    Booms, T.L.; Fuller, M.R.

    2003-01-01

    We studied food habits of Gyrfalcons (Falco rusticolus) nesting in central west Greenland in 2000 and 2001 using three sources of data: time-lapse video (3 nests), prey remains (22 nests), and regurgitated pellets (19 nests). These sources provided different information describing the diet during the nesting period. Gyrfalcons relied heavily on Rock Ptarmigan (Lagopus mutus) and arctic hares (Lepus arcticus). Combined, these species contributed 79-91% of the total diet, depending on the data used. Passerines were the third most important group. Prey less common in the diet included waterfowl, arctic fox pups (Alopex lagopus), shorebirds, gulls, alcids, and falcons. All Rock Ptarmigan were adults, and all but one arctic hare were young of the year. Most passerines were fledglings. We observed two diet shifts, first from a preponderance of ptarmigan to hares in mid-June, and second to passerines in late June. The video-monitored Gyrfalcons consumed 94-110 kg of food per nest during the nestling period, higher than previously estimated. Using a combination of video, prey remains, and pellets was important to accurately document Gyrfalcon diet, and we strongly recommend using time-lapse video in future diet studies to identify biases in prey remains and pellet data.

  11. Gyrfalcon diet in central west Greenland during the nestling period

    USGS Publications Warehouse

    Booms, Travis; Fuller, Mark R.

    2003-01-01

    We studied food habits of Gyrfalcons (Falco rusticolus) nesting in central west Greenland in 2000 and 2001 using three sources of data: time-lapse video (3 nests), prey remains (22 nests), and regurgitated pellets (19 nests). These sources provided different information describing the diet during the nesting period. Gyrfalcons relied heavily on Rock Ptarmigan (Lagopus mutus) and arctic hares (Lepus arcticus). Combined, these species contributed 79-91% of the total diet, depending on the data used. Passerines were the third most important group. Prey less common in the diet included waterfowl, arctic fox pups (Alopex lagopus), shorebirds, gulls, alcids, and falcons. All Rock Ptarmigan were adults, and all but one arctic hare were young of the year. Most passerines were fledglings. We observed two diet shifts, first from a preponderance of ptarmigan to hares in mid-June, and second to passerines in late June. The video-monitored Gyrfalcons consumed 94-110 kg of food per nest during the nestling period, higher than previously estimated. Using a combination of video, prey remains, and pellets was important to accurately document Gyrfalcon diet, and we strongly recommend using time-lapse video in future diet studies to identify biases in prey remains and pellet data.

  12. A simple approach to adjust tidal forcing in fjord models

    NASA Astrophysics Data System (ADS)

    Hjelmervik, Karina; Kristensen, Nils Melsom; Staalstrøm, André; Røed, Lars Petter

    2017-07-01

    To model currents in a fjord accurate tidal forcing is of extreme importance. Due to complex topography with narrow and shallow straits, the tides in the innermost parts of a fjord are both shifted in phase and altered in amplitude compared to the tides in the open water outside the fjord. Commonly, coastal tide information extracted from global or regional models is used on the boundary of the fjord model. Since tides vary over short distances in shallower waters close to the coast, the global and regional tidal forcings are usually too coarse to achieve sufficiently accurate tides in fjords. We present a straightforward method to remedy this problem by simply adjusting the tides to fit the observed tides at the entrance of the fjord. To evaluate the method, we present results from the Oslofjord, Norway. A model for the fjord is first run using raw tidal forcing on its open boundary. By comparing modelled and observed time series of water level at a tidal gauge station close to the open boundary of the model, a factor for the amplitude and a shift in phase are computed. The amplitude factor and the phase shift are then applied to produce adjusted tidal forcing at the open boundary. Next, we rerun the fjord model using the adjusted tidal forcing. The results from the two runs are then compared to independent observations inside the fjord in terms of amplitude and phases of the various tidal components, the total tidal water level, and the depth integrated tidal currents. The results show improvements in the modelled tides in both the outer, and more importantly, the inner parts of the fjord.

  13. Trends of perfluorochemicals in Greenland ringed seals and polar bears: indications of shifts to decreasing trends.

    PubMed

    Rigét, Frank; Bossi, Rossana; Sonne, Christian; Vorkamp, Katrin; Dietz, Rune

    2013-11-01

    Time-series of perfluorinated alkylated substances (PFASs) in East Greenland polar bears and East and West Greenland ringed seals were updated in order to deduce whether a response to the major reduction in perfluoroalkyl production in the early 2000s had occurred. Previous studies had documented an exponential increase of perfluorooctane sulphonate (PFOS) in liver tissue from both species. In the present study, PFOS was still the far most dominant compound constituting 92% (West Greenland ringed seals), 88% (East Greenland ringed seals) and 85% (East Greenland polar bears). The PFOS concentrations increased up to 2006 with doubling times of approximately 6 years for the ringed seal populations and 14 years in case of polar bears. Since then a rapid decrease has occurred with clearing half-lives of approximately 1, 2 and 4 years, respectively. In polar bears perfluorohexane sulphonate (PFHxS) and perfluorooctane sulphonamide (PFOSA) also showed decreasing trends in recent years as do perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFUnA). For the West Greenland ringed seal population perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), PFDA and PFUnA peaked in the mid 2000s, whereas PFNA, PFDA and PFUnA in the East Greenland population have been stable or increasing in recent years. The peak of PFASs in Greenland ringed seals and polar bears occurred at a later time than in Canadian seals and polar bears and considerably later than observed in seal species from more southern latitudes. We suggest that this could be explained by the distance to emission hot-spots and differences in long-range transport to the Arctic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Ecological overview of Kenai Fjords National Park

    USGS Publications Warehouse

    Spencer, Page; Irvine, Gail V.

    2004-01-01

    The major drivers of Kenai Fjords ecosystems are tectonics and climate. In this overview, we describe how these forces have contributed to the shaping of the lands and ecosystems of Kenai Fjords.Physically, the park is comprised of several distinct components, set within a broader ecophysical framework that includes the Kenai Peninsula and coastal marine waters and islands. Squeezed between the Gulf of Alaska and the Kenai Mountains, the coastal zone of the park is a narrow band of exposed headlands and deep fjords. The Harding Icefield caps the Kenai Mountains above the fjords with ice estimated to be 3,000 feet (1,000 m) thick (Figure 1). Although not included in the National Park Service jurisdiction, the park is ecologically linked to the offshore marine ecosystem, and the embedded offshore islands, most of which are part of the Alaska Maritime National Wildlife Refuge, managed by the U.S. Fish and Wildlife Service.

  15. High-resolution, terrestrial radar velocity observations and model results reveal a strong bed at stable, tidewater Rink Isbræ, West Greenland

    NASA Astrophysics Data System (ADS)

    Bartholomaus, T. C.; Walker, R. T.; Stearns, L. A.; Fahnestock, M. A.; Cassotto, R.; Catania, G. A.; Felikson, D.; Fried, M.; Sutherland, D.; Nash, J. D.; Shroyer, E.

    2015-12-01

    At tidewater Rink Isbræ, on the central west coast of Greenland, satellite observations reveal that glacier velocities and terminus positions have remained stable, while the lowest 25 km have thinned 30 m since 1985. Over this same time period, other tidewater glaciers in central west Greenland have retreated, thinned and accelerated. Here we present field observations and model results to show that the flow of Rink Isbræ is resisted by unusually high basal shear stresses. Terrestrial radar interferometry (TRI) observations over 9 days in summer 2014 demonstrate weak velocity response to 4 km wide, full thickness calving events. Velocities at the terminus change by +/- 10% in response to rising and falling tides within a partial-width, 2.5-km-long floating ice tongue; however these tidal perturbations damp out within 2 km of the grounding line. Inversions for basal shear stress and force balance analyses together show that basal shear stresses in excess of 300 kPa support the majority of the driving stress at thick, steep Rink Isbræ. These observational and modeling results tell a consistent story in which a strong bed may limit the unstable tidewater glacier retreats observed elsewhere. Rink Isbræ has an erosion resistant quartzite bed with low fracture density. We hypothesize that this geology may play a major role in the bed strength.

  16. In situ Dynamics of O2, pH, Light, and Photosynthesis in Ikaite Tufa Columns (Ikka Fjord, Greenland)—A Unique Microbial Habitat

    PubMed Central

    Trampe, Erik C. L.; Larsen, Jens E. N.; Glaring, Mikkel A.; Stougaard, Peter; Kühl, Michael

    2016-01-01

    The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1–2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals. PMID:27242741

  17. Air temperature and humidity diversity in the Hornsund fjord area (Spitsbergen) in the period 1 July 2014 - 30 June 2015

    NASA Astrophysics Data System (ADS)

    Przybylak, Rajmund; Araźny, Andrzej; Wyszyński, Przemysław; Budzik, Tomasz; Wawrzyniak, Tomasz

    2016-04-01

    The article presents preliminary results of studies into the spatial diversity of air temperature and relative humidity (overground layer, 2 m a.g.l.) in the area of the Hornsund fjord (S Spitsbergen, approx. 77°N), based on data collected between 1 July 2014 and 30 June 2015. The Hornsund fjord runs latitudinal along approx. 40 km and its average width is about 10 km. Numerous glaciers flow into the fjord and the mountain ridges around it often exceed 700 m a.s.l. Data series obtained from 11 sites equipped with automatic weather stations (Vaisala, Campbell, Davis) or HOBO temperature and humidity sensors were used. Two sites (Hornsund HOR and the Hans Glacier HG4) have been operating for years, whereas 9 new ones (Bogstranda BOG, Fugleberget FUG, Gnålodden GNA, Gåshamnoyra GAS, Hyttevika HYT, Lisbetdalen LIS, Ostrogradskijfjella OST, Treskelodden TRE and Wilczekodden WIL) were established within the Polish-Norwegian AWAKE-2 project. Three of the sites (BOG, GAS and OST) were damaged by polar bears, hence their measurement series are shorter. A substantial spatial diversity was found in the air temperature and relative humidity in the area, mostly influenced by elevation, type of surface and distance from the Greenland Sea's open water. During the year (July 2014 - June 2015), the areas of HYT (-1.1°C) and WIL (-1.9°C) were the warmest. Both sites are located on the west coast of the fjord. The HYT demonstrates the most favourable temperature conditions, being orographically sheltered from the east and its cold and dry air masses. The coldest sites were the mountain-top site of FUG (-5.9°C) and the glacier-located HG4 (-4.3°C). The low temperature at FUG resulted from its elevation (568 m a.s.l.), whereas at HG4 (184 m a.s.l) the glaciated surface also added up to the result. In the analysed period, the annual course of air temperature in the area had a clear minimum in February, when the lowest mean monthly values ranged from -9.4°C at HYT to -15.1°C at

  18. Predicting critical thresholds in outlet glacier terminus behavior, Disko and Uummannaq Bays, West Greenland

    NASA Astrophysics Data System (ADS)

    York, A.; Frey, K. E.; Das, S. B.

    2017-12-01

    The seasonal and interannual variability in outlet glacier terminus position is an important indicator of overall glacier health and the net effects of ice-ocean-atmosphere interactions. However, challenges arise in determining a primary driver of glacier change, as the magnitude of retreat observed at the terminus is controlled not only by atmospheric and oceanic temperatures, but also physical constraints unique to each glacier (e.g., ice mélange buttressing and underlying bedrock/bathymetry) which often lead to a non-linear response to climate. For example, previous studies have shown varying magnitudes of terminus retreat over the last 40 years at glaciers in West Greenland, despite exposure to similar atmospheric forcings. Satellite imagery can provide the necessary spatially- and temporally-extensive resource for monitoring glacier terminus behavior. Here, we constructed a time series of 18 glacier termini digitized from over 1200 all-season Landsat images between 1985 and 2015 within Disko and Uummannaq Bays, West Greenland. We calculated change points in the annual maximum terminus retreat of the glaciers using a bootstrapping algorithm within a change point detection software. We interpolated the average monthly retreat of each terminus in order to calculate the average seasonal amplitude of each year. We found the 11 glaciers in Uummannaq Bay retreated an average of -1.26 ± 1.36 km, while the seven glaciers in Disko Bay averaged -1.13 ± 0.82 km. The majority of glaciers retreated, yet we see no latitudinal trend in magnitude of retreat on either a seasonal or long-term scale. We observe change points in the annual maximum retreat of four glacier termini in Uummannaq Bay and one in Disko Bay which are generally coincident with increased summer sea surface temperatures. In some cases, we observed smaller interannual variability in the average seasonal amplitude of years leading up to a critical threshold, followed by an increase in seasonal variability

  19. Ocean properties, ice-ocean interactions, and calving front morphology at two major west Greenland glaciers

    NASA Astrophysics Data System (ADS)

    Chauché, N.; Hubbard, A.; Gascard, J.-C.; Box, J. E.; Bates, R.; Koppes, M.; Sole, A.; Patton, H.

    2013-11-01

    Warm sub-polar mode water (SPMW) has been identified as a primary driver of mass loss of marine terminating glaciers draining the Greenland Ice Sheet (GrIS) yet, the specific mechanisms by which SPMW interacts with these tidewater termini remain uncertain. We present oceanographic data from Rink Glacier (RG) and Store Glacier (SG) fjords, two major marine outlets draining the western sector of the GrIS into Baffin Bay over the contrasting melt-seasons of 2009 and 2010. Submarine melting occurs wherever ice is in direct contact with warmer water and the consistent presence of 2.8 °C SPMW adjacent to both ice fronts below 400 m throughout all surveys indicates that melting is maintained by a combination of molecular diffusion and large scale, weak convection, diffusional (hereafter called ubiquitous) melting. At shallower depths (50-200 m), cold, brine-enriched water (BEW) formed over winter appears to persist into the summer thereby buffering this melt by thermal insulation. Our surveys reveal four main modes of glacier-ocean interaction, governed by water depth and the rate of glacier runoff water (GRW) injected into the fjord. Deeper than 200 m, submarine melt is the only process observed, regardless of the intensity of GRW or the depth of injection. However, between the surface and 200 m depth, three further distinct modes are observed governed by the GRW discharge. When GRW is weak (≲1000 m3 s-1), upward motion of the water adjacent to the glacier front is subdued, weak forced or free convection plus diffusional submarine melting dominates at depth, and seaward outflow of melt water occurs from the glacier toe to the base of the insulating BEW. During medium intensity GRW (∼1500 m3 s-1), mixing with SPMW yields deep mixed runoff water (DMRW), which rises as a buoyant plume and intensifies local submarine melting (enhanced buoyancy-driven melting). In this case, DMRW typically attains hydrostatic equilibrium and flows seaward at an intermediate depth of

  20. Aeolian Landscape Change in West Greenland

    NASA Astrophysics Data System (ADS)

    Heindel, Ruth Chaves

    In the Arctic, aeolian processes can be important drivers of landscape change. Soil deflation, the removal of fine-grained sediment by wind, is one aeolian process that has had a profound impact in the Arctic. While soil deflation has been well studied in Iceland, our understanding of aeolian processes across the rest of the Arctic remains limited. Kangerlussuaq, West Greenland, provides an opportunity to study the mechanisms and impacts of soil deflation without direct anthropogenic influence. In Kangerlussuaq, strong katabatic winds have resulted in distinct erosional landforms, here referred to as deflation patches, that are largely devoid of vascular plants and are dominated by biological soil crusts. This dissertation considers the geomorphic and ecological impacts of soil deflation through an interdisciplinary framework. I show that deflation patches are a critical component of the Kangerlussuaq ecosystem, accounting for 22% of the terrestrial landscape and impacting vegetation dynamics by providing habitat for graminoid, herbaceous, and lichen species. Deflation patches formed roughly 230-800 years ago, during a period of cold, dry, and windy climate conditions. Deflation patches expand across the landscape when the active margin, or scarp, becomes undercut and collapses. I estimate that rates of patch expansion are roughly 2.5 cm yr-1, and that geomorphic change can be detected even over the short time period of two years. I suggest that an erosional threshold exists because climate conditions required for initial deflation-patch formation are harsher than those required for continued patch expansion. The future trajectory of deflation patches depends on the role of the biological soil crust as either a successional facilitator or a long-term landscape cover, as well as future climate conditions. While the biological soil crusts slightly enrich soil fertility over time, they decrease soil moisture and create an impenetrable soil surface, which may inhibit

  1. Rapid advance and retreat over centennial/millennial timescales at Kangiata Nunaata Sermia, SW Greenland - implications for modelling, and behaviour of tidewater glaciers

    NASA Astrophysics Data System (ADS)

    Lea, J.; Mair, D. W.; Rea, B. R.; Schofield, J.; Kamenos, N.; Pearce, D.; Schoenrock, K. M.

    2017-12-01

    While the Greenland Ice Sheet has undergone significant retreat over the last 80 years, our understanding of the ice sheet's response to climate forcing over centennial to millennial timescales is poorly constrained. Knowledge of marine glacier outlets over these timescales would provide crucial information regarding longer term ice sheet dynamics, beyond instrumental and historical records. It is notably difficult to constrain such histories for these glaciers due to: (i) a highly dynamic ice front environment in combination with the Little Ice Age advance(s) destroying much of the preceding evidence for glacier change; (ii) often poor landform/sediment preservation due to steep sided fjords; (iii) the areas with greatest preservation potential, the fjords bottoms, being submarine and often ice choked, and therefore non-trivial to survey, and sample. The tidewater glacier Kangiata Nunaata Sermia (KNS), SW Greenland provides an exception to this. Here we present a record of >22km of terminus advance and retreat spanning the last 1000 years using a combination of geomorphological, sedimentological and archaeological evidence. This timescale includes periods of substantial warming and cooling of air temperatures that appear to correspond to periods of advance and retreat. Results also suggest that the average advance rates in the early part of the millennium (110 m a-1) are of a similar magnitude to contemporary retreat rates observed around Greenland. The results generated here provide an ideal opportunity to validate the performance of numerical models (notably those that include calving) over centennial timescales. Evaluating model performance against the past behaviour of KNS could therefore lead to significant improvements in the confidence of ice sheet change projections up to 2100 and beyond.

  2. Understanding calving dynamics of Greenland outlet glaciers by comparing calving laws in a 3D ice sheet model

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Morlighem, M.; Wood, M.; Bondzio, J. H.; Mouginot, J.

    2017-12-01

    Mass loss from marine terminating glaciers along coastal Greenland is a significant contributor to global sea-level rise. Calving is one of the important processes that control the dynamics, and therefore the discharge, of these glaciers. As glacier termini are exposed to warmer ocean currents, ocean-induced melt at the calving front increases, which may lead to glacier retreat and ice flow acceleration. It is therefore important to accurately parameterize calving in ice sheet models in order to improve the projections of ice sheet change. Several calving laws have been proposed, but most of them have been applied only to a specific region and have not been tested on other glaciers, while some others have only been implemented in one-dimensional flowline or vertical flowband models. Here, we test and compare several calving laws recently proposed in the literature using a 3D ice sheet model. Namely: the height-above-buoyancy criterion (Vieli et al., 2002), the crevasse-depth calving law (Benn et al., 2007), the eigencalving law (Levermann et al., 2012) and von Mises tensile stress calving law (Morlighem et al., 2016). We test these calving laws on Zachariae Isstrøm (Northeast), Upernavik (Central West) and Helheim (East) glaciers of Greenland. We compare the modeled ice front evolution to the observed retreat from Landsat data, and assess which calving law has the best predictive skills for each glacier. Overall, von Mises tensile stress calving laws is more satisfactory than others for most regions. This study shows that calving dynamics needs to be 3D in ice sheet models to account for the complex geometry and narrow fjords along the coast of Greenland. Comparing calving laws in a 3D model makes it possible to find missing mechanisms in each criterion and to improve existing calving laws in numerical ice sheet models, which could reduce uncertainties in future sea level rise projections.

  3. Ice-dammed lake drainage evolution at Russell Glacier, west Greenland

    NASA Astrophysics Data System (ADS)

    Carrivick, Jonathan L.; Tweed, Fiona S.; Ng, Felix; Quincey, Duncan J.; Mallalieu, Joseph; Ingeman-Nielsen, Thomas; Mikkelsen, Andreas B.; Palmer, Steven J.; Yde, Jacob C.; Homer, Rachel; Russell, Andrew J.; Hubbard, Alun

    2017-11-01

    Glaciological and hydraulic factors that control the timing and mechanisms of glacier lake outburst floods (GLOFs) remain poorly understood. This study used measurements of lake level at fifteen minute intervals and known lake bathymetry to calculate lake outflow during two GLOF events from the northern margin of Russell Glacier, west Greenland. We used measured ice surface elevation, interpolated subglacial topography and likely conduit geometry to inform a melt enlargement model of the outburst evolution. The model was tuned to best-fit the hydrograph’s rising limb and timing of peak discharge in both events; it achieved Mean Absolute Errors of < 5 %. About one third of the way through the rising limb, conduit melt enlargement became the dominant drainage mechanism. Lake water temperature, which strongly governed the enlargement rate, preconditioned the high peak discharge and short duration of these floods. We hypothesize that both GLOFs were triggered by ice dam flotation, and localised hydraulic jacking sustained most of their early-stage outflow, explaining the particularly rapid water egress in comparison to that recorded at other ice-marginal lakes. As ice overburden pressure relative to lake water hydraulic head diminished, flow became confined to a subglacial conduit. This study has emphasised the inter-play between ice dam thickness and lake level, drainage timing, lake water temperature and consequently rising stage lake outflow and flood evolution.

  4. Norwegian fjord sediments reveal NAO related winter temperature and precipitation changes of the past 2800 years

    NASA Astrophysics Data System (ADS)

    Faust, Johan C.; Fabian, Karl; Milzer, Gesa; Giraudeau, Jacques; Knies, Jochen

    2016-02-01

    The North Atlantic Oscillation (NAO) is the leading mode of atmospheric circulation variability in the North Atlantic region. Associated shifts of storm tracks, precipitation and temperature patterns affect energy supply and demand, fisheries and agricultural, as well as marine and terrestrial ecological dynamics. Long-term NAO records are crucial to better understand its response to climate forcing factors, and assess predictability and shifts associated with ongoing climate change. A recent study of instrumental time series revealed NAO as main factor for a strong relation between winter temperature, precipitation and river discharge in central Norway over the past 50 years. Here we compare geochemical measurements with instrumental data and show that primary productivity recorded in central Norwegian fjord sediments is sensitive to NAO variability. This observation is used to calibrate paleoproductivity changes to a 500-year reconstruction of winter NAO (Luterbacher et al., 2001). Conditioned on a stationary relation between our climate proxy and the NAO we establish a first high resolution NAO proxy record (NAOTFJ) from marine sediments covering the past 2800 years. The NAOTFJ shows distinct co-variability with climate changes over Greenland, solar activity and Northern Hemisphere glacier dynamics as well as climatically associated paleo-demographic trends. The here presented climate record shows that fjord sediments provide crucial information for an improved understanding of the linkages between atmospheric circulation, solar and oceanic forcing factors.

  5. A 3D Full-Stokes Calving Model Applied to a West Greenland Outlet Glacier

    NASA Astrophysics Data System (ADS)

    Todd, Joe; Christoffersen, Poul; Zwinger, Thomas; Råback, Peter; Chauché, Nolwenn; Hubbard, Alun; Toberg, Nick; Luckman, Adrian; Benn, Doug; Slater, Donald; Cowton, Tom

    2017-04-01

    Iceberg calving from outlet glaciers accounts for around half of all mass loss from both the Greenland and Antarctic ice sheets. The diverse nature of calving and its complex links to both internal dynamics and external climate make it challenging to incorporate into models of glaciers and ice sheets. Consequently, calving represents one of the most significant uncertainties in predictions of future sea level rise. Here, we present results from a new 3D full-Stokes calving model developed in Elmer/Ice and applied to Store Glacier, the second largest outlet glacier in West Greenland. The calving model implements the crevasse depth criterion, which states that calving occurs when surface and basal crevasses penetrate the full thickness of the glacier. The model also implements a new 3D rediscretization approach and a time-evolution scheme which allow the calving front to evolve realistically through time. We use the model to test Store's sensitivity to two seasonal environmental processes believed to significantly influence calving: submarine melt undercutting and ice mélange buttressing. Store Glacier discharges 13.9 km3 of ice annually, and this calving rate shows a strong seasonal trend. We aim to reproduce this seasonal trend by forcing the model with present day levels of submarine melting and ice mélange buttressing. Sensitivity to changes in these frontal processes was also investigated, by forcing the model with a) increased submarine melt rates acting over longer periods of time and b) decreased mélange buttressing force acting over a reduced period. The model displays a range of observed calving behaviour and provides a good match to the observed seasonal evolution of the Store's terminus. The results indicate that ice mélange is the primary driver of the observed seasonal advance of the terminus and the associated seasonal variation in calving rate. The model also demonstrates a significant influence from submarine melting on calving rate. The results

  6. Organic carbon burial in fjords: Terrestrial versus marine inputs

    NASA Astrophysics Data System (ADS)

    Cui, Xingqian; Bianchi, Thomas S.; Savage, Candida; Smith, Richard W.

    2016-10-01

    Fjords have been identified as sites of enhanced organic carbon (OC) burial and may play an important role in regulating climate change on glacial-interglacial timescales. Understanding sediment processes and sources of sedimentary OC are necessary to better constrain OC burial in fjords. In this study, we use Fiordland, New Zealand, as a case study and present data on surface sediments, sediment down-cores and terrestrial end-members to examine dynamics of sediments and the sources of OC in fjord sediments. Sediment cores showed evidence of multiple particle sources, frequent bioturbation and mass-wasting events. A multi-proxy approach (stable isotopes, lignin-phenols and fatty acids) allowed for separation of marine, soil and vascular plant OC in surface sediments. The relationship between mass accumulation rate (MAR) and OC contents in fjord surface sediments suggested that mineral dilution is important in controlling OC content on a global scale, but is less important for specific regions (e.g., New Zealand). The inconsistency of OC budgets calculated by using MAR weighted %OC and OC accumulation rates (AR; 6 vs 21-31 Tg OC yr-1) suggested that sediment flux in fjords was likely underestimated. By using end-member models, we propose that 55% to 62% of total OC buried in fjords is terrestrially derived, and accounts for 17 ± 12% of the OCterr buried in all marine sediments. The strong correlation between MAR and OC AR indicated that OC flux will likely decrease in fjords in the future with global warming due to decrease in sediment flux caused by glacier denudation.

  7. Changes in Greenland's peripheral glaciers linked to the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Bjørk, A. A.; Aagaard, S.; Lütt, A.; Khan, S. A.; Box, J. E.; Kjeldsen, K. K.; Larsen, N. K.; Korsgaard, N. J.; Cappelen, J.; Colgan, W. T.; Machguth, H.; Andresen, C. S.; Peings, Y.; Kjær, K. H.

    2018-01-01

    Glaciers and ice caps peripheral to the main Greenland Ice Sheet contribute markedly to sea-level rise1-3. Their changes and variability, however, have been difficult to quantify on multi-decadal timescales due to an absence of long-term data4. Here, using historical aerial surveys, expedition photographs, spy satellite imagery and new remote-sensing products, we map glacier length fluctuations of approximately 350 peripheral glaciers and ice caps in East and West Greenland since 1890. Peripheral glaciers are found to have recently undergone a widespread and significant retreat at rates of 12.2 m per year and 16.6 m per year in East and West Greenland, respectively; these changes are exceeded in severity only by the early twentieth century post-Little-Ice-Age retreat. Regional changes in ice volume, as reflected by glacier length, are further shown to be related to changes in precipitation associated with the North Atlantic Oscillation (NAO), with a distinct east-west asymmetry; positive phases of the NAO increase accumulation, and thereby glacier growth, in the eastern periphery, whereas opposite effects are observed in the western periphery. Thus, with projected trends towards positive NAO in the future5,6, eastern peripheral glaciers may remain relatively stable, while western peripheral glaciers will continue to diminish.

  8. Microbial diversity in a permanently cold and alkaline environment in Greenland.

    PubMed

    Glaring, Mikkel A; Vester, Jan K; Lylloff, Jeanette E; Al-Soud, Waleed Abu; Sørensen, Søren J; Stougaard, Peter

    2015-01-01

    The submarine ikaite columns located in the Ikka Fjord in Southern Greenland represent a unique, permanently cold (less than 6°C) and alkaline (above pH 10) environment and are home to a microbial community adapted to these extreme conditions. The bacterial and archaeal community inhabiting the ikaite columns and surrounding fjord was characterised by high-throughput pyrosequencing of 16S rRNA genes. Analysis of the ikaite community structure revealed the presence of a diverse bacterial community, both in the column interior and at the surface, and very few archaea. A clear difference in overall taxonomic composition was observed between column interior and surface. Whereas the surface, and in particular newly formed ikaite material, was primarily dominated by Cyanobacteria and phototrophic Proteobacteria, the column interior was dominated by Proteobacteria and putative anaerobic representatives of the Firmicutes and Bacteroidetes. The results suggest a stratification of the ikaite columns similar to that of classical soda lakes, with a light-exposed surface inhabited by primary producers and an anoxic subsurface. This was further supported by identification of major taxonomic groups with close relatives in soda lake environments, including members of the genera Rhodobaca, Dethiobacter, Thioalkalivibrio and Tindallia, as well as very abundant groups related to uncharacterised environmental sequences originally isolated from Mono Lake in California.

  9. New Perspectives on Long Run-out Rock Avalanches: A Dynamic Analysis of 20 Events in the Vaigat Strait, West Greenland

    NASA Astrophysics Data System (ADS)

    Benjamin, J.; Rosser, N. J.; Dunning, S.; Hardy, R. J.; Karim, K.; Szczucinski, W.; Norman, E. C.; Strzelecki, M.; Drewniak, M.

    2014-12-01

    Risk assessments of the threat posed by rock avalanches rely upon numerical modelling of potential run-out and spreading, and are contingent upon a thorough understanding of the flow dynamics inferred from deposits left by previous events. Few records exist of multiple rock avalanches with boundary conditions sufficiently consistent to develop a set of more generalised rules for behaviour across events. A unique cluster of 20 large (3 x 106 - 94 x 106 m3) rock avalanche deposits along the Vaigat Strait, West Greenland, offers a unique opportunity to model a large sample of adjacent events sourced from a stretch of coastal mountains of relatively uniform geology and structure. Our simulations of these events were performed using VolcFlow, a geophysical mass flow code developed to simulate volcanic debris avalanches. Rheological calibration of the model was performed using a well-constrained event at Paatuut (AD 2000). The best-fit simulation assumes a constant retarding stress with a collisional stress coefficient (T0 = 250 kPa, ξ = 0.01), and simulates run-out to within ±0.3% of that observed. Despite being widely used to simulate rock avalanche propagation, other models, that assume either a Coulomb frictional or a Voellmy rheology, failed to reproduce the observed event characteristics and deposit distribution at Paatuut. We applied this calibration to 19 other events, simulating rock avalanche motion across 3D terrain of varying levels of complexity. Our findings illustrate the utility and sensitivity of modelling a single rock avalanche satisfactorily as a function of rheology, alongside the validity of applying the same parameters elsewhere, even within similar boundary conditions. VolcFlow can plausibly account for the observed morphology of a series of deposits emplaced by events of different types, although its performance is sensitive to a range of topographic and geometric factors. These exercises show encouraging results in the model's ability to

  10. Use of glacial fronts by narwhals (Monodon monoceros) in West Greenland

    PubMed Central

    Moon, Twila; Hauser, Donna D. W.; McGovern, Richard; Heide-Jørgensen, Mads Peter; Dietz, Rune; Hudson, Ben

    2016-01-01

    Glacial fronts are important summer habitat for narwhals (Monodon monoceros); however, no studies have quantified which glacial properties attract whales. We investigated the importance of glacial habitats using telemetry data from n = 15 whales tagged in September of 1993, 1994, 2006 and 2007 in Melville Bay, West Greenland. For 41 marine-terminating glaciers, we estimated (i) narwhal presence/absence, (ii) number of 24 h periods spent at glaciers and (iii) the fraction of narwhals that visited each glacier (at 5, 7 and 10 km) in autumn. We also compiled data on glacier width, ice thickness, ice velocity, front advance/retreat, area and extent of iceberg discharge, bathymetry, subglacial freshwater run-off and sediment flux. Narwhal use of glacial habitats expanded in the 2000s probably due to reduced summer fast ice and later autumn freeze-up. Using a generalized multivariate framework, glacier ice front thickness (vertical height in the water column) was a significant covariate in all models. A negative relationship with glacier velocity was included in several models and glacier front width was a significant predictor in the 2000s. Results suggest narwhals prefer glaciers with potential for higher ambient freshwater melt over glaciers with silt-laden discharge. This may represent a preference for summer freshwater habitat, similar to other Arctic monodontids. PMID:27784729

  11. Cascading off the West Greenland Shelf: A numerical perspective

    NASA Astrophysics Data System (ADS)

    Marson, Juliana M.; Myers, Paul G.; Hu, Xianmin; Petrie, Brian; Azetsu-Scott, Kumiko; Lee, Craig M.

    2017-07-01

    Cascading of dense water from the shelf to deeper layers of the adjacent ocean basin has been observed in several locations around the world. The West Greenland Shelf (WGS), however, is a region where this process has never been documented. In this study, we use a numerical model with a 1/4° resolution to determine (i) if cascading could happen from the WGS; (ii) where and when it could take place; (iii) the forcings that induce or halt this process; and (iv) the path of the dense plume. Results show cascading happening off the WGS at Davis Strait. Dense waters form there due to brine rejection and slide down the slope during spring. Once the dense plume leaves the shelf, it gradually mixes with waters of similar density and moves northward into Baffin Bay. Our simulation showed events happening between 2003-2006 and during 2014; but no plume was observed in the simulation between 2007 and 2013. We suggest that the reason why cascading was halted in this period is related to: the increased freshwater transport from the Arctic Ocean through Fram Strait; the additional sea ice melting in the region; and the reduced presence of Irminger Water at Davis Strait during fall/early winter. Although observations at Davis Strait show that our simulation usually overestimates the seasonal range of temperature and salinity, they agree with the overall variability captured by the model. This suggests that cascades have the potential to develop on the WGS, albeit less dense than the ones estimated by the simulation.

  12. Characterizing the Frequency and Elevation of Rapid Drainage Events in West Greenland

    NASA Astrophysics Data System (ADS)

    Cooley, S.; Christoffersen, P.

    2016-12-01

    Rapid drainage of supraglacial lakes on the Greenland Ice Sheet is critical for the establishment of surface-to-bed hydrologic connections and the subsequent transfer of water from surface to bed. Yet, estimates of the number and spatial distribution of rapidly draining lakes vary widely due to limitations in the temporal frequency of image collection and obscureness by cloud. So far, no study has assessed the impact of these observation biases. In this study, we examine the frequency and elevation of rapidly draining lakes in central West Greenland, from 68°N to 72.6°N, and we make a robust statistical analysis to estimate more accurately the likelihood of lakes draining rapidly. Using MODIS imagery and a fully automated lake detection method, we map more than 500 supraglacial lakes per year over a 63000 km2 study area from 2000-2015. Through testing four different definitions of rapidly draining lakes from previously published studies, we find that the number of rapidly draining lakes varies from 3% to 38%. Logistic regression between rapid drainage events and image sampling frequency demonstrates that the number of rapid drainage events is strongly dependent on cloud-free observation percentage. We then develop three new drainage criteria and apply an observation bias correction that suggests a true rapid drainage probability between 36% and 45%, considerably higher than previous studies without bias assessment have reported. We find rapid-draining lakes are on average larger and disappear earlier than slow-draining lakes, and we also observe no elevation differences for the lakes detected as rapidly draining. We conclude a) that methodological problems in rapid drainage research caused by observation bias and varying detection methods have obscured large-scale rapid drainage characteristics and b) that the lack of evidence for an elevation limit on rapid drainage suggests surface-to-bed hydrologic connections may continue to propagate inland as climate warms.

  13. North Atlantic Oscillation Drives Regional Greenland Glacier Volume During the 20th Century

    NASA Astrophysics Data System (ADS)

    Bjork, A. A.; Aagaard, S.; Hallander, A. M.; Khan, S. A.; Box, J. E.; Kjeldsen, K. K.; Larsen, N. K.; Korsgaard, N. J.; Cappelen, J.; Colgan, W. T.; Machguth, H.; Andresen, C. S.; Kjaer, K. H.

    2016-12-01

    While most areas of the Greenland ice sheet have undergone rapid mass loss since c. 1990, the central eastern section of the ice sheet has advanced and gained mass. This contrasting regional trend has been attributed to positive surface mass balance (SMB) in the absence of significant dynamic mass loss. To constrain the atypical behavior in this region, we mapped glacier length fluctuations of nearly 200 peripheral glaciers and ice caps (PGICs) over a 103-year period, and compare the results with c. 150 new glacier length records from central west Greenland. We demonstrate that the regional response in ice volume is closely correlated to changes in precipitation, governed by circulation patterns associated with the North Atlantic Oscillation (NAO) and secondarily influenced by temperature forcing in certain periods. More broadly, we find that the NAO contributes to contrasting precipitation variability in East and West Greenland, where it appears to be responsible for at least 10% and more than 25%, respectively, of the variability in ice sheet accumulation rate. This east-west asymmetry, which influences both LGICs and the ice sheet, illustrates how substantial uncertainty in NAO projections directly contributes to uncertainty in mass balance projections.

  14. Genetic Structure in a Small Pelagic Fish Coincides with a Marine Protected Area: Seascape Genetics in Patagonian Fjords.

    PubMed

    Canales-Aguirre, Cristian B; Ferrada-Fuentes, Sandra; Galleguillos, Ricardo; Hernández, Cristián E

    2016-01-01

    Marine environmental variables can play an important role in promoting population genetic differentiation in marine organisms. Although fjord ecosystems have attracted much attention due to the great oscillation of environmental variables that produce heterogeneous habitats, species inhabiting this kind of ecosystem have received less attention. In this study, we used Sprattus fuegensis, a small pelagic species that populates the inner waters of the continental shelf, channels and fjords of Chilean Patagonia and Argentina, as a model species to test whether environmental variables of fjords relate to population genetic structure. A total of 282 individuals were analyzed from Chilean Patagonia with eight microsatellite loci. Bayesian and non-Bayesian analyses were conducted to describe the genetic variability of S. fuegensis and whether it shows spatial genetic structure. Results showed two well-differentiated genetic clusters along the Chilean Patagonia distribution (i.e. inside the embayment area called TicToc, and the rest of the fjords), but no spatial isolation by distance (IBD) pattern was found with a Mantel test analysis. Temperature and nitrate were correlated to the expected heterozygosities and explained the allelic frequency variation of data in the redundancy analyses. These results suggest that the singular genetic differences found in S. fuegensis from inside TicToc Bay (East of the Corcovado Gulf) are the result of larvae retention bya combination of oceanographic mesoscale processes (i.e. the west wind drift current reaches the continental shelf exactly in this zone), and the local geographical configuration (i.e. embayment area, islands, archipelagos). We propose that these features generated an isolated area in the Patagonian fjords that promoted genetic differentiation by drift and a singular biodiversity, adding support to the existence of the largest marine protected area (MPA) of continental Chile, which is the Tic-Toc MPA.

  15. Genetic Structure in a Small Pelagic Fish Coincides with a Marine Protected Area: Seascape Genetics in Patagonian Fjords

    PubMed Central

    Ferrada-Fuentes, Sandra; Galleguillos, Ricardo; Hernández, Cristián E.

    2016-01-01

    Marine environmental variables can play an important role in promoting population genetic differentiation in marine organisms. Although fjord ecosystems have attracted much attention due to the great oscillation of environmental variables that produce heterogeneous habitats, species inhabiting this kind of ecosystem have received less attention. In this study, we used Sprattus fuegensis, a small pelagic species that populates the inner waters of the continental shelf, channels and fjords of Chilean Patagonia and Argentina, as a model species to test whether environmental variables of fjords relate to population genetic structure. A total of 282 individuals were analyzed from Chilean Patagonia with eight microsatellite loci. Bayesian and non-Bayesian analyses were conducted to describe the genetic variability of S. fuegensis and whether it shows spatial genetic structure. Results showed two well-differentiated genetic clusters along the Chilean Patagonia distribution (i.e. inside the embayment area called TicToc, and the rest of the fjords), but no spatial isolation by distance (IBD) pattern was found with a Mantel test analysis. Temperature and nitrate were correlated to the expected heterozygosities and explained the allelic frequency variation of data in the redundancy analyses. These results suggest that the singular genetic differences found in S. fuegensis from inside TicToc Bay (East of the Corcovado Gulf) are the result of larvae retention bya combination of oceanographic mesoscale processes (i.e. the west wind drift current reaches the continental shelf exactly in this zone), and the local geographical configuration (i.e. embayment area, islands, archipelagos). We propose that these features generated an isolated area in the Patagonian fjords that promoted genetic differentiation by drift and a singular biodiversity, adding support to the existence of the largest marine protected area (MPA) of continental Chile, which is the Tic-Toc MPA. PMID:27505009

  16. A modeling study of the effect of runoff variability on the effective pressure beneath Russell Glacier, West Greenland

    NASA Astrophysics Data System (ADS)

    de Fleurian, Basile; Morlighem, Mathieu; Seroussi, Helene; Rignot, Eric; van den Broeke, Michiel R.; Kuipers Munneke, Peter; Mouginot, Jeremie; Smeets, Paul C. J. P.; Tedstone, Andrew J.

    2016-10-01

    Basal sliding is a main control on glacier flow primarily driven by water pressure at the glacier base. The ongoing increase in surface melting of the Greenland Ice Sheet warrants an examination of its impact on basal water pressure and in turn on basal sliding. Here we examine the case of Russell Glacier, in West Greenland, where an extensive set of observations has been collected. These observations suggest that the recent increase in melt has had an equivocal impact on the annual velocity, with stable flow on the lower part of the drainage basin but accelerated flow above the Equilibrium Line Altitude (ELA). These distinct behaviors have been attributed to different evolutions of the subglacial draining system during and after the melt season. Here we use a high-resolution subglacial hydrological model forced by reconstructed surface runoff for the period 2008 to 2012 to investigate the cause of these distinct behaviors. We find that the increase in meltwater production at low elevation yields a more efficient drainage system compatible with the observed stagnation of the mean annual flow below the ELA. At higher elevation, the model indicates that the drainage system is mostly inefficient and is therefore strongly sensitive to an increase in meltwater availability, which is consistent with the observed increase in ice velocity.

  17. Hotspots and key periods of Greenland climate change during the past six decades

    NASA Astrophysics Data System (ADS)

    Abermann, J.; Hansen, B. U.; Lund, M.; Wacker, S.; Karami, M.; Cappelen, J.

    2016-12-01

    We investigate spatial gradients of air temperature and pressure and their trends in Greenland and compare these considering varying time window lengths since 1958. Both latitudinal temperature and pressure gradients are strongest during winter. An overall temperature increase of up to 0.15°C yr-1 has been observed for 1996-2014. The strongest warming happened during February at the West Coast (up to 0.6°C/yr), weaker but significant warming occurred during summer months (up to 0.3°C/yr) both in West and in East Greenland. Pressure trends are mainly negative if at all, but largely not significant. We discuss the relevance of these findings in an upscaling context of an extensive ecosystem monitoring program that was established in 1996 in Northeast Greenland (Zackenberg, www.g-e-m.dk). Improving the understanding of the interaction between the individual components of the ecosystem is its core idea, climate being the main driver. A series of studies highlights trends and variability for biotic and abiotic parameters for this period on a point scale. In order to expand trend assessments to a Greenland-wide scale, local climate trends in Zackenberg have to be put into a larger spatio-temporal context. We find that temperature trends in Northeast Greenland and the area around Zackenberg follow the general pattern but are smaller than the average in Greenland. Compared with other time windows in the past 6 decades, the study period 1996 - 2014 marks an above average warming trend; peak warming however occurred half a decade earlier. We therefore conclude that temperature-driven ecosystem changes observed in Zackenberg mark a lower boundary for environmental changes in Greenland.

  18. A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958-2015)

    NASA Astrophysics Data System (ADS)

    Noël, Brice; van de Berg, Willem Jan; Machguth, Horst; Lhermitte, Stef; Howat, Ian; Fettweis, Xavier; van den Broeke, Michiel R.

    2016-10-01

    This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958-2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements.

  19. Deep ventilation process in Patagonian fjord, Chile

    NASA Astrophysics Data System (ADS)

    Pérez-Santos, Iván; Silvan, Nelson; Castillo, Manuel; Mayorga, Nicolas; Schneider, Wolfgang; Montero, Paulina; Daneri, Giovanni; Valle-Levinson, Arnoldo; Pizarro, Oscar; Ramirez, Nadín; Igor, Gabriela; Navarro, Eduardo

    2017-04-01

    The Puyuhuapi Fjord (44.6° S) has previously been reported as one of the hypoxic fjords in Chilean Patagonia (dissolved oxygen -DO below 2 mL L-1). Hydrographic sampling between 1995-2016 confirmed hypoxia below 100 m depth, down to the bottom (250 m). A line of sensors at an oceanographic mooring in Puyuhuapi were deployed to continuously record the temporal-vertical behaviour of water column temperature and salinity from the surface down to 120 m, from February to July 2015. A multi-Parameter water quality sonde was deployed at the bottom of the line, with a DO optical sensor. From February to mid-May, hypoxia was sustained (1.4-1.6 mL L-1). However, from May until the end of June, DO values increased (2.8 mL L-1), exceeding the hypoxia threshold. This was the first event of deep ventilation reported in a Chilean Patagonian Fjord. During this time period, deep water temperatures increased by 1.3 °C, coinciding with the decreased in salinity from 33.6 to 32.8. The main cause of this event was attributed to the arrival of a new volume of mixed oceanic water into the fjord, transported by Modified Subantartic Water, with warm temperatures, lower salinities and slightly higher DO values, given its origin in the surface layer of the outer oceanic region. A new experiment was carried out during January-November, 2016 in order to corroborate the ventilation process and its connection with the adjacent ocean. Temperature, salinity and DO sensors were deployed in the outside fjords region close to the ocean (Melinka Channel) and in Puyuhuapi Fjord, to record the data at very high temporal resolution. The distance between both stations was 150 km. In the oceanic mooring the DO time series collected at 150 m depth showed hypoxia in summer related to the position of the Equatorial Sub-surface water, but from fall DO started to increase registering high values in August and September (4-5 mL/L) when the Subantartic Water arrive. The DO records in Puyuhuapi at 120 m showed a

  20. Multistage extensional evolution of the central East Greenland Caledonides

    NASA Astrophysics Data System (ADS)

    White, Arthur P.; Hodges, Kip V.

    2002-10-01

    Recent field investigations in the central East Greenland Caledonides (72°-74°N) resulted in the identification of an orogen-scale extensional fault system called the Fjord Region Detachment (FRD). Previous geochronologic constraints on this deformation indicated that the FRD was active circa 430-425 Ma, a time when the Baltica-Laurentia collision was thought to be occurring, and continued to be active for up to 80 million years. We present new 40Ar/39Ar thermochronologic data from an E-W transect that cuts across two splays of the FRD. Our data demonstrate that at least two distinct episodes of faulting were responsible for extension in the East Greenland Caledonides: an earlier phase (circa 425-423 Ma) that was synorogenic and penetrated to middle-crustal levels, followed by a post-Caledonian phase of reactivation (˜414 to 380 Ma) that affected even deeper structural levels. Furthermore, we present in situ UV laser 40Ar/39Ar data for pseudotachylite collected along the deepest splay of the FRD that indicate this fault was active again as recently as ˜357 Ma (coeval with Devonian basin formation). Altogether, our data suggest that rather than being active continuously for 80 million years, the FRD consisted of multiple splays that were active for shorter intervals over discrete time periods separated by as much as 60 million years. Finally, our data provide evidence that young extensional deformation associated with postorogenic collapse in East Greenland was not restricted to the formation of sedimentary basins in the far eastern part of the orogen, but also resulted in deformation of the Archean-Paleozoic crystalline basement.

  1. High-Resolution Rayleigh Wave Group Velocity Variation Beneath Greenland

    NASA Astrophysics Data System (ADS)

    Pourpoint, Maeva; Anandakrishnan, Sridhar; Ammon, Charles J.

    2018-02-01

    We present a high-resolution group velocity model of Greenland from the analysis of fundamental mode Rayleigh waves. Regional and teleseismic events recorded by the Greenland Ice Sheet Monitoring Network seismic network were used and we developed a group velocity correction method to estimate the dispersion within our region of study. The global dispersion model GDM52 from Ekström (2011, https://doi.org/10.1111/j.1365-246X.2011.05225.x) was used to calculate group delays from the earthquake to the boundaries of our study area. An iterative reweighted generalized least squares approach was then used to invert for the regional group velocity variations between periods of 25 s and 180 s. The group delay correction method helps alleviate the limitations of the sparse Greenland seismic network in a region with poor seismicity. Both the ray coverage and resolution of our model are significantly better than similar studies of Greenland using two-station methods. Spike tests suggest that features as small as 200 km can be resolved across Greenland. Our dispersion maps are consistent with previous studies and reveal many signatures of known geologic features including known sedimentary basins in Baffin Bay, the West and East Greenland flood basalt provinces, the East and South Greenland Archean blocks. Our model also contains two prominent features: a deep high-velocity anomaly extending from northwestern to southwestern Greenland that could be the signature of a cratonic root and a low-velocity anomaly in central eastern Greenland that correlates with the Icelandic plume track and could be associated with lithospheric thinning and upwelling of hot asthenosphere material.

  2. Modeling of submarine melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.

    2013-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. the model is constrained by ice shelf bathymetry and ice thickness from NASA Operation IceBridge, ocean temperature/salinity data from Johnson et al. (2011), and subglacial discharge estimated from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. This work is performed under a contract with NASA Cryosphere Program.

  3. Characterization of icebergs and floating sea ice in the Yung Sund fjord in Greenland from satellite radar and optical images.

    NASA Astrophysics Data System (ADS)

    Guillaso, Stephane; Gay, Michel; Gervaise, Cedric

    2017-04-01

    At the Zackenberg site, sea ice starts to move between June and September resulting in icebergs flowing freely on the sea. Splitting into smaller parts, they reduce in size. Icebergs represent a risk for maritime transport and needs to be studied. In order to determine iceberg density per surface unit, size distribution, and movement of icebergs, we need to observe, detect, range and track them. The use of SAR images is particularly well adapted in regions where cloud cover is very present. We focused our study on the Yung Sund fjord in Greenland, where lots of icebergs and sea ice are generated during the summer. In the beginning of July, sea ice breaks up first, followed by icebergs created by the different glaciers based in the ocean. During our investigation, we noticed that the iceberg and sea ice were drifting very fast and thus, we needed to adapt our methodology. To achieve our goal, we collected all remote sensing data available in the region, principally Sentinel 1/2 and LandSAT 8 during one ice free season (from July 1st 2016 to September 30th, 2016). We developed an original approach in order to detect, characterize and track icebergs and sea ice independently from data. The iceberg detection was made using a watershed technique. The advantage of this technique is that it can be applied to both optical and radar images. For the latter, calibrated intensity is transformed into an image using a scaling function, in order to make ice brighter. Land data is masked using a topographic map. When data is segmented, a statistical test derived from the CFAR approach is performed to isolate an iceberg and floating sea ice from the ocean. Finally, a method, such SIFT or BRISK is used to identify and track the different segmented object. These approaches give a representation of the object and make the tracking easier and independent of the scale and rotation, which can occur because icebergs are dependent on ocean currents and wind. Finally, to fill in the gap

  4. Towards multi-decadal to multi-millennial ice core records from coastal west Greenland ice caps

    NASA Astrophysics Data System (ADS)

    Das, Sarah B.; Osman, Matthew B.; Trusel, Luke D.; McConnell, Joseph R.; Smith, Ben E.; Evans, Matthew J.; Frey, Karen E.; Arienzo, Monica; Chellman, Nathan

    2017-04-01

    The Arctic region, and Greenland in particular, is undergoing dramatic change as characterized by atmospheric warming, decreasing sea ice, shifting ocean circulation patterns, and rapid ice sheet mass loss, but longer records are needed to put these changes into context. Ice core records from the Greenland ice sheet have yielded invaluable insight into past climate change both regionally and globally, and provided important constraints on past surface mass balance more directly, but these ice cores are most often from the interior ice sheet accumulation zone, at high altitude and hundreds of kilometers from the coast. Coastal ice caps, situated around the margins of Greenland, have the potential to provide novel high-resolution records of local and regional maritime climate and sea surface conditions, as well as contemporaneous glaciological changes (such as accumulation and surface melt history). But obtaining these records is extremely challenging. Most of these ice caps are unexplored, and thus their thickness, age, stratigraphy, and utility as sites of new and unique paleoclimate records is largely unknown. Access is severely limited due to their high altitude, steep relief, small surface area, and inclement weather. Furthermore, their relatively low elevation and marine moderated climate can contribute to significant surface melting and degradation of the ice stratigraphy. We recently targeted areas near the Disko Bay region of central west Greenland where maritime ice caps are prevalent but unsampled, as potential sites for new multi-decadal to multi-millennial ice core records. In 2014 & 2015 we identified two promising ice caps, one on Disko Island (1250 m. asl) and one on Nuussuaq Peninsula (1980 m. asl) based on airborne and ground-based geophysical observations and physical and glaciochemical stratigraphy from shallow firn cores. In spring 2015 we collected ice cores at both sites using the Badger-Eclipse electromechanical drill, transported by a medley

  5. Ocean-Glaciers Interactions in the Southern Svalbard Fjord, Hornsund.

    NASA Astrophysics Data System (ADS)

    Walczowski, W.; Beszczynska-Moeller, A.; Prominska, A.; Kruss, A.

    2017-12-01

    The Arctic fjords constitute a link between the ocean and land, therefore there are highly vulnerable to warming and are expected to exhibit the earliest environmental changes resulting from anthropogenic impacts on climate. In the Arctic, the inshore boundary of a fjord system is usually dominated by tidewater glaciers while its offshore boundary is strongly influenced by warm oceanic waters. Improved understanding of the fjord-ocean exchange and processes within Arctic fjords is of a highest importance because their response to atmospheric, oceanic and glacial variability provides a key to understand the past and to forecast the future of the high latitude glaciers and Arctic climate. The results of field measurements in the Hornsund fjord (southern Svalbard), collected under the Polish-Norwegian projects GLAERE and AWAKE-2, will be presented. Interannual variability of warm Atlantic water entering the fjord, seasonal changes of ocean properties in the glacier bays and the structure of the water column in the vicinity of the glacier termination will be addressed. Direct contact of warm oceanic water with a glacier's wall causes submarine melting, undercutting and glacier calving. Turbulent plumes of subglacial meltwater constitute an important mechanism of heat transfer and also influence a glacier retreat. However our understanding of these processes is limited due to problems with obtaining in situ data close to the glacier wall. Therefore special attention will be paid to observations of the underwater parts of Hornsund glaciers and new measurements of water column fine structure and mixing in the turbulent meltwater plumes.

  6. Methane seeps along boundaries of receding glaciers in Alaska and Greenland

    NASA Astrophysics Data System (ADS)

    Walter Anthony, K. M.; Anthony, P. M.; Grosse, G.; Chanton, J.

    2012-12-01

    Glaciers, ice sheets, and permafrost form a 'cryosphere cap' that traps methane formed in the subsurface, restricting its flow to the Earth's surface and atmosphere. Despite model predictions that glacier melt and degradation of permafrost open conduits for methane's escape, there has been a paucity of field evidence for 'subcap' methane seepage to the atmosphere as a direct result of cryosphere disintegration in the terrestrial Arctic. Here, we document for the first time the release of sub-cryosphere methane to lakes, rivers, shallow marine fjords and the atmosphere from abundant gas seeps concentrated along boundaries of receding glaciers and permafrost thaw in Alaska and Greenland. Through aerial and ground surveys of 6,700 lakes and fjords in Alaska we mapped >150,000 gas seeps identified as bubbling-induced open holes in seasonal ice. Using gas flow rates, stable isotopes, and radiocarbon dating, we distinguished recent ecological methane from subcap, geologic methane. Subcap seeps had anomalously high bubbling rates, 14C-depletion, and stable isotope values matching microbial sources associated with sedimentary deposits and coal beds as well as thermogenic methane accumulations in Alaska. Since differential ice loading can overpressurize fluid reservoirs and cause sediment fracturing beneath ice sheets, and since the loss of glacial ice reduces normal stress on ground, opens joints, and activates faults and fissures, thereby increasing permeability of the crust to fluid flow, we hypothesized that in the previously glaciated region of Southcentral Alaska, where glacial wastage continues presently, subcap seeps should be disproportionately associated with neotectonic faults. Geospatial analysis confirmed that subcap seep sites were associated with faults within a 7 km belt from the modern glacial extent. The majority of seeps were located in areas affected by seismicity from isostatic rebound associated with deglaciation following the Little Ice Age (LIA; ca

  7. Use of glacial fronts by narwhals (Monodon monoceros) in West Greenland.

    PubMed

    Laidre, Kristin L; Moon, Twila; Hauser, Donna D W; McGovern, Richard; Heide-Jørgensen, Mads Peter; Dietz, Rune; Hudson, Ben

    2016-10-01

    Glacial fronts are important summer habitat for narwhals (Monodon monoceros); however, no studies have quantified which glacial properties attract whales. We investigated the importance of glacial habitats using telemetry data from n = 15 whales tagged in September of 1993, 1994, 2006 and 2007 in Melville Bay, West Greenland. For 41 marine-terminating glaciers, we estimated (i) narwhal presence/absence, (ii) number of 24 h periods spent at glaciers and (iii) the fraction of narwhals that visited each glacier (at 5, 7 and 10 km) in autumn. We also compiled data on glacier width, ice thickness, ice velocity, front advance/retreat, area and extent of iceberg discharge, bathymetry, subglacial freshwater run-off and sediment flux. Narwhal use of glacial habitats expanded in the 2000s probably due to reduced summer fast ice and later autumn freeze-up. Using a generalized multivariate framework, glacier ice front thickness (vertical height in the water column) was a significant covariate in all models. A negative relationship with glacier velocity was included in several models and glacier front width was a significant predictor in the 2000s. Results suggest narwhals prefer glaciers with potential for higher ambient freshwater melt over glaciers with silt-laden discharge. This may represent a preference for summer freshwater habitat, similar to other Arctic monodontids. © 2016 The Author(s).

  8. Microbial Diversity in a Permanently Cold and Alkaline Environment in Greenland

    PubMed Central

    Glaring, Mikkel A.; Vester, Jan K.; Lylloff, Jeanette E.; Abu Al-Soud, Waleed; Sørensen, Søren J.; Stougaard, Peter

    2015-01-01

    The submarine ikaite columns located in the Ikka Fjord in Southern Greenland represent a unique, permanently cold (less than 6°C) and alkaline (above pH 10) environment and are home to a microbial community adapted to these extreme conditions. The bacterial and archaeal community inhabiting the ikaite columns and surrounding fjord was characterised by high-throughput pyrosequencing of 16S rRNA genes. Analysis of the ikaite community structure revealed the presence of a diverse bacterial community, both in the column interior and at the surface, and very few archaea. A clear difference in overall taxonomic composition was observed between column interior and surface. Whereas the surface, and in particular newly formed ikaite material, was primarily dominated by Cyanobacteria and phototrophic Proteobacteria, the column interior was dominated by Proteobacteria and putative anaerobic representatives of the Firmicutes and Bacteroidetes. The results suggest a stratification of the ikaite columns similar to that of classical soda lakes, with a light-exposed surface inhabited by primary producers and an anoxic subsurface. This was further supported by identification of major taxonomic groups with close relatives in soda lake environments, including members of the genera Rhodobaca, Dethiobacter, Thioalkalivibrio and Tindallia, as well as very abundant groups related to uncharacterised environmental sequences originally isolated from Mono Lake in California. PMID:25915866

  9. Petermann Glacier, North Greenland: massive calving in 2010 and the past half century

    NASA Astrophysics Data System (ADS)

    Johannessen, O. M.; Babiker, M.; Miles, M. W.

    2011-01-01

    Greenland's marine-terminating glaciers drain large amounts of solid ice through calving of icebergs, as well as melting of floating glacial ice. Petermann Glacier, North Greenland, has the Northern Hemisphere's long floating ice shelf. A massive (~270 km2) calving event was observed from satellite sensors in August 2010. In order to understand this in perspective, here we perform a comprehensive retrospective data analysis of Petermann Glacier calving-front variability spanning half a century. Here we establish that there have been at least four massive (100+ km2) calving events over the past 50 years: (1) 1959-1961 (~153 km2), (2) 1991 (~168 km2), (3) 2001 (~71 km2) and (4) 2010 (~270 km2), as well as ~31 km2 calved in 2008. The terminus position in 2010 has retreated ~15 km beyond the envelope of previous observations. Whether the massive calving in 2010 represents natural episodic variability or a response to global and/or ocean warming in the fjord remains speculative, although this event supports the contention that the ice shelf recently has become vulnerable due to extensive fracturing and channelized basal melting.

  10. A new Eimeria species (Protozoa: Eimeriidae) from caribou in Ameralik, West Greenland.

    PubMed

    Skirnisson, K; Cuyler, C

    2016-04-01

    Fecal samples of 11 calves shot in the Ameralik area, West Greenland, in August-September 2014 were examined for coccidian parasites. The calves belonged to a population of interbreeding indigenous caribou Rangifer tarandus groenlandicus and feral semi-domestic Norwegian reindeer Rangifer tarandus tarandus. Two coccidian species were found: Eimeria rangiferis and a coccidium that was identified and described as a new species. The latter's sporulated oocyst is spherical or slightly subspherical. Average size is 25.6 × 24.8 μm. The oocyst has two distinct walls. Wall thickness is ∼1.4 μm. The unicolored outer wall is brown, the inner wall is dark gray. The oocysts contain a small polar granule but are devoid of a microphyle. The oocysts enclose four ovoid-shaped sporocysts with a rounded end opposite to the Stieda body. The average size of sporocysts is 15.2 × 7.8 μm. Sporocysts contain a granular sporocyst residuum that forms a spherical cluster between the sporocysts, one large refractile body is present in each sporozoite. The spherical form easily distinguishes oocysts of the new species from the seven previously described eimerid species in R. tarandus. This is the first eimerid described as a new species to the sciences from caribou in the Nearctic.

  11. Simulating Ice-Flow and Calving on Store Glacier, West Greenland, with a 3D Full Stokes Model

    NASA Astrophysics Data System (ADS)

    Todd, J.; Christoffersen, P.; Zwinger, T.; Luckman, A. J.; Benn, D.

    2015-12-01

    The mass balance and long-term stability of the ice sheets in Greenland and Antarctica depend heavily on the dynamics of their ice-ocean margins. Iceberg calving accounts for the majority of the net annual loss of ice in Antarctica and around half of that from Greenland. Furthermore, climate driven changes to dynamics at these calving margins can be transmitted far inland. Thus, predicting future sea level contribution from the cryosphere requires an improved understanding of calving, and the processes which link it to climate and ice-sheet flow. We present results from a new 3D calving model coupled to a full-Stokes, time evolving glacier dynamic model, implemented for Store Glacier, a 5-km-wide calving glacier in the Uummannaq region of West Greenland, which flows at a rate of 20 m/day at its terminus. The model is developed using the open source finite element package Elmer/Ice, with the criterion that calving occurs when surface and basal crevasses meet. Crevasses open in response to tensile stresses near the terminus and water pressure at the bed. When the model was applied in 2D for the central flowline of Store Glacier, we found that basal topography exerts overarching control on the long term position of the calving front, while ice mélange buttressing allows the seasonal extension of a floating tongue, which collapses in early summer. New results emerging from implementation of calving in a 3D model indicate significant spatial heterogeneity in calving dynamics because the northern half of the terminus is grounded whereas the southern half is floating. This contrasting setting affects calving dynamics, further underlining the importance of geometry and basal topography, and suggesting that lower dimensional calving models may miss important aspects of calving dynamics. Our results also suggest that implementing grounding line dynamics is important for modelling calving, even for glaciers which are, for the most part, firmly grounded.

  12. Lu-Hf total-rock age for the Amîtsoq gneisses, West Greenland

    USGS Publications Warehouse

    Pettingill, H.S.; Patchett, P.J.

    1981-01-01

    Lu-Hf total-rock data for the Amîtsoq gneisses of West Greenland yield an age of 3.55±0.22Gy(2σ), based on the decay constant λ176Lu=1.96×10−11y−1, and an initial176Hf/177Hf ratio of 0.280482±33. The result is in good agreement with Rb-Sr total-rock and U-Pb zircon ages. In spite of severe metamorphism of the area at 2.9 Gy, zircons from two of the samples have remained on the total-rock line, and define points close to the initial Hf ratio. The initial176Hf/177Hf lies close to a chondritic Hf isotopic evolution curve from 4.55 Gy to present. This is consistent with the igneous precursors to the Amîtsoq gneisses having been derived from the mantle at or shortly before 3.6 Gy. Anomalous relationships between Hf concentration and the176Lu/177Hf ratio may suggest that trace element abundances in the Amîtsoq gneisses are partly controlled by processes related to metamorphism.

  13. Basin-Wide Mass Balance of Jakobshavn Isbræ (West Greenland) during 1880-2100

    NASA Astrophysics Data System (ADS)

    Muresan, I. S.; Khan, S. A.; Aschwanden, A.; Langen, P. L.; Khroulev, C.; Box, J. E.; Kjaer, K. H.

    2015-12-01

    Greenland's main outlet glaciers have more than doubled their contribution to global sea-level rise over the past decade through acceleration of ice discharge. Jakobshavn Isbræ (JI) in west Greenland is the largest outlet glacier in terms of drainage area.Here we use a 3-D modeling approach to study the mechanisms controlling dynamic changes at the terminus of JI over a period of 220 years. Over 100 simulations are performed with different sets of parameters where the calving fronts and the grounding lines are free to evolve in time under atmospheric and oceanic forcing. We find that the thinning and the retreat that starts at the calving front and then propagates upstream is mostly controlled by a loss of resistive stresses at the terminus through glacier dynamics induced calving rather than by changes in oceanic temperatures. Three major accelerations are identified in 1928, 1998 and in the summer of 2003. The acceleration which started in 1928 slowly faded by 1948, while the accelerations in 1998 and 2003 sustain the high velocities observed at JI in the last decade. Further, we find that under atmospheric RCP 4.5 and RCP 8.5 forcing (no RCP ocean forcing included), an increase in ocean temperatures of just 0.7 °C (relative to 1880-2012) is enough to trigger a collapse of the JI's southern tributary by 2050 which further destabilizes JI and unleashes a major glacial collapse of ~25 km. JI's contribution to SLR is found to be ~2.8 mm (~1014 Gt) for the period 1880 to 2014, from which the contribution between 1997 to 2014 represents 27 %. By the end of the century contributions to SLR as high as ~11 mm (~4000 Gt under RCP 8.5 and almost 300% increase relative to 1880-2014) can be expected from Jakobshavn Isbræ only. Our choice of ice sheet model comprises the Parallel Ice Sheet Model (PISM).

  14. Angalasut, an education and outreach project to create a bridge between scientists, local population in Greenland and the general public

    NASA Astrophysics Data System (ADS)

    Bourgain, Pascaline

    2015-04-01

    Bridging Science and Society has now become a necessity for scientists to develop new partnerships with local communities and to raise the public interest for scientific activities. The French-Greenlandic educational project called "Angalasut" reflects this desire to create a bridge between science, local people and the general public. This program was set up on the 2012-2013 school year, as part of an international scientific program dedicated to study the interactions between the ocean and glaciers on the western coast of Greenland, in the Uummannaq fjord. Greenlandic and French school children were involved in educational activities, in classrooms and out on the field, associated with the scientific observations conducted in Greenland (glacier flow, ocean chemical composition and circulation, instrumentation...). In Greenland, the children had the opportunity to come on board the scientific sailing boat, and in France, several meetings were organized between the children and the scientists of the expedition. In the small village of Ikerasak, the children interviewed Elders about sea ice evolution in the area. These activities, coupled to the organization of public conferences and to the creation of a trilingual website of the project (French, Greenlandic, English) aimed at explaining why scientists come to study Greenland environment. This was the opportunity for scientists to discuss with villagers who could testify on their changing environment over the past decades. A first step toward a future collaboration between scientists and villagers that would deserve further development... The project Angalasut was also the opportunity for Greenlandic and French school children to exchange about their culture and their environment through Skype communications, the exchange of mails (drawings, shells...), the creation of a society game about European fauna and flora... A meeting in France between the two groups of children is considered, possibly in summer 2015

  15. Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords

    NASA Astrophysics Data System (ADS)

    Mohr, Christian H.; Korup, Oliver; Ulloa, Héctor; Iroumé, Andrés.

    2017-11-01

    Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaitén volcano in south-central Chile, where pyroclastic sediments covered >12 km2 of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered 66,500 + 14,600/-14,500 tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits ( 79,900 + 21,100/-16,900 tC) or stored in active river channels (5,900-10,600 tC). We estimate that bank erosion mobilized 132,300+21,700/-30,600 tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5 mm yr-1 since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources.

  16. Cross-system nutrient transport: effects of locally-derived aeolian dust on oligotrophic lakes in West Greenland

    NASA Astrophysics Data System (ADS)

    Bullard, J. E.; Anderson, N. J.; McGowan, S.; Prater, C.; Watts, M.; Whitford, E.

    2017-12-01

    Terrestrially-derived nutrients can strongly affect production in aquatic environments. However, while some research has focused on nutrient delivery via hydrological inputs, the effects of atmospheric dry deposition are comparatively understudied. This paper examines the influence of aeolian-derived elements on water chemistry and microbial nutrient-limitation in oligotrophic lakes in West Greenland. Estimates of seasonal dust deposition and elemental leaching rates are combined with lake nutrient concentration measurements to establish the role of glacio-fluvial dust deposition in shaping nutrient stoichiometry of downwind lakes. The bioavailability of dust-associated elements is also explored using enzyme assays designed to indicate nutrient-limitation in microbial communities sampled across a dust deposition gradient. Together, these analyses demonstrate the importance of atmospheric dust inputs on hydrologically-isolated lakes found in arid high-latitude environments and demonstrate the need to better understand the role of aeolian deposition in cross-system nutrient transport.

  17. Seasonality of vertical flux and sinking particle characteristics in an ice-free high arctic fjord-Different from subarctic fjords?

    NASA Astrophysics Data System (ADS)

    Wiedmann, Ingrid; Reigstad, Marit; Marquardt, Miriam; Vader, Anna; Gabrielsen, Tove M.

    2016-02-01

    The arctic Adventfjorden (78°N, 15°E, Svalbard) used to be seasonally ice-covered but has mostly been ice-free since 2007. We used this ice-free arctic fjord as a model area to investigate (1) how the vertical flux of biomass (chlorophyll a and particulate organic carbon, POC) follows the seasonality of suspended material, (2) how sinking particle characteristics change seasonally and affect the vertical flux, and (3) if the vertical flux in the ice-free arctic fjord with glacial runoff resembles the flux in subarctic ice-free fjords. During seven field investigations (December 2011-September 2012), suspended biomass was determined (5, 15, 25, and 60 m), and short-term sediment traps were deployed (20, 30, 40, and 60 m), partly modified with gel-filled jars to study the size and frequency distribution of sinking particles. During winter, resuspension from the seafloor resulted in large, detrital sinking particles. Intense sedimentation of fresh biomass occurred during the spring bloom. The highest POC flux was found during autumn (770-1530 mg POC m- 2 d- 1), associated with sediment-loaded glacial runoff and high pteropod abundances. The vertical biomass flux in the ice-free arctic Adventfjorden thus resembled that in subarctic fjords during winter and spring, but a higher POC sedimentation was observed during autumn.

  18. Combined terrestrial and marine biomarker records from an Icelandic fjord: insights into Holocene climate drivers and marine/ terrestrial responses

    NASA Astrophysics Data System (ADS)

    Moossen, H. M.; Seki, O.; Quillmann, U.; Andrews, J. T.; Bendle, J. A.

    2012-12-01

    Holocene, while air temperatures were influenced by high solar insolation. The central Holocene climate is mainly driven by decreasing northern hemisphere insolation, while the lateral transport of energy from the equator into the North Atlantic region drives climate change in the late Holocene. D'Andrea, W.J., Huang, Y., Fritz, S.C., Anderson, N.J., (2011) Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proceedings of the National Academy of Sciences of the United States of America, 108(24), 9765-9769. Hurrell, J.W., (1995) Decadal trends in the North Atlantic Oscillation - Regional temperatures and precipitation. Science, 269(5224), 676-679. Quillmann, U., Jennings, A., Andrews, J., (2010) Reconstructing Holocene palaeoclimate and palaeoceanography in Isafjaroardjup, northwest Iceland, from two fjord records overprinted by relative sea-level and local hydrographic changes. Journal of Quaternary Science, 25(7), 1144-1159.

  19. The Vaigat Rock Avalanche Laboratory, west-central Greenland

    NASA Astrophysics Data System (ADS)

    Dunning, S.; Rosser, N. J.; Szczucinski, W.; Norman, E. C.; Benjamin, J.; Strzelecki, M.; Long, A. J.; Drewniak, M.

    2013-12-01

    Rock avalanches have unusually high mobility and pose both an immediate hazard, but also produce far-field impacts associated with dam breach, glacier collapse and where they run-out into water, tsunami. Such secondary hazards can often pose higher risks than the original landslide. The prediction of future threats posed by potential rock avalanches is heavily reliant upon understanding of the physics derived from an interpretation of deposits left by previous events, yet drawing comparisons between multiple events is normally challenging as interactions with complex mountainous terrain makes deposits from each event unique. As such numerical models and the interpretation of the underlying physics which govern landslide mobility is commonly case-specific and poorly suited to extrapolation beyond the single events the model is tuned to. Here we present a high-resolution LiDAR and hyperspectral dataset captured across a unique cluster of large rock avalanche source areas and deposits in the Vaigat straight, west central Greenland. Vaigat offers the unprecedented opportunity to model a sample of > 15 rock avalanches of various age sourced from an 80 km coastal escarpment. At Vaigat many of the key variables (topography, geology, post-glacial history) are held constant across all landslides providing the chance to investigate the variations in dynamics and emplacement style related to variable landslide volume, drop-heights, and thinning/spreading over relatively simple, unrestricted run-out zones both onto land and into water. Our data suggest that this region represents excellent preservation of landslide deposits, and hence is well suited to calibrate numerical models of run out dynamics. We use this data to aid the interpretation of deposit morphology, structure lithology and run-out characteristics in more complex settings. Uniquely, we are also able to calibrate our models using a far-field dataset of well-preserved tsunami run-up deposits, resulting from the 21

  20. Zooplankton Distribution in Four Western Norwegian Fjords

    NASA Astrophysics Data System (ADS)

    Gorsky, G.; Flood, P. R.; Youngbluth, M.; Picheral, M.; Grisoni, J.-M.

    2000-01-01

    A multi-instrumental array constructed in the Laboratoire d'Ecologie du Plancton Marin in Villefranche sur mer, France, named the Underwater Video Profiler (UVP), was used to investigate the vertical distribution of zooplankton in four western Norwegian fjords in the summer 1996. Six distinct zoological groups were monitored. The fauna included: (a) small crustaceans (mainly copepods), (b) ctenophores (mainly lobates), (c) siphonophores (mainly physonects), (d) a scyphomedusa Periphylla periphylla, (e) chaetognaths and (f) appendicularians. The use of the non-disturbing video technique demonstrated that the distribution of large zooplankton is heterogeneous vertically and geographically. Furthermore, the abundance of non-migrating filter feeders in the deep basins of the fjords indicates that there is enough food (living and non-living particulate organic matter) to support their dietary needs. This adaptation may be considered as a strategy for survival in fjords. Specifically, living in dark, deep water reduces visual predation and population loss encountered in the upper layer due to advective processes.

  1. Glacial runoff strongly influences food webs in Gulf of Alaska fjords

    NASA Astrophysics Data System (ADS)

    Arimitsu, M.; Piatt, J. F.; Mueter, F. J.

    2015-12-01

    Melting glaciers contribute large volumes of freshwater to the Gulf of Alaska coast. Rates of glacier volume loss have increased markedly in recent decades, raising concern about the eventual loss of glaciers as a source of freshwater in coastal waters. To better understand the influence of glacier melt water on fjord ecosystems, we sampled oceanography, nutrients, zooplankton, forage fish, and seabirds within four fjords in the coastal Gulf of Alaska. We used generalized additive models and geostatistics to identify the range of influence of glacier runoff in fjords of varying estuarine and topographic complexity. We also modeled the responses of chlorophyll a concentration, copepod biomass, fish and seabird abundance to physical, nutrient and biotic predictor variables. Physical and nutrient signatures of glacial runoff extended 10-20 km into coastal fjords. Glacially modified physical gradients and among-fjord differences explained 66% of the variation in phytoplankton abundance, which drives ecosystem structure at higher trophic levels. Copepod, euphausiid, fish and seabird distribution and abundance were also related to environmental gradients that could be traced to glacial freshwater input. Seabird density was predicted by prey availability and silica concentrations, which may indicate upwelling areas where this nutrient is in excess. Similarities in ecosystem structure among fjords were due to influx of cold, fresh, sediment and nutrient laden water, while differences were due to fjord topography and the relative importance of estuarine vs. ocean influences. We anticipate continued changes in the volume and magnitude of glacial runoff will affect coastal marine food webs in the future.

  2. Arctic Ocean UNCLOS Article 76 Work for Greenland Starts on Land

    NASA Astrophysics Data System (ADS)

    Dahl-Jensen, T.; Marcussen, C.; Jackson, R.; Voss, P.

    2005-12-01

    One of the most lonely and desolate stretches of coastline on the planet has become the target for UNCLOS article 76 related research. The Danish Continental Shelf Project has launched a work program to investigate the possibilities for Greenland to claim an area outside the 200 nm limit in the Arctic Ocean. The role of the Lomonosov Ridge as a Natural Prolongation of Greenland/Canada is an important issue, and in order to better evaluate the connection between Greenland and the Lomonosov Ridge the nature of not only the ridge but also of Northern Greenland is the target of deep crustal investigations. The North Greenland Fold belt covers the ice-free part of North Greenland and continues west in the Canadian Arctic. The foldbelt was formed during the Ellesmerian orogeny, where sediments from the Franklinian Basin where compressed and deformed. The deep structure of basin and its subsequent closure are broadly unknown. Three broad band earthquake seismological stations where installed in North Greenland to supplement the existing stations at Alert (Canada) and Station Nord to the east, and the first data was available summer 2005. Crustal thickness data from these first results are presented. Plans for the spring 2006 consist of wide-angle acquisition on the sea ice from the Greenland-Canadian mainland out onto the Lomonosov Ridge, a joint Danish - Canadian project with a 400 km long profile over difficult ice conditions, 18 tons of explosives, three helicopters, a Twin Otter and about 30 participants.

  3. Stress fields acting during lithosphere breakup above a melting mantle: A case example in West Greenland

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Geoffroy, L.; Angelier, J.; Bonin, B.; Callot, J. P.; Gélard, J. P.; Aubourg, C.

    2012-12-01

    We characterize and map the stress fields acting during plate breakup along the West Greenland volcanic margin. The determination of interpolated stress fields is based on an inversion of fault-slip data sets and magma-driven fractures, crosscutting mainly an exposed inner seaward-dipping basaltic wedge (i.e., SDRi: inner Seaward Dipping Reflectors). This SDRi is segmented along-strike, with differently oriented segments. Relative chronology of stress fields is inferred from published age results on oriented dykes. We identify two distinct tectonic episodes (P1 and P2) with a P1-P2 change over at ~ 54 Ma, i.e. during magnetic chron C24R. P1 is syn-magmatic and purely extensional. It is associated with the major crustal stretching event affecting the margin. P1 probably acted as early as the Late Palaeocene. This stress field was first homogeneous with the minimum principal stress σ3 trending ~ N060E, defining a P1A stage. During development of the SDRi, σ3 locally reoriented to become orthogonal to each margin segment and, thus, to the continentward-dipping detachment faults bounding the SDRi (P1B). P1 is coeval with lithosphere breakup and is associated with an extension orthogonal to the Labrador-Baffin axis, which is inherited from the Mesozoic. A regional and radical change of σ3 to a ~ NS trend takes place during P2, which follows on immediately from P1. P2 is also syn-magmatic. It is associated with only minor extension. σ3 runs parallel to the North American (NAM)/Greenland (GR) kinematic vector from C24R to C13. We establish therefore that the minimum horizontal stress σ3 for P1 and P2 is parallel to the relative displacement of Greenland related to NAM but not to its absolute displacement during the Tertiary. Taking into account those results as well as variations in magma chemistry from P1 to P2, we suggest that tectonic stresses at a volcanic margin could arise from the local dynamics of the melting mantle.

  4. Stress fields acting during lithosphere breakup above a melting mantle: A case example in West Greenland

    NASA Astrophysics Data System (ADS)

    Abdelmalak, Mansour M.; Geoffroy, Laurent; Angelier, Jacques; Bonin, Bernard; Callot, Jean-Paul; Gelard, Jean-Pierre; Aubourg, Charles

    2015-04-01

    We characterize and map the stress fields acting during plate breakup along the West Greenland volcanic margin. Interpolated stress fields are based on an inversion of fault-slip data sets and magma-driven fractures, crosscutting mainly an exposed inner seaward-dipping basaltic wedge (i.e., SDRi) segmented along-strike, with differently oriented segments. We identify two distinct tectonic episodes P1 and P2 which are both syn-magmatic and purely extensional. P1 probably acted as early as the Late Palaeocene. This stress field was first homogeneous with the minimum principal stress σ3 trending ~N060E, defining a P1A stage. During development of the SDRi, σ3 locally reoriented to become orthogonal to each margin segment (P1B). P1 is coeval with lithosphere breakup and is associated with an extension orthogonal to the Labrador-Baffin axis, which is inherited from the Mesozoic. The P1 related dykes constitute an homogeneous HKTP (High-K-Ti-P) suite. This suit displays alkaline affinities and is rich in both LILE and HFSE. A regional and radical change of σ3 to a ~NS trend took place during P2. The P1-P2 transition occurred at ~56-54 Ma i.e. during magnetic Chron C24R. P2 is associated with only minor extension and σ3 runs parallel to the North American (NAM)/Greenland kinematic displacement vector. The dykes associated with P2 are quite different and constitute a less homogeneous LKTP (Low-K-Ti-P) suite. This suite is less rich in LILE, yielding poorly fractioned chondrite-normalized REE patterns and HFSE contents similar to E-MORB, with slight U-Th and P positive anomalies. We establish therefore that the minimum horizontal stress σ3 for P1 and P2 is parallel to the relative displacement of Greenland related to NAM but not to its absolute displacement during the Tertiary. Taking into account those results as well as variations in magma chemistry from P1 to P2, we suggest that tectonic stresses at a volcanic margin could arise from the local dynamics of the

  5. Unusually loud ambient noise in tidewater glacier fjords: a signal of ice melt

    USGS Publications Warehouse

    Pettit, Erin C.; Lee, Kevin M.; Brann, Joel P.; Nystuen, Jeffrey A.; Wilson, Preston S.; O'Neel, Shad

    2015-01-01

    In glacierized fjords, the ice-ocean boundary is a physically and biologically dynamic environment that is sensitive to both glacier flow and ocean circulation. Ocean ambient noise offers insight into processes and change at the ice-ocean boundary. Here we characterize fjord ambient noise and show that the average noise levels are louder than nearly all measured natural oceanic environments (significantly louder than sea ice and non-glacierized fjords). Icy Bay, Alaska has an annual average sound pressure level of 120 dB (re 1 μPa) with a broad peak between 1000 and 3000 Hz. Bubble formation in the water column as glacier ice melts is the noise source, with variability driven by fjord circulation patterns. Measurements from two additional fjords, in Alaska and Antarctica, support that this unusually loud ambient noise in Icy Bay is representative of glacierized fjords. These high noise levels likely alter the behavior of marine mammals.

  6. Synoptic events force biological productivity in Patagonian fjord ecosystems

    NASA Astrophysics Data System (ADS)

    Daneri, Giovanni

    2016-04-01

    The annual cycle of primary productivity of the Patagonian fjords has, to date, been described as a two phase system consisting of a short non productive winter phase (during June and July) and a productive phase extending from late winter (August) to autumn (May). Low levels of primary production, phytoplankton biomass and high concentrations of surface nutrients have been described as characterizing winter conditions while pulsed productivity events typifies the productivity pattern during the extended productive season. Pulsed productivity events characterize coastal waters where inorganic nutrients in surface layers are replenished following periods of intensive utilization by autotrophs. Freshwater input in Patagonian fjords in southern Chile (41-55°S) results in one of the largest estuarine regions worldwide. Here strong haline water column stratification prevents nutrient mixing to the surface layers thus potentially shutting off algal production. Our working hypothesis considered that in order to reconcile the observed pulsed productivity pattern, periodic breaking (associated to surface nutrient replenishment) and re-establishment of estuarine conditions (associated to water column stratification) would be required. Up to now however our understanding of the physical processes that control water column conditions in the Patagonian fjord area has been extremely limited. Here we present evidence linking the passage of synoptic low pressure fronts to pulsed productivity events in the Patagonian fjord area. These front controls and influence local processes of interaction between the fjord and the atmosphere generating a rapid water column response. In the specific case of the Puyuhuapi fjord we have been able to show that such synoptic fronts induce surface flow reversal and water column mixing. Phytoplankton blooming occurs after the passage of the synoptic front once calmer conditions prevail and estuarine conditions are re established. The occurrence of

  7. Influence of glacier runoff on ecosystem structure in Gulf of Alaska fjords

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Piatt, John F.; Mueter, Franz J.

    2016-01-01

    To better understand the influence of glacier runoff on fjord ecosystems, we sampled oceanographic conditions, nutrients, zooplankton, forage fish and seabirds within 4 fjords in coastal areas of the Gulf Alaska. We used generalized additive models and geostatistics to identify the range of glacier runoff influence into coastal waters within fjords of varying estuarine influence and topographic complexity. We also modeled the response of depth-integrated chlorophyll a concentration, copepod biomass, fish and seabird abundance to physical, nutrient and biotic predictor variables. The effects of glacial runoff were traced at least 10 km into coastal fjords by cold, turbid, stratified and generally nutrient-rich near-surface conditions. Glacially modified physical gradients, nutrient availability and among-fjord differences explained 67% of the variation in phytoplankton abundance, which is a driver of ecosystem structure at higher trophic levels. Copepod, euphausiid, fish and seabird distribution and abundance were related to environmental gradients that could be traced to glacial freshwater input, particularly turbidity and temperature. Seabird density was predicted by prey availability and silicate concentrations, which may be a proxy for upwelling areas where this nutrient is in excess. Similarities in ecosystem structure among fjords were attributable to an influx of cold, fresh and sediment-laden water, whereas differences were likely related to fjord topography and local differences in estuarine vs. ocean influence. We anticipate that continued changes in the timing and volume of glacial runoff will ultimately alter coastal ecosystems in the future.

  8. Using the magmatic record to constrain the growth of continental crust-The Eoarchean zircon Hf record of Greenland

    NASA Astrophysics Data System (ADS)

    Fisher, Christopher M.; Vervoort, Jeffrey D.

    2018-04-01

    Southern West Greenland contains some of the best-studied and best-preserved magmatic Eoarchean rocks on Earth, and these provide an excellent vantage point from which to view long-standing questions regarding the growth of the earliest continental crust. In order to address the questions surrounding early crustal growth and complementary mantle depletion, we present Laser Ablation Split Stream (LASS) analyses of the U-Pb and Hf isotope compositions of zircon from eleven samples of the least-altered meta-igneous rocks from the Itsaq (Amîtsoq) Gneisses of the Isukasia and Nuuk regions of southern West Greenland. This analytical technique allows a less ambiguous approach to determining the age and Hf isotope composition of complicated zircon. Results corroborate previous findings that Eoarchean zircon from the Itsaq Gneiss (∼3.85 Ga to ∼3.63 Ga) were derived from a broadly chondritic source. In contrast to the Sm-Nd whole rock isotope record for southern West Greenland, the zircon Lu-Hf isotope record provides no evidence for early mantle depletion, nor does it suggest the presence of crust older than ∼3.85 Ga in Greenland. Utilizing LASS U-Pb and Hf data from the Greenland zircons studied here, we demonstrate the importance of focusing on the magmatic (rather than detrital) zircon record to more confidently understand early crustal growth and mantle depletion. We compare the Greenland Hf isotope data with other Eoarchean magmatic complexes such as the Acasta Gneiss Complex, Nuvvuagittuq greenstone belt, and the gneissic complexes of southern Africa, and all lack zircons with suprachondritic Hf isotope compositions. In total, these data suggest only a very modest volume of crust was produced during (or survived from) the Hadean and earliest Eoarchean. There remains no record of planet-scale early Earth mantle depletion in the Hf isotope record prior to 3.8 Ga.

  9. North Greenland's Ice Shelves and Ocean Warming

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Schauer, U.; Padman, L.; Melling, H.; Fricker, H. A.

    2014-12-01

    Rapid disintegration of ice shelves (the floating extensions of marine-terminating glaciers) can lead to increasing ice discharge, thinning upstream ice sheets, rising sea level. Pine Island Glacier, Antarctica, and Jacobshavn Isbrae, Greenland, provide prominent examples of these processes which evolve at decadal time scales. We here focus on three glacier systems north of 78 N in Greenland, each of which discharges more than 10 Gt per year of ice and had an extensive ice shelf a decade ago; Petermann Gletscher (PG), Niogshalvfjerdsfjorden (79N), and Zachariae Isstrom (ZI). We summarize and discuss direct observations of ocean and glacier properties for these systems as they have evolved in the northwest (PG) and northeast (79N and ZI) of Greenland over the last two decades. We use a combination of modern and historical snapshots of ocean temperature and salinity (PG, 79N, ZI), moored observations in Nares Strait (PG), and snapshots of temperature and velocity fields on the broad continental shelf off northeast Greenland (79N, ZI) collected between 1993 and 2014. Ocean warming adjacent to PG has been small relative to the ocean warming adjacent to 79N and ZI; however, ZI lost its entire ice shelf during the last decade while 79N, less than 70 km to the north of ZI, remained stable. In contrast, PG has thinned by about 10 m/y just prior to shedding two ice islands representing almost half its ice shelf area or a fifth by volume. At PG advective ice flux divergence explains about half of the dominantly basal melting while response to non-steady external forcing explains the other half. The observations at PG,79N, and ZI suggest that remotely sensed ambient surface ocean temperatures are poor proxies to explain ice shelf thinning and retreat. We posit that local dynamics of the subsurface ocean heat flux matters most. Ocean heat must first be delivered over the sill into the fjord and then within the ice shelf cavity to the base of the shelf near the grounding line

  10. Dark ice dynamics of the south-west Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Tedstone, Andrew J.; Bamber, Jonathan L.; Cook, Joseph M.; Williamson, Christopher J.; Fettweis, Xavier; Hodson, Andrew J.; Tranter, Martyn

    2017-11-01

    Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June-July-August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from

  11. Use of satellite telemetry for study of a gyrfalcon in Greenland

    USGS Publications Warehouse

    Klugman, S.S.; Fuller, M.R.; Howey, P.W.; Yates, M.A.; Oar, J.J.; Seegar, J.M.; Seegar, W.S.; Mattox, G.M.; Maechtle, T.L.

    1993-01-01

    Long-term research in Greenland has yielded 1 8 years of incidental sightings and 2 years of surveys and observations of gyrfalcons(Falco rusticolus) around Sondrestromfjord, Greenland. Gyrfalcons nest on cliffs along fjords and near rivers and lakes throughout our 2590 sq. km study area. Nestlings are present mid-June to July. In 1990, we marked one adult female gyrfalcon with a 65 g radio-transmitter to obtain location estimates via the ARGOS polar orbiting satellite system. The unit transmitted 8 hours/day every two days. We obtained 145 locations during 5 weeks of the nestling and fledgling stage of breeding. We collected 1-9 locations/day, with a mean of 4/day. We calculated home range estimates based on the Minimum Convex Polygon( MCP) and Harmonic Mean (HM methods and tested subsets of the data based on location quality and number of transmission hours per day. Home range estimated by MCP using higher quality locations was approximately 589 sq. km. Home range estimates were larger when lower-quality locations were included in the estimates. Estimates based on data collected for 4 hours/day were similar to those for 8 hours/day. In the future, it might be possible to extend battery life of the transmitters by reducing the number of transmission hours/day. A longer-lived transmitter could provide information on movements and home ranges throughout the year.

  12. Sedimentary Record and Morphological Effects of a Landslide-Generated Tsunami in a Polar Region: The 2000 AD Tsunami in Vaigat Strait, West Greenland

    NASA Astrophysics Data System (ADS)

    Szczucinski, W.; Rosser, N. J.; Strzelecki, M. C.; Long, A. J.; Lawrence, T.; Buchwal, A.; Chague-Goff, C.; Woodroffe, S.

    2012-12-01

    To date, the effects of tsunami erosion and deposition have mainly been reported from tropical and temperate climatic zones yet tsunamis are also frequent in polar zones, particularly in fjord settings where they can be generated by landslides. Here we report the geological effects of a landslide-triggered tsunami that occurred on 21st November 2000 in Vaigat, northern Disko Bugt in west Greenland. To characterise the typical features of this tsunami we completed twelve detailed coastal transects in a range of depositional settings: cliff coasts, narrow to moderate width coastal plains, lagoons and a coastal lake. At each setting we completed a detailed map using a laser scanner and DGPS survey. The tsunami deposits were described from closely spaced trenches and, from the lake, by a series of sediment cores . At each setting we examined the sedimentological properties of the deposits, as well as their bulk geochemistry and diatom content. Selected specimens of arctic willow from inundated and non-inundated areas were collected to assess the impact of the event in their growth ring records. Samples of sediments beneath the AD 2000 deposit were studied for 137Cs to confirm the age of the tsunami and to assess the extent of erosion. Offshore sediment samples, modern beach and soils/sediments underlying the AD 2000 tsunami deposits were sampled to determine tsunami deposit sources. The observed tsunami run-up exceeded 20 m next to the tsunami trigger - a rock avalanche at Paatuut - and up to 10 m on the opposite coast of the fjord. The inland inundation distance ranged from several tens of meters to over 300 m. The wave was recorded as far as 180 km away from the source. The tsunami inundated the coast obliquely to the shoreline in all locations studied. The tsunami frequently caused erosion of existing beach ridges whilst erosional niches were formed inland. The tsunami deposits mainly comprise gravels and very coarse sand. They are over 30 cm thick close to the

  13. Modeling of subaqueous melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.; Tinto, K. J.; van den Broeke, M. R.

    2014-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. The model is constrained by ice shelf bathymetry and ice thickness (refined model in the immediate vicinity of the grounding line) from NASA Operation IceBridge (2011), ocean temperature/salinity data from Johnson et al. (2011), ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) by Padman and Erofeeva (2004) and subglacial discharge at the grounding line calculated by the hydrostatic potential of the ice from estimated products of the Regional Atmospheric Climate Model (RACMO) of Royal Netherlands Meteorological Institute (KNMI). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the variation of tide height and current, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. The basal melt rate increases ~20% with summer surface runoff. This work is performed under a contract with NASA Cryosphere Program.

  14. Multi-Year Elevation Changes Near the West Margin of the Greenland Ice Sheet from Satellite Radar Altimetry

    NASA Technical Reports Server (NTRS)

    Lingle, Craig S.; Brenner, Anita C.; Zwally, H. Jay; DiMarzio, John P.

    1991-01-01

    Mean changes in the surface elevation near the west margin of the Greenland ice sheet are measured using Seasat altimetry and altimetry from the Geosat Exact Repeat Mission (ERM). The Seasat data extend from early July through early October 1978. The ERM data extend from winter 1986-87 through fall 1988. Both seasonal and multi-year changes are measured using altimetry referenced to GEM T2 orbits. The possible effects of orbit error are minimized by adjusting the orbits into a common ocean surface. Seasonal mean changes in the surface height are recognizable during the Geosat ERM. The multi-year measurements indicate the surface was lower by 0.4 +/- 0.4 m on average in late summer 1987 than in late summer 1978. The surface was lower by 0.2 +/- 0.5 m on average in late summer 1988 than in late summer 1978. As a control case, the computations art also carried out using altimetry referenced to orbits not adjusted into a common ocean surface.

  15. Holocene earthquake-triggered turbidites from the Saguenay (Eastern Canada) and Reloncavi (Chilean margin) fjords

    NASA Astrophysics Data System (ADS)

    St-Onge, Guillaume; Chapron, Emmanuel; Mulsow, Sandor; Salas, Marcos; Debret, Maxime; Foucher, Anthony; Mulder, Thierry; Desmet, Marc; Costa, Pedro; Ghaleb, Bassam; Locat, Jacques

    2013-04-01

    Fjords are unique archives of climatic and environmental changes, but also of natural hazards. They can preserve thick sedimentary sequences deposited under very high sediment accumulation rates, making them ideally suited to record historical and pre-historical sedimentological events such as major landslides, floods or earthquakes. In fact, by carefully characterizing and dating the sediments and by comparing the basin fill seismic stratigraphy and sedimentary records with historical events, it is possible to "calibrate" recent rapidly deposited layers such as turbidites with a trigger mechanism and extend these observations further back in time by using seismic reflection profiles and longer sediment cores. Here, we will compare earthquake-triggered turbidites in fjords from the Southern and Northern Hemispheres: the Saguenay (Eastern Canada) and Reloncavi fjords (southern Chilean margin). In both settings, we will first look at basin fill geometries and at the sedimentological properties of historical events before extending the records further back in time. In both fjords, several turbidites were associated with large magnitude historic and pre-historic earthquakes including the 1663 AD (M>7) earthquake in the Saguenay Fjord, and the 1960 (M 9.5), 1837 (M~8) and 1575 AD major Chilean subduction earthquakes in the Reloncavi Fjord. In addition, a sand layer with sea urchin fragments and the exoscopic characteristics typical of a tsunami deposit was observed immediately above the turbidite associated with the 1575 AD earthquake in the Reloncavi Fjord and supports both the chronology and the large magnitude of that historic earthquake. In both fjords, as well as in other recently recognized earthquake-triggered turbidites, the decimeter-to meter-thick normally-graded turbidites are characterized by a homogeneous, but slightly fining upward tail. Finally, new radiocarbon results will be presented and indicate that at least 19 earthquake-triggered turbidites were

  16. Biogeochemistry of Framvaren, A permanently Anoxic Fjord

    NASA Astrophysics Data System (ADS)

    Millero, Frank J.

    Recently (May 28-30, 1986), a workshop was held in Farsund, Norway, to discuss the biogeochemistry of an anoxic fjord called Framvaren. In the last 7 years a group of marine scientists from Norway, Sweden, Canada, and the United States has been studying this fjord. The workshop was held to discuss the recent findings of this international effort. A new expedition is planned in February 1987 (provided that the ice is thick enough) and in June 1988. Marine chemists, microbiologists, or geologists interested in participating in this study should contact Jens Skei (Norwegian Institute of Water Research, PB Box 333, Blindern, Oslo 3, Norway), who is coordinating the investigations.

  17. Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks

    NASA Astrophysics Data System (ADS)

    Smeaton, Craig; Austin, William E. N.; Davies, Althea L.; Baltzer, Agnes; Howe, John A.; Baxter, John M.

    2017-12-01

    Fjords are recognised as hotspots for the burial and long-term storage of carbon (C) and potentially provide a significant climate regulation service over multiple timescales. Understanding the magnitude of marine sedimentary C stores and the processes which govern their development is fundamental to understanding the role of the coastal ocean in the global C cycle. In this study, we use the mid-latitude fjords of Scotland as a natural laboratory to further develop methods to quantify these marine sedimentary C stores on both the individual fjord and national scale. Targeted geophysical and geochemical analysis has allowed the quantification of sedimentary C stocks for a number of mid-latitude fjords and, coupled with upscaling techniques based on fjord classification, has generated the first full national sedimentary C inventory for a fjordic system. The sediments within these mid-latitude fjords hold 640.7 ± 46 Mt of C split between 295.6 ± 52 and 345.1 ± 39 Mt of organic and inorganic C, respectively. When compared, these marine mid-latitude sedimentary C stores are of similar magnitude to their terrestrial equivalents, with the exception of the Scottish peatlands, which hold significantly more C. However, when area-normalised comparisons are made, these mid-latitude fjords are significantly more effective as C stores than their terrestrial counterparts, including Scottish peatlands. The C held within Scotland's coastal marine sediments has been largely overlooked as a significant component of the nation's natural capital; such coastal C stores are likely to be key to understanding and constraining improved global C budgets.

  18. Subtidal circulation in a deep-silled fjord: Douglas Channel, British Columbia

    NASA Astrophysics Data System (ADS)

    Wan, Di; Hannah, Charles G.; Foreman, Michael G. G.; Dosso, Stan

    2017-05-01

    Douglas Channel, a deep fjord on the west coast of British Columbia, Canada, is the main waterway in the fjord system that connects the town of Kitimat to Queen Charlotte Sound and Hecate Strait. A 200 m depth sill divides Douglas Channel into an outer and an inner basin. This study examines the low-frequency (from seasonal to meteorological bands) circulation in Douglas Channel from data collected at three moorings deployed during 2013-2015. The deep flows are dominated by a yearly renewal that takes place from May/June to early September. A dense bottom layer with a thickness of 100 m that cascades through the system at the speed of 0.1-0.2 m s-1, which is consistent with gravity currents. Estuarine flow dominates the circulation above the sill depth, and the observed landward net volume flux suggests that it is necessary to include the entire complex channel network to fully understand the estuarine circulation in the system. The influence of the wind forcing on the subtidal circulation is not only at the surface, but also at middepth. The along-channel wind dominates the surface current velocity fluctuations and the sea level response to the wind produces a velocity signal at 100-120 m in the counter-wind direction. Overall, the circulation in the seasonal and the meteorological bands is a mix of estuarine flow, direct wind-driven flow, and the barotropic and baroclinic responses to changes to the surface pressure gradient caused by the wind stress.

  19. From Carbonatite to Ikaite: How high-T carbonates are transformed into low-T carbonate minerals in SW Greenland

    NASA Astrophysics Data System (ADS)

    Stockmann, G. J.; Tollefsen, E.; Ranta, E.; Skelton, A.; Sturkell, E.; Lundqvist, L.

    2015-12-01

    The 1300 Ma Grønnedal-Íka igneous complex in southwest Greenland comprises nepheline syenites and carbonatites. It belongs to a suite of intrusions formed 1300-1100 Ma ago referred to as the Gardar period. In modern time (the last ca. 8000 years), fluid-rock interactions involving the nepheline syenites and carbonatites gives rise to about one thousand submarine columns made of the rare low-T mineral ikaite (CaCO3x6H2O). The columns are found in a shallow, narrow fjord named Ikka Fjord and their distribution clearly follows the outcrop of the Grønnedal-Íka complex. When meteoric water percolates through the highly fractured complex, a sodium carbonate solution of pH 10 is formed through hitherto unknown fluid-rock reactions. This basic solution seeps up through fractures at the bottom of Ikka Fjord and when mixed with seawater, the mineral ikaite is formed. As the seepage water has a lower density than seawater, there is an upwards flow that creates columns. What is peculiar about ikaite is its limited stability making it unstable above +6 °C. Isotopic studies of ikaite reveal a seawater origin for the Ca2+ ions, and the carbonatite being the most likely source for the CO32- ions. The carbonatite is mainly of søvite composition (CaCO3) with high contents of siderite and ankerite in certain areas. The nepheline syenites contain Na,K-rich minerals like nepheline, alkali-feldspar, aegirine-augite, katophorite and biotite. Nepheline is mainly replaced by muscovite, and aegirine-augite partly by chlorite, which could release sodium into solution. A dolerite dyke of unknown age prompted extensive mineralization of magnetite by activating hydrothermal fluid convection. The fluid interacted with the carbonatite, replacing siderite and ankerite by magnetite and later hematite. In a newly launched project at Stockholm University, we are trying to unravel the chemical reactions taking place inside the Grønnedal-Íka igneous complex leading to the formation of the

  20. Mountain glaciers vs Ice sheet in Greenland - learning from a new monitoring site in West Greenland

    NASA Astrophysics Data System (ADS)

    Abermann, Jakob; van As, Dirk; Wacker, Stefan; Langley, Kirsty

    2017-04-01

    Only 5 out of the 20.000 peripheral glaciers and ice caps surrounding Greenland are currently monitored due to logistical challenges and despite their significance for sea level rise. Large spatial coast-to-icesheet mass and energy balance gradients limit simple upscaling methods from ice-sheet observations, which builds the motivation for this study. We present results from a new mass and energy balance time series at Qasigiannguit glacier (64°09'N; 51°21'W) in Southwest Greenland. Inter-annual variability is discussed and the surface energy balance over two summers is quantified and a ranking of the main drivers performed. We find that short-wave net radiation is by far the most dominant energy source during summer, followed by similar amounts of net longwave radiation and sensible heat, respectively. We then relate these observations to synchronous measurements at similar latitude on an outlet glacier of the ice sheet a mere 100 km away. We find very pronounced horizontal surface mass balance gradients, with generally more positive values closer to the coast. We conclude that despite minor differences of atmospheric parameters (i.e. humidity, radiation, and temperature) the main reason for the strongly different signal is a pronounced winter precipitation gradient that translates in a different duration of ice exposure and through that an albedo gradient. Modelled energy balance gradients converted into mass changes show good agreement to measured surface mass balance gradients and we explore a latitudinal signal of these findings.

  1. Erosion of modern terrestrial organic matter as a major component of sediments in fjords

    NASA Astrophysics Data System (ADS)

    Cui, Xingqian; Bianchi, Thomas S.; Savage, Candida

    2017-02-01

    Fjords have recently been recognized as "hot spots" of carbon burial. In this study, we investigated organic carbon (OC) and biomarker radiocarbon values in fjord sediments from New Zealand. Our results showed that OC was mostly modern with the most aged OC in middle reaches of fjords, likely related to hydrodynamic sorting and inputs along adjacent slopes. Radiocarbon ages of sedimentary OC increased from north-to-south, consistent with the Fiordland regional gradients of lower fjord slopes and less rainfall. Our biomarker results suggested that lignin and long-chain fatty acids were preferentially linked with fresh terrestrial debris and degraded soil, respectively, likely due to their chemical and physical properties. Finally, we propose that fjords are a significant sink of modern OC, in contrast to large lowland coastal systems as a major sink of preaged OC. Overall, this study indicated that radiocarbon techniques are critical in investigating carbon dynamics in coastal systems.

  2. Multi-sensor detection of glacial lake outburst floods in Greenland from space

    NASA Astrophysics Data System (ADS)

    Citterio, M.

    2015-12-01

    GLOFs cause substantial erosion, transport and delivery of sediment along the river system from the glaciated parts of the hydrologic catchment to the sea, and have been found to control the riverine export dynamics of some pollutants like mercury in NE Greenland. GLOFs also pose a risk to human presence and infrastracture. Ice-dammed lakes at the margin of the ice sheet and of local glaciers and ice caps are common features of Greenland's landscape. The occasional or periodic emptying of some of these lakes have been described as early as the 18thcentury. Thinning glaciers in a warming climate are already changing the behaviour of some of these lakes. However, little is known of the frequency and seasonality of glacier lake outburst floods (GLOF) outside of the relatively more densely populated parts of West and South Greenland. This contribution demonstrates automatic multi-sensor detection of ice-dammed lake emptying events from space for three test regions in West, South and Northeast Greenland, using visible imagery from Landsat, ASTER, PROBA-V and MODIS. The current detection algorithm relies on prior knowledge of lakes location and approximate shape from a topographic map at the scale of 1:250.000, and it is meant as a prototype for a future operational product. For the well documented case of the glacier-dammed lake of A.P. Olsen Ice Cap (NE Greenland), where GLOF's observations at Zackenberg Research Station started in 1996, the remote sensing and in situ records are compared, showing good agreement. ICESat altimetry, MODIS and AVHRR thermal imagery, and the ENVISAR ASAR signature of two detected GLOFs that took place late autumn and winter are also discussed to demonstrate the potential for successful retrievals during the polar night. The upcoming Sentinel-3 missions will alleviate what is currently the major drawback of implementing this prototype into an operational service, namely the limited availability of high resolution imagery. This is of special

  3. Preliminary validation of WRF model in two Arctic fjords, Hornsund and Porsanger

    NASA Astrophysics Data System (ADS)

    Aniskiewicz, Paulina; Stramska, Małgorzata

    2017-04-01

    Our research is focused on development of efficient modeling system for arctic fjords. This tool should include high-resolution meteorological data derived using downscaling approach. In this presentation we have focused on modeling, with high spatial resolution, of the meteorological conditions in two Arctic fjords: Hornsund (H), located in the western part of Svalbard archipelago and Porsanger (P) located in the coastal waters of the Barents Sea. The atmospheric downscaling is based on The Weather Research and Forecasting Model (WRF, www.wrf-model.org) with polar stereographic projection. We have created two parent domains with grid point distances of about 3.2 km (P) and 3.0 km (H) and with nested domains (almost 5 times higher resolution than parent domains). We tested what is the impact of the spatial resolution of the model on derived meteorological quantities. For both fjords the input topography data resolution is 30 sec. To validate the results we have used meteorological data from the Norwegian Meteorological Institute for stations Lakselv (L) and Honningsvåg (Ho) located in the inner and outer parts of the Porsanger fjord as well as from station in the outer part of the Hornsund fjord. We have estimated coefficients of determination (r2), statistical errors (St) and systematic errors (Sy) between measured and modelled air temperature and wind speed at each station. This approach will allow us to create high resolution spatially variable meteorological fields that will serve as forcing for numerical models of the fjords. We will investigate the role of different meteorological quantities (e. g. wind, solar insolation, precipitation) on hydrohraphic processes in fjords. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018. This work was also funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support comes from the

  4. Sedimentary Carbon Stocks: A National Assessment of Scotland's Fjords.

    NASA Astrophysics Data System (ADS)

    Smeaton, Craig; Austin, William; Davies, Althea; Howe, John

    2017-04-01

    Coastal sediments have been shown to be globally significant repositories for carbon (C) with an estimated 126.2 Tg of C being buried annually (Duarte et al. 2005). Though it is clear these areas are important for the long-term storage of C the actual quantity of C held within coastal sediment remains largely unaccounted for. The first step to understanding the role the coastal ocean plays in the global C cycle is to quantify the C held within these coastal sediments. Of the different coastal environment fjords have been shown to be hotspots for C burial with approximately 11 % of the annual global marine carbon sequestration occurring within fjordic environments (Smith et al. 2015). Through the development of a joint geophysical and geochemical methodology we estimated that the sediment in a mid-latitude fjord holds 26.9 ± 0.5 Mt of C (Smeaton et al., 2016), with these results suggesting that Scottish mid-latitude fjords could be a significant unaccounted store of C equivalent to their terrestrial counterparts (i.e. peatlands). Through the application of the joint geophysical and geochemical methodology developed by Smeaton et al (2016) to a number of other mid-latitude fjords, we will create detailed estimations of the sedimentary C stored at these individual sites. Using these detailed C stock estimations in conjunction with upscaling techniques we will establish the first national estimation of fjordic sedimentary C stocks. The data produced will allow for the sedimentary C stocks to be compared to other national C stocks, such as the Scottish peatlands (Chapman et al. 2009) and forestry (Forestry Commission, 2016). Alongside quantifying this large unaccounted for store of C in the coastal ocean this work also lays foundations for future work to understand the role of the coastal ocean in the global C cycle. Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1-8, doi:10.5194/bg-2

  5. Strontium and neodymium isotopic variations in early Archean gneisses affected by middle to late Archean high-grade metamorphic processes: West Greenland and Labrador

    NASA Technical Reports Server (NTRS)

    Collerson, K. D.; Mcculloch, M. T.; Bridgwater, D.; Mcgregor, V. R.; Nutman, A. P.

    1986-01-01

    Relicts of continental crust formed more than 3400 Ma ago are preserved fortuitously in most cratons. The cratons provide the most direct information about crust and mantle evolutionary processes during the first billion years of Earth history. In view of their polymetamorphic character, these terrains are commonly affected by subsequent tectonothermal events. Hence, their isotope systematics may be severely disturbed as a result of bulk chemical change or local isotopic homogenization. This leads to equivocal age and source information for different components within these terrains. The Sr and Nd isotopic data are presented for early Archean gneisses from the North Atlantic Craton in west Greenland and northern Labrador which were affected by younger metamorphic events.

  6. Large-scale evolution of the central-east Greenland margin: New insights to the North Atlantic glaciation history

    NASA Astrophysics Data System (ADS)

    Pérez, Lara F.; Nielsen, Tove; Knutz, Paul C.; Kuijpers, Antoon; Damm, Volkmar

    2018-04-01

    The continental shelf of central-east Greenland is shaped by several glacially carved transverse troughs that form the oceanward extension of the major fjord systems. The evolution of these troughs through time, and their relation with the large-scale glaciation of the Northern Hemisphere, is poorly understood. In this study seismostratigraphic analyses have been carried out to determine the morphological and structural development of this important sector of the East Greenland glaciated margin. The age of major stratigraphic discontinuities has been constrained by a direct tie to ODP site 987 drilled in the Greenland Sea basin plain off Scoresby Sund fan system. The areal distribution and internal facies of the identified seismic units reveal the large-scale depositional pattern formed by ice-streams draining a major part of the central-east Greenland ice sheet. Initial sedimentation along the margin was, however, mainly controlled by tectonic processes related to the margin construction, continental uplift, and fluvial processes. From late Miocene to present, progradational and erosional patterns point to repeated glacial advances across the shelf. The evolution of depo-centres suggests that ice sheet advances over the continental shelf have occurred since late Miocene, about 2 Myr earlier than previously assumed. This cross-shelf glaciation is more pronounced during late Miocene and early Pliocene along Blosseville Kyst and around the Pliocene/Pleistocene boundary off Scoresby Sund; indicating a northward migration of the glacial advance. The two main periods of glaciation were separated by a major retreat of the ice sheet to an inland position during middle Pliocene. Mounded-wavy deposits interpreted as current-related deposits suggest the presence of changing along-slope current dynamics in concert with the development of the modern North Atlantic oceanographic pattern.

  7. Simple models for the simulation of submarine melt for a Greenland glacial system model

    NASA Astrophysics Data System (ADS)

    Beckmann, Johanna; Perrette, Mahé; Ganopolski, Andrey

    2018-01-01

    Two hundred marine-terminating Greenland outlet glaciers deliver more than half of the annually accumulated ice into the ocean and have played an important role in the Greenland ice sheet mass loss observed since the mid-1990s. Submarine melt may play a crucial role in the mass balance and position of the grounding line of these outlet glaciers. As the ocean warms, it is expected that submarine melt will increase, potentially driving outlet glaciers retreat and contributing to sea level rise. Projections of the future contribution of outlet glaciers to sea level rise are hampered by the necessity to use models with extremely high resolution of the order of a few hundred meters. That requirement in not only demanded when modeling outlet glaciers as a stand alone model but also when coupling them with high-resolution 3-D ocean models. In addition, fjord bathymetry data are mostly missing or inaccurate (errors of several hundreds of meters), which questions the benefit of using computationally expensive 3-D models for future predictions. Here we propose an alternative approach built on the use of a computationally efficient simple model of submarine melt based on turbulent plume theory. We show that such a simple model is in reasonable agreement with several available modeling studies. We performed a suite of experiments to analyze sensitivity of these simple models to model parameters and climate characteristics. We found that the computationally cheap plume model demonstrates qualitatively similar behavior as 3-D general circulation models. To match results of the 3-D models in a quantitative manner, a scaling factor of the order of 1 is needed for the plume models. We applied this approach to model submarine melt for six representative Greenland glaciers and found that the application of a line plume can produce submarine melt compatible with observational data. Our results show that the line plume model is more appropriate than the cone plume model for simulating

  8. Climate related trends and meteorological conditions in European Arctic region - Porsanger fjord, Norway

    NASA Astrophysics Data System (ADS)

    Cieszyńska, Agata; Stramska, Małgorzata

    2017-04-01

    Climate change has significant effect on the Arctic environment, where global trends are amplified. In this study, we have focused on the Porsanger fjord, located in European Arctic in the coastal region of the Barents Sea. We have analyzed climate related trends and meteorological condititions in the area of interest. Meteorological data included wind speed and direction, air temperature (AT) and precipitation from Era-Interim reanalysis (1986-2015) and local observations (1996-2015) from Lakselv (L, fjord's head area) and Honningsvaag (H - fjord's exit area). Our results confirm that this region is undergoing climate change related warming, which is indicated by rising air temperatures. Based on long-term reanalysis data, estimated trends for air temperature (AT) in Porsanger fjord are: 0.0536 °C year-1 at fjord's exit and 0.0428 °C year-1 at fjord's head. The results show that climate change does not seem to have a significant effect on long-term changes of wind speed and precipitation in the Porsanger fjord. Statistical analysis underlined significant spatial variability of meteorological conditions inside the fjord. For example, there are large differences in the annual cycle of AT with monthly mean January and July values of -8.4 and 12.6 °C in L and -2.5 and 10.1 °C in H. Dominant wind directions in Lakselv are S and SSE, while in Honningsvaag S and SSW directions prevail. Strong wind events (above 12 m s-1) are more frequent in H than in L. Annual cycle is characterized by stronger winds in winter and seasonality of wind direction. Precipitation for a given location can change by about 50% between years and varies spatially. Synoptic scale and within day variability are extremely intense in the area of interest. Air temperature and wind speed and direction can change dramatically in hours. In addition, regular patterns of the daily cycle of AT have different intensity in L and H. It is interesting to note that in spring/summer season, the daily cycle of

  9. Holocene temperature history at the west Greenland Ice Sheet margin reconstructed from lake sediments

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Losee, S.; Briner, J. P.; Francis, D.; Langdon, P. G.; Walker, I.

    2011-12-01

    Paleoclimate proxy data can help reduce uncertainties regarding how the Greenland Ice Sheet, and thus global sea level, will respond to future climate change. Studies of terrestrial deposits along Greenland's margins offer opportunities to reconstruct both past temperature changes and the associated changes in Greenland Ice Sheet extent, thus empirically characterizing the ice sheet's response to temperature change. Here we present Holocene paleoclimate reconstructions developed from sediment records of five lakes along the western ice sheet margin, near Jakobshavn Isbræ and Disko Bugt. Insect (Chironomidae, or non-biting midge) remains from North Lake provide quantitative estimates of summer temperatures over the past ca. 7500 years at multi-centennial resolution, and changes in sediment composition at all five lakes offer evidence for glacier fluctuations, changes in lake productivity, and other environmental changes throughout the Holocene. Aims of this study include quantification of warmth in the early to mid Holocene, when summer solar insolation forcing exceeded present-day values at northern latitudes and the local Greenland Ice Sheet margin receded inboard of its present position, and the magnitude of subsequent Neoglacial and Little Ice Age cooling that drove ice sheet expansion. We find that the Jakobshavn Isbrae region experienced the warmest temperatures of the Holocene (with summers 2 to 3.5 degrees C warmer than present) between ~6000 and 4000 years ago. Neoglacial cooling began rather abruptly ~4000 years ago and intensified 3000 years ago. Our proxy data suggest that the coldest summers of the Holocene occurred during the 18th and 19th centuries in the Jakobshavn region. These results agree well with previous glacial geologic studies reconstructing local ice margin positions through the Holocene. Such reconstructions of paleoclimate and past ice sheet extent provide targets for testing and improving ice sheet models.

  10. Biodiversity and abundance patterns of rock encrusting fauna in a temperate fjord.

    PubMed

    Kuklinski, Piotr

    2013-01-01

    Fjords are semi-enclosed systems often with usually strong physical and chemical gradients. These gradients provide the opportunity to test the influence of various physical and chemical factors on biodiversity. However study area of this investigation, Trondheimsfjord, is a large water body where especially salinity gradient along the fjord is not well pronounced. The goal of this study was to establish within a temperate fjord a baseline identifying encrusting fauna on rocks and determine the factors driving changes along the length of the fjord and changing depths. There was no trend in species composition change and increase or decrease in number of species, diversity and number of individuals along the fjord. This was likely due to the relative homogeneity of both substrate (rocks) and environmental parameters. Nevertheless, the influence of fresh water inflow in the vicinity of the river mouth was apparent by the presence of characteristic brackish-water species at these locations. Multidimensional scaling analysis revealed three separate assemblages: intertidal, shallow and deep subtidal (below 50 m). Intertidal assemblages were species poor (one to 11 species) but relatively abundant (six to 2374 indiv./m(2) of rocks). Number of individuals and biomass was highest in the shallow subtidal (2059-13,587 indiv./m(2) of rocks). Overall the highest species number (45) was recorded at 50 m depth which is probably result of low competition pressure yet still relatively high nutrient concentration in comparison to shallower locations. Environmental parameters (i.e., tidal currents, wave action, salinity) change more drastically with depth than along the fjord and these changes are the major driving forces in shaping encrusting assemblages in Trondheimsfjord. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Landslides Cause Tsunami Waves: Insights From Aysén Fjord, Chile

    NASA Astrophysics Data System (ADS)

    Lastras, Galderic; Amblas, David; Calafat, Antoni M.; Canals, Miquel; Frigola, Jaime; Hermanns, Reginald L.; Lafuerza, Sara; Longva, Oddvar; Micallef, Aaron; Sepúlveda, Sergio A.; Vargas, Gabriel; Batist, Marc De; Daele, Maarten Van; Azpiroz, María.; Bascuñán, Ignacio; Duhart, Paul; Iglesias, Olaia; Kempf, Philipp; Rayo, Xavier

    2013-08-01

    On 21 April 2007, an Mw 6.2 earthquake produced an unforeseen chain of events in the Aysén fjord (Chilean Patagonia, 45.5°S). The earthquake triggered hundreds of subaerial landslides along the fjord flanks. Some of the landslides eventually involved a subaqueous component that, in turn, generated a series of displacement waves—tsunami-like waves produced by the fast entry of a subaerial landmass into a water body—within the fjord [Naranjo et al., 2009; Sepúlveda and Serey, 2009; Hermanns et al., 2013]. These waves, with run-ups several meters high along the shoreline, caused 10 fatalities. In addition, they severely damaged salmon farms, which constitute the main economic activity in the region, setting free millions of cultivated salmon with still unknown ecological consequences.

  12. Carbon cycling in a high-arctic marine ecosystem - Young Sound, NE Greenland

    NASA Astrophysics Data System (ADS)

    Rysgaard, Søren; Nielsen, Torkel Gissel

    2006-10-01

    Young Sound is a deep-sill fjord in NE Greenland (74°N). Sea ice usually begins to form in late September and gains a thickness of ∼1.5 m topped with 0-40 cm of snow before breaking up in mid-July the following year. Primary production starts in spring when sea ice algae begin to flourish at the ice-water interface. Most biomass accumulation occurs in the lower parts of the sea ice, but sea ice algae are observed throughout the sea ice matrix. However, sea ice algal primary production in the fjord is low and often contributes only a few percent of the annual phytoplankton production. Following the break-up of ice, the immediate increase in light penetration to the water column causes a steep increase in pelagic primary production. Usually, the bloom lasts until August-September when nutrients begin to limit production in surface waters and sea ice starts to form. The grazer community, dominated by copepods, soon takes advantage of the increased phytoplankton production, and on an annual basis their carbon demand (7-11 g C m -2) is similar to phytoplankton production (6-10 g C m -2). Furthermore, the carbon demand of pelagic bacteria amounts to 7-12 g C m -2 yr -1. Thus, the carbon demand of the heterotrophic plankton is approximately twice the estimated pelagic primary production, illustrating the importance of advected carbon from the Greenland Sea and from land in fuelling the ecosystem. In the shallow parts of the fjord (<40 m) benthic primary producers dominate primary production. As a minimum estimate, a total of 41 g C m -2 yr -1 is fixed by primary production, of which phytoplankton contributes 15%, sea ice algae <1%, benthic macrophytes 62% and benthic microphytes 22%. A high and diverse benthic infauna dominated by polychaetes and bivalves exists in these shallow-water sediments (<40 m), which are colonized by benthic primary producers and in direct contact with the pelagic phytoplankton bloom. The annual benthic mineralization is 32 g C m -2 yr -1 of

  13. Contribution of the Greenland Ice Sheet to Sea-Level over the Next Millennium

    NASA Astrophysics Data System (ADS)

    Aschwanden, A.; Fahnestock, M. A.; Truffer, M.

    2017-12-01

    The contribution of Greenland's outlet glaciers to sea-level remains a wild card in global sea level predictions but progress in mapping ice thickness combined with high-resolution flow modeling now allow to revisit questions about the long-term stability of the ice sheet. Here we present the first outlet glacier resolving assessment of Greenland's contribution to sea-level over the next millennium. We find that increased ice discharge resulting from acceleration of outlet glaciers due to ice melt at tidewater glacier margins dominates mass loss during the 21st century. However, as the ice sheet surfaces lowers, surface melt increases and over the course of the millennium, the relative contribution of ice discharge to total mass loss decreases. By the end of the 22nd century, most outlet glaciers in the north-west will have retreated out of tide-water, while in south-east enhanced precipitation partially offsets high ice discharge. The outlet glaciers of the central west coast, most notably Jakobshavn Isbrae, play a key role in dynamic mass loss due to their submarine connection to the interior reservoir. We find that coast-ward advection of cold ice from the interior counteracts outlet glacier acceleration by increasing ice viscosity and thereby reducing vertical shearing. Under the RCP 8.5 scenario, the ice margin in north and north-east Greenland retreats far enough to reach the vast interior where the subglacial topography is below sea level. This leads to a dramatic retreat in the second part of the millenium, and Greenland could shrink to 10% of its current volume by the end of the millennium.

  14. Relatively high antibiotic resistance among heterotrophic bacteria from arctic fjord sediments than water - Evidence towards better selection pressure in the fjord sediments

    NASA Astrophysics Data System (ADS)

    Hatha, A. A. Mohamed; Neethu, C. S.; Nikhil, S. M.; Rahiman, K. M. Mujeeb; Krishnan, K. P.; Saramma, A. V.

    2015-12-01

    The objective of this study was to determine the prevalence of antibiotic resistance among aerobic heterotrophic bacteria and coliform bacteria from water and sediment of Kongsfjord. The study was based on the assumption that arctic fjord environments are relatively pristine and offer very little selection pressure for drug resistant mutants. In order to test the hypothesis, 200 isolates belonging to aerobic heterotrophic bacteria and 114 isolates belonging to coliforms were tested against 15 antibiotics belonging to 5 different classes such as beta lactams, aminoglycosides, quinolones, sulpha drugs and tetracyclines. Resistance to beta lactam and extended spectrum beta lactam (ESBL) antibiotics was considerably high and they found to vary significantly (p < 0.05) between heterotrophic and coliform bacteria. Though the coliforms showed significantly high level of antibiotic resistance against ESBL's extent and diversity of antibiotic resistance (as revealed by multiple antibiotic resistance index and resistance patterns), was high in the aerobic heterotrophic bacteria. Most striking observation was that isolates from fjord sediments (both heterotrophic bacteria and coliforms) in general showed relatively high prevalence of antibiotic resistance against most of the antibiotics tested, indicating to better selection pressure for drug resistance mutants in the fjord sediments.

  15. Movement of pulsed resource subsidies from kelp forests to deep fjords.

    PubMed

    Filbee-Dexter, Karen; Wernberg, Thomas; Norderhaug, Kjell Magnus; Ramirez-Llodra, Eva; Pedersen, Morten Foldager

    2018-05-01

    Resource subsidies in the form of allochthonous primary production drive secondary production in many ecosystems, often sustaining diversity and overall productivity. Despite their importance in structuring marine communities, there is little understanding of how subsidies move through juxtaposed habitats and into recipient communities. We investigated the transport of detritus from kelp forests to a deep Arctic fjord (northern Norway). We quantified the seasonal abundance and size structure of kelp detritus in shallow subtidal (0‒12 m), deep subtidal (12‒85 m), and deep fjord (400‒450 m) habitats using a combination of camera surveys, dive observations, and detritus collections over 1 year. Detritus formed dense accumulations in habitats adjacent to kelp forests, and the timing of depositions coincided with the discrete loss of whole kelp blades during spring. We tracked these blades through the deep subtidal and into the deep fjord, and showed they act as a short-term resource pulse transported over several weeks. In deep subtidal regions, detritus consisted mostly of fragments and its depth distribution was similar across seasons (50% of total observations). Tagged pieces of detritus moved slowly out of kelp forests (displaced 4‒50 m (mean 11.8 m ± 8.5 SD) in 11‒17 days, based on minimum estimates from recovered pieces), and most (75%) variability in the rate of export was related to wave exposure and substrate. Tight resource coupling between kelp forests and deep fjords indicate that changes in kelp abundance would propagate through to deep fjord ecosystems, with likely consequences for the ecosystem functioning and services they provide.

  16. IceBridge Provides Novel Evidence for Thick Units of Basal Freeze-on Ice Along Petermann Glacier, Greenland

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Tinto, K. J.; Wolovick, M.; Block, A. E.; Frearson, N.; Das, I.; Abdi, A.; Creyts, T. T.; Cochran, J. R.; Csatho, B. M.; Babonis, G. S.

    2011-12-01

    The Petermann Glacier, one of the major outlet glaciers in Greenland, drains six percent of the Greenland ice from a basin largely below sea level. Petermann Glacier and its large ice shelf may be susceptible to increased change as the waters along the Greenland margin warm. The 2010 and 2011 Operation IceBridge mission, acquired a comprehensive aerogeophysical data set over the Petermann Glacier that provides insights into the ice sheet structure. This analysis employs most of the data streams acquired by the Icebridge platform including ice-penetrating radar, laser altimetry, gravity and magnetics. An orthogonal 10 km grid extends from 60 km upstream of the grounding line to 240 km inland. The ice velocities in the region range from <50m/yr to >200m/yr. On the interior lines the internal layers are pulled down over 2-3 km wide regions. Up to 400m of ice from the base of the ice sheet appears to be absent in these regions. We interpret these pulled down regions as basal melt. These melt regions are mainly located along the upstream side of a 80 km wide east-west trending topographic ridge that separates the interior ice from the Petermann Fjord. The IceBridge magnetic data indicates that this broad flat ridge is the boundary between the Franklinian Basins and the Ellsmerian Foldbelt to the north. Downstream of these pull-down layers we have identified 4 distinct packages of ice that thicken downstream and are characterized by a strong upper reflector. These packages develop at the base of the ice sheet and reach thicknesses of 500-700m over distances of 10-20 km. These basal packages can be traced for 30-100 km following the direction of flow, and may be present close to the grounding line. These basal reflectors deflect the overlying internal layers upward indicating the addition of ice to the base of the ice sheet. The IceBridge gravity data indicates that these features are probably not off-nadir topography since these would show up as around 30mGal anomalies

  17. The Hornsund fjord - modeling of the general circulation, heat exchange and water masses transport.

    NASA Astrophysics Data System (ADS)

    Przyborska, Anna; Jakacki, Jaromir; Kosecki, Szymon; Sundfjord, Arild

    2015-04-01

    The MIKE3D hydrodynamic model has been implemented for diagnosis an ecosystem status in the most southern fjord of the Svalbard Archipelago. The model is based on MIKE 3 Flow Model FM that uses flexible mesh grid. The spatial discretization in solutions of equations is performed by the finite element method. The regional scale of the model implicated implementation of external data at the lateral boundary region. In our case Flather's boundary condition let us to force the model with combined information. At the same time tidal ordinate and barotropic component of velocity that reflects the West Spitsbergen Current are implemented. Also salinity and temperature were nested at the boundary area. The upper boundary conditions was also introduced. The data for the boundary were taken from Global Tide Model (all tidal components), an 800 m ROMS simulation of the Svalbard area made by the Norwegian Institute of Marine Research (bartoropic velocities, temperature and salinity), European Centre for Medium Weather Forecast (ECMWF) and also from Global Data Assimilation System (GDAS). Implemented model was validated and the mean circulation and its seasonal variability will be presented. Also influence of the shelf water masses on the fjord will be discussed. Fresh water transport from glaciers, run off and snow will be estimated. Results are based on 5 years simulation (2005-2010) This work was partially performed in the frame of the projects GAME (DEC-2012/04/A/NZ8/00661) and AWAKE2 (Pol-Nor/198675/17/2013)

  18. Benthic foraminiferal biogeography in NW European fjords: A baseline for assessing future change

    NASA Astrophysics Data System (ADS)

    Murray, John W.; Alve, Elisabeth

    2016-11-01

    The seaboard extending from northern Svalbard to Scotland is the only region of the world where fjords have been comprehensively studied for their live (stained) benthic foraminiferal faunas. These modern faunas provide essential baseline data for the interpretation of the postglacial and continuing environmental changes in those fjords and this is the first biogeographic synthesis. The data come from the surface sediment assemblages (mainly sampled in the 1990's) from all the available literature. Due to limited information of shallow water assemblages in the north, only the species occurrences in deeper water from below the halocline are considered. Amongst these, only "common species" species occurring in more than one fjord are included. There is a clear pattern of distribution with five groups of taxa: 5 widespread species found throughout the region; 53 species reaching their northern limit; 13 species reaching their southern limit; 11 deep-sea species; 1 recently introduced species. Although there is an abrupt change in temperature from Tanafjorden in northern Norway to Hornsund in southern Svalbard, the faunal change from N to S is progressive throughout the investigated region. The area of overlap of the northern and southern species corresponds with the previously recognised boundary between the Barents Sea Province and the Norwegian Coast Province based on shelf and upper slope invertebrate macrofaunal benthos and plankton. Temperature is the main abiotic control on the distributions. For the fjords which have shallow sills separating them from the open shelf it is likely that most of the foraminiferal colonisers of the deeper fjord basins are sourced from the shelf or slope via propagules. One species has recently been introduced from further south into the southern region probably through the discharge of ballast water from ships. The biodiversity of the pristine Svalbard fjords extends below what is considered to reflect acceptable ecological status

  19. Perfluorinated alkyl substances (PFAS) in terrestrial environments in Greenland and Faroe Islands.

    PubMed

    Bossi, Rossana; Dam, Maria; Rigét, Frank F

    2015-06-01

    Perfluorinated alkylated substances (PFASs) have been measured in liver samples from terrestrial organisms from Greenland and the Faeroe Islands. Samples from ptarmigan (West Greenland), reindeer (southwest-Greenland), muskox (East Greenland), and land-locked Arctic char from southwest Greenland and the Faroe Islands were analyzed. In addition, PFASs levels in land-locked brown trout from Faroese lakes are reported. Of the 17 PFASs analyzed in the samples the following compounds were detected: PFOS, PFNA, PFDA, PFUnA, PFDoA, PFTrA, and PFTeA. PFNA was the compound detected in most samples and in all species. However, the compound detected at highest concentration was dependent on species, with overall highest concentrations of PFTrA and PFUnA being detected in trout liver from Lake á Mýranar (Faroe Islands). In muskox, the PFAS occurring at highest concentrations was PFDA, which was among the PFAS detected at lowest concentrations in freshwater fish, and was only detected in one individual ptarmigan. The concentration of PFOS, PFDoA and PFTrA in Arctic char from Greenland and Faroe Islands were similar, whereas the concentration of PFNA, PFDA and PFUnA were higher in Arctic char than those from Greenland. The opposite was observed for PFTeA. The PFASs occurring at highest concentrations in trout were PFTrA and PFUnA. Arctic char from Lake á Mýranar had much lower concentrations of PFTrA and PFUnA than in trout from the lakes analyzed, but a higher concentration of PFTeA than trout from the same lake. A clear pattern with odd-carbon number homologues concentrations higher than the next lower even homologue was observed in fish samples, which is consistent with the hypothesis of transport of volatile precursors to remote regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Sea ice proxies, marine environmental change, and human societies in Northwest Greenland over the past ca. 4500 years

    NASA Astrophysics Data System (ADS)

    Ribeiro, Sofia; Weckström, Kaarina; Tallberg, Petra; Risager Kjøller, Marianne; Limoges, Audrey; Massé, Guillaume; Nissen, Martin; Toudal Pedersen, Leif; Mikkelsen, Naja

    2016-04-01

    Greenland has been inhabited for only ca. 4500 years, but several human colonization events and cultural transitions occurred during this period. This work is part of the ICE-ARC project - Ice, Climate and Economics in the Arctic (EU FP7), aimed at understanding and quantifying the multiple stresses involved in the change in the Arctic marine environment, with particular focus on the rapid retreat and collapse of the Arctic sea ice cover. The overall goal of the project is to assess the climatic (ice, ocean, atmosphere and ecosystem), economic and social impacts of these stresses on regional and global scales. Marine sediment cores were retrieved from the Inglefield Bredning fjord system in the Qaanaaq region, Northwest Greenland, and are being analysed for various climate and environmental proxies, including biological indicators (e.g. dinoflagellate cysts, diatoms), biogeochemical elements (biogenic silica, XRF scanning), and sea-ice specific biomarkers (IP25). We will present the first data from this core material, consisting of a spatial study of sea ice and productivity proxies in 13 surface sediment samples (IP25, biogenic silica, diatoms, and dinoflagellate cysts) which will be compared with satellite-derived sea ice cover data for the Qaanaaq region/ northern Baffin Bay. This spatial study will serve as basis to reconstruct sea ice variability in the area over the past ca. 4500 years, and will be combined with historical and archaeological data in order to identify possible links between past changes in climate and sea ice conditions, and events of human migration and cultural transition in Greenland.

  1. The Archean geology of the Godthabsfjord Region, southern west Greenland (includes excursion guide)

    NASA Technical Reports Server (NTRS)

    Mcgregor, V. R.; Nutman, A. P.; Friend, C. R. L.

    1986-01-01

    The part of the West Greenland Archean gneiss complex centered around Godthabsfjord and extending from Isukasia in the north to south Faeringehavn is studied. Extensive outcrops of 3800 to 3400 Ma rocks can provide some direct evidence of conditions and processes that operated on the Earth in the early Archean. However, the ways in which primary characteristics have been modified by later deformation, metamorphism, and chemical changes are first taken into account. The rocks exposed are the products of two major phases of accretion of continental crust, at 3800 to 3700 Ma and 3100 to 29 Ma. The main features of these two accretion phases are similar, but careful study of the least modified rocks may reveal differences related to changes in the Earth in the intervening period. The combination of excellent exposure over an extensive area, relatively detailed geological mapping of much of the region, and a considerable volume of isotopic and other geochemical data gives special insights into processes that operated at moderately deep levels of the crust in the Archean. Of particular interest is the effect of late Archean granulite facies metamorphism on early Archean rocks, especially the extent to which isotope systems were disturbed. Similar processes may well have partly or wholly destroyed evidence of more ancient components of other high grade terrains. This account does not attempt to be an exhaustive review of all work carried out on the geology of the region. Rather, it attempts to summarize aspects of the geology and some interest in the context of early crustal genesis.

  2. Jamming of granular ice mélange in tidewater glacial fjords

    NASA Astrophysics Data System (ADS)

    Burton, J. C.; Cassotto, R.; Amundson, J. M.; Kuo, C. C.; Dennin, M.

    2016-12-01

    In tidewater glacial fjords, the open water in front of the glacier terminus is often filled with a collection of calved iceberg fragments and sea ice. For glaciers with large calving rates, this "mélange" of ice can be jam-packed, so that the flow is mostly determined by granular interactions, in addition to underlying fjord currents. As the glacier pushes the ice mélange through the fjord, the mélange will become jammed and may potentially influence calving rates if the back-stress applied to the glacier terminus is large enough. However, the stress applied by a granular ice mélange will depend on its rheology, i.e. iceberg-iceberg contact forces, geometry, friction, etc. Here we report 2D, discrete particle simulations to model the granular mechanics of ice mélange. A polydisperse collection of particles is packed into a long channel and pushed downfjord at a constant speed, the latter derived from terrestrial radar interferometry (TRI). Each individual particle experiences viscoelastic contact forces and tangential frictional forces upon collision with another particle or channel walls. We find the two most important factors that govern the total force applied to the glacier are the geometry of the channel, and the shape of the particles. In addition, our simulated velocity fields reveal shearing margins near the fjord walls with more uniform flow in the middle of the mélange, consistent with TRI observations. Finally, we find that the magnitude of the back-stress applied to the glacier terminus can influence calving, however, the maximum back-stress is limited by the buckling of icebergs into the fjord waters, so that the stress in the quasi-2D mélange is partially determined by the thickness of the mélange layer.

  3. Comparison of climate related changes in two Arctic fjords, Hornsund and Porsanger

    NASA Astrophysics Data System (ADS)

    Aniskiewicz, Paulina; Stramska, Małgorzata

    2017-04-01

    In the Arctic zone the climate change is amplified in comparison to globally averaged trends, and the observed trends are variable spatially. Our research is focused on two Artic fjords: Porsanger and Horsund. Porsanger fjord is located in the coastal waters of the Barents Sea. Hornsund is one of fjords located in the western part of Svalbard archipelago. In this presentation we have used data provided by the Norwegian Meteorological Institute for three meteorological stations. Two of them are located in the Porsanger fjord (Lakselv - in the inner part, Honningsvåg - in the outer zone). The third station provides data from the Hornsund fjord. Using these data we have estimated the 33-year trends (1983-2015) of air temperature and relative humidity in each station using linear regression analysis (statistically significant at 95In the inner part of the Porsanger fjord (Lakselv) the multiyear trend of increasing annual mean air temperature has been estimated at 0.006°C per year. The monthly trends were statistically significant in May, September and November. The strongest seasonal warming has been observed in spring and autumn. The trends of increasing annual mean humidity was about 0.2In Hornsund the air temperature trend (0.2°C per year) is significantly larger than in Porsanger. The trends of air temperature were statistically significant for eight months (except March, April, June and July) and three seasons (besides spring). The trends of relative humidity were not statistically significant. Thanks to this research we can discuss how atmospheric conditions and climate related trends change in time and seasons of the year in two different Arctic regions. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018. This work was also funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support comes from the Institute of Oceanology (IO

  4. High Resolution Shear-Wave Velocity Structure of Greenland from Surface Wave Analysis

    NASA Astrophysics Data System (ADS)

    Pourpoint, M.; Anandakrishnan, S.; Ammon, C. J.

    2016-12-01

    We present a high resolution seismic tomography model of Greenland's lithosphere from the analysis of fundamental mode Rayleigh-wave group velocity dispersion measurements. Regional and teleseismic events recorded by the GLISN, GSN and CN seismic networks over the last 20 years were used. In order to better constrain the crustal structure of Greenland, we also collected and processed several years of ambient noise data. We developed a new group velocity correction method that helps to alleviate the limitations of the sparse Greenland station network and the relatively few local events. The global dispersion model GDM52 from Ekström [2011] was used to calculate group delays from the earthquake to the boundaries of our study area. An iterative reweighted generalized least-square approach was used to invert for the group velocity maps between periods of 5 s and 180 s. A Markov chain Monte Carlo technique was then applied to invert for a 3-D shear wave velocity model of Greenland up to a depth of 200 km and estimate the uncertainties in the model. Our method results in relatively uniform azimuthal coverage and high resolution length ( 200 to 400 km) in west and east Greenland. We detect a deep high velocity zone extending from northwestern to southwestern Greenland and a low velocity zone (LVZ) between central-eastern and northeastern Greenland. The location of the LVZ correlates well with a previously measured high geothermal heat flux and could provide valuable information about its source. We expect the results of the ambient noise tomography to cross-validate the earthquake tomography results and give us a better estimate of the spatial extent and amplitude of the LVZ at shallow depths. A refined regional model of Greenland's lithospheric structure should eventually help better understand how underlying geological and geophysical processes may impact the dynamics of the ice sheet and influence its potential contribution to future sea level changes.

  5. Effect of fjord geometry on tidewater glacier stability

    NASA Astrophysics Data System (ADS)

    Åkesson, Henning; Nisancioglu, Kerim H.; Nick, Faezeh M.

    2016-04-01

    Many marine-terminating glaciers have thinned, accelerated and retreated during the last two decades, broadly consistent with warmer atmospheric and oceanic conditions. However, these patterns involve considerable spatial and temporal variability, with diverse glacier behavior within the same regions. Similarly, reconstructions of marine-terminating glaciers indicate highly asynchronous retreat histories. While it is well known that retrograde slopes can cause marine ice sheet instabilities, the effect of lateral drag and fjord width has received less attention. Here, we test the hypothesis that marine outlet glacier stability is largely controlled by fjord width, and to a less extent by regional climate forcing. We employ a dynamic flowline model on idealized glacier geometries (representative of different outlet glaciers) to investigate geometric controls on decadal and longer times scales. The model accounts for driving and resistive stresses of glacier flow as well as along-flow stress transfer. It has a physical treatment of iceberg calving and a time-adaptive grid allowing for continuous tracking of grounding-line migration. We apply changes in atmospheric and oceanic forcing and show how wide and narrow fjord sections foster glacier (in)stabilities. We also evaluate the effect of including a surface mass balance - elevation feedback in such a setting. Finally, the relevance of these results to past and future marine-terminating glacier stability is discussed.

  6. Greenland Ice Sheet flow response to runoff variability

    NASA Astrophysics Data System (ADS)

    Stevens, Laura A.; Behn, Mark D.; Das, Sarah B.; Joughin, Ian; Noël, Brice P. Y.; Broeke, Michiel R.; Herring, Thomas

    2016-11-01

    We use observations of ice sheet surface motion from a Global Positioning System network operating from 2006 to 2014 around North Lake in west Greenland to investigate the dynamical response of the Greenland Ice Sheet's ablation area to interannual variability in surface melting. We find no statistically significant relationship between runoff season characteristics and ice flow velocities within a given year or season. Over the 7 year time series, annual velocities at North Lake decrease at an average rate of -0.9 ± 1.1 m yr-2, consistent with the negative trend in annual velocities observed in neighboring regions over recent decades. We find that net runoff integrated over several preceding years has a negative correlation with annual velocities, similar to findings from the two other available decadal records of ice velocity in western Greenland. However, we argue that this correlation is not necessarily evidence for a direct hydrologic mechanism acting on the timescale of multiple years but could be a statistical construct. Finally, we stress that neither the decadal slowdown trend nor the negative correlation between velocity and integrated runoff is predicted by current ice-sheet models, underscoring that these models do not yet capture all the relevant feedbacks between runoff and ice dynamics needed to predict long-term trends in ice sheet flow.

  7. Probability based hydrologic catchments of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hudson, B. D.

    2015-12-01

    Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.

  8. Sedimentary organic matter in two Spitsbergen fjords: Terrestrial and marine contributions based on carbon and nitrogen contents and stable isotopes composition

    NASA Astrophysics Data System (ADS)

    Koziorowska, Katarzyna; Kuliński, Karol; Pempkowiak, Janusz

    2016-02-01

    The aim of this study was to estimate the spatial variability of organic carbon (Corg) and total nitrogen (Ntot) concentrations, Corg/Ntot ratios, stable isotopes of carbon and nitrogen (δ13Corg, δ15Ntot) and the proportions of autochthonous and allochtonous organic matter within recently deposited sediments of two Spitsbergen fjords: the Hornsund and the Adventfjord, which are affected to a different degree by the West Spitsbergen Current. Corg concentrations ranged from 1.38% to 1.98% in the Hornsund and from 1.73% to 3.85% in the Adventfjord. In both fjords the highest Corg concentrations were measured at the innermost stations and they decreased towards the mouths of the fjords. This suggests fresh water runoff to be an important source of organic matter (OM) for surface sediments. The results showed that both fjords differ significantly in terms of sedimentary organic matter characteristics. The samples from the Hornsund, except those from the innermost station in the Brepollen, had relatively low Corg/Ntot ratios, all within a narrow range (from 9.7 to 11.3). On the other hand significantly higher Corg/Ntot ratios, varying within a broad range (from 14.6 to 33.0), were measured in the Adventfjord. The samples from the Hornsund were characterized by higher δ13Corg (from -24.90‰ to -23.87‰) and δ15Ntot (from 3.02‰ to 4.93‰) than those from the Adventfjord (-25.94‰ to -24.69‰ and from 0.71‰ to 4.00‰, respectively). This is attributed to a larger proportion of marine organic matter. Using the two end-member approach proportions of terrestrial organic matter were evaluated. Terrestrial OM contribution for the Adventfjord was in the range of 82-83%, while in case of the Hornsund the results were in the range of 69-75%, with the exception of the innermost part of the fjord, where terrestrial organic matter contribution ranged from 80 to 82%. The strong positive correlation between δ13Corg and δ15Ntot was revealed. This was taken as an indicator

  9. Modeled Variations of Precipitation over the Greenland Ice Sheet.

    NASA Astrophysics Data System (ADS)

    Bromwich, David H.; Robasky, Frank M.; Keen, Richard A.; Bolzan, John F.

    1993-07-01

    large jump in simulated precipitation amounts at Summit around 1962, which is not verified by accumulation data, is inferred to be due to an artificial increase in cyclonic activity at 500 hPa associated with the NMC change from manual to numerical analyses. The activity of the storm track along the west coast of Greenland appears to be anomalously low in the NMC analyses, perhaps due to mesoscale cyclogenesis that is not resolved by the NMC analysis scheme.

  10. Distribution of Alexandrium fundyense (Dinophyceae) cysts in Greenland and Iceland, with an emphasis on viability and growth in the Arctic

    PubMed Central

    Richlen, Mindy L.; Zielinski, Oliver; Holinde, Lars; Tillmann, Urban; Cembella, Allan; Lyu, Yihua; Anderson, Donald M.

    2016-01-01

    The bloom-forming dinoflagellate Alexandrium fundyense has been extensively studied due its toxin-producing capabilities and consequent impacts to human health and economies. This study investigated the prevalence of resting cysts of A. fundyense in western Greenland and Iceland to assess the historical presence and magnitude of bloom populations in the region, and to characterize environmental conditions during summer, when bloom development may occur. Analysis of sediments collected from these locations showed that Alexandrium cysts were present at low to moderate densities in most areas surveyed, with highest densities observed in western Iceland. Additionally, laboratory experiments were conducted on clonal cultures established from isolated cysts or vegetative cells from Greenland, Iceland, and the Chukchi Sea (near Alaska) to examine the effects of photoperiod interval and irradiance levels on growth. Growth rates in response to the experimental treatments varied among isolates, but were generally highest under conditions that included both the shortest photoperiod interval (16h:8h light:dark) and higher irradiance levels (~146–366 μmol photons m−2 s−1), followed by growth under an extended photoperiod interval and low irradiance level (~37 μmol photons m−2 s−1). Based on field and laboratory data, we hypothesize that blooms in Greenland are primarily derived from advected Alexandrium populations, as low bottom temperatures and limited light availability would likely preclude in situ bloom development. In contrast, the bays and fjords in Iceland may provide more favorable habitat for germling cell survival and growth, and therefore may support indigenous, self-seeding blooms. PMID:27721528

  11. Modelling Greenland Outlet Glaciers

    NASA Technical Reports Server (NTRS)

    vanderVeen, Cornelis; Abdalati, Waleed (Technical Monitor)

    2001-01-01

    The objective of this project was to develop simple yet realistic models of Greenland outlet glaciers to better understand ongoing changes and to identify possible causes for these changes. Several approaches can be taken to evaluate the interaction between climate forcing and ice dynamics, and the consequent ice-sheet response, which may involve changes in flow style. To evaluate the icesheet response to mass-balance forcing, Van der Veen (Journal of Geophysical Research, in press) makes the assumption that this response can be considered a perturbation on the reference state and may be evaluated separately from how this reference state evolves over time. Mass-balance forcing has an immediate effect on the ice sheet. Initially, the rate of thickness change as compared to the reference state equals the perturbation in snowfall or ablation. If the forcing persists, the ice sheet responds dynamically, adjusting the rate at which ice is evacuated from the interior to the margins, to achieve a new equilibrium. For large ice sheets, this dynamic adjustment may last for thousands of years, with the magnitude of change decreasing steadily over time as a new equilibrium is approached. This response can be described using kinematic wave theory. This theory, modified to pertain to Greenland drainage basins, was used to evaluate possible ice-sheet responses to perturbations in surface mass balance. The reference state is defined based on measurements along the central flowline of Petermann Glacier in north-west Greenland, and perturbations on this state considered. The advantage of this approach is that the particulars of the dynamical flow regime need not be explicitly known but are incorporated through the parameterization of the reference ice flux or longitudinal velocity profile. The results of the kinematic wave model indicate that significant rates of thickness change can occur immediately after the prescribed change in surface mass balance but adjustments in flow

  12. Meltwater flux and runoff modeling in the abalation area of jakobshavn Isbrae, West Greenland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mernild, Sebastian Haugard; Chylek, Petr; Liston, Glen

    2009-01-01

    The temporal variability in surface snow and glacier melt flux and runoff were investigated for the ablation area of lakobshavn Isbrae, West Greenland. High-resolution meteorological observations both on and outside the Greenland Ice Sheet (GrIS) were used as model input. Realistic descriptions of snow accumulation, snow and glacier-ice melt, and runoff are essential to understand trends in ice sheet surface properties and processes. SnowModel, a physically based, spatially distributed meteorological and snow-evolution modeling system was used to simulate the temporal variability of lakobshavn Isbrre accumulation and ablation processes for 2000/01-2006/07. Winter snow-depth observations and MODIS satellite-derived summer melt observations weremore » used for model validation of accumulation and ablation. Simulations agreed well with observed values. Simulated annual surface melt varied from as low as 3.83 x 10{sup 9} m{sup 3} (2001/02) to as high as 8.64 x 10{sup 9} m{sup 3} (2004/05). Modeled surface melt occurred at elevations reaching 1,870 m a.s.l. for 2004/05, while the equilibrium line altitude (ELA) fluctuated from 990 to 1,210 m a.s.l. during the simulation period. The SnowModel meltwater retention and refreezing routines considerably reduce the amount of meltwater available as ice sheet runoff; without these routines the lakobshavn surface runoff would be overestimated by an average of 80%. From September/October through May/June no runoff events were simulated. The modeled interannual runoff variability varied from 1.81 x 10{sup 9} m{sup 3} (2001/02) to 5.21 x 10{sup 9} m{sup 3} (2004/05), yielding a cumulative runoff at the Jakobshavn glacier terminus of {approx}2.25 m w.eq. to {approx}4.5 m w.eq., respectively. The average modeled lakobshavn runoff of {approx}3.4 km{sup 3} y{sup -1} was merged with previous estimates of Jakobshavn ice discharge to quantify the freshwater flux to Illulissat Icefiord. For both runoff and ice discharge the average trends

  13. Regional and Local Glacial-Earthquake Patterns in Greenland

    NASA Astrophysics Data System (ADS)

    Olsen, K.; Nettles, M.

    2016-12-01

    Icebergs calved from marine-terminating glaciers currently account for up to half of the 400 Gt of ice lost annually from the Greenland ice sheet (Enderlin et al., 2014). When large capsizing icebergs ( 1 Gt of ice) calve, they produce elastic waves that propagate through the solid earth and are observed as teleseismically detectable MSW 5 glacial earthquakes (e.g., Ekström et al., 2003; Nettles & Ekström, 2010 Tsai & Ekström, 2007; Veitch & Nettles, 2012). The annual number of these events has increased dramatically over the past two decades. We analyze glacial earthquakes from 2011-2013, which expands the glacial-earthquake catalog by 50%. The number of glacial-earthquake solutions now available allows us to investigate regional patterns across Greenland and link earthquake characteristics to changes in ice dynamics at individual glaciers. During the years of our study Greenland's west coast dominated glacial-earthquake production. Kong Oscar Glacier, Upernavik Isstrøm, and Jakobshavn Isbræ all produced more glacial earthquakes during this time than in preceding years. We link patterns in glacial-earthquake production and cessation to the presence or absence of floating ice tongues at glaciers on both coasts of Greenland. The calving model predicts glacial-earthquake force azimuths oriented perpendicular to the calving front, and comparisons between seismic data and satellite imagery confirm this in most instances. At two glaciers we document force azimuths that have recently changed orientation and confirm that similar changes have occurred in the calving-front geometry. We also document glacial earthquakes at one previously quiescent glacier. Consistent with previous work, we model the glacial-earthquake force-time function as a boxcar with horizontal and vertical force components that vary synchronously. We investigate limitations of this approach and explore improvements that could lead to a more accurate representation of the glacial earthquake source.

  14. Comparison of earthquake-triggered turbidites from the Saguenay (Eastern Canada) and Reloncavi (Chilean margin) Fjords: Implications for paleoseismicity and sedimentology

    NASA Astrophysics Data System (ADS)

    St-Onge, Guillaume; Chapron, Emmanuel; Mulsow, Sandor; Salas, Marcos; Viel, Matias; Debret, Maxime; Foucher, Anthony; Mulder, Thierry; Winiarski, Thierry; Desmet, Marc; Costa, Pedro J. M.; Ghaleb, Bassam; Jaouen, Alain; Locat, Jacques

    2012-01-01

    High-resolution seismic profiles along with physical and sedimentological properties of sediment cores from the Saguenay (Eastern Canada) and Reloncavi (Chile) Fjords allowed the identification of several decimeter to meter-thick turbidites. In both fjords, the turbidites were associated with large magnitude historic and pre-historic earthquakes including the 1663 AD (M > 7) earthquake in the Saguenay Fjord, and the 1960 (M 9.5), 1837 (M ~ 8) and 1575 AD major Chilean subduction earthquakes in the Reloncavi Fjord. In addition, a sand layer with exoscopic characteristics typical of a tsunami deposit was observed immediately above the turbidite associated with the 1575 AD earthquake in the Reloncavi Fjord and supports both the chronology and the large magnitude of that historic earthquake. In the Saguenay Fjord, the earthquake-triggered turbidites are sometimes underlying a hyperpycnite associated with the rapid breaching and draining of a natural dam formed by earthquake-triggered landslides. Similar hyperpycnal floods were also recorded in historical and continental geological archives for the 1960 and 1575 AD Chilean subduction earthquakes, highlighting the risk of such flood events several weeks or months after main earthquake. In both fjords, as well as in other recently recognized earthquake-triggered turbidites, the decimeter-to meter-thick normally-graded turbidites are characterized by a homogeneous, but slightly fining upward tail. Finally, this paper also emphasizes the sensitivity of fjords to record historic and pre-historic seismicity.

  15. Fluid flow and methane occurrences in the Disko Bugt area offshore West Greenland: indications for gas hydrates?

    NASA Astrophysics Data System (ADS)

    Nielsen, Tove; Laier, Troels; Kuijpers, Antoon; Rasmussen, Tine L.; Mikkelsen, Naja E.; Nørgård-Pedersen, Niels

    2014-12-01

    The present study is the first to directly address the issue of gas hydrates offshore West Greenland, where numerous occurrences of shallow hydrocarbons have been documented in the vicinity of Disko Bugt (Bay). Furthermore, decomposing gas hydrate has been implied to explain seabed features in this climate-sensitive area. The study is based on archive data and new (2011, 2012) shallow seismic and sediment core data. Archive seismic records crossing an elongated depression (20×35 km large, 575 m deep) on the inner shelf west of Disko Bugt (Bay) show a bottom simulating reflector (BSR) within faulted Mesozoic strata, consistent with the occurrence of gas hydrates. Moreover, the more recently acquired shallow seismic data reveal gas/fluid-related features in the overlying sediments, and geochemical data point to methane migration from a deeper-lying petroleum system. By contrast, hydrocarbon signatures within faulted Mesozoic strata below the strait known as the Vaigat can be inferred on archive seismics, but no BSR was visible. New seismic data provide evidence of various gas/fluid-releasing features in the overlying sediments. Flares were detected by the echo-sounder in July 2012, and cores contained ikaite and showed gas-releasing cracks and bubbles, all pointing to ongoing methane seepage in the strait. Observed seabed mounds also sustain gas seepages. For areas where crystalline bedrock is covered only by Pleistocene-Holocene deposits, methane was found only in the Egedesminde Dyb (Trough). There was a strong increase in methane concentration with depth, but no free gas. This is likely due to the formation of gas hydrate and the limited thickness of the sediment infill. Seabed depressions off Ilulissat Isfjord (Icefjord) previously inferred to express ongoing gas release from decomposing gas hydrate show no evidence of gas seepage, and are more likely a result of neo-tectonism.

  16. Telemedicine in Greenland: Citizens' Perspectives.

    PubMed

    Nielsen, Lasse O; Krebs, Hans J; Albert, Nancy M; Anderson, Nick; Catz, Sheryl; Hale, Timothy M; Hansen, John; Hounsgaard, Lise; Kim, Tae Youn; Lindeman, David; Spindler, Helle; Marcin, James P; Nesbitt, Thomas; Young, Heather M; Dinesen, Birthe

    2017-05-01

    Telemedicine may have the possibility to provide better access to healthcare delivery for the citizens. Telemedicine in arctic remote areas must be tailored according to the needs of the local population. Therefore, we need more knowledge about their needs and their view of telemedicine. The aim of this study has been to explore how citizens living in the Greenlandic settlements experience the possibilities and challenges of telemedicine when receiving healthcare delivery in everyday life. Case study design was chosen as the overall research design. Qualitative interviews (n = 14) were performed and participant observations (n = 80 h) carried out in the local healthcare center in the settlements and towns. A logbook was kept and updated each day during the field research in Greenland. Observations were made of activities in the settlements. Data collected on citizens' views about the possibilities of using telemedicine in Greenland revealed the following findings: Greenlandic citizens are positive toward telemedicine, and telemedicine can help facilitate improved access to healthcare for residents in these Greenlandic settlements. Regarding challenges in using telemedicine in Greenland, the geographical and cultural context hinders accessibility to the Greenlandic healthcare system, and telemedicine equipment is not sufficiently mobile. Greenlandic citizens are positive toward telemedicine and regard telemedicine as a facilitator for improved access for healthcare in the Greenlandic settlements. We have identified challenges, such as geographical and cultural context, that hinder accessibility to the Greenlandic healthcare system.

  17. Long-term response of an arctic fiord system to lead-zinc mining and submarine disposal of mine waste (Maarmorilik, West Greenland).

    PubMed

    Søndergaard, Jens; Asmund, Gert; Johansen, Poul; Rigét, Frank

    2011-06-01

    Contamination by lead (Pb) and zinc (Zn) was studied in seawater, sediments, seaweeds and blue mussels near the former Black Angel Pb-Zn Mine in Maarmorilik, West Greenland. The mine operated during the period 1973-90 when mine waste (tailings and later waste rock) was discharged directly into the sea. Metal concentrations peaked during the mining period and Pb and Zn in seawater within the discharge area were measured up to 440 and 790 μg L⁻¹, respectively. Pb in fiord sediments, seaweeds and blue mussels just outside the discharge area were measured in concentrations up to 190, 84 and 2650 and Zn up to 300, 360 and 1190 μg g⁻¹ dry wt., respectively. Within the discharge area, seawater metal concentrations (especially Pb) decreased abruptly after mine closure. Metals concentrations in sediments and biota, however, decreased more slowly and two decades after mine closure seaweeds and blue mussels were still contaminated 12 km from the mine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Seasonal Subglacial Hydrological Evolution of a Greenland Tidewater Glacier

    NASA Astrophysics Data System (ADS)

    Schild, K. M.; Hawley, R. L.; Morriss, B. F.; Hoffman, M. J.; Catania, G. A.; Neumann, T.

    2012-12-01

    The contribution to sea level rise from melting ice sheets has doubled in the last decade. The rapid acceleration of Greenland's outlet glaciers has been one of the dominant factors in this contribution. Also in this last decade, Greenland has experienced an increase in average summer atmospheric temperature and associated increases in summer surface melt duration and extent. These increases in surface melt have been strongly linked with increased glacier sliding at the base through changes in the sublgacial hydrological system. Previous research has looked at conduit evolution of land-terminating and alpine glaciers, but marine-terminating glaciers, although more sensitive to environmental change, have not been thoroughly studied. The goal of this project is to investigate the timing between rapid supra-glacial lake drainages (delivering a pulse of water to the base) and the appearance of a meltwater sediment plume at the terminus. We constructed a high-temporal resolution (sub-daily) time series of lake evolution, drainage and sediment plume appearance at Rink Isbræ (west Greenland) using MODIS satellite imagery from 2000-2012. We compare the time of year and the rate of travel of the pulse to establish a better understanding of seasonal conduit development for tidewater outlet glaciers. Additionally, in comparing these variables between years, we plan to examine how the subglacial system changes when melt season duration and intensity increase. With a clearer understanding of the mechanisms controlling fluctuations in ice flow, specifically those acting in the subglacial environment, scientists can more accurately predict the future of the Greenland Ice Sheet and its effect on global sea level rise.

  19. Instrument for Analysis of Greenland's Glacier Mills

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Matthews, Jaret B.; Tran, Hung B.; Steffen, Konrad; McGrath, Dan; Phillips, Thomas; Elliot, Andrew; OHern, Sean; Lutz, Colin; Martin, Sujita; hide

    2010-01-01

    A new instrument is used to study the inner workings of Greenland s glacier mills by riding the currents inside a glacier s moulin. The West Greenland Moulin Explorer instrument was deployed into a tubular shaft to autonomously record temperature, pressure, 3D acceleration, and location. It is built with a slightly positive buoyancy in order to assist in recovery. The unit is made up of several components. A 3-axis MEMS (microelectromechanical systems) accelerometer with 0.001-g resolution forms the base of the unit. A pressure transducer is added that is capable of withstanding 500 psi (=3.4 MPa), and surviving down to -40 C. An Iridium modem sends out data every 10 minutes. The location is traced by a GPS (Global Positioning System) unit. This GPS unit is also used for recovery after the mission. Power is provided by a high-capacity lithium thionyl chloride D-sized battery. The accelerometer is housed inside a cylindrical, foot-long (=30 cm) polyvinyl chloride (PVC) shell sealed at each end with acrylic. The pressure transducer is attached to one of these lids and a MEMS accelerometer to the other, recording 100 samples per second per axis.

  20. Brief communication: Getting Greenland's glaciers right - a new data set of all official Greenlandic glacier names

    NASA Astrophysics Data System (ADS)

    Bjørk, A. A.; Kruse, L. M.; Michaelsen, P. B.

    2015-12-01

    Place names in Greenland can be difficult to get right, as they are a mix of Greenlandic, Danish, and other foreign languages. In addition, orthographies have changed over time. With this new data set, we give the researcher working with Greenlandic glaciers the proper tool to find the correct name for glaciers and ice caps in Greenland and to locate glaciers described in the historic literature with the old Greenlandic orthography. The data set contains information on the names of 733 glaciers, 285 originating from the Greenland Ice Sheet (GrIS) and 448 from local glaciers and ice caps (LGICs).

  1. Oceanographic gradients and seabird prey community dynamics in glacial fjords

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Piatt, John F.; Madison, Erica N.; Conaway, Jeffrey S.; Hillgruber, N.

    2012-01-01

    Glacial fjord habitats are undergoing rapid change as a result of contemporary global warming, yet little is known about how glaciers influence marine ecosystems. These ecosystems provide important feeding, breeding and rearing grounds for a wide variety of marine organisms, including seabirds of management concern. To characterize ocean conditions and marine food webs near tidewater glaciers, we conducted monthly surveys of oceanographic variables, plankton, fish and seabirds in Kenai Fjords, Alaska, from June to August of 2007 and 2008. We also measured tidal current velocities near glacial features. We found high sediment load from glacial river runoff played a major role in structuring the fjord marine ecosystem. Submerged moraines (sills) isolated cool, fresh, stratified and silt-laden inner fjord habitats from oceanic influence. Near tidewater glaciers, surface layers of turbid glacial runoff limited availability of light to phytoplankton, but macrozooplankton were abundant in surface waters, perhaps due to the absence of a photic cue for diel migration. Fish and zooplankton community structure varied along an increasing temperature gradient throughout the summer. Acoustic measurements indicated that low density patches of fish and zooplankton were available in the surface waters near glacial river outflows. This is the foraging habitat occupied most by Kittlitz's murrelet (Brachyramphus brevirostris), a rare seabird that appears to be specialized for life in glacially influenced environments. Kittlitz's murrelets were associated with floating glacial ice, and they were more likely to occur near glaciers, in deeper water, and in areas with high acoustic backscatter. Kittlitz's murrelet at-sea distribution was limited to areas influenced by turbid glacial outflows, and where prey was concentrated near the surface in waters with low light penetration. Tidewater glaciers impart unique hydrographic characteristics that influence marine plankton and fish

  2. Annual changes in Arctic fjord environment and modern benthic foraminiferal fauna: Evidence from Kongsfjorden, Svalbard

    NASA Astrophysics Data System (ADS)

    Jernas, Patrycja; Klitgaard-Kristensen, Dorthe; Husum, Katrine; Koç, Nalan; Tverberg, Vigdis; Loubere, Paul; Prins, Maarten; Dijkstra, Noortje; Gluchowska, Marta

    2018-04-01

    The relationships between modern Arctic benthic foraminifera and their ecological controls, along with their sensitivity to rapid environmental changes, is still poorly understood. This study examines how modern benthic foraminifera respond to annual environmental changes in the glaciated Arctic fjord Kongsfjorden, western Svalbard. Large environmental gradients due to the inflow of warm and saline Atlantic Water and the influence of tidewater glaciers characterise the fjord hydrography. A transect of six multi-corer stations, from the inner to the outer fjord, was sampled in the late summers of 2005 to 2008 to study the distribution of living (rose Bengal stained) benthic foraminifera. Physical properties of the water masses were measured concurrently. In general, nearly the entire Kongsfjorden region was dominated by ubiquitous N. labradorica foraminiferal assemblage that successfully exploited the local food resources and thrived particularly well in the presence of Atlantic-derived Transformed Atlantic Water (TAW). Further, the annual investigation revealed that Kongsfjorden underwent large interannual hydrological changes during the studied years related to variable inflow of warm and saline Atlantic Water. This led to a strong fauna variability particularly at the two marginal sites: the glacially influenced inner fjord and marine influenced shelf region. We also observed significant species shift from the 'cold' to 'warm' years and an expansion of widespread and sub-arctic to boreal species into the fjord.

  3. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    DOE PAGES

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; ...

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warmingmore » in deep crevasses.« less

  4. Compared sub-bottom profile interpretation in fjords of King George Island and Danco Coast, Antarctica

    NASA Astrophysics Data System (ADS)

    Rodrigo, C.; Vilches, L.; Vallejos, C.; Fernandez, R.; Molares, R.

    2015-12-01

    The fjords of the South Shetland Islands (Antarctica) and Danco Coast (Antarctic Peninsula) represent climatic transitional areas (subpolar to polar). The analysis of the distribution of sub-bottom facies helps to understand the prevailing sedimentary and climatic processes. This work seeks to characterize and compare the fjord seismic facies, of the indicated areas, to determine the main sedimentary processes in these regions. Compressed High-Intensity Radiated Pulse (CHIRP) records from 3.5 kHz sub-bottom profiler were obtained from the cruise: NBP0703 (2007); and pinger 3.5 kHz sub-bottom profiler records from the cruises: ECA-50 INACH (2014), and First Colombian Expedition (2015). Several seismic facies were recognized in all studied areas with some variability on their thickness and extent, and indicate the occurrence of similar sedimentary processes. These are: SSD facies (strong to weak intensity, stratified, draped sheet external shape), is interpreted as sedimentary deposits originated from suspended sediments from glaciar plumes and/or ice-rafting. This facies, in general, is thicker in the fjords of King George Island than in the larger fjords of the Danco Coast; on the other hand, within the Danco Coast area, this facies is thinner and more scarce in the smaller fjords and bays. MCM facies (moderate intensity, chaotic and with mounds) is associated with moraine deposits and/or basement. This is present in all areas, being most abundant in the Danco Coast area. WIC facies (weak intensity and chaotic) is interpreted as debris flows, which are present in both regions, but is most common in small fjords or bays in the Danco Coast, perhaps due to higher slopes of the seabed. In this work we discuss the influence of local climate, sediment plumes from the glaciers and other sedimentary processes on the distribution and geometry of the identified seismic facies.

  5. Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland.

    PubMed

    Schmidt, Mariane; Priemé, Anders; Stougaard, Peter

    2006-12-01

    Bacterial diversity in alkaline (pH 10.4) and permanently cold (4 degrees C) ikaite tufa columns from the Ikka Fjord, SW Greenland, was investigated using growth characterization of cultured bacterial isolates with Terminal-restriction fragment length polymorphism (T-RFLP) and sequence analysis of bacterial 16S rRNA gene fragments. More than 200 bacterial isolates were characterized with respect to pH and temperature tolerance, and it was shown that the majority were cold-active alkaliphiles. T-RFLP analysis revealed distinct bacterial communities in different fractions of three ikaite columns, and, along with sequence analysis, it showed the presence of rich and diverse bacterial communities. Rarefaction analysis showed that the 109 sequenced clones in the 16S rRNA gene library represented between 25 and 65% of the predicted species richness in the three ikaite columns investigated. Phylogenetic analysis of the 16S rRNA gene sequences revealed many sequences with similarity to alkaliphilic or psychrophilic bacteria, and showed that 33% of the cloned sequences and 33% of the cultured bacteria showed less than 97% sequence identity to known sequences in databases, and may therefore represent yet unknown species.

  6. Long Wave Runup in Asymmetric Bays and in Fjords With Two Separate Heads

    NASA Astrophysics Data System (ADS)

    Raz, Amir; Nicolsky, Dmitry; Rybkin, Alexei; Pelinovsky, Efim

    2018-03-01

    Modeling of tsunamis in glacial fjords prompts us to evaluate applicability of the cross-sectionally averaged nonlinear shallow water equations to model propagation and runup of long waves in asymmetrical bays and also in fjords with two heads. We utilize the Tuck-Hwang transformation, initially introduced for the plane beaches and currently generalized for bays with arbitrary cross section, to transform the nonlinear governing equations into a linear equation. The solution of the linearized equation describing the runup at the shore line is computed by taking into account the incident wave at the toe of the last sloping segment. We verify our predictions against direct numerical simulation of the 2-D shallow water equations and show that our solution is valid both for bays with an asymmetric L-shaped cross section, and for fjords with two heads—bays with a W-shaped cross section.

  7. Recent Rise in West Greenland Surface Melt and Firn Density Driven by North Atlantic SSTs and Blocking Events

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Graeter, K.; Hawley, R. L.; Marshall, H. P.; Ferris, D. G.; Lewis, G.; Birkel, S. D.; Meehan, T.; McCarthy, F.

    2017-12-01

    The Greenland Ice Sheet (GrIS) has been losing mass since at least the early 2000s, mostly due to enhanced surface melt. Approximately 40% of the surface melt currently generated on the GrIS percolates into the snow/firn and refreezes, where it has no immediate impact on GrIS mass balance or sea-level rise. However, in situ observations of surface melt are sparse, and thus it remains unclear how melt water percolation and refreezing are modifying the GrIS percolation zone under recent warming. In addition, understanding the climatic drivers behind the recent increase in melt is critical for accurately predicting future GrIS surface melt rates and contributions to sea-level rise. Here we show that there have been significant increases in melt refreeze and firn density over the past 30-50 years along a 250 km-long region of the Western Greenland percolation zone (2137 - 2218 m elevation). We collected seven shallow firn cores as part of the 2016 Greenland Traverse for Accumulation and Climate Studies (GreenTrACS), analyzed each for melt layer stratigraphy and density, and developed timescales for each based on annual layer counting of seasonal chemical oscillations (e.g. δ18O, dust, and biogenic sulfur). The cores indicate that refrozen melt layers have increased 2- to 9-fold since 1970, with statistically significant (p < 0.05) linear trends at the five southernmost core sites. Comparisons of two GreenTrACS cores to co-located PARCA cores collected in 1998 reveal significant (p < 0.05) increases in density averaged over the top 10 m of firn ranging from 32-42 kg/m3. Recent density increases closely correspond with the locations of refrozen melt water. We use output from the MARv3.7 Regional Climate Model to assess climatic forcing of surface melt at GreenTrACS sites, and find significant summer-to-summer correlations between melt generation and the frequency of blocking high pressure centers over Greenland (represented by the Greenland Blocking Index; GBI), and

  8. Early Diagenesis of Trace Elements in Modern Fjord Sediments of the High Arctic

    NASA Astrophysics Data System (ADS)

    Herbert, L.; Riedinger, N.; Aller, R. C.; Jørgensen, B. B.; Wehrmann, L.

    2017-12-01

    Marine sediments are critical repositories for elements that are only available at trace concentrations in seawater, such as Fe, Mn, Co, Ni, As, Mo, and U. The behavior of these trace elements in the sediment is governed by a dynamic interplay of diagenetic reactions involving organic carbon, Fe and Mn oxides, and sulfur phases. In the Arctic fjords of Svalbard, glacial meltwater delivers large amounts of reactive Fe and Mn oxides to the sediment, while organic carbon is deposited episodically and diluted by lithogenic material. These conditions result in pronounced Fe and Mn cycling, which in turn drives other diagenetic processes such as rapid sulfide oxidation. These conditions make the Svalbard fjords ideal sites for investigating trace element diagenesis because they allow resolution of the interconnections between Fe and Mn dynamics and trace element cycling. In August 2016, we collected sediment cores from three Svalbard fjords and analyzed trace elements in the pore water and solid sediment over the top meter. Initial results reveal the dynamic nature of these fjords, which are dominated by non-steady state processes and episodic events such as meltwater pulses and phytoplankton blooms. Within this system, the distribution of As appears to be strongly linked to the Fe cycle, while Co and Ni follow Mn; thus, these three elements may be released from the sediment through diffusion and bioturbation along with Fe and Mn. The pore water profiles of U and Mo indicate removal processes that are independent from Fe or Mn, and which are rather unexpected given the apparent diagenetic conditions. Our results will help elucidate the processes controlling trace element cycling in a dynamic, glacially impacted environment and will ultimately contribute to our understanding of the role of fjords in the biogeochemical cycling of trace elements in a rapidly changing Arctic Ocean.

  9. A Sensitivity Analysis of Triggers and Mechanisms of Mass Movements in Fjords

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Lintern, G.; Hill, P.

    2016-12-01

    Fjords are characterized by rapid sedimentation as they typically drain glaciated river catchments with high seasonal discharges and large sediment evacuation rates. For this reason, fjords commonly experience submarine mass movements; failures of the steep delta front that trigger tsunamis, and turbidity currents or debris flows. Repeat high-resolution bathymetric surveys, and in-situ process measurements collected in fjords in British Columbia, Canada, indicate that mass movements occur many times per year in some fjords and are more rare and of larger magnitude in other fjords. We ask whether these differences can be attributed to river discharge characteristics or to grainsize characteristics of the delivered sediment. To test our ideas, we couple a climate-driven river sediment transport model, HydroTrend, and a marine sedimentation model, Sedflux2D, to explore the triggers of submarine failures and mechanisms of subsequent turbidity and debris flows. HydroTrend calculates water and suspended sediment transport on a daily basis based on catchment characteristics, glaciated area, lakes and temperature and precipitation regime. Sedflux uses the generated river time-series to simulate delta plumes, failures and mass movements with separate process models. Model uncertainty and parameter sensitivity are assessed using Dakota Tools, which allows for a systematic exploration of the effects of river basin characteristics and climate scenarios on occurrence of hyperpycnal events, delta front sedimentation rate, submarine pore pressure, failure frequency and size, and run-out distances. Preliminary simulation results point to the importance of proglacial lakes and lakes abundance in the river basin, which has profound implications for event-based sediment delivery to the delta apex. Discharge-sediment rating curves can be highly variable based on these parameters. Distinction of turbidity currents and debris flows was found to be most sensitive to both earthquake

  10. Tidal analysis of surface currents in the Porsanger fjord in northern Norway

    NASA Astrophysics Data System (ADS)

    Stramska, Malgorzata; Jankowski, Andrzej; Cieszyńska, Agata

    2016-04-01

    In this presentation we describe surface currents in the Porsanger fjord (Porsangerfjorden) located in the European Arctic in the vicinity of the Barents Sea. Our analysis is based on data collected in the summer of 2014 using High Frequency radar system. Our interest in this fjord comes from the fact that this is a region of high climatic sensitivity. One of our long-term goals is to develop an improved understanding of the undergoing changes and interactions between this fjord and the large-scale atmospheric and oceanic conditions. In order to derive a better understanding of the ongoing changes one must first improve the knowledge about the physical processes that create the environment of the fjord. The present study is the first step in this direction. Our main objective in this presentation is to evaluate the importance of tidal forcing. Tides in the Porsanger fjord are substantial, with tidal range on the order of about 3 meters. Tidal analysis attributes to tides about 99% of variance in sea level time series recorded in Honningsvåg. The most important tidal component based on sea level data is the M2 component (amplitude of ~90 cm). The S2 and N2 components (amplitude of ~ 20 cm) also play a significant role in the semidiurnal sea level oscillations. The most important diurnal component is K1 with amplitude of about 8 cm. Tidal analysis lead us to the conclusion that the most important tidal component in observed surface currents is also the M2 component. The second most important component is the S2 component. Our results indicate that in contrast to sea level, only about 10 - 20% of variance in surface currents can be attributed to tidal currents. This means that about 80-90% of variance can be credited to wind-induced and geostrophic currents. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).

  11. Peopling of the North Circumpolar Region--insights from Y chromosome STR and SNP typing of Greenlanders.

    PubMed

    Olofsson, Jill Katharina; Pereira, Vania; Børsting, Claus; Morling, Niels

    2015-01-01

    The human population in Greenland is characterized by migration events of Paleo- and Neo-Eskimos, as well as admixture with Europeans. In this study, the Y-chromosomal variation in male Greenlanders was investigated in detail by typing 73 Y-chromosomal single nucleotide polymorphisms (Y-SNPs) and 17 Y-chromosomal short tandem repeats (Y-STRs). Approximately 40% of the analyzed Greenlandic Y chromosomes were of European origin (I-M170, R1a-M513 and R1b-M343). Y chromosomes of European origin were mainly found in individuals from the west and south coasts of Greenland, which is in agreement with the historic records of the geographic placements of European settlements in Greenland. Two Inuit Y-chromosomal lineages, Q-M3 (xM19, M194, L663, SA01 and L766) and Q-NWT01 (xM265) were found in 23% and 31% of the male Greenlanders, respectively. The time to the most recent common ancestor (TMRCA) of the Q-M3 lineage of the Greenlanders was estimated to be between 4,400 and 10,900 years ago (y. a.) using two different methods. This is in agreement with the theory that the North Circumpolar Region was populated via a second expansion of humans in the North American continent. The TMRCA of the Q-NWT01 (xM265) lineage in Greenland was estimated to be between 7,000 and 14,300 y. a. using two different methods, which is older than the previously reported TMRCA of this lineage in other Inuit populations. Our results indicate that Inuit individuals carrying the Q-NWT01 (xM265) lineage may have their origin in the northeastern parts of North America and could be descendants of the Dorset culture. This in turn points to the possibility that the current Inuit population in Greenland is comprised of individuals of both Thule and Dorset descent.

  12. Modeling experiments on the deceleration and reactivation of Kangerlussuup Sermusa, West Greenland

    NASA Astrophysics Data System (ADS)

    Rezvanbehbahani, S.; Stearns, L. A.; van der Veen, C. J.; Catania, G. A.

    2015-12-01

    Seasonal variations in outlet glacier velocity due to basal sliding are well-documented and typically involve acceleration early in the melt season due to enhanced sliding as a result of inefficient drainage of surface water reaching the bed. However, velocity observations from Kangerlussuup Sermusa (KS) in West Greenland contradict this pattern. Instead, ice velocity at KS shows no significant change in early spring compared with the previous winter. This sluggish response of the glacier to spring melt is often followed by an extreme, and short-lived, deceleration. For example, in August 2010, the lower 20 km of the trunk decelerated from about 1600 m a-1 to less than 250 m a-1; this event was followed by a rapid reactivation back to the previous velocity in less than 60 days. Available records since 2006 show that the sequence of steady spring velocity, followed by summer deceleration, and rapid fall reactivation occurs annually; however, the magnitudes of deceleration vary. In this regard, the response of KS to regional environmental forcings is unique compared to its neighboring glaciers. In this study, we investigate whether the unique behavior of KS can be explained by the interaction between changes in basal conditions and the local geometry of the glacier. We model the glacier flow by solving full-Stokes equations using the finite element method in the open-source FEniCS framework. Assuming isothermal ice within the lower trunk, we run experiments on the mechanical properties and boundary conditions of the glacier. These experiments include spatio-temporal changes in basal slipperiness, periodic melt-water influx to the bed, and ice viscosity variations due to changes in melt-water supply to the bed. We also conduct sensitivity analyses on the glacier flow with different ice geometries (e.g. thickness and surface slope) to investigate conditions under which we can produce the unique seasonal behavior of KS. Finally, we assess the impact of the combination

  13. Linking bacterial community structure to advection and environmental impact along a coast-fjord gradient of the Sognefjord, western Norway

    NASA Astrophysics Data System (ADS)

    Storesund, Julia E.; Sandaa, Ruth-Anne; Thingstad, T. Frede; Asplin, Lars; Albretsen, Jon; Erga, Svein Rune

    2017-12-01

    Here we present novel data on bacterial assemblages along a coast-fjord gradient in the Sognefjord, the deepest (1308 m) and longest (205 km) ice-free fjord in the world. Data were collected on two cruises, one in November 2012, and one in May 2013. Special focus was on the impact of advective processes and how these are reflected in the autochthonous and allochthonous fractions of the bacterial communities. Both in November and May bacterial community composition, determined by Automated Ribosomal Intergenic Spacer Analyses (ARISA), in the surface and intermediate water appeared to be highly related to bacterial communities originating from freshwater runoff and coastal water, whereas the sources in the basin water were mostly unknown. Additionally, the inner part of the Sognefjord was more influenced by side-fjords than the outer part, and changes in bacterial community structure along the coast-fjord gradient generally showed higher correlation with environmental variables than with geographic distances. High resolution model simulations indicated a surprisingly high degree of temporal and spatial variation in both current speed and direction. This led to a more episodic/discontinuous horizontal current pattern, with several vortices (10-20 km wide) being formed from time to time along the fjord. We conclude that during periods of strong wind forcing, advection led to allochthonous species being introduced to the surface and intermediate layers of the fjord, and also appeared to homogenize community composition in the basin water. We also expect vortices to be active mixing zones where inflowing bacterial populations on the southern side of the fjord are mixed with the outflowing populations on the northern side. On average, retention time of the fjord water was sufficient for bacterial communities to be established.

  14. Applying foraminiferal stratigraphy as a biomarker for heavy metal contamination and mining impact in a fiord in West Greenland.

    PubMed

    Elberling, Bo; Knudsen, Karen Luise; Kristensen, Peter H; Asmund, Gert

    2003-04-01

    Sulphidic mine waste disposed in marine environments constitutes an environmental risk to aquatic life due to potential uptake and accumulation of heavy metals in biota. Fiord sediments near the former Black Angel Mine in West Greenland are contaminated by lead and zinc as a result of submarine tailings disposal in 1973-1990. In 1999 cores were taken up to 10 km away from the disposal area. Analyses include heavy metals, radiochemical dating (210Pb) and high-resolution foraminiferal stratigraphy. The mining operation resulted in significant changes in the assemblage composition. In addition, up to 20% of the Melonis barleeanus population found in sediment deposited during nearby tailings disposal was deformed compared to a natural background of less than 5%. Throughout cores representing the last 100 years of sedimentation, the total numbers and frequency of morphological abnormalities among M. barleeanus revealed some correlation with heavy metals concentrations (up to r2 = 79%). We conclude that abnormalities among foraminifera may represent a useful biomarker for evaluating trends in the biological impact resulting of submarine tailings disposal as well as long-term environmental impact and subsequent recovery.

  15. A Coupled Ocean-Iceberg Model Over The 20th Century: Iceberg Flux At 48°N As A Proxy For Greenland Iceberg Discharge

    NASA Astrophysics Data System (ADS)

    Bigg, G. R.; Wilton, D.; Hanna, E.

    2013-12-01

    Grant R. Bigg1 , David J. Wilton1 and Edward Hanna1 1Department of Geography, The University of Sheffield, Sheffield, S10 2TN We have used a coupled ocean-iceberg model, the Fine Resolution Greenland and Labrador ocean model [1], to study the variation in, and trajectory of, icebergs over the twentieth century, focusing particularly on Greenland and surrounding areas. The model is forced with daily heat, freshwater and wind fluxes derived from the Twentieth Century Reanalysis Project [2]. We use the observed iceberg flux at 48°N off Newfoundland (I48N) from 1900 to 2008 [3] to assess the iceberg component of the model. Model I48N is calculated with both a variable and constant annual calving rate. The results show that ocean and atmosphere changes alone do not account for the variation in observed I48N and suggests that this series can be used as a proxy for iceberg discharge from west Greenland tidewater glaciers. The implication of this proxy is that there is significant interannual variability in Greenland iceberg discharge over the whole twentieth century. Our model results suggest that in the early decades of the twentieth century I48N was dominated by icebergs originating from south Greenland (below latitude 65°N) with west Greenland becoming the main source of I48N from the late 1930s onwards. Modeled icebergs from the east of Greenland very rarely reach 48°N. We also present results from the ocean model showing the variation of ocean transport fluxes over the course of the twentieth and early twenty first century. References 1. M. R. Wadley, and G. R. Bigg, (2002), Q. J. R. Meteorol. Soc., 128, 2187-2203 2. G. P. Compo, et al. (2011), Q. J. R. Meteorol. Soc., 137, 1-28 3. D. L. Murphy (2011) http://www.navcen.uscg.gov/?pageName=IIPIcebergCounts

  16. AirBase - A database of 160,000 aerial photos of Greenland 1930-1980s

    NASA Astrophysics Data System (ADS)

    Korsgaard, Niels; Weng, Willy L.; Kjær, Kurt H.

    2017-04-01

    Beginning in the 1930s Danish survey agencies and US military organizations conducted large-scale aerial photograph surveys of Greenland for mapping purposes (1), eventuating in the recording of more than 160,000 photographs. Glaciological researchers have used this amazing resource of multi-decadal observations of the Greenlandic cryosphere for many decades (e.g. (2), (3), (4)). In recent years this information has been synthesized with modern remote sensing data resulting in a range of published research and data sets ((5), (6), (7), (8)). Today, the historical aerial photographs are stored at the SDFE (Agency for Data Supply and Effiency), the successor agency for the institutions doing the surveying and mapping of Greenland where the material is accessible to researchers and general public alike. The digitized flightline maps and databases necessary for the creation of this data for this work was made available by the SDFE, and it the past and present work with this database we present here. Based on digitized flight line maps, the database contains geocoded metadata such as recording dates, camera and film roll canister, connecting the database with the analog archive material. Past work concentrated on bulk digitization, while the focus of the current work is to improve positional accuracy, completeness, and refinements for web publication. (1) Nielsen, A., Olsen, J. & Weng, W. L. Grønlands opmåling og kortlægning. Landinspektøren 37 (1995). (2) Weidick A. Frontal variations at Upernaviks Isstrøm in the last 100 years. Medd. fra Dansk Geol. Forening. Vol. 14 (1958. (3) Bauer, A., Baussart, M., Carbonnell, M., Kasser, P. Perroud, P. & Renaud, A. Missions aériennes de reconnaissance au Groenland 1957-1958. Observations aériennes et terrestres, exploitation des photographies aériennes, détermination des vitesses des glaciers vêlant dans Disko Bugt et Umanak Fjord. Meddelelser om Grønland 173(3) (1968a. (4) Rignot, E. Box, J.E., Burgess, E. & Hanna, E

  17. Rhodonellum psychrophilum gen. nov., sp. nov., a novel psychrophilic and alkaliphilic bacterium of the phylum Bacteroidetes isolated from Greenland.

    PubMed

    Schmidt, Mariane; Priemé, Anders; Stougaard, Peter

    2006-12-01

    A novel alkaliphilic and psychrophilic bacterium was isolated from the cold and alkaline ikaite tufa columns of the Ikka Fjord in south-west Greenland. According to 16S rRNA gene sequence analysis, strain GCM71(T) belonged to the family 'Flexibacteraceae' in the phylum Bacteroidetes. Strain GCM71(T), together with five related isolates from ikaite columns, formed a separate cluster with 86-93 % gene sequence similarity to their closest relative, Belliella baltica. The G+C content of the DNA from strain GCM71(T) was 43.1 mol%, whereas that of B. baltica was reported to be 35 mol%. DNA-DNA hybridization between strain GCM71(T) and B. baltica was 9.5 %. The strain was red pigmented, Gram-negative, strictly aerobic with non-motile, rod-shaped cells. The optimal growth conditions for strain GCM71(T) were pH 9.2-10.0, 5 degrees C and 0.6 % NaCl. The fatty acid profile of the novel strain was dominated by branched and unsaturated fatty acids (90-97 %), with a high abundance of iso-C(17 : 1)omega9c (17.5 %), iso-C(17 : 0) 3-OH (17.5 %) and summed feature 3, comprising iso-C(15 : 0) 2-OH and/or C(16 : 1)omega7c (12.6 %). Phylogenetic, chemotaxonomic and physiological characteristics showed that the novel strain could not be affiliated to any known genus. A new genus, Rhodonellum gen. nov., is proposed to accommodate the novel strain. Strain GCM71(T) (=DSM 17998(T)=LMG 23454(T)) is proposed as the type strain of the type species, Rhodonellum psychrophilum sp. nov.

  18. Documenting Melting Features of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Tedesco, M.

    2011-12-01

    There is an increasing interest in studying the Greenland Ice Sheet, its hydrology and dynamics over the short term and longer term because of the potential impact of a warming Arctic. Major studies concern about whether increased surface melting will lead to changes in production of supraglacial lakes and subglacial water pressures and hence , potentially, rates of ice movement. In this talk I will show movies recorded over the past three years form fieldwork activities carried out over the West Greenland ice sheet. In particular, I will project and comment movies concerning surface streams and supraglacial lakes, as the one at http://www.youtube.com/watch?v=QbuFphwJn4c. I will discuss the importance of observing such phenomena and how the recorded videos can be used to summarize scientific studies and communicate the relevance of scientific findings. I will also show, for the first time, the video of the drainage of a supraglacial lake, an event during which a lake ~ 6 m deep and ~ 1 km drained in ~ 1.5 hours. This section of the movie is under development as video material was collected during our latest expedition in June 2011.

  19. Influence of habitat heterogeneity on distribution, occupancy patterns, and productivity of breeding peregrine falcons in central west Greenland

    USGS Publications Warehouse

    Wightman, C.; Fuller, Mark R.

    2006-01-01

    We used occupancy and productivity data collected at 67 cliffs used for nesting from 1972 to 1999 to assess patterns of distribution and nest-site selection in an increasing population of Peregrine Falcons (Falco peregrinus) in central West Greenland. Peregrine Falcons breeding at traditionally occupied cliffs used for nesting had significantly lower variation in productivity and thus these cliffs were better quality sites. This indicates that Peregrine Falcons occupied cliffs according to a pattern of despotic distribution. Falcons breeding at cliffs that were consistently occupied during the breeding season had higher average productivity and lower variation in productivity than falcons at inconsistently occupied cliffs, and thus consistent occupancy also was indicative of cliff quality. Features of high quality habitat included tall cliffs, greater change in elevation from the lowest point within 3 km of the cliff to the cliff top (elevation gain), and protection from weather on the eyrie ledge. Spacing of suitable and occupied cliffs also was an important feature, and the best cliffs generally were more isolated. Increased spacing was likely a mechanism for reducing intraspecific competition. Our results suggest that Peregrine Falcons use a resource defense strategy to compete for better quality habitats and may use spacing and physical features of a nest site to identify good quality breeding habitat.

  20. Geographic signatures of North American West Coast estuaries

    USGS Publications Warehouse

    Emmett, Robert; Llansó, Roberto; Newton, Jan; Thom, Ron; Hornberger, Michelle; Morgan, Cheryl; Levings, Colin; Copping, Andrea; Fishman, Paul

    2000-01-01

    West Coast estuaries are geologically young and composed of a variety of geomorphological types. These estuaries range from large fjords to shallow lagoons; from large to low freshwater flows. Natural hazards include E1 Niños, strong Pacific storms, and active tectonic activity. West Coast estuaries support a wide range of living resources: five salmon species, harvestable shellfish, waterfowl and marine birds, marine mammals, and a variety of algae and plants. Although populations of many of these living resources have declined (salmonids), others have increased (marine mammals). West Coast estuaries are also centers of commerce and increasingly large shipping traffic. The West Coast human population is rising faster than most other areas of the U.S. and Canada, and is distributed heavily in southern California, the San Francisco Bay area, around Puget Sound, and the Fraser River estuary. While water pollution is a problem in many of the urbanized estuaries, most estuaries do not suffer from poor water quality. Primary estuarine problems include habitat alterations, degradation, and loss; diverted freshwater flows; marine sediment contamination; and exotic species introductions. The growing West Coast economy and population are in part related to the quality of life, which is dependent on the use and enjoyment of abundant coastal natural resources.

  1. Evidence of Anomalously Low δ13C of Marine Organic Matter in an Arctic Fjord.

    PubMed

    Kumar, Vikash; Tiwari, Manish; Nagoji, Siddhesh; Tripathi, Shubham

    2016-11-09

    Accurate estimation of relative carbon deposition (marine vs. terrestrial) is required for understanding the global carbon budget, particularly in the Arctic region, which holds disproportionate importance with respect to global carbon cycling. Although the sedimentary organic matter (SOM) concentration and its isotopic composition are important tools for such calculations, uncertainties loom over estimates provided by organic-geochemical bulk parameters. We report carbon and nitrogen concentrations and isotopes (δ 13 C and δ 15 N) of SOM at an Arctic fjord namely Kongsfjorden. We find that the bound inorganic nitrogen (ammonium attached to the clay minerals) forms a significant proportion of total nitrogen concentration (~77% in the inner fjord to ~24% in the outer part). On removing the bound nitrogen, the C/N ratio shows that the SOM in the inner fjord is made up of terrestrial carbon while the outer fjord shows mixed marine-terrestrial signal. We further show that the marine organic matter is unusually more depleted in 13 C (~-24‰) than the terrestrial organic matter (~-22.5‰). This particular finding also helps explain high δ 13 C values of SOM as noted by earlier studies in central Arctic sediments despite a high terrestrial contribution.

  2. Meltwater export of prokaryotic cells from the Greenland ice sheet.

    PubMed

    Cameron, Karen A; Stibal, Marek; Hawkings, Jon R; Mikkelsen, Andreas B; Telling, Jon; Kohler, Tyler J; Gözdereliler, Erkin; Zarsky, Jakub D; Wadham, Jemma L; Jacobsen, Carsten S

    2017-02-01

    Microorganisms are flushed from the Greenland Ice Sheet (GrIS) where they may contribute towards the nutrient cycling and community compositions of downstream ecosystems. We investigate meltwater microbial assemblages as they exit the GrIS from a large outlet glacier, and as they enter a downstream river delta during the record melt year of 2012. Prokaryotic abundance, flux and community composition was studied, and factors affecting community structures were statistically considered. The mean concentration of cells exiting the ice sheet was 8.30 × 10 4 cells mL -1 and we estimate that ∼1.02 × 10 21 cells were transported to the downstream fjord in 2012, equivalent to 30.95 Mg of carbon. Prokaryotic microbial assemblages were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Cell concentrations and community compositions were stable throughout the sample period, and were statistically similar at both sample sites. Based on our observations, we argue that the subglacial environment is the primary source of the river-transported microbiota, and that cell export from the GrIS is dependent on discharge. We hypothesise that the release of subglacial microbiota to downstream ecosystems will increase as freshwater flux from the GrIS rises in a warming world. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Insect-Based Holocene (and Last Interglacial?) Paleothermometry from the E and NW Greenland Ice Sheet Margins: A Fly's-Eye View of Warmth on Greenland

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Bigl, M.; Carrio, C.; Corbett, L. B.; Francis, D. R.; Hall, B. L.; Kelly, M. A.; Levy, L.; Lowell, T. V.; Osterberg, E. C.; Richter, N.; Roy, E.; Schellinger, G. C.

    2013-12-01

    Here we present new paleotemperature reconstructions based upon insect (Chironomidae) assemblages and other proxies from lake sediment cores recovered in east Greenland at ~71° N near Scoresby Sund and in northwest Greenland at ~77° N near Thule/Qaanaaq. In east Greenland, Last Chance Lake (informal name) is a small, non-glacial lake situated ~90 km east of the Greenland Ice Sheet margin. The lake preserves a sedimentary record of the entire Holocene (Levy et al. 2013). Chironomids from Last Chance Lake record cold summer temperatures (and establishment of a cold-climate fauna including abundant Oliveridia and Pseudodiamesa) during the late Holocene, preceded by summer temperatures estimated to have been 3 to 6°C warmer during the first half of the Holocene (when summer insolation forcing was greater than today). In northwest Greenland, Delta Sø and Wax Lips Lake (informal name) both preserve Holocene sediments. Here we discuss the late Holocene chironomid record from Delta Sø, whereas from Wax Lips Lake (a small, non-glacial lake situated ~2 km west of the ice sheet margin) we present a longer sedimentary and biostratigraphic record. The deeper portions of cores from Wax Lips Lake yield pre-Holocene and nonfinite radiocarbon ages, suggesting that this lake preserves sediments predating the Last Glacial Maximum. Abundant chironomids in the pre-glacial sediments appear to record interglacial conditions, and we infer that these sediments may date to the Last Interglacial (Eemian). The preservation of in situ Last Interglacial lacustrine sediments so close to the modern ice sheet margin suggests a minimally erosive glacierization style throughout the last glacial period, like that inferred for other Arctic locales such as on Baffin Island (Briner et al. 2007), ~750 km southwest of our study site. Our study sites are situated nearby key ice core sites (including NEEM, Camp Century, Agassiz and Renland) and very close to the ice sheet margin. These chironomid

  4. Insect-Based Holocene (and Last Interglacial?) Paleothermometry from the E and NW Greenland Ice Sheet Margins: A Fly's-Eye View of Warmth on Greenland

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Bigl, M.; Carrio, C.; Corbett, L. B.; Francis, D. R.; Hall, B. L.; Kelly, M. A.; Levy, L.; Lowell, T. V.; Osterberg, E. C.; Richter, N.; Roy, E.; Schellinger, G. C.

    2011-12-01

    Here we present new paleotemperature reconstructions based upon insect (Chironomidae) assemblages and other proxies from lake sediment cores recovered in east Greenland at ~71° N near Scoresby Sund and in northwest Greenland at ~77° N near Thule/Qaanaaq. In east Greenland, Last Chance Lake (informal name) is a small, non-glacial lake situated ~90 km east of the Greenland Ice Sheet margin. The lake preserves a sedimentary record of the entire Holocene (Levy et al. 2013). Chironomids from Last Chance Lake record cold summer temperatures (and establishment of a cold-climate fauna including abundant Oliveridia and Pseudodiamesa) during the late Holocene, preceded by summer temperatures estimated to have been 3 to 6°C warmer during the first half of the Holocene (when summer insolation forcing was greater than today). In northwest Greenland, Delta Sø and Wax Lips Lake (informal name) both preserve Holocene sediments. Here we discuss the late Holocene chironomid record from Delta Sø, whereas from Wax Lips Lake (a small, non-glacial lake situated ~2 km west of the ice sheet margin) we present a longer sedimentary and biostratigraphic record. The deeper portions of cores from Wax Lips Lake yield pre-Holocene and nonfinite radiocarbon ages, suggesting that this lake preserves sediments predating the Last Glacial Maximum. Abundant chironomids in the pre-glacial sediments appear to record interglacial conditions, and we infer that these sediments may date to the Last Interglacial (Eemian). The preservation of in situ Last Interglacial lacustrine sediments so close to the modern ice sheet margin suggests a minimally erosive glacierization style throughout the last glacial period, like that inferred for other Arctic locales such as on Baffin Island (Briner et al. 2007), ~750 km southwest of our study site. Our study sites are situated nearby key ice core sites (including NEEM, Camp Century, Agassiz and Renland) and very close to the ice sheet margin. These chironomid

  5. Response of major Greenland outlet glaciers to oceanic and atmospheric forcing: Results from numerical modeling on Petermann, Jakobshavn and Helheim Glacier.

    NASA Astrophysics Data System (ADS)

    Nick, F. M.; Vieli, A.; Pattyn, F.; Van de Wal, R.

    2011-12-01

    Oceanic forcing has been suggested as a major trigger for dynamic changes of Greenland outlet glaciers. Significant melting near their calving front or beneath the floating tongue and reduced support from sea ice or ice melange in front of their calving front can result in retreat of the terminus or the grounding line, and an increase in calving activities. Depending on the geometry and basal topography of the glacier, these oceanic forcing can affect the glacier dynamic differently. Here, we carry out a comparison study between three major outlet glaciers in Greenland and investigate the impact of a warmer ocean on glacier dynamics and ice discharge. We present results from a numerical ice-flow model applied to Petermann Glacier in the north, Jakobshavn Glacier in the west, and Helheim Glacier in the southeast of Greenland.

  6. An earthquake in Japan caused large waves in Norwegian fjords

    NASA Astrophysics Data System (ADS)

    Schult, Colin

    2013-08-01

    Early on a winter morning a few years ago, many residents of western Norway who lived or worked along the shores of the nation's fjords were startled to see the calm morning waters suddenly begin to rise and fall. Starting at around 7:15 A.M. local time and continuing for nearly 3 hours, waves up to 1.5 meters high coursed through the previously still fjord waters. The scene was captured by security cameras and by people with cell phones, reported to local media, and investigated by a local newspaper. Drawing on this footage, and using a computational model and observations from a nearby seismic station, Bondevik et al. identified the cause of the waves—the powerful magnitude 9.0 Tohoku earthquake that hit off the coast of Japan half an hour earlier.

  7. Communities needs, values, and representations of the world: lessons learned from Greenland's and Senegal's ARTisticc's study sites.

    NASA Astrophysics Data System (ADS)

    Baztan, J.; Vanderlinden, J. P.; Cordier, M.; Da Cunha, C.; Gaye, N.; Huctin, J. M.; Kane, A.; Quensiere, J.; Remvikos, Y.; Seck, A.

    2016-12-01

    The cultural dimensions of climate change impacts and adaptation have been increasingly examined in recent years through various disciplinary lenses, exposing a clear need for mainstream natural sciences to address the question of how to incorporate the values of communities facing global changes into their work. With this in mind, the work presented here addresses three main questions: (i) Do community members consider available scientific data and findings credible? Answering this question provides insight into whether available scientific knowledge expresses causal links that are mobilized by affected communities. (ii) Do community members consider available scientific data and findings salient? Answering this question provides insight into whether available scientific knowledge focuses on phenomena that those in affected communities think should receive attention. (iii) Do community members consider available scientific data and findings legitimate? Answering this question provides insight into whether available scientific knowledge expresses what is good, tolerable, and/or acceptable for affected communities. These three questions delve into the ways in which adaptation requires affected individuals and communities to adopt attitudes by integrating/woven from potentially conflicting evidence, relevance, and/or normative claims. These questions also shed light on the links between mainstream sciences and studied affected communities. The research presented here focuses on 2 communities: (i) Uummannaq, an island of 12km2 in a fjord, located along the middle of Greenland's west coast and (ii) Joal-Fadiouth & M'bour area in the wester African's coast, few Km south of Dakar, Senegal. This communication shares the results from field work experiences from ARTiticc's interdisciplinary approach to identifying the needs, values, and representations of the world of the communities, and how to fit these elements into mainstream sciences in order to bridge gaps between

  8. A synthesis of the basal thermal state of the Greenland Ice Sheet

    PubMed Central

    MacGregor, Joseph A.; Fahnestock, Mark A.; Catania, Ginny A.; Aschwanden, Andy; Clow, Gary D.; Colgan, William T.; Gogineni, S. Prasad; Morlighem, Mathieu; Nowicki, Sophie M. J.; Paden, John D.; Price, Stephen F.; Seroussi, Hélène

    2017-01-01

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state. PMID:28163988

  9. A synthesis of the basal thermal state of the Greenland Ice Sheet.

    PubMed

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D; Colgan, William T; Gogineni, S Prasad; Morlighem, Mathieu; Nowicki, Sophie M J; Paden, John D; Price, Stephen F; Seroussi, Hélène

    2016-08-10

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  10. A synthesis of the basal thermal state of the Greenland Ice Sheet

    USGS Publications Warehouse

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D.; Colgan, William T.; Gogineni, Prasad S.; Morlighem, Mathieu; Nowicki, Sophie M .J.; Paden, John D; Price, Stephen F.; Seroussi, Helene

    2016-01-01

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  11. Nature and tourism in Greenland

    Treesearch

    Berit C. Kaae

    2002-01-01

    This paper provides a short summary on the development of tourism in Greenland, the cultural context, and the protection of the nature resources on which tourism heavily depends. Existing research projects related to tourism in Greenland and the focus of these projects are briefly summarized. In general, most research in Greenland focuses on natural resources, but...

  12. Variations in magmatic processes along the East Greenland volcanic margin

    NASA Astrophysics Data System (ADS)

    Voss, Max; Schmidt-Aursch, Mechita C.; Jokat, Wilfried

    2009-05-01

    boundaries of the continent-ocean transition zones at between ~50 and ~54 Ma, propagating from north to south based on a joint analysis incorporating transects from the Kejser Franz Joseph Fjord and Godthåb Gulf. Secondly, the variation of the HVLC along the East Greenland margin from 60° to 77°N and from transects of its conjugate margin shows inverted emplacement of prominent landward and seaward HVLC thickness portions from north to south in a distribution chart. The differences in the HVLC distribution are attributed to one or more of the following three models. In the first model it is inferred that a transfer zone/detachment acts as a barrier to northward magma flow. In the second model, underplating results in thicker and highly intruded lower crust with several small-scale feeder dykes that locally increase the lower crustal velocities. In the third model, a second magmatic event associated with the separation of the Jan Mayen microcontinent is considered. Lithospheric-scale inhomogeneities might be responsible for the heterogeneous melt generation, the inversion of the HVLC distribution in continental and oceanic domains and differences in its velocities.

  13. Seasonal plankton variability in Chilean Patagonia fjords: Carbon flow through the pelagic food web of Aysen Fjord and plankton dynamics in the Moraleda Channel basin

    NASA Astrophysics Data System (ADS)

    González, H. E.; Castro, L.; Daneri, G.; Iriarte, J. L.; Silva, N.; Vargas, C. A.; Giesecke, R.; Sánchez, N.

    2011-03-01

    Two research cruises ( CIMAR 13 Fiordos) were conducted in the N-S oriented macrobasin of the Moraleda Channel (42-47°S), which includes the E-W oriented Puyuhuapi Channel and Aysen Fjord, during two contrasting productive seasons: austral winter (27 July-7 August 2007) and spring (2-12 November 2007). These campaigns set out to assess the spatio-temporal variability, defined by the local topography along Moraleda Channel, in the biological, physical, and chemical oceanographic characteristics of different microbasins and to quantify the carbon budget of the pelagic trophic webs of Aysen Fjord. Seasonal carbon fluxes and fjord-system functioning vary widely in our study area. In terms of spatial topography, two constriction sills (Meninea and Elefantes) define three microbasins along Moraleda Channel, herein the (1) north (Guafo-Meninea), (2) central (Meninea-Elefantes), and (3) south (Elefantes-San Rafael Lagoon) microbasins. In winter, nutrient concentrations were high (i.e. nitrate range: 21-14 μM) and primary production was low (153-310 mgC m -2 d -1), suggesting that reduced light radiation depressed the plankton dynamics throughout Moraleda Channel. In spring, primary production followed a conspicuous N-S gradient, which was the highest (5167 mgC m -2 d -1) in the north microbasin and the lowest (742 mgC m -2 d -1) in the south microbasin. The seasonal pattern of the semi-enclosed Puyuhuapi Channel and Aysen Fjord, however, revealed no significant differences in primary production (˜800 mgC m -2 d -1), and vertical fluxes of particulate organic carbon were nearly twice as high in spring as in winter (266 vs. 168 mgC m -2 d -1). At the time-series station (St. 79), the lithogenic fraction dominated the total sedimented matter (seston). The role of euphausiids in the biological carbon pump of the Patagonian fjords was evident, given the predominance of zooplankton fecal material, mostly euphausiid fecal strings (46% of all fecal material), among the

  14. Glaciers of Greenland

    USGS Publications Warehouse

    Williams, Richard S.; Ferrigno, Jane G.

    1995-01-01

    Landsat imagery, combined with aerial photography, sketch maps, and diagrams, is used as the basis for a description of the geography, climatology, and glaciology, including mass balance, variation, and hazards, of the Greenland ice sheet and local ice caps and glaciers. The Greenland ice sheet, with an estimated area of 1,736,095+/-100 km2 and volume of 2,600,000 km3, is the second largest glacier on the planet and the largest relict of the Ice Age in the Northern Hemisphere. Greenland also has 48,599+/-100 km2 of local ice caps and other types of glaciers in coastal areas and islands beyond the margin of the ice sheet.

  15. Monitoring marine heavy metal contamination via the chemical analysis of foraminifera and growth increments in bivalves - a pilot study from a Pb and Zn mining region in western Greenland

    NASA Astrophysics Data System (ADS)

    Jessen, C.; Asmund, G.; Elberling, B.; Frei, D.; Knudsen, C.; Rasmussen, P.

    2011-12-01

    Annual monitoring of heavy metal concentrations in the fjords (sea water, seaweed, lichens, blue mussels, shorthorn sculpin and Northern prawn) adjacent to the Black Angel lead-zinc mine (active 1973-1990) at Maarmorilik, western Greenland was initiated during operation of the mine and continues through to today. This pilot study tests whether the calcareous shells of bivalves and foraminifera register these known variations in heavy metal concentrations. Live individuals of Mytilus edulis were collected through a transect of monitoring stations in 2009 and PB-Zn concentrations were measured at multiple points within the yearly increments using LA-ICP-MS. Individuals aged between 12 and 28 years were measured and demonstrated a clear signal of mine closure even at 40 km distance from the plant. Foraminifera (Melonis barleeanus) from a sediment core dating from 1880 AD to present have previously been shown to display a greater percentage of deformities during the period of mining activity (Elberling et al. 2003) possibly suggesting a correlation between heavy metal concentrations in sea water and morphological development. LA-ICP-MS analysis of individual foraminifera confirms an increase in Pb-Zn uptake during mining operations. Although it could therefore be expected that Pb-Zn concentrations would be enhanced in the 'deformed' foraminifera relative to the 'non-deformed', no difference in Pb-Zn was concentrations was detected. This short pilot study (Jessen et al.2010) demonstrates the potential of calcareous material as indicators of environmental pollution and their applicability as a monitoring tool in remote regions. Jessen CA, Asmund G, Elberling B, Frei D, Knudsen C and Rasmussen P. 2010 Monitoring marine heavy metal contamination via the chemical analysis of growth increments in bivalves - a pilot study. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2010/86. 1-20 Elberling, B., Knudsen, K. L., Kristensen, P. H., and Asmund, G. (2003) Applying

  16. Current and future darkening of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Tedesco, Marco; Stroeve, Julienne; Fettweis, Xavier; Warren, Stephen; Doherty, Sarah; Noble, Erik; Alexander, Patrick

    2015-04-01

    Surface melting over the Greenland ice sheet (GIS) promotes snow grains growth, reducing albedo and further enhancing melting through the increased amount of absorbed solar radiation. Using a combination of remote sensing data and outputs of a regional climate model, we show that albedo over the GIS decreased significantly from 1996 to 2012. Further, we show that most of this darkening can be accounted for by enhanced snow grain growth and the expansion of areas where bare ice is exposed, both of which are driven by increases in snow warming. An analysis of the impact of light-absorbing impurities on albedo trends detected from spaceborne measurements was inconclusive because the estimated impact for concentrations of impurities of order of magnitude found in Greenland is within the albedo uncertainty retrievable from space-based instruments. However, neither models nor observations show an increase in pollutants (black carbon and associated organics) in the atmosphere over the GIS in this time period. Additionally, we could not identify trends in the number of fires over North America and Russia, assumed to be among the sources of soot for Greenland. We did find that a 'dark band' of tilted ice plays a crucial role in decreasing albedo along the west margin, and there is some indication that dust deposition to the GIS may be decreasing albedo in this region but this is not conclusive. In addition to looking at the direct impact of impurities on albedo, we estimated the impact of impurities on albedo via their influence on grain growth and found it is relatively small (~ 1- 2 %), though more sophisticated analysis needs to be carried out. Projections obtained under different warming scenarios consistently point to a continued darkening, with anomalies in albedo driven solely by the effects of climate warming of as much as -0.12 along the west margin of the GIS by the end of this century (with respect to year 2000). Projected darkening is likely underestimated

  17. A Fully Automated Supraglacial lake area and volume Tracking ("FAST") algorithm: development and application using MODIS imagery of West Greenland

    NASA Astrophysics Data System (ADS)

    Williamson, Andrew; Arnold, Neil; Banwell, Alison; Willis, Ian

    2017-04-01

    Supraglacial lakes (SGLs) on the Greenland Ice Sheet (GrIS) influence ice dynamics if draining rapidly by hydrofracture, which can occur in under 24 hours. MODerate-resolution Imaging Spectroradiometer (MODIS) data are often used to investigate SGLs, including calculating SGL area changes through time, but no existing work presents a method that tracks changes in individual (and total) SGL volume in MODIS imagery over a melt season. Here, we present such a method. First, we tested three automated approaches to derive SGL areas from MODIS imagery by comparing calculated areas for the Paakitsoq and Store Glacier regions in West Greenland with areas derived from Landsat-8 (LS8) images. Second, we applied a physically-based depth-calculation algorithm to the pixels within the SGL boundaries from the best performing method, and validated the resultant depths with those calculated using the same method applied to LS8 imagery. Our results indicated that SGL areas are most accurately generated using dynamic thresholding of MODIS band 1 (red) with a 0.640 threshold value. Calculated SGL area, depth and volume values from MODIS were closely comparable to those derived from LS8. The best performing area- and depth-detection methods were then incorporated into a Fully Automated SGL Tracking ("FAST") algorithm that tracks individual SGLs between successive MODIS images. It identified 43 (Paakitsoq) and 19 (Store Glacier) rapidly draining SGLs during 2014, representing 21% and 15% of the respective total SGL populations, including some clusters of rapidly draining SGLs. We found no relationship between the water volumes contained within these rapidly draining SGLs and the ice thicknesses beneath them, indicating that a critical water volume linearly related to ice thickness cannot explain the incidence of rapid drainage. The FAST algorithm, which we believe to be the most comprehensive SGL tracking algorithm developed to date, has the potential to investigate statistical

  18. Evidence of Anomalously Low δ13C of Marine Organic Matter in an Arctic Fjord

    PubMed Central

    Kumar, Vikash; Tiwari, Manish; Nagoji, Siddhesh; Tripathi, Shubham

    2016-01-01

    Accurate estimation of relative carbon deposition (marine vs. terrestrial) is required for understanding the global carbon budget, particularly in the Arctic region, which holds disproportionate importance with respect to global carbon cycling. Although the sedimentary organic matter (SOM) concentration and its isotopic composition are important tools for such calculations, uncertainties loom over estimates provided by organic-geochemical bulk parameters. We report carbon and nitrogen concentrations and isotopes (δ13C and δ15N) of SOM at an Arctic fjord namely Kongsfjorden. We find that the bound inorganic nitrogen (ammonium attached to the clay minerals) forms a significant proportion of total nitrogen concentration (~77% in the inner fjord to ~24% in the outer part). On removing the bound nitrogen, the C/N ratio shows that the SOM in the inner fjord is made up of terrestrial carbon while the outer fjord shows mixed marine-terrestrial signal. We further show that the marine organic matter is unusually more depleted in 13C (~−24‰) than the terrestrial organic matter (~−22.5‰). This particular finding also helps explain high δ13C values of SOM as noted by earlier studies in central Arctic sediments despite a high terrestrial contribution. PMID:27827457

  19. Recognition of > or = 3850 Ma water-lain sediments in West Greenland and their significance for the early Archaean Earth.

    PubMed

    Nutman, A P; Mojzsis, S J; Friend, C R

    1997-01-01

    A layered body of amphibolite, banded iron formation (BIF), and ultramafic rocks from the island of Akilia, southern West Greenland, is cut by a quartz-dioritic sheet from which SHRIMP zircon 206Pb/207Pb weighted mean ages of 3865 +/- 11 Ma and 3840 +/- 8 Ma (2 sigma) can be calculated by different approaches. Three other methods of assessing the zircon data yield ages of >3830 Ma. The BIFs are interpreted as water-lain sediments, which with a minimum age of approximately 3850 Ma, are the oldest sediments yet documented. These rocks provide proof that by approximately 3850 Ma (1) there was a hydrosphere, supporting the chemical sedimentation of BIF, and that not all water was stored in hydrous minerals, and (2) that conditions satisfying the stability of liquid water imply surface temperatures were similar to present. Carbon isotope data of graphitic microdomains in apatite from the Akilia island BIF are consistent with a bio-organic origin (Mojzsis et al. 1996), extending the record of life on Earth to >3850 Ma. Life and surface water by approximately 3850 Ma provide constraints on either the energetics or termination of the late meteoritic bombardment event (suggested from the lunar cratering record) on Earth.

  20. Recognition of > or = 3850 Ma water-lain sediments in West Greenland and their significance for the early Archaean Earth

    NASA Technical Reports Server (NTRS)

    Nutman, A. P.; Mojzsis, S. J.; Friend, C. R.; Bada, J. L. (Principal Investigator)

    1997-01-01

    A layered body of amphibolite, banded iron formation (BIF), and ultramafic rocks from the island of Akilia, southern West Greenland, is cut by a quartz-dioritic sheet from which SHRIMP zircon 206Pb/207Pb weighted mean ages of 3865 +/- 11 Ma and 3840 +/- 8 Ma (2 sigma) can be calculated by different approaches. Three other methods of assessing the zircon data yield ages of >3830 Ma. The BIFs are interpreted as water-lain sediments, which with a minimum age of approximately 3850 Ma, are the oldest sediments yet documented. These rocks provide proof that by approximately 3850 Ma (1) there was a hydrosphere, supporting the chemical sedimentation of BIF, and that not all water was stored in hydrous minerals, and (2) that conditions satisfying the stability of liquid water imply surface temperatures were similar to present. Carbon isotope data of graphitic microdomains in apatite from the Akilia island BIF are consistent with a bio-organic origin (Mojzsis et al. 1996), extending the record of life on Earth to >3850 Ma. Life and surface water by approximately 3850 Ma provide constraints on either the energetics or termination of the late meteoritic bombardment event (suggested from the lunar cratering record) on Earth.

  1. Microbial diversity in ikaite tufa columns: an alkaline, cold ecological niche in Greenland.

    PubMed

    Stougaard, Peter; Jørgensen, Flemming; Johnsen, Mads G; Hansen, Ole C

    2002-08-01

    Ikaite tufa columns from the Ikka Fjord in south-western Greenland constitute a natural, stable environment at low temperature and with a pH ranging from neutral at the exterior to very alkaline (pH 10.4) at the interior of the column. Phylogenetic analysis of culturable organisms revealed ten different isolates representing three of the major bacterial divisions. Nine of the isolates showed 94-99% similarity to known sequences, whereas one isolate displayed a low degree of similarity (less than 90%) to a Cyclobacterium species. Seven of the isolates were shown to be cold active alkaliphiles, whereas three isolates showed optimal growth at neutral pH. Phylogenetic analysis of DNA isolated directly from the ikaite material demonstrated the presence of a microbial flora more diverse than the culturable isolates. Whereas approximately half of the phylotypes showed 90-99% similarity to known meso- or thermophilic alkaliphiles, the rest of the sequences displayed less than 90% similarity when compared to known 16S rRNA gene sequences in databases. Thus, in the present paper, we demonstrate that ikaite columns that host a specialized macroscopic flora and fauna also contain a unique, cold active, alkaliphilic microflora.

  2. Linking the Modern Distribution of Biogenic Proxies in High Arctic Greenland Shelf Sediments to Sea Ice, Primary Production, and Arctic-Atlantic Inflow

    NASA Astrophysics Data System (ADS)

    Limoges, Audrey; Ribeiro, Sofia; Weckström, Kaarina; Heikkilä, Maija; Zamelczyk, Katarzyna; Andersen, Thorbjørn J.; Tallberg, Petra; Massé, Guillaume; Rysgaard, Søren; Nørgaard-Pedersen, Niels; Seidenkrantz, Marit-Solveig

    2018-03-01

    The eastern north coast of Greenland is considered to be highly sensitive to the ongoing Arctic warming, but there is a general lack of data on modern conditions and in particular on the modern distribution of climate and environmental proxies to provide a baseline and context for studies on past variability. Here we present a detailed investigation of 11 biogenic proxies preserved in surface sediments from the remote High Arctic Wandel Sea shelf, the entrance to the Independence, Hagen, and Danmark fjords. The composition of organic matter (organic carbon, C:N ratios, δ13C, δ15N, biogenic silica, and IP25) and microfossil assemblages revealed an overall low primary production dominated by benthic diatoms, especially at the shallow sites. While the benthic and planktic foraminiferal assemblages underline the intrusion of chilled Atlantic waters into the deeper parts of the study area, the distribution of organic-walled dinoflagellate cysts is controlled by the local bathymetry and sea ice conditions. The distribution of the dinoflagellate cyst Polarella glacialis matches that of seasonal sea ice and the specific biomarker IP25, highlighting the potential of this species for paleo sea ice studies. The information inferred from our multiproxy study has important implications for the interpretation of the biogenic-proxy signal preserved in sediments from circum-Arctic fjords and shelf regions and can serve as a baseline for future studies. This is the first study of its kind in this area.

  3. Kenai Fjords National Park Over-the-Snow Transportation Feasibility Study.

    DOT National Transportation Integrated Search

    2012-01-31

    Kenai Fjords National Park seeks to expand winter access to the Exit Glacier Area. Year-round access would better enable the park to accomplish its mission related to visitor experience, education, and research. The road to the area is inaccessible t...

  4. Oxygen intrusion into anoxic fjords leads to increased methylmercury availability

    NASA Astrophysics Data System (ADS)

    Veiteberg Braaten, Hans Fredrik; Pakhomova, Svetlana; Yakushev, Evgeniy

    2013-04-01

    Mercury (Hg) appears in the oxic surface waters of the oceans at low levels (sub ng/L). Because inorganic Hg can be methylated into the toxic and bioaccumulative specie methylmercury (MeHg) levels can be high at the top of the marine food chain. Even though marine sea food is considered the main risk driver for MeHg exposure to people most research up to date has focused on Hg methylation processes in freshwater systems. This study identifies the mechanisms driving formation of MeHg during oxygen depletion in fjords, and shows how MeHg is made available in the surface water during oxygen intrusion. Studies of the biogeochemical structure in the water column of the Norwegian fjord Hunnbunn were performed in 2009, 2011 and 2012. In autumn of 2011 mixing flushing events were observed and lead to both positive and negative effects on the ecosystem state in the fjord. The oxygenated water intrusions lead to a decrease of the deep layer concentrations of hydrogen sulfide (H2S), ammonia and phosphate. On the other hand the intrusion also raised the H2S boundary from 8 m to a shallower depth of just 4 m. Following the intrusion was also observed an increase at shallower depths of nutrients combined with a decrease of pH. Before flushing events were observed concentrations of total Hg (TotHg) increased from 1.3 - 1.7 ng/L in the surface layer of the fjord to concentrations ranging from 5.2 ng/L to 6.4 ng/L in the anoxic zone. MeHg increased regularly from 0.04 ng/L in the surface water to a maximum concentration of 5.2 ng/L in the deeper layers. This corresponds to an amount of TotHg present as MeHg ranging from 2.1 % to 99 %. The higher concentrations of MeHg in the deeper layer corresponds to an area where no oxygen is present and concentrations of H2S exceeds 500 µM, suggesting a production of MeHg in the anoxic area as a result of sulphate reducing bacteria activity. After flushing the concentrations of TotHg showed a similar pattern ranging from 0.6 ng/L in the

  5. Influence of habitat heterogeneity on distribution, occupancy patterns, and productivity of breeding peregrine falcons in central West Greenland

    USGS Publications Warehouse

    Wightman, C.S.; Fuller, M.R.

    2006-01-01

    We used occupancy and productivity data collected at 67 cliffs used for nesting from 1972 to 1999 to assess patterns of distribution and nest-site selection in an increasing population of Peregrine Falcons (Falco peregrinus) in central West Greenland. Peregrine Falcons breeding at traditionally occupied cliffs used for nesting had significantly lower variation in productivity and thus these cliffs were better quality sites. This indicates that Peregrine Falcons occupied cliffs according to a pattern of despotic distribution. Falcons breeding at cliffs that were consistently occupied during the breeding season had higher average productivity and lower variation in productivity than falcons at inconsistently occupied cliffs, and thus consistent occupancy also was indicative of cliff quality. Features of high quality habitat included tall cliffs, greater change in elevation from the lowest point within 3 km of the cliff to the cliff top (elevation gain), and protection from weather on the eyrie ledge. Spacing of suitable and occupied cliffs also was an important feature, and the best cliffs generally were more isolated. Increased spacing was likely a mechanism for reducing intraspecific competition. Our results suggest that Peregrine Falcons use a resource defense strategy to compete for better quality habitats and may use spacing and physical features of a nest site to identify good quality breeding habitat. ?? The Cooper Ornithological Society 2006.

  6. Characteristics of seismic survey pulses and the ambient soundscape in Baffin Bay and Melville Bay, West Greenland.

    PubMed

    Martin, S Bruce; Matthews, Marie-Noël R; MacDonnell, Jeff T; Bröker, Koen

    2017-12-01

    In 2012 a seismic survey campaign involving four vessels was conducted in Baffin Bay, West Greenland. Long-distance (150 km) pre-survey acoustic modeling was performed in accordance with regulatory requirements. Four acoustic recorders, three with hydrophones at 100, 200, and 400 m depths, measured ambient and anthropogenic sound during the survey. Additional recordings without the surveys were made from September 2013 to September 2014. The results show that (1) the soundscape of Baffin Bay is typical for open ocean environments and Melville Bay's soundscape is dominated by glacial ice noise; (2) there are distinct multipath arrivals of seismic pulses 40 km from the array; (3) seismic sound levels vary little as a function of depth; (4) high fidelity pre-survey acoustic propagation modeling produced reliable results; (5) the daily SEL did not exceed regulatory thresholds and were different using Southall, Bowles, Ellison, Finneran, Gentry, Greene, Kastak, Ketten, Miller, Nachtigall, Richardson, Thomas, and Tyack [(2007) Aquat. Mamm. 33, 411-521] or NOAA weightings [National Marine Fisheries Service (2016). NOAA Technical Memorandum NMFS-OPR-55, p. 178]; (6) fluctuations of SPL with range were better described by additive models than linear regression; and (7) the survey increased the 1-min SPL by 28 dB, with most of the energy below 100 Hz; energy in the 16 000 Hz octave band was 20 dB above the ambient background 6 km from the source.

  7. The annual planktonic protist community structure in an ice-free high Arctic fjord (Adventfjorden, West Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Kubiszyn, A. M.; Wiktor, J. M.; Wiktor, J. M.; Griffiths, C.; Kristiansen, S.; Gabrielsen, T. M.

    2017-05-01

    We investigated the size and trophic structure of the annual planktonic protist community structure in the ice-free Adventfjorden in relation to environmental factors. Our high-resolution (weekly to monthly) study was conducted in 2012, when warm Atlantic water was advected into the fjord in winter and summer. We observed a distinct seasonality in the protist communities. The winter protist community was characterised by extremely low levels of protist abundance and biomass (primarily Dinophyceae, Ciliophora and Bacillariophyceae) in a homogenous water column. In the second half of April, the total protist abundance and biomass rapidly increased, thus initiating the spring bloom in a still well-mixed water column. The spring bloom was initially dominated by the prymnesiophyte Phaeocystis pouchetii and Bacillariophyceae (primarily from the genera Thalassiosira, Fragilariopsis and Chaetoceros) and was later strictly dominated by Phaeocystis colonies. When the bloom terminated in mid-June, the community shifted towards flagellates (Dinophyceae, Ciliophora, Cryptophyceae and nanoflagellates 3-7 μm in size) in a stratified, nutrient-depleted water column. Decreases in the light intensity decreased the protist abundance and biomass, and the fall community (Dinophyceae, Cryptophyceae and Bacillariophyceae) was followed by the winter community.

  8. Bed Topography of Jakobshavn Isbræ and Helheim Glacier, Greenland from High-Resolution Gravity Data Combined with Other Observations

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E. J.; Morlighem, M.; Paden, J. D.; Holland, D.

    2016-12-01

    Jakobshavn Isbræ (JKS) is the most active and largest outlet glacier in West Greenland, draining approximately 6.5% of the ice sheet. JKS sped up more than twofold since 2002 and contributed nearly 1 mm of global sea level rise during the period from 2000 to 2011. Helheim glacier is the fastest flowing outlet glacier in East Greenland and accelerated by a factor two during a strong thinning period in early 2000s. To interpret the recent and future evolution of these glaciers, it is essential to know their ice thickness and bed topography as well as the bathymetry in the fjords. Here, we present a novel approach to infer the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line using high-resolution airborne gravity data from AIRGrav. AIRGrav data were collected in August 2012 with a helicopter platform, at 500 m spacing grid, 50 knots ground speed, 80 m ground clearance, with sub-milligal accuracy, i.e. higher than NASA Operation IceBridge (OIB)'s 5.2 km resolution, 290 knots, and 450 m clearance. We use a 3D inversion of the gravity data combining our observations and a forward modeling of the surrounding gravity field with point measurements of the bathymetry at the ice-ocean boundary and a reconstruction of the glacier bed topography upstream using a mass conservation method combining re-analyzed airborne radar-derived ice thickness data from CReSIS with ice flow motion vectors from satellite radar interferometry. The results provide a more accurate view of the bed topography of these glaciers and resolve major uncertainties from past attempts to probe the deepest part of the bed near the ice front from radio echo sounding data alone. The results reveal that the JKS is now retreating into an even deeper bed, from 600 m in 1996 to 900 m at present and 1,400 m in the next 25 km. The glacier will continue to retreat probably at an increasing rate (0.6 km/yr at present) along a retrograde bed, i.e. into thicker ice. On Helheim

  9. [Rabies in a cat in Greenland].

    PubMed

    Christensen, Laurids Siig; Jacobsen, Keld; Maersk-Møller, Elisabeth

    2008-08-18

    We describe the first case of rabies diagnosed in a cat in Greenland. The cat showed aggressive behaviour one month after the visit of a rabid fox on the premises. Rabies is enzootic in Greenland, the arctic fox being the natural host of rabies virus. Cats are imported in increasing numbers to Greenland and the reported case stresses the need for concern in relation to a hitherto unrecognised risk of exposure to rabies virus and stresses the need to comply with the obligatory anti-rabies vaccination regimes for cats in Greenland.

  10. New petrological and age data from the eclogite province in the central segment of the Greenlandic Caledonides

    NASA Astrophysics Data System (ADS)

    Nagel, Thorsten; Fassmer, Kathrin; Froitzheim, Niko; Fonseca, Raul; Sprung, Peter

    2017-04-01

    The Caledonian orogen in northeastern Greenland is a 1200 km long, west-vergent nappe pile mirroring the much better explored Caledonides in Scandinavia. The Greenlandic orogen has traditionally been viewed as the retro-wedge of the Scandinavian Caledonides, which is generally accepted to be the result of west-directed subduction of the Iapetus oceanic realm and the Baltic continental margin. This concept, however, is challenged by the finding of widely distributed high-pressure metamorphism as well as the large amount of horizontal shortening accommodated in the Greenlandic nappe pile (Gasser 2014, and references therein). While eclogites in Liverpool Land in the very south have been interpreted to belong to a window into Baltica, the vast domains of eclogite-bearing basement in the central segment of the orogen are attributed to the Lauretian continental margin. Existing ages for high-pressure metamorphism in this area using U-Pb-zircon and Sm-Nd-garnet dating scatter at 420-390 Ma with an exceptionally young age of 370-330 Ma found for the so far only ultrahigh-pressure location in a very internal position of the orogen (e.g. Gilotti et al. 2004). Eclogite-facies metamorphism in Greenland seems thus coeval to or even younger than the main Scandian orogeny in Scandinavia. However, the relatively high temperatures of metamorphism leave room for the interpretation of the Sm-Nd ages as cooling ages. We present petrologic and Lu-Hf-garnet-age data from three locations in the central eclogite province in Greenland and discuss the implications for tectonic scenarios. Investigated rocks are high-temperature eclogites/high-pressure mafic granulites, and garnet pyroxenites. Samples from the well-known location Danmarkshavn record ultra-high-pressure metamorphic conditions by means of SiO2-exsolutions in clinopyroxene and thermobarometric results. An eclogite yielded a Lu-Hf garnet-whole-rock age of 360 Ma thus confirming the existing young age for ultrahigh

  11. Mechanisms that Amplify, Attenuate and Deviate Glacier Response to Climate Change in Central East Greenland. (Invited)

    NASA Astrophysics Data System (ADS)

    Jiskoot, H.

    2013-12-01

    A multidecadal review of glacier fluctuations and case-studies of glacier processes and environments in central East Greenland will be used to demonstrate Mechanisms that Amplify, Attenuate and Deviate glacier response to climate forcings (MAAD). The different spatial and temporal scales at which MAAD affect mass balance and ice flow may complicate interpretation and longterm extrapolation of glacier response to climate change. A framework of MAAD characterisation and best-practice for interpreting climate signals while taking into account MAAD will be proposed. Glaciers in the Watkins Bjerge, Geikie Plateau and Stauning Alps regions of central East Greenland (68°-72°N) contain about 50000 km2 of glacierized area peripheral to the Greenland Ice Sheet. Within the region, large north-south and coast-inland climatic gradients, as well as complicated topography and glacier dynamics, result in discrepant glacier behaviour. Average retreat rates have doubled from about 2 to 4 km2 a-1 between the late 20th and early 21st centuries. However, glaciers terminating along the Atlantic coast display two times the retreat, thinning, and acceleration rates compared to glaciers terminating in inland fjords or on land. Despite similar climatic forcing variable glacier behaviour is apparent: individual glacier length change ranges from +57 m a-1 to -428 m a-1, though most retreat -20 to -100 m a-1. Interacting dynamic, mass balance and glacio-morphological mechanisms can amplify, attenuate or deviate glacier response (MAAD) to climate change, thus complicating the climatological interpretation of glacier length, area, and thickness changes. East Greenland MAAD include a range of common positive and negative feedback mechanisms in surface mass balance and terminus and subglacial boundary conditions affecting ice flow, but also mechanisms that have longterm or delayed effects. Certain MAAD may affect glacier change interpretation on multiple timescales: e.g. surging glaciers do not

  12. Geochemistry of surface sediments from the fjords of Northern Chilean Patagonia (44-47°S): Spatial variability and implications for paleoclimate reconstructions

    NASA Astrophysics Data System (ADS)

    Bertrand, Sébastien; Hughen, Konrad A.; Sepúlveda, Julio; Pantoja, Silvio

    2012-01-01

    The Patagonian fjords have a clear potential to provide high-resolution sedimentary and geochemical records of past climate and environmental change in the Southern Andes. To improve our ability to interpret these proxy records, we investigated the processes that control fjord sediment inorganic geochemistry through a geochemical, mineralogical and sedimentological analysis of surface sediment samples from the fjords of Northern Chilean Patagonia. A simple Terrestrial Index based on measurements of salinity and Fraction of Terrestrial Carbon was used to estimate the terrestrial input/river discharge at each site. Our results demonstrate that, under the cold climate conditions of Patagonia, chemical weathering is weak and the inorganic geochemical composition of the fjord sediments is primarily controlled by hydrodynamic mineralogical sorting, i.e., the intensity of river discharge. Our results suggest that the distribution of Fe, Ti and Zr in surface sediments is controlled by their association with heavy and/or coarse minerals, whereas Al is independent of hydrodynamic processes. The elemental ratios Fe/Al, Ti/Al and Zr/Al are therefore well suited for estimating changes in the energy of terrestrial sediment supply into the fjords through time. Zr/Al is particularly sensitive in proximal environments, while Fe/Al is most useful in the outer fjords and on the continental margin. In the most proximal environments, however, Fe/Al is inversely related to hydrodynamic conditions. Caution should therefore be exercised when interpreting Fe/Al ratios in terms of past river discharge. The application of these proxies to long sediment cores from Quitralco fjord and Golfo Elefantes validates our interpretations. Our results also emphasize the need to measure Al-based elemental ratios at high precision, which can be achieved using simultaneous acquisition ICP-AES technology. This study therefore constitutes a strong basis for the interpretation of sedimentary records from the

  13. Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland

    NASA Astrophysics Data System (ADS)

    Yde, Jacob C.; Knudsen, Niels T.; Steffensen, Jørgen P.; Carrivick, Jonathan L.; Hasholt, Bent; Ingeman-Nielsen, Thomas; Kronborg, Christian; Larsen, Nicolaj K.; Mernild, Sebastian H.; Oerter, Hans; Roberts, David H.; Russell, Andrew J.

    2016-03-01

    Analysis of stable oxygen isotope (δ18O) characteristics is a useful tool to investigate water provenance in glacier river systems. In order to attain knowledge on the diversity of δ18O variations in Greenlandic rivers, we examined two contrasting glacierised catchments disconnected from the Greenland Ice Sheet (GrIS). At the Mittivakkat Gletscher river, a small river draining a local temperate glacier in southeast Greenland, diurnal oscillations in δ18O occurred with a 3 h time lag to the diurnal oscillations in run-off. The mean annual δ18O was -14.68 ± 0.18 ‰ during the peak flow period. A hydrograph separation analysis revealed that the ice melt component constituted 82 ± 5 % of the total run-off and dominated the observed variations during peak flow in August 2004. The snowmelt component peaked between 10:00 and 13:00 local time, reflecting the long travel time and an inefficient distributed subglacial drainage network in the upper part of the glacier. At the Kuannersuit Glacier river on the island Qeqertarsuaq in west Greenland, the δ18O characteristics were examined after the major 1995-1998 glacier surge event. The mean annual δ18O was -19.47 ± 0.55 ‰. Despite large spatial variations in the δ18O values of glacier ice on the newly formed glacier tongue, there were no diurnal oscillations in the bulk meltwater emanating from the glacier in the post-surge years. This is likely a consequence of a tortuous subglacial drainage system consisting of linked cavities, which formed during the surge event. Overall, a comparison of the δ18O compositions from glacial river water in Greenland shows distinct differences between water draining local glaciers and ice caps (between -23.0 and -13.7 ‰) and the GrIS (between -29.9 and -23.2 ‰). This study demonstrates that water isotope analyses can be used to obtain important information on water sources and the subglacial drainage system structure that is highly desired for understanding glacier hydrology.

  14. Organic carbon in glacial fjords of Chilean Patagonia

    NASA Astrophysics Data System (ADS)

    Pantoja, Silvio; Gutiérrez, Marcelo; Tapia, Fabián; Abarzúa, Leslie; Daneri, Giovanni; Reid, Brian; Díez, Beatriz

    2016-04-01

    The Southern Ice Field in Chilean Patagonia is the largest (13,000 km2) temperate ice mass in the Southern hemisphere, yearly transporting ca. 40 km3 of freshwater to fjords. This volume of fresh and cold water likely affects adjacent marine ecosystems by changing circulation, productivity, food web dynamics, and the abundance and distribution of planktonic and benthic organisms. We hypothesize that freshwater-driven availability of inorganic nutrient and transport of organic and inorganic suspended matter, as well as microbes, become a controlling factor for productivity in the fjord associated with the Baker river and Jorge Montt glacier. Both appear to be sources of silicic acid, but not of nitrate and particulate organic carbon, especially during summer, when surface PAR and glacier thawing are maximal. In contrast to Baker River, the Jorge Montt glacier is also a source of dissolved organic carbon towards a proglacial fjord and the Baker Channel, indicating that a thorough chemical description of sources (tidewater glacier and glacial river) is needed. Nitrate in fiord waters reaches ca. 15 μM at 25 m depth with no evidence of mixing up during summer. Stable isotope composition of particulate organic nitrogen reaches values as low as 3 per mil in low-salinity waters near both glacier and river. Nitrogen fixation could be depleting δ15N in organic matter, as suggested by the detection at surface waters of nif H genes belonging to diazotrophs near the Montt glacier. As diazotrophs have also been detected in other cold marine waters (e.g. Baltic Sea, Arctic Ocean) as well as glaciers and polar terrestrial waters, there is certainly a potential for both marine and freshwater microbes to contribute and have a significant impact on the Patagonian N and C budgets. Assessing the impact of freshwater on C and N fluxes and the microbial community structure in Patagonian waters will allow understanding future scenarios of rapid glacier melting. This research was funded

  15. Greenland Ice Sheet Mass Balance

    NASA Technical Reports Server (NTRS)

    Reeh, N.

    1984-01-01

    Mass balance equation for glaciers; areal distribution and ice volumes; estimates of actual mass balance; loss by calving of icebergs; hydrological budget for Greenland; and temporal variations of Greenland mass balance are examined.

  16. Salinity and temperature structure of a freezing Arctic fjord-monitored by white whales (Delphinapterus leucas)

    NASA Astrophysics Data System (ADS)

    Lydersen, Christian; Nøst, Ole Anders; Lovell, Phil; McConnell, Bernie J.; Gammelsrød, Tor; Hunter, Colin; Fedak, Michael A.; Kovacs, Kit M.

    2002-12-01

    In this study we report results from satellite-linked conductivity-temperature-depth (CTD) loggers that were deployed on wild, free-ranging white whales to study the oceanographic structure of an Arctic fjord, Storfjorden, Svalbard. The whales dove to the bottom of the fjord routinely during the study and occupied areas with up to 90% ice-cover, where performance of conventional ship-based CTD-casts would have been difficult. During the initial period of freezing in the fjord, over a period of approximately 2 weeks, 540 CTD profiles were successfully transmitted. The data indicate that Storfjorden has a substantial inflow of warm North Atlantic Water; this is contrary to conventional wisdom that has suggested that it contains only cold Arctic water. This study confirms that marine-mammal-based CTDs have enormous potential for cost-effective, future oceanographic studies; many different marine mammal species target oceanographic discontinuities for foraging and thus may be good `adaptive samplers' that naturally seek areas of high oceanographic interest.

  17. Exploring the Diversity and Antimicrobial Potential of Marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile

    PubMed Central

    Undabarrena, Agustina; Beltrametti, Fabrizio; Claverías, Fernanda P.; González, Myriam; Moore, Edward R. B.; Seeger, Michael; Cámara, Beatriz

    2016-01-01

    Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although, Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera) was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus, and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium, and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%), PKS I (18%), and PKS II (73%). Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds. PMID:27486455

  18. Oceans Melting Greenland OMG 2017 Media Reel

    NASA Image and Video Library

    2017-12-05

    The Oceans Melting Greenland mission seeks to understand how ocean water is contributing to ice loss in Greenland. In October 2017, mission scientists and crew dropped 240 ocean probes from a C-130 aircraft into the waters around Greenland to measure ocean temperature and salinity. Footage includes aerial shots of Greenland landscapes, interior and exterior shots of the aircraft with crew and scientists at work, and shots from a chase plane showing the probes dropping.

  19. Spatio-temporal Variation in Glacier Ice as Habitat for Harbor Seals in an Alaskan Tidewater Glacier Fjord

    NASA Astrophysics Data System (ADS)

    Womble, J. N.; McNabb, R. W.; Gens, R.; Prakash, A.

    2015-12-01

    Some of the largest aggregations of harbor seals (Phoca vitulina richardii) in Alaska occur in tidewater glacier fjords where seals rest upon icebergs that are calved from tidewater glaciers into the marine environment. The distribution, amount, and size of floating ice in fjords are likely important factors influencing the spatial distribution and abundance of harbor seals; however, fine-scale characteristics of ice habitat that are used by seals have not been quantified using automated methods. We quantified the seasonal changes in ice habitat for harbor seals in Johns Hopkins Inlet, a tidewater glacier fjord in Glacier Bay National Park, Alaska, using aerial photography, object-based image analysis, and spatial models. Aerial photographic surveys (n = 53) were conducted of seals and ice during the whelping (June) and molting (August) seasons from 2007-2014. Surveys were flown along a grid of 12 transects and high-resolution digital photos were taken directly under the plane using a vertically aimed camera. Seal abundance and spatial distribution was consistently higher during June (range: 1,672-4,340) than August (range: 1,075-2,582) and corresponded to the spatial distribution and amount of ice. Preliminary analyses from 2007 suggest that the average percent of icebergs (ice ≥ than 1.6m2) and brash ice (ice < 1.6m2) per scene were greater in June (icebergs: 1.8% ± 1.6%; brash ice: 43.8% ± 38.9%) than August (icebergs: 0.2% ± 0.7%; brash ice; 15.8% ± 26.4%). Iceberg angularity (an index of iceberg shape) was also greater in June (1.7 ± 0.9) than August (0.9 ± 0.9). Potential factors that may influence the spatio-temporal variation in ice habitat for harbor seals in tidewater glacier fjords include frontal ablation rates of glaciers, fjord circulation, and local winds. Harbor seals exhibit high seasonal fidelity to tidewater glacier fjords, thus understanding the relationships between glacier dynamics and harbor seal distribution will be critical for

  20. Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach.

    PubMed

    McNabb, Robert W; Womble, Jamie N; Prakash, Anupma; Gens, Rudiger; Haselwimmer, Christian E

    2016-01-01

    Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice ([Formula: see text] = 45.2%, SD = 41.5%), water ([Formula: see text] = 52.7%, SD = 42.3%), and icebergs ([Formula: see text] = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with

  1. Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach

    PubMed Central

    McNabb, Robert W.; Womble, Jamie N.; Prakash, Anupma; Gens, Rudiger; Haselwimmer, Christian E.

    2016-01-01

    Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice (x¯ = 45.2%, SD = 41.5%), water (x¯ = 52.7%, SD = 42.3%), and icebergs (x¯ = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with densely-packed ice, low contrast between

  2. [I.U.D. in Greenland].

    PubMed

    Berg, O

    1971-11-05

    In the past few decades, Greenland has experienced a population explosion, due mainly to a significant decrease in death from tuberculosis and an increase in the birthrate. 50% of the population of Greenland is younger than 16 years of age. The condom and diaphragm were the main methods of contraception used in Greenland, but neither was used extensively; in the case of the diaphragm, the lack of privacy in larger families (where contraception is most needed) because of cramped living conditions makes difficult the necessary hygiene which accompanies the use of the diaphragm. A campaign was undertaken to introduce the IUD in Greenland. In the district of Narssaq 152 women, approximately 33% of the women 15-44 years of age, had IUDs inserted over a period of 20 months. 48% of the women were unmarried, 40% were married. 16% of the women were between 15-19 years old, 51% between 20-29. IUDs are preferred over oral contraceptives because of mass media public relations advertising and the social and cultural demand for a nonregimented form of contraception. The birthrate in Greenland dropped from 40 to 30% and in Narssaq from approximately 40 to 20% during the campaign.

  3. Benthic biodiversity and ecological gradients in the Seno Magdalena (Puyuhuapi Fjord, Chile)

    NASA Astrophysics Data System (ADS)

    Betti, F.; Bavestrello, G.; Bo, M.; Enrichetti, F.; Loi, A.; Wanderlingh, A.; Pérez-Santos, I.; Daneri, G.

    2017-11-01

    Due to its complex hydrological, geomorphological and climatic features, the Chilean fjords region is considered among the most productive areas of the world. The benthic fauna of this region accounts for more than 1600 species showing marked latitudinal biogeographic differences characterizing this as one of the most important hotspot of biodiversity of cold-temperate environments. Despite numerous studies have been conducted to depict the biological characteristics of the fjords, the present situation is strongly unbalanced towards specific taxa. Hence, this study takes into consideration a community approach, highlighting the distribution of six benthic assemblages thriving on vertical walls along the Seno Magdalena fjord (Aysen region). Underwater pictures were used to characterize the trends in abundance and diversity of the main taxa showing distinct responses to salinity and turbidity. Among the less tolerant taxa to high fresh water inputs there are encrusting algae, mainly found in the most external sites lashed by outer currents, far from the estuarine plume. The bathymetric zonation of the assemblages, instead, is characterized by a dense mussel belt in the first 10 m, within a thick layer of low-salinity, nutrient-enriched waters. Rich assemblages of sponges, brachiopods, gorgonians and scleractinians thrive in deeper, marine, clear waters. The evaluation of the ecological role of benthic species leads both to the definition of potential bioindicator taxa responding to anthropic disturbances and to the promotion of protected areas.

  4. Workshop on Early Crustal Genesis: The World's Oldest Rocks

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D. (Editor)

    1986-01-01

    Topics addressed include: a general review of Precambrain crustal evolution; geology and geochemistry of the Archean Craton in Greenland and Labrador; Precambrian crustal evolution in North and South America; and the field excursion to the Ameralik Fjord.

  5. Greenland Gains Some, Loses More

    NASA Image and Video Library

    2010-02-19

    NASA GRACE mission has become a key source of knowledge about global ice mass changes. Studies of Greenland using GRACE and other data indicate that between 2000 and 2008 the Greenland ice sheet lost as much as 1,500 gigatons of mass.

  6. Organic carbon sources across salinity gradients in Chilean Fjords: Reloncaví Fjord ( 41°S) and Southern Patagonian ice fields area ( 48°S)

    NASA Astrophysics Data System (ADS)

    Placencia, Juan; Llanos, Gustavo; Contreras, Sergio

    2017-04-01

    The organic matter preserved in marine sediments contains contributions of allochthonous and autochthonous and variable source inputs. Allochthonous sources are terrestrial erosion (including anthropogenic material) of relatively labile and refractory material, while autochthonous sources including marine phytoplankton. In order to establish the sources of the organic matter (allochthonous/autochthonous) and how organic carbon is distributed along a salinity gradient, on this study we examined of organic Carbon/Nitrogen molar ratios (C:N), isotopic composition (δ13C) and n-alkanes (n-C24 to n-C34) in surface sediments from two continuous systems: river-fjord-ocean in Northern Patagonia (41°S-43°S), and glacier-fjord-ocean in central Patagonia (47°S-50°S). The continental inner fjord areas are characterized with sediment enriched in allochthonous organic carbon and high C:N (8-12) and low δ13C values (-23‰ to -26‰). Towards the Pacific Ocean, low C:N (6-7) and high δ13C values (-20‰ to -22‰) suggest prevalent autochthonous marine sources. Estuarine waters with salinity between 2 psu and 30 psu were associated with high C:N and low δ13C values together with odd over even long-chain n-alkane predominance (n-C31, n-C29 and n-C27) in surface sediments. All geochemical proxies suggest a great contribution of terrigenous input by glacier origin rivers, mainly from terrestrial plants in both areas. Our study provides a framework to guide future researches on environmental and climate change on these systems. This study was supported by the Chilean Navy's Hydrographic and Oceanographic Service, the Chilean National Oceanographic Committee through the Grants CONA C19F1308 and C20F1404, and the Research Office at Universidad Católica de la Ssma. Concepción.

  7. Norwegian fjord sediments reveal NAO related winter temperature and precipitation changes of the past 2800 years

    NASA Astrophysics Data System (ADS)

    Faust, Johan; Fabian, Karl; Giraudeau, Jacques; Knies, Jochen

    2016-04-01

    The North Atlantic Oscillation (NAO) is the leading mode of atmospheric circulation variability in the North Atlantic region. Associated shifts of storm tracks, precipitation and temperature patterns affect energy supply and demand, fisheries and agricultural, as well as marine and terrestrial ecological dynamics. Long-term NAO reconstructions are crucial to better understand NAO variability in its response to climate forcing factors, and assess predictability and possible shifts associated with ongoing climate change. Fjord deposits have a great potential for providing high-resolution sedimentary records that reflect local terrestrial and marine processes and, therefore, offer unique opportunities for the investigation of sedimentological and geochemical climatically induced processes. A recent study of instrumental time series revealed NAO as main factor for a strong relation between winter temperature, precipitation and river discharge in central Norway over the past 50 years. Here we use the gained knowledge to establish the first high resolution NAO proxy record from marine sediments. By comparing geochemical measurements from a short sediment core with instrumental data we show that marine primary productivity proxies are sensitive to NAO changes. Conditioned on a stationary relation between our climate proxy and the NAO we establish the first high resolution NAO proxy record (NAO-TFJ) from marine sediments covering the past 2,800 years. The NAO-TFJ shows distinct co-variability with climate changes over Greenland, solar activity and Northern Hemisphere glacier dynamics as well as climatically associated paleo-demographic trends.

  8. Palaeomagnetism of the Late Neoproterozoic of Ella O, North-East Greenland

    NASA Astrophysics Data System (ADS)

    Kilner, B.; Mac Niocaill, C.; Stouge, S.; Harper, D.

    2004-12-01

    Neoproterozoic to lower Ordovician sediments outcrop in a N-S trending band in the fjord region of North-East Greenland. The sequence comprises, in ascending order, the Eleonore Bay Group, the Tillite Group and the Canyon and Spiral Creek Formations. The Eleonore Bay Group is thought to be Upper Riphean in age and consists of cherty limestone and dolomite capped by red siltstone. The overlying Tillite Group contains two tillite packages separated by an intertillite which comprises marine siltstone and sandstone. The Canyon and Spiral Creek Formation consist of evaporitic red siltstone, with chert-rich horizons and some dolomite. The Spiral Creek Formation is overlain by a basal Cambrian quartzite. 500 samples were collected from the late Precambrian succession on the island of Ella O in Kong Oscars Fjord. Sampling was aimed in particular at red beds and other likely magnetic targets. The specimens were demagnetised using progressive alternating frequency and thermal techniques and typically revealed a multi-component remanence structure. A majority of the specimens carry a low stability (generally < 20mt, < 250° ) component, directed north and steeply down. This closely resembles present Earth's field. Demagnetisation of the Eleonore Bay Group reveals a high stability component directed south and shallow down, with an opposing component north and up. After tilt correction the mean direction yields a palaeolatitude of 4° . This component passes field tests, and is interpreted as primary. Magnetic characteristics in the Tillite Group are distinct from those of the Eleonore Bay Group. The Lower Tillite Formation carries an east directed shallow down component. The palaeolatitude derived from this direction indicates low latitude deposition for the glacial rocks above the Eleonore Bay Group. The Upper Tillite Formation carries a high stability component directed steeply upwards. Specimens from a limited pilot study pass reversal and fold tests, but further

  9. Oceanic Forcing of Ice-Sheet Retreat: West Antarctica and More

    NASA Astrophysics Data System (ADS)

    Alley, Richard B.; Anandakrishnan, Sridhar; Christianson, Knut; Horgan, Huw J.; Muto, Atsu; Parizek, Byron R.; Pollard, David; Walker, Ryan T.

    2015-05-01

    Ocean-ice interactions have exerted primary control on the Antarctic Ice Sheet and parts of the Greenland Ice Sheet, and will continue to do so in the near future, especially through melting of ice shelves and calving cliffs. Retreat in response to increasing marine melting typically exhibits threshold behavior, with little change for forcing below the threshold but a rapid, possibly delayed shift to a reduced state once the threshold is exceeded. For Thwaites Glacier, West Antarctica, the threshold may already have been exceeded, although rapid change may be delayed by centuries, and the reduced state will likely involve loss of most of the West Antarctic Ice Sheet, causing >3 m of sea-level rise. Because of shortcomings in physical understanding and available data, uncertainty persists about this threshold and the subsequent rate of change. Although sea-level histories and physical understanding allow the possibility that ice-sheet response could be quite fast, no strong constraints are yet available on the worst-case scenario. Recent work also suggests that the Greenland and East Antarctic Ice Sheets share some of the same vulnerabilities to shrinkage from marine influence.

  10. Towards Introducing a Geocoding Information System for Greenland

    NASA Astrophysics Data System (ADS)

    Siksnans, J.; Pirupshvarre, Hans R.; Lind, M.; Mioc, D.; Anton, F.

    2011-08-01

    Currently, addressing practices in Greenland do not support geocoding. Addressing points on a map by geographic coordinates is vital for emergency services such as police and ambulance for avoiding ambiguities in finding incident locations (Government of Greenland, 2010) Therefore, it is necessary to investigate the current addressing practices in Greenland. Asiaq (Asiaq, 2011) is a public enterprise of the Government of Greenland which holds three separate databases regards addressing and place references: - list of locality names (towns, villages, farms), - technical base maps (including road center lines not connected with names, and buildings), - the NIN registry (The Land Use Register of Greenland - holds information on the land allotments and buildings in Greenland). The main problem is that these data sets are not interconnected, thus making it impossible to address a point in a map with geographic coordinates in a standardized way. The possible solutions suffer from the fact that Greenland has a scattered habitation pattern and the generalization of the address assignment schema is a difficult task. A schema would be developed according to the characteristics of the settlement pattern, e.g. cities, remote locations and place names. The aim is to propose an ontology for a common postal address system for Greenland. The main part of the research is dedicated to the current system and user requirement engineering. This allowed us to design a conceptual database model which corresponds to the user requirements, and implement a small scale prototype. Furthermore, our research includes resemblance findings in Danish and Greenland's addressing practices, data dictionary for establishing Greenland addressing system's logical model and enhanced entity relationship diagram. This initial prototype of the Greenland addressing system could be used to evaluate and build the full architecture of the addressing information system for Greenland. Using software engineering

  11. Building sustained partnerships in Greenland through shared science

    NASA Astrophysics Data System (ADS)

    Culler, L. E.; Albert, M. R.; Ayres, M. P.; Grenoble, L. A.; Virginia, R. A.

    2013-12-01

    Greenland is a hotspot for polar environmental change research due to rapidly changing physical and ecological conditions. Hundreds of international scientists visit the island each year to carry out research on diverse topics ranging from atmospheric chemistry to ice sheet dynamics to Arctic ecology. Despite the strong links between scientific, social, and political issues of rapid environmental change in Greenland, communication with residents of Greenland is often neglected by researchers. Reasons include language barriers, difficulties identifying pathways for communication, balancing research and outreach with limited resources, and limited social and cultural knowledge about Greenland by scientists. Dartmouth College has a legacy of work in the Polar Regions. In recent years, a National Science Foundation (NSF) Integrative Graduate Education and Research Traineeship (IGERT) in Polar Environmental Change funded training for 25 Ph.D. students in the Ecology, Earth Science, and Engineering graduate programs at Dartmouth. An overarching goal of this program is science communication between these disciplines and to diverse audiences, including communicating about rapid environmental change with students, residents, and the government of Greenland. Students and faculty in IGERT have been involved in the process of engaging with and sustaining partnerships in Greenland that support shared cultural and educational experiences. We have done this in three ways. First, a key component of our program has been hosting students from Ilisimatusarfik (the University of Greenland). Since 2009, five Greenlandic students have come to Dartmouth and formed personal connections with Dartmouth students while introducing their Greenlandic culture and language (Kalaallisut). Second, we have used our resources to extend our visits to Greenland, which has allowed time to engage with the community in several ways, including sharing our science via oral and poster presentations at Katuaq

  12. Phototrophic microbes form endolithic biofilms in ikaite tufa columns (SW Greenland).

    PubMed

    Trampe, Erik; Castenholz, Richard W; Larsen, Jens E N; Kühl, Michael

    2017-11-01

    Marine tufa-columns, formed by the hydrated carbonate mineral ikaite, present a unique alkaline microbial habitat only found in Ikka Fjord (SW-Greenland). The outermost parts of the ikaite columns exhibit a multitude of physico-chemical gradients, and the porous ikaite is colonized by endolithic phototrophic biofilms serving as a substrate for grazing epifauna, where scraping by sea urchins affects overall column-topography. We present a detailed study of the optical microenvironment, spatial organization, and photosynthetic activity of endolithic phototrophs within the porous ikaite crystal matrix. Cyanobacteria and diatoms formed distinctly coloured zones and were closely associated with ikaite-crystals via excretion of exopolymers. Scalar-irradiance measurements showed strong attenuation of visible light (400-700 nm), where only ∼1% of incident irradiance remained at 20 mm depth. Transmission spectra showed in vivo absorption signatures of diatom and cyanobacterial photopigments, which were confirmed by HPLC-analysis. Variable-chlorophyll-fluorescence-imaging showed active photosynthesis with high-light acclimation in the outer diatom layer, and low-light acclimation in the underlying cyanobacterial part. Phototrophs in ikaite thus thrive in polymer-bound endolithic biofilms in a complex gradient microhabitat experiencing constant slow percolation of highly alkaline phosphate-enriched spring water mixing with cold seawater at the tufa-column-apex. We discuss the potential role of these biofilms in ikaite column formation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Atuarfitsialak: Greenland's Cultural Compatible Reform

    ERIC Educational Resources Information Center

    Wyatt, Tasha R.

    2012-01-01

    In 2002, Greenlandic reform leaders launched a comprehensive, nation-wide reform to create culturally compatible education. Greenland's reform work spans the entire educational system and includes preschool through higher education. To assist their efforts, reform leaders adopted the Standards for Effective Pedagogy developed at the Center for…

  14. Sexual and reproductive health in Greenland: evaluation of implementing sexual peer-to-peer education in Greenland (the SexInuk project).

    PubMed

    Homøe, Anne-Sophie; Knudsen, Ane-Kersti Skaarup; Nielsen, Sigrid Brisson; Grynnerup, Anna Garcia-Alix

    2015-01-01

    Background For decades, the rates of sexually transmitted infections (STIs), such as gonorrhoea, chlamydia and syphilis, have increased in Greenland, especially within the young age groups (15-29 years). From 2006 to 2013, the number of abortions has been consistent with approximately 800-900 abortions per year in Greenland, which is nearly as high as the total number of births during the same period. Previous studies in Greenland have reported that knowledge about sexual health is important, both as prevention and as facilitator to stop the increasing rates of STIs. A peer-to-peer education programme about sexual health requires adaption to cultural values and acceptance among the population and government in order to be sustainable. Objective Formative evaluation of a voluntary project (SexInuk), in relation to peer-to-peer education with focus on sexual health. Two workshops were conducted in Nuuk, Greenland, to recruit Greenlandic students. Design Qualitative design with focus group interviews (FGIs) to collect qualitative feedback on feasibility and implementation of the project. Supplemented with a brief questionnaire regarding personal information (gender, age, education) and questions about the educational elements in the SexInuk project. Eight Greenlandic students, who had completed one or two workshops, were enrolled. Results The FGIs showed an overall consensus regarding the need for improving sexual health education in Greenland. The participants requested more voluntary educators, to secure sustainability. The articulation of taboo topics in the Greenlandic society appeared very important. The participants suggested more awareness by promoting the project. Conclusion Cultural values and language directions were important elements in the FGIs. To our knowledge, voluntary work regarding peer-to-peer education and sexual health has not been structurally evaluated in Greenland before. To achieve sustainability, the project needs educators and financial

  15. Sexual and reproductive health in Greenland: evaluation of implementing sexual peer-to-peer education in Greenland (the SexInuk project).

    PubMed

    Homøe, Anne-Sophie; Knudsen, Ane-Kersti Skaarup; Nielsen, Sigrid Brisson; Grynnerup, Anna Garcia-Alix

    2015-01-01

    For decades, the rates of sexually transmitted infections (STIs), such as gonorrhoea, chlamydia and syphilis, have increased in Greenland, especially within the young age groups (15-29 years). From 2006 to 2013, the number of abortions has been consistent with approximately 800-900 abortions per year in Greenland, which is nearly as high as the total number of births during the same period. Previous studies in Greenland have reported that knowledge about sexual health is important, both as prevention and as facilitator to stop the increasing rates of STIs. A peer-to-peer education programme about sexual health requires adaption to cultural values and acceptance among the population and government in order to be sustainable. Formative evaluation of a voluntary project (SexInuk), in relation to peer-to-peer education with focus on sexual health. Two workshops were conducted in Nuuk, Greenland, to recruit Greenlandic students. Qualitative design with focus group interviews (FGIs) to collect qualitative feedback on feasibility and implementation of the project. Supplemented with a brief questionnaire regarding personal information (gender, age, education) and questions about the educational elements in the SexInuk project. Eight Greenlandic students, who had completed one or two workshops, were enrolled. The FGIs showed an overall consensus regarding the need for improving sexual health education in Greenland. The participants requested more voluntary educators, to secure sustainability. The articulation of taboo topics in the Greenlandic society appeared very important. The participants suggested more awareness by promoting the project. Cultural values and language directions were important elements in the FGIs. To our knowledge, voluntary work regarding peer-to-peer education and sexual health has not been structurally evaluated in Greenland before. To achieve sustainability, the project needs educators and financial support. Further research is needed to investigate

  16. 2-D magnetotelluric experiment to investigate the Nassugtoqidian orogeny in South-East Greenland

    NASA Astrophysics Data System (ADS)

    Heincke, Björn; Chen, Jin; Riisager, Peter; Kolb, Jochen; Jørgensen, Asta F.

    2015-04-01

    The northwest-trending Palaeoproterozoic Nagssugtoqidian orogen extends over 250 km along the east coast of Greenland in the area around the village Tasiilaq. The geological evolution of this area closely compares with the ones of the Lewisian complex of Scotland and the Nagssugtoqidian orogen in western Greenland and, hence, leads to the suggestion that they belong to the same continental-scale orogenic belt. However, an accurate correlation across the inland ice is challenging and still ambiguous and therefore more detailed knowledge about the individual orogens might help to understand their relationship. Details about the large-scale tectonic evolution during the Nagssugtoqidian orogeny in this remote Arctic region are not known due to complex geology, relatively coarse geological mapping and the lack of extensive geophysical investigations. E.g. the vergence of the orogen, subduction-related magmatism and accretion history are matters of ongoing discussion (Kalsbeek et al., 1993; Nutman et al., 2008 and Kolb, 2013). We performed a 2-D magnetotelluric (MT) experiment across the southern part of the orogen along the Sermilik Fjord in order to improve our understanding of the orogenic process in general and to better constrain the location and vergence of the suture zone. However, because of the rough climate and the lack of infrastructure, this study is considered as a first test to investigate how MT surveys can be most efficiently performed in this remote part of the world. The NE-SW trending profile consists of eight MT stations and has a total length of ~70 km using long period LEMI-420 systems. The quality of the data is severely affected by polar electrojets that do not satisfy the plane wave assumptions, which is typical for regions close to the magnetic poles. In order to reduce the distortion from these signals onto the impedance estimates, we tested different advanced processing schemes. In addition to the more conventional robust response function

  17. Autonomous Research Vessels for Adaptive Upper-Ocean Process Studies

    DTIC Science & Technology

    2014-09-30

    system with the goal  of extending  its mission robustness,  adaptabilit and science capabilities beyond that  of the   Arduino -­‐ based ones... measure the interplay between these finescale dynamics and turbulence, which ultimately drives  the  irreversible  heat/freshwater  transports...profiling in Greenland  Fjords. acquiring CTD cast (and ADCP profiles) within m of a Greenland iceberg.APPROACH: Our first ARV (ARV Rob) was based on

  18. Results of the Greenland ice sheet model initialisation experiments: ISMIP6 - initMIP-Greenland

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; Beckley, Matthew

    2017-04-01

    Ice sheet model initialisation has a large effect on projected future sea-level contributions and gives rise to important uncertainties. The goal of this intercomparison exercise for the continental-scale Greenland ice sheet is therefore to compare, evaluate and improve the initialisation techniques used in the ice sheet modelling community. The initMIP-Greenland project is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). The experimental set-up has been designed to allow comparison of the initial present-day state of the Greenland ice sheet between participating models and against observations. Furthermore, the initial states are tested with two schematic forward experiments to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss results that highlight the wide diversity of data sets, boundary conditions and initialisation techniques used in the community to generate initial states of the Greenland ice sheet.

  19. Chlorophyll-a thin layers in the Magellan fjord system: The role of the water column stratification

    NASA Astrophysics Data System (ADS)

    Ríos, Francisco; Kilian, Rolf; Mutschke, Erika

    2016-08-01

    Fjord systems represent hotspots of primary productivity and organic carbon burial. However, the factors which control the primary production in mid-latitude fjords are poorly understood. In this context, results from the first fine-scale measurements of bio-oceanographic features in the water column of fjords associated with the Strait of Magellan are presented. A submersible fluorescence probe (FP) was used to measure the Chlorophyll-a (Chl-a) concentration in situ, along with conductivity, temperature, hydrostatic pressure (depth) and dissolved oxygen (CTD-O2) of the water column. The Austral spring results of 14 FP-CTD-O2 profiles were used to define the vertical and horizontal patches of the fluorescent pigment distribution and their spatial relations with respect to the observed hydrographic features. Three zones with distinct water structures were defined. In all zones, the 'brown' spectral group (diatoms and dinoflagellates) predominated accounting for >80 wt% of the phytoplankton community. Thin layers with high Chl-a concentration were detected in 50% of the profiles. These layers harbored a substantial amount (30-65 wt%) of the phytoplankton biomass. Stratification was positively correlated to the occurrence of Chl-a thin layers. In stable and highly stratified water columns the integrated Chl-a concentration was higher and frequently located within thin layers whereas well mixed water columns displayed lower values and more homogeneous vertical distribution of Chl-a. These results indicate that mixing/stability processes are important factors accounting to the vertical distribution of Chl-a in Magellan fjords.

  20. Episodes of subsidence and uplift of the conjugate margins of Greenland and Norway after opening of the NE Atlantic

    NASA Astrophysics Data System (ADS)

    Japsen, Peter; Green, Paul F.; Bonow, Johan M.; Chalmers, James A.

    2016-04-01

    incision of valleys and fjords below the uplifted LPS, leaving mountain peaks reaching 3.7 km above sea level. In southern Norway (as also in southern Sweden), the sub-horizontal Palaeic surfaces truncate the tilted, sub-Mesozoic erosion surface along the coasts. Lidmar-Bergström et al. (2013) used this relationship to conclude that the Palaeic relief is of Cenozoic age. In Greenland, definition of the chronology of events benefits from the availability of AFTA data from boreholes onshore where the plateau surfaces truncate Palaeogene basalts, and thus make it possible to date formation of these surfaces and correlate them with offshore unconformities. In Norway, the absence of post-rift rocks onshore precludes such integrated analysis. However, the presence of offshore unconformities, coupled with similar onshore landscapes and Cenozoic cooling history suggest a similar overall style of evolution. The similarities between the two margins lead us to us suggest that these margins developed in broadly similar fashion, and that the mountains of Norway also reached their present elevation long after Atlantic breakup. Bonow, Japsen, Nielsen 2014. Global and Planetary Change 116. Japsen, Green, Bonow, Nielsen, Chalmers 2014. Global and Planetary Change 116. Lidmar-Bergström, Bonow, Japsen 2013. Global and Planetary Change 100.

  1. 3D-seismic observations of Late Pleistocene glacial dynamics on the central West Greenland margin

    NASA Astrophysics Data System (ADS)

    Hofmann, Julia; Knutz, Paul; Cofaigh, Colm Ó.

    2016-04-01

    suggesting the transition between grounded ice and a glacimarine setting. The back-stepping scarps are suggestive of slide scars that were created as a result of mass movement induced by instabilities along the NW slope. The buried section contains morphologies indicating an asymmetric feature with a steeper side facing south. It comprises a thickness of c. 100 m and a length of c. 28 km. The detailed surface observations and seismic geometries suggest that the northern area represents a relict grounding-zone wedge (GZW). The wedge is covered by stratified deposits suggesting that it was at least occasionally submarine after its formation and may have served as pinning-point for floating ice shelves during periods of the Late TMF Stage. Important implications of the study are the intermittent development of floating ice shelves during the course of the Late Stage of TMF development and the presence of shelf-edge terminating grounded Late Weichselian ice outside of the troughs. Hofmann, J.C., Knutz, P.C., Nielsen, T., Kuijpers, A., submitted. Seismic architecture and evolution of the Disko Bay trough-mouth fan, central West Greenland margin. Quaternary Science Reviews.

  2. Results of the Greenland Ice Sheet Model Initialisation Experiments ISMIP6 - initMIP-Greenland

    NASA Astrophysics Data System (ADS)

    Goelzer, H.; Nowicki, S.; Edwards, T.; Beckley, M.; Abe-Ouchi, A.; Aschwanden, A.; Calov, R.; Gagliardini, O.; Gillet-chaulet, F.; Golledge, N. R.; Gregory, J. M.; Greve, R.; Humbert, A.; Huybrechts, P.; Larour, E. Y.; Lipscomb, W. H.; Le ´h, S.; Lee, V.; Kennedy, J. H.; Pattyn, F.; Payne, A. J.; Rodehacke, C. B.; Rückamp, M.; Saito, F.; Schlegel, N.; Seroussi, H. L.; Shepherd, A.; Sun, S.; Vandewal, R.; Ziemen, F. A.

    2016-12-01

    Earlier large-scale Greenland ice sheet sea-level projections e.g. those run during ice2sea and SeaRISE initiatives have shown that ice sheet initialisation can have a large effect on the projections and gives rise to important uncertainties. The goal of this intercomparison exercise (initMIP-Greenland) is to compare, evaluate and improve the initialization techniques used in the ice sheet modeling community and to estimate the associated uncertainties. It is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of 1) the initial present-day state of the ice sheet and 2) the response in two schematic forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss final results of the intercomparison and highlight important uncertainties with respect to projections of the Greenland ice sheet sea-level contribution.

  3. Disentangling the Roles of Atmospheric and Oceanic Forcing on the Last Deglaciation of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Keisling, B. A.; Deconto, R. M.

    2017-12-01

    Today the Greenland Ice Sheet loses mass via both oceanic and atmospheric processes. However, the relative importance of these mass balance components is debated, especially their potential impact on ongoing and future mass imbalance. Discerning the impact of oceanic versus atmospheric forcing during past periods of mass loss provides potential insight into the future behavior of the ice sheet. Here we present an ensemble of Greenland Ice Sheet simulations of the last deglaciation, designed to assess separately the roles of the ocean and the atmosphere in driving mass loss over the last twenty thousand years. We use twenty-eight different ocean forcing scenarios along with a cutting-edge reconstruction of time-evolving atmospheric conditions based on climate model output and δ15N-based temperature reconstructions to generate a range of ice-sheet responses during the deglaciation. We then compare the simulated timing of ice-retreat in individual catchments with estimates based on both 10Be (exposure) and 14C (minimum-limiting) dates. These experiments allow us to identify the ocean forcing scenario that best match the data on a local-to-regional (i.e., 100-1000 km) scales, providing an assessment of the relative importance of ocean and atmospheric forcing components around the periphery of Greenland. We use these simulations to quantify the importance of the three major mass balance terms (calving, oceanic melting, and surface melting) and assess the uncertainty of the relative influence of these factors during the most recent periods of major ice loss. Our results show that mass balance components around different sectors of the ice sheet respond differently to forcing, with oceanic components driving the majority of retreat in south and east Greenland and atmospheric forcing dominating in west and north Greenland In addition, we target three areas at high spatial resolution ( 1 km) around Greenland currently undergoing substantial change (Jakobshavn, Petermann

  4. Clouds enhance Greenland ice sheet meltwater runoff

    PubMed Central

    Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B.; van den Broeke, M. R.; Turner, D. D.; van Lipzig, N. P. M.

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m−2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise. PMID:26756470

  5. Clouds enhance Greenland ice sheet meltwater runoff.

    PubMed

    Van Tricht, K; Lhermitte, S; Lenaerts, J T M; Gorodetskaya, I V; L'Ecuyer, T S; Noël, B; van den Broeke, M R; Turner, D D; van Lipzig, N P M

    2016-01-12

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m(-2). Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  6. Velocity Estimates of Fast-Moving Outlet Glaciers on the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed; Krabill, W. B.

    1998-01-01

    In recent years, airborne laser altimetry has been used with great success to investigate the mass balance characteristics of the Greenland ice sheet. One spinoff of this activity has been the application of these measurements to the study of surface velocities in some of Greenland's fast-moving drainage glaciers. This is accomplished by tracking the motion of elevation features, primarily crevasses, in pairs of aircraft laser altimetry surveys. Detailed elevation measurements are made along or across glaciers of interest with a scanning swath of 150 to 200 meters, and the surveys are repeated several days later, typically to within better than 50 meters of the previous flight line. Surface elevation features are identified in each image, and their offsets are compared yielding detailed velocities over narrow regions. During the 1998 field season, repeat flights were made over three glaciers for the purpose of estimating their surface velocities. These were the Kangerdlugssuaq and Helheim glaciers on the east coast and the Jakobshavn Isbrae on the west coast. Each flows at such high speeds (on the order of a few kilometers per year) that their flow rates are difficult to assess by means of radar interferometry. The flexibility of the aircraft platform, however, allows for detailed measurements of the elevation and flow of these drainage areas, which are responsible for a significant portion of the ice discharge from the Greenland ice sheet. Velocity estimates for transects that span these glaciers will be presented, and where the ice thickness values are available (provided by researchers from the University of Kansas) the fluxes will be calculated.

  7. Sources and turnover of organic carbon and methane in fjord and shelf sediments off northern Norway

    NASA Astrophysics Data System (ADS)

    Sauer, Simone; Hong, Wei-Li; Knies, Jochen; Lepland, Aivo; Forwick, Matthias; Klug, Martin; Eichinger, Florian; Baranwal, Soma; Crémière, Antoine; Chand, Shyam; Schubert, Carsten J.

    2016-10-01

    To better understand the present and past carbon cycling and transformation processes in methane-influenced fjord and shelf areas of northern Norway, we compared two sediment cores from the Hola trough and from Ullsfjorden. We investigated (1) the organic matter composition and sedimentological characteristics to study the sources of organic carbon (Corg) and the factors influencing Corg burial, (2) pore water geochemistry to determine the contribution of organoclastic sulfate reduction and methanogenesis to total organic carbon turnover, and (3) the carbon isotopic signature of hydrocarbons to identify the carbon transformation processes and gas sources. High sedimentation and Corg accumulation rates in Ullsfjorden support the notion that fjords are important Corg sinks. The depth of the sulfate-methane-transition (SMT) in the fjord is controlled by the supply of predominantly marine organic matter to the sediment. Organoclastic sulfate reduction accounts for 60% of the total depth-integrated sulfate reduction in the fjord. In spite of the presence of ethane, propane, and butane, we suggest a purely microbial origin of light hydrocarbons in the sediments based on their low δ13C values. In the Hola trough, sedimentation and Corg accumulation rates changed during the deglacial-to-post-glacial transition from approximately 80 cm ka-1 to erosion at present. Thus, Corg burial in this part of the shelf is presently absent. Low organic matter content in the sediment and low rates of organoclastic sulfate reduction (only 3% of total depth-integrated sulfate reduction) entail that the shallow depth of the SMT is controlled mostly by ascending thermogenic methane from deeper sources.

  8. Hyperspectral, photogrammetric and morphological characterization of surface impurities over the Greenland ice sheet from remote sensing observations

    NASA Astrophysics Data System (ADS)

    Tedesco, M.; Alexander, P. M.; Briggs, K.; Linares, M.; Mote, T. L.

    2016-12-01

    The spatial and temporal evolution of surface impurities over the Greenland ice sheet plays a crucial role in modulating the meltwater production in view of the associated feedback on albedo. Recent studies have pointed to a `darkening' of the west portion of the ice sheet with this reduction in albedo likely associated with the increasing presence of surface impurities (e.g., soot, dust) and biological activity (e.g., cryoconite holes, algae, bacteria). Regional climate models currently do not account for the presence, evolution and impact on albedo of such impurities, mostly because the underlying processes driving the spectral and morphological evolution of impurities are poorly known. One for the reasons for this is the lack of hyperspectral and high-spatial resolution data over specific regions of the Greenland ice sheet. To put things in perspective: there is more hyperspectral data at high spatial resolution for the planet Mars than for the Greenland ice sheet. In this presentation, we report the results of an analysis using the few available hyperspectral data collected over Greenland by the HYPERION and AVIRIS sensors, in conjunction with visible (RGB) helicopter-based high resolution images and LANDSAT/WorldView data for characterizing the spectral and morphological evolution of surface impurities and cryoconite holes over western Greenland. The hyperspectral data is used to characterize the abundance of different `endmembers' and the temporal evolution (inter-seasonal and intra-seasonal) of surface impurities composition and concentration. Digital photographs from helicopter are used to characterize the size and distribution of cryoconite holes as a function of elevation and, lastly, LANDSAT/WV images are used to study the evolution of `mysterious' shapes that form as a consequence of the accumulation of impurities and the ice flow.

  9. Study of elevation changes along a profile crossing the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hvidegaard, S. M.; Sandberg, L.

    2009-04-01

    In recent years much research has focused on determining how the Greenland Ice Sheet is responding to the observed climate changes. There is wide agreement on the fact that the Ice Sheet is currently loosing mass, and studies have shown that the mass loss is found near the ice edge and that no significant changes are found in the central part of the Ice Sheet. As a part of European Space Agency's CryoSat Validation Experiment (CryoVEx) running from 2004 to 2008, the National Space Institute (DTU Space) measured the elevations along a profile crossing the Greenland Ice Sheet. The elevation observations were carried out in 2004, 2006 and 2008 using airborne laser altimetry from a Twin Otter aircraft. The observed profile follows the old EGIG line (Expédition Glaciologique au Groenland, measured in the 1950's) situated between 69-71N, heading nearly east-west. This unique dataset gives the opportunity to study elevation changes along the profile crossing the ice sheet. With this work, we outline the observed elevation changes from the different zones of the ice sheet. We furthermore compare elevation changes based on coincident ICESat and airborne laser altimeter data.

  10. Abrupt Shift in the Observed Runoff from the Southwest Greenland Ice Sheet?

    NASA Astrophysics Data System (ADS)

    Ahlstrom, A.; Petersen, D.; Box, J.; Langen, P. P.; Citterio, M.

    2016-12-01

    Mass loss of the Greenland ice sheet has contributed significantly to sea level rise in recent years and is considered a crucial parameter when estimating the impact of future climate change. Few observational records of sufficient length exist to validate surface mass balance models, especially the estimated runoff. Here we present an observation time series from 1975-2014 of discharge from a large proglacial lake, Tasersiaq, in West Greenland (66.3°N, 50.4°W) with a mainly ice-covered catchment. We argue that the discharge time series is representative measure of ice sheet runoff, making it the only observational record of runoff to exceed the 30-year period needed to assess the climatological state of the ice sheet. We proceed to isolate the runoff part of the signal from precipitation and identified glacial lake outburst floods from a small sub-catchment. Similarly, the impact from major volcanic eruptions is clearly identified. We examine the trend and annual variability in the annual discharge, relating it to likely atmospheric forcing mechanisms and compare the observational time series with modelled runoff from the regional climate model HIRHAM.

  11. Transient ice mass variations over Greenland detected by the combination of GPS and GRACE data

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Liu, L.; Khan, S. A.; van Dam, T. M.; Zhang, E.

    2017-12-01

    Over the past decade, the Greenland Ice Sheet (GrIS) has been undergoing significant warming and ice mass loss. Such mass loss was not always a steady process but had substantial temporal and spatial variabilities. Here we apply multi-channel singular spectral analysis to crustal deformation time series measured at about 50 Global Positioning System (GPS) stations mounted on bedrock around the Greenland coast and mass changes inferred from Gravity Recovery and Climate Experiment (GRACE) to detect transient changes in ice mass balance over the GrIS. We detect two transient anomalies: one is a negative melting anomaly (Anomaly 1) that peaked around 2010; the other is a positive melting anomaly (Anomaly 2) that peaked between 2012 and 2013. The GRACE data show that both anomalies caused significant mass changes south of 74°N but negligible changes north of 74°N. Both anomalies caused the maximum mass change in southeast GrIS, followed by in west GrIS near Jakobshavn. Our results also show that the mass change caused by Anomaly 1 first reached the maximum in late 2009 in the southeast GrIS and then migrated to west GrIS. However, in Anomaly 2, the southeast GrIS was the last place that reached the maximum mass change in early 2013 and the west GrIS near Jakobshavn was the second latest place that reached the maximum mass change. Most of the GPS data show similar spatiotemporal patterns as those obtained from the GRACE data. However, some GPS time series show discrepancies in either space or time, because of data gaps and different sensitivities of mass loading change. Namely, loading deformation measured by GPS can be significantly affected by local dynamical mass changes, which, yet, has little impact on GRACE observations.

  12. Exploration of the Climate Change Frontier in Polar Regions at the Land Ice-Ocean Boundary.

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.

    2014-12-01

    Ice sheets are the largest contributors to sea level rise at present, and responsible for the largest uncertainty in sea level projections. Ice sheets raised sea level 5 m per century 13.5 kyr ago during one period of rapid change. Leading regions for future rapid changes include the marine-based, retrograde bed parts of Greenland (north center and east), West Antarctica (Amundsen Sea), and East Antarctica (Filchner basin and Wilkes Land). Fast changes require an increase in ice melt from a warmer ocean and an increase in iceberg calving. Our understanding of both processes remains limited due to a lack of basic observations. Understanding ocean forcing requires observations on the continental shelf, along bays and glacial fjords and at ice-ocean boundaries, beneath kilometers of ice (Antarctica) or at near-vertical calving cliffs (Greenland), of ocean temperature and sea floor bathymetry. Where such observations exist, the sea floor is much deeper than anticipated because of the carving of deep channels by multiple glacier advances. Warm subsurface waters penetrate throughout the Amundsen Sea Embayment of West Antarctica, the southeast and probably the entire west coasts of Greenland. In Greenland, discharge of subglacial water from surface runoff at the glacier grounding line increases ice melting by the ocean even if the ocean temperature remains the same. Near ice-ocean boundaries, satellite observations are challenged, airborne observations and field surveys are limited, so advanced robotic techniques for cold, deep, remote environments are ultimately required in combination with advanced numerical modeling techniques. Until such technological advances take place and advanced networks are put in place, it is critical to conduct boat surveys, install moorings, and conduct extensive airborne campaigns (for instance, gravity-derived bathymetry and air-dropped CTDs), some of which is already taking place. In the meantime, projections of ice sheet evolution in a

  13. Crustal structure of the Central-Eastern Greenland: results from the TopoGreenland refraction profile

    NASA Astrophysics Data System (ADS)

    Shulgin, Alexey; Thybo, Hans

    2014-05-01

    Until present, seismic surveys have only been carried out offshore and near the coasts of Greenland, where the crustal structure is affected by oceanic break-up. We present the deep seismic structure of the crust of the interior of Greenland, based on the new and the only existing so far seismic refraction/wide-angle reflection profile. The seismic data was acquired by a team of six people during a two-month long experiment in summer of 2011 on the ice cap in the interior of central-eastern Greenland. The presence of an up to 3.4 km thick ice sheet, permanently covering most of the land mass, made acquisition of geophysical data logistically complicated. The profile extends 310 km inland in E-W direction from the approximate edge of the stable ice cap near the Scoresby Sund across the center of the ice cap. 350 Reftek Texan receivers recorded high-quality seismic data from 8 equidistant shots along the profile. Explosive charge sizes were 1 ton at the ends and ca. 500 kg along the profile, loaded with about 125 kg at 35-85 m depth in individual boreholes. Given that the data acquisition was affected by the thick ice sheet, we questioned the quality of seismic records in such experiment setup. We have developed an automatic routine to check the amplitudes and spectra of the selected seismic phases and to check the differences/challenges in making seismic experiments on ice and the effects of ice on data interpretation. Using tomographic inversion and forward ray tracing modelling we have obtained the two-dimensional velocity model down to a 50 km depth. The model shows a decrease of crustal thickness from 47 km below the centre of Greenland in the western part of the profile to 40 km in its eastern part. Relatively high lower crustal velocities (Vp 6.8 - 7.3 km/s) in the western part of the TopoGreenland profile may result from past collision tectonics or, alternatively, may be related to the speculated passage of the Iceland mantle plume. Comparison of our results

  14. Evolution of supra-glacial lakes across the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Sundal, A. V.; Shepherd, A.; Nienow, P.; Hanna, E.; Palmer, S.; Huybrechts, P.

    2009-04-01

    We have used 268 cloud-free Moderate-resolution Imaging Spectroradiometer (MODIS) images spanning the 2003 and 2005-2007 melt seasons to study the seasonal evolution of supra-glacial lakes in three different regions of the Greenland Ice Sheet. Lake area estimates were obtained by developing an automated classification method for their identification based on 250 m resolution MODIS surface reflectance observations. Widespread supra-glacial lake formation and drainage is observed across the ice sheet, with a 2-3 weeks delay in the evolution of total supra-glacial lake area in the northern areas compared to the south-west. The onset of lake growth varies by up to one month inter-annually, and lakes form and drain at progressively higher altitudes during the melt season. A correlation was found between the annual peak in total lake area and modelled annual runoff across all study areas. Our results indicate that, in a future warmer climate (Meehl et al., 2007), Greenland supra-glacial lakes can be expected to form at higher altitudes and over a longer time period than is presently the case, expanding the area and time period over which connections between the ice sheet surface and base may be established (Das et al., 2008) with potential consequences for ice sheet discharge (Zwally et al., 2002). Das, S., Joughin, M., Behn, M., Howat, I., King, M., Lizarralde, D., & Bhatia, M. (2008). Fracture propagation to the base of the Greenland Ice Sheet during supra-glacial lake drainage. Science, 5877, 778-781. Meehl, G.A., Stocker, T.F., Collins W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J. & Zhao, Z.C. (2007). Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor

  15. Geophysical survey of the Eggvin Bank and Logi Ridge - Greenland Sea

    NASA Astrophysics Data System (ADS)

    Breivik, A. J.; Mjelde, R.; Rai, A. K.; Frassetto, A.

    2012-12-01

    The northern Greenland Sea has a number of features associated with excess volcanism. These include the Jan Mayen island, the Jan Mayen Plateau north of, and the Eggvin Bank west of Jan Mayen, and the Vesteris Seamount far to the north. In the summer of 2011, we colleced an Ocean Bottom Seismometer (OBS) profile across the Eggvin Bank, returning four good data sets. We also collected single-channel reflection seismic (SCS) data along the OBS line. The profile crosses the transform part of the West Jan Mayen Fracture Zone (WJMFZ), which connects seafloor spreading between the Kolbeinsey and Mohn ridges. Between the WJMFZ and the Vesteris Seamount there is a narrow ridge 170-180 km long, ending in a few seamounts in the east. It disturbs the magnetic seafloor anomalies, and has no conjugate on the Norwegian margin. It thus appears to be younger than the Eocene seafloor it lies on. Trend and position points to Traill Ø in East Greenland, which had magmatism at ~36 Ma. We name it the Logi Ridge after Norse mythology, where Logi is the master of fire, brother of Aegir, master of the sea. We have collected five SCS profiles across this ridge in order to study the surrounding sedimentation pattern. We also collected gravity and magnetic data along all profiles. Initial results show two flat-topped seamounts on the Eggvin Bank, and a flat-topped Logi Ridge, indicating that these have been at sealevel. The sedimentary strata show recent vertical movement north of the WJMFZ near the Jan Mayen Plateau, and compression around the Logi Ridge. Sailing line of R/V Håkon Mosby of Bergen. Survey lines are in bold, and OBS positions are marked by circles.

  16. Modelling Greenland icebergs

    NASA Astrophysics Data System (ADS)

    Marson, Juliana M.; Myers, Paul G.; Hu, Xianmin

    2017-04-01

    The Atlantic Meridional Overturning Circulation (AMOC) is well known for carrying heat from low to high latitudes, moderating local temperatures. Numerical studies have examined the AMOC's variability under the influence of freshwater input to subduction and deep convections sites. However, an important source of freshwater has often been overlooked or misrepresented: icebergs. While liquid runoff decreases the ocean salinity near the coast, icebergs are a gradual and remote source of freshwater - a difference that affects sea ice cover, temperature, and salinity distribution in ocean models. Icebergs originated from the Greenland ice sheet, in particular, can affect the subduction process in Labrador Sea by decreasing surface water density. Our study aims to evaluate the distribution of icebergs originated from Greenland and their contribution to freshwater input in the North Atlantic. To do that, we use an interactive iceberg module coupled with the Nucleus for European Modelling of the Ocean (NEMO v3.4), which will calve icebergs from Greenland according to rates established by Bamber et al. (2012). Details on the distribution and trajectory of icebergs within the model may also be of use for understanding potential navigation threats, as shipping increases in northern waters.

  17. Controlled artificial upwelling in a fjord to combat toxic algae

    NASA Astrophysics Data System (ADS)

    McClimans, T. A.; Hansen, A. H.; Fredheim, A.; Lien, E.; Reitan, K. I.

    2003-04-01

    During the summer, primary production in the surface layers of some fjords depletes the nutrients to the degree that some arts of toxic algae dominate the flora. We describe an experiment employing a bubble curtain to lift significant amounts of nutrient-rich seawater to the light zone and provide an environment in which useful algae can survive. The motivation for the experiment is to provide a local region in which mussels can be cleansed from the effects of toxic algae. Three 100-m long, perforated pipes were suspended at 40 m depth in the Arnafjord, a side arm of the Sognefjord. Large amounts of compressed air were supplied during a period of three weeks. The deeper water mixed with the surface water and flowed from the mixing region at 5 to 15 m depth. Within a few days, the mixture of nutrient-rich water covered most of the inner portion of Arnafjord. Within 10 days, the plankton samples showed that the artificial upwelling produced the desired type of algae and excluded the toxic blooms that were occurring outside the manipulated fjord arm. The project (DETOX) is supported by the Norwegian ministries of Fisheries, Agriculture and Public Administration.

  18. greenland_summer_campaign

    NASA Image and Video Library

    2015-08-28

    Laurence Smith, chair of geography at University of California, Los Angeles, deploys an autonomous drift boat equipped with several sensors in a meltwater river on the surface of the Greenland ice sheet on July 19, 2015. “Surface melting in Greenland has increased recently, and we lacked a rigorous estimate of the water volumes being produced and their transport,” said Tom Wagner, the cryosphere program scientist at NASA Headquarters in Washington. “NASA funds fieldwork like Smith’s because it helps us to interpret satellite data, and to extrapolate measurements from the local field sites to the larger ice sheet." Credit: NASA/Goddard/Jefferson Beck

  19. Tracking millennial-scale Holocene glacial advance and retreat using osmium isotopes: Insights from the Greenland ice sheet

    USGS Publications Warehouse

    Rooney, Alan D.; Selby, David; Llyod, Jeremy M.; Roberts, David H.; Luckge, Andreas; Sageman, Bradley B.; Prouty, Nancy G.

    2016-01-01

    High-resolution Os isotope stratigraphy can aid in reconstructing Pleistocene ice sheet fluctuation and elucidating the role of local and regional weathering fluxes on the marine Os residence time. This paper presents new Os isotope data from ocean cores adjacent to the West Greenland ice sheet that have excellent chronological controls. Cores MSM-520 and DA00-06 represent distal to proximal sites adjacent to two West Greenland ice streams. Core MSM-520 has a steadily decreasing Os signal over the last 10 kyr (187Os/188Os = 1.35–0.81). In contrast, Os isotopes from core DA00-06 (proximal to the calving front of Jakobshavn Isbræ) highlight four stages of ice stream retreat and advance over the past 10 kyr (187Os/188Os = 2.31; 1.68; 2.09; 1.47). Our high-resolution chemostratigraphic records provide vital benchmarks for ice-sheet modelers as we attempt to better constrain the future response of major ice sheets to climate change. Variations in Os isotope composition from sediment and macro-algae (seaweed) sourced from regional and global settings serve to emphasize the overwhelming effect weathering sources have on seawater Os isotope composition. Further, these findings demonstrate that the residence time of Os is shorter than previous estimates of ∼104 yr.

  20. Adventure Learning @ Greenland

    NASA Astrophysics Data System (ADS)

    Miller, B. G.; Cox, C. J.; Hougham, J.; Walden, V. P.; Eitel, K.; Albano, A.

    2013-12-01

    Teaching the general public and K-12 communities about scientific research has taken on greater importance as climate change increasingly impacts the world we live in. Science researchers and the educational community have a widening responsibility to produce and deliver curriculum and content that is timely, scientifically sound and engaging. To address this challenge, in the summer of 2012 the Adventure Learning @ Greenland (AL@GL) project, a United States' National Science Foundation (NSF) funded initiative, used hands-on and web-based climate science experiences for high school students to promote climate and science literacy. This presentation will report on an innovative approach to education and outreach for environmental science research known as Adventure Learning (AL). The purpose of AL@GL was to engage high school students in the US, and in Greenland, in atmospheric research that is being conducted in the Arctic to enhance climate and science literacy. Climate and science literacy was explored via three fundamental concepts: radiation, the greenhouse effect, and climate vs. weather. Over the course of the project, students in each location engaged in activities and conducted experiments through the use of scientific instrumentation. Students were taught science research principles associated with an atmospheric observatory at Summit Station, Greenland with the objective of connecting climate science in the Arctic to student's local environments. Summit Station is located on the Greenland Ice Sheet [72°N, 38°W, 3200 m] and was the primary location of interest. Approximately 35 students at multiple locations in Idaho, USA, and Greenland participated in the hybrid learning environments as part of this project. The AL@GL project engaged students in an inquiry-based curriculum with content that highlighted a cutting-edge geophysical research initiative at Summit: the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at

  1. Vegetation Greenness and Its Drivers across Ice-free Greenland

    NASA Astrophysics Data System (ADS)

    Pedersen, S. H.; Liston, G. E.; Tamstorf, M. P.; Schmidt, N. M.

    2017-12-01

    The coastal and mountain areas surrounding the Greenland Ice Sheet cover one-fifth of Greenland. This ice-free area spans more than 20 degrees latitude and includes high-, low-, and sub-Arctic climate zones and the terrain varies from sea level to 3700 m elevation. Hence, this area contains a wide range of vegetation growing conditions associated with precipitation, temperature, and incoming solar radiation found across these latitudinal, elevational, and coast-inland gradients. In this study, we mapped the spatial distribution of vegetation at 300-m spatial resolution across ice-free Greenland using the annual maximum vegetation greenness (MaxNDVI) and the timing of MaxNDVI derived from daily Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data from 2000-2015. Further, we investigated the drivers of the annual MaxNDVI and its timing across the diverse vegetation growing conditions in Greenland using modeled climatic variables, including snow quantity and timing, at the same temporal and spatial resolutions. The annual average MaxNDVI varied between 0.3 and 0.5 in North Greenland, and 0.6 and 0.9 in South Greenland. The timing of MaxNDVI differed more than two weeks between North and South Greenland. The potential growing season, e.g., the period with no snow on the ground, was as short as one month in North Greenland (mainly August), and four to five times longer in South Greenland (typically starting in mid-May). The snow-free date varied with elevation, from valley bottoms to the mountain tops, having the same range that existed from South to North Greenland. Our results show that MaxNDVI and its timing are significantly driven by the timing of snow-free ground and the amount of meltwater available from the snowpack during spring snowmelt.

  2. Observations and modeling of fjord sedimentation during the 30 year retreat of Columbia Glacier, AK

    USGS Publications Warehouse

    Love, Katherine B; Hallet, Bernard; Pratt, Thomas L.; O'Neel, Shad

    2016-01-01

    To explore links between glacier dynamics, sediment yields and the accumulation of glacial sediments in a temperate setting, we use extensive glaciological observations for Columbia Glacier, Alaska, and new oceanographic data from the fjord exposed during its retreat. High-resolution seismic data indicate that 3.2 × 108 m3 of sediment has accumulated in Columbia Fjord over the past three decades, which corresponds to ~5 mm a−1 of erosion averaged over the glaciated area. We develop a general model to infer the sediment-flux history from the glacier that is compatible with the observed retreat history, and the thickness and architecture of the fjord sediment deposits. Results reveal a fivefold increase in sediment flux from 1997 to 2000, which is not correlated with concurrent changes in ice flux or retreat rate. We suggest the flux increase resulted from an increase in the sediment transport capacity of the subglacial hydraulic system due to the retreat-related steepening of the glacier surface over a known subglacial deep basin. Because variations in subglacial sediment storage can impact glacial sediment flux, in addition to changes in climate, erosion rate and glacier dynamics, the interpretation of climatic changes based on the sediment record is more complex than generally assumed.

  3. Bacterial and primary production in the Greenland Sea

    NASA Astrophysics Data System (ADS)

    Børsheim, Knut Yngve

    2017-12-01

    Bacterial production rates were measured in water profiles collected in the Greenland Sea and adjacent areas. Hydrography and nutrients throughout the water column were measured along 75°N from 12°W to 10°E at 20 km distance intervals. Net primary production rates from satellite sensed data were compared with literature values from 14C incubations and used for regional and seasonal comparisons. Maximum bacterial production rates were associated with the region close to the edge of the East Greenland current, and the rates decreased gradually towards the center of the Greenland Sea central gyre. Integrated over the upper 20 m the maximum bacterial production rate was 17.9 mmol C m- 2 day- 1, and east of the center of the gyre the average integrated rate was 4.6 mmol C m- 2 day- 1. It is hypothesized that high bacterial production rates in the western Greenland Sea were sustained by organic material carried from the Arctic Ocean by the East Greenland Current. The depth profiles of nitrate and phosphate were very similar both sides of the Arctic front, with 2% higher values between 500 m and 2000 m in the Arctic domain, and a N/P ratio of 13.6. The N/Si ratio varied by depth and region, with increasing silicate depletion from 1500 m depth to the surface. The rate of depletion from 1500 m depth to surface in the Atlantic domain was twice as high as in the Arctic domain. Net primary production rates in the area between the edge of the East Greenland current and the center of the Greenland Sea gyre was 96 mmol C m- 2 day- 1 at the time of the expedition in 2006, and 78 mmol C m- 2 day- 1 east of the center including the Atlantic domain. Annual net primary production estimated from satellite data in the Greenland Sea increased substantially in the period between 2003 and 2016, and the rate of increase was lowest close to the East Greenland Current.

  4. Thinning of the ice sheet in northwest Greenland over the past forty years.

    PubMed

    Paterson, W S; Reeh, N

    2001-11-01

    Thermal expansion of the oceans, as well as melting of glaciers, ice sheets and ice caps have been the main contributors to global sea level rise over the past century. The greatest uncertainty in predicting future sea level changes lies with our estimates of the mass balance of the ice sheets in Greenland and Antarctica. Satellite measurements have been used to determine changes in these ice sheets on short timescales, demonstrating that surface-elevation changes on timescales of decades or less result mainly from variations in snow accumulation. Here we present direct measurements of the changes in surface elevation between 1954 and 1995 on a traverse across the north Greenland ice sheet. Measurements over a time interval of this length should reflect changes in ice flow-the important quantity for predicting changes in sea level-relatively unperturbed by short-term fluctuations in snow accumulation. We find only small changes in the eastern part of the transect, except for some thickening of the north ice stream. On the west side, however, the thinning rates of the ice sheet are significantly higher and thinning extends to higher elevations than had been anticipated from previous studies.

  5. Proglacial River Reveals Substantial Greenland Ice Sheet Climate Sensitivity and Meltwater Routing Delays

    NASA Astrophysics Data System (ADS)

    van As, D.; Mikkelsen, A. B.; Holtegaard Nielsen, M.; Claesson Liljedahl, L.; Lindback, K.; Pitcher, L. H.; Hasholt, B.

    2016-12-01

    A 12.000 km2 area of the Greenland ice sheet discharges meltwater via the proglacial Watson River in west Greenland. In a ten-year time span of continuous monitoring (2006-2015), the river discharged 3.8 km3 to 11.2 km3 yr-1. The large interannual variability is for an important part explained by hypsometric amplification: the flattening of the ice sheet with elevation adds 70% meltwater discharge sensitivity to atmospheric temperature. Comparing river discharge with ice sheet surface meltwater production from an observation-based surface mass balance model we quantify multiple-day routing delays for meltwater transit through the supra-, en-, sub- and proglacial system. This delay increases with ice sheet surface elevation: on average five days for surface water at the previous-known equilibrium line altitude (ELA) of ca. 1550 m, and seven days at the 2009-2015 ELA of ca. 1800 m above sea level. A flooding of the Kangerlussuaq bridge as in July 2012 thus requires a multi-day high-melt episode and can therefore be anticipated by in-situ monitoring of ice sheet melt. No evidence of significant en- or subglacial meltwater retention is found.

  6. Discharge of debris from ice at the margin of the Greenland ice sheet

    USGS Publications Warehouse

    Knight, P.G.; Waller, R.I.; Patterson, C.J.; Jones, A.P.; Robinson, Z.P.

    2002-01-01

    Sediment production at a terrestrial section of the ice-sheet margin in West Greenland is dominated by debris released through the basal ice layer. The debris flux through the basal ice at the margin is estimated to be 12-45 m3 m-1 a-1. This is three orders of magnitude higher than that previously reported for East Antarctica, an order of magnitude higher than sites reported from in Norway, Iceland and Switzerland, but an order of magnitude lower than values previously reported from tidewater glaciers in Alaska and other high-rate environments such as surging glaciers. At our site, only negligible amounts of debris are released through englacial, supraglacial or subglacial sediment transfer. Glacio-fluvial sediment production is highly localized, and long sections of the ice-sheet margin receive no sediment from glaciofluvial sources. These findings differ from those of studies at more temperate glacial settings where glaciofluvial routes are dominant and basal ice contributes only a minor percentage of the debris released at the margin. These data on debris flux through the terrestrial margin of an outlet glacier contribute to our limited knowledge of debris production from the Greenland ice sheet.

  7. Earthquake Activity in the North Greenland Region

    NASA Astrophysics Data System (ADS)

    Larsen, Tine B.; Dahl-Jensen, Trine; Voss, Peter H.

    2017-04-01

    Many local and regional earthquakes are recorded on a daily basis in northern Greenland. The majority of the earthquakes originate at the Arctic plate boundary between the Eurasian and the North American plates. Particularly active regions away from the plate boundary are found in NE Greenland and in northern Baffin Bay. The seismograph coverage in the region is sparse with the main seismograph stations located at the military outpost, Stations Nord (NOR), the weather station outpost Danmarkshavn (DAG), Thule Airbase (TULEG), and the former ice core drilling camp (NEEM) in the middle of the Greenland ice sheet. Furthermore, data is available from Alert (ALE), Resolute (RES), and other seismographs in northern Canada as well as from a temporary deployment of BroadBand seismographs along the north coast of Greenland from 2004 to 2007. The recorded earthquakes range in magnitude from less than 2 to a 4.8 event, the largest in NE Greenland, and a 5.7 event, the largest recorded in northern Baffin Bay. The larger events are recorded widely in the region allowing for focal mechanisms to be calculated. Only a few existing focal mechanisms for the region can be found in the ISC bulletin. Two in NE Greenland representing primarily normal faulting and one in Baffin Bay resulting from reverse faulting. New calculations of focal mechanisms for the region will be presented as well as improved hypocenters resulting from analysis involving temporary stations and regional stations that are not included in routine processing.

  8. Continuous, Pulsed Export of Methane-Supersaturated Meltwaters from the Bed of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Lamarche-Gagnon, G.; Wadham, J.; Beaton, A.; Fietzek, P.; Stanley, K. M.; Tedstone, A.; Sherwood Lollar, B.; Lacrampe Couloume, G.; Telling, J.; Liz, B.; Hawkings, J.; Kohler, T. J.; Zarsky, J. D.; Stibal, M.; Mowlem, M. C.

    2016-12-01

    Both past and present ice sheets have been proposed to cap large quantities of methane (CH4), on orders of magnitude significant enough to impact global greenhouse gas concentrations during periods of rapid ice retreat. However, to date most evidence for sub-ice sheet methane has been indirect, derived from calculations of the methanogenic potential of basal-ice microbial communities and biogeochemical models; field-based empirical measurements are lacking from large ice sheet catchments. Here, we present the first continuous, in situ record of dissolved methane export from a large catchment of the Greenland Ice Sheet (GrIS) in South West Greenland from May-July 2015. Our results indicate that glacial runoff was continuously supersaturated with methane over the observation period (dissolved CH4 concentrations of 30-700 nM), with total methane flux rising as subglacial discharge increased. Periodic subglacial drainage events, characterised by rapid changes (i.e. pulses) in meltwater hydrochemistry, also coincided with a rise in methane concentrations. We argue that these are likely indicative of the flushing of subglacial reservoirs of CH4 beneath the ice sheet. Total methane export was relatively modest when compared to global methane budgets, but too high to be explained by previously determined methanogenic rates from Greenland basal ice. Discrepancies between estimated Greenland methane reserves and observed fluxes stress the need to further investigate GrIS methane fluxes and sources, and suggest a more biogeochemically active subglacial environment than previously considered. Results indicate that future warming, and a coincident increase in ice melt rates, would likely make the GrIS, and by extension the Antarctic Ice Sheet, more significant sources of atmospheric methane, consequently acting as a positive feedback to a warming climate.

  9. Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming

    DOE PAGES

    de la Peña, S.; Howat, I. M.; Nienow, P. W.; ...

    2015-06-11

    Atmospheric warming over the Greenland Ice Sheet during the last 2 decades has increased the amount of surface meltwater production, resulting in the migration of melt and percolation regimes to higher altitudes and an increase in the amount of ice content from refrozen meltwater found in the firn above the superimposed ice zone. Here we present field and airborne radar observations of buried ice layers within the near-surface (0–20 m) firn in western Greenland, obtained from campaigns between 1998 and 2014. We find a sharp increase in firn-ice content in the form of thick widespread layers in the percolation zone,more » which decreases the capacity of the firn to store meltwater. The estimated total annual ice content retained in the near-surface firn in areas with positive surface mass balance west of the ice divide in Greenland reached a maximum of 74 ± 25 Gt in 2012, when compared to the 1958–1999 average of 13 ± 2 Gt, while the percolation zone area more than doubled between 2003 and 2012. Increased melt and column densification resulted in surface lowering averaging -0.80 ± 0.39 m yr -1 between 1800 and 2800 m in the accumulation zone of western Greenland. Since 2007, modeled annual melt and refreezing rates in the percolation zone at elevations below 2100 m surpass the annual snowfall from the previous year, implying that mass gain in the region is retained after melt in the form of refrozen meltwater. Furthermore, if current melt trends over high elevation regions continue, subsequent changes in firn structure will have implications for the hydrology of the ice sheet and related abrupt seasonal densification could become increasingly significant for altimetry-derived ice sheet mass balance estimates.« less

  10. Average sedimentary rock rare Earth element patterns and crustal evolution: Some observations and implications from the 3800 Ma ISUA supracrustal belt, West Greenland

    NASA Technical Reports Server (NTRS)

    Dymek, R. F.; Boak, J. L.; Gromet, L. P.

    1983-01-01

    Rare earth element (REE) data is given on a set of clastic metasediments from the 3800 Ma Isua Supracrustal belt, West Greenland. Each of two units from the same sedimentary sequence has a distinctive REE pattern, but the average of these rocks bears a very strong resemblance to the REE pattern for the North American Shale Composite (NASC), and departs considerably from previous estimates of REE patterns in Archaean sediments. The possibility that the source area for the Isua sediments resembled that of the NASC is regarded as highly unlikely. However, REE patterns like that in the NASC may be produced by sedimentary recycling of material yielding patterns such as are found at Isua. The results lead to the following tentative conclusions: (1) The REE patterns for Isua Seq. B MBG indicate the existence of crustal materials with fractionated REE and negative Eu anomalies at 3800 Ma, (2) The average Seq. B REE pattern resembles that of the North American Shale Composite (NASC), (3) If the Seq. B average is truly representative of its crustal sources, then this early crust could have been extensively differentiated. In this regard, a proper understanding of the NASC pattern, and its relationship to post-Archaean crustal REE reservoirs, is essential, (4) The Isua results may represent a local effect.

  11. Algal communities in cryoconite holes on the Russell glacier, Southwest Greenland

    NASA Astrophysics Data System (ADS)

    Lamsters, Kristaps; Stivrins, Normunds; Karušs, Jānis; Krievāns, Māris; Rečs, Agnis

    2017-04-01

    2007 (July 24). This turnover in algae composition over the last decade indicates apparent microbiological changes in Southwestern Greenland, which can enhance melting of the ice. References Uetake, J., Naganuma, T., Hebsgaard, M. B., Kanda, H., Kohshima, S. 2010. Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Science, 4(1), 71-80.

  12. Influence of the Little Ice Age on the biological structure of lakes in South West Greenland

    NASA Astrophysics Data System (ADS)

    McGowan, S.; Hogan, E. J.; Jones, V.; Anderson, N. J.; Simpson, G.

    2013-12-01

    Arctic lakes are considered to be particularly sensitive to environmental change, with biological remains in lake sediment records being interpreted as reflecting climate forcing. However the influence that differences in catchment properties and lake morphometries have on the sedimentary record is rarely considered. We investigated sediment cores from three lakes located close to the inland ice sheet margin in the Kangerlussuaq area of South West Greenland but within a few kilometres of one another. This regional replication allowed for direct comparisons of biological change in lakes exposed to identical environmental pressures (cooling, increased wind speeds) over the past c.2000 years. Sedimentary pigments were used as a proxy for whole-lake production and to investigate differences in phytoplankton community structure whilst fossil diatom assemblages were studied to determine differences in ecological responses during this time. We noted several major effects of the Little Ice Age cooling (LIA, c. 1400-1850AD). The organic content of sediments in all three lakes declined, and this effect was most pronounced in lakes closest to the inland ice sheet margin, which suggests that aeolian inputs derived from the glacial outwash plains (sandurs), and wind-scouring of the thin catchment soils by strong katabatic winds associated with the regional cooling might have both contributed to this sedimentary change. During the LIA total algal production (as indicated by chlorophyll and carotenoid pigments) was lower in all three lakes, most likely because of extended ice-cover and shorter growing seasons, and the ratio of planktonic: benthic diatom taxa increased, possibly because of lower light availability or fertilization from loess material. Despite this coherence in lake response to the LIA, diatom community composition changes in individual lakes differed, reflecting individual lake morphometry and catchment characteristics. These findings highlight the importance of

  13. Greenland ice cores tell tales on past sea level changes

    NASA Astrophysics Data System (ADS)

    Dahl-Jensen, D.

    2017-12-01

    All the deep ice cores drilled to the base of the Greenland ice sheet contain ice from the previous warm climate period, the Eemian 130-115 thousand years before present. This demonstrates the resilience of the Greenland ice sheet to a warming of 5 oC. Studies of basal material further reveal the presence of boreal forest over Greenland before ice covered Greenland. Conditions for Boreal forest implies temperatures at this time has been more than 10 oC warmer than the present. To compare the paleo-behavior of the Greenland ice sheet to the present in relation to sea level rise knowledge gabs include the reaction of ice streams to climate changes. To address this the international EGRIP-project is drilling an ice core in the center of the North East Greenland Ice Stream (NEGIS). The first results will be presented.

  14. Inland thinning on the Greenland ice sheet controlled by outlet glacier geometry

    NASA Astrophysics Data System (ADS)

    Felikson, Denis; Bartholomaus, Timothy C.; Catania, Ginny A.; Korsgaard, Niels J.; Kjær, Kurt H.; Morlighem, Mathieu; Noël, Brice; van den Broeke, Michiel; Stearns, Leigh A.; Shroyer, Emily L.; Sutherland, David A.; Nash, Jonathan D.

    2017-04-01

    Greenland’s contribution to future sea-level rise remains uncertain and a wide range of upper and lower bounds has been proposed. These predictions depend strongly on how mass loss--which is focused at the termini of marine-terminating outlet glaciers--can penetrate inland to the ice-sheet interior. Previous studies have shown that, at regional scales, Greenland ice sheet mass loss is correlated with atmospheric and oceanic warming. However, mass loss within individual outlet glacier catchments exhibits unexplained heterogeneity, hindering our ability to project ice-sheet response to future environmental forcing. Using digital elevation model differencing, we spatially resolve the dynamic portion of surface elevation change from 1985 to present within 16 outlet glacier catchments in West Greenland, where significant heterogeneity in ice loss exists. We show that the up-glacier extent of thinning and, thus, mass loss, is limited by glacier geometry. We find that 94% of the total dynamic loss occurs between the terminus and the location where the down-glacier advective speed of a kinematic wave of thinning is at least three times larger than its diffusive speed. This empirical threshold enables the identification of glaciers that are not currently thinning but are most susceptible to future thinning in the coming decades.

  15. Earthshots: Satellite images of environmental change – Petermann Glacier, Greenland

    USGS Publications Warehouse

    Adamson, Thomas

    2016-01-01

    This calving is normal, but it’s worth watching Petermann and other Greenland glaciers closely. Petermann is one of the major marine-terminating glaciers of Greenland. Ice loss from the Greenland Ice Sheet has increased recently. An article in Nature concluded that climate change may cause Petermann and other Greenland glaciers to contribute to sea level rise. Landsat helps glaciologists keep a close eye on this remote but significant glacier.

  16. A millennial-scale record of tidewater glacier advance and retreat, SW Greenland.

    NASA Astrophysics Data System (ADS)

    Pearce, Danni; Mair, Doug; Rea, Brice; Schofield, Ed; Lea, James; Barr, Iestyn; Kamenos, Nick; Schoenrock, Kate

    2017-04-01

    Tidewater glaciers (TWGs) exert a major control on the short- and long-term mass balance of the Greenland Ice Sheet (GrIS) and have experienced widespread retreat over the last century. However, in many cases inferences on their dynamics, prior to this, are poorly constrained due to a lack of observations and paucity of mapped or mappable deglacial geomorphology. Especially lacking is evidence associated with TWG advance during the Little Ice Age (LIA, AD c. 1300 to 1850). Such data are crucial for numerical model calibration and validation in order to more confidently forward model ice sheet dynamics and projection future sea-level rise. Therefore, empirical data constraints from the palaeo-record, that span such timescales (decadal to millennial), are essential. Kangiata Nunaata Sermia (KNS) is the most dynamic TWG in SW Greenland, located c. 100 km inland from Nuuk, at the head of Godthabsfjord. KNS has received considerable research attention over the last decade but glacial geomorphological and numerical dating investigations have been limited. However, the adjacent topography and geomorphology presents a unique opportunity to reconstruct the advance and retreat dynamics over the LIA. We present detailed glacial geomorphological mapping for KNS, which followed a morphostratigraphic approach, using a combination of aerial photos, Landsat, a DEM and field mapping. This identified a three landsystems, which are associated with the LIA, pre-LIA and neoglacial. From the mapping inferences on rapid changes in meltwater routing have been inferred. When KNS reached its LIA maximum (c. 1761), the calving front was c. >22 km further along the fjord than present and a number of ice-dammed lakes were formed. We present new 14C dating from peat underlying lake sediments associated with an ice-dammed lake and buried palaeosols resulting from meltwater re-routing over topographic spillways. The ages support an early and rapid LIA advance phase, with advance rates being

  17. SIMPL/AVIRIS-NG Greenland 2015: Flight Report

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Neumann, Thomas A.; Markus, Thorsten

    2015-01-01

    In August 2015, NASA conducted a two-­aircraft, coordinated campaign based out of Thule Air Base, Greenland, in support of Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) algorithm development. The survey targeted the Greenland Ice Sheet and sea ice in the Arctic Ocean during the summer melt season. The survey was conducted with a photon-counting laser altimeter in one aircraft and an imaging spectrometer in the second aircraft. Ultimately, the mission, SIMPL/AVIRIS-NG Greenland 2015, conducted nine coordinated science flights, for a total of 37 flight hours over the ice sheet and sea ice.

  18. SeaWinds - Greenland

    NASA Image and Video Library

    2000-05-08

    The frequent coverage provided by NASA SeaWinds instrument on the QuikScat satellite in 1999 provided unprecedented capability to monitor daily and seasonal changes in the key melt zones of Greenland.

  19. Polar continental margins: Studies off East Greenland

    NASA Astrophysics Data System (ADS)

    Mienert, J.; Thiede, J.; Kenyon, N. H.; Hollender, F.-J.

    The passive continental margin off east Greenland has been shaped by tectonic and sedimentary processes, and typical physiographic patterns have evolved over the past few million years under the influence of the late Cenozoic Northern Hemisphere glaciations. The Greenland ice shield has been particularly affected.GLORIA (Geological Long Range Inclined Asdic), the Institute of Oceanographic Sciences' (IOS) long-range, side-scan sonar, was used on a 1992 RV Livonia cruise to map large-scale changes in sedimentary patterns along the east Greenland continental margin. The overall objective of this research program was to determine the variety of large-scale seafloor processes to improve our understanding of the interaction between ice sheets, current regimes, and sedimentary processes. In cooperation with IOS and the RV Livonia, a high-quality set of seafloor data has been produced. GLORIA'S first survey of east Greenland's continental margin covered several 1000- × 50-km-wide swaths (Figure 1) and yielded an impressive sidescan sonar image of the complete Greenland Basin and margin (about 250,000 km2). A mosaic of the data was made at a scale of 1:375,000. The base map was prepared with a polar stereographic projection having a standard parallel of 71°.

  20. Dynamics of dissolved organic matter in fjord ecosystems: Contributions of terrestrial dissolved organic matter in the deep layer

    NASA Astrophysics Data System (ADS)

    Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf

    2015-06-01

    Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.

  1. Pathways of warm water to the Northeast Greenland outlet glaciers

    NASA Astrophysics Data System (ADS)

    Schaffer, Janin; Timmermann, Ralph; Kanzow, Torsten; Arndt, Jan Erik; Mayer, Christoph; Schauer, Ursula

    2015-04-01

    The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers surrounding the Greenland coast. The warming and accumulation of Atlantic Water in the subpolar North Atlantic has been suggested to be a potential driver of the glaciers' retreat over the last decades. The shelf regions thus play a critical role for the transport of Atlantic Water towards the glaciers, but also for the transfer of freshwater towards the deep ocean. A key region for the mass balance of the Greenland Ice Sheet is the Northeast Greenland Ice Stream. This large ice stream drains the second-largest basin of the Greenland Ice Sheet and feeds three outlet glaciers. The largest one is Nioghalvfjerdsfjorden (79°N-Glacier) featuring an 80 km long floating ice tongue. Both the ocean circulation on the continental shelf off Northeast Greenland and the circulation in the cavity below the ice tongue are weakly constrained so far. In order to study the relevant processes of glacier-ocean interaction we combine observations and model work. Here we focus on historic and recent hydrographic observations and on the complex bathymetry in the Northeast Greenland shelf region, which is thought to steer the flux of warm Atlantic water onto the continental shelf and into the sub-ice cavity beneath the 79°N-Glacier. We present a new global topography data set, RTopo-2, which includes the most recent surveys on the Northeast Greenland continental shelf and provides a detailed bathymetry for all around Greenland. In addition, RTopo-2 contains ice and bedrock surface topographies for Greenland and Antarctica. Based on the updated ocean bathymetry and a variety of hydrographic observations we show the water mass distribution on the continental shelf off Northeast Greenland. These maps enable us to discuss possible supply pathways of warm modified Atlantic waters on the continental shelf and thus potential ways of heat

  2. New imaging of submarine landslides from the 1964 earthquake near Whittier, Alaska, and a comparison to failures in other Alaskan fjords

    USGS Publications Warehouse

    Haeussler, Peter J.; Parsons, Thomas E.; Finlayson, David P.; Hart, Patrick J.; Chaytor, Jason D.; Ryan, Holly F; Lee, Homa J.; Labay, Keith A.; Peterson, Andrew; Liberty, Lee

    2014-01-01

    The 1964 Alaska M w 9.2 earthquake triggered numerous submarine slope failures in fjords of southern Alaska. These failures generated local tsunamis, such as at Whittier, where they inundated the town within 4 min of the beginning of shaking. Run-up was up to 32 m, with 13 casualties. We collected new multibeam bathymetry and high-resolution sparker seismic data in Passage Canal, and we examined bathymetry changes before and after the earthquake. The data reveal the debris flow deposit from the 1964 landslides, which covers the western 5 km of the fjord bottom. Individual blocks in the flow are up to 145-m wide and 25-m tall. Bathymetry changes show the mass transfer deposits originated from the fjord head and Whittier Creek deltas and had a volume of about 42 million m3. The 1964 deposit has an average thickness of ∼5.4 m. Beyond the debris flow, the failures likely deposited a ∼4.6-m thick megaturbidite in a distal basin. We have studied the 1964 submarine landslides in three fjords. All involved failure of the fjord-head delta. All failures eroded basin-floor sediments and incorporated them as they travelled. All the failures deposited blocks, but their size and travel distances varied greatly. We find a correlation between maximum block size and maximum tsunami run-up regardless of the volume of the slides. Lastly, the fjord’s margins were influenced by increased supply of glacial sediments during the little ice age, which along with a long interseismic interval (∼900 years) may have caused the 1964 earthquake to produce particularly numerous and large submarine landslides.

  3. Organic carbon storage and benthic consumption in sediments of northern fjords (60-80°N)

    NASA Astrophysics Data System (ADS)

    Włodarska-Kowalczuk, Maria; Zaborska, Agata; Jankowska, Emilia; Mazurkiewicz, Mikołaj

    2017-04-01

    Fjords have been recently recognized as hotspots of organic carbon storage, with organic carbon burial rates one hundred times larger than the global ocean average, accounting for 11% of global annual marine carbon burial (Smith et al. (2015) Nature Geoscience 8: 450-453). The organic carbon production and processing in coastal waters and sediments are controlled by environmental settings that are likely to be reshaped in the course of the global warming. The fastest and strongest changes are to occur in polar regions. In the present study we compare organic carbon stocks, accumulation and burial in temperate (Raunefjorden, Ullsfjorden, Balsfjorden) and Arctic (Hornsund, Kongsfjorden, Rijpfjorden) fjords located along the latitudinal/thermal gradient from the southern Norway (60 °N) to North of Svalbard (80 °N). The sediment cores were collected at 3 to 5 stations within the central basin at 150-300 m in each fjord during r/v Helmer Hansen and r/v Oceania cruises in 2014 and 2015. Vertical patterns of grain size and organic matter content and sources (Corg concentration, stable isotope δ13C signature, photosynthetic pigments concentration) have been analyzed. Sediment accumulation rates have been estimated with use of 210Pb dating method. Fresh carbon accumulation rate was estimated based on organic carbon concentration is surface sediments and mass sediment accumulation rate. The variability in metazoan productivity and carbon consumption (calculated based on the macro- and meiobenthic species biomass spectra in samples collected at the same stations) was also assessed to explore the patterns of biological controls of carbon storage in sediments. Carbon burial was estimated by multiplying organic carbon concentration in deepest sampled sediments and mass sediment accumulation rate. The effects of contrasting hydrological regimes and biological activity on the carbon storage in the studied fjords are discussed from the perspective of possible effects of climate

  4. South Greenland, North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This spectacular north looking view of south Greenland (62.0N, 46.0W) shows numerous indentations along the coastline, many of which contain small settlements. These indentations are fiords carved by glaciers of the last ice age. Even today, ice in the center of Greenland is as much as 10,000 ft. thick and great rivers of ice continuously flow toward the sea, where they melt or break off as icebergs - some of which may be seen floating offshore.

  5. South Greenland, North Atlantic Ocean

    NASA Image and Video Library

    1992-04-02

    This spectacular north looking view of south Greenland (62.0N, 46.0W) shows numerous indentations along the coastline, many of which contain small settlements. These indentations are fiords carved by glaciers of the last ice age. Even today, ice in the center of Greenland is as much as 10,000 ft. thick and great rivers of ice continuously flow toward the sea, where they melt or break off as icebergs - some of which may be seen floating offshore.

  6. Summer inventory of landbirds in Kenai Fjords National Park

    USGS Publications Warehouse

    2006-01-01

    As part of the National Park Service Inventory and Monitoring Program, we conducted a summer inventory of landbirds within Kenai Fjords National Park. Using a stratified random sampling design of areas accessible by boat or on foot, we selected sites that encompassed the breadth of habitat types within the Park. We detected 101 species across 52 transects, including 62 species of landbirds, which confirmed presence of 87% of landbird species expected to occur in the Park during the summer breeding season. We found evidence of breeding for three Partners in Flight Watch List species, Rufous Hummingbird (Selasphorus rufus), Olive-sided Flycatcher (Contopus cooperi), and Rusty Blackbird (Euphagus carolinus), which are of particular conservation concern due to recent population declines. Kenai Fjords National Park supports extremely high densities of Hermit Thrush, Orange-crowned Warbler, and Wilson’s Warbler (Wilsonia pusilla) compared with other regions of Alaska. Other commonly observed species included Fox Sparrow (Passerella iliaca), Varied Thrush (Ixoreus naevius), Rubycrowned Kinglet (Regulus calendula), and Yellow Warbler (Dendroica petechia). More than half of the landbird species we observed occurred in needleleaf forests, and several of these species were strongly associated with the coastforest interface. Tall shrub habitats, which occurred across all elevations and in recently deglaciated areas, supported high densities and a diverse array of passerines. Two major riparian corridors, with their broadleaf forests, wetlands, and connectivity to interior Alaska, provided unique and important landbird habitats within the region.

  7. Mesoarchean melting and Neoarchean to Paleoproterozoic metasomatism during the formation of the cratonic mantle keel beneath West Greenland

    NASA Astrophysics Data System (ADS)

    van Acken, D.; Luguet, A.; Pearson, D. G.; Nowell, G. M.; Fonseca, R. O. C.; Nagel, T. J.; Schulz, T.

    2017-04-01

    Highly siderophile element (HSE) concentration and 187Os/188Os isotopic heterogeneity has been observed on various scales in the Earth's mantle. Interaction of residual mantle peridotite with infiltrating melts has been suggested to overprint primary bulk rock HSE signatures originating from partial melting, contributing to the heterogeneity seen in the global peridotite database. Here we present a detailed study of harzburgitic xenolith 474527 from the Kangerlussuaq suite, West Greenland, coupling the Re-Os isotope geochemistry with petrography of both base metal sulfides (BMS) and silicates to assess the impact of overprint induced by melt-rock reaction on the Re-Os isotope system. Garnet harzburgite sample 474527 shows considerable heterogeneity in the composition of its major phases, most notably olivine and Cr-rich garnet, suggesting formation through multiple stages of partial melting and subsequent metasomatic events. The major BMS phases show a fairly homogeneous pentlandite-rich composition typical for BMS formed via metasomatic reaction, whereas the 187Os/188Os compositions determined for 17 of these BMS are extremely heterogeneous ranging between 0.1037 and 0.1981. Analyses by LA-ICP-MS reveal at least two populations of BMS grains characterized by contrasting HSE patterns. One type of pattern is strongly enriched in the more compatible HSE Os, Ir, and Ru over the typically incompatible Pt, Pd, and Re, while the other type shows moderate enrichment of the more incompatible HSE and has overall lower compatible HSE/incompatible HSE composition. The small-scale heterogeneity observed in these BMS highlights the need for caution when utilizing the Re-Os system to date mantle events, as even depleted harzburgite samples such as 474527 are likely to have experienced a complex history of metasomatic overprinting, with uncertain effects on the HSE.

  8. Investigation of Controls on Ice Dynamics in Northeast Greenland from Ice-Thickness Change Record Using Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Larour, E. Y.; Schenk, A. F.; Schlegel, N.; Duncan, K.

    2015-12-01

    We present a new, complete ice thickness change reconstruction of the NE sector of the Greenland Ice Sheet for 1978-2014, partitioned into changes due to surface processes and ice dynamics. Elevation changes are computed from all available stereoscopic DEMs, and laser altimetry data (ICESat, ATM, LVIS). Surface Mass Balance and firn-compaction estimates are from RACMO2.3. Originating nearly at the divide of the Greenland Ice Sheet (GrIS), the dynamically active North East Ice Stream (NEGIS) is capable of rapidly transmitting ice-marginal forcing far inland. Thus, NEGIS provides a possible mechanism for a rapid drawdown of ice from the ice sheet interior as marginal warming, thinning and retreat continues. Our altimetry record shows accelerating dynamic thinning of Zachariæ Isstrom, initially limited to the deepest part of the fjord near the calving front (1978-2000) and then extending at least 75 km inland. At the same time, changes over the Nioghalvfjerdsfjorden (N79) Glacier are negligible. We also detect localized large dynamic changes at higher elevations on the ice sheet. These thickness changes, often occurring at the onset of fast flow, could indicate rapid variations of basal lubrication due to rerouting of subglacial drainage. We investigate the possible causes of the observed spatiotemporal pattern of ice sheet elevation changes using the Ice Sheet System Model (ISSM). This work build on our previous studies examining the sensitivity of ice flow within the Northeast Greenland Ice Stream (NEGIS) to key fields, including ice viscosity, basal drag. We assimilate the new altimetry record into ISSM to improve the reconstruction of basal friction and ice viscosity. Finally, airborne geophysical (gravity, magnetic) and ice-penetrating radar data is examined to identify the potential geologic controls on the ice thickness change pattern. Our study provides the first comprehensive reconstruction of ice thickness changes for the entire NEGIS drainage basin during

  9. Main results of the 2012 joint Norwegian-Russian expedition to the dumping sites of the nuclear submarine K-27 and solid radioactive waste in Stepovogo Fjord, Novaya Zemlya.

    PubMed

    Gwynn, Justin P; Nikitin, Aleksander; Shershakov, Viacheslav; Heldal, Hilde Elise; Lind, Bjørn; Teien, Hans-Christian; Lind, Ole Christian; Sidhu, Rajdeep Singh; Bakke, Gunnar; Kazennov, Alexey; Grishin, Denis; Fedorova, Anastasia; Blinova, Oxana; Sværen, Ingrid; Lee Liebig, Penny; Salbu, Brit; Wendell, Cato Christian; Strålberg, Elisabeth; Valetova, Nailja; Petrenko, Galina; Katrich, Ivan; Logoyda, Igor; Osvath, Iolanda; Levy, Isabelle; Bartocci, Jean; Pham, Mai Khanh; Sam, Adam; Nies, Hartmut; Rudjord, Anne Liv

    2016-01-01

    This paper reports the main results of the 2012 joint Norwegian-Russian expedition to investigate the radioecological situation of the Stepovogo Fjord on the eastern coast of Novaya Zemlya, where the nuclear submarine K-27 and solid radioactive waste was dumped. Based on in situ gamma measurements and the analysis of seawater and sediment samples taken around the submarine, there was no indication of any leakage from the reactor units of K-27. With regard to the radioecological status of Stepovogo Fjord, activity concentrations of all radionuclides in seawater, sediment and biota in 2012 were in general lower than reported from the previous investigations in the 1990s. However in 2012, the activity concentrations of (137)Cs and, to a lesser extent, those of (90)Sr remained elevated in bottom water from the inner part of Stepovogo Fjord compared with surface water and the outer part of Stepovogo Fjord. Deviations from expected (238)Pu/(239,240)Pu activity ratios and (240)Pu/(239)Pu atom ratios in some sediment samples from the inner part of Stepovogo Fjord observed in this study and earlier studies may indicate the possibility of leakages from dumped waste from different nuclear sources. Although the current environmental levels of radionuclides in Stepovogo Fjord are not of immediate cause for concern, further monitoring of the situation is warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Role of Greenland meltwater in the changing Arctic

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, Dmitry; Proshutinsky, Andrey; Timmermans, Mary-Louise; Myers, Paul; Platov, Gennady; Bamber, Jonathan; Curry, Beth; Somavilla, Raquel

    2016-04-01

    Observational data show that the Arctic ocean-ice-atmosphere system has been changing over the last two decades. Arctic change is manifest in the atypical behavior of the climate indices in the 21st century. Before the 2000s, these indices characterized the quasi-decadal variability of the Arctic climate related to different circulation regimes. Between 1948 and 1996, the Arctic atmospheric circulation alternated between anticyclonic circulation regimes and cyclonic circulation regimes with a period of 10-15 years. Since 1997, however, the Arctic has been dominated by an anticyclonic regime. Previous studies indicate that in the 20th century, freshwater and heat exchange between the Arctic Ocean and the sub-Arctic seas were self-regulated and their interactions were realized via quasi-decadal climate oscillations. What physical processes in the Arctic Ocean - sub-Arctic ocean-ice-atmosphere system are responsible for the observed changes in Arctic climate variability? The presented work is motivated by our hypothesis that in the 21st century, these quasi-decadal oscillations have been interrupted as a result of an additional freshwater source associated with Greenland Ice Sheet melt. Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus Greenland freshwater, the amount of which is about a third of the freshwater volume fluxed into the region during the 1970s Great Salinity Anomaly event, can spread and accumulate in the sub-Arctic seas influencing convective processes there. It is not clear, however, whether Greenland freshwater can propagate into the interior convective regions in the Labrador Sea and the Nordic Seas. In order to investigate the fate and pathways of Greenland freshwater in the sub-Arctic seas and to determine how and at what rate Greenland freshwater propagates into the convective regions, several numerical experiments using a passive tracer to

  11. Importance of mixotrophic nanoplankton in Aysén Fjord (Southern Chile) during austral winter

    NASA Astrophysics Data System (ADS)

    Czypionka, Till; Vargas, Cristian A.; Silva, Nelson; Daneri, Giovanni; González, Humberto E.; Iriarte, José Luis

    2011-03-01

    Mixotrophy, the combination of autotrophic and heterotrophic nutrition in the same organism, is widespread in planktonic algae. Several reports from temperate and high-latitude fjords in Scandinavia suggest the occurrence of a niche in late summer and autumn during post-bloom conditions in which mixotrophic algae can become important grazers in pelagic ecosystems, accessing the nutrients bound in their prey to overcome nutrient limitation. Here, we experimentally determined the trophic modes and bacterivory rates for the nanoplankton community (2-20 μm) in Aysén Fjord located in the Chilean Northern Patagonia during two contrasting seasons: winter and spring. While mixotrophic nanoplankton was virtually absent from the system in spring, in winter at occasions it even constituted the dominant trophic group of the nanoplankton with abundances of >900 cells mL -1. This indicates a second niche for mixotrophs in winter, when mixotrophy allows overcoming light limitation.

  12. Assessing net community production in a glaciated Alaskan fjord

    NASA Astrophysics Data System (ADS)

    Reisdorph, S. C.; Mathis, J. T.

    2015-09-01

    The impact of deglaciation in Glacier Bay has been observed to seasonally influence the biogeochemistry of this marine system. The influence from surrounding glaciers, particularly tidewater glaciers, has the potential to affect the efficiency and structure of the marine food web within Glacier Bay. To assess the magnitude and the spatial and temporal variability in net community production in a glaciated fjord, we measured dissolved inorganic carbon, inorganic macronutrients, dissolved oxygen, and particulate organic carbon between July 2011 and July 2012 in Glacier Bay, Alaska. High net community production rates were observed across the bay (~ 54 to ~ 81 mmol C m-2 d-1) between the summer and fall of 2011. However, between the fall and winter, as well as between the winter and spring of 2012, air-sea fluxes of carbon dioxide and organic matter respiration made net community production rates negative across most of the bay as inorganic carbon and macronutrient concentrations returned to pre-bloom levels. The highest organic carbon production occurred within the west arm between the summer and fall of 2011 with ~ 4.5 × 105 kg C d-1. Bay-wide, there was carbon production of ~ 9.2 × 105 g C d-1 between the summer and fall. Respiration and air-sea gas exchange were the dominant drivers of carbon chemistry between the fall and winter of 2012. The substantial spatial and temporal variability in our net community production estimates may reflect glacial influences within the bay, as meltwater is depleted in macronutrients relative to marine waters entering from the Gulf of Alaska in the middle and lower parts of the bay. Further glacial retreat will likely lead to additional modifications in the carbon biogeochemistry of Glacier Bay, with unknown consequences for the local marine food web, which includes many species of marine mammals.

  13. Balance Velocities of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Fahnestock, Mark; Ekholm, Simon; Kwok, Ron

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetry data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail the location of an ice stream in northeastern Greenland, which was only recently discovered using satellite imagery. Enhanced flow associated with all of the major outlets is clearly visible, although small errors in the source data result in less accurate estimates of the absolute flow speeds. Nevertheless, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning.

  14. A multiproxy fjord sediment record of Holocene climate change from the subantarctic Auckland Islands

    NASA Astrophysics Data System (ADS)

    Browne, I. M.; Moy, C. M.; Wilson, G. S.; Neil, H.; Riesselman, C. R.

    2014-12-01

    The Southern Hemisphere Westerly Winds (SHWW) and the associated oceanic fronts have a major influence on atmospheric and oceanic circulation in the Southern Hemisphere. Sediment cores recovered from fjords along the eastern margin of the sub-Antarctic Auckland Islands (51°S, 166°E) are ideally located to sensitively record changes in the strength and position of the SHWW throughout the Holocene. A 5.75m core from Hanfield Inlet preserves both marine and terrestrial environmental components, which we use to develop a multiproxy record of past climatic conditions. This core, composed entirely of brown marine mud and silt, was recovered from a depth of 44m. Based on the entrance sill depth of the fjord (10mbsl) and our knowledge of regional sea level rise, we infer that the base of the core will be early Holocene in age, which will be confirmed using radiocarbon age dating. Benthic foraminiferal assemblages (125-500μm fraction) in surface and downcore samples are dominated by three taxa, Nonionellina flemingi, Cassidulina carinata and Quinqueloculina seminula. These species are either shallow infaunal or infaunal. We will use stable carbon (δ¹³C) and oxygen (δ¹⁸O) isotope geochemistry of the benthic foraminifera Nonionellina flemingi, Bolivina cf. earlandi, Trifarina angulosa, Bulimina marginata f. marginata and Cibicides species (all identified from Rose Bengal stained box-core samples) to reconstruct water column fluctuations associated with frontal migration. These results will compliment bulk sediment C and N concentration and isotope reconstructions of terrestrial organic matter delivery to fjord sub-basins over the past 12,000 years.

  15. Falsifying the Sikussak-Oasis Hypothesis for the Tillite Group, East Greenland: Implications for Trezona-like Carbon Isotope Excursions Beneath Neoproterozoic Glacials

    NASA Astrophysics Data System (ADS)

    Hoffman, P. F.; Domack, E. W.; Maloof, A. C.; Halverson, G. P.

    2006-05-01

    In Neoproterozoic time, East Greenland and East Svalbard (EGES) occupied landward and seaward positions, respectively, on the southern subtropical margin of Laurentia. In both areas, thick clastic-to-carbonate successions are overlain by two discrete glacial and/or periglacial formations, separated by fine basinal clastics. In Svalbard, the younger glacial has a characteristic Marinoan (basal Ediacaran) cap dolostone, but the older glacial is underlain by a 10-permil negative carbon isotope excursion that is indistinguishable from excursions observed exclusively beneath Marinoan glacials in Australia, Namibia and western Laurentia. This led us to propose (Basin Research 16, 297-324, 2004) that the paired glacials in EGES represent the onset and climax of a single, long-lived, Marinoan glaciation. The intervening fine clastics, which contain ikaite pseudomorphs, presumptively accumulated beneath permanent shorefast sea ice (sikussak), analogous to East Greenland fjords during the Younger Dryas and Little Ice Age. In this model, the top of the older glacial signals the start of Snowball Earth. We conducted a preliminary field test of the sikussak hypothesis in Strindberg Land (SL), Andrée Land (AL) and Ella O (EO), East Greenland. We confirmed the correlation of the paired glacials and the Marinoan cap dolostone (missing on EO). In SL, the older glacial (Ulveso Fm) is a thin diamictite overlain by conglomerate lag and a set of megavarves composed of alternating siltstone and ice-rafted debris. In AL and EO, the Ulveso is a sub-glacial diamictite overlain by aeolian and/or marine sandstone. In Bastion Bugt on EO, it is a transgressive shoreface sandstone. This proves that glacial recession occurred under open-water conditions and did not result from permanent sea-ice formation, as stipulated in the sikussak model. There is no evidence that the fine clastic sequence between the glacials formed under an ice cover, or for a single glacial period. This brings us back to

  16. A coupled physical-biological pelagic model of a shallow sill fjord

    NASA Astrophysics Data System (ADS)

    Aksnes, Dag L.; Lie, Ulf

    1990-10-01

    A vertically resolved model for the land-locked fjord Lindåspollene, western Norway is presented. Salinity, temperature, oxygen, nitrogen-nutrients, silicate, and two groups of phytoplankton and herbivores are represented as dynamic variables. From 'below' the model is driven by solar radiation, precipitation, wind and tidal exchange and from 'above' by herbivore mortality. Simulation results are presented and discussed together with actual observations from Lindåspollene. The main seasonal and vertical characteristics of the phytoplankton and herbivore dynamics seem to be well reflected by the model, and realistic seasonal patterns may be produced for several successive years. The most characteristic vertical features are the formation of a summer surface production maximum and a deep chlorophyll maximum. Furthermore, a herbivore biomass which develops in the surface layer divides into a shallow and a deep component during summer and becomes concentrated in the surface layer again in the autumn. The nutricline and the pycnocline develop independently of one another, with consequences for the supply of nutrients to the upper euphotic zone. The bottom-up control exerted by the meteorological forcing, especially the freshwater runoff, seems to be of paramount significance for the observed vertical structure and seasonality of the present fjord system.

  17. Greenland coastal air temperatures linked to Baffin Bay and Greenland Sea ice conditions during autumn through regional blocking patterns

    NASA Astrophysics Data System (ADS)

    Ballinger, Thomas J.; Hanna, Edward; Hall, Richard J.; Miller, Jeffrey; Ribergaard, Mads H.; Høyer, Jacob L.

    2018-01-01

    Variations in sea ice freeze onset and regional sea surface temperatures (SSTs) in Baffin Bay and Greenland Sea are linked to autumn surface air temperatures (SATs) around coastal Greenland through 500 hPa blocking patterns, 1979-2014. We find strong, statistically significant correlations between Baffin Bay freeze onset and SSTs and SATs across the western and southernmost coastal areas, while weaker and fewer significant correlations are found between eastern SATs, SSTs, and freeze periods observed in the neighboring Greenland Sea. Autumn Greenland Blocking Index values and the incidence of meridional circulation patterns have increased over the modern sea ice monitoring era. Increased anticyclonic blocking patterns promote poleward transport of warm air from lower latitudes and local warm air advection onshore from ocean-atmosphere sensible heat exchange through ice-free or thin ice-covered seas bordering the coastal stations. Temperature composites by years of extreme late freeze conditions, occurring since 2006 in Baffin Bay, reveal positive monthly SAT departures that often exceed 1 standard deviation from the 1981-2010 climate normal over coastal areas that exhibit a similar spatial pattern as the peak correlations.

  18. Sonification of cryoconite landscapes over the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Tedesco, M.

    2015-12-01

    Sonification is the use of non-speech audio to convey information. In sonification, several elements can be altered, modified or manipulated to change the perception of the sound, and in turn, the perception of the information being transmitted. For example, an increase or decrease in pitch, tempo and amplitude can be used to convey the information but this can also happen by varying other less commonly used components. One of the advantages of using sonification lies in the temporal, spatial, amplitude, and frequency resolution that offer complementary and supplementary possibilities with respect to visualization techniques. Two years ago, the outcomes of the PolarSEEDS project (www.polaseeds.org), consisting of sonification of time series of albedo, melting and surface temperature over the Greenland ice sheet, were presented in this very same session. The work that I will discuss in this presentation builds on the PolarSEEDS experience, focusing on the fascinating microcosm of cryoconite. Cryoconite is a unique and extremely fascinating form of glacial cover consisting of aggregated rock dust, inorganic and detrital organic matter, and active microbial colonies. It can be seen as 'living stones', with this ecosystem containing the only form of life that is sustained on the majestic surface of the Greenland ice sheet. Microbes are, indeed, the catalyst for cryoconite formation and growth. The cryoconite constituents radiate metabolic heat promoting glacier hole development, melt water formation, and decreasing glacier surface albedo. Lower albedos cause a positive feedback that further contributes to glacier ablation. Despite their importance, cryoconite systems are poorly studied and little is known about their evolution. In the talk, I will first present and discuss previous sonification projects whose main focus was on the polar regions; then, I will present new sonifications based on data quantifying the distribution and evolution of cryoconite over the west

  19. How much can Greenland melt? An upper bound on mass loss from the Greenland Ice Sheet through surface melting

    NASA Astrophysics Data System (ADS)

    Liu, X.; Bassis, J. N.

    2015-12-01

    With observations showing accelerated mass loss from the Greenland Ice Sheet due to surface melt, the Greenland Ice Sheet is becoming one of the most significant contributors to sea level rise. The contribution of the Greenland Ice Sheet o sea level rise is likely to accelerate in the coming decade and centuries as atmospheric temperatures continue to rise, potentially triggering ever larger surface melt rates. However, at present considerable uncertainty remains in projecting the contribution to sea level of the Greenland Ice Sheet both due to uncertainty in atmospheric forcing and the ice sheet response to climate forcing. Here we seek an upper bound on the contribution of surface melt from the Greenland to sea level rise in the coming century using a surface energy balance model coupled to an englacial model. We use IPCC Representative Concentration Pathways (RCP8.5, RCP6, RCP4.5, RCP2.6) climate scenarios from an ensemble of global climate models in our simulations to project the maximum rate of ice volume loss and related sea-level rise associated with surface melting. To estimate the upper bound, we assume the Greenland Ice Sheet is perpetually covered in thick clouds, which maximize longwave radiation to the ice sheet. We further assume that deposition of black carbon darkens the ice substantially turning it nearly black, substantially reducing its albedo. Although assuming that all melt water not stored in the snow/firn is instantaneously transported off the ice sheet increases mass loss in the short term, refreezing of retained water warms the ice and may lead to more melt in the long term. Hence we examine both assumptions and use the scenario that leads to the most surface melt by 2100. Preliminary models results suggest that under the most aggressive climate forcing, surface melt from the Greenland Ice Sheet contributes ~1 m to sea level by the year 2100. This is a significant contribution and ignores dynamic effects. We also examined a lower bound

  20. A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change.

    PubMed

    Bigg, G R; Wei, H L; Wilton, D J; Zhao, Y; Billings, S A; Hanna, E; Kadirkamanathan, V

    2014-06-08

    Iceberg calving is a major component of the total mass balance of the Greenland ice sheet (GrIS). A century-long record of Greenland icebergs comes from the International Ice Patrol's record of icebergs (I48N) passing latitude 48° N, off Newfoundland. I48N exhibits strong interannual variability, with a significant increase in amplitude over recent decades. In this study, we show, through a combination of nonlinear system identification and coupled ocean-iceberg modelling, that I48N's variability is predominantly caused by fluctuation in GrIS calving discharge rather than open ocean iceberg melting. We also demonstrate that the episodic variation in iceberg discharge is strongly linked to a nonlinear combination of recent changes in the surface mass balance (SMB) of the GrIS and regional atmospheric and oceanic climate variability, on the scale of the previous 1-3 years, with the dominant causal mechanism shifting between glaciological (SMB) and climatic (ocean temperature) over time. We suggest that this is a change in whether glacial run-off or under-ice melting is dominant, respectively. We also suggest that GrIS calving discharge is episodic on at least a regional scale and has recently been increasing significantly, largely as a result of west Greenland sources.

  1. High-resolution, multi-proxy characterization of the event deposit generated by the catastrophic events associated with the Mw 6.2 earthquake of 21 April 2007 in Aysén fjord (Chile)

    NASA Astrophysics Data System (ADS)

    De Batist, M. A.; Van Daele, M. E.; Cnudde, V.; Duyck, P.; Tjallingii, R. H.; Pino, M.; Urrutia, R.

    2012-12-01

    In 2007, a seismic swarm with more than 7000 recorded earthquakes affected the region around Aysén fjord, Chile (45°25'S). The series of seismic events reached a maximum on 21 April 2007, with an Mw 6.2 earthquake. Intensities as high as VIII to IX on the Modified Mercalli scale were reported around the epicenter. Multiple debris flows, rock slides and rock avalanches were triggered along the fjord's coastline, and several of these caused impact waves or tsunamis with wave heights of up to 6 m, which inundated the fjord shorelines and caused heavy damage and 10 casualties. In order to characterize in detail the imprint left by this series of catastrophic events in the sedimentary record of the fjord, we conducted a multi-disciplinary survey of the inner fjord region in December 2009. Multibeam bathymetry and high-resolution reflection seismic data reveal that large parts of the fjord basin floor, mostly at the foot of the fjord's steep underwater slopes, are covered by recent mass-wasting deposits or consist of mass-wasting-induced deformed basin-plain sediments. A series of short sediment cores collected throughout the inner fjord contain also the more distal deposits of this significant basin-wide mass-wasting event. By combining classical sedimentological techniques (i.e. grain-size analysis, LOI and magnetic susceptibility measurements, all at high resolution) with X-ray CT scanning and XRF scanning we were able to demonstrate that the event deposits encountered in the cores have a very complex signature and actually consist of a succession of several sub-deposits, comprising distal mass-flow deposits from different source areas (as evidenced by XRF-derived geochemical provenance indications) and with a different flow direction (as evidenced by CT-derived 3D flow-direction indications, such as imbricated rip-up mud clasts, cross and convolute laminations) and tsunami- or seiche-generated deposits. This allowed us to reconstruct the succession of sedimentary

  2. Fatal outbreak of botulism in Greenland.

    PubMed

    Hammer, Tóra Hedinsdottir; Jespersen, Sanne; Kanstrup, Jakob; Ballegaard, Vibe Cecilie; Kjerulf, Anne; Gelvan, Allan

    2015-03-01

    Botulism commonly occurs when the anaerobic, gram-positive bacterium Clostridium botulinum, under suitable conditions, produces botulinum neurotoxins. Named A-F, these toxins are the immediate causative agent of the clinical symptoms of symmetrical, descending neurological deficits, including respiratory muscle paralysis. We present five cases of foodborne botulism occurring in Greenland, two with fatal outcome, caused by ingestion of tradionally preserved eider fowl. In the cases of the survivors, antitoxin and supportive care, including mechanical ventilation, were administered. In these cases recovery was complete. Microbiological assays, including toxin neutralization bioassay, demonstrated the presence of neurotoxin E in two survivors. The third survivor was shown by PCR to have the BoNT type E gene in faeces. This is the first report of cases of fatal botulism in Greenland. It underscores the importance of prompt coordinated case management effort in a geographically isolated area such as Greenland.

  3. Predicting the Geothermal Heat Flux in Greenland: A Machine Learning Approach

    NASA Astrophysics Data System (ADS)

    Rezvanbehbahani, Soroush; Stearns, Leigh A.; Kadivar, Amir; Walker, J. Doug; van der Veen, C. J.

    2017-12-01

    Geothermal heat flux (GHF) is a crucial boundary condition for making accurate predictions of ice sheet mass loss, yet it is poorly known in Greenland due to inaccessibility of the bedrock. Here we use a machine learning algorithm on a large collection of relevant geologic features and global GHF measurements and produce a GHF map of Greenland that we argue is within ˜15% accuracy. The main features of our predicted GHF map include a large region with high GHF in central-north Greenland surrounding the NorthGRIP ice core site, and hot spots in the Jakobshavn Isbræ catchment, upstream of Petermann Gletscher, and near the terminus of Nioghalvfjerdsfjorden glacier. Our model also captures the trajectory of Greenland movement over the Icelandic plume by predicting a stripe of elevated GHF in central-east Greenland. Finally, we show that our model can produce substantially more accurate predictions if additional measurements of GHF in Greenland are provided.

  4. Seismic evidence for the erosion of subglacial sediments by rapidly draining supraglacial lakes on the West Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Booth, Adam; Hubbard, Alun; Dow, Christine; Doyle, Samuel; Clark, Roger; Gusmeroli, Alessio; Lindbäck, Katrin; Pettersson, Rickard; Jones, Glenn; Murray, Tavi

    2013-04-01

    As part of a multi-disciplinary, multi-national project investigating the ice-dynamic implications of rapidly draining supraglacial lakes on the West Greenland Ice Sheet, we have conducted a series of seismic reflection experiments immediately following the rapid drainage of Lake F in the land-terminating Russell Glacier catchment to [1] isolate the principal mode of basal motion, and [2] identify and characterise the modification of that mode as forced by ingress of surface-derived meltwaters. Lake F had a surface area of ~3.84 km2 and drained entirely in less than two hours at a maximum rate of ~ 3300 m3 s-1, marked by local ice extension and uplift of up to 1 m. Two seismic profiles (A and B) were acquired and optimised for amplitude versus angle (AVA) characterisation of the substrate. All seismic data were recorded with a Geometrics GEODE system, using 48 vertically-orientated 100-Hz geophones installed at 10 m intervals. 250 g pentalite charges were fired in shallow auger holes at 80 m intervals along each line, providing six-fold coverage. Profile A targets the subglacial hydrological basin into which the Lake-F waters drained, and reveals a uniform, flat glacier bed beneath ~1.3 km of ice, characterised by the presence of a very stiff till with an acoustic impedance of 4.17 ± 0.11 x 106 kg m-2 s1 and a Poisson's ratio of 0.06 ± 0.05. In profile B, to the southeast of Lake F in an isolated subglacial hydrological basin, ice thickness is 1.0-1.1 km and a discrete sedimentary basin is evident; within this feature, we interpret a stratified subglacial till deposit, having lodged till (acoustic impedance = 4.26 ± 0.59×106 kgm-2 s-1) underlying a water-saturated dilatant till layer (thickness

  5. Greenland-Wide Seasonal Temperatures During the Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Buizert, C.; Keisling, B. A.; Box, J. E.; He, F.; Carlson, A. E.; Sinclair, G.; DeConto, R. M.

    2018-02-01

    The sensitivity of the Greenland ice sheet to climate forcing is of key importance in assessing its contribution to past and future sea level rise. Surface mass loss occurs during summer, and accounting for temperature seasonality is critical in simulating ice sheet evolution and in interpreting glacial landforms and chronologies. Ice core records constrain the timing and magnitude of climate change but are largely limited to annual mean estimates from the ice sheet interior. Here we merge ice core reconstructions with transient climate model simulations to generate Greenland-wide and seasonally resolved surface air temperature fields during the last deglaciation. Greenland summer temperatures peak in the early Holocene, consistent with records of ice core melt layers. We perform deglacial Greenland ice sheet model simulations to demonstrate that accounting for realistic temperature seasonality decreases simulated glacial ice volume, expedites the deglacial margin retreat, mutes the impact of abrupt climate warming, and gives rise to a clear Holocene ice volume minimum.

  6. Frozen Greenland Meltpond

    NASA Image and Video Library

    2017-12-08

    Frozen meltwater lake along the northeast Greenland coast, as seen from NASA's P-3B aircraft on May 7, 2012. Credit: NASA/Jim Yungel =========== IceBridge, a six-year NASA mission, is the largest airborne survey of Earth's polar ice ever flown. It will yield an unprecedented three-dimensional view of Arctic and Antarctic ice sheets, ice shelves and sea ice. These flights will provide a yearly, multi-instrument look at the behavior of the rapidly changing features of the Greenland and Antarctic ice. Data collected during IceBridge will help scientists bridge the gap in polar observations between NASA's Ice, Cloud and Land Elevation Satellite (ICESat) -- in orbit since 2003 -- and ICESat-2, planned for early 2016. ICESat stopped collecting science data in 2009, making IceBridge critical for ensuring a continuous series of observations. IceBridge will use airborne instruments to map Arctic and Antarctic areas once a year. IceBridge flights are conducted in March-May over Greenland and in October-November over Antarctica. Other smaller airborne surveys around the world are also part of the IceBridge campaign. To read more about IceBridge - Arctic 2012 go to: www.nasa.gov/mission_pages/icebridge/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Past sea-level data from Lakse Bugt, Disko Island, West Greenland from ground-penetrating radar data

    NASA Astrophysics Data System (ADS)

    Souza, Priscila E.; Nielsen, Lars; Kroon, Aart; Clemmensen, Lars B.

    2016-04-01

    Beach-ridge deposits have been used as sea-level indicators in numerous studies from temperate coastal regions. However, their present surface morphology in artic regions may not accurately correspond to past sea-level, because subsequent surface erosion, solifluction processes and/or later sediment deposition may have altered the surface significantly. The internal structure of these beach ridges, however, is often well-preserved and thus constitutes an important key to reconstruction of past sea levels as seen elsewhere. In the present study, high-resolution reflection GPR data and high-precision topographic data were collected at Lakse Bugt (Disko Island, West Greenland) using a shielded 250 MHz antennae system and a RTK-Trimble R8 DGPS, respectively. Three transects were collected across a sequence of fossil, raised beach ridge deposits, and two transects were obtained across modern beach deposits at the shoreline of the mesotidal regime. Along all radar profiles we observed downlap reflection points, which we interpret to represent the boundary between sediments deposited on the beachface and sediments deposited in the upper shoreface regime. Both the upper shoreface and the beachface deposits exhibit reflection patterns dipping in the seaward direction. The beachface deposits show the strongest dip. At or just below the downlap points strong diffractions are often observed indicating the presence of a layer containing stones. These stones are large enough to generate significant signal scattering. At the present day beach a sharp transition defined by the presence of large stones is observed near the low tide water level: cobbles characterize the seaside, while the land side is characterized by sand and gravel. Therefore, it seems reasonable to conclude that downlap points observed in the GPR data serve as indicators of past low-tide levels (at the time of deposition). The downlap points show a consistent offset with respect to present surface topography

  8. Imaging the Iceland Hotspot Track Beneath Greenland with Seismic Noise Correlations

    NASA Astrophysics Data System (ADS)

    Mordret, A.

    2017-12-01

    During the past 65 million years, the Greenland craton drifted over the Iceland hotspot; however, uncertainties in geodynamic modeling and a lack of geophysical evidence prevent an accurate reconstruction of the hotspot track. I image the Greenland lithosphere down to 300 km depth with seismic noise tomography. The hotspot track is observed as a linear high-velocity anomaly in the middle crust associated with magmatic intrusions. In the upper mantle, the remnant thermal signature of the hotspot manifests as low velocity and low viscosity bodies. This new detailed picture of the Greenland lithosphere will drive more accurate geodynamic reconstructions of tectonic plate motions and prediction of Greenland heat flow, which in turn will enable more precise estimations of the Greenland ice-sheet mass balance.

  9. Instrumentation for single-dish observations with The Greenland Telescope

    NASA Astrophysics Data System (ADS)

    Grimes, Paul K.; Asada, K.; Blundell, R.; Burgos, R.; Chang, H.-H.; Chen, M. T.; Goldie, D.; Groppi, C.; Han, C. C.; Ho, P. T. P.; Huang, Y. D.; Inoue, M.; Kubo, D.; Koch, P.; Leech, J.; de Lera Acedo, E.; Martin-Cocher, P.; Nishioka, H.; Nakamura, M.; Matsushita, S.; Paine, S. N.; Patel, N.; Raffin, P.; Snow, W.; Sridharan, T. K.; Srinivasan, R.; Thomas, C. N.; Tong, E.; Wang, M.-J.; Wheeler, C.; Withington, S.; Yassin, G.; Zeng, L.-Z.

    2014-07-01

    The Greenland Telescope project will deploy and operate a 12m sub-millimeter telescope at the highest point of the Greenland i e sheet. The Greenland Telescope project is a joint venture between the Smithsonian As- trophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA). In this paper we discuss the concepts, specifications, and science goals of the instruments being developed for single-dish observations with the Greenland Telescope, and the coupling optics required to couple both them and the mm-VLBI receivers to antenna. The project will outfit the ALMA North America prototype antenna for Arctic operations and deploy it to Summit Station,1 a NSF operated Arctic station at 3,100m above MSL on the Greenland I e Sheet. This site is exceptionally dry, and promises to be an excellent site for sub-millimeter astronomical observations. The main science goal of the Greenland Telescope is to carry out millimeter VLBI observations alongside other telescopes in Europe and the Americas, with the aim of resolving the event horizon of the super-massive black hole at the enter of M87. The Greenland Telescope will also be outfitted for single-dish observations from the millimeter-wave to Tera-hertz bands. In this paper we will discuss the proposed instruments that are currently in development for the Greenland Telescope - 350 GHz and 650 GHz heterodyne array receivers; 1.4 THz HEB array receivers and a W-band bolometric spectrometer. SAO is leading the development of two heterodyne array instruments for the Greenland Telescope, a 48- pixel, 325-375 GHz SIS array receiver, and a 4 pixel, 1.4 THz HEB array receiver. A key science goal for these instruments is the mapping of ortho and para H2D+ in old protostellar ores, as well as general mapping of CO and other transitions in molecular louds. An 8-pixel prototype module for the 350 GHz array is currently being built for laboratory and operational testing on the Greenland Telescope

  10. Glaciologist studies Greenland snow conditions and helps calibrate CryoSat instrument

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-08-01

    GREENLAND—On a typically frigid mid-July day at Summit Station, almost smack in the middle of Greenland, with the temperature hovering around -10°C, Elizabeth Morris and John Sweeny were bundled up against the cold atop their black Ski-Doo snowmobiles, which Morris described as being similar to motorcycles on ski tracks. They drove the vehicles—without yet attaching three wooden sleds that would be pulled during their summer scientific traverse across part of central Greenland—on a practice spin along the perimeter of Summit's groomed, approximately 4600-meter × 60-meter snow runway. One of the longest runways in the world, it lies atop 3.2 kilometers of ice, with the horizon stretching in every direction. Morris, a glaciologist who is a senior associate at the Scott Polar Research Institute at Cambridge University, United Kingdom, and Sweeny, her polar guide, were taking advantage of an unexpected extra day at Summit, a scientific research station sponsored by the U.S. National Science Foundation (NSF), before the traverse began. They hoped that the socked-in visibility just a few hours earlier that morning, 16 July, would not be repeated the following day so that a U.S. Air National Guard 109th Airlift Wing C-130 cargo plane would be cleared to fly to Summit from Kangerlussuaq on Greenland's west coast with needed supplies. Morris and Sweeny would load up each sled with about 270 kilograms of gear.

  11. The Saguenay Fjord, Quebec, Canada: Integrating marine geotechnical and geophysical data for spatial seismic slope stability and hazard assessment

    USGS Publications Warehouse

    Urgeles, R.; Locat, J.; Lee, H.J.; Martin, F.

    2002-01-01

    In 1996 a major flood occurred in the Saguenay region, Quebec, Canada, delivering several km3 of sediment to the Saguenay Fjord. Such sediments covered large areas of the, until then, largely contaminated fjord bottom, thus providing a natural capping layer. Recent swath bathymetry data have also shown that sediment landslides are widely present in the upper section of the Saguenay Fjord, and therefore, should a new event occur, it would probably expose the old contaminated sediments. Landslides in the Upper Saguenay Fjord are most probably due to earthquakes given its proximity to the Charlevoix seismic region and to that of the 1988 Saguenay earthquake. In consequence, this study tries to characterize the permanent ground deformations induced by different earthquake scenarios from which shallow sediment landslides could be triggered. The study follows a Newmark analysis in which, firstly, the seismic slope performance is assessed, secondly, the seismic hazard analyzed, and finally an evaluation of the seismic landslide hazard is made. The study is based on slope gradients obtained from EM1000 multibeam bathymetry data as well as water content and undrained shear strength measurements made in box and gravity cores. Ground motions integrating local site conditions were simulated using synthetic time histories. The study assumes the region of the 1988 Saguenay earthquake as the most likely source area for earthquakes capable of inducing large ground motions in the Upper Saguenay region. Accordingly, we have analyzed several shaking intensities to deduce that generalized sediment displacements will begin to occur when moment magnitudes exceed 6. Major displacements, failure, and subsequent landslides could occur only from earthquake moment magnitudes exceeding 6.75. ?? 2002 Elsevier Science B.V. All rights reserved.

  12. The freshwater export from the Arctic Ocean and the circulation of liquid freshwater around Greenland - constraints, interactions & consequences

    NASA Astrophysics Data System (ADS)

    Rudels, Bert

    2010-05-01

    The freshwater added to the Arctic Ocean is stored as sea ice and as liquid freshwater residing primarily in the upper layers. This allows for simple zero order estimates of the liquid freshwater content and export based on rotationally controlled baroclinic flow. At present the freshwater outflow occurs on both sides of Greenland. In Fram Strait the sea ice export in the East Greenland Current is significantly larger than the liquid freshwater outflow, while the liquid freshwater export dominates in the Canadian Arctic Archipelago. Although the outflow in the upper layer and the freshwater export respond to short periodic wind events and longer periodic atmospheric circulation patterns, the long-term trend is controlled by the net freshwater supply - the freshwater input minus the ice export. As the ice formation and ice export are expected to diminish in a warmer climate the Canadian Arctic Archipelago, comprising several passages, should gradually carry more of the total Arctic Ocean freshwater outflow. However, the channels in the Canadian Arctic Archipelago discharge into the restricted Baffin, which also receives a part of the Fram Strait freshwater export via the West Greenland Current. In a situation with increased glacial melting and freshwater discharge from Greenland the density of the upper layer in Baffin Bay may decrease considerably. This would reduce the sea level difference between the Arctic Ocean and Baffin Bay and thus weaken the outflow through the Canadian Arctic Archipelago, in extreme cases perhaps even reverse the flow. This would shift the main Arctic Ocean liquid freshwater export from The Canadian Arctic Archipelago to Fram Strait. The zero order dynamics of the exchanges through the Canadian Arctic Archipelago and Baffin Bay are described and the possibility for a weakening of the outflow is examined.

  13. The Danish Greenland Magnetometer Chain - Status and Outlook

    NASA Astrophysics Data System (ADS)

    Behlke, R.

    2016-12-01

    DTU Space operates the Greenland magnetometer array, including 19 variometer stations whereof 3 are geomagnetic observatories. This array consists of a West Coast Chain with 13 stations including three observatories between 77.47 and 61.16 geographic North. On the East Coast 5 variometer stations are located between 81.6 and 65.6 geographic North. The Greenland Array covers polar cap, cusp and auroral regions. These data allow the monitoring of electromagnetic processes in the polar ionosphere and magnetosphere, and are a significant contribution to global data sets. The vast majority of the sensors now employed are the Danish FGE 3-axis linear-core fluxgate magnetometers designed and built under the supervision of Ole Rasmussen and later Lars William Pedersen. They are optimized for long-term stability (observatory-quality instruments) rather than high sensitivity. The stations use 16 bit A/D converters with 20s or 1s sampling rate, optimized for 1 minute mean data. Hence, the rms-noise is approximately 0.1 nT in the 1 mHz - 1 Hz band, the time accuracy is 1s and the final resolution is 0.25 nT for most data at 20s sampling rate and 0.125 nT for most data at 1s sampling rate. During setup, the sensor axes are oriented along local magnetic north (H), local magnetic east (E) and vertical down (Z). Sensors at some stations are equipped with a suspension which guarantees vertical alignment. The instruments run fully automatically and require (normally) no manual intervention. All stations use the FGE vector magnetometer. Greenland magnetometer data has been aquired in digital form since 1981. From 1981 through 1990 all stations recorded with 1-min sampling rate. In 1986 the acquisition systems was gradually modified in order to record with 20-s sampling rate. Modification was completed by 1991, and since then all stations run at 20-s sampling rate. In 1999 acquisition system was made capable to record at 1-s sampling in addition to the continued 20-s sampoling rate

  14. Accessory Mineral Records of Early Earth Crust-Mantle Systematics: an Example From West Greenland

    NASA Astrophysics Data System (ADS)

    Storey, C. D.; Hawkesworth, C. J.

    2008-12-01

    Conditions for the formation and the nature of Earth's early crust are enigmatic due to poor preservation. Before c.4 Ga the only archives are detrital minerals eroded from earlier crust, such as the Jack Hills zircons in western Australia, or extinct isotope systematics. Zircons are particularly powerful since they retain precise records of their ages of crystallisation, and the Lu-Hf radiogenic isotope and O stable isotope systematics of the reservoir from which they crystallised. In principle, this allows insight into the nature of the crust, the mantle reservoir from which the melt was extracted and any reworked material incorporated into that melt. We have used in situ methods to measure U-Pb, O and Lu-Hf within single zircon crystals from tonalitic gneisses from West Greenland in the vicinity of the Isua Supracrustal Belt. They have little disturbed ages of c.3.8 Ga, mantle-like O isotope signatures and Lu-Hf isotope signatures that lie on the CHUR evolution line at 3.8 Ga. These samples have previously been subjected to Pb isotope feldspar and 142Nd whole rock analysis and have helped constrain models in which early differentiation of a proto-crust must have occurred. The CHUR-like Lu-Hf signature, along with mantle-like O signature from these zircons suggests juvenile melt production at 3.8 Ga from undifferentiated mantle, yet the other isotope systems preclude this possibility. Alternatively, this is further strong evidence for a heterogeneous mantle in the early Earth. Whilst zircons afford insight into the nature of the early crust and mantle, it is through the Sm-Nd system that the mantle has traditionally been viewed. Titanite often contains several thousand ppm Nd, making it amenable to precise analysis, and is a common accessory phase. It has a reasonably high closure temperature for Pb and O, and it can retain cores with older ages and distinct REE chemistry. It is often the main accessory phase alongside zircon, and it is the main carrier of Nd

  15. Radiation Climatology of the Greenland Ice Sheet Derived from Greenland Climate Network Data

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Box, Jason

    2003-01-01

    The magnitude of shortwave and longwave dative fluxes are critical to surface energy balance variations over the Greenland ice sheet, affecting many aspects of its climate, including melt rates, the nature of low-level temperature inversions, the katabatic wind regime and buoyant stability of the atmosphere. Nevertheless, reliable measurements of the radiative fluxes over the ice sheet are few in number, and have been of limited duration and areal distribution (e.g. Ambach, 1960; 1963, Konzelmann et al., 1994, Harding et al., 1995, Van den Broeke, 1996). Hourly GC-Net radiation flux measurements spanning 1995-2001 period have been used to produce a monthly dataset of surface radiation balance components. The measurements are distributed widely across Greenland and incorporate multiple sensors

  16. Winter Camp: A Blog from the Greenland Summit

    NASA Technical Reports Server (NTRS)

    Koenig, Lora

    2009-01-01

    This article presents the first half of the author's experience living and working at the National Science Foundation's (NSF) Greenland Summit Camp. The author is a remote-sensing glaciologist at NASA's Goddard Space Flight Center. She took measurements that will be used to validate data collected by NASA s Aqua, Terra, and Ice, Clouds, and land Elevation Satellite (ICESat) satellites with ground-truth measurements of the Greenland Ice Sheet she made at Summit Camp from November 2008-February 2009. This article presents excerpts from the second half of her stay and work at the Greenland Summit. The second half of the story is presented in another issue of this journal

  17. The Effects of Glacial and Oceanic Advection on Spatial Patterns of Freshwater Contents and Temperatures of Small Fjords and Major Basins in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Gay, S. M., III

    2016-02-01

    Using spatial principal component (PC) analysis, the variation in freshwater contents and temperatures in the upper 100m are quantified for small fjords and primary basins within Prince William Sound, Alaska. Two EOF modes explain over 90% of the variance in the freshwater content anomalies (FWCA) giving the total magnitude and vertical structure of the FWCAs respectively. Large, positive PC amplitudes (PCAs) of modes 1 and 2 indicate stratification from surface freshening, shown also by negative surface salinity anomalies, whereas positive FWCA PCAs in conjunction with negative mode 2 amplitudes infer higher subsurface freshening due to either vertical mixing or advection. In contrast, basins with negative mode 1 amplitudes are typically salty to slightly brackish, but the mode 2 PCAs determine if the FWC is concentrated near the surface or mixed deeper in the water column. The vertical structure of the temperature anomalies (TA) is more complicated, and at least three EOF modes are required to explain over 90% of the variance. The reasons for this include differences in solar heating (i.e. local climates) modulated by cold alpine runoff and advection of cold, brackish surface and subsurface glacial water. Fjords and major basins influenced by the latter exhibit large, positive mode 1 amplitudes of FWCA and negative mode 1 and 2 PCAs of TA and FWCA respectively. In certain fjords, however, advection of glacial water into the outer basins enhances the total FWC, whereas other fjords exhibit atypically low FWC due to unusual topographic features of the watersheds and inner basins. This combination of factors leads to generally poor correlations between average FWC and watershed to fjord surface area ratios or hydrology. With exception of a few sites, gradients in FWC between the small fjords and major basins are relatively weak. Thus the main driver of baroclinic flow in northern and western PWS is cold, brackish surface and subsurface water propagating from large

  18. Constraining calving front processes on W Greenland outlet glaciers using inertial-corrected laser scanning & swath-bathymetry

    NASA Astrophysics Data System (ADS)

    Bates, R.; Hubbard, A.; Neale, M.; Woodward, J.; Box, J. E.; Nick, F.

    2010-12-01

    Calving and submarine melt account for the majority of loss from the Antarctic and over 50% of that from the Greenland Ice Sheet. These ice-ocean processes are highly efficient mass-loss mechanisms, providing a rapid link between terrestrial ice (storage) and the oceanic sink (sea level/freshwater flux) which renders the ocean-outlet-ice sheet system potentially highly non-linear. Despite this, the controls on tidewater processes are poorly understood and a process based description of them is lacking from the present generation of coupled ice sheet models. We present details from an innovative study where two survey techniques are integrated to enable the construction of accurate, ~m resolution 3d digital terrain models (DTMs) of the aerial and submarine ice front of calving outlet glaciers. A 2km range terrestrial laser scanner was combined with a 416KHz swath-interferometric system and corrected via an inertial motion unit stabilized by RTK GPS and gyro-compass data. The system was mounted aboard a heavy displacement (20,000kg) yacht in addition to a light displacement (100kg) semi-autonomous boat and used to image the aerial and submarine calving fronts of two large outlet glaciers in W Greenland. Six daily surveys, each 2.5km long were repeated across Lille Glacier during which significant ice flow, melt and calving events were observed and captured from on-ice GPS stations and time-lapse sequences. A curtain of CTD and velocity casts were also conducted to constrain the fresh and oceanic mass and energy fluxes within the fjord. The residual of successive DTMs yield the spatial pattern of frontal change enabling the processes of aerial and submarine calving and melt to be quantified and constrained in unprecedented detail. These observed frontal changes are tentatively related to local dynamic, atmospheric and oceanographic processes that drive them. A partial survey of Store Glacier (~7km calving front & W Greenland 2nd largest outlet after Jakobshavn Isbrae

  19. Exploring Greenland: science and technology in Cold War settings.

    PubMed

    Heymann, Matthias; Knudsen, Henrik; Lolck, Maiken L; Nielsen, Henry; Nielsen, Kristian H; Ries, Christopher J

    2010-01-01

    This paper explores a vacant spot in the Cold War history of science: the development of research activities in the physical environmental sciences and in nuclear science and technology in Greenland. In the post-war period, scientific exploration of the polar areas became a strategically important element in American and Soviet defence policy. Particularly geophysical fields like meteorology, geology, seismology, oceanography, and others profited greatly from military interest. While Denmark maintained formal sovereignty over Greenland, research activities were strongly dominated by U.S. military interests. This paper sets out to summarize the limited current state of knowledge about activities in the environmental physical sciences in Greenland and their entanglement with military, geopolitical, and colonial interests of both the USA and Denmark. We describe geophysical research in the Cold War in Greenland as a multidimensional colonial endeavour. In a period of decolonization after World War II, Greenland, being a Danish colony, became additionally colonized by the American military. Concurrently, in a period of emerging scientific internationalism, the U.S. military "colonized" geophysical research in the Arctic, which increasingly became subject to military directions, culture, and rules.

  20. Holocene Paleolimnological Records from Thule, Northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Corbett, L.; Osterberg, E. C.; Kelly, M. A.; Axford, Y.

    2012-12-01

    Assessing Holocene climatic and environmental variability around the margin of the Greenland Ice Sheet provides important information against which to compare ice sheet margin fluctuations. Here, we report preliminary results from ongoing research in northwestern Greenland. We present records of physical properties of lake sediments and use these to make inferences about the evolution of the lake and its surroundings over the latter half of the Holocene. We collected two sediment cores, 90 and 72 cm in length, from a small (surface area ~0.3 km2), shallow (maximum depth ~4.5 m) lake at 76°33'40''N 68°26'31''W near Thule Air Base in July 2012. The length of the cores was limited by the length of the core barrel and does not reflect the total thickness of sediment in the lake. The lake is situated within the glacial limit and likely formed subsequent to deglaciation of the region during early Holocene time. No glaciers exist within the lake's catchment today; the primary modern source of sediment is a perennial inflow from the west. We developed a preliminary depth-age model using radiocarbon ages of terrestrial organic macrofossils. Thus far, we have analyzed the sediments for magnetic susceptibility and loss-on-ignition. A radiocarbon age of 6069 ± 90 cal yr BP at the base of the core indicates that the sediments preserve a continuous record of middle to late Holocene conditions. The top of both cores consists of a thick (~12 cm) layer of dark gray unlaminated sediments, while the rest of the material in both cores is lighter brown to olive, finely laminated sediment. The upper layer is characterized by low water content (<25%), low loss-on-ignition (<5%), and high magnetic susceptibility (~150-250 x10-6). Conversely, the laminated sediments beneath have higher water content (~40-50%), higher loss-on-ignition (~5-10%), and much lower magnetic susceptibility (<50 x10-6). We hypothesize that the upper, less organic unit may represent a single event in the lake

  1. Metamorphosed ultramafic rocks in east Greenland

    NASA Technical Reports Server (NTRS)

    Kays, M. A.; Dorais, M. J.

    1986-01-01

    The compositional and mineralogical characteristics of Archean ultramafic rocks in Kangerdlugssuaq Fjord are summarized: the first provides information important to understanding the primary character of the rock suite, whereas the latter provides data necessary to determine the conditions of their equilibrium during the latest metamorphism. This information will be of value in determining the affinity of the suite to similar Archean rocks in other areas of the North Atlantic craton.

  2. High Resolution Photogrammetric Digital Elevation Models Across Calving Fronts and Meltwater Channels in Greenland

    NASA Astrophysics Data System (ADS)

    Le Bel, D. A.; Brown, S.; Zappa, C. J.; Bell, R. E.; Frearson, N.; Tinto, K. J.

    2014-12-01

    Photogrammetric digital elevation models (DEMs) are a powerful approach for understanding elevation change and dynamics along the margins of the large ice sheets. The IcePod system, mounted on a New York Air National Guard LC-130, can measure high-resolution surface elevations with a Riegl VQ580 scanning laser altimeter and Imperx Bobcat IGV-B6620 color visible-wavelength camera (6600x4400 resolution); the surface temperature with a Sofradir IRE-640L infrared camera (spectral response 7.7-9.5 μm, 640x512 resolution); and the structure of snow and ice with two radar systems. We show the use of IcePod imagery to develop DEMs across calving fronts and meltwater channels in Greenland. Multiple over-flights of the Kangerlussaq Airport ramp have provided a test of the technique at a location with accurate, independently-determined elevation. Here the photogrammetric DEM of the airport, constrained by ground control measurements, is compared with the Lidar results. In July 2014 the IcePod ice-ocean imaging system surveyed the calving fronts of five outlet glaciers north of Jakobshavn Isbrae. We used Agisoft PhotoScan to develop a DEM of each calving front using imagery captured by the IcePod systems. Adjacent to the ice sheet, meltwater plumes foster mixing in the fjord, moving warm ocean water into contact with the front of the ice sheet where it can undercut the ice front and trigger calving. The five glaciers provide an opportunity to examine the calving front structure in relation to ocean temperature, fjord circulation, and spatial scale of the meltwater plumes. The combination of the accurate DEM of the calving front and the thermal imagery used to constrain the temperature and dynamics of the adjacent plume provides new insights into the ice-ocean interactions. Ice sheet margins provide insights into the connections between the surface meltwater and the fate of the water at the ice sheet base. Surface meltwater channels are visualized here for the first time using

  3. Greenland and Its Strategic Importance (Groenland und Seine Strategische Bedeutung),

    DTIC Science & Technology

    1983-12-22

    Common Market assistance. At most places there is now electricty and piped water. The harbor facilities have been expanded, Two airports - S~ndre...occurred inter al. by the fact that for Greenland exports, regardless of the fluctuation of the market price, rather stable prices were paid and...European Common Market . In Greenland the vote was 2.5 : I against entry into the ECM, but since Greenland is an integral part of the Danish state, it

  4. Draft Genome Sequence of the Psychrophilic and Alkaliphilic Rhodonellum psychrophilum Strain GCM71T

    PubMed Central

    Hauptmann, Aviaja L.; Glaring, Mikkel A.; Hallin, Peter F.; Priemé, Anders

    2013-01-01

    Rhodonellum psychrophilum GCM71T, isolated from the cold and alkaline submarine ikaite columns in the Ikka Fjord in Greenland, displays optimal growth at 5 to 10°C and pH 10. Here, we report the draft genome sequence of this strain, which may provide insight into the mechanisms of adaptation to these extreme conditions. PMID:24309741

  5. Draft Genome Sequence of the Psychrophilic and Alkaliphilic Rhodonellum psychrophilum Strain GCM71T.

    PubMed

    Hauptmann, Aviaja L; Glaring, Mikkel A; Hallin, Peter F; Priemé, Anders; Stougaard, Peter

    2013-12-05

    Rhodonellum psychrophilum GCM71(T), isolated from the cold and alkaline submarine ikaite columns in the Ikka Fjord in Greenland, displays optimal growth at 5 to 10°C and pH 10. Here, we report the draft genome sequence of this strain, which may provide insight into the mechanisms of adaptation to these extreme conditions.

  6. A comparison of Holocene fluctuations of the eastern and western margins of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Levy, L.; Kelly, M. A.; Lowell, T. V.; Hall, B. L.; Applegate, P. J.; Howley, J.; Axford, Y.

    2013-12-01

    Determining how the Greenland Ice Sheet (GrIS) responded to past temperature fluctuations is important for assessing its future stability in a changing climate. We present a record of the Holocene extents of the western GrIS margin near Kangerlussuaq (67.0°N, 50.7°W) and compare this with the past fluctuations of Bregne ice cap (71°N, 25.6° W), a small ice cap in the Scoresby Sund region 90 km from the eastern GrIS margin, to examine the mechanisms that influenced past ice margin fluctuations. The past extents of the Bregne ice cap are a proxy for the climatic conditions that influenced the nearby GrIS margin. We used glacial geomorphic mapping, 10Be dating of boulders and bedrock, and sediment cores from proglacial and non-glacial lakes. In western Greenland, 10Be ages on the Keglen moraines, 13 km west of the current GrIS margin and the Ørkendalen moraines, ≤2 km west of the current ice margin date to 7.3 × 0.1 ka (n=6) and 6.8 × 0.3 ka (n=9), respectively. Fresh moraines, ≤50 m from the current ice margin date to AD 1830-1950 and are likely associated with advances during the Little Ice Age (LIA). In some areas, the LIA moraines lie stratigraphically above the Ørkendalen moraines, indicating the GrIS was inboard of the Ørkendalen limit from 6.8 ka to the 20th century. In eastern Greenland, 10Be ages show that Bregne ice cap retreated within its late Holocene limit by 10.7 ka. A lack of clastic sediment in a proglacial lake suggests the ice cap was smaller or completely absent from ~10-2.6 ka. A snowline analysis indicates that temperatures ~0.5°C warmer than present would render the entire ice cap into an ablation zone. Glacial silts in the proglacial lake at ~2.6 and ~1.9 cal kyr BP to present indicate advances of Bregne ice cap. Fresh moraines ≤200 m of Bregne ice cap were deposited ≤2.6 cal kyr BP and mark the largest advance of the Holocene. Both the western GrIS margin and Bregne ice cap were influenced by Northern Hemisphere summer

  7. Alcohol in Greenland 1951-2010: consumption, mortality, prices.

    PubMed

    Aage, Hans

    2012-01-01

    Fluctuations in alcohol consumption in Greenland have been extreme since alcohol became available to the Greenland Inuit in the 1950s, increasing from low levels in the 1950s to very high levels in the 1980s - about twice as high as alcohol consumption in Denmark. Since then, consumption has declined, and current consumption is slightly below alcohol consumption in Denmark, while alcohol prices are far above Danish prices. Description of historical trends and possible causal connections of alcohol prices, alcohol consumption and alcohol-related mortality in Greenland 1951-2010 as a background for the evaluation of the impact of various types of policy. Time series for Greenland 1951-2010 for alcohol prices, consumption and mortality are compiled, and variation and correlations are discussed in relation to various policies aimed at limiting alcohol consumption. Corresponding time series for Denmark 1906-2010 are presented for comparison. The trends in alcohol prices and consumption followed each other rather closely until the 1990s in Greenland and the 1980s in Denmark. At this time, consumption stabilised while prices decreased further, but the effect of prices upon consumption is strong, also in recent years. A trend in Greenlandic mortality similar to consumption is discernible, but not significant. Among alcohol-related deaths cirrhosis of the liver is less prevalent whilst accidents are more prevalent than in Denmark. The effect of alcohol excise taxes and rationing upon consumption is evident. The stabilisation and subsequent decline in consumption since the mid-1990s, while alcohol prices decreased persistently, does not preclude continued effects of prices. On the contrary, price effects have been neutralised by other stronger causes. Whether these are government anti-alcohol campaigns or a cultural change is not clear.

  8. Glacimarine sedimentary processes, facies and morphology of the south-southeast Alaska shelf and fjords

    USGS Publications Warehouse

    Powell, R.D.; Molnia, B.F.

    1989-01-01

    High precipitation from Gulf of Alaska air masses can locally reach up to 800 cm a-1. This precipitation on tectonically active mountains creates cool-temperate glaciation with extremely active erosion and continuously renewed resources. High basal debris loads up to 1.5 m thick of pure debris and rapid glacial flow, which can be more than 3000 m a-1, combine to produce large volumes of siliciclastic glacimarine sediment at some of the highest sediment accumulation rates on record. At tidewater fronts of valley glaciers, sediment accumulation rates can be over 13 m a-1 and deltas commonly grow at about 106 m3 a-1. Major processes influencing glacimarine sedimentation are glacial transport and glacier-contact deposition, meltwater (subaerial and submarine) and runoff transport and deposition, iceberg rafting and gouging, sea-ice transport, wave action and storm reworking, tidal transport and deposition, alongshelf transport, sliding and slumping and gravity flows, eolian transport, and biogenic production and reworking. Processes are similar in both shelf and fjord settings; however, different intensities of some processes create different facies associations and geometries. The tectonoclimatic regime also controls morphology because bedrock structure is modified by glacial action. Major glacimarine depositional systems are all siliciclastic. They are subglacial, marginal-morainal bank and submarine outwash, and proglacial/paraglacial-fluvial/deltaic, beach, tidal flat/estuary, glacial fjord, marine outwash fjord and continental shelf. Future research should include study of long cores with extensive dating and more seismic surveys to evaluate areal and temporal extent of glacial facies and glaciation; time-series oceanographic data, sidescan sonar surveys and submersible dives to evaluate modern processes; biogenic diversity and production to evaluate paleoecological, paleobiogeographic and biofacies analysis; and detailed comparisons of exposed older rock of the

  9. Characterization of household waste in Greenland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisted, Rasmus, E-mail: raei@env.dtu.dk; Christensen, Thomas H.

    2011-07-15

    The composition of household waste in Greenland was investigated for the first time. About 2 tonnes of household waste was sampled as every 7th bag collected during 1 week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants. The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated by magazine type paper) and glass (7%) were other important materialmore » fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste and the low content of paper make Greenlandic waste much different from Danish household waste. The moisture content, calorific value and chemical composition (55 elements, of which 22 were below detection limits) were determined for each material fraction. These characteristics were similar to what has been found for material fractions in Danish household waste. The chemical composition and the calorific value of the plastic fraction revealed that this fraction was not clean but contained a lot of biowaste. The established waste composition is useful in assessing alternative waste management schemes for household waste in Greenland.« less

  10. Large bedrock slope failures in a British Columbia, Canada fjord: first documented submarine sackungen

    NASA Astrophysics Data System (ADS)

    Conway, Kim W.; Vaughn Barrie, J.

    2018-01-01

    Very large (>60×106 m3) sackungen or deep-seated gravitational slope deformations occur below sea level along a steep fjord wall in central Douglas Channel, British Columbia. The massive bedrock blocks were mobile between 13 and 11.5 thousand radiocarbon years BP (15,800 and 13,400 BP) immediately following deglaciation. Deformation of fjord sediments is apparent in sedimentary units overlying and adjacent to the blocks. Faults bound the edges of each block, cutting the glacial section but not the Holocene sediments. Retrogressive slides, small inset landslides as well as incipient and older slides are found on and around the large failure blocks. Lineations, fractures and faults parallel the coastline of Douglas Channel along the shoreline of the study area. Topographic data onshore indicate that faults and joints demarcate discrete rhomboid-shaped blocks which controlled the form, size and location of the sackungen. The described submarine sackungen share characteristic geomorphic features with many montane occurrences, such as uphill-facing scarps, foliated bedrock composition, largely vertical dislocation and a deglacial timing of development.

  11. Large bedrock slope failures in a British Columbia, Canada fjord: first documented submarine sackungen

    NASA Astrophysics Data System (ADS)

    Conway, Kim W.; Vaughn Barrie, J.

    2018-06-01

    Very large (>60×106 m3) sackungen or deep-seated gravitational slope deformations occur below sea level along a steep fjord wall in central Douglas Channel, British Columbia. The massive bedrock blocks were mobile between 13 and 11.5 thousand radiocarbon years BP (15,800 and 13,400 BP) immediately following deglaciation. Deformation of fjord sediments is apparent in sedimentary units overlying and adjacent to the blocks. Faults bound the edges of each block, cutting the glacial section but not the Holocene sediments. Retrogressive slides, small inset landslides as well as incipient and older slides are found on and around the large failure blocks. Lineations, fractures and faults parallel the coastline of Douglas Channel along the shoreline of the study area. Topographic data onshore indicate that faults and joints demarcate discrete rhomboid-shaped blocks which controlled the form, size and location of the sackungen. The described submarine sackungen share characteristic geomorphic features with many montane occurrences, such as uphill-facing scarps, foliated bedrock composition, largely vertical dislocation and a deglacial timing of development.

  12. Geochemical evidence of past earthquakes in sediments of the Reloncaví fjord (Chilean Patagonia) during the last ˜ 1000 years

    NASA Astrophysics Data System (ADS)

    Rebolledo, Lorena; Lange, Carina; Muñoz, Práxedes; Salamanca, Marco

    2014-05-01

    The Chilean fjords are excellent archives of paleoearthquakes, tsunamis and landslides (St-Onge et al., 2012 in Sedimentary Geology 243-244: 89-107). Here we report on new sedimentological and geochemical evidence of past earthquakes in sediments of the Reloncavi fjord, Northern Patagonia (41° S, 72° W), during the last ~1000 years. We recovered four sediment cores from the Reloncaví fjord (RH-5B, RH-5C, RH-6B, RH7B, water depth range = 90-260 m; core length range = 45-75 cm). Age models were based on 210Pb, AMS-14C and the first appearance of the diatom Rhizosolenia setigera cf. pungens in the fossil record as statigraphic marker. The cores span the last ~122 to 800 years of sedimentation with sedimentation rates ranging between 0.1 and 0.24 cm yr-1. The cores revealed evidence of turbidites associated with the historical earthquakes of 1960, 1837, 1737 and 1575 AD, and an earlier period for which there is no historical information, 1200-1400 AD. The turbidites exhibit a grading-up pattern with sand layers, and are characterized by a decrease in organic carbon and biogenic opal, an increase in the C/N molar ratio, negative values of δ13Corg(average -27),and an increase in the relative abundance of Paralia sulcata, a diatom associated with sandy environments, being the turbite layers mainly freshwater in origen. We suggest that these turbidite layers were triggered by past earthquakes that produced movement of land from the cliff areas that surround the Reloncaví fjord. Funding: Project FONDECYT # 11110103 and COPAS Sur-Austral project PFB-31.

  13. A winter dinoflagellate bloom drives high rates of primary production in a Patagonian fjord ecosystem

    NASA Astrophysics Data System (ADS)

    Montero, P.; Pérez-Santos, I.; Daneri, G.; Gutiérrez, M. H.; Igor, G.; Seguel, R.; Purdie, D.; Crawford, D. W.

    2017-12-01

    A dense winter bloom of the dinoflagellate Heterocapsa triquetra was observed at a fixed station (44°35.3‧S; 72°43.6‧W) in the Puyuhuapi Fjord in Chilean Patagonia during July 2015. H. triquetra dominated the phytoplankton community in the surface waters between 2 and 15 m (13-58 × 109 cell m-2), with abundances some 3 to 15 times higher than the total abundance of the diatom assemblage, which was dominated by Skeletonema spp. The high abundance of dinoflagellates was reflected in high rates of gross primary production (GPP; 0.6-1.6 g C m-2 d-1) and chlorophyll-a concentration (Chl-a; 70-199.2 mg m-2) that are comparable to levels reported in spring diatom blooms in similar Patagonian fjords. We identify the main forcing factors behind a pulse of organic matter production during the non-productive winter season, and test the hypothesis that low irradiance levels are a key factor limiting phytoplankton blooms and subsequent productivity during winter. Principal Component Analysis (PCA) indicated that GPP rates were significantly correlated (r = -0.8, p < 0.05) with a decrease in salinity/temperature and the presence of the Heterocapsa bloom. The bloom occurred under low surface irradiance levels characteristic of austral winter and was accompanied by strong northern winds, associated with the passage of a low-pressure system, and a water column dominated by double diffusive layering. To our knowledge, this is the first report of a dense dinoflagellate bloom during deep austral winter in a Patagonian fjord, and our data challenge the paradigm of light limitation as a factor controlling phytoplankton blooms in this region in winter.

  14. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH

    PubMed Central

    Richter, Claudio

    2013-01-01

    Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century. PMID:24255810

  15. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH.

    PubMed

    Fillinger, Laura; Richter, Claudio

    2013-01-01

    Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century.

  16. Climate Change and Baleen Whale Trophic Cascades in Greenland

    DTIC Science & Technology

    2009-09-30

    DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Climate Change and Baleen Whale Trophic Cascades in Greenland...SUBTITLE Climate Change And Baleen Whale Trophic Cascades In Greenland 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  17. Reconstructing the history of major Greenland glaciers since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A. F.; van der Veen, C. J.; Stearns, L.; Babonis, G. S.

    2008-12-01

    The Greenland Ice Sheet may have been responsible for rapid sea level rise during the last interglacial period and recent studies indicate that it is likely to make a faster contribution to sea-level rise than previously believed. Rapid thinning and velocity increase has been observed on most major outlet glaciers with terminus retreat that might lead to increased discharge from the interior and consequent further thinning and retreat. Potentially, such behavior could have serious implications for global sea level. However, the current thinning may simply be a manifestation of longer-term behavior of the ice sheet as it responds to the general warming following the Little Ice Age (LIA). Although Greenland outlet glaciers have been comprehensively monitored since the 1980s, studies of long-term changes mostly rely on records of the calving front position. Such records can be misleading because the glacier terminus, particularly if it is afloat, can either advance or retreat as ice further upstream thins and accelerates. To assess whether recent trends deviate from longer-term behavior, we examined three rapidly thinning and retreating outlet glaciers, Jakobshavn Isbrae in west, Kangerdlussuaq Glacier in east and Petermann Glacier in northwest Greenland. Glacier surface and trimline elevations, as well as terminus positions were measured using historical photographs and declassified satellite imagery acquired between the 1940s and 1985. These results were combined with data from historical records, ground surveys, airborne laser altimetry, satellite observations and field mapping of lateral moraines and trimlines, to reconstruct the history of changes since the (LIA) up to the present. We identified several episodes of rapid thinning and ice shelf break-up, including thinning episodes that occurred when the calving front was stationary. Coastal weather station data are used to assess the influence of air temperatures and intensity of surface melting, and to isolate

  18. Land-ocean gradient in haline stratification and its effects on plankton dynamics and trophic carbon fluxes in Chilean Patagonian fjords (47-50°S)

    NASA Astrophysics Data System (ADS)

    González, H. E.; Castro, L. R.; Daneri, G.; Iriarte, J. L.; Silva, N.; Tapia, F.; Teca, E.; Vargas, C. A.

    2013-12-01

    Patagonian fjord systems, and in particular the fjords and channels associated with the Baker/Pascua Rivers, are currently under conspicuous natural and anthropogenic perturbations. These systems display very high variability, where limnetic and oceanic features overlap generating strong vertical and horizontal physicochemical gradients. The CIMAR 14-Fiordos cruise was conducted in the Chilean fjords located between 47° and 50°S during the spring (October-November) of 2008. The main objectives were to study vertical and horizontal gradients in physical, chemical and biological characteristics of the water column, and to assess plankton dynamics and trophic carbon fluxes in the fjords and channels of central-south Patagonia. The water column was strongly stratified, with a pycnocline at ca. 20 m depth separating a surface layer of silicic acid-rich freshwater discharged by rivers, from the underlying nitrate- and orthophosphate-rich Subantarctic waters. The outflows from the Baker and Pascua Rivers, which range annually between 500 and 1500 m3 s-1, generate the strong land-ocean gradient in salinity (1-32 psu) and inorganic nutrient concentrations (2-8 and 2-24 μM in nitrate and silicic-acid, respectively) we observed along the Baker Fjord. The POC:chl-a ratio fluctuated from 1087 near the fjord’s head to 175 at its oceanic end in the Penas Gulf. This change was mainly due to an increase in diatom dominance and a concurrent decrease in allochthonous POC towards the ocean. Depth-integrated net primary production (NPP) and bacterial secondary production (BSP) fluctuated between 49 and 1215 and 36 and 150 mg C m-2 d-1, respectively, with higher rates in oceanic waters. At a time series station located close to the Baker River mouth, the average NPP was lower (average 360 mg C m-2 d-1) than at more oceanic stations (average 1063 mg C m-2 d-1), and numerically dominated (45%) by the picoplankton (<2 μm) and nanoplankton (2-20 μm) size fractions. The high average

  19. Contrasting temperature trends across the ice-free part of Greenland.

    PubMed

    Westergaard-Nielsen, Andreas; Karami, Mojtaba; Hansen, Birger Ulf; Westermann, Sebastian; Elberling, Bo

    2018-01-25

    Temperature changes in the Arctic have notable impacts on ecosystem structure and functioning, on soil carbon dynamics, and on the stability of permafrost, thus affecting ecosystem functions and putting man-built infrastructure at risk. Future warming in the Arctic could accelerate important feedbacks in permafrost degradation processes. Therefore it is important to map vulnerable areas most likely to be impacted by temperature changes and at higher risk of degradation, particularly near communities, to assist adaptation to climate change. Currently, these areas are poorly assessed, especially in Greenland. Here we quantify trends in satellite-derived land surface temperatures and modelled air temperatures, validated against observations, across the entire ice-free Greenland. Focus is on the past 30 years, to characterize significant changes and potentially vulnerable regions at a 1 km resolution. We show that recent temperature trends in Greenland vary significantly between seasons and regions and that data with resolutions down to single km 2 are critical to map temperature changes for guidance of further local studies and decision-making. Only a fraction of the ice-free Greenland seems vulnerable due to warming when analyzing year 2001-2015, but the most pronounced changes are found in the most populated parts of Greenland. As Greenland represents important gradients of north/south coast/inland/distance to large ice sheets, the conclusions are also relevant in an upscaling to greater Arctic areas.

  20. Holocene relative sea level changes in Greenland: a review

    NASA Astrophysics Data System (ADS)

    Bennike, O.

    2010-12-01

    During the Holocene marked relative sea-level changes have taken place in the ice-free parts of Greenland. Already in 1776 it was reported that Thule winter houses and Norse ruins were partly inundated by the sea, and in 1962 the first emergence curve from Greenland was published. This has been followed by reconstruction of many other emergence curves. During the last ice age, large volumes of water were stored in the ice sheets. When the ice melted global sea level rose. In Greenland the ice sheet shrank in size, and the following emergence of the land surpassed the global sea level rise. Raised beach ridges, deltas and marine deposits are widespread in Greenland, and the uppermost form the marine limit, above which fresh-looking till deposits and perched boulders can be found. The marine limit has been mapped at numerous sites in Greenland, and the highest is at about 140 metres above the present sea level. In general, the marine limit is highest in those areas that were released from the largest load of ice. In other Arctic regions, well-constrained sea level curves have been constructed from dated drift-wood samples or whale bones from raised beaches. However, both driftwood and whale bones are rare in Greenland, and most curves have been developed from dated shells of bivalves. In the past years, isolation basins have increasingly been used to reconstruct sea level changes after the last deglaciation. Isolation basins are formed when the threshold of marine basins are lifted up above sea level. The use of this method requires that a series of lakes can be sampled at different elevations below the marine limit. Sampling of marine basins in shallow waters has also shown that many lakes have been inundated by the sea, and by dating the transgression horizons in the sediment sequences and by determining the depth of the sill, it is possible to work out curves for relative sea level rises during the past millennia. The global sea level has been fairly stable during

  1. Towards Greenland Glaciation: cumulative or abrupt transition?

    NASA Astrophysics Data System (ADS)

    Ramstein, Gilles; Tan, Ning; Ladant, Jean-baptiste; Dumas, Christophe; Contoux, Camille

    2017-04-01

    During the mid-Pliocene warming period (3-3.3 Ma BP), the global annual mean temperatures inferred by data and model studies were 2-3° warmer than pre-industrial values. Accordingly, Greenland ice sheet volume is supposed to reach at the most, only half of that of present-day [Haywood et al. 2010]. Around 2.7-2.6 Ma BP, just ˜ 500 kyr after the warming peak of mid-Pliocene, the Greenland ice sheet has reached its full size [Lunt et al. 2008]. A crucial question concerns the evolution of the Greenland ice sheet from half to full size during the 3 - 2.5 Ma period. Data show a decreasing trend of atmospheric CO2 concentration from 3 Ma to 2.5 Ma [Seki et al.2010; Bartoli et al. 2011; Martinez et al. 2015]. However, a recent study [Contoux et al. 2015] suggests that a lowering of CO2 is not sufficient to initiate a perennial glaciation on Greenland and must be combined with low summer insolation to preserve the ice sheet during insolation maxima. This suggests rather a cumulative process than an abrupt event. In order to diagnose the evolution of the ice sheet build-up, we carry on, for the first time, a transient simulation of climate and ice sheet evolutions from 3 Ma to 2.5 Ma. This strategy enables us to investigate the waxing and waning of the ice sheet during several orbital cycles. We use a tri-dimensional interpolation method designed by Ladant et al. (2014), which allows the evolution of CO2 concentration and of orbital parameters, and the evolution of the Greenland ice sheet size to be taken into account. By interpolating climatic snapshot simulations ran with various possible combinations of CO2, orbits and ice sheet sizes, we can build a continuous climatic forcing that is then used to provide 500 kyrs-long ice sheet simulations. With such a tool, we may offer a physically based answer to different CO2 reconstructions scenarios and analyse which one is the most consistent with Greenland ice sheet buildup.

  2. Overseas trip report, CV 990 underflight mission. [Norwegian Sea, Greenland ice sheet, and Alaska

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Crawford, J.; Hardis, L.

    1980-01-01

    The scanning microwave radiometer-7 simulator, the ocean temperature scanner, and an imaging scatterometer/altimeter operating at 14 GHz were carried onboard the NASA CV-990 over open oceans, sea ice, and continental ice sheets to gather surface truth information. Data flights were conducted over the Norwegian Sea to map the ocean polar front south and west of Bear Island and to transect several Nimbus-7 footprints in a rectangular pattern parallel to the northern shoreline of Norway. Additional flights were conducted to obtain correlative data on the cryosphere parameters and characteristics of the Greenland ice sheet, and study the frozen lakes near Barrow. The weather conditions and flight path way points for each of the nineteen flights are presented in tables and maps.

  3. Assessment of Glacial Isostatic Adjustment in Greenland using GPS

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Bevis, M. G.; Sasgen, I.; van Dam, T. M.; Wahr, J. M.; Wouters, B.; Bamber, J. L.; Willis, M. J.; Knudsen, P.; Helm, V.; Kuipers Munneke, P.; Muresan, I. S.

    2015-12-01

    The Greenland GPS network (GNET) was constructed to provide a new means to assess viscoelastic and elastic adjustments driven by past and present-day changes in ice mass. Here we assess existing glacial isostatic adjustments (GIA) predictions by analysing 1995-2015 data from 61 continuous GPS receivers located along the margin of the Greenland ice sheet. Since GPS receivers measure both the GIA and elastic signals, we isolate GIA, by removing the elastic adjustments of the lithosphere due to present-day mass changes using high-resolution fields of ice surface elevation change derived from satellite and airborne altimetry measurements (ERS1/2, ICESat, ATM, ENVISAT, and CryoSat-2). For most GPS stations, our observed GIA rates contradict GIA predictions; particularly, we find huge uplift rates in southeast Greenland of up to 14 mm/yr while models predict rates of 0-2 mm/yr. Our results suggest possible improvements of GIA predictions, and hence of the poorly constrained ice load history and Earth structure models for Greenland.

  4. Greenland's Biggest Losers

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Hubbard, A.; Howat, I. M.; Csatho, B. M.; Decker, D. T.; Bates, R.; Tulaczyk, S. M.

    2010-12-01

    On 4 August, 2010, 275 square km of the front of the floating Petermann Glacier, far northwest Greenland, broke away. The glacier effectively retreated 15 km. Petermann has retreated 21 km since year 2000. Consulting available imagery, publications, and maps spanning the past century, we conclude that this is a retreat to a minimum extent in the observational record. This glacier is not the only ice are loser in Greenland. GRACE observations verify the concern of increased mass budget deficit. Retreat is ongoing at the 110 km wide Humboldt glacier and at the 23 km wide Zachariae ice stream. Humboldt, Zachariae, and Petermann (16 km wide) are among a handful of large marine-terminating outlets that have bedrock trenches that lead inland below sea level to the thick, interior reservoir of the ice sheet. Sleeping giants are awakening. Our area change survey of the 35 widest Greenland outlets indicates an annual marine-terminating glacier area loss rate in excess of 130 sq km per year. Here, we evaluate in this context the mechanisms for marine-terminating glacier retreat, dynamical responses to calving, and the apparent climate forcings. The work thus consults a suite of data sets, including: long-term meteorological station records; satellite-derived sea and land surface temperatures; satellite-derived sea ice extent; regional climate model output; oceanographic casts; time lapse cameras, surface elevation change, and tidal records. Cumulative area change at Greenland’s glacier top 5 “losers”. 2010 areas are measured ~1 month prior to the end of summer melt when the survey usually is made . We do not expect 2010 area changes to be much different using the future data. If anything, we expect the losses to be larger. Click here for a full resolution graphic.

  5. Comparison of modelled runoff with observed proglacial discharge across the western margin of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S.; Rennermalm, A.; van As, D.; Overeem, I.; Tedesco, M.; Mote, T. L.; Koenig, L.; Smith, L. C.; Hagedorn, B.; Sletten, R. S.; Mikkelsen, A. B.; Hasholt, B.; Hall, D. K.; Fettweis, X.; Pitcher, L. H.; Hubbard, A.

    2017-12-01

    Greenland ice sheet surface ablation now dominates its total mass loss contributions to sea-level rise. Despite the increasing importance of Greenland's sea-level contribution, a quantitative inter-comparison between modeled and measured melt, runoff and discharge across multiple drainage basins is conspicuously lacking. Here we investigate the accuracy of model discharge estimates from the Modèle Atmosphérique Régionale (MAR v3.5.2) regional climate model by comparison with in situ proglacial river discharge measurements at three West Greenland drainage basins - North River (Thule), Watson River (Kangerlussuaq), and Naujat Kuat River (Nuuk). At each target catchment, we: 1) determine optimal drainage basin delineations; 2) assess primary drivers of melt; 3) evaluate MAR at daily, 5-, 10- and 20-day time scales; and 4) identify potential sources for model-observation discrepancies. Our results reveal that MAR resolves daily discharge variability poorly in the Nuuk and Thule basins (r2 = 0.4-0.5), but does capture variability over 5-, 10-, and 20-day means (r2 > 0.7). Model agreement with river flow data, though, is reduced during periods of peak discharge, particularly for the exceptional melt and discharge events of July 2012. Daily discharge is best captured by MAR across the Watson River basin, whilst there is lower correspondence between modeled and observed discharge at the Thule and Naujat Kuat River basins. We link the main source of model error to an underestimation of cloud cover, overestimation of surface albedo, and apparent warm bias in near-surface air temperatures. For future inter-comparison, we recommend using observations from catchments that have a self-contained and well-defined drainage area and an accurate discharge record over variable years coincident with a reliable automatic weather station record. Our study highlights the importance of improving MAR modeled surface albedo, cloud cover representation, and delay functions to reduce model

  6. Recent Changes in Arctic Glaciers, Ice Caps, and the Greenland Ice Sheet: Cold Facts About Warm Ice

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2005-12-01

    One of the major manifestations of Arctic change can be observed in the state of balance of Arctic glaciers and ice caps and the Greenland ice sheet. These ice masses are estimated to contain nearly 3 million cubic kilometers of ice, which is more than six times greater than all the water stored in the Earth's lakes, rivers, and snow combined and is the equivalent of over 7 meters of sea level. Most of these ice masses have been shrinking in recent in years, but their mass balance is highly variable on a wide range of spatial and temporal scales. On the Greenland ice sheet most of the coastal regions have thinned substantially as melt has increased and some of its outlet glaciers have accelerated. Near the equilibrium line in West Greenland, we have seen evidence of summer acceleration that is linked to surface meltwater production, suggesting a relatively rapid response mechanism of the ice sheet change to a warming climate. At the same time, however, the vast interior regions of the Greenland ice sheet have shown little change or slight growth, as accumulation in these areas may have increased. Throughout much of the rest of the Arctic, many glaciers and ice caps have been shrinking in the past few decades, and in Canada and Alaska, the rate of ice loss seems to have accelerated during the late 1990s. These recent observations offer only a snapshot in time of the long-term behavior, but they are providing crucial information about the current state of ice mass balance and the mechanisms that control it in one of the most climatically sensitive regions on Earth. As we continue to learn more through a combination of remote sensing observations, in situ measurements and improved modeling capabilities, it is important that we coordinate and integrate these approaches effectively in order to predict future changes and their impact on sea level, freshwater discharge, and ocean circulation.

  7. A Resilient Greenland Ice Sheet More Than 900,000 Years Old.

    NASA Astrophysics Data System (ADS)

    Dahl-Jensen, D.; Funder, S.; Schmidt, A. Z. M.; Solgaard, A.; Steffensen, J. P.; Willerslev, E.

    2014-12-01

    The Greenland Ice Sheet (GRIS) has the potential of causing a 7.36 m global sea level rise (GSLR) if it were to melt away. To properly assess risk of future melting, it is crucial to understand the formation and growth of the GRIS during past climate regimes. However, despite decades of research, it remains debated when and in what environment GRIS got established and to what extent GRIS changed in size during past warm interglacials, such as MIS 5e some 130 kyr BP. Here, we present results from analyses of environmental DNA, 10Be/36Cl, 234U/238U, single grain optically stimulated luminescence (OSL), palaeomagnetics, macrofossils and molecular clock dating of basal ice from the Camp Century ice core in north western Greenland and the Kap København Formation in North Greenland. We combine these with results from the DYE 3 and GRIP ice cores from southern and central Greenland to evaluate the evolution of the GRIS. We find evidence that the present GRIS formed quickly some time before 900 kyr BP in a largely forested Greenland and that it has changed by only 30-40% of its present volume since it was established. Our DNA findings of boreal forest imply that warming of more than 10oC is needed to have an ice-free Greenland. This threshold is higher than earlier predictions and the corresponding palaeo-calibration of the GRIS contribution to sea level changes suggests a sensitivity of 0.3-0.5 m GSLR per degree Celsius of warming over Greenland. Ice core data from the deep Greenland ice cores can be used to reconstruct the size of the ice sheet during the present interglacial (the Holocene) and the last interglacial (the Eemian). Reconstructions based on stable water isotopes and gas content is used to validate the resilience of the GRIS.

  8. Greenland Ice Sheet: High-Elevation Balance and Peripheral Thinning.

    PubMed

    Krabill; Abdalati; Frederick; Manizade; Martin; Sonntag; Swift; Thomas; Wright; Yungel

    2000-07-21

    Aircraft laser-altimeter surveys over northern Greenland in 1994 and 1999 have been coupled with previously reported data from southern Greenland to analyze the recent mass-balance of the Greenland Ice Sheet. Above 2000 meters elevation, the ice sheet is in balance on average but has some regions of local thickening or thinning. Thinning predominates at lower elevations, with rates exceeding 1 meter per year close to the coast. Interpolation of our results between flight lines indicates a net loss of about 51 cubic kilometers of ice per year from the entire ice sheet, sufficient to raise sea level by 0.13 millimeter per year-approximately 7% of the observed rise.

  9. From the Holocene Thermal Maximum to the Little Ice Age: 11000 years of high resolution marine and terrestrial paleoclimate reconstruction using biomarkers

    NASA Astrophysics Data System (ADS)

    Moossen, H. M.; Abell, R.; Quillmann, U.; Andrews, J. T.; Bendle, J. A.

    2011-12-01

    Holocene climate change is of significantly smaller amplitude than the Pleistocene Glacial-Interglacial cycles, but climatic variations have affected humans over at least the last 4000 years. Studying Holocene climate variations is important to disentangle climate change caused by anthropogenic influences from natural climate change. Sedimentary records stemming from fjords afford the opportunity to study marine and terrestrial paleo-climatic changes and linking the two together. Typically high sediment accumulation rates of fjordic environments facilitate resolution of rapid climate change (RCC) events. The fjords of Northwest Iceland are ideal for studying Holocene climate change as they receive warm water from the Irminger current, but are also influenced by the east Greenland current which brings polar waters to the region (Jennings et al., 2011). In the Holocene, Nordic Seas and the Arctic have been sensitive to climate change. The 8.2 ka event, a cool interval, highlights the sensitivity of that region. Recent climate variations such as the Little Ice Age have been detected in sedimentary records around Iceland (Sicre et al., 2008). We reconstruct Holocene marine and terrestrial climate change producing high resolution (1sample/ 30 years) records from 10700 cal a BP to 300 cal a BP using biomarkers. Alkenones, terrestrial leaf wax components, GDGTs and C/N ratios from a sediment core (MD99-2266) from the mouth of the Ìsafjardardjúp fjord were studied. For more information on the core and evolution of the fjord during the Holocene consult Quillmann et al., (2010) The average chain length (ACL) of terrestrial n-alkanes indicates changes in aridity, and the alkenone unsaturation index represents changes in sea surface temperature. These independent records exhibit similar trends over the studied time period. Our alkenone derived SST record shows the Holocene Thermal Maximum, Holocene Neoglaciation as well as climate change associated with the Medieval Warm

  10. Growth measures among preschool-age Inuit children living in Canada and Greenland.

    PubMed

    Galloway, Tracey; Niclasen, Birgit V L; Muckle, Gina; Young, Kue; Egeland, Grace M

    2012-12-01

    The present study reports findings from a study of preschool-age Inuit children living in the Arctic regions of Canada and Greenland. We compare stature and obesity measures using cutoffs from the Centers for Disease Control and the International Obesity Task Force references. The sample is comprised of 1121 Inuit children (554 boys and 567 girls) aged 3-5 years living in Nunavut (n=376) and Nunavik (n=87), Canada, in the capital city of Nuuk, Greenland (n=86), and in Greenland's remaining towns and villages (n=572). Greenland Inuit children were significantly taller than their Canadian counterparts, with greatest height and weight observed among children from Nuuk. Overall prevalence of stunting was low with the three cutoffs yielding similar values for height-for-age z-scores. Obesity prevalence was higher among Canadian Inuit children than their Greenland counterparts. Inuit children have stature values consistent with those of the Centers for Disease Control reference and low prevalence of stunting, though geographic variability in mean stature values between Canadian and Greenlandic samples likely reflects differences in both socioeconomic status and genetic admixture. Obesity prevalence is high among both Canadian and Greenland Inuit preschoolers, with children living in the city of Nuuk exhibiting lower obesity prevalence than children living in either Nunavut or Nunavik, Canada or Greenland's towns and villages. Varying obesity prevalence may reflect varying degrees of food security in remote locations as well as the influence of stature and sitting height which have not been well studied in young Inuit children.

  11. Eemian interglacial reconstructed from a Greenland folded ice core.

    PubMed

    2013-01-24

    Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 ± 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 ± 250 metres, reaching surface elevations 122,000 years ago of 130 ± 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.

  12. Antarctic Peninsula Tidewater Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Scambos, T. A.; Haran, T. M.; Wellner, J. S.; Domack, E. W.; Vernet, M.

    2015-12-01

    The northern Antarctic Peninsula (nAP, north of 66°S) is a north-south trending mountain range extending transverse across the prevailing westerly winds of the Southern Ocean resulting in an extreme west-to-east precipitation gradient. Snowfall on the west side of the AP is one to two orders of magnitude higher than the east side. This gradient drives short, steep, fast-flowing glaciers into narrow fjords on the west side, while longer lower-sloping glaciers flow down the east side into broader fjord valleys. This pattern in ice dynamics affects ice-ocean interaction on timescales of decades to centuries, and shapes the subglacial topography and submarine bathymetry on timescales of glacial cycles. In our study, we calculate ice flux for the western and eastern nAP using a drainage model that incorporates the modern ice surface topography, the RACMO-2 precipitation estimate, and recent estimates of ice thinning. Our results, coupled with observed rates of ice velocity from InSAR (I. Joughin, personal communication) and Landsat 8 -derived flow rates (this study), provide an estimate of ice thickness and fjord depth in grounded-ice areas for the largest outlet glaciers. East-side glaciers either still terminate in or have recently terminated in ice shelves. Sedimentary evidence from the inner fjords of the western glaciers indicates they had ice shelves during LIA time, and may still have transient floating ice tongues (tabular berg calvings are observed). Although direct oceanographic evidence is limited, the high accumulation rate and rapid ice flux implies cold basal ice for the western nAP glaciers and therefore weak subglacial discharge relative to eastern nAP glaciers and or other tidewater fjord systems such as in Alaska. Finally, despite lower accumulation rates on the east side, the large elongate drainage basins result in a greater ice flux funneled through fewer deeper glaciers. Due to the relation between ice flux and erosion, these east-side glaciers

  13. Absolute gravimetry for monitoring geodynamics in Greenland.

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Strykowski, G.; Forsberg, R.

    2015-12-01

    Here are presented the preliminary results of the absolute gravity measurements done in Greenland by DTU Space with their A10 absolute gravimeter (the A10-019). The purpose, besides establishing and maintaining a national gravity network, is to study geodynamics.The absolute gravity measurements are juxtaposed with the permanent GNET GNSS stations. The first measurements were conducted in 2009 and a few sites have been re-visited. As of present is there a gravity value at 18 GNET sites.There are challenges in interpreting the measurements from Greenland and several signals has to be taken into account, besides the geodynamical signals originating from the changing load of the ice, there is also a clear signal of direct attraction from different masses. Here are presented the preliminary results of our measurements in Greenland and attempts explain them through modelling of the geodynamical signals and the direct attraction from the ocean and ice.

  14. Bedrock morphology reveals drainage network in northeast Baffin Bay

    NASA Astrophysics Data System (ADS)

    Slabon, Patricia; Dorschel, Boris; Jokat, Wilfried; Freire, Francis

    2018-02-01

    A subglacial drainage network underneath the paleo-ice sheet off West Greenland is revealed by a new compilation of high-resolution bathymetry data from Melville Bay, northeast Baffin Bay. This drainage network is an indicator for ice streaming and subglacial meltwater flow toward the outer shelf. Repeated ice sheet advances and retreats across the crystalline basement together with subglacial meltwater drainage had their impact in eroding overdeepened troughs along ice stream pathways. These overdeepenings indicate the location of a former ice sheet margin. The troughs inherit characteristics of glacial and subglacial meltwater erosion. Most of the troughs follow tectonic weakness zones such as faults and fractures in the crystalline bedrock. Many of these tectonic features correspond with the orientations of major fault axes in the Baffin Bay region. The troughs extend from the present (sub) glacial fjord systems at the Greenland coast and parallel modern outlet-glacier pathways. The fast flowing paleo-ice streams were likely accelerated from the meltwater flow as indicated by glacial landforms within and along the troughs. The ice streams flowed along narrow tributary troughs and merged to form large paleo-ice streams bedded in the major cross-shelf troughs of Melville Bay. Apart from the troughs, a rough seabed topography characterises the bedrock, and we see a sharp geomorphic transition where ice flowed onto sedimentary rock and deposits.

  15. Impact of freshwater runoff on physical oceanography and plankton distribution in a Western Norwegian fjord: an experiment with a controlled discharge from a hydroelectric power plant

    NASA Astrophysics Data System (ADS)

    Kaartvedt, Stein; Svendsen, Harald

    1990-10-01

    Investigations were carried out in a 20-km long fjord branch prior to, during, and partly after a 51-h controlled discharge from a hydroelectric power plant. The freshwater runoff (230 m 3 s -1) generated an estuarine circulation which was most prominent along the mid-axis of the fjord. High velocities were recorded both in the outgoing surface current, with a maximum of 1 m s -1 (10 km downstream of the power plant), and in a compensatory current (registration at 10-m depth) with a maximum of 0·6 m s -1 (3 km downstream). Velocities were low at 5-m depth. During discharge, salinity increased in the surface layer and decreased at a depth of several metres because of more extensive mixing. Phytoplankton was partly flushed out in the upper layers throughout the fjord branch, but abundance increased in deeper layers in an outer station, and the horizontal patchiness increased. The vertical centre of zooplankton biomass descended significantly during running of the plant. Biomass maxima in the ingoing compensation current indicate net zooplankton import during running of the power plant, but no change in total zooplankton biomass in the fjord branch was found during this experiment.

  16. Status and distribution of the Kittlitz's murrelet Brachyramphus brevirostris in Kenai Fjords, Alaska

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Piatt, John F.; Romano, Marc D.; van Pelt, Thomas I.

    2011-01-01

    The Kittlitz's Murrelet Brachyramphus brevirostris is a candidate species for listing under the US Endangered Species Act because of its apparent declines within core population areas of coastal Alaska. During the summers of 2006-2008, we conducted surveys in marine waters adjacent to Kenai Fjords National Park, Alaska, to estimate the current population size of Kittlitz's and Marbled murrelets B. marmoratus and examine seasonal variability in distribution within coastal fjords. We also evaluated historical data to estimate trend. Based on an average of point estimates, we find the recent population (95% CI) of Kittlitz's Murrelet to be 716 (353-1080) individuals, that of Marbled Murrelet to be 6690 (5427-7953) individuals, and all Brachyramphus murrelets combined to number 8186 (6978-9393) birds. Within-season density estimates showed Kittlitz's Murrelets generally increased between June and July, but dispersed rapidly by August, while Marbled Murrelets generally increased throughout the summer. Trends in Kittlitz's and Marbled murrelet populations were difficult to assess with confidence. Methods for counting or sampling murrelets varied in early decades of study, while in later years there is uncertainty due to highly variable counts among years, which may be due in part to timing of surveys relative to the spring bloom in coastal waters of the Gulf of Alaska.

  17. Difference flow measurements under permafrost conditions in the Kangerlussuaq area, West Greenland

    NASA Astrophysics Data System (ADS)

    Lehtinen, A. M.; Rouhiainen, P.; Pöllänen, J.; Heikkinen, P.; Ruskeeniemi, T.; Claesson Liljedahl, L.

    2012-12-01

    To advance the understanding of the impact of glacial processes on the long-term performance of a deep geologic repository, the Greenland Analogue Project (GAP), a four-year field and modeling study of the Greenland ice sheet (2009-2012), was established collaboratively by the Swedish, Finnish and Canadian nuclear waste management organizations (SKB, POSIVA and NWMO, respectively). In order to study how groundwater flow and water chemistry is influenced by an existing ice sheet and continuous permafrost, a 645 m deep drillhole (DH-GAP04) was drilled, hydraulically tested using the Posiva Difference Flowmeter (PFL DIFF) method and instrumented at the ice margin in the Kangerlussuaq area in July 2011. PFL DIFF allows the quick and reliable characterization of flow-yielding fractures in bedrock. PFL DIFF measures the flow rate into or out of defined drillhole sections. The advantage that follows from measuring the flow rate in isolated sections is improved detection of incremental changes of flow along the drillhole. PFL DIFF can measure flows in the range 30 - 300 000 mLh-1. In addition, the PFL DIFF probe can be used to measure the electrical conductivity of both the drillhole water and fracture-specific water, the single point resistance (SPR) of the bedrock, the water pressure profile in a drillhole and the temperature of the drillhole water. Normally, PFL DIFF measurements in a new drillhole are conducted a week after the end of drilling in order to let the groundwater state recover in the drillhole. The PFL DIFF measurements were done in DH-GAP04 already three days after the drilling was completed. This measurement was the first PFL DIFF measurement ever conducted in an area of continuous permafrost and therefore, the measurement program was carefully designed. The length of the section in the flow logging measurements was 10 m and the interval spacing was two meters. Flow into the drillhole or from the drillhole into the bedrock was measured within the section

  18. Benthic foraminifera contribution to fjord modern carbon pools: A seasonal study in Adventfjorden, Spitsbergen.

    PubMed

    Pawłowska, J; Łącka, M; Kucharska, M; Szymańska, N; Koziorowska, K; Kuliński, K; Zajączkowski, M

    2017-09-01

    The aim of this study was to determine the amount of organic and inorganic carbon in foraminifera specimens and to provide quantitative data on the contribution of foraminifera to the sedimentary carbon pool in Adventfjorden. The investigation was based on three calcareous species that occur commonly in Svalbard fjords: Cassidulina reniforme, Elphidium excavatum and Nonionellina labradorica. Our results show that the species investigated did not contribute substantially to the organic carbon pool in Adventfjorden, because they represented only 0.37% of the organic carbon in the sediment. However, foraminiferal biomass could have been underestimated as it did not include arenaceous or monothalamous taxa. Foraminiferal carbonate constituted up to 38% of the inorganic carbon in the sediment, which supports the assumption that in fjords where non-calcifying organisms dominate the benthic fauna foraminifera are among the major producers of calcium carbonate and that they play crucial roles in the carbon burial process. The results presented in this study contribute to estimations of changes in foraminiferal carbon levels in contemporary environments and could be an important reference for palaeoceanographic studies. © 2017 John Wiley & Sons Ltd.

  19. Alcohol in Greenland 1951–2010: consumption, mortality, prices

    PubMed Central

    Aage, Hans

    2012-01-01

    Background Fluctuations in alcohol consumption in Greenland have been extreme since alcohol became available to the Greenland Inuit in the 1950s, increasing from low levels in the 1950s to very high levels in the 1980s – about twice as high as alcohol consumption in Denmark. Since then, consumption has declined, and current consumption is slightly below alcohol consumption in Denmark, while alcohol prices are far above Danish prices. Objective Description of historical trends and possible causal connections of alcohol prices, alcohol consumption and alcohol-related mortality in Greenland 1951–2010 as a background for the evaluation of the impact of various types of policy. Design Time series for Greenland 1951–2010 for alcohol prices, consumption and mortality are compiled, and variation and correlations are discussed in relation to various policies aimed at limiting alcohol consumption. Corresponding time series for Denmark 1906–2010 are presented for comparison. Results The trends in alcohol prices and consumption followed each other rather closely until the 1990s in Greenland and the 1980s in Denmark. At this time, consumption stabilised while prices decreased further, but the effect of prices upon consumption is strong, also in recent years. A trend in Greenlandic mortality similar to consumption is discernible, but not significant. Among alcohol-related deaths cirrhosis of the liver is less prevalent whilst accidents are more prevalent than in Denmark. Conclusions The effect of alcohol excise taxes and rationing upon consumption is evident. The stabilisation and subsequent decline in consumption since the mid-1990s, while alcohol prices decreased persistently, does not preclude continued effects of prices. On the contrary, price effects have been neutralised by other stronger causes. Whether these are government anti-alcohol campaigns or a cultural change is not clear. PMID:23256091

  20. The crust and upper mantle of central East Greenland - implications for continental accretion and rift evolution

    NASA Astrophysics Data System (ADS)

    Schiffer, Christian; Balling, Niels; Ebbing, Jörg; Holm Jacobsen, Bo; Bom Nielsen, Søren

    2016-04-01

    The geological evolution of the North Atlantic Realm during the past 450 Myr, which has shaped the present-day topographic, crustal and upper mantle features, was dominated by the Caledonian orogeny and the formation of the North Atlantic and associated igneous activity. The distinct high altitude-low relief landscapes that accompany the North Atlantic rifted passive margins are the focus of a discussion of whether they are remnant and modified Caledonian features or, alternatively, recently uplifted peneplains. Teleseismic receiver function analysis of 11 broadband seismometers in the Central Fjord Region in East Greenland indicates the presence of a fossil subduction complex, including a slab of eclogitised mafic crust and an overlying wedge of hydrated mantle peridotite. This model is generally consistent with gravity and topography. It is shown that the entire structure including crustal thickness variations and sub-Moho heterogeneity gives a superior gravity and isostatic topographic fit compared to a model with a homogeneous lithospheric layer (1). The high topography of >1000 m in the western part of the area is supported by the c. 40 km thick crust. The eastern part requires buoyancy from the low velocity/low density mantle wedge. The geometry, velocities and densities are consistent with structures associated with a fossil subduction zone. The spatial relations with Caledonian structures suggest a Caledonian origin. The results indicate that topography is isostatically compensated by density variations within the lithosphere and that significant present-day dynamic topography seems not to be required. Further, this structure is suggested to be geophysically very similar to the Flannan reflector imaged north of Scotland, and that these are the remnants of the same fossil subduction zone, broken apart and separated during the formation of the North Atlantic in the early Cenozoic (2). 1) Schiffer, C., Jacobsen, B.H., Balling, N., Ebbing, J. and Nielsen, S