Sample records for flame zone grid

  1. Turbulent premixed flames on fractal-grid-generated turbulence

    NASA Astrophysics Data System (ADS)

    Soulopoulos, N.; Kerl, J.; Sponfeldner, T.; Beyrau, F.; Hardalupas, Y.; Taylor, A. M. K. P.; Vassilicos, J. C.

    2013-12-01

    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area.

  2. PDF investigations of turbulent non-premixed jet flames with thin reaction zones

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; Pope, Stephen

    2012-11-01

    PDF (probability density function) modeling studies are carried out for the Sydney piloted jet flames. These Sydney flames feature much thinner reaction zones in the mixture fraction space compared to those in the well-studied Sandia piloted jet flames. The performance of the different turbulent combustion models in the Sydney flames with thin reaction zones has not been examined extensively before, and this work aims at evaluating the capability of the PDF method to represent the thin turbulent flame structures in the Sydney piloted flames. Parametric and sensitivity PDF studies are performed with respect to the different models and model parameters. A global error parameter is defined to quantify the departure of the simulation results from the experimental data, and is used to assess the performance of the different set of models and model parameters.

  3. Experimental and LES investigation of premixed methane/air flame propagating in a tube with a thin obstacle

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Guo, Shilong; Li, Yanchao; Zhang, Yutao

    2017-03-01

    In this paper, an experimental and numerical investigation of premixed methane/air flame dynamics in a closed combustion vessel with a thin obstacle is described. In the experiment, high-speed video photography and a pressure transducer are used to study the flame shape changes and pressure dynamics. In the numerical simulation, four sub-grid scale viscosity models and three sub-grid scale combustion models are evaluated for their individual prediction compared with the experimental data. High-speed photographs show that the flame propagation process can be divided into five stages: spherical flame, finger-shaped flame, jet flame, mushroom-shaped flame and bidirectional propagation flame. Compared with the other sub-grid scale viscosity models and sub-grid scale combustion models, the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model are better able to predict the flame behaviour, respectively. Thus, coupling the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model, the numerical results demonstrate that flame shape change is a purely hydrodynamic phenomenon, and the mushroom-shaped flame and bidirectional propagation flame are the result of flame-vortex interaction. In addition, the transition from "corrugated flamelets" to "thin reaction zones" is observed in the simulation.

  4. Parametric modeling studies of turbulent non-premixed jet flames with thin reaction zones

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng

    2013-11-01

    The Sydney piloted jet flame series (Flames L, B, and M) feature thinner reaction zones and hence impose greater challenges to modeling than the Sanida Piloted jet flames (Flames D, E, and F). Recently, the Sydney flames received renewed interest due to these challenges. Several new modeling efforts have emerged. However, no systematic parametric modeling studies have been reported for the Sydney flames. A large set of modeling computations of the Sydney flames is presented here by using the coupled large eddy simulation (LES)/probability density function (PDF) method. Parametric studies are performed to gain insight into the model performance, its sensitivity and the effect of numerics.

  5. Triple flames and flame stabilization

    NASA Technical Reports Server (NTRS)

    Broadwell, James E.

    1994-01-01

    It is now well established that when turbulent jet flames are lifted, combustion begins, i.e., the flame is stabilized, at an axial station where the fuel and air are partially premixed. One might expect, therefore, that the beginning of the combustion zone would be a triple flame. Such flames have been described; however, other experiments provide data that are difficult to reconcile with the presence of triple flames. In particular, laser images of CH and OH, marking combustion zones, do not exhibit shapes typical of triple flames, and, more significantly, the lifted flame appears to have a propagation speed that is an order of magnitude higher than the laminar flame speed. The speed of triple flames studied thus far exceeds the laminar value by a factor less than two. The objective of the present task is the resolution of the apparent conflict between the experiments and the triple flame characteristics, and the clarification of the mechanisms controlling flame stability. Being investigated are the resolution achieved in the experiments, the flow field in the neighborhood of the stabilization point, propagation speeds of triple flames, laboratory flame unsteadiness, and the importance of flame ignition limits in the calculation of triple flames that resemble lifted flames.

  6. Multiblock grid generation with automatic zoning

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.

    1995-01-01

    An overview will be given for multiblock grid generation with automatic zoning. We shall explore the many advantages and benefits of this exciting technology and will also see how to apply it to a number of interesting cases. The technology is available in the form of a commercial code, GridPro(registered trademark)/az3000. This code takes surface geometry definitions and patterns of points as its primary input and produces high quality grids as its output. Before we embark upon our exploration, we shall first give a brief background of the environment in which this technology fits.

  7. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    NASA Astrophysics Data System (ADS)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO

  8. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles.

    PubMed

    Di Sarli, Valeria; Di Benedetto, Almerinda; Russo, Gennaro

    2010-08-15

    In this work, an assessment of different sub-grid scale (sgs) combustion models proposed for large eddy simulation (LES) of steady turbulent premixed combustion (Colin et al., Phys. Fluids 12 (2000) 1843-1863; Flohr and Pitsch, Proc. CTR Summer Program, 2000, pp. 61-82; Kim and Menon, Combust. Sci. Technol. 160 (2000) 119-150; Charlette et al., Combust. Flame 131 (2002) 159-180; Pitsch and Duchamp de Lageneste, Proc. Combust. Inst. 29 (2002) 2001-2008) was performed to identify the model that best predicts unsteady flame propagation in gas explosions. Numerical results were compared to the experimental data by Patel et al. (Proc. Combust. Inst. 29 (2002) 1849-1854) for premixed deflagrating flame in a vented chamber in the presence of three sequential obstacles. It is found that all sgs combustion models are able to reproduce qualitatively the experiment in terms of step of flame acceleration and deceleration around each obstacle, and shape of the propagating flame. Without adjusting any constants and parameters, the sgs model by Charlette et al. also provides satisfactory quantitative predictions for flame speed and pressure peak. Conversely, the sgs combustion models other than Charlette et al. give correct predictions only after an ad hoc tuning of constants and parameters. Copyright 2010 Elsevier B.V. All rights reserved.

  9. On Soot Inception in Nonpremixed Flames and the Effects of Flame Structure

    NASA Technical Reports Server (NTRS)

    Chao, B. H.; Liu, S.; Axelbaum, R. L.; Gokoglu, Suleyman (Technical Monitor)

    1998-01-01

    A simplified three-step model of soot inception has been employed with high activation energy asymptotics to study soot inception in nonpremixed counterflow systems with emphasis on understanding the effects of hydrodynamics and transport. The resulting scheme yields three zones: (1) a fuel oxidation zone wherein the fuel and oxidizer react to form product as well as a radical R, (e.g., H), (2) a soot/precursor formation zone where the radical R reacts with fuel to form "soot/precursor" S, and (3) a soot/precursor consumption zone where S reacts with the oxidizer to form product. The kinetic scheme, although greatly simplified, allows the coupling between soot inception and flame structure to be assessed. The results yield flame temperature, flame location, and a soot/precursor index S(sub I) as functions of Damkohler number for S formation. The soot/precursor index indicates the amount of S at the boundary of the formation region. The flame temperature indirectly indicates the total amount of S integrated over the formation region because as S is formed less heat release is available. The results show that unlike oxidation reactions, an extinction turning-point behavior does not exist for soot. Instead, the total amount of S slowly decreases with decreasing Damkohler number (increasing strain rate), which is consistent with counterflow flame experiments. When the Lewis number of the radical is decreased from unity, the total S reduces due to reduced residence time for the radical in the soot formation region. Similarly, when the Lewis number of the soot/precursor is increased from unity the amount of S increases for all Damkohler numbers. In addition to studying fuel-air (low stoichiometric mixture fraction) flames, the air-side nitrogen was substituted into the fuel, yielding diluted fuel-oxygen (high stoichiometric mixture fraction) flames with the same flame temperature as the fuel - air flames. The relative flame locations were different however, and

  10. Effects of H{sub 2} and H preferential diffusion and unity Lewis number on superadiabatic flame temperatures in rich premixed methane flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fengshan; Guelder, OEmer L.

    2005-11-01

    The structures of freely propagating rich CH{sub 4}/air and CH{sub 4}/O{sub 2} flames were studied numerically using a relatively detailed reaction mechanism. Species diffusion was modeled using five different methods/assumptions to investigate the effects of species diffusion, in particular H{sub 2} and H, on superadiabatic flame temperature. With the preferential diffusion of H{sub 2} and H accounted for, significant amount of H{sub 2} and H produced in the flame front diffuse from the reaction zone to the preheat zone. The preferential diffusion of H{sub 2} from the reaction zone to the preheat zone has negligible effects on the phenomenon ofmore » superadiabatic flame temperature in both CH{sub 4}/air and CH{sub 4}/O{sub 2} flames. It is therefore demonstrated that the superadiabatic flame temperature phenomenon in rich hydrocarbon flames is not due to the preferential diffusion of H{sub 2} from the reaction zone to the preheat zone as recently suggested by Zamashchikov et al. [V.V. Zamashchikov, I.G. Namyatov, V.A. Bunev, V.S. Babkin, Combust. Explosion Shock Waves 40 (2004) 32]. The suppression of the preferential diffusion of H radicals from the reaction zone to the preheat zone drastically reduces the degree of superadiabaticity in rich CH{sub 4}/O{sub 2} flames. The preferential diffusion of H radicals plays an important role in the occurrence of superadiabatic flame temperature. The assumption of unity Lewis number for all species leads to the suppression of H radical diffusion from the reaction zone to the preheat zone and significant diffusion of CO{sub 2} from the postflame zone to the reaction zone. Consequently, the degree of superadiabaticity of flame temperature is also significantly reduced. Through reaction flux analyses and numerical experiments, the chemical nature of the superadiabatic flame temperature phenomenon in rich CH{sub 4}/air and CH{sub 4}/O{sub 2} flames was identified to be the relative scarcity of H radical, which leads to

  11. The influence of fuel-air swirl intensity on flame structures of syngas swirl-stabilized diffusion flame

    NASA Astrophysics Data System (ADS)

    Shao, Weiwei; Xiong, Yan; Mu, Kejin; Zhang, Zhedian; Wang, Yue; Xiao, Yunhan

    2010-06-01

    Flame structures of a syngas swirl-stabilized diffusion flame in a model combustor were measured using the OH-PLIF method under different fuel and air swirl intensity. The flame operated under atmospheric pressure with air and a typical low heating-value syngas with a composition of 28.5% CO, 22.5% H2 and 49% N2 at a thermal power of 34 kW. Results indicate that increasing the air swirl intensity with the same fuel, swirl intensity flame structures showed little difference except a small reduction of flame length; but also, with the same air swirl intensity, fuel swirl intensity showed great influence on flame shape, length and reaction zone distribution. Therefore, compared with air swirl intensity, fuel swirl intensity appeared a key effect on the flame structure for the model combustor. Instantaneous OH-PLIF images showed that three distinct typical structures with an obvious difference of reaction zone distribution were found at low swirl intensity, while a much compacter flame structure with a single, stable and uniform reaction zone distribution was found at large fuel-air swirl intensity. It means that larger swirl intensity leads to efficient, stable combustion of the syngas diffusion flame.

  12. Large scale Direct Numerical Simulation of premixed turbulent jet flames at high Reynolds number

    NASA Astrophysics Data System (ADS)

    Attili, Antonio; Luca, Stefano; Lo Schiavo, Ermanno; Bisetti, Fabrizio; Creta, Francesco

    2016-11-01

    A set of direct numerical simulations of turbulent premixed jet flames at different Reynolds and Karlovitz numbers is presented. The simulations feature finite rate chemistry with 16 species and 73 reactions and up to 22 Billion grid points. The jet consists of a methane/air mixture with equivalence ratio ϕ = 0 . 7 and temperature varying between 500 and 800 K. The temperature and species concentrations in the coflow correspond to the equilibrium state of the burnt mixture. All the simulations are performed at 4 atm. The flame length, normalized by the jet width, decreases significantly as the Reynolds number increases. This is consistent with an increase of the turbulent flame speed due to the increased integral scale of turbulence. This behavior is typical of flames in the thin-reaction zone regime, which are affected by turbulent transport in the preheat layer. Fractal dimension and topology of the flame surface, statistics of temperature gradients, and flame structure are investigated and the dependence of these quantities on the Reynolds number is assessed.

  13. Syngas formation in methane flames and carbon monoxide release during quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, Felix; Carleton, Fred; Houdmont, Raphael

    Following a recent investigation into chemi-ionization and chemiluminescence during gradual aeration of small, laminar methane flames, we proposed that partial oxidation products, or syngas constituents, formed in the pre-flame zone well below the luminous region, were responsible for the observed effects. We therefore map temperature, CO, and H{sub 2} for geometries and conditions relevant to burners in domestic boiler systems, to assess the potential hazard of CO release into the ambient atmosphere, should any partial quenching occur. CO concentrations peaks of 5.5 volume % are recorded in the core surrounding the axis. Appreciable CO concentrations are also found in themore » absence of added air. Experiments on various burner port geometries and temperatures suggest that this is not due to air entrainment at the flame base but to diffusion from zones closer to the flame. Next, quenching surfaces such as grids, perforated plates and flame trap matrices of different metals are progressively lowered into the flame. To avoid flow line distortion, suction aspirates the quenched products. The highest emission rate occurs with the quenching plane some 4 mm above the burner; further lowering of the quenching surface causes flame extinction. The maximum CO release is close to converting 10% of the CH{sub 4} feed, with some variation with quenching material. Expressing this potential release in terms of, e.g. boiler power, predicts a potentially serious hazard. Results of numerical simulations adequately parallel the experimental sampling profiles and provide insights into local concentrations, as well as the spatially resolved CO flux, which is calculated for a parabolic inlet flow profile. Integration across the stream implies, on the basis of the simulation, a possible tripling of the experimental CO release, were quenching simply to release the local gas composition into the atmosphere. Comparison with experiment suggests some chemical interaction with the

  14. CARS Temperature Measurements in Sooting, Laminar Diffusion Flames.

    DTIC Science & Technology

    1984-07-30

    the flame. In preliminary calculations with coarse axial and radial grids, the flames all reached their respective AFT’s, and flame lengths were just...welded to the outside of the tube. Such rugenerative heat feedback is not part of the K? model. Calculated flame length is seen on Figure 11 to increase...heights in the measurements, Figure 6, and the calculated flame lengths , Figure 11, is seen to be reduced substantially with increasing dilution. When

  15. Fully Automated Single-Zone Elliptic Grid Generation for Mars Science Laboratory (MSL) Aeroshell and Canopy Geometries

    NASA Technical Reports Server (NTRS)

    kaul, Upender K.

    2008-01-01

    A procedure for generating smooth uniformly clustered single-zone grids using enhanced elliptic grid generation has been demonstrated here for the Mars Science Laboratory (MSL) geometries such as aeroshell and canopy. The procedure obviates the need for generating multizone grids for such geometries, as reported in the literature. This has been possible because the enhanced elliptic grid generator automatically generates clustered grids without manual prescription of decay parameters needed with the conventional approach. In fact, these decay parameters are calculated as decay functions as part of the solution, and they are not constant over a given boundary. Since these decay functions vary over a given boundary, orthogonal grids near any arbitrary boundary can be clustered automatically without having to break up the boundaries and the corresponding interior domains into various zones for grid generation.

  16. Calculation of recirculating flow behind flame-holders

    NASA Astrophysics Data System (ADS)

    Zeng, Q.; Sheng, Y.; Zhou, Q.

    1985-10-01

    Adoptability of standard K-epsilon turbulence model for numerical calculation of recirculating flow is discussed. Many computations of recirculating flows behind bluff-bodies used as flame-holders in afterburner of aeroengine have been completed. Blocking-off method to treat the incline walls of the flame-holder gives good results. In isothermal recirculating flows the flame-holder wall is assumed to be isolated. Therefore, it is possible to remove the inactive zone from the calculation domain in programming to save computer time. The computation for a V-shaped flame-holder exhibits an interesting phenomenon that the recirculation zone extends to the cavity of the flame-holder.

  17. Radiant Extinction Of Gaseous Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Berhan, S.; Chernovsky, M.; Atreya, A.; Baum, Howard R.; Sacksteder, Kurt R.

    2003-01-01

    The absence of buoyancy-induced flows in microgravity (mu:g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and :g flames have been reported in experiments on candle flames [1, 2], flame spread over solids [3, 4], droplet combustion [5,6], and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the Aweak@ (low burning rate per unit flame area) :g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in :g will burn indefinitely [1]. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the :g experiments and modeling because: (i) It reduces the complexity by making the problem

  18. Unsteady Spherical Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Berhan, S.; Chernovsky, M.; Sacksteder, Kurt R.

    2001-01-01

    The absence of buoyancy-induced flows in microgravity (mu-g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and (mu-g) flames have been reported in experiments on candle flames, flame spread over solids, droplet combustion, and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the "weak" (low burning rate per unit flame area) mu-g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in mu-g will burn indefinitely. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the mu-g experiments and modeling because: (i) It reduces the complexity by making the problem one

  19. Measurement of soot morphology, chemistry, and optical properties in the visible and near-infrared spectrum in the flame zone and overfire region of large JP-8 pool fires.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo-Anttila, Jill Marie; Jensen, Kirk A.; Blevins, Linda Gail

    2005-03-01

    The dimensionless extinction coefficient, K{sub e}, was measured for soot produced in 2 m JP-8 pool fires. Light extinction and gravimetric sampling measurements were performed simultaneously at 635 and 1310 nm wavelengths at three heights in the flame zone and in the overfire region. Measured average K{sub e} values of 8.4 {+-} 1.2 at 635 nm and 8.7 {+-} 1.1 at 1310 nm in the overfire region agree well with values from 8-10 recently reported for different fuels and flame conditions. The overfire K{sub e} values are also relatively independent of wavelength, in agreement with recent findings for JP-8 sootmore » in smaller flames. K{sub e} was nearly constant at 635 nm for all sampling locations in the large fires. However, at 1310 nm, the overfire K{sub e} was higher than in the flame zone. Chemical analysis of physically sampled soot shows variations in carbon-to-hydrogen (C/H) ratio and polycyclic aromatic hydrocarbon (PAH) concentration that may account for the smaller K{sub e} values measured in the flame zone. Rayleigh-Debye-Gans theory of scattering for polydisperse fractal aggregate (RDG-PFA) was applied to measured aggregate fractal dimensions and found to under-predict the extinction coefficient by 17-30% at 635 nm using commonly accepted refractive indices of soot, and agreed well with the experiments using the more recently published refractive index of 1.99-0.89i. This study represents the first measurements of soot chemistry, morphology, and optical properties in the flame zone of large, fully-turbulent pool fires, and emphasizes the importance of accurate measurements of optical properties both in the flame zone and overfire regions for models of radiative transport and interpretation of laser-based diagnostics of soot volume fraction and temperature.« less

  20. Experimental Investigation of Premixed Turbulent Hydrocarbon/Air Bunsen Flames

    NASA Astrophysics Data System (ADS)

    Tamadonfar, Parsa

    fuel consumption rate were systematically evaluated from the experimental data. The normalized preheat zone and reaction zone thicknesses decreased with increasing non-dimensional turbulence intensity in ultra-lean premixed turbulent flames under a constant equivalence ratio of 0.6, whereas they increased with increasing equivalence ratios from 0.6 to 1.0 under a constant bulk flow velocity. The normalized preheat zone and reaction zone thicknesses showed no overall trend with increasing non-dimensional longitudinal integral length scale. The normalized preheat zone and reaction zone thicknesses decreased by increasing the Karlovitz number, suggesting that increasing the total stretch rate is the controlling mechanism in the reduction of flame front thickness for the experimental conditions studied in this thesis. In general, the leading edge and half-burning surface turbulent burning velocities were enhanced with increasing equivalence ratio from lean to stoichiometric mixtures, whereas they decreased with increasing equivalence ratio for rich mixtures. These velocities were enhanced with increasing total turbulence intensity. The leading edge and half-burning surface turbulent burning velocities for lean/stoichiometric mixtures were observed to be smaller than that for rich mixtures. The mean turbulent flame stretch factor displayed a dependence on the equivalence ratio and turbulence intensity. Results show that the mean turbulent flame stretch factors for lean/stoichiometric and rich mixtures were not equal when the unstrained premixed laminar burning velocity, non-dimensional bulk flow velocity, non-dimensional turbulence intensity, and non-dimensional longitudinal integral length scale were kept constant.

  1. Turbulent Premixed Flame Propagation in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.

    1997-01-01

    A facility in which turbulent Couette flow could be generated in a microgravity environment was designed and built. To fit into the NASA Lewis drop tower the device had to be very compact. This means that edge effects and flow re-circulation were expected to affect the flow. The flow was thoroughly investigated using LDV and was found to be largely two dimensional away from the edges with constant turbulence intensities in the core. Slight flow asymmetries are introduced by the non symmetric re-circulation of the fluid outside the test region. Belt flutter problems were remedied by adding a pair of guide plates to the belt. In general, the flow field was found to be quite similar to previously investigated Couette flows. However, turbulence levels and associated shear stresses were higher. This is probably due to the confined re-circulation zone reintroducing turbulence into the test section. An estimate of the length scales in the flow showed that the measurements were able to resolve nearly all the length scales of interest. Using a new LES method for subgrid combustion it has been demonstrated that the new procedure is computational feasible even on workstation type environment. It is found that this model is capable of capturing the propagation of the premixed names by resolving the flame in the LES grid within 2-3 grid points. In contrast, conventional LES results in numerical smearing of the flame and completely inaccurate estimate of the turbulent propagation speed. Preliminary study suggests that there is observable effect of buoyancy in the 1g environment suggesting the need for microgravity experiments of the upcoming experimental combustion studies. With the cold flow properties characterized, an identical hot flow facility is under construction. It is assumed that the turbulence properties ahead of the flame in this new device will closely match the results obtained here. This is required since the hot facility will not enable LDV measurements. The

  2. A high-pressure premixed flat-flame burner for chemical process studies. [of pollutant formation in hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.

    1978-01-01

    A premixed flat-flame burner was designed and tested with methane-air mixtures at pressures from 1.1 to 20 atm and equivalence ratios from 0.7 to 1.1. Reactant velocity in the burner mixing chamber was used to characterize the range of stable flames at each pressure-equivalence-ratio condition. Color photographs of the flames were used to determine flame zone thickness and flame height. The results show that this burner can be used for chemical process studies in premixed high pressure methane-air flames up to 20 atm.

  3. Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling

    NASA Astrophysics Data System (ADS)

    Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.

    2012-12-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data

  4. Importance of atomic oxygen in preheating zone in plasma-assisted combustion of a steady-state premixed burner flame

    NASA Astrophysics Data System (ADS)

    Zaima, K.; Akashi, H.; Sasaki, K.

    2015-09-01

    It is widely believed that electron impact processes play essential roles in plasma-assisted combustion. However, the concrete roles of high-energy electrons have not been fully understood yet. In this work, we examined the density of atomic oxygen in a premixed burner flame with the superposition of dielectric barrier discharge (DBD). The density of atomic oxygen in the reaction zone was not affected by the superposition of DBD, indicating that the amount of atomic oxygen produced by combustion reactions was much larger than that produced by electron impact processes. On the other hand, in the preheating zone, we observed high-frequency oscillation of the density of atomic oxygen at the timings of the pulsed current of DBD. The oscillation suggests the rapid consumption of additional atomic oxygen by combustion reactions. A numerical simulation using Chemkin indicates the shortened ignition delay time when adding additional atomic oxygen in the period of low-temperature oxidation. The present results reveals the importance of atomic oxygen, which is produced by the effect of high-energy electrons, in the preheating zone in plasma-assisted combustion of the steady-state premixed burner flame.

  5. Radiant extinction of gaseous diffusion flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Agrawal, Sanjay; Shamim, Tariq; Pickett, Kent; Sacksteder, Kurt R.; Baum, Howard R.

    1995-01-01

    The absence of buoyancy-induced flows in microgravity significantly alters the fundamentals of many combustion processes. Substantial differences between normal-gravity and microgravity flames have been reported during droplet combustion, flame spread over solids, candle flames, and others. These differences are more basic than just in the visible flame shape. Longer residence time and higher concentration of combustion products create a thermochemical environment which changes the flame chemistry. Processes such as flame radiation, that are often ignored under normal gravity, become very important and sometimes even controlling. This is particularly true for conditions at extinction of a microgravity diffusion flame. Under normal-gravity, the buoyant flow, which may be characterized by the strain rate, assists the diffusion process to transport the fuel and oxidizer to the combustion zone and remove the hot combustion products from it. These are essential functions for the survival of the flame which needs fuel and oxidizer. Thus, as the strain rate is increased, the diffusion flame which is 'weak' (reduced burning rate per unit flame area) at low strain rates is initially 'strengthened' and eventually it may be 'blown-out'. Most of the previous research on diffusion flame extinction has been conducted at the high strain rate 'blow-off' limit. The literature substantially lacks information on low strain rate, radiation-induced, extinction of diffusion flames. At the low strain rates encountered in microgravity, flame radiation is enhanced due to: (1) build-up of combustion products in the flame zone which increases the gas radiation, and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which further increases the flame radiation. It is expected that this radiative heat loss will extinguish the already 'weak' diffusion flame under certain conditions. Identifying these conditions (ambient atmosphere, fuel flow rate, fuel

  6. Mixer assembly for a gas turbine engine having a pilot mixer with a corner flame stabilizing recirculation zone

    NASA Technical Reports Server (NTRS)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor)

    2012-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer, and a pilot mixer having an annular housing in which a corner is formed between an aft portion of the housing and a bulkhead wall in which a corner recirculation zone is located to stabilize and anchor the flame of the pilot mixer. The pilot mixer can further include features to cool the annular housing, including in the area of the corner recirculation zone.

  7. FLAME: A platform for high performance computing of complex systems, applied for three case studies

    DOE PAGES

    Kiran, Mariam; Bicak, Mesude; Maleki-Dizaji, Saeedeh; ...

    2011-01-01

    FLAME allows complex models to be automatically parallelised on High Performance Computing (HPC) grids enabling large number of agents to be simulated over short periods of time. Modellers are hindered by complexities of porting models on parallel platforms and time taken to run large simulations on a single machine, which FLAME overcomes. Three case studies from different disciplines were modelled using FLAME, and are presented along with their performance results on a grid.

  8. Pentan isomers compound flame front structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansurov, Z.A.; Mironenko, A.W.; Bodikov, D.U.

    1995-08-13

    The fuels (hexane, pentane, diethyl ether) and conditions investigated in this study are relevant to engine knock in spark- ignition engines. A review is provided of the field of low temperature hydrocarbon oxidation. Studies were made of radical and stable intermediate distribution in the front of cool flames: Maximum concentrations of H atoms and peroxy radicals were observed in the luminous zone of the cool flame front. Peroxy radicals appear before the luminous zone at 430 K due to diffusion. H atoms were found in cool flames of butane and hexane. H atoms diffuses from the luminous zone to themore » side of the fresh mixture, and they penetrate into the fresh mixture to a small depth. Extension of action sphear of peroxy radicals in the fresh mixture is much greater than that of H atoms due to their small activity and high concentrations.« less

  9. Cool-Flame Burning and Oscillations of Envelope Diffusion Flames in Microgravity

    NASA Astrophysics Data System (ADS)

    Takahashi, Fumiaki; Katta, Viswanath R.; Hicks, Michael C.

    2018-05-01

    The two-stage combustion, local extinction, and flame-edge oscillations have been observed in single-droplet combustion tests conducted on the International Space Station. To understand such dynamic behavior of initially enveloped diffusion flames in microgravity, two-dimensional (axisymmetric) computation is performed for a gaseous n-heptane flame using a time-dependent code with a detailed reaction mechanism (127 species and 1130 reactions), diffusive transport, and a simple radiation model (for CO2, H2O, CO, CH4, and soot). The calculated combustion characteristics vary profoundly with a slight movement of air surrounding a fuel source. In a near-quiescent environment (≤ 2 mm/s), with a sufficiently large fuel injection velocity (1 cm/s), extinction of a growing spherical diffusion flame due to radiative heat losses is predicted at the flame temperature at ≈ 1200 K. The radiative extinction is typically followed by a transition to the "cool flame" burning regime (due to the negative temperature coefficient in the low-temperature chemistry) with a reaction zone (at ≈ 700 K) in close proximity to the fuel source. By contrast, if there is a slight relative velocity (≈ 3 mm/s) between the fuel source and the air, a local extinction of the envelope diffusion flame is predicted downstream at ≈ 1200 K, followed by periodic flame-edge oscillations. At higher relative velocities (4 to 10 mm/s), the locally extinguished flame becomes steady state. The present 2D computational approach can help in understanding further the non-premixed "cool flame" structure and flame-flow interactions in microgravity environments.

  10. The mechanisms of flame holding in the wake of a bluff body

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Malik, S.

    1985-01-01

    The flame holding mechanism for lean methane- and lean propane-air flames is examined under conditions where the recirculation zone is absent. The main objective of this work is to study the holding process in detail in an attempt to determine the mechanism of flame holding and also the conditions where this mechanism is viable and when it fails and blow-off occurs. Inverted flames held in the wake of a flat strip were studied. Experiments with different sizes of flame holders were performed. The velocity flow field was determined using a laser Doppler velocimetry technique. Equation of continuity was used to calculate the flame temperature from the change in area of flow streamlines before and after the flame. Observations of the inverted flame itself were obtained using schlieren and direct photography. Results show that there are different mechanisms operative at the time of blow-off for lean propane and methane flames. Blow-off or extinction occurs for lean propane-air flame in spite of the reaction going to completion and the disparity between the heat loss and the gain in mass diffusion in the reaction zone i.e., Le 1.0 causes the flame to blow-off. For methane-air flame the controlling factor or blow-off is incomplete reaction due to higher blowing rate leading to reduced residence time in the reaction zone.

  11. Theoretical and Numerical Investigation of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ray, Anjan

    1996-01-01

    The influence of soot radiation on diffusion flames was investigated using both analytical and numerical techniques. Soot generated in diffusion flames dominate the flame radiation over gaseous combustion products and can significantly lower the temperature of the flame. In low gravity situations there can be significant accumulation of soot and combustion products in the vicinity of the primary reaction zone owing to the absence of any convective buoyant flow. Such situations may result in substantial suppression of chemical activities in a flame, and the possibility of a radiative extinction may also be anticipated. The purpose of this work was to not only investigate the possibility of radiative extinction of a diffusion flame but also to qualitatively and quantitatively analyze the influence of soot radiation on a diffusion flame. In this study, first a hypothetical radiative loss profile of the form of a sech(sup 2) was assumed to influence a pure diffusion flame. It was observed that the reaction zone can, under certain circumstances, move through the radiative loss zone and locate itself on the fuel side of the loss zone contrary to our initial postulate. On increasing the intensity and/or width of the loss zone it was possible to extinguish the flame, and extinction plots were generated. In the presence of a convective flow, however, the movement of the temperature and reaction rate peaks indicated that the flame behavior is more complicated compared to a pure diffusional flame. A comprehensive model of soot formation, oxidation and radiation was used in a more involved analysis. The soot model of Syed, Stewart and Moss was used for soot nucleation and growth and the model of Nagle and Strickland-Constable was used for soot oxidation. The soot radiation was considered in the optically thin limit. An analysis of the flame structure revealed that the radiative loss term is countered both by the reaction term and the diffusion term. The essential balance for

  12. Turbulent Deflagrated Flame Interaction with a Fluidic Jet Flow for Deflagration-to-Detonation Flame Acceleration

    NASA Astrophysics Data System (ADS)

    Chambers, Jessica; McGarry, Joseph; Ahmed, Kareem

    2015-11-01

    Detonation is a high energetic mode of pressure gain combustion. Detonation combustion exploits the pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. The driving mechanism of deflagrated flame acceleration to detonation is turbulence generation and induction. A fluidic jet is an innovative method for the production of turbulence intensities and flame acceleration. Compared to traditional obstacles, the jet reduces the pressure losses and heat soak effects while providing turbulence generation control. The investigation characterizes the turbulent flame-flow interactions. The focus of the study is on classifying the turbulent flame dynamics and the temporal evolution of turbulent flame regime. The turbulent flame-flow interactions are experimentally studied using a LEGO Detonation facility. Advanced high-speed laser diagnostics, particle image velocimetry (PIV), planar laser induced florescence (PLIF), and Schlieren imaging are used in analyzing the physics of the interaction and flame acceleration. Higher turbulence induction is observed within the turbulent flame after contact with the jet, leading to increased flame burning rates. The interaction with the fluidic jet results in turbulent flame transition from the thin reaction zones to the broken reaction regime.

  13. Numerical simulations of the convective flame in white dwarfs

    NASA Technical Reports Server (NTRS)

    Livne, Eli

    1993-01-01

    A first step toward better understanding of the mechanism driving convective flames in exploding white dwarfs is presented. The propagation of the convective flame is examined using a two-dimensional implicit hydrodynamical code. The large scales of the instability are captured by the grid while the scales that are smaller than the grid resolution are approximated by a mixing-length approximation. It is found that largescale perturbations (of order of the pressure scale height) do grow significantly during the expansion, leading to a very nonspherical burning front. The combustion rate is strongly enhanced (compared to the unperturbed case) during the first second, but later the expansion of the star suppresses the flame speed, leading to only partial incineration of the nuclear fuel. Our results imply that large-scale perturbations by themselves are not enough to explain the mechanism by which convective flames are driven, and a study of the whole spectrum of relevant perturbations is needed. The implications of these preliminary results on future simulations, in the context of current models for Type Ia supernovae, are discussed.

  14. Effects Of Electric Field On Hydrocarbon-Fueled Flames

    NASA Technical Reports Server (NTRS)

    Yuan, Z.-G.; Hegde, U.

    2003-01-01

    It has been observed that flames are susceptible to electric fields that are much weaker than the breakdown field strength of the flame gases. When an external electric field is imposed on a flame, the ions generated in the flame reaction zone drift in the direction of the electric forces exerted on them. The moving ions collide with the neutral species and change the velocity distribution in the affected region. This is often referred to as ionic wind effect. In addition, the removal of ions from the flame reaction zone can alter the chemical reaction pathway of the flame. On the other hand, the presence of space charges carried by moving ions affects the electric field distribution. As a result, the flame often changes its shape, location and color once an external electric field is applied. The interplay between the flame movement and the change of electric field makes it difficult to determine the flame location for a given configuration of electrodes and fuel source. In normal gravity, the buoyancy-induced flow often complicates the problem and hinders detailed study of the interaction between the flame and the electric field. In this work, the microgravity environment established at the 2.2 Second Drop Tower at the NASA Glenn Research Center is utilized to effectively remove the buoyant acceleration. The interaction between the flame and the electric field is studied in a one-dimensional domain. A specially designed electrode makes flame current measurements possible; thus, the mobility of ions, ion density, and ionic wind effect can be evaluated.

  15. Influence of a Simple Heat Loss Profile on a Pure Diffusion Flame

    NASA Technical Reports Server (NTRS)

    Ray, Anjan; Wichman, Indrek S.

    1996-01-01

    The presence of soot on the fuel side of a diffusion flame results in significant radiative heat losses. The influence of a fuel side heat loss zone on a pure diffusion flame established between a fuel and an oxidizer wall is investigated by assuming a hypothetical sech(sup 2) heat loss profile. The intensity and width of the loss zone are parametrically varied. The loss zone is placed at different distances from the Burke-Schumann flame location. The migration of the temperature and reactivity peaks are examined for a variety of situations. For certain cases the reaction zone breaks through the loss zone and relocates itself on the fuel side of the loss zone. In all cases the temperature and reactivity peaks move toward the fuel side with increased heat losses. The flame structure reveals that the primary balance for the energy equation is between the reaction term and the diffusion term. Extinction plots are generated for a variety of situations. The heat transfer from the flame to the walls and the radiative fraction is also investigated, and an analytical correlation formula, derived in a previous study, is shown to produce excellent predictions of our numerical results when an O(l) numerical multiplicative constant is employed.

  16. The mechanisms of flame holding in the wake of a bluff body

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Malik, S.

    1984-01-01

    The flame holding mechanism for lean methane and lean propane air flames is examined under conditions where the recirculation zone is absent. The holding process is studied in detail in an attempt to determine the mechanism of flame holding and also the conditions where this mechanism is viable and when it fails and blow off occurs. Inverted flames held in the wake of a flat strip are studied. The velocity flow field is determined using a Laser Doppler Velocimetry technique. Equation of continuity is used to calculate the flame temperature from the change in area of flow streamlines before and after the flame. For methane air flame the controlling factor for blow off is incomplete reaction due to higher blowing rate leading to reduced residence time in the reaction zone.

  17. Investigation of extinction and re-ignition in piloted turbulent non-premixed methane-air flames using LES and high-speed OH-LIF

    NASA Astrophysics Data System (ADS)

    Prasad, Vinayaka N.; Juddoo, Mrinal; Masri, Assaad R.; Jones, William P.; Luo, Kai H.

    2013-06-01

    Extinction and re-ignition processes observed experimentally in thin reaction zones of piloted turbulent non-premixed methane flames approaching blow-off are analysed using Large Eddy Simulation (LES) along with the Eulerian stochastic field method representing the unresolved sub-grid turbulence-chemistry interactions. Eight stochastic fields in conjunction with a reduced chemical mechanism involving 19 species are employed to perform simulations of the Sydney flames L, B and M, which exhibit increasing levels of extinction. The agreement of the flame statistics of the velocities, mixture fraction and selected reactive species were found to be encouraging and highlight the ability of the method to capture quantitatively the effects of increasing jet velocity in this series. In a subsequent analysis of the flame structure using the LES simulation data, the strong three-dimensionality of the flame was emphasised. Quantitative comparisons with recent measurements using high-speed Planar Laser-Induced Fluorescence of OH (OH-PLIF) were found to be in reasonably good agreement with LES simulations and confirm the previous observations that the rates of flame breakages are greater than those of flame closures. This study, which also represents the first successful numerical attempt to describe the entire flame series, highlights the potential and complementary capabilities of a hybrid LES and high-speed imaging approach to resolve issues such as the role of out-of-plane motion in the investigation of transient processes such as flame breakages and re-ignition.

  18. Cars Spectroscopy of Propellant Flames

    DTIC Science & Technology

    1983-11-01

    applicability of CARS in studies of the combustion of propellants and other reactive systems. Broadband CARS spectra were obtained from both the reaction zone...ref 12). When ienited vith a flame, propellant burned in air with a luainous flame. A-e Ignittou with i hot wire resulted in flameless burning (fizz...ester). Current models of nitramine propellant combustion are essentially models of HMX (cyclotetranithylene tetranitramine) and RDX deflagration. The

  19. Premixing quality and flame stability: A theoretical and experimental study

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.; Heywood, J. B.; Tabaczynski, R. J.

    1979-01-01

    Models for predicting flame ignition and blowout in a combustor primary zone are presented. A correlation for the blowoff velocity of premixed turbulent flames is developed using the basic quantities of turbulent flow, and the laminar flame speed. A statistical model employing a Monte Carlo calculation procedure is developed to account for nonuniformities in a combustor primary zone. An overall kinetic rate equation is used to describe the fuel oxidation process. The model is used to predict the lean ignition and blow out limits of premixed turbulent flames; the effects of mixture nonuniformity on the lean ignition limit are explored using an assumed distribution of fuel-air ratios. Data on the effects of variations in inlet temperature, reference velocity and mixture uniformity on the lean ignition and blowout limits of gaseous propane-air flames are presented.

  20. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    DOE PAGES

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; ...

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmore » the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.« less

  1. On the integral manifold approach to a flame propagation problem

    NASA Astrophysics Data System (ADS)

    Bykov, Viatcheslav; Goldfarb, Igor; Gol'Dshtein, Vladimir

    2004-08-01

    The problem of a pressure-driven flame in an inert porous medium filled with a flammable gaseous mixture is considered. In the frame of reference attached to an advancing combustion wave and after a suitable non-dimensionalization the corresponding mathematical description of the problem includes three highly nonlinear ordinary differential equations. The system is rewritten in the form of a singularly perturbed system of ordinary differential equations and is analysed analytically by the geometrical version of the asymptotic method of integral manifolds (MIM). The paper focuses on an analysis of the fine structure of the flame and its velocity on the basis of an asymptotical consideration of an arbitrary trajectory of the considered system in the phase space. It is shown that two different stages of the trajectory correspond to the two various sub-zones of the flame: the first stage (fast motion from the initial point to the slow integral) is interpreted as a preheat sub-zone and the second stage of the path corresponds to a reaction sub-zone. It is shown that an inter-zone boundary plays an important role in a determination of the flame properties: characteristics of the gaseous mixture at that point determine the flame velocity. The accepted approach of the investigation allows us to gain an analytical expression for the flame velocity. It appears that the velocity formula represents a cubic-root dependence on the Arrhenius exponent, which in turn contains the parameters of the boundary point. The theoretical predictions are found to coincide rather well with the data of direct numerical simulations.

  2. Direct numerical simulations of flow-chemistry interactions in statistically turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Arias, Paul; Uranakar, Harshavardhana; Chaudhuri, Swetaprovo; Im, Hong

    2015-11-01

    The effects of Damköhler number and Karlovitz number on the flame dynamics of three-dimensional statistically planar turbulent premixed flames are investigated by direct numerical simulation incorporating detailed chemistry and transport for a hydrogen-air mixture. The mean inlet velocity was dynamically adjusted to ensure a stable flame within the computational domain, allowing the investigation of time-averaged quantities of interest. A particular interest was on understanding the effects of turbulence on the displacement speed of the flame relative to the local fluid flow. Results show a linear dependence on the displacement speed as a function of total strain, consistent with earlier work on premixed-laminar flames. Additional analysis on the local flame thickness reveals that the effect of turbulence is twofold: (1) the increase in mixing results in flame thinning due to the enhancement of combustion at early onset of the flame, and (2) for large Reynolds number flows, the penetration of the turbulence far into the preheat zone and into the reaction zone results in localized flame broadening.

  3. Studies of Flame Structure in Microgravity

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Sung, C. J.; Zhu, D. L.

    1997-01-01

    The present research endeavor is concerned with gaining fundamental understanding of the configuration, structure, and dynamics of laminar premixed and diffusion flames under conditions of negligible effects of gravity. Of particular interest is the potential to establish and hence study the properties of spherically- and cylindrically-symmetric flames and their response to external forces not related to gravity. For example, in an earlier experimental study of the burner-stabilized cylindrical premixed flames, the possibility of flame stabilization through flow divergence was established, while the resulting one-dimensional, adiabatic, stretchless flame also allowed an accurate means of determining the laminar flame speeds of combustible mixtures. We have recently extended our studies of the flame structure in microgravity along the following directions: (1) Analysis of the dynamics of spherical premixed flames; (2) Analysis of the spreading of cylindrical diffusion flames; (3) Experimental observation of an interesting dual luminous zone structure of a steady-state, microbuoyancy, spherical diffusion flame of air burning in a hydrogen/methane mixture environment, and its subsequent quantification through computational simulation with detailed chemistry and transport; (4) Experimental quantification of the unsteady growth of a spherical diffusion flame; and (5) Computational simulation of stretched, diffusionally-imbalanced premixed flames near and beyond the conventional limits of flammability, and the substantiation of the concept of extended limits of flammability. Motivation and results of these investigations are individually discussed.

  4. Full numerical simulation of coflowing, axisymmetric jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Mahalingam, S.; Cantwell, B. J.; Ferziger, J. H.

    1990-01-01

    The near field of a non-premixed flame in a low speed, coflowing axisymmetric jet is investigated numerically using full simulation. The time-dependent governing equations are solved by a second-order, explicit finite difference scheme and a single-step, finite rate model is used to represent the chemistry. Steady laminar flame results show the correct dependence of flame height on Peclet number and reaction zone thickness on Damkoehler number. Forced simulations reveal a large difference in the instantaneous structure of scalar dissipation fields between nonbuoyant and buoyant cases. In the former, the scalar dissipation marks intense reaction zones, supporting the flamelet concept; however, results suggest that flamelet modeling assumptions need to be reexamined. In the latter, this correspondence breaks down, suggesting that modifications to the flamelet modeling approach are needed in buoyant turbulent diffusion flames.

  5. Structure of turbulent non-premixed flames modeled with two-step chemistry

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Mahalingam, S.; Puri, I. K.; Vervisch, L.

    1992-01-01

    Direct numerical simulations of turbulent diffusion flames modeled with finite-rate, two-step chemistry, A + B yields I, A + I yields P, were carried out. A detailed analysis of the turbulent flame structure reveals the complex nature of the penetration of various reactive species across two reaction zones in mixture fraction space. Due to this two zone structure, these flames were found to be robust, resisting extinction over the parameter ranges investigated. As in single-step computations, mixture fraction dissipation rate and the mixture fraction were found to be statistically correlated. Simulations involving unequal molecular diffusivities suggest that the small scale mixing process and, hence, the turbulent flame structure is sensitive to the Schmidt number.

  6. The Effects of Flame Structure on Extinction of CH4-O2-N2 Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Du, J.; Axelbaum, R. L.; Gokoglu, S. (Technical Monitor)

    1996-01-01

    The effects of flame structure on the extinction limits of CH4-O2-N2 counterflow diffusion flames were investigated experimentally and numerically by varying the stoichiometric mixture fraction Z(sub st), Z(sub st) was varied by varying free-stream concentrations, while the adiabatic flame temperature T(sub ad) was held fixed by maintaining a fixed amount of nitrogen at the flame. Z(sub st) was varied between 0.055 (methane-air flame) and 0.78 (diluted- methane-oxygen flame). The experimental results yielded an extinction strain rate K(sub ext) of 375/s for the methane-air flame, increasing monotonically to 1042/s for the diluted-methane-oxygen flame. Numerical results with a 58-step Cl mechanism yielded 494/s and 1488/s, respectively. The increase in K(sub ext) with Z(sub st) for a fixed T(sub ad) is explained by the shift in the O2 profile toward the region of maximum temperature and the subsequent increase in rates for chain-branching reactions. The flame temperature at extinction reached a minimum at Z(sub st) = 0.65, where it was 200 C lower than that of the methane-air flame. This significant increase in resistance to extinction is seen to correspond to the condition in which the OH and O production zones are centered on the location of maximum temperature.

  7. An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind

    1995-01-01

    The objective of this research was to experimentally and theoretically investigate the radiation-induced extinction of gaseous diffusion flames in microgravity. The microgravity conditions were required because radiation-induced extinction is generally not possible in 1-g but is highly likely in microgravity. In 1-g, the flame-generated particulates (e.g. soot) and gaseous combustion products that are responsible for flame radiation, are swept away from the high temperature reaction zone by the buoyancy-induced flow and a steady state is developed. In microgravity, however, the absence of buoyancy-induced flow which transports the fuel and the oxidizer to the combustion zone and removes the hot combustion products from it enhances the flame radiation due to: (1) transient build-up of the combustion products in the flame zone which increases the gas radiation, and (2) longer residence time makes conditions appropriate for substantial amounts of soot to form which is usually responsible for most of the radiative heat loss. Numerical calculations conducted during the course of this work show that even non-radiative flames continue to become "weaker" (diminished burning rate per unit flame area) due to reduced rates of convective and diffusive transport. Thus, it was anticipated that radiative heat loss may eventually extinguish the already "weak" microgravity diffusion flame. While this hypothesis appears convincing and our numerical calculations support it, experiments for a long enough microgravity time could not be conducted during the course of this research to provide an experimental proof. Space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in microgravity will burn indefinitely. It was hoped that radiative extinction can be experimentally shown by the aerodynamically stabilized gaseous diffusion flames where the fuel supply rate was externally controlled. While substantial progress toward this

  8. An experimental study of air-assist atomizer spray flames

    NASA Technical Reports Server (NTRS)

    Mao, Chien-Pei; Wang, Geng; Chigier, Norman

    1988-01-01

    It is noted that air-assisted atomizer spray flames encountered in furnaces, boilers, and gas turbine combustors possess a more complex structure than homogeneous turbulent diffusion flames, due to the swirling motion introduced into the fuel and air flows for the control of flame stability, length, combustion intensity, and efficiency. Detailed comparisons are presented between burning and nonburning condition measurements of these flames obtained by nonintrusive light scattering phase/Doppler detection. Spray structure is found to be drastically changed within the flame reaction zone, with changes in the magnitude and shape of drop number density, liquid flux, mean drop size diameter, and drop mean axial velocity radial distributions.

  9. 3D DNS of Turbulent Premixed Flame with over 50 Species and 300 Elementary Reactions

    NASA Astrophysics Data System (ADS)

    Shimura, Masayasu; Yenerdag, Basmil; Naka, Yoshitsugu; Nada, Yuzuru; Tanahashi, Mamoru

    2014-11-01

    Three-dimensional direct numerical simulation of methane-air premixed planar flame propagating in homogenous isotropic turbulence is conducted to investigate local flame structure in thin reaction zones. Detailed kinetic mechanism, GRI-Mech 3.0 which includes 53 species and 325 elementary reactions, is used to represent methane-air reaction, and temperature dependences of transport and thermal properties are considered. For a better understanding of the local flame structure in thin reaction zones regime, distributions of mass fractions of major species, heat release rate, temperature and turbulent structures are investigated. Characteristic flame structures, such as radical fingering and multi-layered-like flame structures, are observed. The most expected maximum heat release rate in flame elements is lower than that of laminar flame with same mixture. To clarify mechanism of the decrease in local heat release rate, effects of strain rates tangential to flame front on local heat release rate are investigated.

  10. Predictions of Transient Flame Lift-Off Length With Comparison to Single-Cylinder Optical Engine Experiments

    DOE PAGES

    Senecal, P. K.; Pomraning, E.; Anders, J. W.; ...

    2014-05-28

    A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less

  11. Predictions of Transient Flame Lift-Off Length With Comparison to Single-Cylinder Optical Engine Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senecal, P. K.; Pomraning, E.; Anders, J. W.

    A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less

  12. Investigation of flame structure in plasma-assisted turbulent premixed methane-air flame

    NASA Astrophysics Data System (ADS)

    Hualei, ZHANG; Liming, HE; Jinlu, YU; Wentao, QI; Gaocheng, CHEN

    2018-02-01

    The mechanism of plasma-assisted combustion at increasing discharge voltage is investigated in detail at two distinctive system schemes (pretreatment of reactants and direct in situ discharge). OH-planar laser-induced fluorescence (PLIF) technique is used to diagnose the turbulent structure methane-air flame, and the experimental apparatus consists of dump burner, plasma-generating system, gas supply system and OH-PLIF system. Results have shown that the effect of pretreatment of reactants on flame can be categorized into three regimes: regime I for voltage lower than 6.6 kV; regime II for voltage between 6.6 and 11.1 kV; and regime III for voltage between 11.1 and 12.5 kV. In regime I, aerodynamic effect and slower oxidation of higher hydrocarbons generated around the inner electrode tip plays a dominate role, while in regime III, the temperature rising effect will probably superimpose on the chemical effect and amplify it. For wire-cylinder dielectric barrier discharge reactor with spatially uneven electric field, the amount of radicals and hydrocarbons are decreased monotonically in radial direction which affects the flame shape. With regard to in situ plasma discharge in flames, the discharge pattern changes from streamer type to glow type. Compared with the case of reactants pretreatment, the flame propagates further in the upstream direction. In the discharge region, the OH intensity is highest for in situ plasma assisted combustion, indicating that the plasma energy is coupled into flame reaction zone.

  13. The Interaction of High-Speed Turbulence with Flames

    NASA Astrophysics Data System (ADS)

    Poludnenko, Alexei Y.; Oran, E. S.

    2010-01-01

    Interaction of flames with turbulence occurs in systems ranging from chemical flames on Earth to thermonuclear burning fronts, which are presently believed to be the key component of the explosion mechanism powering the type Ia supernovae. A number of important questions remains concerning the dynamics of turbulent flames in the presence of high-speed turbulence, the flame structure and stability, as well as the ability of the turbulent cascade to penetrate and disrupt the flame creating the distributed mode of burning. We present results of a systematic study of the dynamics and properties of turbulent flames formed under the action of high-speed turbulence using a simplified one-step kinetics similar to the one used to describe hydrogen combustion. This approach makes large-scale highly resolved simulations computationally feasible and it allows one to focus on the process of the turbulence-flame interaction in a simplified controlled setting. Numerical simulations were performed using the massively parallel reactive-flow code Athena-RFX. We discuss global properties of the turbulent flame in this regime (flame width, speed, etc.) and the internal structure of the flame brush. A method is presented for directly reconstructing the internal flame structure and it is shown that correct characterization of the flame regime can be very sensitive to the proper choice of the diagnostic method. We discuss the ability of the turbulent cascade to penetrate the internal flame structure. Finally, we also consider the processes that determine the turbulent burning velocity and identify two distinct regimes of flame evolution. This work was supported in part by the National Research Council, Naval Research Laboratory, and the Office of Naval Research, and by the National Science Foundation through the TeraGrid resources.

  14. Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity

    NASA Technical Reports Server (NTRS)

    Takahashi, F.; Katta, V. R.

    2001-01-01

    Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.

  15. An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Wichman, Indrek; Guenther, Mark; Ray, Anjan; Agrawal, Sanjay

    1993-01-01

    In a recent paper on 'Observations of candle flames under various atmospheres in microgravity' by Ross et al., it was found that for the same atmosphere, the burning rate per unit wick surface area and the flame temperature were considerably reduced in microgravity as compared with normal gravity. Also, the flame (spherical in microgravity) was much thicker and further removed from the wick. It thus appears that the flame becomes 'weaker' in microgravity due to the absence of buoyancy generated flow which serves to transport the oxidizer to the combustion zone and remove the hot combustion products from it. The buoyant flow, which may be characterized by the strain rate, assists the diffusion process to execute these essential functions for the survival of the flame. Thus, the diffusion flame is 'weak' at very low strain rates and as the strain rate increases the flame is initially 'strengthened' and eventually it may be 'blown out'. The computed flammability boundaries of T'ien show that such a reversal in material flammability occurs at strain rates around 5 sec. At very low or zero strain rates, flame radiation is expected to considerably affect this 'weak' diffusion flame because: (1) the concentration of combustion products which participate in gas radiation is high in the flame zone; and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which is usually responsible for a major portion of the radiative heat loss. We anticipate that flame radiation will eventually extinguish this flame. Thus, the objective of this project is to perform an experimental and theoretical investigation of radiation-induced extinction of diffusion flames under microgravity conditions. This is important for spacecraft fire safety.

  16. Influence of water mist on propagation and suppression of laminar premixed flame

    NASA Astrophysics Data System (ADS)

    Belyakov, Nikolay S.; Babushok, Valeri I.; Minaev, Sergei S.

    2018-03-01

    The combustion of premixed gas mixtures containing micro droplets of water was studied using one-dimensional approximation. The dependencies of the burning velocity and flammability limits on the initial conditions and on the properties of liquid droplets were analyzed. Effects of droplet size and concentration of added liquid were studied. It was demonstrated that the droplets with smaller diameters are more effective in reducing the flame velocity. For droplets vaporizing in the reaction zone, the burning velocity is independent of droplet size, and it depends only on the concentration of added liquid. With further increase of the droplet diameter the droplets are passing through the reaction zone with completion of vaporization in the combustion products. It was demonstrated that for droplets above a certain size there are two stable stationary modes of flame propagation with transition of hysteresis type. The critical conditions of the transition are due to the appearance of the temperature maximum at the flame front and the temperature gradient with heat losses from the reaction zone to the products, as a result of droplet vaporization passing through the reaction zone. The critical conditions are similar to the critical conditions of the classical flammability limits of flame with the thermal mechanism of flame propagation. The maximum decrease in the burning velocity and decrease in the combustion temperature at the critical turning point corresponds to predictions of the classical theories of flammability limits of Zel'dovich and Spalding. The stability analysis of stationary modes of flame propagation in the presence of water mist showed the lack of oscillatory processes in the frames of the assumed model.

  17. In situ measurements of oxide particles in boron-containing diffusion flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turns, S.R.; Funari, M.J.; Khan, A.

    1989-02-01

    Particulate matter in axisymmetric laminar diffusion flames produced by burning mixtures of either CO and trimethylborate (TMB) or CH/sub 4/ and TMB with air were investigated using laser light-scattering techniques. Boron oxide particle sizes and number densities were determined at various heights in the flames using polarization ratio and relative intensity measurements, respectively. In the CO/TMB flames, two distinct particle-laden regions were found. The first region was located on the rich side of the luminous flame zone and initially appeared as a narrow annulus, which grew in width downstream until the particles filled the core. A second thin annular zonemore » appeared on the air side of the flame zone, starting approximately at the height of the luminous green flame tip and continuing to grow downstream. Particle sizes did not vary significantly with location in the flames, with diameters of approximately 0.09 and 0.15 ..mu..m in the 95% CO/5% TMB and 90% CO/10% TMB flames, respectively. Corresponding peak number densities were approximately 1.5 X 10/sup 10/ and 6 X 10/sup 9/ cm/sup -3/. The CH/sub 4//TMB flames were considerably different than the CO/TMB flames. The presence of significant quantities of water vapor presumably contributed to the formation of HBO/sub 2/(g) in favor of condensed-phase B/sub 2/O/sub 3/. At locations where oxide particles did form, they were closer to the flame centerline than the soot-containing regions. Computations of equilibrium yields of condensed-phase oxide were in qualitative agreement with the experimental results.« less

  18. Health risk characterization for resident inhalation exposure to particle-bound halogenated flame retardants in a typical e-waste recycling zone.

    PubMed

    Luo, Pei; Bao, Lian-Jun; Wu, Feng-Chang; Li, Shao-Meng; Zeng, Eddy Y

    2014-01-01

    Inhalation of pollutants is an important exposure route for causing human health hazards, and inhalation exposure assessment must take into account particle size distribution because particle-bound pollutants are size-dependent. Such information is scarce, particularly for residents dwelling within e-waste recycling zones where abundant atmospheric halogenated flame retardants (HFRs) commonly used in electronic/electrical devices have been widely reported. Atmospheric size-fractioned particle samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor from an e-waste recycling zone in South China. The deposition efficiencies and fluxes of size-fractioned HFRs including polybrominated diphenyl ethers (PBDEs), alternative brominated flame retardants, and Dechlorane Plus in the human respiratory tract were estimated using the International Commission on Radiological Protection deposition model. The majority of HFRs was found to deposit in the head airways, with coarse particles (aerodynamic diameter (Dp) > 1.8 μm) contributing the most (69-91%). Conversely, fine particles (Dp < 1.8 μm) were dominant in the alveolar region (62-80%). The inhalation intake of PBDEs within the e-waste recycling zone was 44 ng/d (95% confidence interval (CI): 30-65 ng/d), close to those through food consumption in non-e-waste recycling regions. The estimated total hazard quotient of particle-bound HFRs was 5.6 × 10(-4) (95% CI: 3.8 × 10(-4)-8.8 × 10(-4)). In addition, incremental lifetime cancer risk induced by BDE-209 was 1.36 × 10(-10) (95% CI: 7.3 × 10(-11)-2.3 × 10(-10)), much lower than the Safe Acceptable Range (1.0 × 10(-6)-1.0 × 10(-4)) established by the United States Environmental Protection Agency. These results indicate that the potential health risk from inhalation exposure to particle-bound HFRs for residents dwelling in the e-waste recycling zone was low.

  19. Structural aspects of coaxial oxy-fuel flames

    NASA Astrophysics Data System (ADS)

    Ditaranto, M.; Sautet, J. C.; Samaniego, J. M.

    Oxy-fuel combustion has been proven to increase thermal efficiency and to have a potential for NOx emission reduction. The study of 25-kW turbulent diffusion flames of natural gas with pure oxygen is undertaken on a coaxial burner with quarl. The structural properties are analysed by imaging the instantaneous reaction zone by OH* chemiluminescence and measuring scalar and velocity profiles. The interaction between the flame front and the shear layers present in the coaxial jets depends on the momentum ratio which dictates the turbulent structure development. Flame length and NOx emission sensitivity to air leaks in the combustion chamber are also investigated.

  20. Theoretical and experimental investigation of turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Azzazy, M. T. F.

    1982-11-01

    A model is proposed to describe the propagation of a plane oblique flame into a turbulent flow of premixed reactants. The model incorporates a transport equation for the single or joint PDF's of passive scalers, in addition to the conservation equations of mass, momentum, energy and K.E. of turbulence. In the first phase of developing the model, the reaction mechanism was treated as a single step irreversible exothermic reaction. In this case, the PDF of the progress variable was parameterized and solved with the conservation equations. The second phase considered a two step reaction mechanism in an attempt to explore the role played by the radicals in the propagation of turbulent premixed flames. For both the two phases, the flame speed and angle are eigenvalues of the solution. Laser induced fluorescence spectroscopy (LIFS) was used to measure the PDF of OH concentration in a laboratory scale burner simulating the flame studied by the model. The premixed methane-air flame is stabilized on a rod flame holder downstream of a turbulence producing grid. The experimentally observed PDF's of the hydroxil radical concentration, and the statistical moments, used to describe and compare the PDF's and moments of the two reaction model.

  1. Effect of von Karman Vortex Shedding on Regular and Open-slit V-gutter Stabilized Turbulent Premixed Flames

    DTIC Science & Technology

    2012-04-01

    Both flame lengths shrink and large scale disruptions occur downstream with vortex shedding carrying reaction zones. Flames in both flameholders...9) the flame structure changes dramatically for both regular and open-slit V-gutter. Both flame lengths shrink and large scale disruptions occur...reduces the flame length . However, qualitatively the open-slit V-gutter appears to be more sensitive than the regular V-gutter. Both flames remain

  2. Effect of Intense Sound Waves on a Stationary Gas Flame

    NASA Technical Reports Server (NTRS)

    Hahnemann, H; Ehret, L

    1950-01-01

    Intense sound waves with a resonant frequency of 5000 cycles per second were imposed on a stationary propane-air flame issuing from a nozzle. In addition to a slight increase of the flame velocity, a fundamental change both in the shape of the burning zone and in the flow pattern could be observed. An attempt is made to explain the origin of the variations in the flame configuration on the basis of transition at the nozzle from jet flow to potential flow.

  3. Ionization and chemiluminescence during the progressive aeration of methane flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, Felix; Carleton, Fred

    Saturation currents and chemiluminescence, especially at the CH{sup *} and C{sub 2}{sup *} wavelengths, are measured for a range of small, laminar methane flames during progressive addition of air, with the principal objective of distinguishing between pure diffusion flames, premixed flames of compositions falling between the upper and lower flammability limits, and the broad range of aerated flames lying in between these regimes. Flame areas defined by the loci of maximum luminosity and by schlieren contours were recorded, so that saturation current densities, CH{sup *} and C{sub 2}{sup *} emission per unit flame area, as well as burning velocities couldmore » be deduced. For admixtures of less than 70 vol.%, air appears to act, surprisingly, as an inert diluent as regards saturation currents, so that saturation currents are essentially proportional to fuel flow alone. Much the same applies to chemiluminescence. However, schlieren contours, which were recorded both to provide a basis for burning velocity measurements and to explore density changes in the reactants, indicated the presence of a burner - stabilised propagating reaction zone ahead of the luminous flame surface starting at around 50 vol.% and possibly even at lower air admixtures. This evidence of a steep change in refractive index is indicative of a premixed reaction zone involving the added oxygen, which however generates no chemi-ionization and emits no light. Even photographing the flame by radiation emitted at the CH{sup *} and C{sub 2}{sup *} wavelengths shows no sign of its existence. Its burning velocity is about 10 cm/s, when stabilized by the surrounding diffusion flame. The most plausible rationale for these observations is the formation of syngas by the partial oxidation of methane. The subsequent burning of CO and H{sub 2} is known to occur without chemi-ionization or appreciable light emission. (author)« less

  4. CO Emission from an Impinging Non-Premixed Flame

    PubMed Central

    Chien, Y.C.; Escofet-Martin, D.; Dunn-Rankin, D.

    2017-01-01

    Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels. While CO can be desirable in some syngas processes, it is a dangerous emission from fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction prevents complete oxidation of fuel to carbon dioxide and water, particularly when the reaction is interrupted by interaction with relatively cool solid boundaries. This research examines the physico-thermo-chemical processes responsible for carbon monoxide release from a small laminar non-premixed methane/air flame impinging on a nearby surface. We measure the changes in CO emission as correlated with variations in flame structure observed using planar laser induced fluorescence (PLIF of OH and 2-photon CO), and two-line OH PLIF thermometry, as a function of burner-to-plate distance. In particular, this work combines the use of OH and CO PLIF, and PLIF thermometry to describe the relative locations of the CO rich region, the peak heat release zone as indicated by chemiluminescence and OH gradients, and the extended oxidative zone in the impinging flames. The results show that CO release correlates strongly with stagnating flow-driven changes in the location and extent of high concentration regions of OH in surface-impinging diffusion flames. PMID:28989179

  5. A model of concurrent flow flame spread over a thin solid fuel

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul V.

    1993-01-01

    A numerical model is developed to examine laminar flame spread and extinction over a thin solid fuel in lowspeed concurrent flows. The model provides a more precise fluid-mechanical description of the flame by incorporating an elliptic treatment of the upstream flame stabilization zone near the fuel burnout point. Parabolic equations are used to treat the downstream flame, which has a higher flow Reynolds number. The parabolic and elliptic regions are coupled smoothly by an appropriate matching of boundary conditions. The solid phase consists of an energy equation with surface radiative loss and a surface pyrolysis relation. Steady spread with constant flame and pyrolysis lengths is found possible for thin fuels and this facilitates the adoption of a moving coordinate system attached to the flame with the flame spread rate being an eigen value. Calculations are performed in purely forced flow in a range of velocities which are lower than those induced in a normal gravity buoyant environment. Both quenching and blowoff extinction are observed. The results show that as flow velocity or oxygen percentage is reduced, the flame spread rate, the pyrolysis length, and the flame length all decrease, as expected. The flame standoff distance from the solid and the reaction zone thickness, however, first increase with decreasing flow velocity, but eventually decrease very near the quenching extinction limit. The short, diffuse flames observed at low flow velocities and oxygen levels are consistent with available experimental data. The maximum flame temperature decreases slowly at first as flow velocity is reduced, then falls more steeply close to the quenching extinction limit. Low velocity quenching occurs as a result of heat loss. At low velocities, surface radiative loss becomes a significant fraction of the total combustion heat release. In addition, the shorter flame length causes an increase in the fraction of conduction downstream compared to conduction to the fuel

  6. Volumetric flame synthesis of well-defined molybdenum oxide nanocrystals.

    PubMed

    Merchan-Merchan, Wilson; Saveliev, Alexei V; Desai, Milind

    2009-11-25

    Well-defined faceted inorganic Mo oxide nanocrystals are synthesized in the gas phase using a solid-fed-precursor flame synthesis method. The solid crystals have rectangular cross-section with characteristic size of 10-20 nm and with lengths ranging from 50 nm to a few hundred nanometres. A 1 mm diameter high purity Mo probe introduced in the oxygen-rich part of the flame serves as the material source. A combination of the strong temperature gradient and varying chemical species concentrations within the flame volume provides the ideal conditions for the rapid and direct formation of these unique nanocrystals. Oxidation and evaporation of MoO3 in the oxygen-rich zone are followed by reduction to MoO2 in the lower temperature, more fuel-rich zone. The MoO3 vapours formed are pushed in the direction of the gas flow and transformed into mature well-defined convex polyhedron nanocrystals bounded with six faces resembling rectangular parallelepipeds.

  7. Impact of heat release on strain rate field in turbulent premixed Bunsen flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coriton, Bruno Rene Leon; Frank, Jonathan H.

    2016-08-10

    The effects of combustion on the strain rate field are investigated in turbulent premixed CH 4/air Bunsen flames using simultaneous tomographic PIV and OH LIF measurements. Tomographic PIV provides three-dimensional velocity measurements, from which the complete strain rate tensor is determined. The OH LIF measurements are used to determine the position of the flame surface and the flame-normal orientation within the imaging plane. This combination of diagnostic techniques enables quantification of divergence as well as flame-normal and tangential strain rates, which are otherwise biased using only planar measurements. Measurements are compared in three lean-to-stoichiometric flames that have different amounts ofmore » heat release and Damköhler numbers greater than unity. The effects of heat release on the principal strain rates and their alignment relative to the local flame normal are analyzed. The extensive strain rate preferentially aligns with the flame normal in the reaction zone, which has been indicated by previous studies. The strength of this alignment increases with increasing heat release and, as a result, the flame-normal strain rate becomes highly extensive. These effects are associated with the gas expansion normal to the flame surface, which is largest for the stoichiometric flame. In the preheat zone, the compressive strain rate has a tendency to align with the flame normal. Away from the flame front, the flame – strain rate alignment is arbitrary in both the reactants and products. The flame-tangential strain rate is on average positive across the flame front, and therefore the turbulent strain rate field contributes to the enhancement of scalar gradients as in passive scalar turbulence. As a result, increases in heat release result in larger positive values of the divergence as well as flame-normal and tangential strain rates, the tangential strain rate has a weaker dependence on heat release than the flame-normal strain rate and the

  8. Theoretical and experimental investigation of turbulent premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azzazy, M.T.F.

    1982-01-01

    A model is proposed to describe the propagation of a plane oblique flame into a turbulent flow of premixed reactants. The model incorporates a transport equation for the single or joint PDF's of passive scalers, in addition to the conservation equations of mass, momentum, energy and K.E. of turbulence. In the first phase of developing the model, the reaction mechanism was treated as a single step irreversible exothermic reaction. In this case, the PDF of the progress variable was parameterized and solved with the conservation equations. The second phase considered a two step reaction mechanism in an attempt to exploremore » the role played by the radicals in the propagation of turbulent premixed flames. For both the two phases, the flame speed and angle are Eigenvalues of the solution. Laser Induced Fluoresence Spectroscopy (LIFS) was used to measure the PDF of OH concentration in a laboratory scale burner simulating the flame studied by the model. The premixed Methane-Air flame was stabilized on a rod flame holder downstream of a turbulence producing grid. Measurements in both the streamwise and transverse directions were made for a variety of flow conditions. The experimentally observed PDF's of the hydroxil radical concentration, and the statistical moments, were used to describe and compare the PDF's and moments of the two reaction model.« less

  9. Hydrodynamic and chemical effects of hydrogen dilution on soot evolution in turbulent nonpremixed bluff body ethylene flames

    NASA Astrophysics Data System (ADS)

    Deng, Sili; Mueller, Michael E.; Chan, Qing N.; Qamar, Nader H.; Dally, Bassam B.; Alwahabi, Zeyad T.; Nathan, Graham J.

    2015-11-01

    A turbulent nonpremixed bluff body ethylene/hydrogen (volume ratio 2:1) flame is studied and compared with the ethylene counterpart [Mueller et al., Combust. Flame, 160, 2013]. Similar to the ethylene buff body flame, a low-strain recirculation zone, a high-strain neck region, and a downstream jet-like region are observed. However, the maximum soot volume fraction in the recirculation zone of the hydrogen diluted case is significantly lower than the ethylene case. Large Eddy Simulation is used to further investigate soot evolution in the recirculation zone and to elucidate the role of hydrogen dilution. Since the central jet Reynolds numbers in both cases are the same (approximately 30,900), the jet velocity of the hydrogen diluted case is higher, resulting in a shorter and leaner recirculation zone. In addition, hydrogen dilution chemically suppresses soot formation due to the reduction of C/H ratio. Consequently, the reduction of the soot volume fraction for the hydrogen diluted ethylene flame is attributed to two major effects: hydrodynamic and chemical effects.

  10. Effect of fuel composition and differential diffusion on flame stabilization in reacting syngas jets in turbulent cross-flow

    DOE PAGES

    Minamoto, Yuki; Kolla, Hemanth; Grout, Ray W.; ...

    2015-07-24

    Here, three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H 2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilizationmore » are located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H 2 or CO species reveals that hydrogen

  11. Flame structure and stabilization in miniature liquid film combustors

    NASA Astrophysics Data System (ADS)

    Pham, Trinh Kim

    Liquid-fueled miniature combustion systems can be promising portable power devices when high specific power and long operation duration are required. A uniquely viable fueling option for small scale combustion is to introduce the liquid fuel as a film on the combustor walls. As one example of such systems, this dissertation characterizes 1-cm-diameter tubular combustors fed by liquid fuel films, and seeks to identify the mechanisms by which flames are stabilized within them. Early experimental work demonstrates that flame behavior is dependent upon steadiness in fuel and air injection and in geometric symmetry and uniformity. Significant discoveries in later work include the impact of direct strain on the flame by the airflow, the fact that no local recirculation zone appears to exist for stabilization as was previously believed, and that the film thickness, uniformity, and location directly affect the flame's characteristics and stability. A gradient in film thickness is required for stable operation, and this requirement may explain why the combustor maintains overall rich conditions. Initial numerical simulations of two-dimensional cold and reacting flows in a simplified model of the combustor yields flame shape and flow field results that do not match experiments in the burning case, therefore suggesting that local turbulence in the fuel injection region provides the necessary degree of mixing. A three-dimensional model of the combustor is needed if reacting flows are to be simulated accurately. It was also found that thermal conduction from the chamber exit to the chamber base plays an important role in fuel vaporization and the stability of the flame. Consequently, flames cannot be sustained in quartz and other transparent but thermally insulating materials for the selected geometry, so observation of the flame's entire structure cannot be accomplished without either the addition of other flameholding elements or the employment of a more thermally conductive

  12. Flames in vortices & tulip-flame inversion

    NASA Astrophysics Data System (ADS)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  13. Effects of Buoyancy on the Flowfields of Lean Premixed Turbulent V-Flames

    NASA Technical Reports Server (NTRS)

    Cheng, R. K.; Greenberg, P.; Bedat, B.; Yegian, D. T.

    1999-01-01

    Open laboratory turbulent flames used for investigating fundament flame turbulence interactions are greatly affected by buoyancy. Though much of our current knowledge is based on observations made in these open flames, the effects of buoyancy are usually not included in data interpretation, numerical analysis or theories. This inconsistency remains an obstacle to merging experimental observations and theoretical predictions. To better understanding the effects of buoyancy, our research focuses on steady lean premixed flames propagating in fully developed turbulence. We hypothesize that the most significant role of buoyancy forces on these flames is to influence their flowfields through a coupling with mean and fluctuating pressure fields. Changes in flow pattern alter the mean aerodynamic stretch and in turn affect turbulence fluctuation intensities both upstream and downstream of the flame zone. Consequently, flame stabilization, reaction rates, and turbulent flame processes are all affected. This coupling relates to the elliptical problem that emphasizes the importance of the upstream, wall and downstream boundary conditions in determining all aspects of flame propagation. Therefore, buoyancy has the same significance as other parameters such as flow configuration, flame geometry, means of flame stabilization, flame shape, enclosure size, mixture conditions, and flow conditions.

  14. Role of buoyant flame dynamics in wildfire spread.

    PubMed

    Finney, Mark A; Cohen, Jack D; Forthofer, Jason M; McAllister, Sara S; Gollner, Michael J; Gorham, Daniel J; Saito, Kozo; Akafuah, Nelson K; Adam, Brittany A; English, Justin D

    2015-08-11

    Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is available to form the basis for the precise predictions needed to manage fires more effectively and reduce their environmental, economic, ecological, and climate impacts. Here, we report new experiments conducted at multiple scales that appear to reveal how wildfire spread derives from the tight coupling between flame dynamics induced by buoyancy and fine-particle response to convection. Convective cooling of the fine-sized fuel particles in wildland vegetation is observed to efficiently offset heating by thermal radiation until convective heating by contact with flames and hot gasses occurs. The structure and intermittency of flames that ignite fuel particles were found to correlate with instabilities induced by the strong buoyancy of the flame zone itself. Discovery that ignition in wildfires is critically dependent on nonsteady flame convection governed by buoyant and inertial interaction advances both theory and the physical basis for practical modeling.

  15. Role of buoyant flame dynamics in wildfire spread

    PubMed Central

    Finney, Mark A.; Cohen, Jack D.; Forthofer, Jason M.; McAllister, Sara S.; Gollner, Michael J.; Gorham, Daniel J.; Saito, Kozo; Akafuah, Nelson K.; Adam, Brittany A.; English, Justin D.

    2015-01-01

    Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is available to form the basis for the precise predictions needed to manage fires more effectively and reduce their environmental, economic, ecological, and climate impacts. Here, we report new experiments conducted at multiple scales that appear to reveal how wildfire spread derives from the tight coupling between flame dynamics induced by buoyancy and fine-particle response to convection. Convective cooling of the fine-sized fuel particles in wildland vegetation is observed to efficiently offset heating by thermal radiation until convective heating by contact with flames and hot gasses occurs. The structure and intermittency of flames that ignite fuel particles were found to correlate with instabilities induced by the strong buoyancy of the flame zone itself. Discovery that ignition in wildfires is critically dependent on nonsteady flame convection governed by buoyant and inertial interaction advances both theory and the physical basis for practical modeling. PMID:26183227

  16. Electrical Aspects of Impinging Flames

    NASA Astrophysics Data System (ADS)

    Chien, Yu-Chien

    from the flame to the plate can be controlled using the electric field are the two main goals of this research. Multiple diagnostic techniques are employed such as OH chemiluminescence to identify the reaction zone, OH PLIF to characterize the location of this radical species, CO released from the flame, IR imaging and OH PLIF thermometry to understand the surface and gas temperature distribution, respectively. The principal finding is that carbon monoxide release from an impinging diffusion flame results from the escape of carbon monoxide created on the fuel side of the flame along the boundary layer near the surface where it avoids oxidation by OH, which sits to the air side of the reaction sheet interface. In addition, the plate proximity to the flame has a stronger influence on the emission of toxic carbon monoxide than does the electric field strength. There is, however, a narrow region of burner to surface distance where the electric field is most effective. The results also show that heat transfer can be spatially concentrated effectively using an electric field driven ion wind, particularly at some burner to surface distances.

  17. An Investigation of a Hybrid Mixing Model for PDF Simulations of Turbulent Premixed Flames

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Li, Shan; Wang, Hu; Ren, Zhuyin

    2015-11-01

    Predictive simulations of turbulent premixed flames over a wide range of Damköhler numbers in the framework of Probability Density Function (PDF) method still remain challenging due to the deficiency in current micro-mixing models. In this work, a hybrid micro-mixing model, valid in both the flamelet regime and broken reaction zone regime, is proposed. A priori testing of this model is first performed by examining the conditional scalar dissipation rate and conditional scalar diffusion in a 3-D direct numerical simulation dataset of a temporally evolving turbulent slot jet flame of lean premixed H2-air in the thin reaction zone regime. Then, this new model is applied to PDF simulations of the Piloted Premixed Jet Burner (PPJB) flames, which are a set of highly shear turbulent premixed flames and feature strong turbulence-chemistry interaction at high Reynolds and Karlovitz numbers. Supported by NSFC 51476087 and NSFC 91441202.

  18. Effects of optical diagnostic techniques on the accuracy of laminar flame speeds measured from Bunsen flames: OH* chemiluminescence, OH-PLIF and acetone/kerosene-PLIF

    NASA Astrophysics Data System (ADS)

    Wu, Yi; Modica, Vincent; Yu, Xilong; Li, Fei; Grisch, Frédéric

    2018-01-01

    The effects of optical diagnostic techniques on the accuracy of laminar flame speed measured from Bunsen flames were investigated. Laminar flame speed measurements were conducted for different fuel/air mixtures including CH4/air, acetone/air and kerosene (Jet A-1)/air in applying different optical diagnostic techniques, i.e. OH* chemiluminescence, OH-PLIF and acetone/kerosene-PLIF. It is found that the OH* chemiluminescence imaging technique cannot directly derive the location of the outer edge of the fresh gases and it is necessary to correct the position of the OH* peak to guarantee the accuracy of the measurements. OH-PLIF and acetone/kerosene-PLIF respectively are able to measure the disappearance of the fresh gas contour and the appearance of the reaction zone. It shows that the aromatic-PLIF technique gives similar laminar flame speed values when compared with those obtained from corrected OH* chemiluminescence images. However, discrepancies were observed between the OH-PLIF and the aromatic-PLIF techniques, in that OH-PLIF slightly underestimates laminar flame speeds by up to 5%. The difference between the flame contours obtained from different optical techniques are further analysed and illustrated with 1D flame structure simulation using detailed kinetic mechanisms.

  19. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z. G. (Technical Monitor)

    2001-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smokepoint conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smokepoint conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  20. The structure of premixed particle-cloud flames

    NASA Technical Reports Server (NTRS)

    Seshadri, K.; Berlad, A. L.; Tangirala, V.

    1992-01-01

    The structure of premixed flames propagating in combustible systems, containing uniformly distributed volatile fuel particles, in an oxidizing gas mixture, is analyzed. It is presumed that the fuel particles vaporize first to yield a gaseous fuel of known chemical structure, which is subsequently oxidized in the gas phase. The analysis is performed in the asymptotic limit, where the value of the characteristic Zeldovich number, based on the gas-phase oxidation of the gaseous fuel is large, and for values of phi(u) greater than or equal to 1.0, where phi(u) is the equivalence ratio based on the fuel available in the fuel particles. The structure of the flame is presumed to consist of a preheat vaporization zone where the rate of the gas-phase chemical reaction is small, a reaction zone where convection and the rate of vaporization of the fuel particles are small and a convection zone where diffusive terms in the conservation equations are small. For given values phi(u) the analysis yields results for the burning velocity and phi(g) where phi(g) is the effective equivalence ratio in the reaction zone. The analysis shows that even though phi(u) greater than or equal to 1.0, for certain cases the calculated value of phi(g) is less than unity. This prediction is in agreement with experimental observations.

  1. Numerical Simulation of the Combustion of Fuel Droplets: Finite Rate Kinetics and Flame Zone Grid Adaptation (CEFD)

    NASA Technical Reports Server (NTRS)

    Gogos, George; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The NASA Nebraska Space Grant (NSGC) & EPSCoR programs have continued their effort to support outstanding research endeavors by funding the Numerical Simulation of the Combustion of Fuel Droplets study at the University of Nebraska at Lincoln (UNL). This team of researchers has developed a transient numerical model to study the combustion of suspended and moving droplets. The engines that propel missiles, jets, and many other devices are dependent upon combustion. Therefore, data concerning the combustion of fuel droplets is of immediate relevance to aviation and aeronautical personnel, especially those involved in flight operations. The experiments being conducted by Dr. Gogos and Dr. Nayagam s research teams, allow investigators to gather data for comparison with theoretical predictions of burning rates, flame structures, and extinction conditions. The consequent improved hndamental understanding droplet combustion may contribute to the clean and safe utilization of fossil hels (Williams, Dryer, Haggard & Nayagam, 1997, 72). The present state of knowledge on convective extinction of he1 droplets derives fiom experiments conducted under normal gravity conditions. However, any data obtained with suspended droplets under normal gravity are grossly affected by gravity. The need to obtain experimental data under microgravity conditions is therefore well justified and addresses one of the goals of NASA s Human Exploration and Development of Space (HEDS) microgravity combustion experiment.

  2. Suppression of Low Strain Rate Nonpremixed Flames by an Agent

    NASA Technical Reports Server (NTRS)

    Hamins, A.; Bundy, M.; Puri, I. K.; McGrattan, K.; Park, W. C.

    2001-01-01

    The agent concentration required to achieve the suppression of low strain rate nonpremixed flames is an important consideration for fire protection in a microgravity environment such as a space platform. Currently, there is a lack of understanding of the structure and extinction of low strain rate (<20 s(exp -1)) nonpremixed flames. The exception to this statement is the study by Maruta et al., who reported measurements of low strain rate suppression of methane-air diffusion flames with N2 added to the fuel stream under microgravity conditions. They found that the nitrogen concentration required to achieve extinction increased as the strain rate decreased until a critical value was obtained. As the strain rate was further decreased, the required N2 concentration decreased. This phenomenon was termed "turning point" behavior and was attributed to radiation-induced nonpremixed flame extinction. In terms of fire safety, a critical agent concentration assuring suppression under all flow conditions represents a fundamental limit for nonpremixed flames. Counterflow flames are a convenient configuration for control of the flame strain rate. In high and moderately strained near-extinction nonpremixed flames, analysis of flame structure typically neglects radiant energy loss because the flames are nonluminous and the hot gas species are confined to a thin reaction zone. In counterflowing CH4-air flames, for example, radiative heat loss fractions ranging from 1 to 6 percent have been predicted and measured. The objective of this study is to investigate the impact of radiative emission, flame strain, agent addition, and buoyancy on the structure and extinction of low strain rate nonpremixed flames through measurements and comparison with flame simulations. The suppression effectiveness of a number of suppressants (N2, CO2, or CF3Br) was considered as they were added to either the fuel or oxidizer streams of low strain rate methane-air diffusion flames.

  3. Quantitative computational infrared imaging of buoyant diffusion flames

    NASA Astrophysics Data System (ADS)

    Newale, Ashish S.

    Studies of infrared radiation from turbulent buoyant diffusion flames impinging on structural elements have applications to the development of fire models. A numerical and experimental study of radiation from buoyant diffusion flames with and without impingement on a flat plate is reported. Quantitative images of the radiation intensity from the flames are acquired using a high speed infrared camera. Large eddy simulations are performed using fire dynamics simulator (FDS version 6). The species concentrations and temperature from the simulations are used in conjunction with a narrow-band radiation model (RADCAL) to solve the radiative transfer equation. The computed infrared radiation intensities rendered in the form of images and compared with the measurements. The measured and computed radiation intensities reveal necking and bulging with a characteristic frequency of 7.1 Hz which is in agreement with previous empirical correlations. The results demonstrate the effects of stagnation point boundary layer on the upstream buoyant shear layer. The coupling between these two shear layers presents a model problem for sub-grid scale modeling necessary for future large eddy simulations.

  4. Soot Formation in Purely-Curved Premixed Flames and Laminar Flame Speeds of Soot-Forming Flames

    NASA Technical Reports Server (NTRS)

    Buchanan, Thomas; Wang, Hai

    2005-01-01

    The research addressed here is a collaborative project between University of Delaware and Case Western Reserve University. There are two basic and related scientific objectives. First, we wish to demonstrate the suitability of spherical/cylindrical, laminar, premixed flames in the fundamental study of the chemical and physical processes of soot formation. Our reasoning is that the flame standoff distance in spherical/cylindrical flames under microgravity can be substantially larger than that in a flat burner-stabilized flame. Therefore the spherical/cylindrical flame is expected to give better spatial resolution to probe the soot inception and growth chemistry than flat flames. Second, we wish to examine the feasibility of determining the laminar flame speed of soot forming flames. Our basic assumption is that under the adiabatic condition (in the absence of conductive heat loss), the amount and dynamics of soot formed in the flame is unique for a given fuel/air mixture. The laminar flame speed can be rigorously defined as long as the radiative heat loss can be determined. This laminar flame speed characterizes the flame soot formation and dynamics in addition to the heat release rate. The research involves two integral parts: experiments of spherical and cylindrical sooting flames in microgravity (CWRU), and the computational counterpart (UD) that aims to simulate sooting laminar flames, and the sooting limits of near adiabatic flames. The computations work is described in this report, followed by a summary of the accomplishments achieved to date. Details of the microgra+ experiments will be discussed in a separate, final report prepared by the co-PI, Professor C-J. Sung of CWRU. Here only a brief discussion of these experiments will be given.

  5. DNS of a turbulent lifted DME jet flame

    DOE PAGES

    Minamoto, Yuki; Chen, Jacqueline H.

    2016-05-07

    A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatialmore » locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.« less

  6. The structure of partially-premixed methane/air flames under varying premixing

    NASA Astrophysics Data System (ADS)

    Kluzek, Celine; Karpetis, Adonios

    2008-11-01

    The present work examines the spatial and scalar structure of laminar, partially premixed methane/air flames with the objective of developing flamelet mappings that capture the effect of varying premixture strength (air addition in fuel.) Experimental databases containing full thermochemistry measurements within laminar axisymmetric flames were obtained at Sandia National Laboratories, and the measurements of all major species and temperature are compared to opposed-jet one-dimensional flow simulation using Cantera and the full chemical kinetic mechanism of GRI 3.0. Particular emphasis is placed on the scalar structure of the laminar flames, and the formation of flamelet mappings that capture all of the salient features of thermochemistry in a conserved scalar representation. Three different premixture strengths were examined in detail: equivalence ratios of 1.8, 2.2, and 3.17 resulted in clear differences in the flame scalar structure, particularly in the position of the rich premixed flame zone and the attendant levels of major and intermediate species (carbon monoxide and hydrogen).

  7. Multi-Dimensional Measurements of Combustion Species in Flame Tube and Sector Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda Royce

    1996-01-01

    The higher temperature and pressure cycles of future aviation gas turbine combustors challenge designers to produce combustors that minimize their environmental impact while maintaining high operation efficiency. The development of low emissions combustors includes the reduction of unburned hydrocarbons, smoke, and particulates, as well as the reduction of oxides of nitrogen (NO(x)). In order to better understand and control the mechanisms that produce emissions, tools are needed to aid the development of combustor hardware. Current methods of measuring species within gas turbine combustors use extractive sampling of combustion gases to determine major species concentrations and to infer the bulk flame temperature. These methods cannot be used to measure unstable combustion products and have poor spatial and temporal resolution. The intrusive nature of gas sampling may also disturb the flow structure within a combustor. Planar laser-induced fluorescence (PLIF) is an optical technique for the measurement of combustion species. In addition to its non-intrusive nature, PLIF offers these advantages over gas sampling: high spatial resolution, high temporal resolution, the ability to measure unstable species, and the potential to measure combustion temperature. This thesis considers PLIF for in-situ visualization of combustion species as a tool for the design and evaluation of gas turbine combustor subcomponents. This work constitutes the first application of PLIF to the severe environment found in liquid-fueled, aviation gas turbine combustors. Technical and applied challenges are discussed. PLIF of OH was used to observe the flame structure within the post flame zone of a flame tube combustor, and within the flame zone of a sector combustor, for a variety of fuel injector configurations. OH was selected for measurement because it is a major combustion intermediate, playing a key role in the chemistry of combustion, and because its presence within the flame zone can

  8. Laminar Diffusion Flame Studies (Ground- and Space-Based Studies)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    facilities, cannot involve soot emitting flames in order to ensure that test chamber windows used for experimental observations are not blocked by soot deposits, thereby compromising unusually valuable experimental results. Another important motivation to define conditions where soot is present in diffusion flames is that flame chemistry, transport and radiation properties are vastly simplified when soot is absent, making such flames far more tractable for detailed numerical simulations than corresponding soot-containing flames. Motivated by these observations, the objectives of this phase of the investigation were as follows: (1) Observe flame-sheet shapes (the location of the reaction zone near phi=1) of nonluminous (soot free) laminar jet diffusion flames in both still and coflowing air and use these results to develop simplified models of flame-sheet shapes for these conditions; (2) Observe luminous flame boundaries of luminous (soot-containing) laminar jet diffusion flames in both still and coflowing air and use these results to develop simplified models of luminous flame boundaries for these conditions. In order to fix ideas here, maximum luminous flame boundaries at the laminar smoke point conditions were sought, i.e., luminous flame boundaries at the laminar smoke point; (3) Observe effects of coflow on laminar soot- and smoke-point conditions because coflow has been proposed as a means to control soot emissions and minimize the presence of soot in diffusion flames.

  9. 2D-imaging of sampling-probe perturbations in laminar premixed flames using Kr X-ray fluorescence

    DOE PAGES

    Hansen, N.; Tranter, R. S.; Moshammer, K.; ...

    2017-04-14

    The perturbation of the temperature field caused by a quartz sampling probe has been investigated in a fuel-rich low-pressure premixed ethylene/oxygen/argon/krypton flame using X-ray fluorescence. The experiments were performed at the 7-BM beamline at the Advanced Photon Source (APS) at the Argonne National Laboratory where a continuous beam of X-rays at 15 keV was used to excite krypton atoms that were added to the unburnt flame gases in a concentration of 5% (by volume). The resulting krypton X-ray fluorescence at 12.65 keV was collected and the spatially resolved signal was subsequently converted into the local temperature of the imaged spot.more » One and two dimensional scans of the temperature field were obtained by translating the entire flame chamber through a pre-programmed sequence of positions on high precision translation stages and measuring the X-ray fluorescence at each location. Multiple measurements were performed at various separations between the burner surface and probe tip, representing sampling positions from the preheat, reaction, and postflame zones of the low-pressure flame. Distortions of up to 1000 K of the burner-probe centerline flame temperature were found with the tip of the probe in the preheat zone and distortions of up to 500 K were observed with it in the reaction and postflame zones. Furthermore, perturbations of the temperature field have been revealed that radially reach as far as 20 mm from the burner-probe centerline and about 3 mm in front of the probe tip. Finally, these results clearly reveal the limitations of one-dimensional models for predicting flame-sampling experiments and comments are made with regard to model developments and validations based on quantitative speciation data from low-pressure flames obtained via intrusive sampling techniques.« less

  10. Laser-Induced Breakdown Spectroscopy (LIBS) for the Measurement of Spatial Structures and Fuel Distribution in Flames.

    PubMed

    Kotzagianni, Maria; Kakkava, Eirini; Couris, Stelios

    2016-04-01

    Laser-induced breakdown spectroscopy (LIBS) is used for the mapping of local structures (i.e., reactants and products zones) and for the determination of fuel distribution by means of the local equivalence ratio ϕ in laminar, premixed air-hydrocarbon flames. The determination of laser threshold energy to induce breakdown in the different zones of flames is employed for the identification and demarcation of the local structures of a premixed laminar flame, while complementary results about fuel concentration were obtained from measurements of the cyanogen (CN) band Β(2)Σ(+)--Χ(2)Σ(+), (Δυ = 0) at 388.3 nm and the ratio of the atomic lines of hydrogen (Hα) and oxygen (O(I)), Hα/O. The combination of these LIBS-based methods provides a relatively simple to use, rapid, and accurate tool for online and in situ combustion diagnostics, providing valuable information about the fuel distribution and the spatial variations of the local structures of a flame. © The Author(s) 2016.

  11. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue C02 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  12. Wildland firefighter safety zones: A review of past science and summary of future needs

    Treesearch

    B. W. Butler

    2014-01-01

    Current wildland firefighter safety zone guidelines are based on studies that assume flat terrain, radiant heating, finite flame width, constant flame temperature and high flame emissivity. Firefighter entrapments and injuries occur across a broad range of vegetation, terrain and atmospheric conditions generally when they are within two flame heights of the fire....

  13. Use of Chemi-Ionization to Calculate Temperature of Hydrocarbon Flame

    NASA Astrophysics Data System (ADS)

    Shaikin, A. P.; Galiev, I. R.

    2018-04-01

    In the present paper, we have experimentally studied the dependences of the maximum temperature of the hydrocarbon flame on the electron current (due to the flame chemi-ionization), the width of the turbulent combustion zone, and the amount and composition of the air-fuel mixture in the combustion chamber of variable volume. Based on the proposed formula, we have been also able to estimate the temperature and compare with its experimental value showing that the convergence has been more than 85% at an excess air factor value ranging from 0.8 to 1.15. The obtained results can be used to predict and monitor the maximum flame temperature in the combustion chamber of an internal combustion engine and other power plants by using the ionization probe.

  14. Flame imaging using planar laser induced fluorescence of sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Honza, Rene; Ding, Carl-Philipp; Dreizler, Andreas; Böhm, Benjamin

    2017-09-01

    Laser induced fluorescence of sulfur dioxide (SO2-PLIF) has been demonstrated as a useful tool for flame imaging. Advantage was taken from the strong temperature dependence of the SO2 fluorescence signal. SO2 fluorescence intensity increases by more than one order of magnitude if the temperature changes from ambient conditions to adiabatic flame temperatures of stoichiometric methane-air flames. This results in a steep gradient of SO2-PLIF intensities at the reaction zone and therefore can be used as a reliable flame marker. SO2 can be excited electronically using the fourth-harmonic of an Nd:YAG laser at 266 nm. This is an attractive alternative to OH-LIF, a well-recognized flame front marker, because no frequency-doubled dye lasers are needed. This simplifies the experimental setup and is advantageous for measurements at high repetition rates where dye bleaching can become an issue. To prove the performance of this approach, SO2-PLIF measurements were performed simultaneously with OH-PLIF on laminar premixed methane-air Bunsen flames for equivalence ratios between 0.9 and 1.25. These measurements were compared to 1D laminar flamelet simulations. The SO2 fluorescence signal was found to follow the temperature rise of the flame and is located closer to the steep temperature gradient than OH. Finally, the combined SO2- and OH-PLIF setup was applied to a spark ignition IC-engine to visualize the development of the early flame kernel.

  15. Flame Shapes of Luminous NonBuoyant Laminar Coflowing Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.

    1999-01-01

    Laminar diffusion flames are of interest as model flame systems that are more tractable for analysis and experiments than practical turbulent diffusion flames. Certainly understanding laminar flames must precede understanding more complex turbulent flames while man'y laminar diffusion flame properties are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Laminar diffusion flame shapes have been of interest since the classical study of Burke and Schumann because they involve a simple nonintrusive measurement that is convenient for evaluating flame structure predictions. Motivated by these observations, the shapes of laminar flames were considered during the present investigation. The present study was limited to nonbuoyant flames because most practical flames are not buoyant. Effects of buoyancy were minimized by observing flames having large flow velocities at small pressures. Present methods were based on the study of the shapes of nonbu,3yant round laminar jet diffusion flames of Lin et al. where it was found that a simple analysis due to Spalding yielded good predictions of the flame shapes reported by Urban et al. and Sunderland et al.

  16. Errors induced by catalytic effects in premixed flame temperature measurements

    NASA Astrophysics Data System (ADS)

    Pita, G. P. A.; Nina, M. N. R.

    The evaluation of instantaneous temperature in a premixed flame using fine-wire Pt/Pt-(13 pct)Rh thermocouples was found to be subject to significant errors due to catalytic effects. An experimental study was undertaken to assess the influence of local fuel/air ratio, thermocouple wire diameter, and gas velocity on the thermocouple reading errors induced by the catalytic surface reactions. Measurements made with both coated and uncoated thermocouples showed that the catalytic effect imposes severe limitations on the accuracy of mean and fluctuating gas temperature in the radical-rich flame zone.

  17. Spherical Ethylene/Air Diffusion Flames Subject to Concentric DC Electric Field in Microgravity

    NASA Technical Reports Server (NTRS)

    Yuan, Z. -G.; Hegde, U.; Faeth, G. M.

    2001-01-01

    It is well known that microgravity conditions, by eliminating buoyant flow, enable many combustion phenomena to be observed that are not possible to observe at normal gravity. One example is the spherical diffusion flame surrounding a porous spherical burner. The present paper demonstrates that by superimposing a spherical electrical field on such a flame, the flame remains spherical so that we can study the interaction between the electric field and flame in a one-dimensional fashion. Flames are susceptible to electric fields that are much weaker than the breakdown field of the flame gases owing to the presence of ions generated in the high temperature flame reaction zone. These ions and the electric current of the moving ions, in turn, significantly change the distribution of the electric field. Thus, to understand the interplay between the electric field and the flame is challenging. Numerous experimental studies of the effect of electric fields on flames have been reported. Unfortunately, they were all involved in complex geometries of both the flow field and the electric field, which hinders detailed study of the phenomena. In a one-dimensional domain, however, the electric field, the flow field, the thermal field and the chemical species field are all co-linear. Thus the problem is greatly simplified and becomes more tractable.

  18. Diffusion Flame Extinction in a Low Strain Flow

    NASA Technical Reports Server (NTRS)

    Sutula, Jason; Jones, Joshua; Torero, Jose L.; Borlik, Jeffrey; Ezekoye, Ofodike A.

    1997-01-01

    mechanism controlling fuel transport to the reaction zone, conduction towards the inlets is the main source of heat losses. As the distance increases the flame becomes linear and thickens, remaining blue at the oxidizer side and turning yellow at the fuel side. Here, convection brings fuel and oxidizer together and the reaction occurs in the viscous layer formed between the fuel and oxidizer streams. This region corresponds to the characteristic counter-flow flame where conduction and convection become negligible forms of heat losses and radiation becomes dominant. The flame in the third (mixed) region, between the two others, results from the combination of the scenarios presented above.

  19. Effects of equivalence ratio variation on lean, stratified methane-air laminar counterflow flames

    NASA Astrophysics Data System (ADS)

    Richardson, E. S.; Granet, V. E.; Eyssartier, A.; Chen, J. H.

    2010-11-01

    The effects of equivalence ratio variations on flame structure and propagation have been studied computationally. Equivalence ratio stratification is a key technology for advanced low emission combustors. Laminar counterflow simulations of lean methane-air combustion have been presented which show the effect of strain variations on flames stabilized in an equivalence ratio gradient, and the response of flames propagating into a mixture with a time-varying equivalence ratio. 'Back supported' lean flames, whose products are closer to stoichiometry than their reactants, display increased propagation velocities and reduced thickness compared with flames where the reactants are richer than the products. The radical concentrations in the vicinity of the flame are modified by the effect of an equivalence ratio gradient on the temperature profile and thermal dissociation. Analysis of steady flames stabilized in an equivalence ratio gradient demonstrates that the radical flux through the flame, and the modified radical concentrations in the reaction zone, contribute to the modified propagation speed and thickness of stratified flames. The modified concentrations of radical species in stratified flames mean that, in general, the reaction rate is not accurately parametrized by progress variable and equivalence ratio alone. A definition of stratified flame propagation based upon the displacement speed of a mixture fraction dependent progress variable was seen to be suitable for stratified combustion. The response times of the reaction, diffusion, and cross-dissipation components which contribute to this displacement speed have been used to explain flame response to stratification and unsteady fluid dynamic strain.

  20. Kinetics of Hydrogen Oxidation Downstream of Lean Propane and Hydrogen Flames

    NASA Technical Reports Server (NTRS)

    Fine, Burton

    1961-01-01

    The decay of hydrogen was measured downstream of lean, flat, premixed hydrogen and propane-air flames seated on cooled porous burners. Experimental variables included temperature, pressure, initial equivalence ratio and diluent. Sampling of burned gas was done through uncooled quartz orifice probes, and the analysis was based on gas chromatography. An approximate treatment of the data in which diffusion was neglected led to the following rate expression for the zone downstream of hydrogen flames d[H (sub 2)] divided by (d times t) equals 1.7 times 10 (sup 10) [H (sub 2)] (sup 3) divided by (sub 2) [O (sub 2)]e (sup (-8100 divided by RT)) moles per liters per second. On the basis of a rate expression of this form, the specific rate constant for the reaction downstream of hydrogen flames was about three times as great as that determined downstream of propane flames. This result was explained on the basis of the existence of a steady state between hydrogen and carbon monoxide in the burned gas downstream of propane flames.

  1. Vortex/Flame Interactions in Microgravity Pulsed Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Y.; Hegde, U.; Stocker, D. P.

    1999-01-01

    The problem of vortex/flame interaction is of fundamental importance to turbulent combustion. These interactions have been studied in normal gravity. It was found that due to the interactions between the imposed disturbances and buoyancy induced instabilities, several overall length scales dominated the flame. The problem of multiple scales does not exist in microgravity for a pulsed laminar flame, since there are no buoyancy induced instabilities. The absence of buoyant convection therefore provides an environment to study the role of vortices interacting with flames in a controlled manner. There are strong similarities between imposed and naturally occurring perturbations, since both can be described by the same spatial instability theory. Hence, imposing a harmonic disturbance on a microgravity laminar flame creates effects similar to those occurring naturally in transitional/turbulent diffusion flames observed in microgravity. In this study, controlled, large-scale, axisymmetric vortices are imposed on a microgravity laminar diffusion flame. The experimental results and predictions from a numerical model of transient jet diffusion flames are presented and the characteristics of pulsed flame are described.

  2. Flame and Soot Boundaries of Laminar Jet Diffusion Flames. Appendix A

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2002-01-01

    The shapes (flame-sheet and luminous-flame boundaries) or steady weakly buoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K. ambient pressures of 4-50 kPa, jet-exit Reynolds numbers of 3-54, initial air/fuel velocity ratios of 0-9, and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at microgravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary-layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 of the lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions because of the presence of luminous soot particles in the fuel-lean region of the flames.

  3. Effects of gravity on sheared and nonsheared turbulent nonpremixed flames

    NASA Technical Reports Server (NTRS)

    Elghobashi, Said; Lee, Yong-Yao; Zhong, Rongbin

    1995-01-01

    The present numerical study is concerned with the fundamental physics of the multiway interaction between turbulence, chemical reaction, and buoyancy in a nonpremixed flame. The method of direct numerical simulation (DNS) is used to solve the instantaneous, three-dimensional governing equations. Because of the present supercomputer limitations, we consider two simple flow geometries, namely an initially uniform flow without shear (equivalent to grid-generated turbulence) and an initially uniform shear flow. In each flow, the fuel and oxidant initially exist as two separate streams. As the reactants mix, chemical reaction takes place and exothermic energy is released causing variations in density. In the presence of a gravity field, the spatial and temporal distributions of the induced buoyancy forces depend on the local density gradients and the direction of the gravitational acceleration. The effects of buoyancy include the generation of local shear, baroclinic production or destruction of vorticity, and countergradient heat and mass transport. Increased vorticity and small-scale turbulence promote further mixing and reaction. However, if the strain-rates become too high, local flame extinction can occur. Our objective is to gain an understanding of the complex interactions between the physical phenomena involved, with particular attention to the effects of buoyancy on the turbulence structure, flame behavior, and factors influencing flame extinction.

  4. Parallel Simulation of Unsteady Turbulent Flames

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1996-01-01

    Time-accurate simulation of turbulent flames in high Reynolds number flows is a challenging task since both fluid dynamics and combustion must be modeled accurately. To numerically simulate this phenomenon, very large computer resources (both time and memory) are required. Although current vector supercomputers are capable of providing adequate resources for simulations of this nature, the high cost and their limited availability, makes practical use of such machines less than satisfactory. At the same time, the explicit time integration algorithms used in unsteady flow simulations often possess a very high degree of parallelism, making them very amenable to efficient implementation on large-scale parallel computers. Under these circumstances, distributed memory parallel computers offer an excellent near-term solution for greatly increased computational speed and memory, at a cost that may render the unsteady simulations of the type discussed above more feasible and affordable.This paper discusses the study of unsteady turbulent flames using a simulation algorithm that is capable of retaining high parallel efficiency on distributed memory parallel architectures. Numerical studies are carried out using large-eddy simulation (LES). In LES, the scales larger than the grid are computed using a time- and space-accurate scheme, while the unresolved small scales are modeled using eddy viscosity based subgrid models. This is acceptable for the moment/energy closure since the small scales primarily provide a dissipative mechanism for the energy transferred from the large scales. However, for combustion to occur, the species must first undergo mixing at the small scales and then come into molecular contact. Therefore, global models cannot be used. Recently, a new model for turbulent combustion was developed, in which the combustion is modeled, within the subgrid (small-scales) using a methodology that simulates the mixing and the molecular transport and the chemical kinetics

  5. Presumed PDF Modeling of Early Flame Propagation in Moderate to Intense Turbulence Environments

    NASA Technical Reports Server (NTRS)

    Carmen, Christina; Feikema, Douglas A.

    2003-01-01

    The present paper describes the results obtained from a one-dimensional time dependent numerical technique that simulates early flame propagation in a moderate to intense turbulent environment. Attention is focused on the development of a spark-ignited, premixed, lean methane/air mixture with the unsteady spherical flame propagating in homogeneous and isotropic turbulence. A Monte-Carlo particle tracking method, based upon the method of fractional steps, is utilized to simulate the phenomena represented by a probability density function (PDF) transport equation. Gaussian distributions of fluctuating velocity and fuel concentration are prescribed. Attention is focused on three primary parameters that influence the initial flame kernel growth: the detailed ignition system characteristics, the mixture composition, and the nature of the flow field. The computational results of moderate and intense isotropic turbulence suggests that flames within the distributed reaction zone are not as vulnerable, as traditionally believed, to the adverse effects of increased turbulence intensity. It is also shown that the magnitude of the flame front thickness significantly impacts the turbulent consumption flame speed. Flame conditions studied have fuel equivalence ratio s in the range phi = 0.6 to 0.9 at standard temperature and pressure.

  6. Three-Dimensional Ignition and Flame Propagation Above Liquid Fuel Pools: Computational Analysis

    NASA Technical Reports Server (NTRS)

    Cai, Jinsheng; Sirignano, William A.

    2001-01-01

    A three-dimensional unsteady reactive Navier-Stokes code is developed to study the ignition and flame spread above liquid fuels initially below the flashpoint temperature. Opposed air flow to the flame spread due to forced and/or natural convection is considered. Pools of finite width and length are studied in air channels of prescribed height and width. Three-dimensional effects of the flame front near the edge of the pool are captured in the computation. The formation of a recirculation zone in the gas phase similar to that found in two-dimensional calculations is also present in the three-dimensional calculations. Both uniform spread and pulsating spread modes are found in the calculated results.

  7. Effects of Structure and Hydrodynamics on the Sooting Behavior of Spherical Microgravity Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Axelbaum, R. L.; Urban, D. L.

    1999-01-01

    is invariably accompanied by yellow luminosity. Soot-particle inception, on the other hand, arises from gas-phase reactions and its dependence on flow direction is weak, similar to that of other gas-phase reactions in flames. For example, when the flame moves across the stagnation plane no significant changes in flame chemistry are observed. Furthermore, since the soot-inception zone has a finite thickness, soot has been produced in counterflow flames with (Z(sub st)) > 0.5. For large (Z(sub st)) the fuel concentration decreases and oxygen concentration increases in the soot forming regions of the flame. This yields a shift in the OH profile toward the fuel side of the flame, and this shift can dramatically influence soot inception because it essentially narrows the soot inception zone. Soot-free (permanently-blue) conditions can be realized when the structure of the flame is adjusted to the extent that significant oxidizing species exist on the fuel side of the flame at temperatures above the critical temperature for soot inception, ca. 1250 K. In previously considered flames it was impossible to independently vary flame structure and convection direction. In contrast, spherical diffusion flames (which generally require microgravity) allow both properties to be varied independently. We altered structure (Z(sub st)) by exchanging inert between the oxidizer and the fuel and we independently varied convection direction at the flame sheet by interchanging the injected and ambient gases. In this work we established four flames: (a) ethylene issuing into air, (b) diluted ethylene issuing into oxygen, (c) air issuing into ethylene, and (d) oxygen issuing into diluted ethylene. (Z(sub st)) is 0.064 in flames (a) and (c) and 0.78 in flames (b) and (d). The convection direction is from fuel to oxidizer in flames (a) and (b) and from oxidizer to fuel in flames (c) and (d). Under the assumption of equal diffusivities of all species and heat, the stoichiometric contours of these

  8. Flame-Generated Vorticity Production in Premixed Flame-Vortex Interactions

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    2003-01-01

    In this study, we use detailed time-dependent, multi-dimensional numerical simulations to investigate the relative importance of the processes leading to FGV in flame-vortex interactions in normal gravity and microgravity and to determine if the production of vorticity in flames in gravity is the same as that in zero gravity except for the contribution of the gravity term. The numerical simulations will be performed using the computational model developed at NRL, FLAME3D. FLAME3D is a parallel, multi-dimensional (either two- or three-dimensional) flame model based on FLIC2D, which has been used extensively to study the structure and stability of premixed hydrogen and methane flames.

  9. The development of kilohertz planar laser diagnostics for applications in high power turbulent flames

    NASA Astrophysics Data System (ADS)

    Slabaugh, Carson Daniel

    In modern gas-turbine combustors, flame stabilization is achieved by inducing exhaust gas circulation within the flame zone through swirl-induced vortex breakdown. Swirling flows exhibit strong shear regions resulting in high turbulence and effective mixing. In combustion, these flows are characterized by complex unsteady interactions between turbulent flow structures and chemical reactions. Developments in high-resolution, quantitative, experimental measurement techniques must continue to improve fundamental understanding and support modeling efforts. This work describes the development of a gas turbine combustion experiment to support the application of advanced optical measurement techniques in flames operating at realistic engine conditions. Facility requirements are addressed, including instrumentation and control needs for remote operation when working with high energy flows. The methodology employed in the design of the optically-accessible combustion chamber is elucidated, including window considerations and thermal management of the experimental hardware under extremely high heat loads. Experimental uncertainties are also quantified. The stable operation of the experiment is validated using multiple techniques and the boundary conditions are verified. The successful prediction of operating conditions by the design analysis is documented and preliminary data is shown to demonstrate the capability of the experiment to produce high-fidelity datasets for advanced combustion research. Building on this experimental infrastructure, simultaneous measurements of velocity and scalar fields were performed in turbulent nonpremixed flames at gas turbine engine operating conditions using 5 kHz Particle-Image Velocimetry (PIV) and OH Planar Laser Induced Fluorescence (OH-PLIF). The experimental systems and the challenges associated with acquiring useful data at high pressures and high thermal powers are discussed. The quality of the particle scattering images used in the

  10. Turbulent flame-wall interaction: a DNS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jackie; Hawkes, Evatt R; Sankaran, Ramanan

    2010-01-01

    A turbulent flame-wall interaction (FWI) configuration is studied using three-dimensional direct numerical simulation (DNS) and detailed chemical kinetics. The simulations are used to investigate the effects of the wall turbulent boundary layer (i) on the structure of a hydrogen-air premixed flame, (ii) on its near-wall propagation characteristics and (iii) on the spatial and temporal patterns of the convective wall heat flux. Results show that the local flame thickness and propagation speed vary between the core flow and the boundary layer, resulting in a regime change from flamelet near the channel centreline to a thickened flame at the wall. This findingmore » has strong implications for the modelling of turbulent combustion using Reynolds-averaged Navier-Stokes or large-eddy simulation techniques. Moreover, the DNS results suggest that the near-wall coherent turbulent structures play an important role on the convective wall heat transfer by pushing the hot reactive zone towards the cold solid surface. At the wall, exothermic radical recombination reactions become important, and are responsible for approximately 70% of the overall heat release rate at the wall. Spectral analysis of the convective wall heat flux provides an unambiguous picture of its spatial and temporal patterns, previously unobserved, that is directly related to the spatial and temporal characteristic scalings of the coherent near-wall turbulent structures.« less

  11. Cool Flame Quenching

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Chapek, Richard

    2001-01-01

    Cool flame quenching distances are generally presumed to be larger than those associated with hot flames, because the quenching distance scales with the inverse of the flame propagation speed, and cool flame propagation speeds are often times slower than those associated with hot flames. To date, this presumption has never been put to a rigorous test, because unstirred, non-isothermal cool flame studies on Earth are complicated by natural convection. Moreover, the critical Peclet number (Pe) for quenching of cool flames has never been established and may not be the same as that associated with wall quenching due to conduction heat loss in hot flames, Pe approx. = 40-60. The objectives of this ground-based study are to: (1) better understand the role of conduction heat loss and species diffusion on cool flame quenching (i.e., Lewis number effects), (2) determine cool flame quenching distances (i.e, critical Peclet number, Pe) for different experimental parameters and vessel surface pretreatments, and (3) understand the mechanisms that govern the quenching distances in premixtures that support cool flames as well as hot flames induced by spark-ignition. Objective (3) poses a unique fire safety hazard if conditions exist where cool flame quenching distances are smaller than those associated with hot flames. For example, a significant, yet unexplored risk, can occur if a multi-stage ignition (a cool flame that transitions to a hot flame) occurs in a vessel size that is smaller than that associated with the hot quenching distance. To accomplish the above objectives, a variety of hydrocarbon-air mixtures will be tested in a static reactor at elevated temperature in the laboratory (1g). In addition, reactions with chemical induction times that are sufficiently short will be tested aboard NASA's KC-135 microgravity (mu-g) aircraft. The mu-g results will be compared to a numerical model that includes species diffusion, heat conduction, and a skeletal kinetic mechanism

  12. Effects of Buoyancy on Laminar and Turbulent Premixed V-Flame

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.; Bedat, Benoit

    1997-01-01

    Turbulent combustion occurs naturally in almost all combustion systems and involves complex dynamic coupling of chemical and fluid mechanical processes. It is considered as one of the most challenging combustion research problems today. Though buoyancy has little effect on power generating systems operating under high pressures (e.g., IC engines and turbines), flames in atmospheric burners and the operation of small to medium furnaces and boilers are profoundly affected by buoyancy. Changes in burner orientation impacts on their blow-off, flash-back and extinction limits, and their range of operation, burning rate, heat transfer, and emissions. Theoretically, buoyancy is often neglected in turbulent combustion models. Yet the modeling results are routinely compared with experiments of open laboratory flames that are obviously affected by buoyancy. This inconsistency is an obstacle to reconciling experiments and theories. Consequently, a fundamental understanding of the coupling between turbulent flames and buoyancy is significant to both turbulent combustion science and applications. The overall effect of buoyancy relates to the dynamic interaction between the flame and its surrounding, i.e., the so-called elliptical problem. The overall flame shape, its flowfield, stability, and mean and local burning rates are dictated by both upstream and downstream boundary conditions. In steady propagating premixed flames, buoyancy affects the products region downstream of the flame zone. These effects are manifested upstream through the mean and fluctuating pressure fields to influence flame stretch and flame wrinkling. Intuitively, the effects buoyancy should diminish with increasing flow momentum. This is the justification for excluding buoyancy in turbulent combustion models that treats high Reynolds number flows. The objectives of our experimental research program is to elucidate flame-buoyancy coupling processes in laminar and turbulent premixed flames, and to

  13. The effect of fuel inlet turbulence intensity on H2/CH4 flame structure of MILD combustion using the LES method

    NASA Astrophysics Data System (ADS)

    Afarin, Yashar; Tabejamaat, Sadegh

    2013-06-01

    Large eddy simulations (LES) are employed to investigate the effect of the inlet turbulence intensity on the H2/CH4 flame structure in a hot and diluted co-flow stream which emulates the (Moderate or Intense Low-oxygen Dilution) MILD combustion regime. In this regard, three fuel inlet turbulence intensity profiles with the values of 4%, 7% and 10% are superimposed on the annular mixing layer. The effects of these changes on the flame structure under the MILD condition are studied for two oxygen concentrations of 3% and 9% (by mass) in the oxidiser stream and three hot co-flow temperatures 1300, 1500 and 1750 K. The turbulence-chemistry interaction of the numerically unresolved scales is modelled using the (Partially Stirred Reactor) PaSR method, where the full mechanism of GRI-2.11 represents the chemical reactions. The influences of the turbulence intensity on the flame structure under the MILD condition are studied by using the profile of temperature, CO and OH mass fractions in both physical and mixture fraction spaces at two downstream locations. Also, the effects of this parameter are investigated by contours of OH, HCO and CH2O radicals in an area near the nozzle exit zone. Results show that increasing the fuel inlet turbulence intensity has a profound effect on the flame structure particularly at low oxygen mass fraction. This increment weakens the combustion zone and results in a decrease in the peak values of the flame temperature and OH and CO mass fractions. Furthermore, increasing the inlet turbulence intensity decreases the flame thickness, and increases the MILD flame instability and diffusion of un-burnt fuel through the flame front. These effects are reduced by increasing the hot co-flow temperature which reinforces the reaction zone.

  14. Continuous Diffusion Flames and Flame Streets in Micro-Channels

    NASA Astrophysics Data System (ADS)

    Mohan, Shikhar; Matalon, Moshe

    2015-11-01

    Experiments of non-premixed combustion in micro-channels have shown different modes of burning. Normally, a flame is established along, or near the axis of a channel that spreads the entire mixing layer and separates a region of fuel but no oxidizer from a region with only oxidizer. Often, however, a periodic sequence of extinction and reignition events, termed collectively as ``flame streets'', are observed. They constitute a series of diffusion flames, each with a tribrachial leading edge stabilized along the channel. This work focuses on understanding the underlying mechanism responsible for these distinct observations. Numerical simulations were conducted in the thermo-diffusive limit in order to study the effects of confinement and heat loss on non-premixed flames in three-dimensional micro-channels with low aspect ratios. The three dimensionality of the channel was captured qualitatively through a systematic asymptotic analysis that led to a two dimensional problem with an effective parameter representing heat losses in the vertical direction. There exist three key flame regimes: (1) a stable continuous diffusion flame, (2) an unsteady flame, and (3) a stable ``flame street'' the transition between regimes demarcated primarily by Reynolds and Nusselt numbers.

  15. Turbulent flame propagation in partially premixed flames

    NASA Technical Reports Server (NTRS)

    Poinsot, T.; Veynante, D.; Trouve, A.; Ruetsch, G.

    1996-01-01

    Turbulent premixed flame propagation is essential in many practical devices. In the past, fundamental and modeling studies of propagating flames have generally focused on turbulent flame propagation in mixtures of homogeneous composition, i.e. a mixture where the fuel-oxidizer mass ratio, or equivalence ratio, is uniform. This situation corresponds to the ideal case of perfect premixing between fuel and oxidizer. In practical situations, however, deviations from this ideal case occur frequently. In stratified reciprocating engines, fuel injection and large-scale flow motions are fine-tuned to create a mean gradient of equivalence ratio in the combustion chamber which provides additional control on combustion performance. In aircraft engines, combustion occurs with fuel and secondary air injected at various locations resulting in a nonuniform equivalence ratio. In both examples, mean values of the equivalence ratio can exhibit strong spatial and temporal variations. These variations in mixture composition are particularly significant in engines that use direct fuel injection into the combustion chamber. In this case, the liquid fuel does not always completely vaporize and mix before combustion occurs, resulting in persistent rich and lean pockets into which the turbulent flame propagates. From a practical point of view, there are several basic and important issues regarding partially premixed combustion that need to be resolved. Two such issues are how reactant composition inhomogeneities affect the laminar and turbulent flame speeds, and how the burnt gas temperature varies as a function of these inhomogeneities. Knowledge of the flame speed is critical in optimizing combustion performance, and the minimization of pollutant emissions relies heavily on the temperature in the burnt gases. Another application of partially premixed combustion is found in the field of active control of turbulent combustion. One possible technique of active control consists of pulsating

  16. Turbulent premixed combustion in V-shaped flames: Characteristics of flame front

    NASA Astrophysics Data System (ADS)

    Kheirkhah, S.; Gülder, Ö. L.

    2013-05-01

    Flame front characteristics of turbulent premixed V-shaped flames were investigated experimentally using the Mie scattering and the particle image velocimetry techniques. The experiments were performed at mean streamwise exit velocities of 4.0, 6.2, and 8.6 m/s, along with fuel-air equivalence ratios of 0.7, 0.8, and 0.9. Effects of vertical distance from the flame-holder, mean streamwise exit velocity, and fuel-air equivalence ratio on statistics of the distance between the flame front and the vertical axis, flame brush thickness, flame front curvature, and angle between tangent to the flame front and the horizontal axis were studied. The results show that increasing the vertical distance from the flame-holder and the fuel-air equivalence ratio increase the mean and root-mean-square (RMS) of the distance between the flame front and the vertical axis; however, increasing the mean streamwise exit velocity decreases these statistics. Spectral analysis of the fluctuations of the flame front position depicts that the normalized and averaged power-spectrum-densities collapse and show a power-law relation with the normalized wave number. The flame brush thickness is linearly correlated with RMS of the distance between the flame front and the vertical axis. Analysis of the curvature of the flame front data shows that the mean curvature is independent of the experimental conditions tested and equals to zero. Values of the inverse of the RMS of flame front curvature are similar to those of the integral length scale, suggesting that the large eddies in the flow make a significant contribution in wrinkling of the flame front. Spectral analyses of the flame front curvature as well as the angle between tangent to the flame front and the horizontal axis show that the power-spectrum-densities feature a peak. Value of the inverse of the wave number pertaining to the peak is larger than that of the integral length scale.

  17. Effects of Flame Structure and Hydrodynamics on Soot Particle Inception and Flame Extinction in Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Chen, R.; Sunderland, P. B.; Urban, D. L.; Liu, S.; Chao, B. H.

    2001-01-01

    This paper summarizes recent studies of the effects of stoichiometric mixture fraction (structure) and hydrodynamics on soot particle inception and flame extinction in diffusion flames. Microgravity experiments are uniquely suited for these studies because, unlike normal gravity experiments, they allow structural and hydrodynamic effects to be independently studied. As part of this recent flight definition program, microgravity studies have been performed in the 2.2 second drop tower. Normal gravity counterflow studies also have been employed and analytical and numerical models have been developed. A goal of this program is to develop sufficient understanding of the effects of flame structure that flames can be "designed" to specifications - consequently, the program name Flame Design. In other words, if a soot-free, strong, low temperature flame is required, can one produce such a flame by designing its structure? Certainly, as in any design, there will be constraints imposed by the properties of the available "materials." For hydrocarbon combustion, the base materials are fuel and air. Additives could be considered, but for this work only fuel, oxygen and nitrogen are considered. Also, the structure of these flames is "designed" by varying the stoichiometric mixture fraction. Following this line of reasoning, the studies described are aimed at developing the understanding of flame structure that is needed to allow for optimum design.

  18. Scalar mixing in LES/PDF of a high-Ka premixed turbulent jet flame

    NASA Astrophysics Data System (ADS)

    You, Jiaping; Yang, Yue

    2016-11-01

    We report a large-eddy simulation (LES)/probability density function (PDF) study of a high-Ka premixed turbulent flame in the Lund University Piloted Jet (LUPJ) flame series, which has been investigated using direct numerical simulation (DNS) and experiments. The target flame, featuring broadened preheat and reaction zones, is categorized into the broken reaction zone regime. In the present study, three widely used mixing modes, namely the Interaction by Exchange with the Mean (IEM), Modified Curl (MC), and Euclidean Minimum Spanning Tree (EMST) models are applied to assess their performance through detailed a posteriori comparisons with DNS. A dynamic model for the time scale of scalar mixing is formulated to describe the turbulent mixing of scalars at small scales. Better quantitative agreement for the mean temperature and mean mass fractions of major and minor species are obtained with the MC and EMST models than with the IEM model. The multi-scalar mixing in composition space with the three models are analyzed to assess the modeling of the conditional molecular diffusion term. In addition, we demonstrate that the product of OH and CH2O concentrations can be a good surrogate of the local heat release rate in this flame. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11521091 and 91541204).

  19. Dynamics and structure of turbulent premixed flames

    NASA Technical Reports Server (NTRS)

    Bilger, R. W.; Swaminathan, N.; Ruetsch, G. R.; Smith, N. S. A.

    1995-01-01

    In earlier work (Mantel & Bilger, 1994) the structure of the turbulent premixed flame was investigated using statistics based on conditional averaging with the reaction progress variable as the conditioning variable. The DNS data base of Trouve and Poinsot (1994) was used in this investigation. Attention was focused on the conditional dissipation and conditional axial velocity in the flame with a view to modeling these quantities for use in the conditional moment closure (CMC) approach to analysis of kinetics in premixed flames (Bilger, 1993). Two remarkable findings were made: there was almost no acceleration of the axial velocity in the flame front itself; and the conditional scalar dissipation remained as high, or higher, than that found in laminar premixed flames. The first finding was surprising since in laminar flames all the fluid acceleration occurs through the flame front, and this could be expected also for turbulent premixed flames at the flamelet limit. The finding gave hope of inventing a new approach to the dynamics of turbulent premixed flames through use of rapid distortion theory or an unsteady Bernoulli equation. This could lead to a new second order closure for turbulent premixed flames. The second finding was contrary to our measurements with laser diagnostics in lean hydrocarbon flames where it is found that conditional scalar dissipation drops dramatically below that for laminar flamelets when the turbulence intensity becomes high. Such behavior was not explainable with a one-step kinetic model, even at non-unity Lewis number. It could be due to depletion of H2 from the reaction zone by preferential diffusion. The capacity of the flame to generate radicals is critically dependent on the levels of H2 present (Bilger, et al., 1991). It seemed that a DNS computation with a multistep reduced mechanism would be worthwhile if a way could be found to make this feasible. Truly innovative approaches to complex problems often come only when there is the

  20. Mechanism of laser induced fluorescence signal generation in InCl3-ethanol mixture flames

    NASA Astrophysics Data System (ADS)

    Fang, Bolang; Hu, Zhiyun; Zhang, Zhenrong; Li, Guohua; Shao, Jun; Feng, Guobin

    2017-05-01

    Nonlinear regime Two-line Atomic Fluorescence (NTLAF) is a promising technique for two-dimensional thermometry. A key challenge is seeding of indium atoms into flame. This work aims at investigating the mechanism of Indium LIF signal generation in a fuel-rich InCl3-ethanol premixed flame. Several types of images including natural emission of the flame itself, natural emission of CH, natural emission of OH, natural emission at 410 nm/451 nm of indium atom, and laser induced fluorescence at 410 nm/451 nm were obtained. The indium atom was generated in the flame front, and could survive in the post-flame zone for a while which is benefit for making NTLAF measurements. Further detail mechanism of fluorescence signals generation in InCl3-ethanol solution burning was investigated. The conclusion which probable to be drew is that to gain high NTLAF signals, the size of liquid droplets should be well controlled, neither to be too large nor to be gasified.

  1. Effects of porous insert on flame dynamics in a lean premixed swirl-stabilized combustor

    NASA Astrophysics Data System (ADS)

    Brown, Marcus; Agrawal, Ajay; Allen, James; Kornegay, John

    2016-11-01

    In this study, we investigated different methods of determining the effect a porous insert has on flame dynamics during lean premixed combustion. A metallic porous insert is used to mitigate instabilities in a swirl-stabilized combustor. Thermoacoustic instabilities are seen as negative consequences of lean premixed combustion and eliminating them is the motivation for our research. Three different diagnostics techniques with high-speed Photron SA5 cameras were used to monitor flame characteristics. Particle image velocimetry (PIV) was used to observe vortical structures and recirculation zones within the combustor. Using planar laser induced fluorescence (PLIF), we were able to observe changes in the reaction zones during instabilities. Finally, utilizing a color high-speed camera, visual images depicting a flame's oscillations during the instability were captured. Using these monitoring techniques, we are able to support the claims made in previous studies stating that the porous insert in the combustor significantly reduces the thermoacoustic instability. Funding for this research was provided by the NSF REU site Grant EEC 1358991 and NASA Grant NNX13AN14A.

  2. Two-dimensional imaging of molecular hydrogen in H2-air diffusion flames using two-photon laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Lempert, W.; Kumar, V.; Glesk, I.; Miles, R.; Diskin, G.

    1991-01-01

    The use of a tunable ArF laser at 193.26 nm to record simultaneous single-laser-shot, planar images of molecular hydrogen and hot oxygen in a turbulent H2-air diffusion flame. Excitation spectra of fuel and oxidant-rich flame zones confirm a partial overlap of the two-photon H2 and single-photon O2 Schumann-Runge absorption bands. UV Rayleigh scattering images of flame structure and estimated detection limits for the H2 two-photon imaging are also presented.

  3. Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening [Direct numerical simulations of a high Ka laboratory premixed jet flame - an analysis of flame stretch and flame thickening

    DOE PAGES

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.; ...

    2017-02-23

    This article reports an analysis of the first detailed chemistry direct numerical simulation (DNS) of a high Karlovitz number laboratory premixed flame. The DNS results are first compared with those from laser-based diagnostics with good agreement. The subsequent analysis focuses on a detailed investigation of the flame area, its local thickness and their rates of change in isosurface following reference frames, quantities that are intimately connected. The net flame stretch is demonstrated to be a small residual of large competing terms: the positive tangential strain term and the negative curvature stretch term. The latter is found to be driven bymore » flame speed–curvature correlations and dominated in net by low probability highly curved regions. Flame thickening is demonstrated to be substantial on average, while local regions of flame thinning are also observed. The rate of change of the flame thickness (as measured by the scalar gradient magnitude) is demonstrated, analogously to flame stretch, to be a competition between straining tending to increase gradients and flame speed variations in the normal direction tending to decrease them. The flame stretch and flame thickness analyses are connected by the observation that high positive tangential strain rate regions generally correspond with low curvature regions; these regions tend to be positively stretched in net and are relatively thinner compared with other regions. Finally, high curvature magnitude regions (both positive and negative) generally correspond with lower tangential strain; these regions are in net negatively stretched and thickened substantially.« less

  4. Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening [Direct numerical simulations of a high Ka laboratory premixed jet flame - an analysis of flame stretch and flame thickening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    This article reports an analysis of the first detailed chemistry direct numerical simulation (DNS) of a high Karlovitz number laboratory premixed flame. The DNS results are first compared with those from laser-based diagnostics with good agreement. The subsequent analysis focuses on a detailed investigation of the flame area, its local thickness and their rates of change in isosurface following reference frames, quantities that are intimately connected. The net flame stretch is demonstrated to be a small residual of large competing terms: the positive tangential strain term and the negative curvature stretch term. The latter is found to be driven bymore » flame speed–curvature correlations and dominated in net by low probability highly curved regions. Flame thickening is demonstrated to be substantial on average, while local regions of flame thinning are also observed. The rate of change of the flame thickness (as measured by the scalar gradient magnitude) is demonstrated, analogously to flame stretch, to be a competition between straining tending to increase gradients and flame speed variations in the normal direction tending to decrease them. The flame stretch and flame thickness analyses are connected by the observation that high positive tangential strain rate regions generally correspond with low curvature regions; these regions tend to be positively stretched in net and are relatively thinner compared with other regions. Finally, high curvature magnitude regions (both positive and negative) generally correspond with lower tangential strain; these regions are in net negatively stretched and thickened substantially.« less

  5. Flame surface statistics of constant-pressure turbulent expanding premixed flames

    NASA Astrophysics Data System (ADS)

    Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.

    2014-04-01

    In this paper we investigate the local flame surface statistics of constant-pressure turbulent expanding flames. First the statistics of local length ratio is experimentally determined from high-speed planar Mie scattering images of spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we then convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at the corresponding area-ratio pdfs. It is found that both the length ratio and area ratio pdfs are near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis.

  6. On the critical flame radius and minimum ignition energy for spherical flame initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zheng; Burke, M. P.; Ju, Yiguang

    2011-01-01

    Spherical flame initiation from an ignition kernel is studied theoretically and numerically using different fuel/oxygen/helium/argon mixtures (fuel: hydrogen, methane, and propane). The emphasis is placed on investigating the critical flame radius controlling spherical flame initiation and its correlation with the minimum ignition energy. It is found that the critical flame radius is different from the flame thickness and the flame ball radius and that their relationship depends strongly on the Lewis number. Three different flame regimes in terms of the Lewis number are observed and a new criterion for the critical flame radius is introduced. For mixtures with Lewis numbermore » larger than a critical Lewis number above unity, the critical flame radius is smaller than the flame ball radius but larger than the flame thickness. As a result, the minimum ignition energy can be substantially over-predicted (under-predicted) based on the flame ball radius (the flame thickness). The results also show that the minimum ignition energy for successful spherical flame initiation is proportional to the cube of the critical flame radius. Furthermore, preferential diffusion of heat and mass (i.e. the Lewis number effect) is found to play an important role in both spherical flame initiation and flame kernel evolution after ignition. It is shown that the critical flame radius and the minimum ignition energy increase significantly with the Lewis number. Therefore, for transportation fuels with large Lewis numbers, blending of small molecule fuels or thermal and catalytic cracking will significantly reduce the minimum ignition energy.« less

  7. The FLAME-slab method for electromagnetic wave scattering in aperiodic slabs

    NASA Astrophysics Data System (ADS)

    Mansha, Shampy; Tsukerman, Igor; Chong, Y. D.

    2017-12-01

    The proposed numerical method, "FLAME-slab," solves electromagnetic wave scattering problems for aperiodic slab structures by exploiting short-range regularities in these structures. The computational procedure involves special difference schemes with high accuracy even on coarse grids. These schemes are based on Trefftz approximations, utilizing functions that locally satisfy the governing differential equations, as is done in the Flexible Local Approximation Method (FLAME). Radiation boundary conditions are implemented via Fourier expansions in the air surrounding the slab. When applied to ensembles of slab structures with identical short-range features, such as amorphous or quasicrystalline lattices, the method is significantly more efficient, both in runtime and in memory consumption, than traditional approaches. This efficiency is due to the fact that the Trefftz functions need to be computed only once for the whole ensemble.

  8. A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Chun S

    2011-01-01

    Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damkoehler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals themore » passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453-481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic 'saw-tooth' shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.« less

  9. A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, C. S.; Richardson, E.; Sankaran, R.

    2011-01-01

    Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damköhler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals themore » passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453–481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic ‘saw-tooth’ shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.« less

  10. Simulating flame lift-off characteristics of diesel and biodiesel fuels using detailed chemical-kinetic mechanisms and LES turbulence model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, S; Longman, D. E.; Luo, Z

    2012-01-01

    Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well asmore » Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the RNG k-{epsilon} (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 {micro}m and 125 {micro}m were obtained for the RANS and LES cases respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-{epsilon} model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl 9-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost.« less

  11. Occurrence of halogenated flame retardants in sediment off an urbanized coastal zone: association with urbanization and industrialization.

    PubMed

    Liu, Hui-Hui; Hu, Yuan-Jie; Luo, Pei; Bao, Lian-Jun; Qiu, Jian-Wen; Leung, Kenneth M Y; Zeng, Eddy Y

    2014-01-01

    To examine the impacts of urbanization and industrialization on the coastal environment, sediment samples were collected from an urbanized coastal zone (i.e., Daya Bay and Hong Kong waters of South China) and analyzed for 20 polybrominated diphenyl ethers (PBDEs) and 10 alternative halogenated flame retardants (AHFRs). The sum concentration of PBDEs was in the range of 1.7-55 (mean: 17) ng g(-1), suggesting a moderate pollution level compared to the global range. The higher fractions of AHFRs (i.e., TBB+TBPH, BTBPE and DBDPE) than those of legacy PBDEs (i.e., penta-BDE, octa-BDE and deca-BDE) corresponded with the phasing out of PBDEs and increasing demand for AHFRs. Heavy contamination occurred at the estuary of Dan'ao River flowing through the Daya Bay Economic Zone, home to a variety of petrochemicals and electronics manufacturing facilities. The concentrations of HFRs in surface sediments of Hong Kong were the highest in Victoria Harbor, which receives around 1.4 million tons of primarily treated sewage daily, and a good relationship (r(2) = 0.80; p < 0.0001) between the HFR concentration and population density in each council district was observed, highlighting the effect of urbanization. Moreover, the AHFR concentrations were significantly correlated (r(2) > 0.73; p < 0.05) with the production volume of electronic devices, production value of electronic industries and population size, demonstrating the importance of industrializing and urbanizing processes in dictating the historical input patterns of AHFRs.

  12. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, V. R.

    2006-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated. A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  13. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2007-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm) (Fig. 1, left). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated (Fig. 1, right). A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  14. Thermal-diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Guangzheng; Zhao, Yibo; Zhou, Cheng

    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf (WD) carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in WDs. The numerical critical Zel’dovich numbers of planar flames at different densities ( ρ = 2, 3, and 4 × 10{sup 7} g cm{sup −3}) and of spherical flames (with curvature c = −0.01, 0, 0.01, and 0.05) at a particular density ( ρ = 2 × 10{sup 7} g cm{supmore » −3}) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2 × 10{sup 7} g cm{sup −3} and temperature of 0.6 × 10{sup 9} K. While being stable at higher temperatures, at relatively lower temperatures, the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.« less

  15. Turbulent piloted partially-premixed flames with varying levels of O2/N2: stability limits and PDF calculations

    NASA Astrophysics Data System (ADS)

    Juddoo, Mrinal; Masri, Assaad R.; Pope, Stephen B.

    2011-12-01

    This paper reports measured stability limits and PDF calculations of piloted, turbulent flames of compressed natural gas (CNG) partially-premixed with either pure oxygen, or with varying levels of O2/N2. Stability limits are presented for flames of CNG fuel premixed with up to 20% oxygen as well as CNG-O2-N2 fuel where the O2 content is varied from 8 to 22% by volume. Calculations are presented for (i) Sydney flame B [Masri et al. 1988] which uses pure CNG as well as flames B15 to B25 where the CNG is partially-premixed with 15-25% oxygen by volume, respectively and (ii) Sandia methane-air (1:3 by volume) flame E [Barlow et al. 2005] as well as new flames E15 and E25 that are partially-premixed with 'reconstituted air' where the O2 content in nitrogen is 15 and 25% by volume, respectively. The calculations solve a transported PDF of composition using a particle-based Monte Carlo method and employ the EMST mixing model as well as detailed chemical kinetics. The addition of oxygen to the fuel increases stability, shortens the flames, broadens the reaction zone, and shifts the stoichiometric mixture fraction towards the inner side of the jet. It is found that for pure CNG flames where the reaction zone is narrow (∼0.1 in mixture fraction space), the PDF calculations fail to reproduce the correct level of local extinction on approach to blow-off. A broadening in the reaction zone up to about 0.25 in mixture fraction space is needed for the PDF/EMST approach to be able to capture these finite-rate chemistry effects. It is also found that for the same level of partial premixing, increasing the O2/N2 ratio increases the maximum levels of CO and NO but shifts the peak to richer mixture fractions. Over the range of oxygenation investigated here, stability limits have shown to improve almost linearly with increasing oxygen levels in the fuel and with increasing the contribution of release rate from the pilot.

  16. A Role of the Reaction Kernel in Propagation and Stabilization of Edge Diffusion Flames of C1-C3 Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2003-01-01

    Diffusion flame stabilization is of essential importance in both Earth-bound combustion systems and spacecraft fire safety. Local extinction, re-ignition, and propagation processes may occur as a result of interactions between the flame zone and vortices or fire-extinguishing agents. By using a computational fluid dynamics code with a detailed chemistry model for methane combustion, the authors have revealed the chemical kinetic structure of the stabilizing region of both jet and flat-plate diffusion flames, predicted the flame stability limit, and proposed diffusion flame attachment and detachment mechanisms in normal and microgravity. Because of the unique geometry of the edge of diffusion flames, radical back-diffusion against the oxygen-rich entrainment dramatically enhanced chain reactions, thus forming a peak reactivity spot, i.e., reaction kernel, responsible for flame holding. The new results have been obtained for the edge diffusion flame propagation and attached flame structure using various C1-C3 hydrocarbons.

  17. Flame thermometry

    NASA Astrophysics Data System (ADS)

    Strojnik, Marija; Páez, Gonzalo; Granados, Juan C.

    2006-08-01

    We determine the temperature distribution within the flame as a function of position. We determined temperature distribution and the length of a flame by dual-wavelength thermometry, at 470 nm and 515 nm. The error percentages on the temperature and the flame length measurements are 1.9% as compared with the predicted thermodynamic results.

  18. Characterization of Flame Cut Heavy Steel: Modeling of Temperature History and Residual Stress Formation

    NASA Astrophysics Data System (ADS)

    Jokiaho, T.; Laitinen, A.; Santa-aho, S.; Isakov, M.; Peura, P.; Saarinen, T.; Lehtovaara, A.; Vippola, M.

    2017-12-01

    Heavy steel plates are used in demanding applications that require both high strength and hardness. An important step in the production of such components is cutting the plates with a cost-effective thermal cutting method such as flame cutting. Flame cutting is performed with a controlled flame and oxygen jet, which burns the steel and forms a cutting edge. However, the thermal cutting of heavy steel plates causes several problems. A heat-affected zone (HAZ) is generated at the cut edge due to the steep temperature gradient. Consequently, volume changes, hardness variations, and microstructural changes occur in the HAZ. In addition, residual stresses are formed at the cut edge during the process. In the worst case, unsuitable flame cutting practices generate cracks at the cut edge. The flame cutting of thick steel plate was modeled using the commercial finite element software ABAQUS. The results of modeling were verified by X-ray diffraction-based residual stress measurements and microstructural analysis. The model provides several outcomes, such as obtaining more information related to the formation of residual stresses and the temperature history during the flame cutting process. In addition, an extensive series of flame cut samples was designed with the assistance of the model.

  19. Flame Holder System

    NASA Technical Reports Server (NTRS)

    Haskin, Henry H. (Inventor); Vasquez, Peter (Inventor)

    2013-01-01

    A flame holder system includes a modified torch body and a ceramic flame holder. Catch pin(s) are coupled to and extend radially out from the torch body. The ceramic flame holder has groove(s) formed in its inner wall that correspond in number and positioning to the catch pin(s). Each groove starts at one end of the flame holder and can be shaped to define at least two 90.degree.turns. Each groove is sized to receive one catch pin therein when the flame holder is fitted over the end of the torch body. The flame holder is then manipulated until the catch pin(s) butt up against the end of the groove(s).

  20. Grid generation about complex three-dimensional aircraft configurations

    NASA Technical Reports Server (NTRS)

    Klopfer, Goetz H.

    1991-01-01

    The problem of obtaining three dimensional grids with sufficient resolution to resolve all the flow or other physical features of interest is addressed. The generation of a computational grid involves a series of compromises to resolve several conflicting requirements. On one hand, one would like the grid to be fine enough and not too skewed to reduce the numerical errors and to adequately resolve the pertinent physical features of the flow field about the aircraft. On the other hand, the capabilities of present or even future supercomputers are finite and the number of mesh points must be limited to a reasonable number: one which is usually much less than desired for numerical accuracy. One technique to overcome this limitation is the 'zonal' grid approach. In this method, the overall field is subdivided into smaller zones or blocks in each of which an independent grid is generated with enough grid density to resolve the flow features in that zone. The zonal boundaries or interfaces require special boundary conditions such that the conservation properties of the governing equations are observed. Much work was done in 3-D zonal approaches with nonconservative zonal interfaces. A 3-D zonal conservative interfacing method that is efficient and easy to implement was developed during the past year. During the course of the work, it became apparent that it would be much more feasible to do the conservative interfacing with cell-centered finite volume codes instead of the originally planned finite difference codes. Accordingly, the CNS code was converted to finite volume form. This new version of the code is named CNSFV. The original multi-zonal interfacing capability of the CNS code was enhanced by generalizing the procedure to allow for completely arbitrarily shaped zones with no mesh continuity between the zones. While this zoning capability works well for most flow situations, it is, however, still nonconservative. The conservative interface algorithm was also

  1. Gas sampling method for determining pollutant concentrations in the flame zone of two swirl-can combustor modules

    NASA Technical Reports Server (NTRS)

    Duerr, R. A.

    1975-01-01

    A gas sampling probe and traversing mechanism were developed to obtain detailed measurements of gaseous pollutant concentrations in the primary and mixing regions of combustors in order to better understand how pollutants are formed. The gas sampling probe was actuated by a three-degree-of-freedom traversing mechanism and the samples obtained were analyzed by an on-line gas analysis system. The pollutants in the flame zone of two different swirl-can combustor modules were measured at an inlet-air temperature of 590 K, pressure of 6 atmospheres, and reference velocities of 23 and 30 meters per second at a fuel-air ratio of 0.02. Typical results show large spatial gradients in the gaseous pollutant concentration close to the swirl-can module. Average concentrations of unburned hydrocarbons and carbon monoxide decrease rapidly in the downstream wake regions of each module. By careful and detailed probing, the effect of various module design features on pollutant formation can be assessed. The techniques presently developed seem adequate to obtain the desired information.

  2. Flame Imaging System

    NASA Technical Reports Server (NTRS)

    Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)

    1998-01-01

    A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.

  3. Flow field and scalar measurements in a series of turbulent partially-premixed dimethyl ether/air jet flames

    DOE PAGES

    Coriton, Bruno; Im, Seong -Kyun; Gamba, Mirko; ...

    2017-03-12

    Here, we present a series of benchmark flames consisting of six partially-premixed piloted dimethyl ether (DME)/air jet flames. These flames provide an opportunity to understand turbulence-flame interactions for oxygenated fuels and to develop predictive models for these interactions using a canonical burner geometry. The development of accurate models for DME/air flames would establish a foundation for studies of more complex oxygenated fuels. The flames are stabilized on a piloted jet burner similar to that of the partially-premixed methane/air jet flames that have been studied extensively within the context of the TNF Workshop. This series of six jet flames spans jetmore » exit Reynolds numbers, ReD, from 29,300 to 73,300 and stoichiometric mixture fractions, ξ st, from 0.35 to 0.60. Flame conditions range from very low probability of localized extinction to a high probability of localized extinction and subsequent re-ignition. Measurements in the flames are compared at downstream locations from 5 to 25 diameters above the nozzle exit. Mean and fluctuating velocity components are measured using stereo particle image velocimetry (SPIV). Simultaneous laser-induced fluorescence (LIF) imaging of OH and CH 2O provides insights into the distribution of these intermediate species in partially-premixed DME/air flames. OH LIF imaging is also combined with SPIV to investigate the strain rate field across the reaction zone.« less

  4. Flow field and scalar measurements in a series of turbulent partially-premixed dimethyl ether/air jet flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coriton, Bruno; Im, Seong -Kyun; Gamba, Mirko

    Here, we present a series of benchmark flames consisting of six partially-premixed piloted dimethyl ether (DME)/air jet flames. These flames provide an opportunity to understand turbulence-flame interactions for oxygenated fuels and to develop predictive models for these interactions using a canonical burner geometry. The development of accurate models for DME/air flames would establish a foundation for studies of more complex oxygenated fuels. The flames are stabilized on a piloted jet burner similar to that of the partially-premixed methane/air jet flames that have been studied extensively within the context of the TNF Workshop. This series of six jet flames spans jetmore » exit Reynolds numbers, ReD, from 29,300 to 73,300 and stoichiometric mixture fractions, ξ st, from 0.35 to 0.60. Flame conditions range from very low probability of localized extinction to a high probability of localized extinction and subsequent re-ignition. Measurements in the flames are compared at downstream locations from 5 to 25 diameters above the nozzle exit. Mean and fluctuating velocity components are measured using stereo particle image velocimetry (SPIV). Simultaneous laser-induced fluorescence (LIF) imaging of OH and CH 2O provides insights into the distribution of these intermediate species in partially-premixed DME/air flames. OH LIF imaging is also combined with SPIV to investigate the strain rate field across the reaction zone.« less

  5. Combustion Characteristics in a Non-Premixed Cool-Flame Regime of n-Heptane in Microgravity

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.; Hicks, Michael C.

    2015-01-01

    A series of distinct phenomena have recently been observed in single-fuel-droplet combustion tests performed on the International Space Station (ISS). This study attempts to simulate the observed flame behavior numerically using a gaseous n-heptane fuel source in zero gravity and a time-dependent axisymmetric (2D) code, which includes a detailed reaction mechanism (127 species and 1130 reactions), diffusive transport, and a radiation model (for CH4, CO, CO2, H2O, and soot). The calculated combustion characteristics depend strongly on the air velocity around the fuel source. In a near-quiescent air environment (< or = 2 mm/s), with a sufficiently large fuel injection velocity (1 cm/s), a growing spherical diffusion flame extinguishes at ˜1200 K due to radiative heat losses. This is typically followed by a transition to the low-temperature (cool-flame) regime with a reaction zone (at ˜700 K) in close proximity to the fuel source. The 'cool flame' regime is formed due to the negative temperature coefficient in the low-temperature chemistry. After a relatively long period (˜18 s) of the cool flame regime, a flash re-ignition occurs, associated with flame-edge propagation and subsequent extinction of the re-ignited flame. In a low-speed (˜3 mm/s) airstream (which simulates the slight droplet movement), the diffusion flame is enhanced upstream and experiences a local extinction downstream at ˜1200 K, followed by steady flame pulsations (˜0.4 Hz). At higher air velocities (4-10 mm/s), the locally extinguished flame becomes steady state. The present axisymmetric computational approach helps in revealing the non-premixed 'cool flame' structure and 2D flame-flow interactions observed in recent microgravity droplet combustion experiments.

  6. Turbulent Flame Processes Via Diffusion Flame-Vortex Ring Interactions

    NASA Technical Reports Server (NTRS)

    Dahm, Werner J. A.; Chen, Shin-Juh; Silver, Joel A.; Piltch, Nancy D.; VanderWal, Randall L.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in turbulent reacting flows. This configuration contains many of the fundamental aspects of the coupling between fluid dynamics and combustion that could be investigated with more controllable conditions than are possible under direct investigations of turbulent flames. Diffusion flame-vortex ring interaction contains many of the fundamental elements of flow, transport, combustion, and soot processes found in turbulent diffusion flames. Some of these elements include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, soot formation and oxidation, and heat release effects. Such simplified flowfield allows the complex processes to be examined more closely and yet preserving the physical processes present in turbulent reacting flows. Furthermore, experimental results from the study of flame-vortex interactions are useful for the validation of numerical simulations and more importantly to deepen our understanding of the fundamental processes present in reacting flows. Experimental and numerical results obtained under microgravity conditions of the diffusion flame-vortex ring interaction are summarized in this paper. Results are obtained using techniques that include Flame Luminosity Imaging (FLI), Laser Soot-Mie Scattering (LSMS), Computational Fluid Dynamics and Combustion (CFDC), and Diode Laser Spectroscopy/Iterative Temperature with Assumed Chemistry (DLS/ITAC).

  7. Study of flame combustion of off-design binary coal blends in steam boilers

    NASA Astrophysics Data System (ADS)

    Kapustyanskii, A. A.

    2017-07-01

    Changes in the structure of the fuel consumption by the thermal power stations of Ukraine caused by failure in supplying anthracite from the Donets Basin are analyzed and the major tasks of maintaining the functioning of the coal industry are formulated. The possibility of using, in the near future, the flame combustion of off-design solid fuels in the power boilers of the thermal power plants and combined heat and power plants is studied. The article presents results of expert tests of the TPP-210A and TP-15 boilers under flame combustion of mixtures of anthracites, lean coal, and the coal from the RSA in various combinations. When combusting, such mixtures have higher values of the combustibles yield and the ash fusibility temperature. The existence of the synergetic effect in the flame combustion of binary coal blends with different degrees of metamorphism is discussed. A number of top-priority measures have been worked out that allow for switching over the boilers designed to be fired with anthracite to using blends of coals of different ranks. Zoned thermal analysis of the TP-15 boiler furnace was performed for numerical investigation of the temperature distribution between the furnace chamber zones and exploration of the possibility of the liquid slag disposal and the temperature conditions for realization of this process. A positive result was achieved by combusting anthracite culm (AC), the coal from the RSA, and their mixtures with lean coal within the entire range of the working loads of the boilers in question. The problems of normalization of the liquid slag flow were also successfully solved without closing the slag notch. The results obtained by balance experiments suggest that the characteristics of the flame combustion of a binary blend, i.e., the temperature conditions in the furnace, the support flame values, and the degree of the fuel burnout, are similar to the characteristics of the flame of the coal with a higher reactive capacity, which

  8. Influence of Antimony-Halogen Additives on Flame Propagation.

    PubMed

    Babushok, Valeri I; Deglmann, Peter; Krämer, Roland; Linteris, Gregory T

    2017-01-01

    A kinetic model for flame inhibition by antimony-halogen compounds in hydrocarbon flames is developed. Thermodynamic data for the relevant species are assembled from the literature, and calculations are performed for a large set of additional species of Sb-Br-C-H-O system. The main Sb- and Br-containing species in the combustion products and reaction zone are determined using flame equilibrium calculations with a set of possible Sb-Br-C-H-O species, and these are used to develop the species and reactions in a detailed kinetic model for antimony flame inhibition. The complete thermodynamic data set and kinetic mechanism are presented. Laminar burning velocity simulations are used to validate the mechanism against available data in the literature, as well as to explore the relative performance of the antimony-halogen compounds. Further analysis of the premixed flame simulations has unraveled the catalytic radical recombination cycle of antimony. It includes (primarily) the species Sb, SbO, SbO 2 , and HOSbO, and the reactions: Sb+O+M=SbO+M; Sb+O 2 +M=SbO 2 +M; SbO+H=Sb+OH; SbO+O=Sb+O 2 ; SbO+OH+M=HOSbO+M; SbO 2 +H 2 O=HOSbO+OH; HOSbO+H=SbO+H 2 O; SbO+O+M=SbO 2 +M. The inhibition cycles of antimony are shown to be more effective than those of bromine, and intermediate between the highly effective agents CF 3 Br and trimethylphosphate. Preliminary examination of a Sb/Br gas-phase system did not show synergism in the gas-phase catalytic cycles (i.e., they acted essentially independently).

  9. Influence of Antimony-Halogen Additives on Flame Propagation*

    PubMed Central

    Babushok, Valeri I.; Deglmann, Peter; Krämer, Roland; Linteris, Gregory T.

    2016-01-01

    A kinetic model for flame inhibition by antimony-halogen compounds in hydrocarbon flames is developed. Thermodynamic data for the relevant species are assembled from the literature, and calculations are performed for a large set of additional species of Sb-Br-C-H-O system. The main Sb- and Br-containing species in the combustion products and reaction zone are determined using flame equilibrium calculations with a set of possible Sb-Br-C-H-O species, and these are used to develop the species and reactions in a detailed kinetic model for antimony flame inhibition. The complete thermodynamic data set and kinetic mechanism are presented. Laminar burning velocity simulations are used to validate the mechanism against available data in the literature, as well as to explore the relative performance of the antimony-halogen compounds. Further analysis of the premixed flame simulations has unraveled the catalytic radical recombination cycle of antimony. It includes (primarily) the species Sb, SbO, SbO2, and HOSbO, and the reactions: Sb+O+M=SbO+M; Sb+O2+M=SbO2+M; SbO+H=Sb+OH; SbO+O=Sb+O2; SbO+OH+M=HOSbO+M; SbO2+H2O=HOSbO+OH; HOSbO+H=SbO+H2O; SbO+O+M=SbO2+M. The inhibition cycles of antimony are shown to be more effective than those of bromine, and intermediate between the highly effective agents CF3Br and trimethylphosphate. Preliminary examination of a Sb/Br gas-phase system did not show synergism in the gas-phase catalytic cycles (i.e., they acted essentially independently). PMID:28133390

  10. Effect of Spray Cone Angle on Flame Stability in an Annular Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Kumar, S. Kishore; Chandel, Sunil

    2016-04-01

    Effect of fuel spray cone angle in an aerogas turbine combustor has been studied using computational fluid dynamics (CFD) and full-scale combustor testing. For CFD analysis, a 22.5° sector of an annular combustor is modeled and the governing equations are solved using the eddy dissipation combustion model in ANSYS CFX computational package. The analysis has been carried out at 125 kPa and 303 K inlet conditions for spray cone angles from 60° to 140°. The lean blowout limits are established by studying the behavior of combustion zone during transient engine operation from an initial steady-state condition. The computational study has been followed by testing the practical full-scale annular combustor in an aerothermal test facility. The experimental result is in a good agreement with the computational predictions. The lean blowout fuel-air ratio increases as the spray cone angle is decreased at constant operating pressure and temperature. At higher spray cone angle, the flame and high-temperature zone moves upstream close to atomizer face and a uniform flame is sustained over a wide region causing better flame stability.

  11. Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boxx, I.; Stoehr, M.; Meier, W.

    This paper presents observations and analysis of the time-dependent behavior of a 10 kW partially pre-mixed, swirl-stabilized methane-air flame exhibiting self-excited thermo-acoustic oscillations. This analysis is based on a series of measurements wherein particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of the OH radical were performed simultaneously at 5 kHz repetition rate over durations of 0.8 s. Chemiluminescence imaging of the OH{sup *} radical was performed separately, also at 5 kHz over 0.8 s acquisition runs. These measurements were of sufficient sampling frequency and duration to extract usable spatial and temporal frequency information on the medium to large-scalemore » flow-field and heat-release characteristics of the flame. This analysis is used to more fully characterize the interaction between the self-excited thermo-acoustic oscillations and the dominant flow-field structure of this flame, a precessing vortex core (PVC) present in the inner recirculation zone. Interpretation of individual measurement sequences yielded insight into various physical phenomena and the underlying mechanisms driving flame dynamics. It is observed for this flame that location of the reaction zone tracks large-scale fluctuations in axial velocity and also conforms to the passage of large-scale vortical structures through the flow-field. Local extinction of the reaction zone in regions of persistently high principal compressive strain is observed. Such extinctions, however, are seen to be self healing and thus do not induce blowout. Indications of auto-ignition in regions of unburned gas near the exit are also observed. Probable auto-ignition events are frequently observed coincident with the centers of large-scale vortical structures, suggesting the phenomenon is linked to the enhanced mixing and longer residence times associated with fluid at the core of the PVC as it moves through the flame. (author)« less

  12. Three-dimensional Numerical Simulations of Rayleigh-Taylor Unstable Flames in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Zingale, M.; Woosley, S. E.; Rendleman, C. A.; Day, M. S.; Bell, J. B.

    2005-10-01

    Flame instabilities play a dominant role in accelerating the burning front to a large fraction of the speed of sound in a Type Ia supernova. We present a three-dimensional numerical simulation of a Rayleigh-Taylor unstable carbon flame, following its evolution through the transition to turbulence. A low-Mach number hydrodynamics method is used, freeing us from the harsh time step restrictions imposed by sound waves. We fully resolve the thermal structure of the flame and its reaction zone, eliminating the need for a flame model. A single density is considered, 1.5×107 g cm-3, and half-carbon, half-oxygen fuel: conditions under which the flame propagated in the flamelet regime in our related two-dimensional study. We compare to a corresponding two-dimensional simulation and show that while fire polishing keeps the small features suppressed in two dimensions, turbulence wrinkles the flame on far smaller scales in the three-dimensional case, suggesting that the transition to the distributed burning regime occurs at higher densities in three dimensions. Detailed turbulence diagnostics are provided. We show that the turbulence follows a Kolmogorov spectrum and is highly anisotropic on the large scales, with a much larger integral scale in the direction of gravity. Furthermore, we demonstrate that it becomes more isotropic as it cascades down to small scales. On the basis of the turbulent statistics and the flame properties of our simulation, we compute the Gibson scale. We show the progress of the turbulent flame through a classic combustion regime diagram, indicating that the flame just enters the distributed burning regime near the end of our simulation.

  13. Candle Flames in Microgravity Experiment

    NASA Image and Video Library

    1992-07-09

    Closeup view inside glovebox showing a candle flame. The Candle Flames in Microgravity experiment is carried onboard Columbia to examine whether candle flames can be sustained in space; to study the interaction and physical properties of diffusion flames. In space, where buoyancy-driven convection is reduced, the role diffusion plays in sustaining candle flames can be isolated. Results have implications for other diffusion flame studies. Diffusion flames are the most common type of flame on Earth.

  14. Flame speed and self-similar propagation of expanding turbulent premixed flames.

    PubMed

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung K

    2012-01-27

    In this Letter we present turbulent flame speeds and their scaling from experimental measurements on constant-pressure, unity Lewis number expanding turbulent flames, propagating in nearly homogeneous isotropic turbulence in a dual-chamber, fan-stirred vessel. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and the thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from the present expanding flames and those from the Bunsen geometry in the literature can be unified by a turbulent Reynolds number based on flame length scales using recent theoretical results obtained by spectral closure of the transformed G equation.

  15. Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung K.

    2012-01-01

    In this Letter we present turbulent flame speeds and their scaling from experimental measurements on constant-pressure, unity Lewis number expanding turbulent flames, propagating in nearly homogeneous isotropic turbulence in a dual-chamber, fan-stirred vessel. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and the thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from the present expanding flames and those from the Bunsen geometry in the literature can be unified by a turbulent Reynolds number based on flame length scales using recent theoretical results obtained by spectral closure of the transformed G equation.

  16. Mathematical modeling of velocity and number density profiles of particles across the flame propagation through a micro-iron dust cloud.

    PubMed

    Bidabadi, Mehdi; Haghiri, Ali; Rahbari, Alireza

    2010-04-15

    In this study, an attempt has been made to analytically investigate the concentration and velocity profiles of particles across flame propagation through a micro-iron dust cloud. In the first step, Lagrangian particle equation of motion during upward flame propagation in a vertical duct is employed and then forces acting upon the particle, such as thermophoretic force (resulted from the temperature gradient), gravitation and buoyancy are introduced; and consequently, the velocity profile as a function of the distance from the leading edge of the combustion zone is extracted. In the resumption, a control volume above the leading edge of the combustion zone is considered and the change in the particle number density in this control volume is obtained via the balance of particle mass fluxes passing through it. This study explains that the particle concentration at the leading edge of the combustion zone is more than the particle agglomeration in a distance far from the flame front. This increase in the particle aggregation above the combustion zone has a remarkable effect on the lower flammability limits of combustible particle cloud. It is worth noticing that the velocity and particle concentration profiles show a reasonable compatibility with the experimental data. 2009 Elsevier B.V. All rights reserved.

  17. Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhuri, Swetaprovo; Kolla, Hemanth; Dave, Himanshu L.

    The flame structure corresponding to lean hydrogen–air premixed flames in intense sheared turbulence in the thin reaction zone regime is quantified from flame thickness and conditional scalar dissipation rate statistics, obtained from recent direct numerical simulation data of premixed temporally-evolving turbulent slot jet flames. It is found that, on average, these sheared turbulent flames are thinner than their corresponding planar laminar flames. Extensive analysis is performed to identify the reason for this counter-intuitive thinning effect. The factors controlling the flame thickness are analyzed through two different routes i.e., the kinematic route, and the transport and chemical kinetics route. The kinematicmore » route is examined by comparing the statistics of the normal strain rate due to fluid motion with the statistics of the normal strain rate due to varying flame displacement speed or self-propagation. It is found that while the fluid normal straining is positive and tends to separate iso-scalar surfaces, the dominating normal strain rate due to self-propagation is negative and tends to bring the iso-scalar surfaces closer resulting in overall thinning of the flame. The transport and chemical kinetics route is examined by studying the non-unity Lewis number effect on the premixed flames. The effects from the kinematic route are found to couple with the transport and chemical kinetics route. In addition, the intermittency of the conditional scalar dissipation rate is also examined. It is found to exhibit a unique non-monotonicity of the exponent of the stretched exponential function, conventionally used to describe probability density function tails of such variables. As a result, the non-monotonicity is attributed to the detailed chemical structure of hydrogen-air flames in which heat release occurs close to the unburnt reactants at near free-stream temperatures.« less

  18. Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet

    DOE PAGES

    Chaudhuri, Swetaprovo; Kolla, Hemanth; Dave, Himanshu L.; ...

    2017-07-07

    The flame structure corresponding to lean hydrogen–air premixed flames in intense sheared turbulence in the thin reaction zone regime is quantified from flame thickness and conditional scalar dissipation rate statistics, obtained from recent direct numerical simulation data of premixed temporally-evolving turbulent slot jet flames. It is found that, on average, these sheared turbulent flames are thinner than their corresponding planar laminar flames. Extensive analysis is performed to identify the reason for this counter-intuitive thinning effect. The factors controlling the flame thickness are analyzed through two different routes i.e., the kinematic route, and the transport and chemical kinetics route. The kinematicmore » route is examined by comparing the statistics of the normal strain rate due to fluid motion with the statistics of the normal strain rate due to varying flame displacement speed or self-propagation. It is found that while the fluid normal straining is positive and tends to separate iso-scalar surfaces, the dominating normal strain rate due to self-propagation is negative and tends to bring the iso-scalar surfaces closer resulting in overall thinning of the flame. The transport and chemical kinetics route is examined by studying the non-unity Lewis number effect on the premixed flames. The effects from the kinematic route are found to couple with the transport and chemical kinetics route. In addition, the intermittency of the conditional scalar dissipation rate is also examined. It is found to exhibit a unique non-monotonicity of the exponent of the stretched exponential function, conventionally used to describe probability density function tails of such variables. As a result, the non-monotonicity is attributed to the detailed chemical structure of hydrogen-air flames in which heat release occurs close to the unburnt reactants at near free-stream temperatures.« less

  19. Multigrid methods for numerical simulation of laminar diffusion flames

    NASA Technical Reports Server (NTRS)

    Liu, C.; Liu, Z.; Mccormick, S.

    1993-01-01

    This paper documents the result of a computational study of multigrid methods for numerical simulation of 2D diffusion flames. The focus is on a simplified combustion model, which is assumed to be a single step, infinitely fast and irreversible chemical reaction with five species (C3H8, O2, N2, CO2 and H2O). A fully-implicit second-order hybrid scheme is developed on a staggered grid, which is stretched in the streamwise coordinate direction. A full approximation multigrid scheme (FAS) based on line distributive relaxation is developed as a fast solver for the algebraic equations arising at each time step. Convergence of the process for the simplified model problem is more than two-orders of magnitude faster than other iterative methods, and the computational results show good grid convergence, with second-order accuracy, as well as qualitatively agreement with the results of other researchers.

  20. Insights into flame-flow interaction during boundary layer flashback of swirl flames

    NASA Astrophysics Data System (ADS)

    Ranjan, Rakesh; Ebi, Dominik; Clemens, Noel

    2017-11-01

    Boundary layer flashback in swirl flames is a frequent problem in industrial gas turbine combustors. During this event, an erstwhile stable swirl flame propagates into the upstream region of the combustor, through the low momentum region in the boundary layer. Owing to the involvement of various physical factors such as turbulence, flame-wall interactions and flame-flow interactions, the current scientific understanding of this phenomenon is limited. The transient and three-dimensional nature of the swirl flow, makes it even more challenging to comprehend the underlying physics of the swirl flame flashback. In this work, a model swirl combustor with an axial swirler and a centerbody was used to carry out the flashback experiments. We employed high-speed chemiluminescence imaging and simultaneous stereoscopic PIV to understand the flow-flame interactions during flashback. A novel approach to reconstruct the three-dimensional flame surface using time-resolved slice information is utilized to gain insight into the flame-flow interaction. It is realized that the blockage effect imposed by the flame deflects the approaching streamlines in axial as well as azimuthal directions. A detailed interpretation of streamline deflection during boundary layer flashback shall be presented. This work was sponsored by the DOE NETL under Grant DEFC2611-FE0007107.

  1. Candle flames in microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Tien, J. S.

    1995-01-01

    The candle flame in both normal and microgravity is non-propagating. In microgravity, however, the candle flame is also non-convective where (excepting Stefan flow) pure diffusion is the only transport mode. It also shares many characteristics with another classical problem, that of isolated droplet combustion. Given their qualitatively similar flame shapes and the required heat feedback to condensed-phase fuels, the gas-phase flow and temperature fields should be relatively similar for a droplet and a candle in reduced gravity. Unless the droplet diameter is maintained somehow through non-intrusive replenishment of fuel, the quasi-steady burning characteristics of a droplet can be maintained for only a few seconds. In contrast, the candle flame in microgravity may achieve a nearly steady state over a much longer time and is therefore ideal for examining a number of combustion-related phenomena. In this paper, we examine candle flame behavior in both short-duration and long-duration, quiescent, microgravity environments. Interest in this type of flame, especially 'candle flames in weightlessness', is demonstrated by very frequent public inquiries. The question is usually posed as 'will a candle flame burn in zero gravity', or, 'will a candle burn indefinitely (or steadily) in zero gravity in a large volume of quiescent air'. Intuitive speculation suggests to some that, in the absence of buoyancy, the accumulation of products in the vicinity of the flame will cause flame extinction. The classical theory for droplet combustion with its spherically-shaped diffusion flame, however, shows that steady combustion is possible in the absence of buoyancy if the chemical kinetics are fast enough. Previous experimental studies of candle flames in reduced and microgravity environments showed the flame could survive for at least 5 seconds, but did not reach a steady state in the available test time.

  2. E. S. R. determination of atomic hydrogen distribution in oxy-fuel flames burning at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bregeon, B.G.; Kadirgan, M.A.N.; Lamy, C.

    1981-01-01

    The authors have derived an experimental technique, using ESR spectroscopy, that allows this determination. A quartz burner equipped with an appropriate cooling system is placed directly in the ESR cavity. We obtained the hydrogen resonance signal and studied its variation for different positions of the flame inside the cavity. Hydrogen concentrations cannot be calculated directly from experimental data; hence we proceed indirectly to deconvoluate the resonance signal. This allows us to overcome the present severe handicap in obtaining atomic hydrogen concentrations in oxy-fuel flames from ESR measurements. Data obtained in this work, after temperature correction, give us the axial distributionmore » of hydrogen radicals for different oxy-propane and hydrogen-oxygen flames. These results show clearly that for all flames, the hydrogen radical concentration is maximum in a zone immediately above the inner cone. 13 refs.« less

  3. Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.

    2017-10-01

    Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.

  4. Effects of Buoyancy on Lean Premixed V-Flames Part I: Laminar and Turblent Flame Structure

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.; Bedat, Benoit; Kostiuk, Larry W.

    1998-01-01

    Laser schlieren and planar laser-induced fluorescence techniques have been used to investigate laminar and turbulent v-flames in +g, -g, and micro g under flow conditions that span the regimes of momentum domination (Ri < 0. 1) and buoyancy domination (Ri > 0.1). Overall flame features shown by schlieren indicate that buoyancy dominates the entire flow field for conditions close to Ri = 1. With decreasing Ri, buoyancy effects are observed only in the far-field regions. Analyses of the mean flame angles demonstrate that laminar and turbulent flames do not have similar responses to buoyancy. Difference in the laminar +g and -g flame angles decrease with Ri (i.e., increasing Re) and converge to the microgravity flame angle at the momentum limit (Ri - 0). This is consistent with the notion that the effects of buoyancy diminish with increasing flow momentum. The +g and -g turbulent flame angles, however, do not converge at Ri = 0. As shown by OH-PLIF images, the inconsistency in +g and -g turbulent flame angles is associated with the differences in flame wrinkles. Turbulent flame wrinkles evolve more slowly in +g than in -g. The difference in flame wrinkle structures, however, cannot be explained in terms of buoyancy effects on flame instability mechanisms. It seems to be associated with the field effects of buoyancy that stretches the turbulent flame brushes in +g and compresses the flame brush in -g. Flame wrinkling offers a mechanism through which the flame responds to the field effects of buoyancy despite increasing flow momentum. These observations point to the need to include both upstream and downstream contributions in theoretical analysis of flame turbulence interactions.

  5. Tulip flames: changes in shape of premixed flames propagating in closed tubes

    NASA Astrophysics Data System (ADS)

    Dunn-Rankin, D.; Sawyer, R. F.

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel.

  6. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  7. Flame-Vortex Interactions Imaged in Microgravity - To Assess the Theory Flame Stretch

    NASA Technical Reports Server (NTRS)

    Driscoll, James F.

    2001-01-01

    The goals of this research are to: 1) Assess the Theory of Flame Stretch by operating a unique flame-vortex experiment under microgravity conditions in the NASA Glenn 2.2 Second Drop Tower (drops to identify operating conditions have been completed); 2) Obtain high speed shadowgraph images (500-1000 frames/s) using the drop rig (images were obtained at one-g, and the NASA Kodak RO camera is being mounted on the drop rig); 3) Obtain shadowgraph and PIV images at 1-g while varying the effects of buoyancy by controlling the Froude number (completed); 4) Numerically model the inwardly-propagating spherical flame that is observed in the experiment using full chemistry and the RUN 1DL code (completed); 5) Send images of the flame shape to Dr. G. Patniak at NRL who is numerically simulating the entire flame-vortex interaction of the present experiment (data transfer completed); and 6) Assess the feasibility of obtaining PIV velocity field images in the drop rig, which would be useful (but not required) for our assessment of the Theory of Flame Stretch (PIV images were obtained at one-g using same low laser power that is available from fiber optic cable in drop tower). The motivation for the work is to obtain novel measurement needed to develop a physically accurate model of turbulent combustion that can help in the control of engine pollutants. The unique experiment allows, for the first time, the detailed study of a negatively-curved (negatively stretched) flame, which is one of the five fundamental types of premixed flames. While there have been studies of flat flames, positively-curved (outwardly-propagating) cases and positively-strained (counterflow) cases, this is the first detailed study of a negatively-curved (inwardly-propagating) flame. The first set of drops in the 2.2 Second Drop Tower showed that microgravity provides more favorable conditions for achieving inwardly-propagating flames (IPFs) than 1-g. A vortex interacts with a flame and creates a spherical

  8. Large eddy simulation of premixed and non-premixed combustion in a Stagnation Point Reverse Flow combustor

    NASA Astrophysics Data System (ADS)

    Undapalli, Satish

    A new combustor referred to as Stagnation Point Reverse Flow (SPRF) combustor has been developed at Georgia Tech to meet the increasingly stringent emission regulations. The combustor incorporates a novel design to meet the conflicting requirements of low pollution and high stability in both premixed and non-premixed modes. The objective of this thesis work is to perform Large Eddy Simulations (LES) on this lab-scale combustor and elucidate the underlying physics that has resulted in its excellent performance. To achieve this, numerical simulations have been performed in both the premixed and non-premixed combustion modes, and velocity field, species field, entrainment characteristics, flame structure, emissions, and mixing characteristics have been analyzed. Simulations have been carried out first for a non-reactive case to resolve relevant fluid mechanics without heat release by the computational grid. The computed mean and RMS quantities in the non-reacting case compared well with the experimental data. Next, the simulations were extended for the premixed reactive case by employing different sub-grid scale combustion chemistry closures: Eddy Break Up (EBU), Artificially Thickened Flame (TF) and Linear Eddy Mixing (LEM) models. Results from the EBU and TF models exhibit reasonable agreement with the experimental velocity field. However, the computed thermal and species fields have noticeable discrepancies. Only LEM with LES (LEMLES), which is an advanced scalar approach, has been able to accurately predict both the velocity and species fields. Scalar mixing plays an important role in combustion, and this is solved directly at the sub-grid scales in LEM. As a result, LEM accurately predicts the scalar fields. Due to the two way coupling between the super-grid and sub-grid quantities, the velocity predictions also compare very well with the experiments. In other approaches, the sub-grid effects have been either modeled using conventional approaches (EBU) or need

  9. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    NASA Astrophysics Data System (ADS)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2017-12-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  10. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    NASA Astrophysics Data System (ADS)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2018-06-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  11. Candle Flames in Non-Buoyant Atmospheres

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Shu, Y.; Tien, J. S.

    1999-01-01

    This paper addresses the behavior of a candle flame in a long-duration, quiescent microgravity environment both on the space Shuttle and the Mir Orbiting Station (OS). On the Shuttle, the flames became dim blue after an initial transient where there was significant yellow (presumably soot) in the flame. The flame lifetimes were typically less than 60 seconds. The safety-mandated candlebox that contained the candle flame inhibited oxygen transport to the flame and thus limited the flame lifetime. 'Me flames on the Mir OS were similar, except that the yellow luminosity persisted longer into the flame lifetime because of a higher initial oxygen concentration. The Mir flames burned for as long as 45 minutes. The difference in the flame lifetime between the Shuttle and Mir flames was primarily the redesigned candlebox that did not inhibit oxygen transport to the flame. In both environments, the flame intensity and the height-to-width ratio gradually decreased as the ambient oxygen content in the sealed chamber slowly decreased. Both sets of experiments showed spontaneous, axisymmetric flame oscillations just prior to extinction. The paper also presents a numerical model of candle flame. The model is detailed in the gas-phase, but uses a simplified liquid/wick phase. 'Me model predicts a steady flame with a shape and size quantitatively similar to the Shuttle and Mir flames. ne model also predicts pre-extinction flame oscillations if the decrease in ambient oxygen is small enough.

  12. Effects of elliptical burner geometry on partially premixed gas jet flames in quiescent surroundings

    NASA Astrophysics Data System (ADS)

    Baird, Benjamin

    to two reasons. The elliptical burners have enhanced turbulence generation that lowers their stability when compared to the circular burner. The 4:1 AR elliptical burner had greater stability due to a greater velocity decay rate and wider OH reaction zones particularly in the region between the two jets. The 3:1 AR elliptical and circular burners produced similar carbon monoxide and nitric oxide emission indexes over the range of equivalence ratios of 0.55 to 4.0, for laminar flames. (Abstract shortened by UMI.)

  13. Wall temperature measurements at elevated pressures and high temperatures in sooting flames in a gas turbine model combustor

    NASA Astrophysics Data System (ADS)

    Nau, Patrick; Yin, Zhiyao; Geigle, Klaus Peter; Meier, Wolfgang

    2017-12-01

    Wall temperatures were measured with thermographic phosphors on the quartz walls of a model combustor in ethylene/air swirl flames at 3 bar. Three operating conditions were investigated with different stoichiometries and with or without additional injection of oxidation air downstream of the primary combustion zone. YAG:Eu and YAG:Dy were used to cover a total temperature range of 1000-1800 K. Measurements were challenging due to the high thermal background from soot and window degradation at high temperatures. The heat flux through the windows was estimated from the temperature gradient between the in- and outside of the windows. Differences in temperature and heat flux density profiles for the investigated cases can be explained very well with the previously measured differences in flame temperatures and flame shapes. The heat loss relative to thermal load is quite similar for all investigated flames (15-16%). The results complement previous measurements in these flames to investigate soot formation and oxidation. It is expected, that the data set is a valuable input for numerical simulations of these flames.

  14. Numerical simulation of turbulent gas flames in tubes.

    PubMed

    Salzano, E; Marra, F S; Russo, G; Lee, J H S

    2002-12-02

    Computational fluid dynamics (CFD) is an emerging technique to predict possible consequences of gas explosion and it is often considered a powerful and accurate tool to obtain detailed results. However, systematic analyses of the reliability of this approach to real-scale industrial configurations are still needed. Furthermore, few experimental data are available for comparison and validation. In this work, a set of well documented experimental data related to the flame acceleration obtained within obstacle-filled tubes filled with flammable gas-air mixtures, has been simulated. In these experiments, terminal steady flame speeds corresponding to different propagation regimes were observed, thus, allowing a clear and prompt characterisation of the numerical results with respect to numerical parameters, as grid definition, geometrical parameters, as blockage ratio and to mixture parameters, as mixture reactivity. The CFD code AutoReagas was used for the simulations. Numerical predictions were compared with available experimental data and some insights into the code accuracy were determined. Computational results are satisfactory for the relatively slower turbulent deflagration regimes and became fair when choking regime is observed, whereas transition to quasi-detonation or Chapman-Jogouet (CJ) were never predicted.

  15. Investigation of turbulent swirling jet-flames by PIV / OH PLIF / HCHO PLIF

    NASA Astrophysics Data System (ADS)

    Lobasov, A. S.; Chikishev, L. M.

    2018-03-01

    The present paper reports on the investigation of fuel-lean and fuel-rich turbulent combustion in a high-swirl jet. Swirl rate of the flow exceeded a critical value for breakdown of the swirling jet’s vortex core and formation of the recirculation zone at the jet axis. The measurements were performed by the stereo PIV, OH PLIF and HCHO PLIF techniques, simultaneously. The Reynolds number based on the flow rate and viscosity of the air was fixed as 5 000 (the bulk velocity was U 0 = 5 m/s). Three cases of the equivalence ratio ϕ of the mixture issuing from the nozzle-burner were considered, viz., 0.7, 1.4 and 2.5. The latter case corresponded to a lifted flame of fuel-rich swirling jet flow, partially premixed with the surrounding air. In all cases the flame front was subjected to deformations due to large-scale vortices, which rolled-up in the inner (around the central recirculation zone) and outer (between the annular jet core and surrounding air) mixing layers.

  16. Turbulent Jet Flames Into a Vitiated Coflow. PhD Thesis awarded Spring 2003

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Cabra, Ricardo

    2004-01-01

    coflow or jet velocity. An explanation for this phenomenon is that entrainment of ambient air at the high lift-off heights prevents autoignition. Analysis of the results suggests that flame stabilization occurs through a combination of flame propagation, autoignition, and localized extinction processes. Proposed is an expanded view of distributed reaction combustion based on analysis of the distributions of probe volume conditions at the stabilization region of the lifted hydrogen and methane flames. Turbulent eddies the size of the flame thickness mix fuel and hot coflow across the flame front, thereby enhancing the reaction zone with autoignition of reactants at elevated temperatures; this is the reverse effect of turbulent flames in ambient air, where intense turbulence in cool mixtures result in localized extinction. Each of the three processes (i.e., flame propagation, autoignition and localized extinction) contributes to flame stabilization in varying degrees, depending on flow conditions.

  17. Negativly streched premixed flames

    NASA Astrophysics Data System (ADS)

    Krikunova, A. I.; Saveliev, A. S.; Son, E. E.

    2018-01-01

    An experimental study of gravity effect on the blow-off and flash-back borders of the conical methane-air flame (normal and ring-stabilized) was performed. The influence of the preferential diffusion on the flame behavior in vicinity of flash-back boundaries was observed. Under conditions at Lewis number Le > 1, the radius of curvature of the flame tip increased gradually approaching flash-back boundaries while for the lean methane-air flames (Le < 1) the radius decreased abruptly. It was shown that the burning velocity for lean flames is less than that for reach ones, so the flash-back occurs at higher strains.

  18. Dynamics of Isolated and Interacting Flame Structures in Strongly-Pulsed, Turbulent Jet Flames

    NASA Astrophysics Data System (ADS)

    Fregeau, Mathieu; Liao, Ying-Hao; Hermanson, James; Stocker, Dennis; Hegde, Uday

    2007-11-01

    The dynamics of the large-scale structures in strongly-pulsed, turbulent diffusion flames were studied in normal- and microgravity. Cross-correlation of temperature measurements and high-speed flame imaging were used to estimate the celerity of the flame structures. Both diagnostics indicate a marked increase in celerity with the increasing flame puff interaction as the jet off-time decreases. The celerity is also generally higher for shorter injection times, which yield more compact flame puffs. These trends are seen both for the case of fixed injection velocity as well as for the case of fixed fueling rate. The celerity correlates well with the inverse downstream distance scaled with an appropriate injection parameter, suggesting that the impact of buoyancy can be partially accounted for by the corresponding changes in the mean flame length. Differences in the values of celerity determined by the temperature and visual techniques can be attributed to nature of the evolution of the flame puffs with downstream distance.

  19. Characterizing Laminar Flame Interactions with Turbulent Fluidic Jets and Solid Obstacles for Turbulence Induction

    NASA Astrophysics Data System (ADS)

    Gerdts, Stephen; Chambers, Jessica; Ahmed, Kareem

    2016-11-01

    A detonation engine's fundamental design concept focuses on enhancing the Deflagration to Detonation Transition (DDT), the process through which subsonic flames accelerate to form a spontaneous detonation wave. Flame acceleration is driven by turbulent interactions that expand the reaction zone and induce mixing of products and reactants. Turbulence in a duct can be generated using solid obstructions, fluidic obstacles, duct angle changes, and wall skin friction. Solid obstacles have been previously explored and offer repeatable turbulence induction at the cost of pressure losses and additional system weight. Fluidic jet obstacles are a novel technique that provide advantages such as the ability to be throttled, allowing for active control of combustion modes. The scope of the present work is to expand the experimental database of varying parameters such as main flow and jet equivalence ratios, fluidic momentum ratios, and solid obstacle blockage ratios. Schlieren flow visualization and particle image velocimetry (PIV) are employed to investigate turbulent flame dynamics throughout the interaction. Optimum conditions that lead to flame acceleration for both solid and fluidic obstacles will be determined. American Chemical Society.

  20. Flame analysis using image processing techniques

    NASA Astrophysics Data System (ADS)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  1. The dynamics of turbulent premixed flames: Mechanisms and models for turbulence-flame interaction

    NASA Astrophysics Data System (ADS)

    Steinberg, Adam M.

    The use of turbulent premixed combustion in engines has been garnering renewed interest due to its potential to reduce NOx emissions. However there are many aspects of turbulence-flame interaction that must be better understood before such flames can be accurately modeled. The focus of this dissertation is to develop an improved understanding for the manner in which turbulence interacts with a premixed flame in the 'thin flamelet regime'. To do so, two new diagnostics were developed and employed in a turbulent slot Bunsen flame. These diagnostics, Cinema-Stereoscopic Particle Image Velocimetry and Orthogonal-Plane Cinema-Stereoscopic Particle Image Velocimetry, provided temporally resolved velocity and flame surface measurements in two- and three-dimensions with rates of up to 3 kHz and spatial resolutions as low as 280 mum. Using these measurements, the mechanisms with which turbulence generates flame surface area were studied. It was found that the previous concept that flame stretch is characterized by counter-rotating vortex pairs does not accurately describe real turbulence-flame interactions. Analysis of the experimental data showed that the straining of the flame surface is determined by coherent structures of fluid dynamic strain rate, while the wrinkling is caused by vortical structures. Furthermore, it was shown that the canonical vortex pair configuration is not an accurate reflection of the real interaction geometry. Hence, models developed based on this geometry are unlikely to be accurate. Previous models for the strain rate, curvature stretch rate, and turbulent burning velocity were evaluated. It was found that the previous models did not accurately predict the measured data for a variety of reasons: the assumed interaction geometries did not encompass enough possibilities to describe the possible effects of real turbulence, the turbulence was not properly characterized, and the transport of flame surface area was not always considered. New models

  2. Candle Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Chang, P.; T'ien, J. S.

    2001-01-01

    The goal of this work is to study both experimentally and numerically the behavior of a candle flame burning in a microgravity environment. Two space experiments (Shuttle and Mir) have shown the candle flame in microgravity to be small (approximately 1.5 cm diameter), dim blue, and hemispherical. Near steady flames with very long flame lifetimes (up to 45 minutes in some tests) existed for many of the tests. Most of the flames spontaneously oscillated with a period of approximately 1 Hz just prior to extinction). In a previous model of candle flame in microgravity, a porous sphere wetted with liquid fuel simulated the evaporating wick. The sphere, with a temperature equal to the boiling temperature of the fuel, was at the end of an inert cone that had a prescribed temperature. This inert cone produces the quenching effect of the candle wax in the real configuration. Although the computed flame shape resembled that observed in the microgravity experiment, the model was not able to differentiate the effect of wick geometry, e.g., a long vs. a short wick. This paper presents recent developments in the numerical model of the candle flame. The primary focus has been to more realistically account for the actual shape of the candle.

  3. Recent Developments in Grid Generation and Force Integration Technology for Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; VanDalsem, William R. (Technical Monitor)

    1994-01-01

    Recent developments in algorithms and software tools for generating overset grids for complex configurations are described. These include the overset surface grid generation code SURGRD and version 2.0 of the hyperbolic volume grid generation code HYPGEN. The SURGRD code is in beta test mode where the new features include the capability to march over a collection of panel networks, a variety of ways to control the side boundaries and the marching step sizes and distance, a more robust projection scheme and an interpolation option. New features in version 2.0 of HYPGEN include a wider range of boundary condition types. The code also allows the user to specify different marching step sizes and distance for each point on the surface grid. A scheme that takes into account of the overlapped zones on the body surface for the purpose of forces and moments computation is also briefly described, The process involves the following two software modules: MIXSUR - a composite grid generation module to produce a collection of quadrilaterals and triangles on which pressure and viscous stresses are to be integrated, and OVERINT - a forces and moments integration module.

  4. Candle Flames in Microgravity Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video of a candle flame burning in space was taken by the Candle Flames in Microgravity (CFM) experiment on the Russian Mir space station. It is actually a composite of still photos from a 35mm camera since the video images were too dim. The images show a hemispherically shaped flame, primarily blue in color, with some yellow early int the flame lifetime. The actual flame is quite dim and difficult to see with the naked eye. Nearly 80 candles were burned in this experiment aboard Mir. NASA scientists have also studied how flames spread in space and how to detect fire in microgravity. Researchers hope that what they learn about fire and combustion from the flame ball experiments will help out here on Earth. Their research could help create things such as better engines for cars and airplanes. Since they use very weak flames, flame balls require little fuel. By studying how this works, engineers may be able to design engines that use far less fuel. In addition, microgravity flame research is an important step in creating new safety precautions for astronauts living in space. By understanding how fire works in space, the astronauts can be better prepared to fight it.

  5. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame

    NASA Astrophysics Data System (ADS)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    2016-09-01

    In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing

  6. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramer, L. M.; Rounds, J.; Burleyson, C. D.

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions is examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and datasets were examined. A penalized logistic regression model fit at the operation-zone levelmore » was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at different time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. The methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less

  7. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramer, Lisa M.; Rounds, J.; Burleyson, C. D.

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions were examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and combinations of predictive variables were examined. A penalized logistic regression model which wasmore » fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at various time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. In conclusion, the methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less

  8. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    DOE PAGES

    Bramer, Lisa M.; Rounds, J.; Burleyson, C. D.; ...

    2017-09-22

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions were examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and combinations of predictive variables were examined. A penalized logistic regression model which wasmore » fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at various time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. In conclusion, the methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less

  9. Polydisperse effects in jet spray flames

    NASA Astrophysics Data System (ADS)

    Weinberg, Noam; Greenberg, J. Barry

    2018-01-01

    A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.

  10. A Numerical and Experimental Study of Coflow Laminar Diffusion Flames: Effects of Gravity and Inlet Velocity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Bennett, B. A. V.; Ma, B.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2015-01-01

    In this work, the influence of gravity, fuel dilution, and inlet velocity on the structure, stabilization, and sooting behavior of laminar coflow methane-air diffusion flames was investigated both computationally and experimentally. A series of flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) was assessed numerically under microgravity and normal gravity conditions with the fuel stream CH4 mole fraction ranging from 0.4 to 1.0. Computationally, the MC-Smooth vorticity-velocity formulation of the governing equations was employed to describe the reactive gaseous mixture; the soot evolution process was considered as a classical aerosol dynamics problem and was represented by the sectional aerosol equations. Since each flame is axisymmetric, a two-dimensional computational domain was employed, where the grid on the axisymmetric domain was a nonuniform tensor product mesh. The governing equations and boundary conditions were discretized on the mesh by a nine-point finite difference stencil, with the convective terms approximated by a monotonic upwind scheme and all other derivatives approximated by centered differences. The resulting set of fully coupled, strongly nonlinear equations was solved simultaneously using a damped, modified Newton's method and a nested Bi-CGSTAB linear algebra solver. Experimentally, the flame shape, size, lift-off height, and soot temperature were determined by flame emission images recorded by a digital camera, and the soot volume fraction was quantified through an absolute light calibration using a thermocouple. For a broad spectrum of flames in microgravity and normal gravity, the computed and measured flame quantities (e.g., temperature profile, flame shape, lift-off height, and soot volume fraction) were first compared to assess the accuracy of the numerical model. After its validity was established, the influence of gravity, fuel dilution, and inlet velocity on the structure, stabilization, and sooting

  11. Monte Carlo calculation model for heat radiation of inclined cylindrical flames and its application

    NASA Astrophysics Data System (ADS)

    Chang, Zhangyu; Ji, Jingwei; Huang, Yuankai; Wang, Zhiyi; Li, Qingjie

    2017-07-01

    Based on Monte Carlo method, a calculation model and its C++ calculating program for radiant heat transfer from an inclined cylindrical flame are proposed. In this model, the total radiation energy of the inclined cylindrical flame is distributed equally among a certain number of energy beams, which are emitted randomly from the flame surface. The incident heat flux on a surface is calculated by counting the number of energy beams which could reach the surface. The paper mainly studies the geometrical evaluation criterion for validity of energy beams emitted by inclined cylindrical flames and received by other surfaces. Compared to Mudan's formula results for a straight cylinder or a cylinder with 30° tilt angle, the calculated view factors range from 0.0043 to 0.2742 and the predicted view factors agree well with Mudan's results. The changing trend and values of incident heat fluxes computed by the model is consistent with experimental data measured by Rangwala et al. As a case study, incident heat fluxes on a gasoline tank, both the side and the top surface are calculated by the model. The heat radiation is from an inclined cylindrical flame generated by another 1000 m3 gasoline tank 4.6 m away from it. The cone angle of the flame to the adjacent oil tank is 45° and the polar angle is 0°. The top surface and the side surface of the tank are divided into 960 and 5760 grids during the calculation, respectively. The maximum incident heat flux on the side surface is 39.64 and 51.31 kW/m2 on the top surface. Distributions of the incident heat flux on the surface of the oil tank and on the ground around the fire tank are obtained, too.

  12. Large-scale vortex structures and local heat release in lean turbulent swirling jet-flames under vortex breakdown conditions

    NASA Astrophysics Data System (ADS)

    Chikishev, Leonid; Lobasov, Aleksei; Sharaborin, Dmitriy; Markovich, Dmitriy; Dulin, Vladimir; Hanjalic, Kemal

    2017-11-01

    We investigate flame-flow interactions in an atmospheric turbulent high-swirl methane/air lean jet-flame at Re from 5,000 to 10,000 and equivalence ratio below 0.75 at the conditions of vortex breakdown. The focus is on the spatial correlation between the propagation of large-scale vortex structures, including precessing vortex core, and the variations of the local heat release. The measurements are performed by planar laser-induced fluorescence of hydroxyl and formaldehyde, applied simultaneously with the stereoscopic particle image velocimetry technique. The data are processed by the proper orthogonal decomposition. The swirl rate exceeded critical value for the vortex breakdown resulting in the formation of a processing vortex core and secondary helical vortex filaments that dominate the unsteady flow dynamics both of the non-reacting and reacting jet flows. The flame front is located in the inner mixing layer between the recirculation zone and the annular swirling jet. A pair of helical vortex structures, surrounding the flame, stretch it and cause local flame extinction before the flame is blown away. This work is supported by Russian Science Foundation (Grant No 16-19-10566).

  13. A mixing timescale model for TPDF simulations of turbulent premixed flames

    DOE PAGES

    Kuron, Michael; Ren, Zhuyin; Hawkes, Evatt R.; ...

    2017-02-06

    Transported probability density function (TPDF) methods are an attractive modeling approach for turbulent flames as chemical reactions appear in closed form. However, molecular micro-mixing needs to be modeled and this modeling is considered a primary challenge for TPDF methods. In the present study, a new algebraic mixing rate model for TPDF simulations of turbulent premixed flames is proposed, which is a key ingredient in commonly used molecular mixing models. The new model aims to properly account for the transition in reactive scalar mixing rate behavior from the limit of turbulence-dominated mixing to molecular mixing behavior in flamelets. An a priorimore » assessment of the new model is performed using direct numerical simulation (DNS) data of a lean premixed hydrogen–air jet flame. The new model accurately captures the mixing timescale behavior in the DNS and is found to be a significant improvement over the commonly used constant mechanical-to-scalar mixing timescale ratio model. An a posteriori TPDF study is then performed using the same DNS data as a numerical test bed. The DNS provides the initial conditions and time-varying input quantities, including the mean velocity, turbulent diffusion coefficient, and modeled scalar mixing rate for the TPDF simulations, thus allowing an exclusive focus on the mixing model. Here, the new mixing timescale model is compared with the constant mechanical-to-scalar mixing timescale ratio coupled with the Euclidean Minimum Spanning Tree (EMST) mixing model, as well as a laminar flamelet closure. It is found that the laminar flamelet closure is unable to properly capture the mixing behavior in the thin reaction zones regime while the constant mechanical-to-scalar mixing timescale model under-predicts the flame speed. Furthermore, the EMST model coupled with the new mixing timescale model provides the best prediction of the flame structure and flame propagation among the models tested, as the dynamics of reactive

  14. A mixing timescale model for TPDF simulations of turbulent premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuron, Michael; Ren, Zhuyin; Hawkes, Evatt R.

    Transported probability density function (TPDF) methods are an attractive modeling approach for turbulent flames as chemical reactions appear in closed form. However, molecular micro-mixing needs to be modeled and this modeling is considered a primary challenge for TPDF methods. In the present study, a new algebraic mixing rate model for TPDF simulations of turbulent premixed flames is proposed, which is a key ingredient in commonly used molecular mixing models. The new model aims to properly account for the transition in reactive scalar mixing rate behavior from the limit of turbulence-dominated mixing to molecular mixing behavior in flamelets. An a priorimore » assessment of the new model is performed using direct numerical simulation (DNS) data of a lean premixed hydrogen–air jet flame. The new model accurately captures the mixing timescale behavior in the DNS and is found to be a significant improvement over the commonly used constant mechanical-to-scalar mixing timescale ratio model. An a posteriori TPDF study is then performed using the same DNS data as a numerical test bed. The DNS provides the initial conditions and time-varying input quantities, including the mean velocity, turbulent diffusion coefficient, and modeled scalar mixing rate for the TPDF simulations, thus allowing an exclusive focus on the mixing model. Here, the new mixing timescale model is compared with the constant mechanical-to-scalar mixing timescale ratio coupled with the Euclidean Minimum Spanning Tree (EMST) mixing model, as well as a laminar flamelet closure. It is found that the laminar flamelet closure is unable to properly capture the mixing behavior in the thin reaction zones regime while the constant mechanical-to-scalar mixing timescale model under-predicts the flame speed. Furthermore, the EMST model coupled with the new mixing timescale model provides the best prediction of the flame structure and flame propagation among the models tested, as the dynamics of reactive

  15. An Investigation of a Hybrid Mixing Timescale Model for PDF Simulations of Turbulent Premixed Flames

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Kuron, Mike; Ren, Zhuyin; Lu, Tianfeng; Chen, Jacqueline H.

    2016-11-01

    Transported probability density function (TPDF) method features the generality for all combustion regimes, which is attractive for turbulent combustion simulations. However, the modeling of micromixing due to molecular diffusion is still considered to be a primary challenge for TPDF method, especially in turbulent premixed flames. Recently, a hybrid mixing rate model for TPDF simulations of turbulent premixed flames has been proposed, which recovers the correct mixing rates in the limits of flamelet regime and broken reaction zone regime while at the same time aims to properly account for the transition in between. In this work, this model is employed in TPDF simulations of turbulent premixed methane-air slot burner flames. The model performance is assessed by comparing the results from both direct numerical simulation (DNS) and conventional constant mechanical-to-scalar mixing rate model. This work is Granted by NSFC 51476087 and 91441202.

  16. Effects of Fuel Preheat on Soot Formation in Microgravity Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Konsur, Bogdan; Megaridis, Constantine M.; Griffin, DeVon W.

    1997-01-01

    Nonbuoyant flames offer themselves as an attractive and promising platform to gain a better understanding of soot mechanisms. The effects of buoyancy can be eliminated temporarily in drop towers which sustain brief intervals of reduced gravity-typically lower than 10(exp -3)g- extending up to several seconds at a time. Microgravity facilities have been employed to show that nonbuoyant flames are longer, wider and sootier than their normal-gravity counterparts. Sunderland et al. recently verified the existence of smoke point in laminar nonbuoyant flames. As reported, microgravity flames operating above their smoke point displayed a blunt tip and much broader soot-containing regimes in comparison to their buoyant counterparts. Mortazavi et al. established that residence times in microgravity laminar jet diffusion flames with Re=0(100) tend to be proportional to burner diameter and inversely proportional to burner exit velocity. This offers the capability to alter residence times in nonbuoyant laminar jet diffusion flames when varying the burner exit diameters and velocities. Megaridis et al. presented a quantitative definition of the soot-field structure within laminar microgravity jet diffusion flames which operated well above their smoke point. The experimental methodology involved a full-field laser-light extinction technique and jet diffusion flames of nitrogen-diluted (50% vol.) acetylene fuel burning in quiescent air at atmospheric pressure. The work was conducted at the 2.2s drop tower of the NASA Lewis Research Center (NASA-LeRC). Parallel work on 1-g flames was also presented in (6) to facilitate comparisons on the effect of gravity on the soot fields. As reported, the soot spatial distributions in 0-g flames did not change in a detectable manner after 1s within a typical 2.2s experiment. During that period, the soot field was shown to sustain a pronounced annular structure throughout the luminous nonbuoyant-flame zone. The maximum soot volume fraction

  17. Fire spread in chaparral: comparison of data with flame-mass loss relationships

    Treesearch

    David R. Weise; Thomas H. Fletcher; Shankar Mahalingam; Xiangyang Zhou; Lulu Sun

    2017-01-01

    The relationships between flame length, mass loss rate, and the Froude number have become well-established for many different fuels over the past 60 years. Chaparral, a mixture of shrub plants from the Mediterranean climate zone of southwestern North America, represents a fuel type—living plants—that has seldom been included in the development of these relationships....

  18. Flame-Vortex Studies to Quantify Markstein Numbers Needed to Model Flame Extinction Limits

    NASA Technical Reports Server (NTRS)

    Driscoll, James F.; Feikema, Douglas A.

    2003-01-01

    This has quantified a database of Markstein numbers for unsteady flames; future work will quantify a database of flame extinction limits for unsteady conditions. Unsteady extinction limits have not been documented previously; both a stretch rate and a residence time must be measured, since extinction requires that the stretch rate be sufficiently large for a sufficiently long residence time. Ma was measured for an inwardly-propagating flame (IPF) that is negatively-stretched under microgravity conditions. Computations also were performed using RUN-1DL to explain the measurements. The Markstein number of an inwardly-propagating flame, for both the microgravity experiment and the computations, is significantly larger than that of an outwardy-propagating flame. The computed profiles of the various species within the flame suggest reasons. Computed hydrogen concentrations build up ahead of the IPF but not the OPF. Understanding was gained by running the computations for both simplified and full-chemistry conditions. Numerical Simulations. To explain the experimental findings, numerical simulations of both inwardly and outwardly propagating spherical flames (with complex chemistry) were generated using the RUN-1DL code, which includes 16 species and 46 reactions.

  19. Oscillatory Extinction Of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Yoo, S. W.; Christianson, E. W.

    2003-01-01

    Since extinction has been observed in an oscillatory manner in Le greater than 1 premixed flames, it is not unreasonable to expect that extinction could occur in an unsteady manner for diffusion flames. Indeed, near-limit oscillations have been observed experimentally under microgravity conditions for both candle flames and droplet flames. Furthermore, the analysis of Cheatham and Matalon on the unsteady behavior of diffusion flames with heat loss, identified an oscillatory regime which could be triggered by either a sufficiently large Lewis number (even without heat loss) or an appreciable heat loss (even for Le=1). In light of these recent understanding, the present investigation aims to provide a well-controlled experiment that can unambiguously demonstrate the oscillation of diffusion flames near both the transport- and radiation-induced limits. That is, since candle and jet flames are stabilized through flame segments that are fundamentally premixed in nature, and since premixed flames are prone to oscillate, there is the possibility that the observed oscillation of these bulk diffusion flames could be triggered and sustained by the oscillation of the premixed flame segments. Concerning the observed oscillatory droplet extinction, it is well-known that gas-phase oscillation in heterogeneous burning can be induced by and is thereby coupled with condensed-phase unsteadiness. Consequently, a convincing experiment on diffusion flame oscillation must exclude any ingredients of premixed flames and other sources that may either oscillate themselves or promote the oscillation of the diffusion flame. The present experiment on burner-generated spherical flames with a constant reactant supply endeavored to accomplish this goal. The results are further compared with those from computational simulation for further understanding and quantification of the flame dynamics and extinction.

  20. Heat release and flame structure measurements of self-excited acoustically-driven premixed methane flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp-Vaughan, Kristin M.; Tuttle, Steven G.; Renfro, Michael W.

    An open-open organ pipe burner (Rijke tube) with a bluff-body ring was used to create a self-excited, acoustically-driven, premixed methane-air conical flame, with equivalence ratios ranging from 0.85 to 1.05. The feed tube velocities corresponded to Re = 1780-4450. Coupled oscillations in pressure, velocity, and heat release from the flame are naturally encouraged at resonant frequencies in the Rijke tube combustor. This coupling creates sustainable self-excited oscillations in flame front area and shape. The period of the oscillations occur at the resonant frequency of the combustion chamber when the flame is placed {proportional_to}1/4 of the distance from the bottom ofmore » the tube. In this investigation, the shape of these acoustically-driven flames is measured by employing both OH planar laser-induced fluorescence (PLIF) and chemiluminescence imaging and the images are correlated to simultaneously measured pressure in the combustor. Past research on acoustically perturbed flames has focused on qualitative flame area and heat release relationships under imposed velocity perturbations at imposed frequencies. This study reports quantitative empirical fits with respect to pressure or phase angle in a self-generated pressure oscillation. The OH-PLIF images were single temporal shots and the chemiluminescence images were phase averaged on chip, such that 15 exposures were used to create one image. Thus, both measurements were time resolved during the flame oscillation. Phase-resolved area and heat release variations throughout the pressure oscillation were computed. A relation between flame area and the phase angle before the pressure maximum was derived for all flames in order to quantitatively show that the Rayleigh criterion was satisfied in the combustor. Qualitative trends in oscillating flame area were found with respect to feed tube flow rates. A logarithmic relation was found between the RMS pressure and both the normalized average area and heat release

  1. Interaction of turbulent premixed flames with combustion products: Role of stoichiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coriton, Bruno Rene Leon; Frank, Jonathan H.; Gomez, Alessandro

    Stabilization methods of turbulent flames often involve mixing of reactants with hot products of combustion. The stabilizing effect of combustion product enthalpy has been long recognized, but the role played by the chemical composition of the product gases is typically overlooked. We employ a counterflow system to pinpoint the effects of the combustion product stoichiometry on the structure of turbulent premixed flames under conditions of both stable burning and local extinction. To that end, a turbulent jet of lean-to-rich, CH 4/O 2/N 2-premixed reactants at a turbulent Reynolds number of 1050 was opposed to a stream of hot products ofmore » combustion that were generated in a preburner. While the combustion product stream temperature was kept constant, its stoichiometry was varied independently from that of the reactant stream, leading to reactant-to-product stratification of relevance to practical combustion systems. The detailed structure of the turbulent flame front was analyzed in two series of experiments using laser-induced fluorescence (LIF): joint CH 2O LIF and OH LIF measurements and joint CO LIF and OH LIF measurements. Results revealed that a decrease in local CH 2O+OH and CO+OH reaction rates coincide with the depletion of OH radicals in the vicinity of the combustion product stream. These critical combustion reaction rates were more readily quenched in the presence of products of combustion from a stoichiometric flame, whereas they were favored by lean combustion products. As a result, stoichiometric combustion products contributed to a greater occurrence of local extinction. Furthermore, they limited the capacity of premixed reactants to ignite and of the turbulent premixed flames to stabilize. In contrast, lean and rich combustion products facilitated flame ignition and stability and reduced the rate of local extinction. The influence of the combustion product stream on the turbulent flame front was limited to a zone of approximately two

  2. Flame-ion chemistry of the lanthanide metals Ce, Pr and Nd

    NASA Astrophysics Data System (ADS)

    Patterson, Patricia M.; Goodings, John M.

    1996-01-01

    A pair of premixed, H2---O2---Ar flames of fuel-rich (FR) and fuel-lean (FL) composition, both at atmospheric pressure and 2425 K, were doped with about 10-6 mol fraction of the lanthanide metals La, Ce, Pr and Nd; from a previous study, La was used as a benchmark. The metals produce solid particles in the flames and gaseous metallic species. The latter include metallic atoms A near the flame reaction zone, but only the monoxide AO, the oxide hydroxide OAOH and, in some cases, the dioxide AO2 further downstream at equilibrium. Metallic ions (< 1% of the total metal) were observed by sampling the flames through a nozzle into a mass spectrometer. All of the observed ions can be represented by four hydrate series: (a) major signals of AO+·nH2O (n = 0-3) for La, Ce, Pr and Nd; (b) small signals of AO2H+·nH2O (n = 0-2) for Ce, Pr and Nd; (c) still smaller signals of AO2+·nH2O (n = 0, 1) for Ce, Pr and Nd in the FL flame only; and (d) tiny signals of AOH+·nH2O (n = 0, 1) for Pr and Nd in the FR flame only. The actual structures of some of these ions may not correspond to simple hydrates: e.g. AO+·H2O = A(OH)2+ = protonated OAOH; AO2H+·H2O = A(OH)3+, etc. Since hydrogen flames contain essentially no natural ionization, a major objective was to consider probable ionization mechanisms for the metals. The primary reactions include both chemi-ionization, and thermal (collisional) ionization of AO whose ionization energy is low (about 5 eV). Some of the ions are formed by secondary ion/molecule reactions including three-body hydration, proton transfer, electron (charge) transfer, H atom abstraction by radicals and oxidation. In addition, the chemical ionization of the metallic species by H3O+ was investigated. The flame-ion chemistry of these metals is discussed in detail.

  3. Interaction of turbulent premixed flames with combustion products: Role of stoichiometry

    DOE PAGES

    Coriton, Bruno Rene Leon; Frank, Jonathan H.; Gomez, Alessandro

    2016-05-30

    Stabilization methods of turbulent flames often involve mixing of reactants with hot products of combustion. The stabilizing effect of combustion product enthalpy has been long recognized, but the role played by the chemical composition of the product gases is typically overlooked. We employ a counterflow system to pinpoint the effects of the combustion product stoichiometry on the structure of turbulent premixed flames under conditions of both stable burning and local extinction. To that end, a turbulent jet of lean-to-rich, CH 4/O 2/N 2-premixed reactants at a turbulent Reynolds number of 1050 was opposed to a stream of hot products ofmore » combustion that were generated in a preburner. While the combustion product stream temperature was kept constant, its stoichiometry was varied independently from that of the reactant stream, leading to reactant-to-product stratification of relevance to practical combustion systems. The detailed structure of the turbulent flame front was analyzed in two series of experiments using laser-induced fluorescence (LIF): joint CH 2O LIF and OH LIF measurements and joint CO LIF and OH LIF measurements. Results revealed that a decrease in local CH 2O+OH and CO+OH reaction rates coincide with the depletion of OH radicals in the vicinity of the combustion product stream. These critical combustion reaction rates were more readily quenched in the presence of products of combustion from a stoichiometric flame, whereas they were favored by lean combustion products. As a result, stoichiometric combustion products contributed to a greater occurrence of local extinction. Furthermore, they limited the capacity of premixed reactants to ignite and of the turbulent premixed flames to stabilize. In contrast, lean and rich combustion products facilitated flame ignition and stability and reduced the rate of local extinction. The influence of the combustion product stream on the turbulent flame front was limited to a zone of approximately two

  4. Prediction of an Apparent Flame Length in a Co-Axial Jet Diffusion Flame Combustor.

    DTIC Science & Technology

    1983-04-01

    This report is comprised of two parts. In Part I a predictive model for an apparent flame length in a co-axial jet diffusion flame combustor is...Overall mass transfer coefficient, evaluated from an empirically developed correlation, is employed to predict total flame length . Comparison of the...experimental and predicted data on total flame length shows a reasonable agreement within sixteen percent over the investigated air and fuel flow rate

  5. The effect of terrain slope on firefighter safety zone effectiveness

    Treesearch

    Bret Butler; J. Forthofer; K. Shannon; D. Jimenez; D. Frankman

    2010-01-01

    The current safety zone guidelines used in the US were developed based on the assumption that the fire and safety zone were located on flat terrain. The minimum safe distance for a firefighter to be from a flame was calculated as that corresponding to a radiant incident energy flux level of 7.0kW-m-2. Current firefighter safety guidelines are based on the assumption...

  6. Model Validation for Propulsion - On the TFNS and LES Subgrid Models for a Bluff Body Stabilized Flame

    NASA Technical Reports Server (NTRS)

    Wey, Thomas

    2017-01-01

    This paper summarizes the reacting results of simulating a bluff body stabilized flame experiment of Volvo Validation Rig using a releasable edition of the National Combustion Code (NCC). The turbulence models selected to investigate the configuration are the sub-grid scaled kinetic energy coupled large eddy simulation (K-LES) and the time-filtered Navier-Stokes (TFNS) simulation. The turbulence chemistry interaction used is linear eddy mixing (LEM).

  7. Response mechanisms of attached premixed flames subjected to harmonic forcing

    NASA Astrophysics Data System (ADS)

    Shreekrishna

    The persistent thrust for a cleaner, greener environment has prompted air pollution regulations to be enforced with increased stringency by environmental protection bodies all over the world. This has prompted gas turbine manufacturers to move from nonpremixed combustion to lean, premixed combustion. These lean premixed combustors operate quite fuel-lean compared to the stochiometric, in order to minimize CO and NOx productions, and are very susceptible to oscillations in any of the upstream flow variables. These oscillations cause the heat release rate of the flame to oscillate, which can engage one or more acoustic modes of the combustor or gas turbine components, and under certain conditions, lead to limit cycle oscillations. This phenomenon, called thermoacoustic instabilities, is characterized by very high pressure oscillations and increased heat fluxes at system walls, and can cause significant problems in the routine operability of these combustors, not to mention the occasional hardware damages that could occur, all of which cumulatively cost several millions of dollars. In a bid towards understanding this flow-flame interaction, this research works studies the heat release response of premixed flames to oscillations in reactant equivalence ratio, reactant velocity and pressure, under conditions where the flame preheat zone is convectively compact to these disturbances, using the G-equation. The heat release response is quantified by means of the flame transfer function and together with combustor acoustics, forms a critical component of the analytical models that can predict combustor dynamics. To this end, low excitation amplitude (linear) and high excitation amplitude (nonlinear) responses of the flame are studied in this work. The linear heat release response of lean, premixed flames are seen to be dominated by responses to velocity and equivalence ratio fluctuations at low frequencies, and to pressure fluctuations at high frequencies which are in the

  8. Fundamental mechanisms in premixed flame propagation via vortex-flame interactions: Numerical simulations

    NASA Technical Reports Server (NTRS)

    Mantel, Thierry

    1994-01-01

    The goal of the present study is to assess numerically the ability of single-step and two-step chemical models to describe the main features encountered during the interaction between a two-dimensional vortex pair and a premixed laminar flame. In the two-step mechanism, the reaction kinetics are represented by a first chain branching reaction A + X yields 2X and a second chain termination reaction X + X yields P. This paper presents the fundamental mechanisms occurring during vortex-flame interactions and the relative impact of the major parameters encountered in turbulent premixed flames and suspected of playing a role in quenching mechanism: (1) Influence of stretch is investigated by analyzing the contribution of curvature and tangential strain on the local structure of the flame. The effect of Lewis number on the flame response to a strained field is analyzed. (2) Radiative heat losses which are suspected to be partially or totally responsible for quenching are also investigated. (3) The effect of the diffusion of the radicals is studied using a two-step mechanism in which an intermediate species is present. The parameters of the two-step mechanism are entirely determined from physical arguments. (4) Precise quantitative comparisons between the DNS and the experimental results of Samaniego et al are performed. These comparisons concern the evolution of the minimum heat release rate found along the flame front during the interaction and the distribution of the heat release rate along the flame front.

  9. Rayleigh-Taylor Unstable Flames -- Fast or Faster?

    NASA Astrophysics Data System (ADS)

    Hicks, E. P.

    2015-04-01

    Rayleigh-Taylor (RT) unstable flames play a key role in the explosions of supernovae Ia. However, the dynamics of these flames are still not well understood. RT unstable flames are affected by both the RT instability of the flame front and by RT-generated turbulence. The coexistence of these factors complicates the choice of flame speed subgrid models for full-star Type Ia simulations. Both processes can stretch and wrinkle the flame surface, increasing its area and, therefore, the burning rate. In past research, subgrid models have been based on either the RT instability or turbulence setting the flame speed. We evaluate both models, checking their assumptions and their ability to correctly predict the turbulent flame speed. Specifically, we analyze a large parameter study of 3D direct numerical simulations of RT unstable model flames. This study varies both the simulation domain width and the gravity in order to probe a wide range of flame behaviors. We show that RT unstable flames are different from traditional turbulent flames: they are thinner rather than thicker when turbulence is stronger. We also show that none of the several different types of turbulent flame speed models accurately predicts measured flame speeds. In addition, we find that the RT flame speed model only correctly predicts the measured flame speed in a certain parameter regime. Finally, we propose that the formation of cusps may be the factor causing the flame to propagate more quickly than predicted by the RT model.

  10. A three-dimensional numerical study on instability of sinusoidal flame induced by multiple shock waves

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Dong, Gang; Jiang, Hua

    2017-04-01

    The instabilities of a three-dimensional sinusoidally premixed flame induced by an incident shock wave with Mach = 1.7 and its reshock waves were studied by using the Navier-Stokes (NS) equations with a single-step chemical reaction and a high resolution, 9th-order weighted essentially non-oscillatory scheme. The computational results were validated by the grid independence test and the experimental results in the literature. The computational results show that after the passage of incident shock wave the flame interface develops in symmetric structure accompanied by large-scale transverse vortex structures. After the interactions by successive reshock waves, the flame interface is gradually destabilized and broken up, and the large-scale vortex structures are gradually transformed into small-scale vortex structures. The small-scale vortices tend to be isotropic later. The results also reveal that the evolution of the flame interface is affected by both mixing process and chemical reaction. In order to identify the relationship between the mixing and the chemical reaction, a dimensionless parameter, η , that is defined as the ratio of mixing time scale to chemical reaction time scale, is introduced. It is found that at each interaction stage the effect of chemical reaction is enhanced with time. The enhanced effect of chemical reaction at the interaction stage by incident shock wave is greater than that at the interaction stages by reshock waves. The result suggests that the parameter η can reasonably character the features of flame interface development induced by the multiple shock waves.

  11. An experimental study of flame stability in a directly-fueled wall cavity with a supersonic free stream

    NASA Astrophysics Data System (ADS)

    Rasmussen, Chadwick Clifford

    An extensive study of flame stability in a cavity-based fuel injector/flameholder has been performed. Flames were stabilized in cavities with two different aft wall configurations and length to depth ratios of 3 and 4. Fuel was injected directly into the cavity using two injector configurations. Fuel injected from the aft wall of the cavity entered directly into the recirculation zone and provided desirable performance near the lean blowout limit. At high fuel flowrates, the cavity became flooded with fuel and rich blowout occurred. When fuel was injected from the floor of the cavity, excess fuel was directed out of the cavity which allowed for flame stabilization at extremely high fuel flowrates; however, this phenomenon also resulted in suboptimal performance near the lean limit where the blowout point was less predictable. Images of planar laser-induced fluorescence (PLIF) of CH, OH, and formaldehyde give insight into the flameholding mechanisms. CH layers in the cavity are thin and continuous and show structure that is comparable to lifted jet flames, while broad CH zones are sometimes observed in the shear layer. OH PLIF images show that hot recirculated products are always present at the location of flame stabilization, whereas images of formaldehyde indicate that partial premixing takes place in the shear layer portion of the flame. Nonreacting measurements of the boundary layer and the free stream velocity profiles were obtained to provide necessary boundary conditions for computational modeling. Mean and instantaneous velocity profiles were determined for the nonreacting flow using particle image velocimetry (PIV). A correlation of the blowout points for a directly-fueled cavity in a supersonic flow was accomplished using a Damkohler number and an equivalence ratio based upon an effective air mass flowrate. The chemical time was formulated using a generic measure of the reaction rate, tauc ˜ alpha/ S2L , which was found to be adequate for correlating lean

  12. Flame retardant spandex type polyurethanes

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Sidman, K. R.; Massucco, A. A. (Inventor)

    1978-01-01

    Flame retardant elastomeric compositions were developed, comprised of: (1) spandex type polyurethane having incorporated into the polymer chain, halogen containing polyols; (2) conventional spandex type polyurethanes in physical admixture flame retardant additives; and (3) fluoroelastomeric resins in physical admixture with flame retardant additives. Methods of preparing fibers of the flame retardant elastomeric materials are presented and articles of manufacture comprised of the elastomeric materials are mentioned.

  13. A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model

    DOE PAGES

    Kemenov, Konstantin A.; Calhoon, William H.

    2015-03-24

    Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable,more » the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.« less

  14. The discrete regime of flame propagation

    NASA Astrophysics Data System (ADS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew

    The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment

  15. Parametric study of flame radiation characteristics of a tubular-can combustor

    NASA Technical Reports Server (NTRS)

    Humenik, F. M.; Claus, R. W.; Neely, G. M.

    1983-01-01

    A series of combustor tests were conducted with a tubular-can combustor to study flame radiation characteristics and effects with parametric variations in combustor operating conditions. Two alternate combustor assemblies using a different fuel nozzle were compared. Spectral and total radiation detectors were positioned at three stations along the length of the combustor can. Data were obtained for a range of pressures from 0.34 to 2.07 MPa (50 to 300 psia), inlet temperatures from 533 to 700K (500 to 800 F), for Jet A (13.9 deg hydrogen) and ERBS (12.9% hydrogen) fuels, and with fuel-air ratios nominally from 0.008 to 0.021. Spectral radiation data, total radiant heat flux data, and liner temperature data are presented to illustrate the flame radiation characteristics and effects in the primary, secondary, and tertiary combustion zones.

  16. Modelling Detailed-Chemistry Effects on Turbulent Diffusion Flames using a Parallel Solution-Adaptive Scheme

    NASA Astrophysics Data System (ADS)

    Jha, Pradeep Kumar

    . Comparisons are made between the predicted results of the present FPI scheme and Steady Laminar Flamelet Model (SLFM) approach for diffusion flames. The effects of grid resolution on the predicted overall flame solutions are also assessed. Other non-reacting flows have also been considered to further validate other aspects of the numerical scheme. The present schemes predict results which are in good agreement with published experimental results and reduces the computational cost involved in modelling turbulent diffusion flames significantly, both in terms of storage and processing time.

  17. Forced and natural convection in laminar-jet diffusion flames. [normal-gravity, inverted-gravity and zero-gravity flames

    NASA Technical Reports Server (NTRS)

    Haggard, J. B., Jr.

    1981-01-01

    An experimental investigation was conducted on methane, laminar-jet, diffusion flames with coaxial, forced-air flow to examine flame shapes in zero-gravity and in situations where buoyancy aids (normal-gravity flames) or hinders (inverted-gravity flames) the flow velocities. Fuel nozzles ranged in size from 0.051 to 0.305 cm inside radius, while the coaxial, convergent, air nozzle had a 1.4 cm inside radius at the fuel exit plane. Fuel flows ranged from 1.55 to 10.3 cu cm/sec and air flows from 0 to 597 cu cm/sec. A computer program developed under a previous government contract was used to calculate the characteristic dimensions of normal and zero-gravity flames only. The results include a comparison between the experimental data and the computed axial flame lengths for normal gravity and zero gravity which showed good agreement. Inverted-gravity flame width was correlated with the ratio of fuel nozzle radius to average fuel velocity. Flame extinguishment upon entry into weightlessness was studied, and it was found that relatively low forced-air velocities (approximately 10 cm/sec) are sufficient to sustain methane flame combustion in zero gravity. Flame color is also discussed.

  18. Coupling of wrinkled laminar flames with gravity

    NASA Technical Reports Server (NTRS)

    Bedat, Benoit; Kostiuk, Larry W.; Cheng, Robert K.

    1995-01-01

    The overall objective of our research is to understand flame-gravity coupling processes in laminar and low turbulent Reynolds number, Re(sub l), premixed flames (i.e. wrinkled- laminar flames). The approach we have developed is to compare the flowfields and mean flame properties under different gravitational orientations. Key to our study is the investigation of microgravity (mu g) flames. These mu g experiments provide vital information to reconcile the differences between flames in normal gravity (+g, flame pointing upward) and reverse gravity (-g, flame pointing downwards). Traditionally, gravity effects are assumed to be insignificant or circumvented in the laboratory, therefore, not much is available in the literature on the behavior of -g flames.

  19. Factorial inferential grid grouping and representativeness analysis for a systematic selection of representative grids

    NASA Astrophysics Data System (ADS)

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Yao, Yao

    2017-08-01

    A factorial inferential grid grouping and representativeness analysis (FIGGRA) approach is developed to achieve a systematic selection of representative grids in large-scale climate change impact assessment and adaptation (LSCCIAA) studies and other fields of Earth and space sciences. FIGGRA is applied to representative-grid selection for temperature (Tas) and precipitation (Pr) over the Loess Plateau (LP) to verify methodological effectiveness. FIGGRA is effective at and outperforms existing grid-selection approaches (e.g., self-organizing maps) in multiple aspects such as clustering similar grids, differentiating dissimilar grids, and identifying representative grids for both Tas and Pr over LP. In comparison with Pr, the lower spatial heterogeneity and higher spatial discontinuity of Tas over LP lead to higher within-group similarity, lower between-group dissimilarity, lower grid grouping effectiveness, and higher grid representativeness; the lower interannual variability of the spatial distributions of Tas results in lower impacts of the interannual variability on the effectiveness of FIGGRA. For LP, the spatial climatic heterogeneity is the highest in January for Pr and in October for Tas; it decreases from spring, autumn, summer to winter for Tas and from summer, spring, autumn to winter for Pr. Two parameters, i.e., the statistical significance level (α) and the minimum number of grids in every climate zone (Nmin), and their joint effects are significant for the effectiveness of FIGGRA; normalization of a nonnormal climate-variable distribution is helpful for the effectiveness only for Pr. For FIGGRA-based LSCCIAA studies, a low value of Nmin is recommended for both Pr and Tas, and a high and medium value of α for Pr and Tas, respectively.

  20. Brominated Flame Retardants

    EPA Science Inventory

    Brominated flame retardants (BFRs) belong to a large class of compounds known as organohalogens. BFRs are currently the largest marketed flame retardant group due to their high performance efficiency and low cost. In the commercial market, more than 75 different BFRs are recogniz...

  1. Flex-flame burner and combustion method

    DOEpatents

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  2. Three-dimensional elliptic grid generation for an F-16

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese L.

    1988-01-01

    A case history depicting the effort to generate a computational grid for the simulation of transonic flow about an F-16 aircraft at realistic flight conditions is presented. The flow solver for which this grid is designed is a zonal one, using the Reynolds averaged Navier-Stokes equations near the surface of the aircraft, and the Euler equations in regions removed from the aircraft. A body conforming global grid, suitable for the Euler equation, is first generated using 3-D Poisson equations having inhomogeneous terms modeled after the 2-D GRAPE code. Regions of the global grid are then designated for zonal refinement as appropriate to accurately model the flow physics. Grid spacing suitable for solution of the Navier-Stokes equations is generated in the refinement zones by simple subdivision of the given coarse grid intervals. That grid generation project is described, with particular emphasis on the global coarse grid.

  3. Flame balls dynamics in divergent channel

    NASA Astrophysics Data System (ADS)

    Fursenko, R.; Minaev, S.

    2011-12-01

    A three-dimensional reaction-diffusion model for lean low-Lewis-number premixed flames with radiative heat losses propagating in divergent channel is studied numerically. Effects of inlet gas velocity and heat-loss intensity on flame structure at low Lewis numbers are investigated. It is found that continuous flame front exists at small heat losses and the separate flame balls settled within restricted domain inside the divergent channel at large heat losses. It is shown that the time averaged flame balls coordinate may be considered as important characteristic analogous to coordinate of continuous flame stabilized in divergent channel.

  4. Correlation of Soot Formation in Turbojet Engines and in Laboratory Flames.

    DTIC Science & Technology

    1981-02-01

    measured dependent variables were the flame radiation in the primary combustion zone and tile combus- tor liner temperature. Naegeli and Moses...Can-Type Turbine Combustion Systems," AFAPL- TR-79-2072, General Motors Corporation, April 1980. 9. Moses, C.A. and Naegeli , D.W., "Fuel Property...Effects on Combustor Perfor- mance," MED 114, Southwest Research Institute, March 1980. 10. Moses, C.A. and Naegeli , D.W., "Fuel Property Effects on

  5. Turbulent Premixed Hydrogen/Air Flames.

    DTIC Science & Technology

    1991-02-15

    velocity components i K Kolmogorov scale LC flame length based on a time-averaged unreactedness of 0.5 O-/(0 2 +N2) volumetric fraction of 02 in nonfuel...such effects were observed can be seen directly from the flame lengths , Lc, summarized in Table 2, clearly, L., is consistently shorter for the unstable...al., 1990). Aside from the flame length observations discussed in connection with Table 2, the flame surfaces for stable conditions were much

  6. Laser Diagnostic Analyses of Sooting Flames.

    DTIC Science & Technology

    1984-11-29

    flame front as expected. However the fuel flame length is considerably shorter than the luminous height, and the flame surface must cross the soot surface...very useful in understanding this behaviour and the fact that the fuel flame length increases only slightly on addition of diluent--while the visible

  7. Gravitational Effects on Cellular Flame Structure

    NASA Technical Reports Server (NTRS)

    Dunsky, C. M.; Fernandez-Pello, A. C.

    1991-01-01

    An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.

  8. Flame resistant elastic elastomeric fiber

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Massucco, A. A.; Sidman, K. R.

    1974-01-01

    Compositions exhibit elastomeric properties and possess various degrees of flame resistance. First material polyurethane, incorporates halogen containing polyol and is flame resistant in air; second contains spandex elastomer with flame retardant additives; and third material is prepared from fluorelastomer composition of copolymer of vinylidene fluoride and hexafluoropropylene.

  9. Lifted Turbulent Jet Flames

    DTIC Science & Technology

    1993-04-14

    flame length L simultaneously with h, and measuring the visible radiation I simultaneously with h. L(t) was found to be nearly uncorrelated with h(t...variation of 7i/2 /76 with ýh. These experiments included measuring the flame length L simultaneously with h, and measuring the visible radiation I...Measurements of Liftoff Height and Flame Length ... 66 4.5 Simultaneous Measurements of Liftoff Height and Radiation ....... 71 4.6 D scussion

  10. A DNS study of the physical mechanisms associated with density ratio influence on turbulent burning velocity in premixed flames

    NASA Astrophysics Data System (ADS)

    Lipatnikov, Andrei N.; Chomiak, Jerzy; Sabelnikov, Vladimir A.; Nishiki, Shinnosuke; Hasegawa, Tatsuya

    2018-01-01

    Data obtained in 3D direct numerical simulations of statistically planar, 1D weakly turbulent flames characterised by different density ratios σ are analysed to study the influence of thermal expansion on flame surface area and burning rate. Results show that, on the one hand, the pressure gradient induced within a flame brush owing to heat release in flamelets significantly accelerates the unburned gas that deeply intrudes into the combustion products in the form of an unburned mixture finger, thus causing large-scale oscillations of the burning rate and flame brush thickness. Under the conditions of the present simulations, the contribution of this mechanism to the creation of the flame surface area is substantial and is increased by σ, thus implying an increase in the burning rate by σ. On the other hand, the total flame surface areas simulated at σ = 7.53 and 2.5 are approximately equal. The apparent inconsistency between these results implies the existence of another thermal expansion effect that reduces the influence of σ on the flame surface area and burning rate. Investigation of the issue shows that the flow acceleration by the combustion-induced pressure gradient not only creates the flame surface area by pushing the finger tip into the products, but also mitigates wrinkling of the flame surface (the side surface of the finger) by turbulent eddies. The latter effect is attributed to the high-speed (at σ = 7.53) axial flow of the unburned gas, which is induced by the axial pressure gradient within the flame brush (and the finger). This axial flow acceleration reduces the residence time of a turbulent eddy in an unburned zone of the flame brush (e.g. within the finger). Therefore, the capability of the eddy for wrinkling the flamelet surface (e.g. the side finger surface) is weakened owing to a shorter residence time.

  11. Flame Tube NOx Emissions Using a Lean-Direct-Wall-Injection Combustor Concept

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.; Wey, Changlie; Choi, Kyung J.

    2001-01-01

    A low-NOx emissions combustor concept has been demonstrated in flame tube tests. A lean-direct injection concept was used where the fuel is injected directly into the flame zone and the overall fuel-air mixture is lean. In this concept the air is swirled upstream of a venturi section and the fuel is injected radially inward into the air stream from the throat section using a plain-orifice injector. Configurations have two-, four-, or six-wall fuel injectors and in some cases fuel is also injected from an axially located simplex pressure atomizer. Various orifice sizes of the plain-orifice injector were evaluated for the effect on NOx. Test conditions were inlet temperatures up to 8 1 OK, inlet pressures up to 2760 kPa, and flame temperatures up to 2100 K. A correlation is developed relating the NOx emissions to inlet temperature, inlet pressure, fuel-air ratio and pressure drop. Assuming that 15 percent of the combustion air would be used for liner cooling and using an advanced engine cycle, for the best configuration, the NOx emissions using the correlation is estimated to be <75 percent of the 1996 ICAO standard.

  12. Heat and mass transfer in flames

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1986-01-01

    Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.

  13. Laser Ionization Studies of Hydrocarbon Flames.

    NASA Astrophysics Data System (ADS)

    Bernstein, Jeffrey Scott

    Resonance-enhanced multiphoton ionization (REMPI) and laser induced fluorescence (LIF) are applied as laser based flame diagnostics for studies of hydrocarbon combustion chemistry. rm CH_4/O_2, C _2H_4/O_2, and rm C_2H_6/O_2 low pressure ( ~20 Torr), stoichiometric burner stabilized flat flames are studied. Density profiles of intermediate flame species, existing at ppm concentrations, are mapped out as a function of distance from the burner head. Profiles resulting from REMPI and LIF detection are obtained for HCO, CH_3, H, O, OH, CH, and CO flame radicals. The above flame systems are computer modeled against currently accepted combustion mechanisms using the Chemkin and Premix flame codes developed at Sandia National Laboratories. The modeled profile densities show good agreement with the experimental results of the CH_4/O_2 flame system, thus confirming the current C1 kinetic flame mechanism. Discrepancies between experimental and modeled results are found with the C2 flames. These discrepancies are partially amended by modifying the rate constant of the rm C_2H_3+rm O_2 to H_2CO + HCO reaction. The modeled results computed with the modified rate constant strongly suggest that the kinetics of several or possibly many reactions in the C2 mechanism need refinement.

  14. Lagrangian coherent structures during combustion instability in a premixed-flame backward-step combustor.

    PubMed

    Sampath, Ramgopal; Mathur, Manikandan; Chakravarthy, Satyanarayanan R

    2016-12-01

    This paper quantitatively examines the occurrence of large-scale coherent structures in the flow field during combustion instability in comparison with the flow-combustion-acoustic system when it is stable. For this purpose, the features in the recirculation zone of the confined flow past a backward-facing step are studied in terms of Lagrangian coherent structures. The experiments are conducted at a Reynolds number of 18600 and an equivalence ratio of 0.9 of the premixed fuel-air mixture for two combustor lengths, the long duct corresponding to instability and the short one to the stable case. Simultaneous measurements of the velocity field using time-resolved particle image velocimetry and the CH^{*} chemiluminescence of the flame along with pressure time traces are obtained. The extracted ridges of the finite-time Lyapunov exponent (FTLE) fields delineate dynamically distinct regions of the flow field. The presence of large-scale vortical structures and their modulation over different time instants are well captured by the FTLE ridges for the long combustor where high-amplitude acoustic oscillations are self-excited. In contrast, small-scale vortices signifying Kelvin-Helmholtz instability are observed in the short duct case. Saddle-type flow features are found to separate the distinct flow structures for both combustor lengths. The FTLE ridges are found to align with the flame boundaries in the upstream regions, whereas farther downstream, the alignment is weaker due to dilatation of the flow by the flame's heat release. Specifically, the FTLE ridges encompass the flame curl-up for both the combustor lengths, and thus act as the surrogate flame boundaries. The flame is found to propagate upstream from an earlier vortex roll-up to a newer one along the backward-time FTLE ridge connecting the two structures.

  15. Improving the Glucose Meter Error Grid With the Taguchi Loss Function.

    PubMed

    Krouwer, Jan S

    2016-07-01

    Glucose meters often have similar performance when compared by error grid analysis. This is one reason that other statistics such as mean absolute relative deviation (MARD) are used to further differentiate performance. The problem with MARD is that too much information is lost. But additional information is available within the A zone of an error grid by using the Taguchi loss function. Applying the Taguchi loss function gives each glucose meter difference from reference a value ranging from 0 (no error) to 1 (error reaches the A zone limit). Values are averaged over all data which provides an indication of risk of an incorrect medical decision. This allows one to differentiate glucose meter performance for the common case where meters have a high percentage of values in the A zone and no values beyond the B zone. Examples are provided using simulated data. © 2015 Diabetes Technology Society.

  16. Premixed flames in closed cylindrical tubes

    NASA Astrophysics Data System (ADS)

    Metzener, Philippe; Matalon, Moshe

    2001-09-01

    We consider the propagation of a premixed flame, as a two-dimensional sheet separating unburned gas from burned products, in a closed cylindrical tube. A nonlinear evolution equation, that describes the motion of the flame front as a function of its mean position, is derived. The equation contains a destabilizing term that results from the gas motion induced by thermal expansion and has a memory term associated with vorticity generation. Numerical solutions of this equation indicate that, when diffusion is stabilizing, the flame evolves into a non-planar form whose shape, and its associated symmetry properties, are determined by the Markstein parameter, and by the initial data. In particular, we observe the development of convex axisymmetric or non-axisymmetric flames, tulip flames and cellular flames.

  17. Experimental Observations on a Low Strain Counter-Flow Diffusion Flame: Flow and Bouyancy Effects

    NASA Technical Reports Server (NTRS)

    Sutula, J. A.; Torero, J. L.; Ezekoye, O. A.

    1999-01-01

    Diffusion flames are of great interest in fire safety and many industrial processes. The counter-flow configuration provides a constant strain flow, and therefore is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in microgravity conditions have begun to explore the low strain regimes. Numerical work has shown the coupling between gas phase reaction rates, soot reaction rates, and radiation. For these programs, size, geometry and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. When the physical boundaries can not be considered infinitely far from the reaction zone discrepancies arise. A computational study that includes boundary effects and accounts for the deviations occurring when the major potential flow assumptions are relaxed was presented by Borlik et al. This development properly incorporates all heat loss terms and shows the possibility of extinction in the low strain regime. A major constraint of studying the low strain regime is buoyancy. Buoyant instabilities have been shown to have a significant effect on the nature of reactants and heat transport, and can introduce instabilities on the flow that result in phenomena such as flickering or fingering. The counter-flow configuration has been shown to provide a flame with no symmetry disrupting instabilities for inlet velocities greater than 50 mm/s. As the velocity approaches this limit, the characteristic length of the experiment has to be reduced to a few millimetres so as to keep the Rayleigh number (Ra(sub L) = (Beta)(g(sub 0))(L(exp 3) del T)/(alpha(v))) below 2000. In this work, a rectangular counter-flow burner was used to study a two-dimensional counter-flow diffusion flame. Flow visualisation and Particle Image Velocimetry served to describe

  18. 30 CFR 14.20 - Flame resistance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINING PRODUCTS REQUIREMENTS FOR THE APPROVAL OF FLAME-RESISTANT CONVEYOR BELTS Technical Requirements § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant and...

  19. Investigation of non-premixed flame combustion characters in GO2/GH2 shear coaxial injectors using non-intrusive optical diagnostics

    NASA Astrophysics Data System (ADS)

    Dai, Jian; Yu, NanJia; Cai, GuoBiao

    2015-12-01

    Single-element combustor experiments are conducted for three shear coaxial geometry configuration injectors by using gaseous oxygen and gaseous hydrogen (GO2/GH2) as propellants. During the combustion process, several spatially and timeresolved non-intrusive optical techniques, such as OH planar laser induced fluorescence (PLIF), high speed imaging, and infrared imaging, are simultaneously employed to observe the OH radical concentration distribution, flame fluctuations, and temperature fields. The results demonstrate that the turbulent flow phenomenon of non-premixed flame exhibits a remarkable periodicity, and the mixing ratio becomes a crucial factor to influence the combustion flame length. The high speed and infrared images have a consistent temperature field trend. As for the OH-PLIF images, an intuitionistic local flame structure is revealed by single-shot instantaneous images. Furthermore, the means and standard deviations of OH radical intensity are acquired to provide statistical information regarding the flame, which may be helpful for validation of numerical simulations in future. Parameters of structure configurations, such as impinging angle and oxygen post thickness, play an important role in the reaction zone distribution. Based on a successful flame contour extraction method assembled with non-linear anisotropic diffusive filtering and variational level-set, it is possible to implement a fractal analysis to describe the fractal characteristics of the non-premixed flame contour. As a result, the flame front cannot be regarded as a fractal object. However, this turbulent process presents a self-similarity characteristic.

  20. Experimental investigation of spontaneous ignition and flame propagation at pressurized hydrogen release through tubes with varying cross-section.

    PubMed

    Duan, Qiangling; Xiao, Huahua; Gao, Wei; Gong, Liang; Sun, Jinhua

    2016-12-15

    An experimental investigation of spontaneous ignition and flame propagation at high-pressure hydrogen release via cylindrical tubes with varying cross-section is presented. Tubes with different transverse cross-sections are considered in the experiments: (1) local contraction, (2) local enlargement, (3) abrupt contraction, and (4) abrupt enlargement. The results show that the presence of the varying cross-section geometries can significantly promote the occurrence of spontaneous ignition. Compared to the tube with constant cross-section, the minimum pressure release needed for spontaneous ignition for the varying cross-sections tubes is considerably lower. Moreover, the initial ignition location is closer to the disk in the presence of varying cross-section geometries in comparison with straight channel. As the flame emerges from the outlet of the tube, the velocity of the flame front in the vicinity of the nozzle increases sharply. Then, a deflagration develops across the mixing zone of hydrogen/air mixture. The maximum deflagration overpressure increases linearly with the release pressure. Subsequently, a hydrogen jet flame is produced and evolves different shapes at different release stages. A fireball is formed after the jet flame spouts in the open air. Later, the fireball develops into a jet flame which shifts upward and continues to burn in the vertical direction. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. High pressure flame system for pollution studies with results for methane-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Maahs, H. G.

    1977-01-01

    A high pressure flame system was designed and constructed for studying nitrogen oxide formation in fuel air combustion. Its advantages and limitations were demonstrated by tests with a confined laminar methane air diffusion flame over the pressure range from 1 to 50 atm. The methane issued from a 3.06 mm diameter port concentrically into a stream of air contained within a 20.5 mm diameter chimney. As the combustion pressure is increased, the flame changes in shape from wide and convex to slender and concave, and there is a marked increase in the amount of luminous carbon. The height of the flame changes only moderately with pressure.

  2. Flame spread across liquids

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Miller, Fletcher; Schiller, David; Sirignano, William

    1995-01-01

    Recent reviews of our understanding of flame spread across liquids show that there are many unresolved issues regarding the phenomenology and causal mechanisms affecting ignition susceptibility, flame spread characteristics, and flame spread rates. One area of discrepancy is the effect of buoyancy in both the uniform and pulsating spread regimes. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity (1g) and microgravity (micro g) experiments; and (2) numerical modeling at different gravitational levels. Of special interest to this work, as discussed at the previous workshop, is the determination of whether, and under what conditions, pulsating spread occurs in micro g. Microgravity offers a unique ability to modify and control the gas-phase flow pattern by utilizing a forced air flow over the pool surface.

  3. Experimental study of turbulent flame kernel propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansour, Mohy; Peters, Norbert; Schrader, Lars-Uve

    2008-07-15

    Flame kernels in spark ignited combustion systems dominate the flame propagation and combustion stability and performance. They are likely controlled by the spark energy, flow field and mixing field. The aim of the present work is to experimentally investigate the structure and propagation of the flame kernel in turbulent premixed methane flow using advanced laser-based techniques. The spark is generated using pulsed Nd:YAG laser with 20 mJ pulse energy in order to avoid the effect of the electrodes on the flame kernel structure and the variation of spark energy from shot-to-shot. Four flames have been investigated at equivalence ratios, {phi}{submore » j}, of 0.8 and 1.0 and jet velocities, U{sub j}, of 6 and 12 m/s. A combined two-dimensional Rayleigh and LIPF-OH technique has been applied. The flame kernel structure has been collected at several time intervals from the laser ignition between 10 {mu}s and 2 ms. The data show that the flame kernel structure starts with spherical shape and changes gradually to peanut-like, then to mushroom-like and finally disturbed by the turbulence. The mushroom-like structure lasts longer in the stoichiometric and slower jet velocity. The growth rate of the average flame kernel radius is divided into two linear relations; the first one during the first 100 {mu}s is almost three times faster than that at the later stage between 100 and 2000 {mu}s. The flame propagation is slightly faster in leaner flames. The trends of the flame propagation, flame radius, flame cross-sectional area and mean flame temperature are related to the jet velocity and equivalence ratio. The relations obtained in the present work allow the prediction of any of these parameters at different conditions. (author)« less

  4. Great (Flame) Balls of Fire! Structure of Flame Balls at Low Lewis-number-2 (SOFBALL-2)

    NASA Technical Reports Server (NTRS)

    Ronney, Paul; Weiland, Karen J.; Over, Ann (Technical Monitor)

    2002-01-01

    Everyone knows that an automobile engine wastes fuel and energy when it runs with a fuel-rich mixture. 'Lean' burning, mixing in more air and less fuel, is better for the environment. But lean mixtures also lead to engine misfiring and rough operation. No one knows the ultimate limits for lean operation, for 'weak' combustion that is friendly to the environment while still moving us around. This is where the accidental verification of a decades-old prediction may have strong implications for designing and running low-emissions engines in the 21st century. In 1944, Soviet physicist Yakov Zeldovich predicted that stationary, spherical flames are possible under limited conditions in lean fuel-air mixtures. Dr. Paul Ronney of the University of Southern California accidentally discovered such 'flame balls' in experiments with lean hydrogen-air mixtures in 1984 during drop-tower experiments that provided just 2.2 seconds of near weightlessness. Experiments aboard NASA's low-g aircraft confirmed the results, but a thorough investigation was hampered by the aircraft's bumpy ride. And stable flame balls can only exist in microgravity. The potential for investigating combustion at the limits of flammability, and the implications for spacecraft fire safety, led to the Structure of Flame Balls at Low Lewis-number (SOFBALL) experiment flown twice aboard the Space Shuttle on the Microgravity Sciences Laboratory-1 (MSL-1) in 1997. Success there led to the planned reflight on STS-107. Flame balls are the weakest fires yet produced in space or on Earth. Typically each flame ball produced only 1 watt of thermal power. By comparison, a birthday candle produces 50 watts. The Lewis-number measures the rate of diffusion of fuel into the flame ball relative to the rate of diffusion of heat away from the flame ball. Lewis-number mixtures conduct heat poorly. Hydrogen and methane are the only fuels that provide low enough Lewis-numbers to produce stable flame balls, and even then only for

  5. Characteristics of Non-Premixed Turbulent Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Yuan, Z. G.; Stocker, D. P.; Bahadori, M. Y.

    2001-01-01

    This project is concerned with the characteristics of turbulent hydrocarbon (primarily propane) gas-jet diffusion flames in microgravity. A microgravity environment provides the opportunity to study the structure of turbulent diffusion flames under momentum-dominated conditions (large Froude number) at moderate Reynolds number which is a combination not achievable in normal gravity. This paper summarizes progress made since the last workshop. Primarily, the features of flame radiation from microgravity turbulent jet diffusion flames in a reduced gravity environment are described. Tests were conducted for non-premixed, nitrogen diluted propane flames burning in quiescent air in the NASA Glenn 5.18 Second Zero Gravity Facility. Measured flame radiation from wedge-shaped, axial slices of the flame are compared for microgravity and normal gravity flames. Results from numerical computations of the flame using a k-e model for the turbulence are also presented to show the effects of flame radiation on the thermal field. Flame radiation is an important quantity that is impacted by buoyancy as has been shown in previous studies by the authors and also by Urban et al. It was found that jet diffusion flames burning under microgravity conditions have significantly higher radiative loss (about five to seven times higher) compared to their normal gravity counterparts because of larger flame size in microgravity and larger convective heat loss fraction from the flame in normal gravity. These studies, however, were confined to laminar flames. For the case of turbulent flames, the flame radiation is a function of time and both the time-averaged and time-dependent components are of interest. In this paper, attention is focused primarily on the time-averaged level of the radiation but the turbulent structure of the flame is also assessed from considerations of the radiation power spectra.

  6. Pulsed Turbulent Diffusion Flames in a Coflow

    NASA Astrophysics Data System (ADS)

    Usowicz, James E.; Hermanson, James C.; Johari, Hamid

    2000-11-01

    Fully modulated diffusion flames were studied experimentally in a co-flow combustor using unheated ethylene fuel at atmospheric pressure. A fast solenoid valve was used to fully modulate (completely shut-off) the fuel flow. The fuel was released from a 2 mm diameter nozzle with injection times ranging from 2 to 750 ms. The jet exit Reynolds number was 2000 to 10,000 with a co-flow air velocity of up to 0.02 times the jet exit velocity. Establishing the effects of co-flow for the small nozzle and short injection times is required for future tests of pulsed flames under microgravity conditions. The very short injection times resulted in compact, burning puffs. The compact puffs had a mean flame length as little as 20flame for the same Reynolds number. As the injection time and fuel volume increased, elongated flames resembling starting jets resulted with a flame length comparable to that of a steady flame. For short injection times, the addition of an air co-flow resulted in an increase in flame length of nearly 50flames with longer injection times was correspondingly smaller. The effects of interaction of successive pulses on the flame length were most pronounced for the compact puffs. The emissions of unburned hydrocarbon and NOx from the pulsed flames were examined.

  7. Influence of hydrocarbon fuel structural constitution and flame temperature on soot formation in laminar diffusion flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulder, O.L.

    1989-11-01

    A systematic study of soot formation along the centerlines of axisymmetric laminar diffusion flames of a large number of liquid hydrocarbons, hydrocarbon blends, and transportation fuels were made. Measurements of the attenuation of a laser beam across the flame diameter were used to obtain the soot volume fraction, assuming Rayleigh extinction. Two sets of hydrocarbon blends were designed such that the molecular fuel composition varied considerably but the temperature fields in the flames were kept practically constant. Thus it was possible to separate the effects of molecular structure and the flame temperature on soot formation. It was quantitatively shown thatmore » the smoke height is a lumped measure of fuel molecular constitution and hydrogen-to-carbon ratio. Hydrocarbon fuel molecular composition was characterized by six carbon atom types that can be obtained, for complex hydrocarbon mixtures like transportation fuels, from proton nuclear magnetic resonance (/sup 1/H NMR) measurements. Strong attenuation of the laser beam was observed at heights very close to the burner rim. Visible flame profiles along the flame length were shown to have good self-similarity. Kent's model for diffusion flames was modified to include the effects of differences in flame temperatures and molecular diffusivities between fuels. An analysis based on the present data provides an assessment of the degree of contribution of different carbon atom types to the maximum soot volume fractions.« less

  8. Flame exposure time on Langmuir probe degradation, ion density, and thermionic emission for flame temperature.

    PubMed

    Doyle, S J; Salvador, P R; Xu, K G

    2017-11-01

    The paper examines the effect of exposure time of Langmuir probes in an atmospheric premixed methane-air flame. The effects of probe size and material composition on current measurements were investigated, with molybdenum and tungsten probe tips ranging in diameter from 0.0508 to 0.1651 mm. Repeated prolonged exposures to the flame, with five runs of 60 s, resulted in gradual probe degradations (-6% to -62% area loss) which affected the measurements. Due to long flame exposures, two ion saturation currents were observed, resulting in significantly different ion densities ranging from 1.16 × 10 16 to 2.71 × 10 19 m -3 . The difference between the saturation currents is caused by thermionic emissions from the probe tip. As thermionic emission is temperature dependent, the flame temperature could thus be estimated from the change in current. The flame temperatures calculated from the difference in saturation currents (1734-1887 K) were compared to those from a conventional thermocouple (1580-1908 K). Temperature measurements obtained from tungsten probes placed in rich flames yielded the highest percent error (9.66%-18.70%) due to smaller emission current densities at lower temperatures. The molybdenum probe yielded an accurate temperature value with only 1.29% error. Molybdenum also demonstrated very low probe degradation in comparison to the tungsten probe tips (area reductions of 6% vs. 58%, respectively). The results also show that very little exposure time (<5 s) is needed to obtain a valid ion density measurement and that prolonged flame exposures can yield the flame temperature but also risks damage to the Langmuir probe tip.

  9. The Science of Flames.

    ERIC Educational Resources Information Center

    Cornia, Ray

    1991-01-01

    Describes an exercise using flames that allows students to explore the complexities of a seemingly simple phenomenon, the lighting of a candle. Contains a foldout that provides facts about natural gas flames and suggestions for classroom use. (ZWH)

  10. Characteristics Of Turbulent Nonpremixed Jet-Flames And Jet-Flames In Crossflow In Normal- And Low-Gravity

    NASA Technical Reports Server (NTRS)

    Clemens, N. T.; Boxx, I. G.; Idicheria, C. A.

    2003-01-01

    It is well known that buoyancy has a major influence on the flow structure of turbulent nonpremixed jet flames. For example, previous studies have shown that transitional and turbulent jet flames exhibit flame lengths that are as much as a factor of two longer in microgravity than in normal gravity. The objective of this study is to extend these previous studies by investigating both mean and fluctuating characteristics of turbulent nonpremixed jet flames under three different gravity levels (1 g, 20 mg and 100 micrograms). This work is described in more detail elsewhere. In addition, we have recently initiated a new study into the effects of buoyancy on turbulent nonpremixed jet flames in cross-flow (JFICF). Buoyancy has been observed to play a key role in determining the centerline trajectories of such flames.6 The objective of this study is to use the low gravity environment to study the effects of buoyancy on the turbulent characteristics of JFICF.

  11. Flame stabilizer for stagnation flow reactor

    DOEpatents

    Hahn, David W.; Edwards, Christopher F.

    1999-01-01

    A method of stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability.

  12. 3DGRAPE - THREE DIMENSIONAL GRIDS ABOUT ANYTHING BY POISSON'S EQUATION

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1994-01-01

    The ability to treat arbitrary boundary shapes is one of the most desirable characteristics of a method for generating grids. 3DGRAPE is designed to make computational grids in or about almost any shape. These grids are generated by the solution of Poisson's differential equations in three dimensions. The program automatically finds its own values for inhomogeneous terms which give near-orthogonality and controlled grid cell height at boundaries. Grids generated by 3DGRAPE have been applied to both viscous and inviscid aerodynamic problems, and to problems in other fluid-dynamic areas. 3DGRAPE uses zones to solve the problem of warping one cube into the physical domain in real-world computational fluid dynamics problems. In a zonal approach, a physical domain is divided into regions, each of which maps into its own computational cube. It is believed that even the most complicated physical region can be divided into zones, and since it is possible to warp a cube into each zone, a grid generator which is oriented to zones and allows communication across zonal boundaries (where appropriate) solves the problem of topological complexity. 3DGRAPE expects to read in already-distributed x,y,z coordinates on the bodies of interest, coordinates which will remain fixed during the entire grid-generation process. The 3DGRAPE code makes no attempt to fit given body shapes and redistribute points thereon. Body-fitting is a formidable problem in itself. The user must either be working with some simple analytical body shape, upon which a simple analytical distribution can be easily effected, or must have available some sophisticated stand-alone body-fitting software. 3DGRAPE does not require the user to supply the block-to-block boundaries nor the shapes of the distribution of points. 3DGRAPE will typically supply those block-to-block boundaries simply as surfaces in the elliptic grid. Thus at block-to-block boundaries the following conditions are obtained: (1) grids lines will

  13. Production of fullerenic nanostructures in flames

    DOEpatents

    Howard, Jack B.; Vander Sande, John B.; Chowdhury, K. Das

    1999-01-01

    A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

  14. Production Of Fullerenic Soot In Flames

    DOEpatents

    Howard, Jack B.; Vander Sande, John B.; Chowdhury, K. Das

    2000-12-19

    A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

  15. Laminar Premixed and Diffusion Flames (Ground-Based Study)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Ground-based studies of soot processes in laminar flames proceeded in two phases, considering laminar premixed flames and laminar diffusion flames, in turn. The test arrangement for laminar premixed flames involved round flat flame burners directed vertically upward at atmospheric pressure. The test arrangement for laminar jet diffusion flames involved a round fuel port directed vertically upward with various hydrocarbon fuels burning at atmospheric pressure in air. In both cases, coflow was used to prevent flame oscillations and measurements were limited to the flame axes. The measurements were sufficient to resolve soot nucleation, growth and oxidation rates, as well as the properties of the environment needed to evaluate mechanisms of these processes. The experimental methods used were also designed to maintain capabilities for experimental methods used in corresponding space-based experiments. This section of the report will be limited to consideration of flame structure for both premixed and diffusion flames.

  16. Spatial investigation of plasma emission from laminar diffusion methanol, ethanol, and n-propanol alcohol flames using LIBS method

    NASA Astrophysics Data System (ADS)

    Ghezelbash, Mahsa; Majd, Abdollah Eslami; Darbani, Seyyed Mohammad Reza; Mousavi, Seyyed Jabbar; Ghasemi, Ali; Tehrani, Masoud Kavosh

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) technique is used to record some plasma emissions of different laminar diffusion methanol, ethanol, and n-propanol alcohol flames, to investigate the shapes, structures (i.e., reactants and products zones), kind, and quality of burning in different areas. For this purpose, molecular bands of CH, CH*, C2, CN, and CO as well as atomic and ionic lines of C, H, N, and O are identified, simultaneously. Experimental results indicate that the CN and C2 emissions have highest intensity in LIBS spectrum of n-propanol flame and the lowest in methanol. In addition, lowest content of CO pollution and better quality of burning process in n-propanol fuel flame toward ethanol and methanol are confirmed by comparison between their CO molecular band intensities. Moreover, variation of the signal intensity from these three flames with that from a known area of burner plate is compared. Our findings in this research advance the prior results in time-integrated LIBS combustion application and suggesting that LIBS can be used successfully with the CCD detector as a non-gated analytical tool, given its simple instrumentation needs, real-time capability applications of molecular detection in laminar diffusion flame samples, requirements.

  17. Triple flames in microgravity flame spread

    NASA Technical Reports Server (NTRS)

    Wichman, Indrek S.

    1995-01-01

    The purpose of this project is to examine in detail the influence of the triple flame structure on the flame spread problem. It is with an eye to the practical implications that this fundamental research project must be carried out. The microgravity configuration is preferable because buoyancy-induced stratification and vorticity generation are suppressed. A more convincing case can be made for comparing our predictions, which are zero-g, and any projected experiments. Our research into the basic aspects will employ two models. In one, flows of fuel and oxidizer from the lower wall are not considered. In the other, a convective flow is allowed. The non-flow model allows us to develop combined analytical and numerical solution methods that may be used in the more complicated convective-flow model.

  18. Flame behaviors of propane/air premixed flame propagation in a closed rectangular duct with a 90-deg bend

    NASA Astrophysics Data System (ADS)

    He, Xuechao; Sun, Jinhua; Yuen, K. K.; Ding, Yibin; Chen, Sining

    2008-11-01

    Experiments of flame propagation in a small, closed rectangular duct with a 90° bend were performed for a propane-air mixture. The high speed camera and Schlieren techniques were used to record images of flame propagation process in the combustion pipe. Meanwhile, the fine thermocouples and ion current probes were applied to measure the temperature distribution and reaction intensity of combustion. The characteristics of propane-air flame and its microstructure were analyzed in detail by the experimental results. In the test, the special tulip flame formation was observed. Around the bend, the flame tip proceeded more quickly at the lower side with the flame front elongated toward the axial direction. And transition to turbulent flame occurred. It was suggested that fluctuations of velocity, ion current and temperature were mainly due to the comprehensive effects of multi-wave and the intense of turbulent combustion.

  19. Progress Toward Overset-Grid Moving Body Capability for USM3D Unstructured Flow Solver

    NASA Technical Reports Server (NTRS)

    Pandyna, Mohagna J.; Frink, Neal T.; Noack, Ralph W.

    2005-01-01

    A static and dynamic Chimera overset-grid capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. Modifications to the solver primarily consist of a few strategic calls to the Donor interpolation Receptor Transaction library (DiRTlib) to facilitate communication of solution information between various grids. The assembly of multiple overlapping grids into a single-zone composite grid is performed by the Structured, Unstructured and Generalized Grid AssembleR (SUGGAR) code. Several test cases are presented to verify the implementation, assess overset-grid solution accuracy and convergence relative to single-grid solutions, and demonstrate the prescribed relative grid motion capability.

  20. Analysis of Flame Extinguishment and Height in Low Frequency Acoustically Excited Methane Jet Diffusion Flame

    NASA Astrophysics Data System (ADS)

    Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran

    2018-01-01

    The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.

  1. Analysis of Flame Extinguishment and Height in Low Frequency Acoustically Excited Methane Jet Diffusion Flame

    NASA Astrophysics Data System (ADS)

    Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran

    2018-05-01

    The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.

  2. Flame dynamics in a micro-channeled combustor

    NASA Astrophysics Data System (ADS)

    Hussain, Taaha; Markides, Christos N.; Balachandran, Ramanarayanan

    2015-01-01

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  3. Flame dynamics in a micro-channeled combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Taaha; Balachandran, Ramanarayanan, E-mail: r.balachandran@ucl.ac.uk; Markides, Christos N.

    2015-01-22

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modesmore » of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the

  4. The Interaction of High-Speed Turbulence with Flames: Turbulent Flame Speed

    DTIC Science & Technology

    2010-08-05

    AND ADDRESS(ES) 10. SPONSOR / MONITOR’S ACRONYM(S) 9 . SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SPONSOR / MONITOR’S REPORT NUMBER(S...UL 38 A.Y. Poludnenko (202) 767-6582 05 -08-2010 Memorandum Report Turbulent premixed combustion Turbulence Flamelet Turbulent flame speed Office of...3.4. Stretch factor and the balance between ST and AT ...................................................................... 9 4. Flame surface

  5. Radiation Effects on the Thermodiffusive Instability of Premixed Flames on a Cylindrical Porous Flame Holder

    NASA Astrophysics Data System (ADS)

    Du, Minglong; Yang, Lijun

    2017-10-01

    A linear analysis method was used to investigate the mechanics of radiation heat loss and mass transfer in the porous wall of premixed annular flames and their effect on thermodiffusive instability. The dispersion relation between the disturbance wave growth rate and wavenumber was calculated numerically. Results showed that radiation heat loss elevated the annular flame slightly away from the porous wall. In the annular flame with small Lewis numbers, radiation heat loss changed the thermodiffusive instability from a pulsating to a cellular state, while for the large Lewis numbers, only the pulsating instability was represented. Increasing radiation heat loss and the radius of the porous wall enhanced the instability of the annular flames. Heat losses decreased with the continued increase in thickness of the porous wall and the decrease in porosity. Annular flames with long-wave mode along the angular direction were more unstable than the shortwave mode.

  6. Internal structure visualization of flow and flame by process tomography and PLIF data fusion

    NASA Astrophysics Data System (ADS)

    Liu, J.; Liu, Shi; Sun, S.; Pan, X.; Schlaberg, I. H. I.

    2018-02-01

    To address the increasing demands on pollution control and energy saving, the study of low-emission and high-efficiency burners has been emphasized worldwide. Swirl-induced environmental burners (EV-burners), have notable features aligned with these requirements. In this study, an EV burner is investigated by both an ECT system and an OH-PLIF system. The aim is to detect the structure of a flame and obtain more information about the combustion process in an EV burner. 3D ECT sensitivity maps are generated for the measurement and OH-PLIF images are acquired in the same combustion zone as for the ECT measurements. The experimental images of a flame by ECT are in good agreement with the OH radical distribution pictures captured by OH-PLIF, which provide a mutual verification of the visualization method.

  7. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.

    2002-01-01

    This is the final report of a research program considering interactions between flow and soot properties within laminar diffusion flames. Laminar diffusion flames were considered because they provide model flame systems that are far more tractable for theoretical and experimental studies than more practical turbulent diffusion flames. In particular, understanding the transport and chemical reaction processes of laminar flames is a necessary precursor to understanding these processes in practical turbulent flames and many aspects of laminar diffusion flames have direct relevance to turbulent diffusion flames through application of the widely recognized laminar flamelet concept of turbulent diffusion flames. The investigation was divided into three phases, considering the shapes of nonbuoyant round laminar jet diffusion flames in still air, the shapes of nonbuoyant round laminar jet diffusion flames in coflowing air, and the hydrodynamic suppression of soot formation in laminar diffusion flames.

  8. Fully Modulated Turbulent Diffusion Flames in Microgravity*

    NASA Astrophysics Data System (ADS)

    Sangras, Ravikiran; Hermanson, James C.; Johari, Hamid; Stocker, Dennis P.; Hegde, Uday G.

    2001-11-01

    Fully modulated, turbulent diffusion flames are studied in microgravity in 2.2 s drop-tower tests with a co-flow combustor. The fuel consists of pure ethylene or a 50/50 mixture with nitrogen; the oxidizer is either normal air or up to 40% oxygen in nitrogen. A fast solenoid valve is used to fully modulate (completely shut off) the fuel flow. The injection times range from 5 to 400 ms with a duty-cycle of 0.1 - 0.5. The fuel nozzle is 2 mm in diameter with a jet Reynolds number of 5000. The shortest injection times yield compact puffs with a mean flame length as little as 20% of that of the steady-state flame. The reduction in flame length appears to be somewhat greater in microgravity than in normal gravity. As the injection time increases, elongated flames result with a mean flame length comparable to that of a steady flame. The injection time for which the steady-state flame length is approached is shorter for lower air/fuel ratios. For a given duty-cycle, the separation between puffs is greater in microgravity than in normal gravity. For compact puffs, increasing the duty-cycle appears to increase the flame length more in microgravity than in normal gravity. The microgravity flame puffs do not exhibit the vortex-ring-like structure seen in normal gravity.

  9. The Effects of Gravity on Wrinkled Laminar Flames

    NASA Technical Reports Server (NTRS)

    Kostiuk, Larry W.; Zhou, Liming; Cheng, Robert K.

    1993-01-01

    The effects of gravity are significant to the dynamics of idealized unconfined open premixed flames. Moderate to low turbulence Reynolds number flames, i.e., wrinkled laminar flames, of various unconfined geometries have been used extensively for investigating fundamental processes of turbulent flame propagation and to validate theoretical models. Without the wall constraints, the flames are free to expand and interact with surrounding ambient air. The flow field in which the flame exists is determined by a coupling of burner geometry, flame orientation and the gravity field. These complex interactions raise serious questions regarding the validity of comparing the experimental data of open flames with current theoretical and numerical models that do not include the effects of gravity nor effects of the larger aerodynamic flowfield. Therefore, studies of wrinkled laminar flame in microgravity are needed for a better understanding of the role of gravity on flame characteristics such as the orientation, mean aerodynamics stretch, flame wrinkle size and burning rate. Our approach to characterize and quantify turbulent flame structures under microgravity is to exploit qualitative and quantitative flow visualization techniques coupled with video recording and computer controlled image analysis technologies. The experiments will be carried out in the 2.2 second drop tower at the NASA Lewis Research Center. The longest time scales of typical wrinkled laminar flames in the geometries considered here are in the order of 10 msec. Hence, the duration of the drop is sufficient to obtain the amount of statistical data necessary for characterize turbulent flame structures.

  10. Unsteady planar diffusion flames: Ignition, travel, burnout

    NASA Technical Reports Server (NTRS)

    Fendell, F.; Wu, F.

    1995-01-01

    In microgravity, a thin planar diffusion flame is created and thenceforth travels so that the flame is situated at all times at an interface at which the hydrogen and oxygen meet in stoichiometric proportion. If the initial amount of hydrogen is deficient relative to the initial amount of oxygen, then the planar flame will travel further and further into the half volume initially containing hydrogen, until the hydrogen is (virtually) fully depleted. Of course, when the amount of residual hydrogen becomes small, the diffusion flame is neither vigorous nor thin; in practice, the flame is extinguished before the hydrogen is fully depleted, owing to the finite rate of the actual chemical-kinetic mechanism. The rate of travel of the hydrogen-air diffusion flame is much slower than the rate of laminar flame propagation through a hydrogen-air mixture. This slow travel facilitates diagnostic detection of the flame position as a function of time, but the slow travel also means that the time to burnout (extinction) probably far exceeds the testing time (typically, a few seconds) available in earth-sited facilities for microgravity-environment experiments. We undertake an analysis to predict (1) the position and temperature of the diffusion flame as a function of time, (2) the time at which extinction of the diffusion flame occurs, and (3) the thickness of quench layers formed on side walls (i.e., on lateral boundaries, with normal vectors parallel to the diffusion-flame plane), and whether, prior to extinction, water vapor formed by burning will condense on these cold walls.

  11. The premixed flame in uniform straining flow

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1982-01-01

    Characteristics of the premixed flame in uniform straining flow are investigated by the technique of activation-energy asymptotics. An inverse method is used, which avoids some of the restrictions of previous analyses. It is shown that this method recovers known results for adiabatic flames. New results for flames with heat loss are obtained, and it is shown that, in the presence of finite heat loss, straining can extinguish flames. A stability analysis shows that straining can suppress the cellular instability of flames with Lewis number less than unity. Strain can produce instability of flames with Lewis number greater than unity. A comparison shows quite good agreement between theoretical deductions and experimental observations of Ishizuka, Miyasaka & Law (1981).

  12. Structure of Soot-Containing Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Mortazavi, S.; Sunderland, P. B.; Jurng, J.; Koylu, U. O.; Faeth, G. M.

    1993-01-01

    The structure and soot properties of nonbuoyant and weakly-buoyant round jet diffusion flames were studied, considering ethylene, propane and acetylene burning in air at pressures of 0.125-2.0 atm. Measurements of flame structure included radiative heat loss fractions, flame shape and temperature distributions in the fuel-lean (overfire) region. These measurements were used to evaluate flame structure predictions based on the conserved-scalar formalism in conjunction with the laminar flamelet concept, finding good agreement betweem predictions and measurements. Soot property measurements included laminar smoke points, soot volume function distributions using laser extinction, and soot structure using thermophoretic sampling and analysis by transmission electron microscopy. Nonbuoyant flames were found to exhibit laminar smoke points like buoyant flames but their properties are very different; in particular, nonbuoyant flames have laminar smoke point flame lengths and residence times that are shorter and longer, respectively, than buoyant flames.

  13. The Surveillance Error Grid

    PubMed Central

    Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B.; Kirkman, M. Sue; Kovatchev, Boris

    2014-01-01

    Introduction: Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. Methods: A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. Results: SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments

  14. The surveillance error grid.

    PubMed

    Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris

    2014-07-01

    Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to

  15. Effects of Karlovitz number on turbulent kinetic energy transport in turbulent lean premixed methane/air flames

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyan; Abraham, John

    2017-08-01

    Direct numerical simulations of lean methane/air flames are carried out to study the effects of premixed combustion on turbulence. The equivalence ratio of the flame is 0.5 and non-dimensional turbulence intensities (urms/SL) are between 2 and 25. The mixture pressure is 20 bars and temperature is 810 K to simulate approximate conditions in lean-burn natural gas engines. The Karlovitz number (Ka) varies from 1.1 to 49.4, and the Damköhler number (Da) varies from 0.26 to 3.2 corresponding to turbulent premixed combustion in the thin reaction zone (TRZ) regime. It is found that turbulence kinetic energy (TKE) and its dissipation rate decrease monotonically across the flame brush while the integral length scale increases monotonically for flames in the TRZ regime. The transport equation of TKE is then examined, and the scaling of the terms in the equation is discussed. It is found that the sink term which represents molecular diffusion and viscous dissipation is the dominant term in the TKE balance and it scales with the square of Ka. The relative importance of the other terms with respect to the dissipation term is studied. With increasing Ka, the other terms in the TKE balance become less important compared to the dissipation term.

  16. Laminar and Turbulent Gaseous Diffusion Flames. Appendix C

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Recent measurements and predictions of the properties of homogeneous (gaseous) laminar and turbulent non-premixed (diffusion) flames are discussed, emphasizing results from both ground- and space-based studies at microgravity conditions. Initial considerations show that effects of buoyancy not only complicate the interpretation of observations of diffusion flames but at times mislead when such results are applied to the non-buoyant diffusion flame conditions of greatest practical interest. This behavior motivates consideration of experiments where effects of buoyancy are minimized; therefore, methods of controlling the intrusion of buoyancy during observations of non-premixed flames are described, considering approaches suitable for both normal laboratory conditions as well as classical microgravity techniques. Studies of laminar flames at low-gravity and microgravity conditions are emphasized in view of the computational tractability of such flames for developing methods of predicting flame structure as well as the relevance of such flames to more practical turbulent flames by exploiting laminar flamelet concepts.

  17. Knowledge-based zonal grid generation for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Andrews, Alison E.

    1988-01-01

    Automation of flow field zoning in two dimensions is an important step towards reducing the difficulty of three-dimensional grid generation in computational fluid dynamics. Using a knowledge-based approach makes sense, but problems arise which are caused by aspects of zoning involving perception, lack of expert consensus, and design processes. These obstacles are overcome by means of a simple shape and configuration language, a tunable zoning archetype, and a method of assembling plans from selected, predefined subplans. A demonstration system for knowledge-based two-dimensional flow field zoning has been successfully implemented and tested on representative aerodynamic configurations. The results show that this approach can produce flow field zonings that are acceptable to experts with differing evaluation criteria.

  18. Structure of diffusion flames from a vertical burner

    Treesearch

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  19. Effect of vorticity flip-over on the premixed flame structure: Experimental observation of type-I inflection flames

    NASA Astrophysics Data System (ADS)

    El-Rabii, Hazem; Kazakov, Kirill A.

    2015-12-01

    Premixed flames propagating in horizontal tubes are observed to take on a convex shape towards the fresh mixture, which is commonly explained as a buoyancy effect. A recent rigorous analysis has shown, on the contrary, that this process is driven by the balance of vorticity generated by a curved flame front with the baroclinic vorticity, and predicted existence of a regime in which the leading edge of the flame front is concave. We report experimental realization of this regime. Our experiments on ethane and n -butane mixtures with air show that flames with an inflection point on the front are regularly produced in lean mixtures, provided that a sufficiently weak ignition is used. The observed flame shape perfectly agrees with that theoretically predicted.

  20. Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II

    NASA Technical Reports Server (NTRS)

    Cheng, W. K.; Lai, M.-C.; Chue, T.-H.

    1991-01-01

    A flame sheet model for heat release is incorporated into a multi-dimensional fluid mechanical simulation for gas turbine application. The model assumes that the chemical reaction takes place in thin sheets compared to the length scale of mixing, which is valid for the primary combustion zone in a gas turbine combustor. In this paper, the details of the model are described and computational results are discussed.

  1. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Abid, M.; Aung, K.; Ronney, P. D.; Sharif, J. A.; Wu, M.-S.

    1999-01-01

    Several topics relating to combustion limits in premixed flames at reduced gravity have been studied. These topics include: (1) flame balls; (2) numerical simulation of flame ball and planar flame structure and stability; (3) experimental simulation of buoyancy effects in premixed flames using aqueous autocatalytic reactions; and (4) premixed flame propagation in Hele-Shaw cells.

  2. Experimental and numerical investigation of laminar flame speeds of hydrogen/carbon monoxide/carbon dioxide/nitrogen mixtures

    NASA Astrophysics Data System (ADS)

    Natarajan, Jayaprakash

    Coal derived synthetic gas (syngas) fuel is a promising solution for today's increasing demand for clean and reliable power. Syngas fuels are primarily mixtures of H2 and CO, often with large amounts of diluents such as N2, CO2, and H2O. The specific composition depends upon the fuel source and gasification technique. This requires gas turbine designers to develop fuel flexible combustors capable of operating with high conversion efficiency while maintaining low emissions for a wide range of syngas tact mixtures. Design tools often used in combustor development require data on various fundamental gas combustion properties. For example, laminar flame speed is often an input as it has a significant impact upon the size and static stability of the combustor. Moreover it serves as a good validation parameter for leading kinetic models used for detailed combustion simulations. Thus the primary objective of this thesis is measurement of laminar flame speeds of syngas fuel mixtures at conditions relevant to ground-power gas turbines. To accomplish this goal, two flame speed measurement approaches were developed: a Bunsen flame approach modified to use the reaction zone area in order to reduce the influence of flame curvature on the measured flame speed and a stagnation flame approach employing a rounded bluff body. The modified Bunsen flame approach was validated against stretch-corrected approaches over a range of fuels and test conditions; the agreement is very good (less than 10% difference). Using the two measurement approaches, extensive flame speed information were obtained for lean syngas mixtures at a range of conditions: (1) 5 to 100% H2 in the H2/CO fuel mixture; (2) 300-700 K preheat temperature; (3) 1 to 15 atm pressure, and (4) 0-70% dilution with CO2 or N2. The second objective of this thesis is to use the flame speed data to validate leading kinetic mechanisms for syngas combustion. Comparisons of the experimental flame speeds to those predicted using

  3. Jet flames of a refuse derived fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Roman; Kupka, Tomasz; Zajac, Krzysztof

    This paper is concerned with combustion of a refuse derived fuel in a small-scale flame. The objective is to provide a direct comparison of the RDF flame properties with properties of pulverized coal flames fired under similar boundary conditions. Measurements of temperature, gas composition (O{sub 2}, CO{sub 2}, CO, NO) and burnout have demonstrated fundamental differences between the coal flames and the RDF flames. The pulverized coals ignite in the close vicinity of the burner and most of the combustion is completed within the first 300 ms. Despite the high volatile content of the RDF, its combustion extends far intomore » the furnace and after 1.8 s residence time only a 94% burnout has been achieved. This effect has been attributed not only to the larger particle size of fluffy RDF particles but also to differences in RDF volatiles if compared to coal volatiles. Substantial amounts of oily tars have been observed in the RDF flames even though the flame temperatures exceeded 1300 C. The presence of these tars has enhanced the slagging propensity of RDF flames and rapidly growing deposits of high carbon content have been observed. (author)« less

  4. Chemistry and toxicity of flame retardants for plastics.

    PubMed Central

    Liepins, R; Pearce, E M

    1976-01-01

    An overview of commercially used flame retardants is give. The most used flame retardants are illustrated and the seven major markets, which use 96% of all flame-retarded polymers, are described. Annual flame retardant growth rate for each major market is also projected. Toxicity data are reviewed on only those compositions that are considered commercially significant today. This includes 18 compounds or families of compounds and four inherently flame-retarded polymers. Toxicological studies of flame retardants for most synthetic materials are of recent origin and only a few of the compounds have been evaluated in any great detail. Considerable toxicological problems may exist in the manufacturing of some flame retardants, their by-products, and possible decomposition products. PMID:1026419

  5. Measurements and Experimental Database Review for Laminar Flame Speed Premixed Ch4/Air Flames

    NASA Astrophysics Data System (ADS)

    Zubrilin, I. A.; Matveev, S. S.; Matveev, S. G.; Idrisov, D. V.

    2018-01-01

    Laminar flame speed (SL ) of CH4 was determined at atmospheric pressure and initial gas temperatures in range from 298 to 358 K. The heat flux method was employed to measure the flame speed in non-stretched flames. The kinetic mechanism GRI 3.0 [1] were used to simulate SL . The measurements were compared with available literature results. The data determined with the heat flux method agree with some previous burner measurements and disagree with the data from some vessel closed method and counterflow method. The GRI 3.0 mechanism was able to reproduce the present experiments. Laminar flame speed was determined at pressures range from of 1 to 20 atmospheres through mechanism GRI 3.0. Based on experimental data and calculations was obtained SL dependence on pressure and temperature. The resulting of dependence recommended use during the numerical simulation of methane combustion.

  6. Physical and Chemical Processes in Turbulent Flames

    DTIC Science & Technology

    2015-06-23

    positive aerodynamics stretch, into a multitude of wrinkled flamelets possessing either positive or negative stretch, such that the intensified...flame surface, such as the flame surface area ratio, build up this global measure. The turbulent flame surface is typically highly wrinkled and folded...consider a filtered/average location of the flame positions to represent a smooth surface. The information contained in the wrinkled surface if

  7. Large Eddy Simulation of Flame Flashback in Swirling Premixed Flames

    NASA Astrophysics Data System (ADS)

    Lietz, Christopher; Raman, Venkatramanan

    2014-11-01

    In the design of high-hydrogen content gas turbines for power generation, flashback of the turbulent flame by propagation through the low velocity boundary layers in the premixing region is an operationally dangerous event. Predictive models that could accurately capture the onset and subsequent behavior of flashback would be indispensable in gas turbine design. The large eddy simulation (LES) approach is used here to model this process. The goal is to examine the validity of a probability distribution function (PDF) based model in the context of a lean premixed flame in a confined geometry. A turbulent swirling flow geometry and corresponding experimental data is used for validation. A suite of LES calculations are performed on a large unstructured mesh for varying fuel compositions operating at several equivalence ratios. It is shown that the PDF based method can predict some statistical properties of the flame front, with improvement over other models in the same application.

  8. Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame

    DOE PAGES

    Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; ...

    2015-07-23

    A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow andmore » relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Suet al.(Combust. Flame, vol. 144 (3), 2006, pp. 494–512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both the streamwise and transverse

  9. KSC Launch Pad Flame Trench Environment Assessment

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.

    2010-01-01

    This report summarizes conditions in the Launch Complex 39 (LC-39) flame trenches during a Space Shuttle Launch, as they have been measured to date. Instrumentation of the flame trench has been carried out by NASA and United Space Alliance for four Shuttle launches. Measurements in the flame trench are planned to continue for the duration of the Shuttle Program. The assessment of the launch environment is intended to provide guidance in selecting appropriate test methods for refractory materials used in the flame trench and to provide data used to improve models of the launch environment in the flame trench.

  10. Transitional Gas Jet Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Alammar, Khalid; Gollahalli, S. R.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Drop tower experiments were performed to identify buoyancy effects in transitional hydrogen gas jet diffusion flames. Quantitative rainbow schlieren deflectometry was utilized to optically visualize the flame and to measure oxygen concentration in the laminar portion of the flame. Test conditions consisted of atmospheric pressure flames burning in quiescent air. Fuel from a 0.3mm inside diameter tube injector was issued at jet exit Reynolds numbers (Re) of 1300 to 1700. Helium mole percentage in the fuel was varied from 0 to 40%. Significant effects of buoyancy were observed in near field of the flame even-though the fuel jets were momentum-dominated. Results show an increase of breakpoint length in microgravity. Data suggest that transitional flames in earth-gravity at Re<1300 might become laminar in microgravity.

  11. Effects of buoyancy on gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Edelman, Raymond B.

    1993-01-01

    The objective of this effort was to gain a better understanding of the fundamental phenomena involved in laminar gas jet diffusion flames in the absence of buoyancy by studying the transient phenomena of ignition and flame development, (quasi-) steady-state flame characteristics, soot effects, radiation, and, if any, extinction phenomena. This involved measurements of flame size and development, as well as temperature and radiation. Additionally, flame behavior, color, and luminosity were observed and recorded. The tests quantified the effects of Reynolds number, nozzle size, fuel reactivity and type, oxygen concentration, and pressure on flame characteristics. Analytical and numerical modeling efforts were also performed. Methane and propane flames were studied in the 2.2 Second Drop Tower and the 5.18-Second Zero-Gravity Facility of NASA LeRC. In addition, a preliminary series of tests were conducted in the KC-135 research aircraft. Both micro-gravity and normal-gravity flames were studied in this program. The results have provided unique and new information on the behavior and characteristics of gas jet diffusion flames in micro-gravity environments.

  12. A Study of Confined Diffusion Flames

    DTIC Science & Technology

    1990-09-04

    Introduction ............................................................................................... 1 11. Numerical Methods and the Model ...numbers but kept the basic idea of the flame sheet model . This paper describes a time-dependent, axisymmetric, compressible nu- merical model which is...June 5, 1990. first uses of the diffusion flame model , we simulate a Burke-Schumann flame and remove the restrictious individually. We present results

  13. Sooting turbulent jet flame: characterization and quantitative soot measurements

    NASA Astrophysics Data System (ADS)

    Köhler, M.; Geigle, K. P.; Meier, W.; Crosland, B. M.; Thomson, K. A.; Smallwood, G. J.

    2011-08-01

    Computational fluid dynamics (CFD) modelers require high-quality experimental data sets for validation of their numerical tools. Preferred features for numerical simulations of a sooting, turbulent test case flame are simplicity (no pilot flame), well-defined boundary conditions, and sufficient soot production. This paper proposes a non-premixed C2H4/air turbulent jet flame to fill this role and presents an extensive database for soot model validation. The sooting turbulent jet flame has a total visible flame length of approximately 400 mm and a fuel-jet Reynolds number of 10,000. The flame has a measured lift-off height of 26 mm which acts as a sensitive marker for CFD model validation, while this novel compiled experimental database of soot properties, temperature and velocity maps are useful for the validation of kinetic soot models and numerical flame simulations. Due to the relatively simple burner design which produces a flame with sufficient soot concentration while meeting modelers' needs with respect to boundary conditions and flame specifications as well as the present lack of a sooting "standard flame", this flame is suggested as a new reference turbulent sooting flame. The flame characterization presented here involved a variety of optical diagnostics including quantitative 2D laser-induced incandescence (2D-LII), shifted-vibrational coherent anti-Stokes Raman spectroscopy (SV-CARS), and particle image velocimetry (PIV). Producing an accurate and comprehensive characterization of a transient sooting flame was challenging and required optimization of these diagnostics. In this respect, we present the first simultaneous, instantaneous PIV, and LII measurements in a heavily sooting flame environment. Simultaneous soot and flow field measurements can provide new insights into the interaction between a turbulent vortex and flame chemistry, especially since soot structures in turbulent flames are known to be small and often treated in a statistical manner.

  14. Interaction of a vortex and a premixed flame

    NASA Technical Reports Server (NTRS)

    Ferziger, Joel H.; Rutland, Christopher J.

    1989-01-01

    The interaction of a vortex structure and a premixed flame is studied. The presence of pressure gradients in the vortex and density gradients in the flame result in a complicated interaction. This interaction has been examined when the flame and vortex are fully coupled and in two special cases where they are decoupled: a frozen flame case and a frozen vortex case. In the frozen flame case the main effect of the flame on the vortex is through the barocline torque term. This has been modeled for high Damkoehler numbers. In the frozen vortex case the main effect, at moderate Damkoehler numbers, is to convect the flame around the vortex. At low Damkoehler numbers, depending on the length scales, pockets of unburned gas can form or the flame structure can be significantly changed. The two frozen cases provide a basis for understanding the full interaction.

  15. A Dramatic Flame Test Demonstration.

    ERIC Educational Resources Information Center

    Johnson, Kristin A.; Schreiner, Rodney

    2001-01-01

    Flame tests are used for demonstration of atomic structure. Describes a demonstration that uses spray bottles filled with methanol and a variety of salts to produce a brilliantly colored flame. (Contains 11 references.) (ASK)

  16. Flame-vortex interactions imaged in microgravity

    NASA Technical Reports Server (NTRS)

    Driscoll, James F.; Dahm, Werner J. A.; Sichel, Martin

    1995-01-01

    The scientific objective is to obtain high quality color-enhanced digital images of a vortex exerting aerodynamic strain on premixed and nonpremixed flames with the complicating effects of buoyancy removed. The images will provide universal (buoyancy free) scaling relations that are required to improve several types of models of turbulent combustion, including KIVA-3, discrete vortex, and large-eddy simulations. The images will be used to help quantify several source terms in the models, including those due to flame stretch, flame-generated vorticity, flame curvature, and preferential diffusion, for a range of vortex sizes and flame conditions. The experiment is an ideal way to study turbulence-chemistry interactions and isolate the effect of vortices of different sizes and strengths in a repeatable manner. A parallel computational effort is being conducted which considers full chemistry and preferential diffusion.

  17. Outwardly Propagating Flames at Elevated Pressures

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Rozenchan, G.; Tse, S. D.; Zhu, D. L.

    2001-01-01

    Spherical, outwardly-propagating flames of CH4-O2-inert and H2-O2-inert mixtures were experimentally studied in a high pressure apparatus. Stretch-free flame speeds and Markstein lengths were extracted for a wide range of pressures and equivalence ratios for spherically-symmetric, smooth flamefronts and compared to numerical computations with detailed chemistry and transport, as well as existing data in the literature. Wrinkle development was examined for propagating flames that were unstable under our experimental conditions. Hydrodynamic cells developed for most H2-air and CH4-air flames at elevated pressures, while thermal-diffusive instabilities were also observed for lean and near-stoichiometric hydrogen flames at pressures above atmospheric. Strategies in suppressing or delaying the onset of cell formation have been assessed. Buoyancy effects affected sufficiently off-stoichiometric CH4 mixtures at high pressures.

  18. Laser-saturated fluorescence measurements in laminar sooting diffusion flames

    NASA Technical Reports Server (NTRS)

    Wey, Changlie

    1993-01-01

    The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.

  19. Digital image analysis of a turbulent flame

    NASA Astrophysics Data System (ADS)

    Zucherman, L.; Kawall, J. G.; Keffer, J. F.

    1988-01-01

    Digital image analysis of cine pictures of an unconfined rich premixed turbulent flame has been used to determine structural characteristics of the turbulent/non-turbulent interface of the flame. The results, comprising various moments of the interface position, probability density functions and correlation functions, establish that the instantaneous flame-interface position is essentially a Gaussian random variable with a superimposed quasi-periodical component. The latter is ascribable to a pulsation caused by the convection and the stretching of ring vortices present within the flame. To a first approximation, the flame can be considered similar to a three-dimensional axisymmetric turbulent jet, with superimposed ring vortices, in which combustion occurs.

  20. A spray flamelet/progress variable approach combined with a transported joint PDF model for turbulent spray flames

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Olguin, Hernan; Gutheil, Eva

    2017-05-01

    A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new

  1. Premixed Flames Under Microgravity and Normal Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Krikunova, Anastasia I.; Son, Eduard E.

    2018-03-01

    Premixed conical CH4-air flames were studied experimentally and numerically under normal straight, reversed gravity conditions and microgravity. Low-gravity experiments were performed in Drop tower. Classical Bunsen-type burner was used to find out features of gravity influence on the combustion processes. Mixture equivalence ratio was varied from 0.8 to 1.3. Wide range of flow velocity allows to study both laminar and weakly turbulized flames. High-speed flame chemoluminescence video-recording was used as diagnostic. The investigations were performed at atmospheric pressure. As results normalized flame height, laminar flame speed were measured, also features of flame instabilities were shown. Low- and high-frequency flame-instabilities (oscillations) have a various nature as velocity fluctuations, preferential diffusion instability, hydrodynamic and Rayleigh-Taylor ones etc., that was explored and demonstrated.

  2. Numerical solution of the full potential equation using a chimera grid approach

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1995-01-01

    A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.

  3. Flame spread across liquid pools

    NASA Technical Reports Server (NTRS)

    Ross, Howard; Miller, Fletcher; Schiller, David; Sirignano, William A.

    1993-01-01

    For flame spread over liquid fuel pools, the existing literature suggests three gravitational influences: (1) liquid phase buoyant convection, delaying ignition and assisting flame spread; (2) hydrostatic pressure variation, due to variation in the liquid pool height caused by thermocapillary-induced convection; and (3) gas-phase buoyant convection in the opposite direction to the liquid phase motion. No current model accounts for all three influences. In fact, prior to this work, there was no ability to determine whether ignition delay times and flame spread rates would be greater or lesser in low gravity. Flame spread over liquid fuel pools is most commonly characterized by the relationship of the initial pool temperature to the fuel's idealized flash point temperature, with four or five separate characteristic regimes having been identified. In the uniform spread regime, control has been attributed to: (1) gas-phase conduction and radiation; (2) gas-phase conduction only; (3) gas-phase convection and liquid conduction, and most recently (4) liquid convection ahead of the flame. Suggestions were made that the liquid convection was owed to both vuoyancy and thermocapillarity. Of special interest to this work is the determination of whether, and under what conditions, pulsating spread can and will occur in microgravity in the absence of buoyant flows in both phases. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity experiments and advanced diagnostics; (2) microgravity experiments; and (3) numerical modelling at arbitrary gravitational level.

  4. Preparation and characterizations of flame retardant polyamide 66 fiber

    NASA Astrophysics Data System (ADS)

    Li, Y. Y.; Liu, K.; Xiao, R.

    2017-06-01

    The polyamide 66 (PA66) is one of the most important thermoplastic materials, but it has the drawback of flammability. So the flame retardant PA66 was prepared by condensation polymerization using nylon salt and DOPO-based flame retardant in this paper. Then the flame retardant PA66 fiber was manufactured via melt spinning. The properties of flame retardant PA66 and flame retardant PA66 fiber were investigated by relative viscosity, differential scanning calorimetry (DSC), tensile test, vertical burning test (UL94) and limiting oxygen index (LOI) test. Although the loading of the DOPO-based flame retardant decreased the molecular weight, the melting temperature, the crystallinity and the mechanical properties of flame retardant PA66, the flame retardancy properties improved. The flame retardant PA66 loaded with 5.5 wt% of DOPO-based flame retardant can achieve a UL94 V-0 rating with a LOI value of 32.9%. The tenacity at break decreased from 4.51 cN·dtex-1 for PA66 fiber to 2.82 cN·dtex-1 for flame retardant PA66 fiber which still satisfied the requirements for fabrics. The flame retardant PA66 fiber expanded the application of PA66 materials which had a broad developing prospect.

  5. Flame resistant elastic elastomeric fibers

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Massucco, A. A.

    1972-01-01

    Development of materials to improve flame resistance of elastic elastomeric fibers is discussed. Two approaches, synthesis of polyether based urethanes and modification of synthesized urethanes with flame ratardant additives, are described. Specific applications of both techniques are presented.

  6. Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, R. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of nonbuoyant round laminar jet diffusion flames were studied emphasizing results from long duration (100-230 s) experiments at microgravity carried -out on- orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-and propane-fueled flames burning in still air at an ambient temperature of 300 K, initial jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-1630 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. The onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with first soot emissions along the flame axis and open-tip flames with first soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip; nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well-correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than earlier tests of nonbuoyant flames at microgravity using ground-based facilities and of buoyant flames at normal gravity due to reduced effects of unsteadiness, flame disturbances and buoyant motion. For example, laminar smoke-point flame lengths from ground-based microgravity measurements were up to 2.3 times longer and from buoyant flame measurements were up to 6.4 times longer than the present measurements at comparable conditions. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure, which is a somewhat slower variation than observed during earlier tests both at microgravity using ground-based facilities and at normal

  7. Gridded rainfall estimation for distributed modeling in western mountainous areas

    NASA Astrophysics Data System (ADS)

    Moreda, F.; Cong, S.; Schaake, J.; Smith, M.

    2006-05-01

    Estimation of precipitation in mountainous areas continues to be problematic. It is well known that radar-based methods are limited due to beam blockage. In these areas, in order to run a distributed model that accounts for spatially variable precipitation, we have generated hourly gridded rainfall estimates from gauge observations. These estimates will be used as basic data sets to support the second phase of the NWS-sponsored Distributed Hydrologic Model Intercomparison Project (DMIP 2). One of the major foci of DMIP 2 is to better understand the modeling and data issues in western mountainous areas in order to provide better water resources products and services to the Nation. We derive precipitation estimates using three data sources for the period of 1987-2002: 1) hourly cooperative observer (coop) gauges, 2) daily total coop gauges and 3) SNOw pack TELemetry (SNOTEL) daily gauges. The daily values are disaggregated using the hourly gauge values and then interpolated to approximately 4km grids using an inverse-distance method. Following this, the estimates are adjusted to match monthly mean values from the Parameter-elevation Regressions on Independent Slopes Model (PRISM). Several analyses are performed to evaluate the gridded estimates for DMIP 2 experiments. These gridded inputs are used to generate mean areal precipitation (MAPX) time series for comparison to the traditional mean areal precipitation (MAP) time series derived by the NWS' California-Nevada River Forecast Center for model calibration. We use two of the DMIP 2 basins in California and Nevada: the North Fork of the American River (catchment area 885 sq. km) and the East Fork of the Carson River (catchment area 922 sq. km) as test areas. The basins are sub-divided into elevation zones. The North Fork American basin is divided into two zones above and below an elevation threshold. Likewise, the Carson River basin is subdivided in to four zones. For each zone, the analyses include: a) overall

  8. Effectiveness of Flame Retardants in TufFoam.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abelow, Alexis Elizabeth; Nissen, April; Massey, Lee Taylor

    An investigation of polyurethane foam filled with known flame retardant fillers including hydroxides, melamine, phosphate-containing compounds, and melamine phosphates was carried out to produce a low-cost material with high flame retardant efficiency. The impact of flame retardant fillers on the physical properties such a s composite foam density, glass transition temperature, storage modulus, and thermal expansion of composite foams was investigated with the goal of synthesizing a robust rigid foam with excellent flame retardant properties.

  9. Edge Diffusion Flame Propagation and Stabilization Studied

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2004-01-01

    In most practical combustion systems or fires, fuel and air are initially unmixed, thus forming diffusion flames. As a result of flame-surface interactions, the diffusion flame often forms an edge, which may attach to burner walls, spread over condensed fuel surfaces, jump to another location through the fuel-air mixture formed, or extinguish by destabilization (blowoff). Flame holding in combustors is necessary to achieve design performance and safe operation of the system. Fires aboard spacecraft behave differently from those on Earth because of the absence of buoyancy in microgravity. This ongoing in-house flame-stability research at the NASA Glenn Research Center is important in spacecraft fire safety and Earth-bound combustion systems.

  10. Simultaneous particle image velocimetry and chemiluminescence visualization of millisecond-pulsed current-voltage-induced perturbations of a premixed propane/air flame

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob; Kostka, Stanislav; Lynch, Amy; Ganguly, Biswa

    2011-09-01

    The effects of millisecond-wide, pulsed current-voltage-induced behavior in premixed laminar flames have been investigated through the simultaneous collection of particle image velocimetry (PIV) and chemiluminescence data with particular attention paid to the onset mechanisms. Disturbances caused by applied voltages of 2 kV over a 30-mm gap to a downward propagating, atmospheric pressure, premixed propane/air flame with a flow speed near 2 m/s and an equivalence ratio of 1.06 are investigated. The combined PIV and chemiluminescence-based experimental data show the observed disturbance originates only in or near the cathode fall region very close to the burner base. The data also suggest that the coupling mechanism responsible for the flame disturbance behavior is fluidic in nature, developing from the radial positive chemi-ion distribution and an ion-drift current-induced net body force that acts along the annular space discharge distribution in the reaction zone in or near the cathode fall. This net body force causes a reduction in flow speed above these near cathodic regions causing the base of the flame to laterally spread. Also, this effect seems to produce a velocity gradient leading to the transition of a laminar flame to turbulent combustion for higher applied current-voltage conditions as shown in previous work (Marcum and Ganguly in Combust Flame 143:27-36, 2005; Schmidt and Ganguly in 48th AIAA aerospace sciences meeting. Orlando, 2010).

  11. Suppression and Structure of Low Strain Rate Nonpremixed Flames

    NASA Technical Reports Server (NTRS)

    Hamins, Anthony; Bundy, Matthew; Park, Woe Chul; Lee, Ki Yong; Logue, Jennifer

    2003-01-01

    The agent concentration required to achieve suppression of low strain rate nonpremixed flames is an important fire safety consideration. In a microgravity environment such as a space platform, unwanted fires will likely occur in near quiescent conditions where strain rates are very low. Diffusion flames typically become more robust as the strain rate is decreased. When designing a fire suppression system for worst-case conditions, low strain rates should be considered. The objective of this study is to investigate the impact of radiative emission, flame strain, agent addition, and buoyancy on the structure and extinction of low strain rate nonpremixed flames through measurements and comparison with flame simulations. The suppression effectiveness of a suppressant (N2) added to the fuel stream of low strain rate methane-air diffusion flames was measured. Flame temperature measurements were attained in the high temperature region of the flame (T greater than 1200 K) by measurement of thin filament emission intensity. The time varying temperature was measured and simulated as the flame made the transition from normal to microgravity conditions and as the flame extinguished.

  12. The propagation of premixed flames in closed tubes

    NASA Astrophysics Data System (ADS)

    Matalon, Moshe; Metzener, Philippe

    1997-04-01

    A nonlinear evolution equation that describes the propagation of a premixed flame in a closed tube has been derived from the general conservation equations. What distinguishes it from other similar equations is a memory term whose origin is in the vorticity production at the flame front. The two important parameters in this equation are the tube's aspect ratio and the Markstein parameter. A linear stability analysis indicates that when the Markstein parameter [alpha] is above a critical value [alpha]c the planar flame is the stable equilibrium solution. For [alpha] below [alpha]c the planar flame is no longer stable and there is a band of growing modes. Numerical solutions of the full nonlinear equation confirm this conclusion. Starting with random initial conditions the results indicate that, after a short transient, a at flame develops when [alpha]>[alpha]c and it remains flat until it reaches the end of the tube. When [alpha]<[alpha]c, on the other hand, stable curved flames may develop down the tube. Depending on the initial conditions the flame assumes either a cellular structure, characterized by a finite number of cells convex towards the unburned gas, or a tulip shape characterized by a sharp indentation at the centre of the tube pointing toward the burned gases. In particular, if the initial conditions are chosen so as to simulate the elongated finger-like flame that evolves from an ignition source, a tulip flame evolves downstream. In accord with experimental observations the tulip shape forms only after the flame has travelled a certain distance down the tube, it does not form in short tubes and its formation depends on the mixture composition. While the initial deformation of the flame front is a direct result of the hydrodynamic instability, the actual formation of the tulip flame results from the vortical motion created in the burned gas which is a consequence of the vorticity produced at the flame front.

  13. Morphology and nano-structure analysis of soot particles sampled from high pressure diesel jet flames under diesel-like conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Li, Tie; Wang, Yifeng; He, Pengfei

    2018-04-01

    Soot particles emitted from diesel engines have a significant impact on the atmospheric environment. Detailed understanding of soot formation and oxidation processes is helpful for reducing the pollution of soot particles, which requires information such as the size and nano-structure parameters of the soot primary particles sampled in a high-temperature and high-pressure diesel jet flame. Based on the thermophoretic principle, a novel sampling probe minimally disturbing the diesel jet flame in a constant volume combustion vessel is developed for analysing soot particles. The injected quantity of diesel fuel is less than 10 mg, and the soot particles sampled by carriers with a transmission electron microscope (TEM) grid and lacey TEM grid can be used to analyse the morphologies of soot aggregates and the nano-structure of the soot primary particles, respectively. When the quantity of diesel fuel is more than 10 mg, in order to avoid burning-off of the carriers in higher temperature and pressure conditions, single-crystal silicon chips are employed. Ultrasonic oscillations and alcohol extraction are then implemented to obtain high quality soot samples for observation using a high-resolution transmission electron microscope. An in-house Matlab-based code is developed to extract the nano-structure parameters of the soot particles. A complete sampling and analysis procedure of the soot particles is provided to study the formation and oxidation mechanism of soot.

  14. Relative Radiation Density and Temperature Distribution of Rocket Flames

    DTIC Science & Technology

    1951-07-10

    traversed along the axis of the flame image to determine the flame length and the position of the Mach nodes. Other traverses were made across the...variation is due to different stages of flame growth. Other variations especially those of 2 6• flame length , can be accounted for by dif- U L L ference...The temperature gradient is considerably less at the tip of the flame and by similar reasoning would give greater variation in flame length . The problem

  15. The role of boron in flame-retardant treatments

    Treesearch

    S. L. LeVan; H. C. Tran

    1990-01-01

    Flame retardants for wood alter the combustion properties of wood to reduce surface flame spread. Flame retardant chemicals cause acid catalyzed dehydration reactions in wood to facilitate the formation of char and reduce the effective heat of combustion, resulting in lower heat release and flame spread. Boron compounds can also form glassy fiis that may inhibit mass...

  16. Computational predictions of flame spread over alcohol pools

    NASA Technical Reports Server (NTRS)

    Schiller, D. N.; Ross, H. D.; Sirignano, W. A.

    1993-01-01

    The effects of buoyancy and thermocapillarity on pulsating and uniform flame spread above n-propanol fuel pools have been studied using a numerical model. Data obtained indicate that the existence of pulsating flame spread is dependent upon the formation of a gas-phase recirculation cell which entrains evaporating fuel vapor in front of the leading edge of the flame. The size of the recirculation cell which is affected by the extent of liquid motion ahead of the flame, is shown to dictate whether flame spread is uniform or pulsating. The amplitude and period of the flame pulsations are found to be proportional to the maximum extent of the flow head. Under conditions considered, liquid motion was not affected appreciably by buoyancy. Horizontal convection in the liquid is the dominant mechanism for transporting heat ahead of the flame for both the pulsating and uniform regimes.

  17. Public health implications of components of plastics manufacture. Flame retardants.

    PubMed Central

    Pearce, E M; Liepins, R

    1975-01-01

    The four processes involved in the flammability of materials are described and related to the various flame retardance mechanisms that may operate. Following this the four practical approaches used in improving flame retardance of materials are described. Each approach is illustrated with a number of typical examples of flame retardants or synthetic procedures used. This overview of flammability, flame retardance, and flame retardants used is followed by a more detailed examination of most of the plastics manufactured in the United States during 1973, their consumption patterns, and the primary types of flame retardants used in the flame retardance of the most used plastics. The main types of flame retardants are illustrated with a number of typical commercial examples. Statistical data on flame retardant market size, flame retardant growth in plastics, and price ranges of common flame retardants are presented. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. PMID:1175568

  18. Zone heated inlet ignited diesel particulate filter regeneration

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2012-06-26

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that is disposed downstream of the engine and that filters particulates from the exhaust; and a grid that includes electrically resistive material that is segmented by non-conductive material into a plurality of zones and wherein the grid is applied to an exterior upstream surface of the PF.

  19. Dynamics of the transition zone in coastal zone color scanner-sensed ocean color in the North Pacific during oceanographic spring

    NASA Technical Reports Server (NTRS)

    Glover, David M.; Wroblewski, J. S.; Mcclain, Charles R.

    1994-01-01

    A transition zone in phytoplankton concentration running across the North Pacific basin at 30 deg to 40 deg north latitude corresponds to a basin-wide front in surface chlorophyll observed in a composite of coastal zone color scanner (CZCS) images for May, June, and July 1979-1986. This transition zone with low chlorophyll to the south and higher chlorophyll to the north can be simulated by a simple model of the concentration of phytoplankton, zooplankton, and dissolved nutrient (nitrate) in the surface mixed layer of the ocean applied to the North Pacific basin for the climatological conditions during oceanographic springtime (May, June, and July). The model is initialized with a 1 deg x 1 deg gridded estimate of wintertime (February, March, and April) mixed layer nitrate concentrations calculated from an extensive nutrient database and a similarly gridded mixed layer depth data set. Comparison of model predictions with CZCS data provides a means of evaluating the dynamics of the transition zone. We conclude that in the North Pacific, away from major boundary currents and coastal upwelling zones, wintertime vertical mixing determines the total nutrient available to the plankton ecosystem in the spring. The transition zone seen in basin-scale CZCS images is a reflection of the geographic variation in the wintertime mixed layer depth and the nitracline, leading to a latitudinal gradient in phytoplankton chlorophyll.

  20. Analysis of flame spread over multicomponent combustibles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtani, H.; Sato, J.

    1985-01-01

    A theoretical model of volatile component diffusion in the condensed phase is carried out in order to form a basis for predicting the flame spread rate in thermally thick multicomponent combustibles in a non-fluid condensed phase. The fuels could be, e.g., crude oil, heavy oil, or light oil. Mass transfer occurs only by diffusion so the gas phase volatile concentration at the surface is estimated from the condensed phase volatile concentration and the surface temperature, which increases close to the leading flame edge. The flame spread rate is assumed steady. The velocity of the flame spread is shown to bemore » a function of the initial condensed phase temperature and the temperature at the leading flame edge.« less

  1. A Theory of Oscillating Edge Flames

    NASA Technical Reports Server (NTRS)

    Buckmaster, J.; Zhang, Yi

    1999-01-01

    It has been known for some years that when a near-limit flame spreads over a liquid pool of fuel, the edge of the flame can oscillate relative to a frame moving with the mean speed. Each period of oscillation is characterized by long intervals of modest motion during which the edge gases radiate like those of a diffusion flame, punctuated by bursts of rapid advance during which the edge gases radiate like those in a deflagration. Substantial resources have been brought to bear on this issue within the microgravity program, both experimental and numerical. It is also known that when a near-asphyxiated candle-flame burns at zero gravity, the edge of the (hemispherical) flame can oscillate violently prior to extinction. Thus a web-surfer, turning to the NASA web-site at http://microgravity.msfc.nasa.gov, and following the trail combustion science/experiments/experimental results/candle flame, will find photographs and a description of candle burning experiments carried out on board both the Space-shuttle and the Russian space station Mir. A brief report can also be found in the proceedings of the Fourth Workshop. And recently, in a third microgravity program, the leading edge of the flame supported by injection of ethane through the porous surface of a plate over which air is blown has been found to oscillate when conditions are close to blow-off. A number of important points can be made with respect to these observations: It is the edge itself which oscillates, advancing and retreating, not the diffusion flame that trails behind the edge; oscillations only occur under near limit conditions; in each case the Lewis number of the fuel is significantly larger than 1; and because of the edge curvature, the heat losses from the reacting edge structure are larger than those from the trailing diffusion flame. We propose a general theory for these oscillations, invoking Occam's 'Law of Parsimony' in an expanded form, to wit: The same mechanism is responsible for the

  2. Launch Pad Flame Trench Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Bucherl, Cori; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark; Perusich, Steve; Whitten, Mary

    2010-01-01

    The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of

  3. Propagation of a Free Flame in a Turbulent Gas Stream

    NASA Technical Reports Server (NTRS)

    Mickelsen, William R; Ernstein, Norman E

    1956-01-01

    Effective flame speeds of free turbulent flames were measured by photographic, ionization-gap, and photomultiplier-tube methods, and were found to have a statistical distribution attributed to the nature of the turbulent field. The effective turbulent flame speeds for the free flame were less than those previously measured for flames stabilized on nozzle burners, Bunsen burners, and bluff bodies. The statistical spread of the effective turbulent flame speeds was markedly wider in the lean and rich fuel-air-ratio regions, which might be attributed to the greater sensitivity of laminar flame speed to flame temperature in those regions. Values calculated from the turbulent free-flame-speed analysis proposed by Tucker apparently form upper limits for the statistical spread of free-flame-speed data. Hot-wire anemometer measurements of the longitudinal velocity fluctuation intensity and longitudinal correlation coefficient were made and were employed in the comparison of data and in the theoretical calculation of turbulent flame speed.

  4. Flame Suppression Agent, System and Uses

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2013-01-01

    Aqueous droplets encapsulated in a flame retardant polymer are useful in suppressing combustion. Upon exposure to a flame, the encapsulated aqueous droplets rupture and vaporize, removing heat and displacing oxygen to retard the combustion process. The polymer encapsulant, through decomposition, may further add free radicals to the combustion atmosphere, thereby further retarding the combustion process. The encapsulated aqueous droplets may be used as a replacement to halon, water mist and dry powder flame suppression systems.

  5. Kinetics of Chemical Reactions in Flames

    NASA Technical Reports Server (NTRS)

    Zeldovich, Y.; Semenov, N.

    1946-01-01

    In part I of the paper the theory of flame propagation is developed along the lines followed by Frank-Kamenetsky and one of the writers. The development of chain processes in flames is considered. A basis is given for the application of the method of stationary concentrations to reactions in flames; reactions with branching chains are analyzed. The case of a diffusion coefficient different from the coefficient of temperature conductivity is considered.

  6. Flame Structure of Vitiated Fuel-Rich Inverse Diffusion Flames in a Cross-Flow (Postprint)

    DTIC Science & Technology

    2011-12-01

    downstream of the slot. The flame length increases as the blowing ratio increases as a result of the greater mass of air which reacts. Ignition of...attributed to the greater penetration of the jet into the cross-stream. It is noted that the flame lengths are similar for the different blowing ratios

  7. Fluidized bed coal combustion reactor

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  8. Ethanol turbulent spray flame response to gas velocity modulation

    NASA Astrophysics Data System (ADS)

    Fratalocchi, Virginia; Kok, Jim B. W.

    2018-01-01

    A numerical investigation of the interaction between a spray flame and an acoustic forcing of the velocity field is presented in this paper. In combustion systems, a thermoacoustic instability is the result of a process of coupling between oscillations in heat released and acoustic waves. When liquid fuels are used, the atomisation and the evaporation process also undergo the effects of such instabilities, and the computational fluid dynamics of these complex phenomena becomes a challenging task. In this paper, an acoustic perturbation is applied to the mass flow of the gas phase at the inlet and its effect on the evaporating fuel spray and on the flame front is investigated with unsteady Reynolds averaged Navier-Stokes numerical simulations. Two flames are simulated: a partially premixed ethanol/air spray flame and a premixed pre-vaporised ethanol/air flame, with and without acoustic forcing. The frequencies used to perturb the flames are 200 and 2500 Hz, which are representative for two different regimes. Those regimes are classified based on the Strouhal number St = (D/U)ff: at 200 Hz, St = 0.07, and at 2500 Hz, St = 0.8. The exposure of the flame to a 200 Hz signal results in a stretching of the flame which causes gas field fluctuations, a delay of the evaporation and an increase of the reaction rate. The coupling between the flame and the flow excitation is such that the flame breaks up periodically. At 2500 Hz, the evaporation rate increases but the response of the gas field is weak and the flame is more stable. The presence of droplets does not play a crucial role at 2500 Hz, as shown by a comparison of the discrete flame function in the case of spray and pre-vaporised flame. At low Strouhal number, the forced response of the pre-vaporised flame is much higher compared to that of the spray flame.

  9. DNS of turbulent premixed slot flames with mixture inhomogeneity: a study of NOx formation

    NASA Astrophysics Data System (ADS)

    Luca, Stefano; Attili, Antonio; Bisetti, Fabrizio

    2016-11-01

    A set of Direct Numerical Simulations of three-dimensional methane/air lean flames in a spatially developing turbulent slot burner are performed. The flames are in the thin-reaction zone regimes and the jet Reynolds number is 5600. This configuration is of interest since it displays turbulent production by mean shear as in real devices. The gas phase hydrodynamics are modeled with the reactive, unsteady Navier-Stokes equations in the low Mach number limit. Combustion is treated with finite-rate chemistry. The jet is characterized by a non-uniform equivalence ratio at the inlet and varying levels of incomplete premixing for the methane/air mixture are considered. The global equivalence ratio is 0.7 and temperature is 800 K. All simulations are performed at 4 atm. The instantaneous profiles of the mass fractions of methane and air at the inlet are sampled from a set of turbulent channel simulations that provide realistic, fully turbulent fields. The data are analyzed to study the influence of partial premixing on the flame structure. Particular focus is devoted to the assessment of heat release rate fluctuations and NOx formation. In particular, the effects of partial premixing on the production rates for the various pathways to NOx formation are investigated.

  10. Effect of Wind Velocity on Flame Spread in Microgravity

    NASA Technical Reports Server (NTRS)

    Prasad, Kuldeep; Olson, Sandra L.; Nakamura, Yuji; Fujita, Osamu; Nishizawa, Katsuhiro; Ito, Kenichi; Kashiwagi, Takashi; Simons, Stephen N. (Technical Monitor)

    2002-01-01

    A three-dimensional, time-dependent model is developed describing ignition and subsequent transition to flame spread over a thermally thin cellulosic sheet heated by external radiation in a microgravity environment. A low Mach number approximation to the Navier Stokes equations with global reaction rate equations describing combustion in the gas phase and the condensed phase is numerically solved. The effects of a slow external wind (1-20 cm/s) on flame transition are studied in an atmosphere of 35% oxygen concentration. The ignition is initiated at the center part of the sample by generating a line-shape flame along the width of the sample. The calculated results are compared with data obtained in the 10s drop tower. Numerical results exhibit flame quenching at a wind speed of 1.0 cm/s, two localized flames propagating upstream along the sample edges at 1.5 cm/s, a single line-shape flame front at 5.0 cm/s, three flames structure observed at 10.0 cm/s (consisting of a single line-shape flame propagating upstream and two localized flames propagating downstream along sample edges) and followed by two line-shape flames (one propagating upstream and another propagating downstream) at 20.0 cm/s. These observations qualitatively compare with experimental data. Three-dimensional visualization of the observed flame complex, fuel concentration contours, oxygen and reaction rate isosurfaces, convective and diffusive mass flux are used to obtain a detailed understanding of the controlling mechanism, Physical arguments based on lateral diffusive flux of oxygen, fuel depletion, oxygen shadow of the flame and heat release rate are constructed to explain the various observed flame shapes.

  11. Stability and Behaviors of Methane/Propane and Hydrogen Micro Flames

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Takamitsu; Kinoshita, Koichiro; Kitamura, Hideki; Tanigawa, Ryoichi

    The flame stability limits essentially define the fundamental operation of the combustion system. Recently the micro diffusion flame has been remarked. The critical conditions of the flame stability limit are highly dependent on nozzle diameter, species of fuel and so on. The micro diffusion flame of Methane/Propane and Hydrogen is formed by using the micro-scale nozzle of which inner diameter is less than 1mm. The configurations and behaviors of the flame are observed directly and visualized by the high speed video camera The criteria of stability limits are proposed for the micro diffusion flame. The objectives of the present study are to get further understanding of lifting/blow-off for the micro diffusion flame. The results obtained are as follows. (1) The behaviors of the flames are classified into some regions for each diffusion flame. (2) The micro diffusion flame of Methane/Propane cannot be sustained, when the nozzle diameter is less than 0.14 mm. (3) The diffusion flame cannot be sustained below the critical fuel flow rate. (4) The minimum flow which is formed does not depends on the average jet velocity, but on the fuel flow rate. (5) the micro flame is laminar. The flame length is decided by fuel flow rate.

  12. Modulation of a methane Bunsen flame by upstream perturbations

    NASA Astrophysics Data System (ADS)

    de Souza, T. Cardoso; Bastiaans, R. J. M.; De Goey, L. P. H.; Geurts, B. J.

    2017-04-01

    In this paper the effects of an upstream spatially periodic modulation acting on a turbulent Bunsen flame are investigated using direct numerical simulations of the Navier-Stokes equations coupled with the flamelet generated manifold (FGM) method to parameterise the chemistry. The premixed Bunsen flame is spatially agitated with a set of coherent large-scale structures of specific wave-number, K. The response of the premixed flame to the external modulation is characterised in terms of time-averaged properties, e.g. the average flame height ⟨H⟩ and the flame surface wrinkling ⟨W⟩. Results show that the flame response is notably selective to the size of the length scales used for agitation. For example, both flame quantities ⟨H⟩ and ⟨W⟩ present an optimal response, in comparison with an unmodulated flame, when the modulation scale is set to relatively low wave-numbers, 4π/L ≲ K ≲ 6π/L, where L is a characteristic scale. At the agitation scales where the optimal response is observed, the average flame height, ⟨H⟩, takes a clearly defined minimal value while the surface wrinkling, ⟨W⟩, presents an increase by more than a factor of 2 in comparison with the unmodulated reference case. Combined, these two response quantities indicate that there is an optimal scale for flame agitation and intensification of combustion rates in turbulent Bunsen flames.

  13. Flame spread along thermally thick horizontal rods

    NASA Astrophysics Data System (ADS)

    Higuera, F. J.

    2002-06-01

    An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.

  14. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartula, Renata J.; Ghandhi, Jaal B.; Sanders, Scott T.; Mierkiewicz, Edwin J.; Roesler, Fred L.; Harlander, John M.

    2007-12-01

    We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span ~308-310 nm with a resolution of 0.03 nm, even though an extended source (extent of ~2×10-7 m2 rad2) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines.

  15. Trends in life science grid: from computing grid to knowledge grid.

    PubMed

    Konagaya, Akihiko

    2006-12-18

    Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  16. A solution-adaptive hybrid-grid method for the unsteady analysis of turbomachinery

    NASA Technical Reports Server (NTRS)

    Mathur, Sanjay R.; Madavan, Nateri K.; Rajagopalan, R. G.

    1993-01-01

    A solution-adaptive method for the time-accurate analysis of two-dimensional flows in turbomachinery is described. The method employs a hybrid structured-unstructured zonal grid topology in conjunction with appropriate modeling equations and solution techniques in each zone. The viscous flow region in the immediate vicinity of the airfoils is resolved on structured O-type grids while the rest of the domain is discretized using an unstructured mesh of triangular cells. Implicit, third-order accurate, upwind solutions of the Navier-Stokes equations are obtained in the inner regions. In the outer regions, the Euler equations are solved using an explicit upwind scheme that incorporates a second-order reconstruction procedure. An efficient and robust grid adaptation strategy, including both grid refinement and coarsening capabilities, is developed for the unstructured grid regions. Grid adaptation is also employed to facilitate information transfer at the interfaces between unstructured grids in relative motion. Results for grid adaptation to various features pertinent to turbomachinery flows are presented. Good comparisons between the present results and experimental measurements and earlier structured-grid results are obtained.

  17. Determining and representing width of soil boundaries using electrical conductivity and MultiGrid

    NASA Astrophysics Data System (ADS)

    Greve, Mogens Humlekrog; Greve, Mette Balslev

    2004-07-01

    In classical soil mapping, map unit boundaries are considered crisp even though all experienced survey personnel are aware of the fact, that soil boundaries really are transition zones of varying width. However, classification of transition zone width on site is difficult in a practical survey. The objective of this study is to present a method for determining soil boundary width and a way of representing continuous soil boundaries in GIS. A survey was performed using the non-contact conductivity meter EM38 from Geonics Inc., which measures the bulk Soil Electromagnetic Conductivity (SEC). The EM38 provides an opportunity to classify the width of transition zones in an unbiased manner. By calculating the spatial rate of change in the interpolated EM38 map across the crisp map unit delineations from a classical soil mapping, a measure of transition zone width can be extracted. The map unit delineations are represented as transition zones in a GIS through a concept of multiple grid layers, a MultiGrid. Each layer corresponds to a soil type and the values in a layer represent the percentage of that soil type in each cell. As a test, the subsoil texture was mapped at the Vindum field in Denmark using both the classical mapping method with crisp representation of the boundaries and the new map with MultiGrid and continuous boundaries. These maps were then compared to an independent reference map of subsoil texture. The improvement of the prediction of subsoil texture, using continuous boundaries instead of crisp, was in the case of the Vindum field, 15%.

  18. Turbulent structure and emissions of strongly-pulsed jet diffusion flames

    NASA Astrophysics Data System (ADS)

    Fregeau, Mathieu

    This current research project studied the turbulent flame structure, the fuel/air mixing, the combustion characteristics of a nonpremixed pulsed (unsteady) and unpulsed (steady) flame configuration for both normal- and microgravity conditions, as well as the flame emissions in normal gravity. The unsteady flames were fully-modulated, with the fuel flow completely shut off between injection pulses using an externally controlled valve, resulting in the generation of compact puff-like flame structures. Conducting experiments in normal and microgravity environments enabled separate control over the relevant Richardson and Reynolds numbers to clarify the influence of buoyancy on the flame behavior, mixing, and structure. Experiments were performed in normal gravity in the laboratory at the University of Washington and in microgravity using the NASA GRC 2.2-second Drop Tower facility. High-speed imaging, as well as temperature and emissions probes were used to determine the large-scale structure dynamics, the details of the flame structure and oxidizer entrainment, the combustion temperatures, and the exhaust emissions of the pulsed and steady flames. Of particular interest was the impact of changes in flame structure due to pulsing on the combustion characteristics of this system. The turbulent flame puff celerity (i.e., the bulk velocity of the puffs) was strongly impacted by the jet-off time, increasing markedly as the time between pulses was decreased, which caused the degree of puff interaction to increase and the strongly-pulsed flame to more closely resemble a steady flame. This increase occurred for all values of injection time as well as for constant fuelling rate and in both the presence and absence of buoyancy. The removal of positive buoyancy in microgravity resulted in a decrease in the flame puff celerity in all cases, amounting to as much as 40%, for both constant jet injection velocity and constant fuelling rate. The mean flame length of the strongly

  19. Simultaneous determination of brominated and phosphate flame retardants in flame-retarded polyester curtains by a novel extraction method.

    PubMed

    Miyake, Yuichi; Tokumura, Masahiro; Nakayama, Hayato; Wang, Qi; Amagai, Takashi; Ogo, Sayaka; Kume, Kazunari; Kobayashi, Takeshi; Takasu, Shinji; Ogawa, Kumiko; Kannan, Kurunthachalam

    2017-12-01

    The use of novel brominated flame retardants (BFRs) and phosphate-based flame retardants (PFRs) has increased as substitutes for hexabromocyclododecane (HBCD) in many consumer products. To facilitate collection of data on chemicals used as flame retardants in textiles and fabrics, we developed an analytical method using liquid chromatography interfaced with tandem mass spectrometry (LC-MS/MS). We compared two extraction methods, one involving ultrasonic extraction (traditional method) using dichloromethane, toluene or acetone and the other encompassing complete dissolution of textile with 25% 1,1,1,3,3,3-hexafluoro-2-propanol/chloroform. The dissolution method extracted up to 204 times more BFRs and PFRs than the traditional ultrasonic extraction. Tris(2,3-dibromopropyl) isocyanurate (TDBP-TAZTO), triphenylphosphine oxide (TPhPO), tris(1,3-dichloro-2-propyl) phosphate (TDCPP), tricresyl phosphate (TCsP), and triphenyl phosphate (TPhP) were found in 40 flame-retarded curtain samples purchased from Japanese market in 2014. TDBP-TAZTO was detected in polyester curtains for the first time. Some of the flame-retarded curtain samples did not contain any of the known target analytes, which suggested the presence of other unknown flame retardants in those fabrics. Copyright © 2017. Published by Elsevier B.V.

  20. A Computational Investigation of Sooting Limits of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lecoustre, V. R.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2007-01-01

    Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, and residence time. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with residence times longer than 200 ms were found to have temperatures near 1190 K where C/O = 0.6, whereas flames with shorter residence times required increased temperatures. Acetylene was found to be a reasonable surrogate for soot precursor species in these flames, having peak mole fractions of about 0.01.

  1. GridMan: A grid manipulation system

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Wang, Zhu

    1992-01-01

    GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.

  2. Upward Flame Spread Over Thin Solids in Partial Gravity

    NASA Technical Reports Server (NTRS)

    Feier, I. I.; Shih, H. Y.; Sacksteder, K. R.; Tien, J. S.

    2001-01-01

    The effects of partial-gravity, reduced pressure, and sample width on upward flame spread over a thin cellulose fuel were studied experimentally and the results were compared to a numerical flame spread simulation. Fuel samples 1-cm, 2-cm, and 4-cm wide were burned in air at reduced pressures of 0.2 to 0.4 atmospheres in simulated gravity environments of 0.1-G, 0.16-G (Lunar), and 0.38-G (Martian) onboard the NASA KC-135 aircraft and in normal-gravity tests. Observed steady flame propagation speeds and pyrolysis lengths were approximately proportional to the gravity level. Flames spread more quickly and were longer with the wider samples and the variations with gravity and pressure increased with sample width. A numerical simulation of upward flame spread was developed including three-dimensional Navier-Stokes equations, one-step Arrhenius kinetics for the gas phase flame and for the solid surface decomposition, and a fuel-surface radiative loss. The model provides detailed structure of flame temperatures, the flow field interactions with the flame, and the solid fuel mass disappearance. The simulation agrees with experimental flame spread rates and their dependence on gravity level but predicts a wider flammable region than found by experiment. Some unique three-dimensional flame features are demonstrated in the model results.

  3. Trends in life science grid: from computing grid to knowledge grid

    PubMed Central

    Konagaya, Akihiko

    2006-01-01

    Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:17254294

  4. Flame characteristics for fires in southern fuels

    Treesearch

    Ralph M. Nelson

    1980-01-01

    A flame model and analytical method are used to derive forest fire flame characteristics. Approximate solutions are used to express flame lengths, angles, heights, and tip velocities of headfires and calm-air fires in terms of fire intensity. Equations are compared with data from low-intensity controlled burns in southern fuels and with data from the literature.

  5. Shapes of Buoyant and Nonbuoyant Methane Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, Peter B.; Yuan, Zeng-Guang; Urban, David L.

    1997-01-01

    Laminar gas jet diffusion flames represent a fundamental combustion configuration. Their study has contributed to numerous advances in combustion, including the development of analytical and computational combustion tools. Laminar jet flames are pertinent also to turbulent flames by use of the laminar flamelet concept. Investigations into the shapes of noncoflowing microgravity laminar jet diffusion flames have primarily been pursued in the NASA Lewis 2.2-second drop tower, by Cochran and coworkers and by Bahadori and coworkers. These studies were generally conducted at atmospheric pressure; they involved soot-containing flames and reported luminosity lengths and widths instead of the flame-sheet dimensions which are of Greater value to theory evaluation and development. The seminal model of laminar diffusion flames is that of Burke and Schumann, who solved the conservation of momentum equation for a jet flame in a coflowing ambient by assuming the velocity of fuel, oxidizer and products to be constant throughout. Roper and coworkers improved upon this model by allowing for axial variations of velocity and found flame shape to be independent of coflow velocity. Roper's suggestion that flame height should be independent of gravity level is not supported by past or present observations. Other models have been presented by Klajn and Oppenheim, Markstein and De Ris, Villermaux and Durox, and Li et al. The common result of all these models (except in the buoyant regime) is that flame height is proportional to fuel mass flowrate, with flame width proving much more difficult to predict. Most existing flame models have been compared with shapes of flames containing soot, which is known to obscure the weak blue emission of flame sheets. The present work involves measurements of laminar gas jet diffusion flame shapes. Flame images have been obtained for buoyant and nonbuoyant methane flames burning in quiescent air at various fuel flow-rates, burner diameters and ambient

  6. Field Effects of Buoyancy on Lean Premixed Turbulent Flames

    NASA Technical Reports Server (NTRS)

    Cheng, R. K.; Johnson, M. R.; Greenberg, P. S.; Wernet, M. P.

    2003-01-01

    The study of field effects of buoyancy on premixed turbulent flames is directed towards the advancement of turbulent combustion theory and the development of cleaner combustion technologies. Turbulent combustion is considered the most important unsolved problem in combustion science and laboratory studies of turbulence flame processes are vital to theoretical development. Although buoyancy is dominant in laboratory flames, most combustion models are not yet capable to consider buoyancy effects. This inconsistency has impeded the validation of theories and numerical simulations with experiments. Conversely, the understanding of buoyancy effects is far too limited to help develop buoyant flame models. Our research is also relevant to combustion technology because lean premixed combustion is a proven method to reduce the formation of oxides of nitrogen (NOx). In industrial lean premixed combustion systems, their operating conditions make them susceptible to buoyancy thus affecting heat distribution, emissions, stability, flashback and blowoff. But little knowledge is available to guide combustion engineers as to how to avoid or overcome these problems. Our hypothesis is that through its influence on the mean pressure field, buoyancy has direct and indirect effects on local flame/turbulence interactions. Although buoyancy acts on the hot products in the farfield the effect is also felt in the nearfield region upstream of the flame. These changes also influence the generation and dissipation of turbulent kinetic energy inside the flame brush and throughout the flowfield. Moreover, the plume of an open flame is unstable and the periodic fluctuations make additional contributions to flame front dynamics in the farfield. Therefore, processes such as flame wrinkling, flow acceleration due to heat release and flame- generated vorticity are all affected. Other global flame properties (e.g. flame stabilization limits and flame speed) may all be coupled to buoyancy. This

  7. Structure and Soot Formation Properties of Laminar Flames

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Faeth, G. M.

    2001-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science for several reasons: soot emissions are responsible for more deaths than any other combustion-generated pollutant, thermal loads due to continuum radiation from soot limit the durability of combustors, thermal radiation from soot is mainly responsible for the growth and spread of unwanted fires, carbon monoxide emissions associated with soot emissions are responsible for most fire deaths, and limited understanding of soot processes in flames is a major impediment to the development of computational combustion. Motivated by these observations, soot processes within laminar premixed and nonpremixed (diffusion) flames are being studied during this investigation. The study is limited to laminar flames due to their experimental and computational tractability, noting the relevance of these results to practical flames through laminar flamelet concepts. Nonbuoyant flames are emphasized because buoyancy affects soot processes in laminar diffusion flames whereas effects of buoyancy are small for most practical flames. This study involves both ground- and space-based experiments, however, the following discussion will be limited to ground-based experiments because no space-based experiments were carried out during the report period. The objective of this work was to complete measurements in both premixed and nonpremixed flames in order to gain a better understanding of the structure of the soot-containing region and processes of soot nucleation and surface growth in these environments, with the latter information to be used to develop reliable ways of predicting soot properties in practical flames. The present discussion is brief, more details about the portions of the investigation considered here can be found in refs. 8-13.

  8. Modeling Burns for Pre-Cooled Skin Flame Exposure

    PubMed Central

    2017-01-01

    On a television show, a pre-cooled bare-skinned person (TV host) passed through engulfing kerosene flames. The assumption was that a water film should protect him during 0.74 s flame exposure in an environment of 86 kW/m2 heat flux. The TV host got light burn inflammation on the back, arms and legs. The present work studies skin temperatures and burn damage integral of such dangerous flame exposure. The skin temperature distribution during water spray pre-cooling, transport to the flames, flame exposure, transport to the water pool, and final water pool cooling is modelled numerically. Details of the temperature development of the skin layers are presented, as well as the associated damage integral. It is shown that 5 °C water spray applied for a 30 s period pre-cooled the skin sufficiently to prevent severe skin injury. Soot marks indicate that the water layer evaporated completely in some areas resulting in skin flame contact. This exposed dry skin directly to the flames contributing significantly to the damage integral. It is further analyzed how higher water temperature, shorter pre-cooling period or longer flame exposure influence the damage integral. It is evident that minor changes in conditions could lead to severe burns and that high heat flux levels at the end of the exposure period are especially dangerous. This flame stunt should never be repeated. PMID:28880253

  9. Simulation of a turbulent flame in a channel

    NASA Technical Reports Server (NTRS)

    Bruneaux, G.; Akselvoll, K.; Poinsot, T.; Ferziger, J. H.

    1994-01-01

    The interaction between turbulent premixed flames and channel walls is studied. Combustion is represented by a simple irreversible reaction with a large activation temperature. Feedback to the flowfield is suppressed by invoking a constant density assumption. The effect of wall distance on local and global flame structure is investigated. Quenching distances and maximum wall heat fluxes computed in laminar cases are compared to DNS results. It is found that quenching distances decrease and maximum heat fluxes increase relative to laminar flame values. It is shown that these effects are due to large coherent structures which push flame elements towards to wall. The effect of wall strain is studied in flame-wall interaction in a stagnation line flow; this is used to explain the DNS results. It is also shown that 'remarkable' flame events are produced by interaction with a horseshoe vortex: burnt gases are pushed towards the wall at high speed and induce quenching and high wall heat fluxes while fresh gases are expelled from the wall region and form finger-like structures. Effects of the wall on flame surface density are investigated, and a simple model for flame-wall interaction is proposed; its predictions compare well with the DNS results.

  10. Numerical study of transient evolution of lifted jet flames: partially premixed flame propagation and influence of physical dimensions

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Ruan, Shaohong; Swaminathan, Nedunchezhian

    2016-07-01

    Three-dimensional (3D) unsteady Reynolds-averaged Navier-Stokes simulations of a spark-ignited turbulent methane/air jet flame evolving from ignition to stabilisation are conducted for different jet velocities. A partially premixed combustion model is used involving a correlated joint probability density function and both premixed and non-premixed combustion mode contributions. The 3D simulation results for the temporal evolution of the flame's leading edge are compared with previous two-dimensional (2D) results and experimental data. The comparison shows that the final stabilised flame lift-off height is well predicted by both 2D and 3D computations. However, the transient evolution of the flame's leading edge computed from 3D simulation agrees reasonably well with experiment, whereas evident discrepancies were found in the previous 2D study. This difference suggests that the third physical dimension plays an important role during the flame transient evolution process. The flame brush's leading edge displacement speed resulting from reaction, normal and tangential diffusion processes are studied at different typical stages after ignition in order to understand the effect of the third physical dimension further. Substantial differences are found for the reaction and normal diffusion components between 2D and 3D simulations especially in the initial propagation stage. The evolution of reaction progress variable scalar gradients and its interaction with the flow and mixing field in the 3D physical space have an important effect on the flame's leading edge propagation.

  11. Modeling of hydrogen-air diffusion flame

    NASA Technical Reports Server (NTRS)

    Isaac, Kakkattukuzhy

    1988-01-01

    The present research objective is to determine the effects of contaminants on extinction limits of simple, well defined, counterflow Hydrogen 2-air diffusion flames, with combustion at 1 atmosphere. Results of extinction studies and other flame characterizations, with appropriate mechanistic modeling (presently underway), will be used to rationalize the observed effects of contamination over a reasonably wide range of diffusion flame conditions. The knowledge gained should help efforts to anticipate the effects of contaminants on combustion processes in Hydrogen 2-fueled scramjets.

  12. Suppression of Soot Formation and Shapes of Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.

    2001-01-01

    Laminar nonpremixed (diffusion) flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than practical turbulent flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Finally, laminar diffusion flame shapes have been of interest since the classical study of Burke and Schumann because they involve a simple nonintrusive measurement that is convenient for evaluating flame shape predictions. Motivated by these observations, the shapes of round hydrocarbon-fueled laminar jet diffusion flames were considered, emphasizing conditions where effects of buoyancy are small because most practical flames are not buoyant. Earlier studies of shapes of hydrocarbon-fueled nonbuoyant laminar jet diffusion flames considered combustion in still air and have shown that flames at the laminar smoke point are roughly twice as long as corresponding soot-free (blue) flames and have developed simple ways to estimate their shapes. Corresponding studies of hydrocarbon-fueled weakly-buoyant laminar jet diffusion flames in coflowing air have also been reported. These studies were limited to soot-containing flames at laminar smoke point conditions and also developed simple ways to estimate their shapes but the behavior of corresponding soot-free flames has not been addressed. This is unfortunate because ways of selecting flame flow properties to reduce soot concentrations are of great interest; in addition, soot-free flames are fundamentally important because they are much more computationally tractable than corresponding soot-containing flames. Thus, the objectives of the present investigation were to observe the shapes of weakly-buoyant laminar jet diffusion flames at both soot-free and smoke point conditions and to use the results to evaluate simplified flame shape models. The present discussion is brief.

  13. Buoyancy Effects in Fully-Modulated, Turbulent Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Ghaem-Maghami, E.; Stocker, D. P.; Hegde, U. G.; Page, K. L.

    2003-01-01

    Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The objective of this experiment (PuFF, for Pulsed-Fully Flames) is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This gives rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing compared to acoustically excited or partially-modulated jets. Normal-gravity experiments suggest that the fully-modulated technique also has the potential for producing turbulent jet flames significantly more compact than steady flames with no increase in exhaust emissions. The technique also simplifies the combustion process by avoiding the acoustic forcing generally present in pulsed combustors. Fundamental issues addressed in this experiment include the impact of buoyancy on the structure and flame length, temperatures, radiation, and emissions of fully-modulated flames.

  14. Buoyancy Effects in Strongly-Pulsed, Turbulent Diffusion Flames

    NASA Astrophysics Data System (ADS)

    Hermanson, James; Johari, Hamid; Stocker, Dennis; Hegde, Uday

    2004-11-01

    Buoyancy effects in pulsed, turbulent flames are studied in microgravity in a 2.2 s drop-tower. The fuel is pure ethylene or a 50/50 mixture with nitrogen; the oxidizer co-flow is either air or 30% oxygen in nitrogen. A fast solenoid valve fully modulates (shuts off) the fuel flow between pulses. The jet Reynolds number is 5000 with a nozzle i.d. of 2 mm. For short injection times and small duty cycle (jet-on fraction), compact, puff-like flames occur. The invariance in flame length of these puffs with buoyancy is due to offsetting changes in puff celerity and burnout time. Buoyancy does impact interacting flame puffs, with the flame length generally increasing with injection duty cycle. The mean centerline temperatures for all flames are generally higher in microgravity than in normal gravity. The transition in temperatures with increasing injection time is more gradual in micro-g than in 1-g. These observations can be explained in terms of the local duty cycle in the flame and differences in entrainment in normal- vs. microgravity.

  15. New insight into the levels, distribution and health risk diagnosis of indoor and outdoor dust-bound FRs in colder, rural and industrial zones of Pakistan.

    PubMed

    Khan, Muhammad Usman; Li, Jun; Zhang, Gan; Malik, Riffat Naseem

    2016-09-01

    This is the first robust study designed to probe selected flame retardants (FRs) in the indoor and outdoor dust of industrial, rural and background zones of Pakistan with special emphasis upon their occurrence, distribution and associated health risk. For this purpose, we analyzed FRs such as polybrominated diphenylethers (PBDEs), dechlorane plus (DP), novel brominated flame retardants (NBFRs) and organophosphate flame retardants (OPFRs) in the total of 82 dust samples (indoor and outdoor) collected three from each zone: industrial, rural and background. We found higher concentrations of FRs (PBDEs, DP, NBFRs and OPFRs) in industrial zones as compared to the rural and background zones. Our results reveal that the concentrations of studied FRs are relatively higher in the indoor dust samples being compared with the outdoor dust and they are ranked as: ∑OPFRs > ∑NBFRs > ∑PBDEs > ∑DP. A significant correlation in the FRs levels between the indoor and outdoor dust suggest the potential intermixing of these compounds between them. The principal component analysis/multiple linear regression predicts the percent contribution of FRs from different consumer products in the indoor and outdoor dust of industrial, rural and background zones to trace their source origin. The FRs detected in the background zones reveal the dust-bound FRs suspended in the air might be shifted from different warmer zones or consumers products available/used in the same zones. Hazard quotient (HQ) for FRs via indoor and outdoor dust intake at mean and high dust scenarios to the exposed populations (adults and toddlers) are found free of risk (HQ < 1) in the target zones. Furthermore, our nascent results will provide a baseline record of FRs (PBDEs, DP, NBFRs and OPFRs) concentrations in the indoor and outdoor dust of Pakistan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Log-Normality and Multifractal Analysis of Flame Surface Statistics

    NASA Astrophysics Data System (ADS)

    Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.

    2013-11-01

    The turbulent flame surface is typically highly wrinkled and folded at a multitude of scales controlled by various flame properties. It is useful if the information contained in this complex geometry can be projected onto a simpler regular geometry for the use of spectral, wavelet or multifractal analyses. Here we investigate local flame surface statistics of turbulent flame expanding under constant pressure. First the statistics of local length ratio is experimentally obtained from high-speed Mie scattering images. For spherically expanding flame, length ratio on the measurement plane, at predefined equiangular sectors is defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at corresponding area-ratio pdfs. Both the pdfs are found to be near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis. Currently at Indian Institute of Science, India.

  17. Pre-mixed flame simulations for non-unity Lewis numbers

    NASA Technical Reports Server (NTRS)

    Rutland, C. J.; Trouve, A.

    1990-01-01

    A principal effect of turbulence on premixed flames in the flamelet region is to wrinkle the flame fronts. For non-unity Lewis numbers (Le), the local flame structure is altered in curved regions. This effect is examined using direct numerical simulations of the three dimensional, constant density, decaying isotropic turbulence with a single step, finite rate chemical reaction. Simulations of Lewis numbers 0.8, 1.0, and 1.2 are compared. The turbulent flame speed, S(sub T), increases as Le decreases. The correlation between S(sub T) and u prime found in previous Le = 1 simulations has a strong Lewis number dependency. The variance of the pdf of the flame curvature increases as Le decreases, indicating that the flames become more wrinkled. A strong correlation between local flame speed and curvature was found. For Le greater than 1, the flame speed increases in regions concave towards the products and decreases in convex regions. The opposite correlation was found for Le less than 1. The mean temperature of the products was also found to vary with Lewis number. For Le = 0.8, it is less than the adiabatic flame temperature and for Le = 1.2 it is greater.

  18. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Kwon, O. C.; Abid, M.; Porres, J.; Liu, J. B.; Ronney, P. D.; Struk, P. M.; Weiland, K. J.

    2003-01-01

    Several topics relating to premixed flame behavior at reduced gravity have been studied. These topics include: (1) flame balls; (2) flame structure and stability at low Lewis number; (3) experimental simulation of buoyancy effects in premixed flames using aqueous autocatalytic reactions; and (4) premixed flame propagation in Hele-Shaw cells. Because of space limitations, only topic (1) is discussed here, emphasizing results from experiments on the recent STS-107 Space Shuttle mission, along with numerical modeling efforts.

  19. Globally Gridded Satellite (GridSat) Observations for Climate Studies

    NASA Technical Reports Server (NTRS)

    Knapp, Kenneth R.; Ansari, Steve; Bain, Caroline L.; Bourassa, Mark A.; Dickinson, Michael J.; Funk, Chris; Helms, Chip N.; Hennon, Christopher C.; Holmes, Christopher D.; Huffman, George J.; hide

    2012-01-01

    Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them: there is no central archive of geostationary data for all international satellites, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multi-satellite climate studies. The International Satellite Cloud Climatology Project set the stage for overcoming these issues by archiving a subset of the full resolution geostationary data at approx.10 km resolution at 3 hourly intervals since 1983. Recent efforts at NOAA s National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in the netCDF format using standards that permit a wide variety of tools and libraries to quickly and easily process the data. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone.

  20. Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.

    1999-01-01

    The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness. Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding (1979); this approach provided Successful Correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.

  1. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames

    NASA Astrophysics Data System (ADS)

    Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.

    2016-10-01

    Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated.

  2. Modeling Candle Flame Behavior In Variable Gravity

    NASA Technical Reports Server (NTRS)

    Alsairafi, A.; Tien, J. S.; Lee, S. T.; Dietrich, D. L.; Ross, H. D.

    2003-01-01

    The burning of a candle, as typical non-propagating diffusion flame, has been used by a number of researchers to study the effects of electric fields on flame, spontaneous flame oscillation and flickering phenomena, and flame extinction. In normal gravity, the heat released from combustion creates buoyant convection that draws oxygen into the flame. The strength of the buoyant flow depends on the gravitational level and it is expected that the flame shape, size and candle burning rate will vary with gravity. Experimentally, there exist studies of candle burning in enhanced gravity (i.e. higher than normal earth gravity, g(sub e)), and in microgravity in drop towers and space-based facilities. There are, however, no reported experimental data on candle burning in partial gravity (g < g(sub e)). In a previous numerical model of the candle flame, buoyant forces were neglected. The treatment of momentum equation was simplified using a potential flow approximation. Although the predicted flame characteristics agreed well with the experimental results, the model cannot be extended to cases with buoyant flows. In addition, because of the use of potential flow, no-slip boundary condition is not satisfied on the wick surface. So there is some uncertainty on the accuracy of the predicted flow field. In the present modeling effort, the full Navier-Stokes momentum equations with body force term is included. This enables us to study the effect of gravity on candle flames (with zero gravity as the limiting case). In addition, we consider radiation effects in more detail by solving the radiation transfer equation. In the previous study, flame radiation is treated as a simple loss term in the energy equation. Emphasis of the present model is on the gas-phase processes. Therefore, the detailed heat and mass transfer phenomena inside the porous wick are not treated. Instead, it is assumed that a thin layer of liquid fuel coated the entire wick surface during the burning process

  3. Ignition and flame characteristics of cryogenic hydrogen releases

    DOE PAGES

    Panda, Pratikash P.; Hecht, Ethan S.

    2017-01-01

    In this work, under-expanded cryogenic hydrogen jets were investigated experimentally for their ignition and flame characteristics. The test facility described herein, was designed and constructed to release hydrogen at a constant temperature and pressure, to study the dispersion and thermo-physical properties of cryogenic hydrogen releases and flames. In this study, a non-intrusive laser spark focused on the jet axis was used to measure the maximum ignition distance. The radiative power emitted by the corresponding jet flames was also measured for a range of release scenarios from 37 K to 295 K, 2–6 bar abs through nozzles with diameters from 0.75more » to 1.25 mm. The maximum ignition distance scales linearly with the effective jet diameter (which scales as the square root of the stagnant fluid density). A 1-dimensional (stream-wise) cryogenic hydrogen release model developed previously at Sandia National Laboratories (although this model is not yet validated for cryogenic hydrogen) was exercised to predict that the mean mole fraction at the maximum ignition distance is approximately 0.14, and is not dependent on the release conditions. The flame length and width were extracted from visible and infra-red flame images for several test cases. The flame length and width both scale as the square root of jet exit Reynolds number, as reported in the literature for flames from atmospheric temperature hydrogen. As shown in previous studies for ignited atmospheric temperature hydrogen, the radiative power from the jet flames of cold hydrogen scales as a logarithmic function of the global flame residence time. The radiative heat flux from jet flames of cold hydrogen is higher than the jet flames of atmospheric temperature hydrogen, for a given mass flow rate, due to the lower choked flow velocity of low-temperature hydrogen. Lastly, this study provides critical information with regard to the development of models to inform the safety codes and standards of hydrogen

  4. Application of Chimera Grid Scheme to Combustor Flowfields at all Speeds

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Chen, Kuo-Huey

    1997-01-01

    A CFD method for solving combustor flowfields at all speeds on complex configurations is presented. The approach is based on the ALLSPD-3D code which uses the compressible formulation of the flow equations including real gas effects, nonequilibrium chemistry and spray combustion. To facilitate the analysis of complex geometries, the chimera grid method is utilized. To the best of our knowledge, this is the first application of the chimera scheme to reacting flows. In order to evaluate the effectiveness of this numerical approach, several benchmark calculations of subsonic flows are presented. These include steady and unsteady flows, and bluff-body stabilized spray and premixed combustion flames.

  5. Aerodynamic features of flames in premixed gases

    NASA Technical Reports Server (NTRS)

    Oppenheim, A. K.

    1984-01-01

    A variety of experimentally established flame phenomena in premixed gases are interpreted by relating them to basic aerodynamic properties of the flow field. On this basis the essential mechanism of some well known characteristic features of flames stabilized in the wake of a bluff-body or propagating in ducts are revealed. Elementary components of the flame propagation process are shown to be: rotary motion, self-advancement, and expansion. Their consequences are analyzed under a most strict set of idealizations that permit the flow field to be treated as potential in character, while the flame is modelled as a Stefan-like interface capable of exerting a feed-back effect upon the flow field. The results provide an insight into the fundamental fluid-mechanical reasons for the experimentally observed distortions of the flame front, rationalizing in particular its ability to sustain relatively high flow velocities at amazingly low normal burning speeds.

  6. Flame Spread Along Free Edges of Thermally Thin Samples in Microgravity

    NASA Technical Reports Server (NTRS)

    Mell, W. E.; Olson, S. L.; Kashiwagi, T.

    2000-01-01

    The effects of imposed flow velocity on flame spread along open edges of a thermally thin cellulosic sample in microgravity are studied experimentally and theoretically. In this study, the sample is ignited locally at the middle of the 4 cm wide sample and subsequent flame spread reaches both open edges of the sample. The following flame behaviors are observed in the experiments and predicted by the numerical calculation; in order of increased imposed flow velocity: (1) ignition but subsequent flame spread is not attained, (2) flame spreads upstream (opposed mode) without any downstream flame, and (3) the upstream flame and two separate downstream flames traveling along the two open edges (concurrent mode). Generally, the upstream and downstream edge flame spread rates are faster than the central flame spread rate for an imposed flow velocity of up to 5 cm/s. This is due to greater oxygen supply from the outer free stream to the edge flames than the central flames, For the upstream edge flame, the greater oxygen supply results in a flame spread rate that is nearly independent of, or decreases gradually, with the imposed flow velocity. The spread rate of the downstream edge, however, increases significantly with the imposed flow velocity.

  7. Flame extinction limit and particulates formation in fuel blends

    NASA Astrophysics Data System (ADS)

    Subramanya, Mahesh

    Many fuels used in material processing and power generation applications are generally a blend of various hydrocarbons. Although the combustion and aerosol formation dynamics of individual fuels is well understood, the flame dynamics of fuel blends are yet to be characterized. This research uses a twin flame counterflow burner to measure flame velocity, flame extinction, particulate formation and particulate morphology of hydrogen fuel blend flames at different H2 concentration, oscillation frequencies and stretch conditions. Phase resolved spectroscopic measurements (emission spectra) of OH, H, O and CH radical/atom concentrations is used to characterize the heat release processes of the flame. In addition flame generated particulates are collected using thermophoretic sample technique and are qualitative analyzed using Raman Spectroscopy and SEM. Such measurements are essential for the development of advanced computational tools capable of predicting fuel blend flame characteristics at realistic combustor conditions. The data generated through the measurements of this research are representative, and yet accurate, with unique well defined boundary conditions which can be reproduced in numerical computations for kinetic code validations.

  8. Suppression Characteristics of Cup-Burner Flames in Low Gravity

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Linteris, Gregory T.; Katta, Viswanath R.

    2004-01-01

    The structure and suppression of laminar methane-air co-flow diffusion flames formed on a cup burner have been studied experimentally and numerically using physically acting fire-extinguishing agents (CO2, N2, He, and Ar) in normal earth (lg) and zero gravity (0g). The computation uses a direct numerical simulation with detailed chemistry and radiative heat-loss models. An initial observation of the flame without agent was also made at the NASA Glenn 2.2-Second Drop Tower. An agent was introduced into a low-speed coflowing oxidizing stream by gradually replacing the air until extinguishment occurred under a fixed minimal fuel velocity. The suppression of cup-burner flames, which resemble real fires, occurred via a blowoff process (in which the flame base drifted downstream) rather than the global extinction phenomenon typical of counterflow diffusion flames. The computation revealed that the peak reactivity spot (the reaction kernel) formed in the flame base was responsible for attachment and blowoff phenomena of the trailing diffusion flame. The thermal and transport properties of the agents affected the flame extinguishment limits.

  9. Premixed Turbulent Flame Propagation in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1999-01-01

    A combined numerical-experimental study has been carried out to investigate the structure and propagation characteristics of turbulent premixed flames with and without the influence of buoyancy. Experimentally, the premixed flame characteristics are studied in the wrinkled regime using a Couette flow facility and an isotropic flow facility in order to resolve the scale of flame wrinkling. Both facilities were chosen for their ability to achieve sustained turbulence at low Reynolds number. This implies that conventional diagnostics can be employed to resolve the smallest scales of wrinkling. The Couette facility was also built keeping in mind the constraints imposed by the drop tower requirements. Results showed that the flow in this Couette flow facility achieves full-developed turbulence at low Re and all turbulence statistics are in good agreement with past measurements on large-scale facilities. Premixed flame propagation studies were then carried out both using the isotropic box and the Couette facility. Flame imaging showed that fine scales of wrinkling occurs during flame propagation. Both cases in Ig showed significant buoyancy effect. To demonstrate that micro-g can remove this buoyancy effect, a small drop tower was built and drop experiments were conducted using the isotropic box. Results using the Couette facility confirmed the ability to carry out these unique reacting flow experiments at least in 1g. Drop experiments at NASA GRC were planned but were not completed due to termination of this project.

  10. Stationary premixed flames in spherical and cylindrical geometries

    NASA Technical Reports Server (NTRS)

    Ronney, P. D.; Whaling, K. N.; Abbud-Madrid, A.; Gatto, J. L.; Pisowiscz, V. L.

    1994-01-01

    Stationary source-free spherical flames ('flame balls') in premixed combustible gases were studied by employing low-gravity (micro-g) environments in a drop tower and an aircraft flying parabolic trajectories to diminish the impact of buoyancy-induced convective flow. Flame balls were found in all mixture families tested when: (1) the Lewis number Le of the deficient reactant was sufficiently low; and (2) the compositions were sufficiently close to the flammability limits. Probably as a consequence of the reduction in buoyant convection, the flammability limits at micro-g were significantly more dilute than those at Earth gravity; for example, 3.35% H2 vs 4.0% H2 in lean H2-air mixtures. By comparison with analytical and computational models, it is inferred that the phenomenon is probably related to diffusive-thermal effects in low-Le mixtures in conjunction with flame-front curvature and radiative heat losses from the combustion products. The chemical reaction mechanism appears to play no qualitative role. In the aircraft experiments, the gravity levels (approximately equal 10(exp -2)g(sub 0)) were found to cause noticeable motion of flame balls due to buoyancy, which in turn influenced the behavior of flame balls. At these g levels, a new type of transient, nearly cylindrical flame structure, termed 'flame strings,' was observed.

  11. The effects of complex chemistry on triple flames

    NASA Technical Reports Server (NTRS)

    Echekki, T.; Chen, J. H.

    1996-01-01

    The structure, ignition, and stabilization mechanisms for a methanol (CH3OH)-air triple flame are studied using Direct Numerical Simulations (DNS). The methanol (CH3OH)-air triple flame is found to burn with an asymmetric shape due to the different chemical and transport processes characterizing the mixture. The excess fuel, methanol (CH3OH), on the rich premixed flame branch is replaced by more stable fuels CO and H2, which burn at the diffusion flame. On the lean premixed flame side, a higher concentration of O2 leaks through to the diffusion flame. The general structure of the triple point features the contribution of both differential diffusion of radicals and heat. A mixture fraction-temperature phase plane description of the triple flame structure is proposed to highlight some interesting features in partially premixed combustion. The effects of differential diffusion at the triple point add to the contribution of hydrodynamic effects in the stabilization of the triple flame. Differential diffusion effects are measured using two methods: a direct computation using diffusion velocities and an indirect computation based on the difference between the normalized mixture fractions of C and H. The mixture fraction approach does not clearly identify the effects of differential diffusion, in particular at the curved triple point, because of ambiguities in the contribution of carbon and hydrogen atoms' carrying species.

  12. Flashback flame arrester devices for fuel cargo tank vapor vents

    NASA Technical Reports Server (NTRS)

    Bjorklund, R. A.; Kushida, R. O.

    1981-01-01

    The flame quenching capability of four types of flame arresting devices suitable for installation on fuel cargo tank vents of marine transport vessels is evaluated. A single 30 mesh screen, a dual 20 mesh screen, a spiral wound crimped metal ribbon, and a packed bed of ballast rings were tested. Flame speed and flame penetration of the test arresters were determined. Eight fuels representative of bulk cargoes were tested. The test arresters quenched a minimum of three flashback flames from all eight fuels, with one exception: high speed ethylene flames penetrated the dual 20 mesh screen on three tests. The arresters withstood the sustained flame from a propane/air mixture for 30 minutes. None of the arresters withstood the sustained flame from an ethylene/air mixture for more than 7 minutes.

  13. Changing from computing grid to knowledge grid in life-science grid.

    PubMed

    Talukdar, Veera; Konar, Amit; Datta, Ayan; Choudhury, Anamika Roy

    2009-09-01

    Grid computing has a great potential to become a standard cyber infrastructure for life sciences that often require high-performance computing and large data handling, which exceeds the computing capacity of a single institution. Grid computer applies the resources of many computers in a network to a single problem at the same time. It is useful to scientific problems that require a great number of computer processing cycles or access to a large amount of data.As biologists,we are constantly discovering millions of genes and genome features, which are assembled in a library and distributed on computers around the world.This means that new, innovative methods must be developed that exploit the re-sources available for extensive calculations - for example grid computing.This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing a "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. By extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  14. Particle-Image Velocimetry in Microgravity Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Greenberg, P. S.; Urban, D. L.; Wernet, M. P.; Yanis, W.

    1999-01-01

    This paper discusses planned velocity measurements in microgravity laminar jet diffusion flames. These measurements will be conducted using Particle-Image Velocimetry (PIV) in the NASA Glenn 2.2-second drop tower. The observations are of fundamental interest and may ultimately lead to improved efficiency and decreased emissions from practical combustors. The velocity measurements will support the evaluation of analytical and numerical combustion models. There is strong motivation for the proposed microgravity flame configuration. Laminar jet flames are fundamental to combustion and their study has contributed to myriad advances in combustion science, including the development of theoretical, computational and diagnostic combustion tools. Nonbuoyant laminar jet flames are pertinent to the turbulent flames of more practical interest via the laminar flamelet concept. The influence of gravity on these flames is deleterious: it complicates theoretical and numerical modeling, introduces hydrodynamic instabilities, decreases length scales and spatial resolution, and limits the variability of residence time. Whereas many normal-gravity laminar jet diffusion flames have been thoroughly examined (including measurements of velocities, temperatures, compositions, sooting behavior and emissive and absorptive properties), measurements in microgravity gas-jet flames have been less complete and, notably, have included only cursory velocity measurements. It is envisioned that our velocity measurements will fill an important gap in the understanding of nonbuoyant laminar jet flames.

  15. A ring stabilizer for lean premixed turbulent flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, M.R.; Kostiuk, L.W.; Cheng, R.K.

    1998-08-01

    In previous experiments on conical flame behavior in microgravity, which were conducted in drop-towers and in airplanes, the use of a pilot flame was not an option. To permit combustion of stable lean premixed conical flames without a pilot, a ring stabilizer was developed. Although similar types of bluff-body stabilization have been used in the past, the ring stabilizer is somewhat unique. It is designed to fit inside the burner exit port and has demonstrated to be highly effective in stabilizing flames over a very wide range of conditions (including ultra-lean flames at high flow-rates) without adversely affecting flame emissions.more » Unlike a simple rod stabilizer or a stagnation flame system, the benefit of having the stabilizer conform to the burner port is that there is very little leakage of the unburned fuel. The purpose of this brief communication is to offer this simple and highly useful device to the combustion research community. Presented are highlights of a parametric study that measured the stabilization limits and pollutant emissions of several different rings, and demonstrated their potential for use in practical systems.« less

  16. Premixed Turbulent Flame Propagation in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.

    1997-01-01

    Papers included address the following topics: (1) Turbulent premixed flame propagation in microgravity; (2) The effect of gravity on turbulent premixed flame propagation - a preliminary cold flow study; and (3) Characteristics of a subgrid model for turbulent premixed combustion.

  17. Radiative Extinction of Gaseous Spherical Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Santa, K. J.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2007-01-01

    Radiative extinction of spherical diffusion flames was investigated experimentally and numerically. The experiments involved microgravity spherical diffusion flames burning ethylene and propane at 0.98 bar. Both normal (fuel flowing into oxidizer) and inverse (oxidizer flowing into fuel) flames were studied, with nitrogen supplied to either the fuel or the oxygen. Flame conditions were chosen to ensure that the flames extinguished within the 2.2 s of available test time; thus extinction occurred during unsteady flame conditions. Diagnostics included color video and thin-filament pyrometry. The computations, which simulated flow from a porous sphere into a quiescent environment, included detailed chemistry, transport and radiation, and yielded transient results. Radiative extinction was observed experimentally and simulated numerically. Extinction time, peak temperature, and radiative loss fraction were found to be independent of flow rate except at very low flow rates. Radiative heat loss was dominated by the combustion products downstream of the flame and was found to scale with flame surface area, not volume. For large transient flames the heat release rate also scaled with surface area and thus the radiative loss fraction was largely independent of flow rate. Peak temperatures at extinction onset were about 1100 K, which is significantly lower than for kinetic extinction. One observation of this work is that while radiative heat losses can drive transient extinction, this is not because radiative losses are increasing with time (flame size) but rather because the heat release rate is falling off as the temperature drops.

  18. 30 CFR 56.7805 - Smoking and open flames.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Smoking and open flames. 56.7805 Section 56... Jet Piercing Rotary Jet Piercing § 56.7805 Smoking and open flames. Persons shall not smoke and open... smoking and open flames shall be posted in these areas. ...

  19. 30 CFR 56.7805 - Smoking and open flames.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Smoking and open flames. 56.7805 Section 56... Jet Piercing Rotary Jet Piercing § 56.7805 Smoking and open flames. Persons shall not smoke and open... smoking and open flames shall be posted in these areas. ...

  20. 30 CFR 56.7805 - Smoking and open flames.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking and open flames. 56.7805 Section 56... Jet Piercing Rotary Jet Piercing § 56.7805 Smoking and open flames. Persons shall not smoke and open... smoking and open flames shall be posted in these areas. ...

  1. 30 CFR 56.7805 - Smoking and open flames.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Smoking and open flames. 56.7805 Section 56... Jet Piercing Rotary Jet Piercing § 56.7805 Smoking and open flames. Persons shall not smoke and open... smoking and open flames shall be posted in these areas. ...

  2. 30 CFR 56.7805 - Smoking and open flames.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Smoking and open flames. 56.7805 Section 56... Jet Piercing Rotary Jet Piercing § 56.7805 Smoking and open flames. Persons shall not smoke and open... smoking and open flames shall be posted in these areas. ...

  3. The Effects of Angular Orientation on Flame Spread over Thin Materials

    DTIC Science & Technology

    1999-12-01

    Notation 7 5 Upward Spread With Burnout 8 6a Observed Flame Lengths on Napkins, Increments 2.5 cm 9 6b Observed Flame Lengths on Pet Film, Increments...Frequency of Extinguishment During Flame Spread 21 15 Flame Spread Velocity 21 VI 16 Flame Length Measured Parallel to the Surface 22 17 Comparison of... flame length (Lf) were measured from a video recording of the test. Despite erratic burn fronts with discontinuous flaming regions, the maximum

  4. Linear response of stretch-affected premixed flames to flow oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.Y.; Law, C.K.; Lieuwen, T.

    2009-04-15

    The linear response of 2D wedge-shaped premixed flames to harmonic velocity disturbances was studied, allowing for the influence of flame stretch manifested as variations in the local flame speed along the wrinkled flame front. Results obtained from analyzing the G-equation show that the flame response is mainly characterized by a Markstein number {sigma}{sub C}, which measures the curvature effect of the wrinkles, and a Strouhal number, St{sub f}, defined as the angular frequency of the disturbance normalized by the time taken for the disturbance to propagate the flame length. Flame stretch is found to become important when the disturbance frequencymore » satisfies {sigma}{sub C}St{sub f}{sup 2}{proportional_to} O(1), i.e. St{sub f}{proportional_to} O({sigma}{sub C}{sup -1/2}). Specifically, for disturbance frequencies below this order, stretch effects are small and the flame responds as an unstretched one. When the disturbance frequencies are of this order, the transfer function, defined as the ratio of the normalized fluctuation of the heat release rate to that of the velocity, is contributed mostly from fluctuations of the flame surface area, which is now affected by stretch. Finally, as the disturbance frequency increases to St{sub f}{proportional_to} O({sigma}{sub C}{sup -1}), i.e. {sigma}{sub C}St{sub f}{proportional_to} O(1), the direct contribution from the stretch-affected flame speed fluctuation to the transfer function becomes comparable to that of the flame surface area. The present study phenomenologically explains the experimentally observed filtering effect in which the flame wrinkles developed at the flame base decay along the flame surface for large frequency disturbances as well as for thermal-diffusively stable and weakly unstable mixtures. (author)« less

  5. Laminar Soot Processes Experiment Shedding Light on Flame Radiation

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    1998-01-01

    The Laminar Soot Processes (LSP) experiment investigated soot processes in nonturbulent, round gas jet diffusion flames in still air. The soot processes within these flames are relevant to practical combustion in aircraft propulsion systems, diesel engines, and furnaces. However, for the LSP experiment, the flames were slowed and spread out to allow measurements that are not tractable for practical, Earth-bound flames.

  6. 27 CFR 555.212 - Smoking and open flames.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Smoking and open flames. 555.212 Section 555.212 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS... open flames. Smoking, matches, open flames, and spark producing devices are not permitted: (a) In any...

  7. 27 CFR 555.212 - Smoking and open flames.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Smoking and open flames. 555.212 Section 555.212 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS... open flames. Smoking, matches, open flames, and spark producing devices are not permitted: (a) In any...

  8. 27 CFR 555.212 - Smoking and open flames.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Smoking and open flames. 555.212 Section 555.212 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS... open flames. Smoking, matches, open flames, and spark producing devices are not permitted: (a) In any...

  9. 27 CFR 555.212 - Smoking and open flames.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Smoking and open flames. 555.212 Section 555.212 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS... open flames. Smoking, matches, open flames, and spark producing devices are not permitted: (a) In any...

  10. 27 CFR 555.212 - Smoking and open flames.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Smoking and open flames. 555.212 Section 555.212 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS... open flames. Smoking, matches, open flames, and spark producing devices are not permitted: (a) In any...

  11. Statistics of premixed flame cells

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1991-01-01

    The statistics of random cellular patterns in premixed flames are analyzed. Agreement is found with a variety of topological relations previously found for other networks, namely, Lewis's law and Aboav's law. Despite the diverse underlying physics, flame cells are shown to share a broad class of geometric properties with other random networks-metal grains, soap foams, bioconvection, and Langmuir monolayers.

  12. Nanocellular foam with solid flame retardant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liang; Kelly-Rowley, Anne M.; Bunker, Shana P.

    Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23.degree. C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percentmore » flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.« less

  13. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Faeth, G. M.

    1999-01-01

    Nonpremixed (diffusion) flames are attractive for practical applications because they avoid the stability, autoignition, flashback, etc. problems of premixed flames. Unfortunately, soot formation in practical hydrocarbon-fueled diffusion flames reduces their attractiveness due to widely-recognized public health and combustor durability problems of soot emissions. For example, more deaths are attributed to the emission of soot (15,000-60,000 deaths annually in the U.S. alone) than any other combustion-generated pollutant. In addition, continuum radiation from soot-containing flames is the principle heat load to combustor components and is mainly responsible for engine durability problems of aircraft and gas turbine engines. As a result, there is considerable interest in controlling both soot concentrations within flames and soot emissions from flames. Thus, the objective of the present investigation is to study ways to control soot formation in diffusion flames by manipulating the mixing process between the fuel and oxidant streams. In order to prevent the intrusion of gravity from masking flow properties that reduce soot formation in practical flames (where effects of gravity are small), methods developed during past work will be exploited to minimize effects of buoyant motion.

  14. Soot Formation in Freely-Propagating Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  15. Flame propagation in heterogeneous mixtures of fuel drops and air

    NASA Technical Reports Server (NTRS)

    Myers, G. D.; Lefebvre, A. H.

    1984-01-01

    Photographic methods are used to measure flame speeds in flowing mixtures of fuel props and air at atmospheric pressure. The fuels employed include a conventional fuel oil plus various blends JP 7 with stocks containing single-ring and mullti-ring aromatics. The results for stoichiometric mixtures show that flame propagation cannot occur in mixtures containing mean drop sizes larger than 300 to 400 microns, depending on the fuel type. For smaller drop sizes, down to around 60 microns, flame speed is inversely proportional to drop size, indicating that evaporation rates are limiting to flame speed. Below around 60 microns, the curves of flame speed versus mean drop size flatten out, thereby demonstrating that for finely atomized sprays flame speeds are much less dependent on evaporation rates, and are governed primarily by mixing and/or chemical reaction rates. The fuels exhibiting the highest flame speeds are those containing multi-ring aromatics. This is attributed to the higher radiative heat flux emanating from their soot-bearing flames which enhances the rate of evaporation of the fuel drops approaching the flame front.

  16. Cellular Instabilities and Self-Acceleration of Expanding Spherical Flames

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Kwon, O. C.

    2003-01-01

    In the present investigation we aim to provide experimental information on and thereby understanding of the generation and propagation of spark-ignited, outwardly propagating cellular flames, with three major focuses. The first is to unambiguously demonstrate the influence of the four most important parameters in inducing hydrodynamic and diffusional-thermal cellularities, namely thermal expansion, flame thickness, non-unity Lewis number, and global activation energy. The second is to investigate the critical state for the onset of cellularity for the stretch-affected, expanding flame. The third is to identify and consequently quantify the phenomena of self-acceleration and possibly auto-turbulization of cellular flames. Due to space limitation the effects of activation energy and the critical state for the onset of cellularity will not be discussed herein. Experiments were conducted using C3H8-air and H2-O2-N2 mixtures for their opposite influences of non-equidiffusivity. The additional system parameters varied were the chamber pressure (p) and the mixture composition including the equivalence ratio (phi). From a sequence of the flame images we can assess the propensity of cell formation, and determine the instantaneous flame radius (R), the flame propagation rate, the global stretch rate experienced by the flame, the critical flame radius at which cells start to grow, and the average cell size.

  17. Time-Dependent Simulation of Incompressible Flow in a Turbopump Using Overset Grid Approach

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Kwak, Dochan

    2001-01-01

    This paper reports the progress being made towards complete unsteady turbopump simulation capability by using overset grid systems. A computational model of a turbo-pump impeller is used as a test case for the performance evaluation of the MPI, hybrid MPI/Open-MP, and MLP versions of the INS3D code. Relative motion of the grid system for rotor-stator interaction was obtained by employing overset grid techniques. Unsteady computations for a turbo-pump, which contains 114 zones with 34.3 Million grid points, are performed on Origin 2000 systems at NASA Ames Research Center. The approach taken for these simulations, and the performance of the parallel versions of the code are presented.

  18. Grid Research | Grid Modernization | NREL

    Science.gov Websites

    Grid Research Grid Research NREL addresses the challenges of today's electric grid through high researcher in a lab Integrated Devices and Systems Developing and evaluating grid technologies and integrated Controls Developing methods for real-time operations and controls of power systems at any scale Photo of

  19. Applications of Laser Scattering Probes to Turbulent Diffusion Flames

    DTIC Science & Technology

    1983-11-01

    APPLICATIONS OF LASER SCATTERING PROBES TO TURBULENT DIFFUSION FLAMES u ^ j FINAL REPORT Contract N00014-80-C-0882 Submitted to Office of...Include Security Classification) Applications of Laser Scattering Probes to Turbulent Diffusion Flames PROJECT NO. TASK NO. WORK UNIT NO. 12...for a co-flowing jet turbulent diffusion flame, and planar laser-induced fluorescence to provide two- dimensional instantaneous images of the flame

  20. PIV Measurements in Weakly Buoyant Gas Jet Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, Peter B.; Greenbberg, Paul S.; Urban, David L.; Wernet, Mark P.; Yanis, William

    2001-01-01

    Despite numerous experimental investigations, the characterization of microgravity laminar jet diffusion flames remains incomplete. Measurements to date have included shapes, temperatures, soot properties, radiative emissions and compositions, but full-field quantitative measurements of velocity are lacking. Since the differences between normal-gravity and microgravity diffusion flames are fundamentally influenced by changes in velocities, it is imperative that the associated velocity fields be measured in microgravity flames. Velocity measurements in nonbuoyant flames will be helpful both in validating numerical models and in interpreting past microgravity combustion experiments. Pointwise velocity techniques are inadequate for full-field velocity measurements in microgravity facilities. In contrast, Particle Image Velocimetry (PIV) can capture the entire flow field in less than 1% of the time required with Laser Doppler Velocimetry (LDV). Although PIV is a mature diagnostic for normal-gravity flames , restrictions on size, power and data storage complicate these measurements in microgravity. Results from the application of PIV to gas jet flames in normal gravity are presented here. Ethane flames burning at 13, 25 and 50 kPa are considered. These results are presented in more detail in Wernet et al. (2000). The PIV system developed for these measurements recently has been adapted for on-rig use in the NASA Glenn 2.2-second drop tower.

  1. 30 CFR 56.6904 - Smoking and open flames.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Smoking and open flames. 56.6904 Section 56.6904 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Requirements § 56.6904 Smoking and open flames. Smoking and use of open flames shall not be permitted within 50...

  2. 30 CFR 56.6904 - Smoking and open flames.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking and open flames. 56.6904 Section 56.6904 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Requirements § 56.6904 Smoking and open flames. Smoking and use of open flames shall not be permitted within 50...

  3. 30 CFR 56.6904 - Smoking and open flames.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Smoking and open flames. 56.6904 Section 56.6904 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Requirements § 56.6904 Smoking and open flames. Smoking and use of open flames shall not be permitted within 50...

  4. 30 CFR 56.6904 - Smoking and open flames.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Smoking and open flames. 56.6904 Section 56.6904 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Requirements § 56.6904 Smoking and open flames. Smoking and use of open flames shall not be permitted within 50...

  5. 30 CFR 56.6904 - Smoking and open flames.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Smoking and open flames. 56.6904 Section 56.6904 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Requirements § 56.6904 Smoking and open flames. Smoking and use of open flames shall not be permitted within 50...

  6. A direct numerical simulation study of flame structure and stabilization of an experimental high Ka CH 4/air premixed jet flame

    DOE PAGES

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    2017-03-17

    In the present work, a direct numerical simulation (DNS) of an experimental high Karlovitz number (Ka) CH 4/air piloted premixed flame was analyzed to study the inner structure and the stabilization mechanism of the turbulent flame. A reduced chemical mechanism for premixed CH 4/air combustion with NO x based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species. The evolution of the stretch factor, I0, indicates that the burning rate per unit flame surface area is considerably reduced in the near field and exhibits a minimum at x/D = 8. Downstream, the burning rate gradually increases. Themore » stretch factor is different between different species, suggesting the quenching of some reactions but not others. Comparison between the turbulent flame and strained laminar flames indicates that certain aspects of the mean flame structure can be represented surprisingly well by flamelets if changes in boundary conditions are accounted for and the strain rate of the mean flow is employed; however, the thickening of the flame due to turbulence is not captured. The spatial development of displacement speeds is studied at higher Ka than previous DNS. In contrast to almost all previous studies, the mean displacement speed conditioned on the flame front is negative in the near field, and the dominant contribution to the displacement speed is normal diffusion with the reaction contribution being secondary. Further downstream, reaction overtakes normal diffusion, contributing to a positive displacement speed. The negative displacement speed in the near field implies that the flame front situates itself in the pilot region where the inner structure of the turbulent flame is affected significantly, and the flame stabilizes in balance with the inward flow. Notably, in the upstream region of the turbulent flame, the main reaction contributing to the production of OH, H+O 2⇌O+OH (R35), is weak. Moreover, oxidation reactions, H 2+OH⇌H+H 2O (R79

  7. A direct numerical simulation study of flame structure and stabilization of an experimental high Ka CH 4/air premixed jet flame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    In the present work, a direct numerical simulation (DNS) of an experimental high Karlovitz number (Ka) CH 4/air piloted premixed flame was analyzed to study the inner structure and the stabilization mechanism of the turbulent flame. A reduced chemical mechanism for premixed CH 4/air combustion with NO x based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species. The evolution of the stretch factor, I0, indicates that the burning rate per unit flame surface area is considerably reduced in the near field and exhibits a minimum at x/D = 8. Downstream, the burning rate gradually increases. Themore » stretch factor is different between different species, suggesting the quenching of some reactions but not others. Comparison between the turbulent flame and strained laminar flames indicates that certain aspects of the mean flame structure can be represented surprisingly well by flamelets if changes in boundary conditions are accounted for and the strain rate of the mean flow is employed; however, the thickening of the flame due to turbulence is not captured. The spatial development of displacement speeds is studied at higher Ka than previous DNS. In contrast to almost all previous studies, the mean displacement speed conditioned on the flame front is negative in the near field, and the dominant contribution to the displacement speed is normal diffusion with the reaction contribution being secondary. Further downstream, reaction overtakes normal diffusion, contributing to a positive displacement speed. The negative displacement speed in the near field implies that the flame front situates itself in the pilot region where the inner structure of the turbulent flame is affected significantly, and the flame stabilizes in balance with the inward flow. Notably, in the upstream region of the turbulent flame, the main reaction contributing to the production of OH, H+O 2⇌O+OH (R35), is weak. Moreover, oxidation reactions, H 2+OH⇌H+H 2O (R79

  8. Investigations of two-phase flame propagation under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Gokalp, Iskender

    2016-07-01

    Investigations of two-phase flame propagation under microgravity conditions R. Thimothée, C. Chauveau, F. Halter, I Gökalp Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France This paper presents and discusses recent results on two-phase flame propagation experiments we carried out with mono-sized ethanol droplet aerosols under microgravity conditions. Fundamental studies on the flame propagation in fuel droplet clouds or sprays are essential for a better understanding of the combustion processes in many practical applications including internal combustion engines for cars, modern aircraft and liquid rocket engines. Compared to homogeneous gas phase combustion, the presence of a liquid phase considerably complicates the physico-chemical processes that make up combustion phenomena by coupling liquid atomization, droplet vaporization, mixing and heterogeneous combustion processes giving rise to various combustion regimes where ignition problems and flame instabilities become crucial to understand and control. Almost all applications of spray combustion occur under high pressure conditions. When a high pressure two-phase flame propagation is investigated under normal gravity conditions, sedimentation effects and strong buoyancy flows complicate the picture by inducing additional phenomena and obscuring the proper effect of the presence of the liquid droplets on flame propagation compared to gas phase flame propagation. Conducting such experiments under reduced gravity conditions is therefore helpful for the fundamental understanding of two-phase combustion. We are considering spherically propagating two-phase flames where the fuel aerosol is generated from a gaseous air-fuel mixture using the condensation technique of expansion cooling, based on the Wilson cloud chamber principle. This technique is widely recognized to create well-defined mono-size droplets

  9. Stability analysis of confined V-shaped flames in high-velocity streams.

    PubMed

    El-Rabii, Hazem; Joulin, Guy; Kazakov, Kirill A

    2010-06-01

    The problem of linear stability of confined V-shaped flames with arbitrary gas expansion is addressed. Using the on-shell description of flame dynamics, a general equation governing propagation of disturbances of an anchored flame is obtained. This equation is solved analytically for V-flames anchored in high-velocity channel streams. It is demonstrated that dynamics of the flame disturbances in this case is controlled by the memory effects associated with vorticity generated by the perturbed flame. The perturbation growth rate spectrum is determined, and explicit analytical expressions for the eigenfunctions are given. It is found that the piecewise linear V structure is unstable for all values of the gas expansion coefficient. Despite the linearity of the basic pattern, however, evolutions of the V-flame disturbances are completely different from those found for freely propagating planar flames or open anchored flames. The obtained results reveal strong influence of the basic flow and the channel walls on the stability properties of confined V-flames.

  10. Flame quality monitor system for fixed firing rate oil burners

    DOEpatents

    Butcher, Thomas A.; Cerniglia, Philip

    1992-01-01

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  11. Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames. Appendix B

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.; Ross, H. D. (Technical Monitor)

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smokepoint flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during

  12. Premixed Edge-Flames in Spatially-Varying Straining Flows

    NASA Technical Reports Server (NTRS)

    Liu, Jian-Bang; Ronney, Paul D.

    1999-01-01

    Flames subject to temporally and spatially uniform hydrodynamic strain are frequently used to model the local interactions of flame fronts with turbulent flow fields (Williams, 1985; Peters, 1986; Bradley, 1992). The applicability of laminar flamelet models in strongly turbulent flows have been questioned recently (Shay and Ronney, 1998) because in turbulent flows the strain rate (sigma) changes at rates comparable to sigma itself and the scale over which the flame front curvature and sigma changes is comparable to the curvature scale itself. Therefore quasi-static, local models of turbulent strain and curvature effects on laminar flamelets may not be accurate under conditions where the strain and curvature effects are most significant. The purpose of this study is to examine flames in spatially-varying strain and compare their properties to those of uniformly strained flames.

  13. Chemical kinetic model uncertainty minimization through laminar flame speed measurements

    PubMed Central

    Park, Okjoo; Veloo, Peter S.; Sheen, David A.; Tao, Yujie; Egolfopoulos, Fokion N.; Wang, Hai

    2016-01-01

    Laminar flame speed measurements were carried for mixture of air with eight C3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso-butene, n-butane, and iso-butane) at the room temperature and ambient pressure. Along with C1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011, 158, 2358–2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C3 and C4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel. PMID:27890938

  14. Chemical kinetic model uncertainty minimization through laminar flame speed measurements.

    PubMed

    Park, Okjoo; Veloo, Peter S; Sheen, David A; Tao, Yujie; Egolfopoulos, Fokion N; Wang, Hai

    2016-10-01

    Laminar flame speed measurements were carried for mixture of air with eight C 3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso -butene, n -butane, and iso -butane) at the room temperature and ambient pressure. Along with C 1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011, 158, 2358-2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C 3 and C 4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C 3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C 4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C 4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel.

  15. Chemical kinetic model uncertainty minimization through laminar flame speed measurements

    DOE PAGES

    Park, Okjoo; Veloo, Peter S.; Sheen, David A.; ...

    2016-07-25

    Laminar flame speed measurements were carried for mixture of air with eight C 3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso-butene, n-butane, and iso-butane) at the room temperature and ambient pressure. Along with C 1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011,more » 158, 2358–2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C 3 and C 4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C 3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C 4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C 4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel.« less

  16. Chemical kinetic model uncertainty minimization through laminar flame speed measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Okjoo; Veloo, Peter S.; Sheen, David A.

    Laminar flame speed measurements were carried for mixture of air with eight C 3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso-butene, n-butane, and iso-butane) at the room temperature and ambient pressure. Along with C 1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011,more » 158, 2358–2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C 3 and C 4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C 3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C 4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C 4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel.« less

  17. 49 CFR 195.438 - Smoking or open flames.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Smoking or open flames. 195.438 Section 195.438... PIPELINE Operation and Maintenance § 195.438 Smoking or open flames. Each operator shall prohibit smoking and open flames in each pump station area and each breakout tank area where there is a possibility of...

  18. 49 CFR 195.438 - Smoking or open flames.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Smoking or open flames. 195.438 Section 195.438... PIPELINE Operation and Maintenance § 195.438 Smoking or open flames. Each operator shall prohibit smoking and open flames in each pump station area and each breakout tank area where there is a possibility of...

  19. 49 CFR 195.438 - Smoking or open flames.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Smoking or open flames. 195.438 Section 195.438... PIPELINE Operation and Maintenance § 195.438 Smoking or open flames. Each operator shall prohibit smoking and open flames in each pump station area and each breakout tank area where there is a possibility of...

  20. 49 CFR 195.438 - Smoking or open flames.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Smoking or open flames. 195.438 Section 195.438... PIPELINE Operation and Maintenance § 195.438 Smoking or open flames. Each operator shall prohibit smoking and open flames in each pump station area and each breakout tank area where there is a possibility of...

  1. 49 CFR 195.438 - Smoking or open flames.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Smoking or open flames. 195.438 Section 195.438... PIPELINE Operation and Maintenance § 195.438 Smoking or open flames. Each operator shall prohibit smoking and open flames in each pump station area and each breakout tank area where there is a possibility of...

  2. Effects of wind velocity and slope on flame properties

    Treesearch

    David R. Weise; Gregory S. Biging

    1996-01-01

    Abstract: The combined effects of wind velocity and percent slope on flame length and angle were measured in an open-topped, tilting wind tunnel by burning fuel beds composed of vertical birch sticks and aspen excelsior. Mean flame length ranged from 0.08 to 1.69 m; 0.25 m was the maximum observed flame length for most backing fires. Flame angle ranged from -46o to 50o...

  3. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1993-01-01

    The work of the Principal Investigator (PI) has encompassed four topics related to the experimental and theoretical study of combustion limits in premixed flames at microgravity, as discussed in the following sections. These topics include: (1) radiation effects on premixed gas flames; (2) flame structure and stability at low Lewis number; (3) flame propagation and extinction is cylindrical tubes; and (4) experimental simulation of combustion processes using autocatalytic chemical reactions.

  4. Pulsating Instability of Turbulent Thermonuclear Flames in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Poludnenko, Alexei Y.

    2014-01-01

    Presently, one of the main explosion scenarios of type Ia supernovae (SNIa), aimed at explaining both "normal" and subluminous events, is the thermonuclear incineration of a white-dwarf in a single-degenerate system. The underlying engine of such explosions is the turbulent thermonuclear flame. Modern, large-scale, multidimensional simulations of SNIa cannot resolve the internal flame structure, and instead must include a subgrid-scale prescription for the turbulent-flame properties. As a result, development of robust, parameter-free, large-scale models of SNIa crucially relies on the detailed understanding of the turbulent flame properties during each stage of the flame evolution. Due to the complexity of the flame dynamics, such understanding must be validated by the first-principles direct numerical simulations (DNS). In our previous work, we showed that sufficiently fast turbulent flames are inherently susceptible to the development of detonations, which may provide the mechanism for the deflagration-to-detonation transition (DDT) in the delayed-detonation model of SNIa. Here we extend this study by performing detailed analysis of the turbulent flame properties at turbulent intensities below the critical threshold for DDT. We carried out a suite of 3D DNS of turbulent flames for a broad range of turbulent intensities and system sizes using a simplified, single-step, Arrhenius-type reaction kinetics. Our results show that at the later stages of the explosion, as the turbulence intensity increases prior to the possible onset of DDT, the flame front will become violently unstable. We find that the burning rate exhibits periodic pulsations with the energy release rate varying by almost an order of magnitude. Furthermore, such flame pulsations can produce pressure waves and shocks as the flame speed approaches the critical Chapman-Jouguet deflagration speed. Finally, in contrast with the current theoretical understanding, such fast turbulent flames can propagate at

  5. Experimental investigation of aerodynamics, combustion, and emissions characteristics within the primary zone of a gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Elkady, Ahmed M.

    2006-04-01

    The present work investigates pollutant emissions production, mainly nitric oxides and carbon monoxide, within the primary zone of a highly swirling combustion and methods with which to reduce their formation. A baseline study was executed at different equivalence ratios and different inlet air temperatures. The study was then extended to investigate the effects of utilizing transverse air jets on pollutant emission characteristics at different jet locations, jet mass ratio, and overall equivalence ratio as well as to investigate the jets' overall interactions with the recirculation zone. A Fourier Transform Infrared (FTIR) spectrometer was employed to measure emissions concentrations generated during combustion of Jet-A fuel in a swirl-cup assembly. Laser Doppler Velocimetry (LDV) was employed to investigate the mean flow aerodynamics within the combustor. Particle Image Velocimetry (PIV) was utilized to capture the instantaneous aerodynamic behavior of the non-reacting primary zone. Results illustrate that NOx production is a function of both the recirculation zone and the flame length. At low overall equivalence ratios, the recirculation zone is found to be the main producer of NOx. At near stoichiometric conditions, the post recirculation zone appears to be responsible for the majority of NOx produced. Results reveal the possibility of injecting air into the recirculation zone without altering flame stability to improve emission characteristics. Depending on the jet location and strength, nitric oxides as well as carbon monoxide can be reduced simultaneously. Placing the primary air jet just downstream of the fuel rich recirculation zone can lead to a significant reduction in both nitric oxides and carbon monoxide. In the case of fuel lean recirculation zone, reduction of nitric oxides can occur by placing the jets below the location of maximum radius of the recirculation zone.

  6. A three-dimensional algebraic grid generation scheme for gas turbine combustors with inclined slots

    NASA Technical Reports Server (NTRS)

    Yang, S. L.; Cline, M. C.; Chen, R.; Chang, Y. L.

    1993-01-01

    A 3D algebraic grid generation scheme is presented for generating the grid points inside gas turbine combustors with inclined slots. The scheme is based on the 2D transfinite interpolation method. Since the scheme is a 2D approach, it is very efficient and can easily be extended to gas turbine combustors with either dilution hole or slot configurations. To demonstrate the feasibility and the usefulness of the technique, a numerical study of the quick-quench/lean-combustion (QQ/LC) zones of a staged turbine combustor is given. Preliminary results illustrate some of the major features of the flow and temperature fields in the QQ/LC zones. Formation of co- and counter-rotating bulk flow and shape temperature fields can be observed clearly, and the resulting patterns are consistent with experimental observations typical of the confined slanted jet-in-cross flow. Numerical solutions show the method to be an efficient and reliable tool for generating computational grids for analyzing gas turbine combustors with slanted slots.

  7. Entrainment regimes and flame characteristics of wildland fires

    Treesearch

    Ralph M. Nelson; Bret W. Butler; David R. Weise

    2012-01-01

    This paper reports results from a study of the flame characteristics of 22 wind-aided pine litter fires in a laboratory wind tunnel and 32 field fires in southern rough and litter-grass fuels. Flame characteristic and fire behaviour data from these fires, simple theoretical flame models and regression techniques are used to determine whether the data support the...

  8. 30 CFR 57.7805 - Smoking and open flames.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Smoking and open flames. 57.7805 Section 57... Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7805 Smoking and open flames. Persons shall not smoke and open flames shall not be used in the vicinity of the oxygen storage and supply lines. Signs...

  9. 30 CFR 57.7805 - Smoking and open flames.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking and open flames. 57.7805 Section 57... Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7805 Smoking and open flames. Persons shall not smoke and open flames shall not be used in the vicinity of the oxygen storage and supply lines. Signs...

  10. 30 CFR 57.7805 - Smoking and open flames.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Smoking and open flames. 57.7805 Section 57... Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7805 Smoking and open flames. Persons shall not smoke and open flames shall not be used in the vicinity of the oxygen storage and supply lines. Signs...

  11. 30 CFR 57.7805 - Smoking and open flames.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Smoking and open flames. 57.7805 Section 57... Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7805 Smoking and open flames. Persons shall not smoke and open flames shall not be used in the vicinity of the oxygen storage and supply lines. Signs...

  12. 30 CFR 57.7805 - Smoking and open flames.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Smoking and open flames. 57.7805 Section 57... Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7805 Smoking and open flames. Persons shall not smoke and open flames shall not be used in the vicinity of the oxygen storage and supply lines. Signs...

  13. Soot Formation in Hydrocarbon/Air Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Faeth, G. M.

    1994-01-01

    Soot processes within hydrocarbon/air diffusion flames are important because they affect the durability and performance of propulsion systems, the hazards of unwanted fires, the pollutant and particulate emissions from combustion processes, and the potential for developing computational combustion. Motivated by these observations, this investigation involved an experimental study of the structure and soot properties of round laminar jet diffusion flames, seeking an improved understanding of soot formation (growth and nucleation) within diffusion flames. The present study extends earlier work in this laboratory concerning laminar smoke points (l) and soot formation in acetylene/air laminar jet diffusion flames (2), emphasizing soot formation in hydrocarbon/air laminar jet diffusion flames for fuels other than acetylene. In the flame system, acetylene is the dominant gas species in the soot formation region and both nucleation and growth were successfully attributed to first-order reactions of acetylene, with nucleation exhibiting an activation energy of 32 kcal/gmol while growth involved negligible activation energy and a collision efficiency of O.53%. In addition, soot growth in the acetylene diffusion flames was comparable to new soot in premixed flame (which also has been attributed to first-order acetylene reactions). In view of this status, a major issue is the nature of soot formation processes in diffusion flame involving hydrocarbon fuels other than acetylene. In particular, information is needed about th dominant gas species in the soot formation region and the impact of gas species other than acetylene on soot nucleation and growth.

  14. Flow-combustion interactions in ducted flameholder-stabilized premixed flames

    NASA Astrophysics Data System (ADS)

    Soteriou, Marios; Arienti, Marco; Erickson, Robert

    2006-11-01

    Turbulent premixed combustion is present in many power generation and propulsion systems due to its large energy conversion rate (as compared to non-premixed combustion) and its potential for reduced emissions (at the lean limit). As a result, the study of turbulent premixed flames has received substantial attention in the past through experiment, analysis and simulation. In the recent past, unsteady Computational Fluid Dynamics (CFD) based models have been increasingly leveraged towards the in depth study of the physics of turbulent premixed flames. The bulk of this effort focuses on the response of the flame to turbulence. In contrast, we focus on the opposite problem, i.e. the modification of the turbulent flowfield by the flame. This topic has also received some attention but with a strong emphasis on planar (in the mean), flames propagating normal to the flow. Instead, we focus on flameholder-stabilized ducted flames, i.e. ones in which the flame is confined and substantially inclined to the incoming flow. The fundamental mechanisms by which the flame impacts the flow, i.e. dilatation, baroclinic vorticity generation and molecular diffusion enhancement are discussed in detail and their relative impact quantified. Limitations of modeling these mechanisms in current state of the art CFD models are also addressed.

  15. Field Effects of Buoyancy on Lean Premixed Turbulent Flames

    NASA Technical Reports Server (NTRS)

    Cheng, R. K.; Dimalanta, R.; Wernet, M. P.; Greenberg, P. S.

    2001-01-01

    Buoyancy affects the entire flowfield of steady turbulent flames and this aspect of flame buoyancy coupling is largely unexplored by experiments or by theory. Open flames and flames within large confinements are free to expand and interact with the surrounding environment. In addition to fluid and combustion conditions, their aerodynamic flowfields are determined by the flame brush orientation and geometry, wake of the stabilizer, enclosure size, and of course, the gravitational field. Because the flowfield consists mainly of cold reactants (mostly in the nearfield) and hot products (mostly in the farfield), buoyancy effects are manifested in the farfield region. In upward pointing flames, an obvious effect is a favorable axial pressure gradient that accelerates the products thereby increasing the axial aerodynamic stretch rate. Intrinsic to turbulent flows, changes in mean aerodynamic stretch also couple to the fluctuating pressure field. Consequently, buoyancy can influence the turbulence intensities upstream and downstream of the flame. Flame wrinkling process, and heat release rate are also directly affected. This backward coupling mechanism is the so-called elliptic problem. To resolve the field effects of buoyancy would require the solution of three-dimensional non-linear Navier Stokes equations with full specification of the upstream, wall and downstream boundary conditions.

  16. Aspects of Cool-Flame Supported Droplet Combustion in Microgravity

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Dietrich, Daniel L.; Williams, Forman A.

    2015-01-01

    Droplet combustion experiments performed on board the International Space Station have shown that normal-alkane fuels with negative temperature coefficient (NTC) chemistry can support quasi-steady, low-temperature combustion without any visible flame. Here we review the results for n-decane, n-heptane, and n-octane droplets burning in carbon dioxidehelium diluted environments at different pressures and initial droplet sizes. Experimental results for cool-flame burning rates, flame standoff ratios, and extinction diameters are compared against simplified theoretical models of the phenomenon. A simplified quasi-steady model based on the partial-burning regime of Lin predicts the burning rate, and flame standoff ratio reasonably well for all three normal alkanes. The second-stage cool-flame burning and extinction following the first-stage hot-flame combustion, however, shows a small dependence on the initial droplet size, thus deviating from the quasi-steady results. An asymptotic model that estimates the oxygen depletion by the hot flame and its influence on cool-flame burning rates is shown to correct the quasi-steady results and provide a better comparison with the measured burning-rate results.This work was supported by the NASA Space Life and Physical Sciences Research and Applications Program and the International Space Station Program.

  17. Multidimensional Effects on Ignition, Transition, and Flame Spread in Microgravity

    NASA Technical Reports Server (NTRS)

    Kashiwagi, T.; Mell, W. E.; Nakamura, Y.; Olson, S. L.; Baum, H. R.; McGrattan, K. B.

    2001-01-01

    Localized ignition is initiated by an external radiant source at the middle of a thermally thin sample under external slow flow, simulating fire initiation in a spacecraft with a slow ventilation flow. Two ignition configurations are simulated, one across the sample surface creating a line shaped flame front (two-dimensional, 2-D, configuration) and the other a small circular ignition (three-dimensional, 3-D, configuration). Ignition, subsequent transition to simultaneously upstream and downstream flame spread, and flame growth behavior are studied experimentally and theoretically. Details of our theoretical models and numerical techniques can be found in previous publications. The effects of the sample width on the transition and subsequent flame spread, and flame spread along open edges of a thermally thin paper sample are determined. Experimental observations of flame spread phenomena were conducted in the 10 s drop tower and also on the space shuttle STS-75 flight to determine the effects of oxygen concentration and external flow velocity on flame spread rate and flame growth pattern. Finally, effects of confinement in a small test chamber on the transition and subsequent flame spread are examined. The results of these studies are briefly reported.

  18. Acoustic near-field characteristics of a conical, premixed flame

    NASA Astrophysics Data System (ADS)

    Lee, Doh-Hyoung; Lieuwen, Tim C.

    2003-01-01

    The occurrence of self-excited pressure oscillations routinely plagues the development of combustion systems. These oscillations are often driven by interactions between the flame and acoustic perturbations. This study was performed to characterize the structure of the acoustic field in the near field of the flame and the manner in which it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results of these calculations indicate that the acoustic velocity has primarily one- and two-dimensional features near the flame tip and base, respectively. The magnitude of the radial velocity components increases with temperature ratio across the flame, while their axial extent increases with frequency. However, the acoustic pressure has primarily one-dimensional characteristics. They also show that the acoustic field structure exhibits only moderate dependencies upon area expansion and flame temperature ratio for values typical of practical systems. Finally, they show that the local characteristics of the acoustic field, as well as the overall plane-wave reflection coefficient, exhibit a decreasing dependence upon the flame length as the area expansion ratio increases.

  19. Acoustic near-field characteristics of a conical, premixed flame.

    PubMed

    Lee, Doh-Hyoung; Lieuwen, Tim C

    2003-01-01

    The occurrence of self-excited pressure oscillations routinely plagues the development of combustion systems. These oscillations are often driven by interactions between the flame and acoustic perturbations. This study was performed to characterize the structure of the acoustic field in the near field of the flame and the manner in which it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results of these calculations indicate that the acoustic velocity has primarily one- and two-dimensional features near the flame tip and base, respectively. The magnitude of the radial velocity components increases with temperature ratio across the flame, while their axial extent increases with frequency. However, the acoustic pressure has primarily one-dimensional characteristics. They also show that the acoustic field structure exhibits only moderate dependencies upon area expansion and flame temperature ratio for values typical of practical systems. Finally, they show that the local characteristics of the acoustic field, as well as the overall plane-wave reflection coefficient, exhibit a decreasing dependence upon the flame length as the area expansion ratio increases.

  20. Flame-conditioned turbulence modeling for reacting flows

    NASA Astrophysics Data System (ADS)

    Macart, Jonathan F.; Mueller, Michael E.

    2017-11-01

    Conventional approaches to turbulence modeling in reacting flows rely on unconditional averaging or filtering, that is, consideration of the momentum equations only in physical space, implicitly assuming that the flame only weakly affects the turbulence, aside from a variation in density. Conversely, for scalars, which are strongly coupled to the flame structure, their evolution equations are often projected onto a reduced-order manifold, that is, conditionally averaged or filtered, on a flame variable such as a mixture fraction or progress variable. Such approaches include Conditional Moment Closure (CMC) and related variants. However, recent observations from Direct Numerical Simulation (DNS) have indicated that the flame can strongly affect turbulence in premixed combustion at low Karlovitz number. In this work, a new approach to turbulence modeling for reacting flows is investigated in which conditionally averaged or filtered equations are evolved for the momentum. The conditionally-averaged equations for the velocity and its covariances are derived, and budgets are evaluated from DNS databases of turbulent premixed planar jet flames. The most important terms in these equations are identified, and preliminary closure models are proposed.

  1. Combustion-transition interaction in a jet flame

    NASA Astrophysics Data System (ADS)

    Yule, A. J.; Chigier, N. A.; Ralph, S.; Boulderstone, R.; Ventura, J.

    1980-01-01

    The transition between laminar and turbulent flow in a round jet flame is studied experimentally. Comparison is made between transition in non-burning and burning jets and between jet flames with systematic variation in initial Reynolds number and equivalence ratio. Measurements are made using laser anemometry, miniature thermocouples, ionization probes, laser-schlieren and high speed cine films. Compared with the cold jet, the jet flame has a longer potential core, undergoes a slower transition to turbulence, has lower values of fluctuating velocity near the burner but higher values further downstream, contains higher velocity gradients in the mixing layer region although the total jet width does not alter greatly in the first twenty diameters. As in the cold jet, transitional flow in the flame contains waves and vortices and these convolute and stretch the initially laminar interface burning region. Unlike the cold jet, which has Kelvin-Helmholtz instabilities, the jet flame can contain at least two initial instabilities; an inner high frequency combustion driven instability and an outer low frequency instability which may be influenced by buoyancy forces.

  2. Richtmyer-Meshkov instability in shock-flame interactions

    NASA Astrophysics Data System (ADS)

    Massa, Luca; Pallav Jha Collaboration

    2011-11-01

    Shock-flame interactions occur in supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer- Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a non-zero pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth for high wave numbers. A non-hydrodynamic flame representation leads to the definition of an additional scaling Peclet number, the effects of which are investigated. It is found that an increased flame-contact separation destabilizes the contact discontinuity by augmenting the tangential shear.

  3. 46 CFR 151.03-23 - Flame arrestor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-23 Flame arrestor. Any device or assembly of cellular, tubular, pressure or other type used for preventing the passage of flames into enclosed...

  4. 46 CFR 151.03-23 - Flame arrestor.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-23 Flame arrestor. Any device or assembly of cellular, tubular, pressure or other type used for preventing the passage of flames into enclosed...

  5. Flame Retardants Used in Flexible Polyurethane Foam

    EPA Pesticide Factsheets

    The partnership project on flame retardants in furniture seeks to update the health and environmental profiles of flame-retardant chemicals that meet fire safety standards for upholstered consumer products with polyurethane foam

  6. Analytical Study of Gravity Effects on Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Edelman, R. B.; Fortune, O.; Weilerstein, G.

    1972-01-01

    A mathematical model is presented for the description of axisymmetric laminar-jet diffusion flames. The analysis includes the effects of inertia, viscosity, diffusion, gravity and combustion. These mechanisms are coupled in a boundary layer type formulation and solutions are obtained by an explicit finite difference technique. A dimensional analysis shows that the maximum flame width radius, velocity and thermodynamic state characterize the flame structure. Comparisons with experimental data showed excellent agreement for normal gravity flames and fair agreement for steady state low Reynolds number zero gravity flames. Kinetics effects and radiation are shown to be the primary mechanisms responsible for this discrepancy. Additional factors are discussed including elipticity and transient effects.

  7. Flame Structure and Scalar Properties in Microgravity Laminar Fires

    NASA Technical Reports Server (NTRS)

    Feikema, D. A.; Lim, J.; Sivathanu, Y.

    2006-01-01

    Recent results from microgravity combustion experiments conducted in the Zero Gravity Facility (ZGF) 5.18 second drop tower are reported. Emission mid-infrared spectroscopy measurements have been completed to quantitatively determine the flame temperature, water and carbon dioxide vapor concentrations, radiative emissive power, and soot concentrations in a microgravity laminar ethylene/air flame. The ethylene/air laminar flame conditions are similar to previously reported experiments including the Flight Project, Laminar Soot Processes (LSP). Soot concentrations and gas temperatures are in reasonable agreement with similar results available in the literature. However, soot concentrations and flame structure dramatically change in long duration microgravity laminar diffusion flames as demonstrated in this paper.

  8. Acoustic Signature from Flames as a Combustion Diagnostic Tool

    DTIC Science & Technology

    1983-11-01

    empirical visual flame length had to be input to the computer for the inversion method to give good results. That is, if the experiment cnd inversion...method were asked to yield the flame length , poor results were obtained. Since this wa3 part of the information sought for practical application of the...to small experimental uncertainty. The method gave reasonably good results for the open flame but substantial input (the flame length ) had to be

  9. Halogenated flame retardants in the Great Lakes environment.

    PubMed

    Venier, Marta; Salamova, Amina; Hites, Ronald A

    2015-07-21

    Flame retardants are widely used industrial chemicals that are added to polymers, such as polyurethane foam, to prevent them from rapidly burning if exposed to a small flame or a smoldering cigarette. Flame retardants, especially brominated flame retardants, are added to many polymeric products at percent levels and are present in most upholstered furniture and mattresses. Most of these chemicals are so-called "additive" flame retardants and are not chemically bound to the polymer; thus, they migrate from the polymeric materials into the environment and into people. As a result, some of these chemicals have become widespread pollutants, which is a concern given their possible adverse health effects. Perhaps because of their environmental ubiquity, the most heavily used group of brominated flame retardants, the polybrominated diphenyl ethers (PBDEs), was withdrawn from production and use during the 2004-2013 period. This led to an increasing demand for other flame retardants, including other brominated aromatics and organophosphate esters. Although little is known about the use or production volumes of these newer flame retardants, it is evident that some of these chemicals are also becoming pervasive in the environment and in humans. In this Account, we describe our research on the occurrence of halogenated and organophosphate flame retardants in the environment, with a specific focus on the Great Lakes region. This Account starts with a short introduction to the first generation of brominated flame retardants, the polybrominated biphenyls, and then presents our measurements of their replacement, the PBDEs. We summarize our data on PBDE levels in babies, bald eagles, and in air. Once these compounds came off the market, we began to measure several of the newer flame retardants in air collected on the shores of the Great Lakes once every 12 days. These new measurements focus on a tetrabrominated benzoate, a tetrabrominated phthalate, a hexabrominated diphenoxyethane

  10. The structure of particle cloud premixed flames

    NASA Technical Reports Server (NTRS)

    Seshadri, K.; Berlad, A. L.

    1992-01-01

    The structure of premixed flames propagating in combustible systems containing uniformly distributed volatile fuel particles in an oxidizing gas mixture is analyzed. This analysis is motivated by experiments conducted at NASA Lewis Research Center on the structure of flames propagating in combustible mixtures of lycopodium particles and air. Several interesting modes of flame propagation were observed in these experiments depending on the number density and the initial size of the fuel particle. The experimental results show that steady flame propagation occurs even if the initial equivalence ratio of the combustible mixture based on the gaseous fuel available in the particles, phi sub u, is substantially larger than unity. A model is developed to explain these experimental observations. In the model, it is presumed that the fuel particles vaporize first to yield a gaseous fuel of known chemical composition which then reacts with oxygen in a one-step overall process. The activation energy of the chemical reaction is presumed to be large. The activation energy characterizing the kinetics of vaporization is also presumed to be large. The equations governing the structure of the flame were integrated numerically. It is shown that the interplay of vaporization kinetics and oxidation process can result in steady flame propagation in combustible mixtures where the value of phi sub u is substantially larger than unity. This prediction is in agreement with experimental observations.

  11. Fast Hydrogen-Air Flames for Turbulence Driven Deflagration to Detonation Transition

    NASA Astrophysics Data System (ADS)

    Chambers, Jessica; Ahmed, Kareem

    2016-11-01

    Flame acceleration to Detonation produces several combustion modes as the Deflagration-to-Detonation Transition (DDT) is initiated, including fast deflagration, auto-ignition, and quasi-detonation. Shock flame interactions and turbulence levels in the reactant mixture drive rapid flame expansion, formation of a leading shockwave and post-shock conditions. An experimental study to characterize the developing shock and flame front behavior of propagating premixed hydrogen-air flames in a square channel is presented. To produce each flame regime, turbulence levels and flame propagation velocity are controlled using perforated plates in several configurations within the experimental facility. High speed optical diagnostics including Schlieren and Particle Image Velocimetry are used to capture the flow field. In-flow pressure measurements acquired post-shock, detail the dynamic changes that occur in the compressed gas directly ahead of the propagating flame. Emphasis on characterizing the turbulent post-shock environment of the various flame regimes helps identify the optimum conditions to initiate the DDT process. The study aims to further the understanding of complex physical mechanisms that drive transient flame conditions for detonation initiation. American Chemical Society.

  12. Localized microwave pulsed plasmas for ignition and flame front enhancement

    NASA Astrophysics Data System (ADS)

    Michael, James Bennett

    Modern combustor technologies require the ability to match operational parameters to rapidly changing demands. Challenges include variable power output requirements, variations in air and fuel streams, the requirement for rapid and well-controlled ignition, and the need for reliability at low fuel mixture fractions. Work on subcritical microwave coupling to flames and to weakly ionized laser-generated plasmas has been undertaken to investigate the potential for pulsed microwaves to allow rapid combustion control, volumetric ignition, and leaner combustion. Two strategies are investigated. First, subcritical microwaves are coupled to femtosecond laser-generated ionization to ignite methane/air mixtures in a quasi-volumetric fashion. Total energy levels are comparable to the total minimum ignition energies for laser and spark discharges, but the combined strategy allows a 90 percent reduction in the required laser energy. In addition, well-defined multi-dimensional ignition patterns are designated with multiple laser passes. Second, microwave pulse coupling to laminar flame fronts is achieved through interaction with chemiionization-produced electrons in the reaction zone. This energy deposition remains well-localized for a single microwave pulse, resulting in rapid temperature rises of greater than 200 K and maintaining flame propagation in extremely lean methane/air mixtures. The lean flammability limit in methane/air mixtures with microwave coupling has been decreased from an equivalence ratio 0.6 to 0.3. Additionally, a diagnostic technique for laser tagging of nitrogen for velocity measurements is presented. The femtosecond laser electronic excitation tagging (FLEET) technique utilizes a 120 fs laser to dissociate nitrogen along a laser line. The relatively long-lived emission from recombining nitrogen atoms is imaged with a delayed and fast-gated camera to measure instantaneous velocities. The emission strength and lifetime in air and pure nitrogen allow

  13. Gravity Effects Observed In Partially Premixed Flames

    NASA Technical Reports Server (NTRS)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Gauguly, Ranjan; Hegde, Uday

    2003-01-01

    Partially premixed flames (PPFs) contain a rich premixed fuel air mixture in a pocket or stream, and, for complete combustion to occur, they require the transport of oxidizer from an appropriately oxidizer-rich (or fuel-lean) mixture that is present in another pocket or stream. Partial oxidation reactions occur in fuel-rich portions of the mixture and any remaining unburned fuel and/or intermediate species are consumed in the oxidizer-rich portions. Partial premixing, therefore, represents that condition when the equivalence ratio (phi) in one portion of the flowfield is greater than unity, and in another section its value is less than unity. In general, for combustion to occur efficiently, the global equivalence ratio is in the range fuel-lean to stoichiometric. These flames can be established by design by placing a fuel-rich mixture in contact with a fuel-lean mixture, but they also occur otherwise in many practical systems, which include nonpremixed lifted flames, turbulent nonpremixed combustion, spray flames, and unwanted fires. Other practical applications of PPFs are reported elsewhere. Although extensive experimental studies have been conducted on premixed and nonpremixed flames under microgravity, there is a absence of previous experimental work on burner stabilized PPFs in this regard. Previous numerical studies by our group employing a detailed numerical model showed gravity effects to be significant on the PPF structure. We report on the results of microgravity experiments conducted on two-dimensional (established on a Wolfhard-Parker slot burner) and axisymmetric flames (on a coannular burner) that were investigated in a self-contained multipurpose rig. Thermocouple and radiometer data were also used to characterize the thermal transport in the flame.

  14. Ionization of the group 3 metals La, Y and Sc in H2---O2---Ar flames

    NASA Astrophysics Data System (ADS)

    Patterson, Patricia M.; Goodings, John M.

    1995-09-01

    Four pairs of premixed, fuel-rich/fuel-lean (FR/FL; equivalence ratio [Phi] = 1.5/0.75). H2---O2---Ar flames at four temperatures in the range 1900-2425 K, all at atmospheric pressure, were doped with about 10-6 mole fraction of the group 3 metals La, Y and Sc using atomizer techniques. The metals produce solid particles in the flames and gaseous metallic species. The latter include free metallic atoms, A, near the flame reaction zone, but only the monoxide AO and the oxide-hydroxide OAOH further downstream at equilibrium; the [OAOH]/[AO] ratio varies in FR/FL flames. Metallic ions (<1% of the total metal) were observed by sampling a given flame along its axis through a nozzle into a mass spectrometer. All of the observed ions can be represented by an oxide ion series AO+·nH2O (n = 0-3 or more) although their actual structures may be different; e.g. A(OH)2+ for n = 1, interpreted as protonated OAOH. A major objective was to ascertain the ionization mechanism, principally that of La. The ionization appears to receive an initial boost from the exothermic chemi-ionization reaction of A with atomic O to produce AO+; further downstream, the ionization level is sustained by the thermal (collisional) ionization of AO to produce AO+ and/or the chemi-ionization of OAOH with H to produce A(OH)2+. The ions AO+, A(OH)2+ and higher hydrates are all rapidly equilibrated by three-body association reactions with water. Ions are lost by dissociative electron-ion recombination of A(OH)2+ and possibly higher hydrates. The chemical ionization of the metallic species by H3O+ was investigated by adding a small quantity of CH4 to the flames. The ion chemistry is discussed in detail. An estimate of the bond dissociation energy D0°(OLa---OH) = 408 ± 40 kJ mol-1 (4.23 ± 0.41 eV) was obtained.

  15. Near-Body Grid Adaption for Overset Grids

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  16. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seitzman, Jerry; Lieuwen, Timothy

    2014-09-30

    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixturesmore » having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These results

  17. Light collection device for flame emission detectors

    DOEpatents

    Woodruff, Stephen D.; Logan, Ronald G.; Pineault, Richard L.

    1990-01-01

    A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.

  18. Experiments on Diffusion Flame Structure of a Laminar Vortex Ring

    NASA Technical Reports Server (NTRS)

    Chen, Shin-Juh; Dahm, Werner J. A.

    1999-01-01

    The study of flame-vortex interactions provides one of the means to better understand turbulent combustion, and allows for canonical configurations that contain the fundamental elements found in turbulent flames, These include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, and heat release effects. In flame- vortex configurations, these fundamental elements can be studied under more controlled conditions than is possible in direct investigations of turbulent flames. Since the paper of Marble, the problem of the flame-vortex interaction has received considerable attention theoretically, numerically and experimentally. Several configurations exist for study of the premixed flame/vortex ring interaction but more limited results have been obtained to date for the diffusion flame/vortex ring case. The setup of Chen and Dahm, which is conceptually similar to that of Karagozian and Manda and Karagozian, Suganuma and Strom where the ring is composed of fuel and air and combustion begins during the ring formation process, is used in the current study. However, it is essential to conduct the experiments in microgravity to remove the asymmetries caused by buoyancy and thus obtain highly symmetric and repeatable interactions. In previous studies it was found that the flame structure of the vortex ring was similar to that obtained analytically by Karagozian and Manda. Dilution of propane with nitrogen led mainly to a reduction in flame luminosities, flame burnout times were affected by both fuel volumes and amount of dilution, and a simple model of the burnout times was developed. In this paper, a discussion on reacting ring displacement and flame burnout time will be given, and the flame structures of vortex rings containing ethane and air will be compared to those of propane reacting in air.

  19. Candle Flames in Microgravity: USML-1 Results - 1 Year Later

    NASA Technical Reports Server (NTRS)

    Ross, H. D.; Dietrich, D. L.; Tien, J. S.

    1994-01-01

    We report on the sustained behavior of a candle flame in microgravity determined in the glovebox facility aboard the First United States Microgravity Labomtofy. In a quiescent, microgmvjfy environment, diffusive transport becomes the dominant mode of heat and mass transfer; whether the diffusive transport rate is fast enough to sustain low-gravity candle flames in air was unknown to this series of about 70 tests. After an initial transient in which soot is observed, the microgravity candle flame in air becomes and remains hemispherical and blue (apparently soot-Ne) with a large flame standoff distance. Near flame extinction, spontaneous flame oscillations are regularly observed; these are explained as a flashback of flame through a premixed combustible gas followed by a retreat owed to flame quenching. The frequency of oscillations can be related to diffusive transport rates, and not to residual buoyant convective flow. The fact that the flame tip is the last point of the flame to survive suggests that it is the location of maximum fuel reactivity; this is unlike normal gravity, where the location of maximum fuel reactivity is the flame base. The flame color, size, and shape behaved in a quasi-steady manner; the finite size of the glovebox, combined with the restricted passages of the candlebox, inhibited the observation of true steady-state burning. Nonetheless, through calculations, and inference from the series of shuttle tests, if is concluded that a candle can burn indefinitely in a large enough ambient of air in microgravity. After igniting one candle, a second candle in close pximity could not be lit. This may be due to wax coating the wick and/or local oxygen depletion around the second, unlit candle. Post-mission testing suggests that simultaneous ignition may overcome these behaviors and enable both candles to be ignited.

  20. PREMIXED FLAME PROPAGATION AND MORPHOLOGY IN A CONSTANT VOLUME COMBUSTION CHAMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariharan, A; Wichman, IS

    2014-06-04

    This work presents an experimental and numerical investigation of premixed flame propagation in a constant volume rectangular channel with an aspect ratio of six (6) that serves as a combustion chamber. Ignition is followed by an accelerating cusped finger-shaped flame-front. A deceleration of the flame is followed by the formation of a "tulip"-shaped flame-front. Eventually, the flame is extinguished when it collides with the cold wall on the opposite channel end. Numerical computations are performed to understand the influence of pressure waves, instabilities, and flow field effects causing changes to the flame structure and morphology. The transient 2D numerical simulationmore » results are compared with transient 3D experimental results. Issues discussed are the appearance of oscillatory motions along the flame front and the influences of gravity on flame structure. An explanation is provided for the formation of the "tulip" shape of the premixed flame front.« less

  1. Coherent Anti-stokes Raman Spectroscopy (CARS) of gun propellant flames

    NASA Technical Reports Server (NTRS)

    Mcilwain, M. E.; Harris, L. E.

    1980-01-01

    Temperature measurements were made in a slightly fuel rich, premixed propane/air reference flame and nitrate ester propellant flames burning in air at atmospheric pressure using coherent anti-stokes raman scattering (CARS). Both single and multiple pulse VARS spectra of nitrogen in the reference flame were in good agreement with calculated and reported values. Single pulse CARS nitrogen spectra obtained in the propellant flames were analyzed to give temperatures consistent with values calculated using the NASA-Lewis thermochemical calculation. Comparison of a 0.1 second separated sequence of single pulse CARS spectra indicate turbulent air mixing in these propellant flames. The CARS spectral results demonstrate that temporal and spatially resolved temperature measurements could be determined in transient, turbulent flames.

  2. Local curvature measurements of a lean, partially premixed swirl-stabilised flame

    NASA Astrophysics Data System (ADS)

    Bayley, Alan E.; Hardalupas, Yannis; Taylor, Alex M. K. P.

    2012-04-01

    A swirl-stabilised, lean, partially premixed combustor operating at atmospheric conditions has been used to investigate the local curvature distributions in lifted, stable and thermoacoustically oscillating CH4-air partially premixed flames for bulk cold-flow Reynolds numbers of 15,000 and 23,000. Single-shot OH planar laser-induced fluorescence has been used to capture instantaneous images of these three different flame types. Use of binary thresholding to identify the reactant and product regions in the OH planar laser-induced fluorescence images, in order to extract accurate flame-front locations, is shown to be unsatisfactory for the examined flames. The Canny-Deriche edge detection filter has also been examined and is seen to still leave an unacceptable quantity of artificial flame-fronts. A novel approach has been developed for image analysis where a combination of a non-linear diffusion filter, Sobel gradient and threshold-based curve elimination routines have been used to extract traces of the flame-front to obtain local curvature distributions. A visual comparison of the effectiveness of flame-front identification is made between the novel approach, the threshold binarisation filter and the Canny-Deriche filter. The novel approach appears to most accurately identify the flame-fronts. Example histograms of the curvature for six flame conditions and of the total image area are presented and are found to have a broader range of local flame curvatures for increasing bulk Reynolds numbers. Significantly positive values of mean curvature and marginally positive values of skewness of the histogram have been measured for one lifted flame case, but this is generally accounted for by the effect of flame brush curvature. The mean local flame-front curvature reduces with increasing axial distance from the burner exit plane for all flame types. These changes are more pronounced in the lifted flames but are marginal for the thermoacoustically oscillating flames. It is

  3. Monte Carlo Simulation of Nanoparticle Encapsulation in Flames

    NASA Technical Reports Server (NTRS)

    Sun, Z.; Huertas, J. I.; Axelbaum, R. L.

    1999-01-01

    Gas-phase combustion (flame) synthesis has been an essential industrial process for producing large quantities of powder materials such as carbon black, titanium dioxide, and silicon dioxide. Flames typically produce simple oxides, with carbon black being the noted exception because the oxides of carbon are gaseous and are easily separated from the particulate matter that is formed during fuel pyrolysis. Furthermore, the powders produced in flames are usually agglomerated, nanometer-sized particles (nanoparticles). This composition and morphology is acceptable for many applications. However, the present interest in nanoparticles for advanced materials application has led to efforts to employ flames for the synthesis of unagglomerated nanoparticles (2 to 100 nm) of metals and non-oxide ceramics. Sodium-halide chemistry has proven to be viable for producing metals and non-oxide ceramics in flames. Materials that have been produced to date include Si (Calcote and Felder, 1993), TiN, TiB2, TiC, TiSi2, SiC, B4C (Glassman et al, 1993) Al, W, Ti, TiB2, AlN, and W-Ti and Al-AlN composites (DuFaux and Axelbaum, 1995, Axelbaum et al 1996,1997). Many more materials are possible. The main challenge that faces application of flame synthesis for advanced materials is overcoming formation of agglomerates in flames (Brezinsky, 1997). The high temperatures and high number densities in the flame environment favor the formation of agglomerates. Agglomerates must be avoided for many reasons. For example, when nanopowders are consolidated, agglomerates have a deleterious effect on compaction density, leading to voids in the final part. Efforts to avoid agglomeration in flames without substantially reducing particle number density and, consequently, production rate, have had limited success. Another critical challenge that faces all synthesis routes for nanopowders is ensuring that the powders are high purity and that the process is scaleable. Though the containerless, high temperature

  4. Simultaneous Laser Raman-rayleigh-lif Measurements and Numerical Modeling Results of a Lifted Turbulent H2/N2 Jet Flame in a Vitiated Coflow

    NASA Technical Reports Server (NTRS)

    Cabra, R.; Chen, J. Y.; Dibble, R. W.; Myhrvold, T.; Karpetis, A. N.; Barlow, R. S.

    2002-01-01

    An experiment and numerical investigation is presented of a lifted turbulent H2/N2 jet flame in a coflow of hot, vitiated gases. The vitiated coflow burner emulates the coupling of turbulent mixing and chemical kinetics exemplary of the reacting flow in the recirculation region of advanced combustors. It also simplifies numerical investigation of this coupled problem by removing the complexity of recirculating flow. Scalar measurements are reported for a lifted turbulent jet flame of H2/N2 (Re = 23,600, H/d = 10) in a coflow of hot combustion products from a lean H2/Air flame ((empty set) = 0.25, T = 1,045 K). The combination of Rayleigh scattering, Raman scattering, and laser-induced fluorescence is used to obtain simultaneous measurements of temperature and concentrations of the major species, OH, and NO. The data attest to the success of the experimental design in providing a uniform vitiated coflow throughout the entire test region. Two combustion models (PDF: joint scalar Probability Density Function and EDC: Eddy Dissipation Concept) are used in conjunction with various turbulence models to predict the lift-off height (H(sub PDF)/d = 7,H(sub EDC)/d = 8.5). Kalghatgi's classic phenomenological theory, which is based on scaling arguments, yields a reasonably accurate prediction (H(sub K)/d = 11.4) of the lift-off height for the present flame. The vitiated coflow admits the possibility of auto-ignition of mixed fluid, and the success of the present parabolic implementation of the PDF model in predicting a stable lifted flame is attributable to such ignition. The measurements indicate a thickened turbulent reaction zone at the flame base. Experimental results and numerical investigations support the plausibility of turbulent premixed flame propagation by small scale (on the order of the flame thickness) recirculation and mixing of hot products into reactants and subsequent rapid ignition of the mixture.

  5. Transition of carbon nanostructures in heptane diffusion flames

    NASA Astrophysics Data System (ADS)

    Hu, Wei-Chieh; Hou, Shuhn-Shyurng; Lin, Ta-Hui

    2017-02-01

    The flame synthesis has high potential in industrial production of carbon nanostructure (CNS). Unfortunately, the complexity of combustion chemistry leads to less controlling of synthesized products. In order to improve the understanding of the relation between flames and CNSs synthesized within, experiments were conducted through heptane flames in a stagnation-point liquid-pool system. The operating parameters for the synthesis include oxygen supply, sampling position, and sampling time. Two kinds of nanostructures were observed, carbon nanotube (CNT) and carbon nano-onion (CNO). CNTs were synthesized in a weaker flame near extinction. CNOs were synthesized in a more sooty flame. The average diameter of CNTs formed at oxygen concentration of 15% was in the range of 20-30 nm. For oxygen concentration of 17%, the average diameter of CNTs ranged from 24 to 27 nm, while that of CNOs was around 28 nm. For oxygen concentration of 19%, the average diameter of CNOs produced at the sampling position 0.5 mm below the flame front was about 57 nm, while the average diameters of CNOs formed at the sampling positions 1-2.5 mm below the flame front were in the range of 20-25 nm. A transition from CNT to CNO was observed by variation of sampling position in a flame. We found that the morphology of CNS is directly affected by the presence of soot layer due to the carbonaceous environment and the growth mechanisms of CNT and CNO. The sampling time can alter the yield of CNSs depending on the temperature of sampling position, but the morphology of products is not affected.

  6. Studies of Methane Counterflow Flames at Low Pressures

    NASA Astrophysics Data System (ADS)

    Burrell, Robert Roe

    Methane is the smallest hydrocarbon molecule, the fuel most widely studied in fundamental flame structure studies, and a major component of natural gas. Despite many decades of research into the fundamental chemical kinetics involved in methane oxidation, ongoing advancements in research suggest that more progress can be made. Though practical combustors of industrial and commercial significance operate at high pressures and turbulent flow conditions, fundamental understanding of combustion chemistry in flames is more readily obtained for low pressure and laminar flow conditions. Measurements were performed from 1 to 0.1 atmospheres for premixed methane/air and non-premixed methane-nitrogen/oxygen flames in a counterflow. Comparative modeling with quasi-one-dimensional strained flame codes revealed bias-induced errors in measured velocities up to 8% at 0.1 atmospheres due to tracer particle phase velocity slip in the low density gas reacting flow. To address this, a numerically-assisted correction scheme consisting of direct simulation of the particle phase dynamics in counterflow was implemented. Addition of reactions describing the prompt dissociation of formyl radicals to an otherwise unmodified USC Mech II kinetic model was found to enhance computed flame reactivity and substantially improve the predictive capability of computed results for measurements at the lowest pressures studied. Yet, the same modifications lead to overprediction of flame data at 1 atmosphere where results from the unmodified USC Mech II kinetic mechanism agreed well with ambient pressure flame data. The apparent failure of a single kinetic model to capture pressure dependence in methane flames motivates continued skepticism regarding the current understanding of pressure dependence in kinetic models, even for the simplest fuels.

  7. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV

    NASA Astrophysics Data System (ADS)

    Steinberg, Adam M.; Driscoll, James F.; Ceccio, Steven L.

    2008-06-01

    A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140 μm, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles.

  8. Effects of Lewis Number on Temperatures of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Santa, K. J.; Sun, Z.; Chao, B. H.; Sunderland, P. B.; Axelbaum, R. I.; Urban, D. L.; Stocker, D. P.

    2007-01-01

    Spherical diffusion flames supported on a porous sphere were studied numerically and experimentally. Experiments were performed in 2.2 s and 5.2 s microgravity facilities. Numerical results were obtained from a Chemkin-based program. The program simulates flow from a porous sphere into a quiescent environment, yields both steady-state and transient results, and accounts for optically thick gas-phase radiation. The low flow velocities and long residence times in these diffusion flames lead to enhanced radiative and diffusive effects. Despite similar adiabatic flame temperatures, the measured and predicted temperatures varied by as much as 700 K. The temperature reduction correlates with flame size but characteristic flow times and, importantly, Lewis number also influence temperature. The numerical results show that the ambient gas Lewis number would have a strong effect on flame temperature if the flames were steady and nonradiating. For example, a 10% decrease in Lewis number would increase the steady-state flame temperature by 200 K. However, for these transient, radiating flames the effect of Lewis number is small. Transient predictions of flame sizes are larger than those observed in microgravity experiments. Close agreement could not be obtained without either increasing the model s thermal and mass diffusion properties by 30% or reducing mass flow rate by 25%.

  9. Onset of Darrieus-Landau Instability in Expanding Flames

    NASA Astrophysics Data System (ADS)

    Mohan, Shikhar; Matalon, Moshe

    2017-11-01

    The effect of small amplitude perturbations on the propagation of circular flames in unconfined domains is investigated, computationally and analytically, within the context of the hydrodynamic theory. The flame, treated as a surface of density discontinuity separating fresh combustible mixture from the burnt gas, propagates at a speed dependent upon local curvature and hydrodynamic strain. For mixtures with Lewis numbers above criticality, thermodiffusive effects have stabilizing influences which largely affect the flame at small radii. The amplitude of these disturbances initially decay and only begin to grow once a critical radius is reached. This instability is hydrodynamic in nature and is a consequence of thermal expansion. Through linear stability analysis, predictions of critical flame radius at the onset of instability are obtained as functions of Markstein length and thermal expansion coefficients. The flame evolution is also examined numerically where the motion of the interface is tracked via a level-set method. Consistent with linear stability results, simulations show the flame initially remaining stable and the existence of a particular mode that will be first to grow and later determine the cellular structure observed experimentally at the onset of instability.

  10. Two-step tomographic reconstructions of temperature and species concentration in a flame based on laser absorption measurements with a rotation platform

    NASA Astrophysics Data System (ADS)

    Xia, Huihui; Kan, Ruifeng; Xu, Zhenyu; He, Yabai; Liu, Jianguo; Chen, Bing; Yang, Chenguang; Yao, Lu; Wei, Min; Zhang, Guangle

    2017-03-01

    We present a system for accurate tomographic reconstruction of the combustion temperature and H2O vapor concentration of a flame based on laser absorption measurements, in combination with an innovative two-step algebraic reconstruction technique. A total of 11 collimated laser beams generated from outputs of fiber-coupled diode lasers formed a two-dimensional 5 × 6 orthogonal beam grids and measured at two H2O absorption transitions (7154.354/7154.353 cm-1 and 7467.769 cm-1). The measurement system was designed on a rotation platform to achieve a two-folder improvement in spatial resolution. Numerical simulation showed that the proposed two-step algebraic reconstruction technique for temperature and concentration, respectively, greatly improved the reconstruction accuracy of species concentration when compared with a traditional calculation. Experimental results demonstrated the good performances of the measurement system and the two-step reconstruction technique for applications such as flame monitoring and combustion diagnosis.

  11. Detailed Multidimensional Simulations of the Structure and Dynamics of Flames

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    1999-01-01

    Numerical simulations in which the various physical and chemical processes can be independently controlled can significantly advance our understanding of the structure, stability, dynamics and extinction of flames. Therefore, our approach has been to use detailed time-dependent, multidimensional, multispecies numerical models to perform carefully designed computational experiments of flames on Earth and in microgravity environments. Some of these computational experiments are complementary to physical experiments performed under the Microgravity Program while others provide a fundamental understanding that cannot be obtained from physical experiments alone. In this report, we provide a brief summary of our recent research highlighting the contributions since the previous microgravity combustion workshop. There are a number of mechanisms that can cause flame instabilities and result in the formation of dynamic multidimensional structures. In the past, we have used numerical simulations to show that it is the thermo-diffusive instability rather than an instability due to preferential diffusion that is the dominant mechanism for the formation of cellular flames in lean hydrogen-air mixtures. Other studies have explored the role of gravity on flame dynamics and extinguishment, multi-step kinetics and radiative losses on flame instabilities in rich hydrogen-air flames, and heat losses on burner-stabilized flames in microgravity. The recent emphasis of our work has been on exploring flame-vortex interactions and further investigating the structure and dynamics of lean hydrogen-air flames in microgravity. These topics are briefly discussed after a brief discussion of our computational approach for solving these problems.

  12. The Effect of Microgravity on Flame Spread over a Thin Fuel

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.

    1987-01-01

    A flame spreading over a thermally thin cellulose fuel was studied in a quiescent microgravity environment. Flame spread over two different fuel thicknesses was studied in ambient oxygen-nitrogen environments from the limiting oxygen concentration to 100 percent oxygen at 1 atm pressure. Comparative normal-gravity tests were also conducted. Gravity was found to play an important role in the mechanism of flame spread. In lower oxygen environments, the buoyant flow induced in normal gravity was found to accelerate the flame spread rate as compared to the microgravity flame spread rates. It was also found to stabilize the flame in oxidizer environments, where microgravity flames in a quiescent environment extinguish. In oxygen-rich environments, however, it was determined that gravity does not play an important role in the flame spread mechanism. Fuel thickness influences the flame spread rate in both normal gravity and microgravity. The flame spread rate varies inversely with fuel thickness in both normal gravity and in an oxygen-rich microgravity environment. In lower oxygen microgravity environments, however, the inverse relationship breaks down because finite-rate kinetics and heat losses become important. Two different extinction limits were found in microgravity for the two thicknesses of fuel. This is in contrast to the normal-gravity extinction limit, which was found to be independent of fuel thickness. In microgravity the flame is quenched because of excessive thermal losses, whereas in normal gravity the flame is extinguished by blowoff.

  13. On the Structure and Stabilization Mechanisms of Planar and Cylindrical Premixed Flames

    NASA Technical Reports Server (NTRS)

    Eng, James A.; Zhu, Delin; Law, Chung K.

    1993-01-01

    The configurational simplicity of the stationary one-dimensional flames renders them intrinsically attractive for fundamental flame structure studies. The possibility and fidelity of studies of such flames on earth, however, have been severely restricted by the unidirectional nature of the gravity vector. To demonstrate these complications, let us first consider the premixed flame. Here a stationary, one-dimensional flame can be established by using the flat-flame burner. We next consider nonpremixed flames. First it may be noted that in an unbounded gravity-free environment, the only stationary one-dimensional flame is the spherical flame. Indeed, this is a major motivation for the study of microgravity droplet combustion, in which the gas-phase processes can be approximated to be quasi-steady because of the significant disparity between the gas and liquid densities for subcritical combustion. In view of the above considerations, an experimental and theoretical program on cylindrical and spherical premixed and nonpremixed flames in microgravity has been initiated. For premixed flames, we are interested in: (1) assessing the heat loss versus flow divergence as the dominant stabilization mechanism; (2) determining the laminar flame speed by using this configuration; and (3) understanding the development of flamefront instability and the effects of the flame curvature on the burning intensity.

  14. Mapping air quality zones for coastal urban centers.

    PubMed

    Freeman, Brian; Gharabaghi, Bahram; Thé, Jesse; Munshed, Mohammad; Faisal, Shah; Abdullah, Meshal; Al Aseed, Athari

    2017-05-01

    This study presents a new method that incorporates modern air dispersion models allowing local terrain and land-sea breeze effects to be considered along with political and natural boundaries for more accurate mapping of air quality zones (AQZs) for coastal urban centers. This method uses local coastal wind patterns and key urban air pollution sources in each zone to more accurately calculate air pollutant concentration statistics. The new approach distributes virtual air pollution sources within each small grid cell of an area of interest and analyzes a puff dispersion model for a full year's worth of 1-hr prognostic weather data. The difference of wind patterns in coastal and inland areas creates significantly different skewness (S) and kurtosis (K) statistics for the annually averaged pollutant concentrations at ground level receptor points for each grid cell. Plotting the S-K data highlights grouping of sources predominantly impacted by coastal winds versus inland winds. The application of the new method is demonstrated through a case study for the nation of Kuwait by developing new AQZs to support local air management programs. The zone boundaries established by the S-K method were validated by comparing MM5 and WRF prognostic meteorological weather data used in the air dispersion modeling, a support vector machine classifier was trained to compare results with the graphical classification method, and final zones were compared with data collected from Earth observation satellites to confirm locations of high-exposure-risk areas. The resulting AQZs are more accurate and support efficient management strategies for air quality compliance targets effected by local coastal microclimates. A novel method to determine air quality zones in coastal urban areas is introduced using skewness (S) and kurtosis (K) statistics calculated from grid concentrations results of air dispersion models. The method identifies land-sea breeze effects that can be used to manage local air

  15. The asymptotic structure of nonpremixed methane-air flames with oxidizer leakage of order unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadri, K.; Ilincic, N.

    1995-04-01

    The asymptotic structure of nonpremixed methane-air flames is analyzed using a reduced three-step mechanism. The three global steps of this reduced mechanism are similar to those used in a previous analysis. The rates of the three steps are related to the rates of the elementary reactions appearing in the C{sub 1}-mechanism for oxidation of methane. The present asymptotic analysis differs from the previous analysis in that oxygen is presumed to leak from the reaction zone to the leading order. Chemical reactions are presumed to occur in three asymptotically thin layers: the fuel-consumption layer, the nonequilibrium layer for the water-gas shiftmore » reaction and the oxidation layer. The structure of the fuel-consumption layer is presumed to be identical to that analyzed previously and in this layer the fuel reacts with the radicals to form primarily CO and H{sub 2} and some CO{sub 2} and H{sub 2}O In the oxidation layer the CO and H{sub 2} formed in the fuel-consumption layer are oxidized to CO{sub 2} and H{sub 2}O. The present analysis of the oxidation layer is simpler than the previous analysis because the variation in the values of the concentration of oxygen can be neglected to the leading order and this is a better representation of the flame structure in the vicinity of the critical conditions of extinction. The predictions of the critical conditions of extinction of the present model are compared with the predictions of previous models. It is anticipated that the present simple model can be easily extended to more complex problems such as pollutant formation in flames or chemical inhibition of flames.« less

  16. The calculation of a turbulent diffusion flame in a free shear flow with a statistical turbulence model

    NASA Astrophysics Data System (ADS)

    Bywater, R. J.

    1980-01-01

    Solutions are presented for the turbulent diffusion flame in a two-dimensional shear layer based upon a kinetic theory of turbulence (KTT). The fuel and oxidizer comprising the two streams are considered to react infinitely fast according to a one-step, irreversible kinetic mechanism. The solutions are obtained by direct numerical calculation of the transverse velocity probability density function (PDF) and the associated species distributions. The mean reactant profiles calculated from the solutions display the characteristic thick, turbulent flame zone. The phenomena result from the fact that in the context of the KTT, species react only when in the same velocity cell. This coincides with the known physical requirement that molecular mixing precedes reaction. The solutions demonstrate this behavior by showing how reactants can coexist in the mean, even when infinite reaction rates are enforced at each point (t,x,u) of velocity space.

  17. The structure and propagation of laminar flames under autoignitive conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krisman, Alex; Hawkes, Evatt R.; Chen, Jacqueline H.

    Tmore » he laminar flame speed s l is an important reference quantity for characterising and modelling combustion. Experimental measurements of laminar flame speed require the residence time of the fuel/air mixture (τ f) to be shorter than the autoignition delay time (τ). his presents a considerable challenge for conditions where autoignition occurs rapidly, such as in compression ignition engines. As a result, experimental measurements in typical compression ignition engine conditions do not exist. Simulations of freely propagating premixed flames, where the burning velocity is found as an eigenvalue of the solution, are also not well posed in such conditions, since the mixture ahead of the flame can autoignite, leading to the so called “cold boundary problem”. In this paper, a numerical method for estimating a reference flame speed, s R, is proposed that is valid for laminar flame propagation at autoignitive conditions. wo isomer fuels are considered to test this method: ethanol, which in the considered conditions is a single-stage ignition fuel; and dimethyl ether, which has a temperature-dependent single- or two-stage ignition and a negative temperature coefficient regime for τ. Calculations are performed for the flame position in a one-dimensional computational domain with inflow-outflow boundary conditions, as a function of the inlet velocity U I and for stoichiometric fuel–air premixtures. he response of the flame position, L F, to U I shows distinct stabilisation regimes. For single-stage ignition fuels, at low U I the flame speed exceeds U I and the flame becomes attached to the inlet. Above a critical U I value, the flame detaches from the inlet and L f becomes extremely sensitive to U I until, for sufficiently high U I, the sensitivity decreases and L f corresponds to the location expected from a purely autoignition stabilised flame. he transition from the attached to the autoignition regimes has a corresponding peak dL f/dU I value which is

  18. The structure and propagation of laminar flames under autoignitive conditions

    DOE PAGES

    Krisman, Alex; Hawkes, Evatt R.; Chen, Jacqueline H.

    2017-11-05

    Tmore » he laminar flame speed s l is an important reference quantity for characterising and modelling combustion. Experimental measurements of laminar flame speed require the residence time of the fuel/air mixture (τ f) to be shorter than the autoignition delay time (τ). his presents a considerable challenge for conditions where autoignition occurs rapidly, such as in compression ignition engines. As a result, experimental measurements in typical compression ignition engine conditions do not exist. Simulations of freely propagating premixed flames, where the burning velocity is found as an eigenvalue of the solution, are also not well posed in such conditions, since the mixture ahead of the flame can autoignite, leading to the so called “cold boundary problem”. In this paper, a numerical method for estimating a reference flame speed, s R, is proposed that is valid for laminar flame propagation at autoignitive conditions. wo isomer fuels are considered to test this method: ethanol, which in the considered conditions is a single-stage ignition fuel; and dimethyl ether, which has a temperature-dependent single- or two-stage ignition and a negative temperature coefficient regime for τ. Calculations are performed for the flame position in a one-dimensional computational domain with inflow-outflow boundary conditions, as a function of the inlet velocity U I and for stoichiometric fuel–air premixtures. he response of the flame position, L F, to U I shows distinct stabilisation regimes. For single-stage ignition fuels, at low U I the flame speed exceeds U I and the flame becomes attached to the inlet. Above a critical U I value, the flame detaches from the inlet and L f becomes extremely sensitive to U I until, for sufficiently high U I, the sensitivity decreases and L f corresponds to the location expected from a purely autoignition stabilised flame. he transition from the attached to the autoignition regimes has a corresponding peak dL f/dU I value which is

  19. Exposure to flame retardant chemicals on commercial airplanes.

    PubMed

    Allen, Joseph G; Stapleton, Heather M; Vallarino, Jose; McNeely, Eileen; McClean, Michael D; Harrad, Stuart J; Rauert, Cassandra B; Spengler, John D

    2013-02-16

    Flame retardant chemicals are used in materials on airplanes to slow the propagation of fire. These chemicals migrate from their source products and can be found in the dust of airplanes, creating the potential for exposure. To characterize exposure to flame retardant chemicals in airplane dust, we collected dust samples from locations inside 19 commercial airplanes parked overnight at airport gates. In addition, hand-wipe samples were also collected from 9 flight attendants and 1 passenger who had just taken a cross-country (USA) flight. The samples were analyzed for a suite of flame retardant chemicals. To identify the possible sources for the brominated flame retardants, we used a portable XRF analyzer to quantify bromine concentrations in materials inside the airplanes. A wide range of flame retardant compounds were detected in 100% of the dust samples collected from airplanes, including BDEs 47, 99, 153, 183 and 209, tris(1,3-dichloro-isopropyl)phosphate (TDCPP), hexabromocyclododecane (HBCD) and bis-(2-ethylhexyl)-tetrabromo-phthalate (TBPH). Airplane dust contained elevated concentrations of BDE 209 (GM: 500 ug/g; range: 2,600 ug/g) relative to other indoor environments, such as residential and commercial buildings, and the hands of participants after a cross-country flight contained elevated BDE 209 concentrations relative to the general population. TDCPP, a known carcinogen that was removed from use in children's pajamas in the 1970's although still used today in other consumer products, was detected on 100% of airplanes in concentrations similar to those found in residential and commercial locations. This study adds to the limited body of knowledge regarding exposure to flame retardants on commercial aircraft, an environment long hypothesized to be at risk for maximum exposures due to strict flame retardant standards for aircraft materials. Our findings indicate that flame retardants are widely used in many airplane components and all airplane types, as

  20. Quantitative Species Measurements in Microgravity Combustion Flames

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.; Wood, William R.; Chen, Shin-Juh; Dahm, Werner J. A.; Piltch, Nancy D.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in complicated turbulent reacting flows. The elegant simplicity of the flame-vortex interaction permits the study of these complex interactions under relatively controllable experimental configurations, in contrast to direct measurements in turbulent flames. The ability to measure and model the fundamental phenomena that occur in a turbulent flame, but with time and spatial scales which are amenable to our diagnostics, permits significant improvements in the understanding of turbulent combustion under both normal and reduced gravity conditions. In this paper, we report absolute mole fraction measurements of methane in a reacting vortex ring. These microgravity experiments are performed in the 2.2-sec drop tower at NASA Glenn Research Center. In collaboration with Drs. Chen and Dahm at the University of Michigan, measured methane absorbances are incorporated into a new model from which the temperature and concentrations of all major gases in the flame can be determined at all positions and times in the development of the vortex ring. This is the first demonstration of the ITAC (Iterative Temperature with Assumed Chemistry) approach, and the results of these computations and analyses are presented in a companion paper by Dahm and Chen at this Workshop. We believe that the ITAC approach will become a powerful tool in understanding a wide variety of combustion flames under both equilibrium and non-equilibrium conditions.

  1. Quantitative Species Measurements In Microgravity Combustion Flames

    NASA Technical Reports Server (NTRS)

    Chen, Shin-Juh; Pilgrim, Jeffrey S.; Silver, Joel A.; Piltch, Nancy D.

    2003-01-01

    The capability of models and theories to accurately predict and describe the behavior of low gravity flames can only be verified by quantitative measurements. Although video imaging, simple temperature measurements, and velocimetry methods have provided useful information in many cases, there is still a need for quantitative species measurements. Over the past decade, we have been developing high sensitivity optical absorption techniques to permit in situ, non-intrusive, absolute concentration measurements for both major and minor flames species using diode lasers. This work has helped to establish wavelength modulation spectroscopy (WMS) as an important method for species detection within the restrictions of microgravity-based measurements. More recently, in collaboration with Prof. Dahm at the University of Michigan, a new methodology combining computed flame libraries with a single experimental measurement has allowed us to determine the concentration profiles for all species in a flame. This method, termed ITAC (Iterative Temperature with Assumed Chemistry) was demonstrated for a simple laminar nonpremixed methane-air flame at both 1-g and at 0-g in a vortex ring flame. In this paper, we report additional normal and microgravity experiments which further confirm the usefulness of this approach. We also present the development of a new type of laser. This is an external cavity diode laser (ECDL) which has the unique capability of high frequency modulation as well as a very wide tuning range. This will permit the detection of multiple species with one laser while using WMS detection.

  2. An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    1999-01-01

    An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.

  3. A composition joint PDF method for the modeling of spray flames

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1995-01-01

    This viewgraph presentation discusses an extension of the probability density function (PDF) method to the modeling of spray flames to evaluate the limitations and capabilities of this method in the modeling of gas-turbine combustor flows. The comparisons show that the general features of the flowfield are correctly predicted by the present solution procedure. The present solution appears to provide a better representation of the temperature field, particularly, in the reverse-velocity zone. The overpredictions in the centerline velocity could be attributed to the following reasons: (1) the use of k-epsilon turbulence model is known to be less precise in highly swirling flows and (2) the swirl number used here is reported to be estimated rather than measured.

  4. Flame trench analysis of NLS vehicles

    NASA Technical Reports Server (NTRS)

    Zeytinoglu, Nuri

    1993-01-01

    The present study takes the initial steps of establishing a better flame trench design criteria for future National Launch System vehicles. A three-dimensional finite element computer model for predicting the transient thermal and structural behavior of the flame trench walls was developed using both I-DEAS and MSC/NASTRAN software packages. The results of JANNAF Standardized Plume flowfield calculations of sea-level exhaust plume of the Space Shuttle Main Engine (SSME), Space Transportation Main Engine (STME), and Advanced Solid Rocket Motors (ASRM) were analyzed for different axial distances. The results of sample calculations, using the developed finite element model, are included. The further suggestions are also reported for enhancing the overall analysis of the flame trench model.

  5. Solid surface combustion experiment flame spread in a quiescent, microgravity environment implications of spread rate and flame structure

    NASA Technical Reports Server (NTRS)

    Bundy, Matthew; West, Jeff; Thomas, Peter C.; Bhattacharjee, Subrata; Tang, Lin; Altenkirch, Robert A.; Sacksteder, Kurt

    1995-01-01

    A unique environment in which flame spreading, a phenomenon of fundamental, scientific interest, has importance to fire safety is that of spacecraft in which the gravitational acceleration is low compared with that of the Earth, i.e., microgravity. Experiments aboard eight Space Shuttle missions between October 1990 and February 1995 were conducted using the Solid Surface Combustion Experiment (SSCE) payload apparatus in an effort to determine the mechanisms of gas-phase flame spread over solid fuel surfaces in the absence of any buoyancy induced or externally imposed oxidizer flow. The overall SSCE effort began in December of 1984. The SSCE apparatus consists of a sealed container, approximately 0.039 cu m, that is filled with a specified O2/N2 mixture at a prescribed pressure. Five of the experiments used a thin cellulosic fuel, ashless filter paper, 3 cm wide x 10 cm long, 0.00825 cm half-thickness, ignited in five different ambient conditions. Three of the experiments, the most recent, used thick polymethylmethacrylate (PMMA) samples 0.635 cm wide x 2 cm long, 0.32 cm half-thickness. Three experiments, STS 41, 40 and 43, were designed to evaluate the effect of ambient pressure on flame spread over the thin cellulosic fuel while flights STS 50 and 47 were at the same pressure as two of the earlier flights but at a lower oxygen concentration in order to evaluate the effect of ambient oxygen level on the flame spread process at microgravity. For the PMMA flights, two experiments, STS 54 and 63, were at the same pressure but different oxygen concentrations while STS 64 was at the same oxygen concentration as STS 63 but at a higher pressure. Two orthogonal views of the experiments were recorded on 16 mm cine-cameras operating at 24 frames/s. In addition to filmed images of the side view of the flames and surface view of the burning samples, solid- and gas-phase temperatures were recorded using thermocouples. The experiment is battery powered and follows an automated

  6. Smoke-Point Properties of Non-Buoyant Round Laminar Jet Diffusion Flames. Appendix J

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity, the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and non-buoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smoke-point flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during

  7. Influences of the Darrieus-Landau instability on premixed turbulent flames

    NASA Astrophysics Data System (ADS)

    Patyal, Advitya; Matalon, Moshe

    2017-11-01

    The propagation of turbulent flames in three-dimensional turbulent flows is studied within the context of the hydrodynamic theory. The flame is treated as a surface of density discontinuity with the flow modified by gas expansion resulting from heat released during combustion. The flame is tracked using a level-set method with a propagation speed that depends on the local flame stretch, modulated by a Markstein length. Impact of the Darrieus-Landau instability on the topology of the flame surface is studied. It is shown that similar to passive interfaces, flames under the influence of the hydrodynamic instability resort to cylindrical structures with increasing turbulence intensity, even in 3D. The mechanism of modification of vortical structures in the burned gas is identified in terms of the alignments between the vorticity vector, flame surface normal and eigenvectors of the strain rate tensor. The results indicate that the strain rate tensor is intricately coupled with the normal to the flame surface and creates anisotropy in the orientation of vortical structures, which begins to weaken as the turbulent intensity increases. Furthermore, vorticity budgets are used to highlight the relative importance of baroclinic torque due to Darrieus-Landau instability.

  8. Experimental studies of the emissions characteristics of nonpremixed gas-air flames of various configurations

    NASA Astrophysics Data System (ADS)

    Bandaru, Ramarao Venkat

    2000-10-01

    Flow structure plays an important role in the mixing and chemical reaction processes in turbulent jet diffusion flames, which in turn influence the formation of pollutants. Fundamental studies on pollutant formation have mainly focussed on vertical, straight jet, turbulent flames. However, in many practical combustion systems such as boilers and furnaces, flames of various configurations are used. In the present study, along with vertical straight jet flames, pollutant emissions characteristics of crossflow flames and precessing jet flames are studied. In vertical, straight jet flames, in-flame temperature and NO concentration measurements were made to ascertain the influence of flame radiation on NO x emissions observed in earlier studies. Radiation affects flame temperatures and this is seen in the measured temperature fields in, undiluted and diluted, methane and ethylene flames. Measured NO distribution fields in undiluted methane and ethylene flames inversely correlated with the temperature, and thereby explaining the observed relationship between flame radiation and NO x emissions. Flames in most practical combustion devices have complex mixing characteristics. One such configuration is the crossflow flame, where the flame is subjected to a crossflow stream. The presence of twin counter-rotating vortices in the flames leading to increased entrainment rates and shorter residence times (i.e. shorter flame lengths). The variation of NOx emissions characteristics of crossflow flames from those of straight jet flames depends on the sooting propensity of the fuel used. Additionally, the nearfield region of the flame (i.e., region near the burner exit) has a strong influence on the CO and unburned hydrocarbon emissions, and on the NO2-to-NO x ratios. Another flame configuration used in the present study is the precessing jet flame. In the practical implementation of this unique flame configuration, the fuel jet precesses about the burner axis due to natural fluid

  9. Copyright | USDA Plant Hardiness Zone Map

    Science.gov Websites

    Copyright Copyright Map graphics. As a U.S. Government publication, the USDA Plant Hardiness Zone Map itself Specific Cooperative Agreement, Oregon State University agreed to supply the U.S. Government with unenhanced (standard resolution) GIS data in grid and shapefile formats. U.S. Government users may use these

  10. An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Wichman, Indrek S.

    1993-01-01

    The objective of this work is to investigate the radiation-induced rich extinction limits for diffusion flames. Radiative extinction is caused by the formation of particulates (e.g., soot) that drain chemical energy from the flame. We examine (mu)g conditions because there is a strong reason to believe that radiation-induced rich-limit extinction is not possible under normal-gravity conditions. In normal- g, the hot particulates formed in the fuel-rich flames are swept upward by buoyancy, out of the flame to the region above it, where their influence on the flame is negligible. However, in (mu)g the particulates remain in the flame vicinity, creating a strong energy sink that can, under suitable conditions, cause flame extinction.

  11. Simple Flame Test Techniques Using Cotton Swabs

    ERIC Educational Resources Information Center

    Sanger, Michael J.; Phelps, Amy J.; Banks, Catherine

    2004-01-01

    Three alternative methods for performing flame tests using cheaply and easily available cotton swabs are described. These flame tests are useful for chemical demonstrations or laboratory experiments because they are quick and easy to perform with easy cleanup and disposal methods.

  12. Soot Aerosol Properties in Laminar Soot-Emitting Microgravity Nonpremixed Flames

    NASA Technical Reports Server (NTRS)

    Konsur, Bogdan; Megaridis, Constantine M.; Griffin, Devon W.

    1999-01-01

    The spatial distributions and morphological properties of the soot aerosol are examined experimentally in a series of 0-g laminar gas-jet nonpremixed flames. The methodology deploys round jet diffusion flames of nitrogen-diluted acetylene fuel burning in quiescent air at atmospheric pressure. Full-field laser-light extinction is utilized to determine transient soot spatial distributions within the flames. Thermophoretic sampling is employed in conjunction with transmission electron microscopy to define soot microstructure within the soot-emitting 0-g flames. The microgravity tests indicate that the 0-g flames attain a quasi-steady state roughly 0.7 s after ignition, and sustain their annular structure even beyond their luminous flame tip. The measured peak soot volume fractions show a complex dependence on burner exit conditions, and decrease in a nonlinear fashion with decreasing characteristic flow residence times. Fuel preheat by approximately 140 K appears to accelerate the formation of soot near the flame axis via enhanced fuel pyrolysis rates. The increased soot presence caused by the elevated fuel injection temperatures triggers higher flame radiative losses, which may account for the premature suppression of soot growth observed along the annular region of preheated-fuel flames. Electron micrographs of soot aggregates collected in 0-g reveal the presence of soot precursor particles near the symmetry axis at midflame height, The observations also verify that soot primary particle sizes are nearly uniform among aggregates present at the same flame location, but vary considerably with radius at a fixed distance from the burner. The maximum primary size in 0-g is found to be by 40% larger than in 1-g, under the same burner exit conditions. Estimates of the number concentration of primary particles and surface area of soot particulate phase per unit volume of the combustion gases are also made for selected in-flame locations.

  13. Acoustic Flame Suppression Mechanics in a Microgravity Environment

    NASA Astrophysics Data System (ADS)

    Beisner, Eryn; Wiggins, Nathanial David; Yue, Kwok-Bun; Rosales, Miguel; Penny, Jeremy; Lockridge, Jarrett; Page, Ryan; Smith, Alexander; Guerrero, Leslie

    2015-06-01

    The following paper deals with acoustic flame suppression mechanics in a microgravity environment with measurements taken from an Arduino-based sensor system and validation of the technique. A Zippo lighter is ignited in microgravity and then displaced from the base of the flame and suppressed using surface interactions with single tone acoustic waves to extinguished the flame. The analysis of data collected shows that the acoustic flame suppression measurementtechniques are effective to finding qualitative differences in extinguishing in microgravity and normal gravity. Further, the results suggest that the suppression may be more effective in a microgravity environment than in a normal (1g) environment and may be a viable method of extinguishing fires during space flight.

  14. Three-Dimensional Upward Flame Spreading in Partial-Gravity Buoyant Flows

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R.; Feier, Ioan I.; Shih, Hsin-Yi; T'ien, James S.

    2001-01-01

    Reduced-gravity environments have been used to establish low-speed, purely forced flows for both opposed- and concurrent-flow flame spread studies. Altenkirch's group obtained spacebased experimental results and developed unsteady, two-dimensional numerical simulations of opposed-flow flame spread including gas-phase radiation, primarily away from the flammability limit for thin fuels, but including observations of thick fuel quenching in quiescent environments. T'ien's group contributed some early flame spreading results for thin fuels both in opposed flow and concurrent flow regimes, with more focus on near-limit conditions. T'ien's group also developed two- and three-dimensional numerical simulations of concurrent-flow flame spread incorporating gas-phase radiative models, including predictions of a radiatively-induced quenching limit reached in very low-speed air flows. Radiative quenching has been subsequently observed in other studies of combustion in very low-speed flows including other flame spread investigations, droplet combustion and homogeneous diffusion flames, and is the subject of several contemporary studies reported in this workshop. Using NASA aircraft flying partial-gravity "parabolic" trajectories, flame spreading in purely buoyant, opposed-flow (downward burning) has been studied. These results indicated increases in flame spread rates and enhanced flammability (lower limiting atmospheric oxygen content) as gravity levels were reduced from normal Earth gravity, and were consistent with earlier data obtained by Altenkirch using a centrifuge. In this work, experimental results and a three-dimensional numerical simulation of upward flame spreading in variable partial-gravity environments were obtained including some effects of reduced pressure and variable sample width. The simulation provides physical insight for interpreting the experimental results and shows the intrinsic 3-D nature of buoyant, upward flame spreading. This study is intended to

  15. Dielectric-barrier-discharge plasma-assisted hydrogen diffusion flame. Part 1: Temperature, oxygen, and fuel measurements by one-dimensional fs/ps rotational CARS imaging

    DOE PAGES

    Retter, Jonathan E.; Elliott, Gregory S.; Kearney, Sean P.

    2018-02-21

    One-dimensional hybrid fs/ps CARS imaging provides single-laser-shot measurements of temperature, oxygen, and hydrogen in a plasma-assisted hydrogen diffusion flame. The coaxial dielectric-barrier-discharge burner collapses the Re ~50 hydrogen diffusion flame to within ~5 mm of the burner surface at an applied AC potential of 8.75 kV at 18 kHz, coinciding nicely with the full spatial extent of the 1D CARS measurements. Translating the burner through the measurement volume allowed for measurements at numerous radial locations in increments of 1 mm with a resolution of 140 µm × 30 µm × 600 µm, sufficient to resolve spatial gradients in this unsteadymore » flame. Longer probe delays, required for improved dynamic range in regions of high temperature fluctuations, proved difficult to model as a result of a nontrivial decay in the O 2 Raman coherence arising from complexities associated with the triplet ground electronic state of the O 2 molecule. Oxygen linewidths were treated empirically using the observed O 2 coherence decay in spectra acquired from the product gases of lean, near-adiabatic H 2/air flames stabilized on a Hencken flat-flame burner. While still leading to errors up to 10% at worst, the empirically determined Raman linewidth factors eliminated any systematic error in the O 2/N 2 measurements with probe delay. Temperature measurements in the Hencken Burner flames proved to be insensitive to probe pulse delay, providing robust thermometry. Here, demonstration of this technique in both the canonical Hencken burner flames and a new DBD burner validates its effectiveness in producing multiple spatially resolved measurements in combustion environments. Measurements in the DBD burner revealed an unsteady, counterflow flattened flame structure near the fuel orifice which became unsteady as the reaction zone curves towards the surface for larger radial positions. Lastly, fluctuations in the fuel concentration were largest at the source, as the large

  16. Dielectric-barrier-discharge plasma-assisted hydrogen diffusion flame. Part 1: Temperature, oxygen, and fuel measurements by one-dimensional fs/ps rotational CARS imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retter, Jonathan E.; Elliott, Gregory S.; Kearney, Sean P.

    One-dimensional hybrid fs/ps CARS imaging provides single-laser-shot measurements of temperature, oxygen, and hydrogen in a plasma-assisted hydrogen diffusion flame. The coaxial dielectric-barrier-discharge burner collapses the Re ~50 hydrogen diffusion flame to within ~5 mm of the burner surface at an applied AC potential of 8.75 kV at 18 kHz, coinciding nicely with the full spatial extent of the 1D CARS measurements. Translating the burner through the measurement volume allowed for measurements at numerous radial locations in increments of 1 mm with a resolution of 140 µm × 30 µm × 600 µm, sufficient to resolve spatial gradients in this unsteadymore » flame. Longer probe delays, required for improved dynamic range in regions of high temperature fluctuations, proved difficult to model as a result of a nontrivial decay in the O 2 Raman coherence arising from complexities associated with the triplet ground electronic state of the O 2 molecule. Oxygen linewidths were treated empirically using the observed O 2 coherence decay in spectra acquired from the product gases of lean, near-adiabatic H 2/air flames stabilized on a Hencken flat-flame burner. While still leading to errors up to 10% at worst, the empirically determined Raman linewidth factors eliminated any systematic error in the O 2/N 2 measurements with probe delay. Temperature measurements in the Hencken Burner flames proved to be insensitive to probe pulse delay, providing robust thermometry. Here, demonstration of this technique in both the canonical Hencken burner flames and a new DBD burner validates its effectiveness in producing multiple spatially resolved measurements in combustion environments. Measurements in the DBD burner revealed an unsteady, counterflow flattened flame structure near the fuel orifice which became unsteady as the reaction zone curves towards the surface for larger radial positions. Lastly, fluctuations in the fuel concentration were largest at the source, as the large

  17. Characteristics of transitional and turbulent jet diffusion flames in microgravity

    NASA Technical Reports Server (NTRS)

    Bahadori, Yousef M.; Small, James F., Jr.; Hegde, Uday G.; Zhou, Liming; Stocker, Dennis P.

    1995-01-01

    This paper presents the ground-based results obtained to date in preparation of a proposed space experiment to study the role of large-scale structures in microgravity transitional and turbulent gas-jet diffusion flames by investigating the dynamics of vortex/flame interactions and their influence on flame characteristics. The overall objective is to gain an understanding of the fundamental characteristics of transitional and turbulent gas-jet diffusion flames. Understanding of the role of large-scale structures on the characteristics of microgravity transitional and turbulent flames will ultimately lead to improved understanding of normal-gravity turbulent combustion.

  18. Time-dependent Computational Studies of Premixed Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Kailasanath, K.; Patnaik, Gopal; Oran, Elaine S.

    1993-01-01

    This report describes the research performed at the Center for Reactive Flow and Dynamical Systems in the Laboratory for Computational Physics and Fluid Dynamics, at the Naval Research Laboratory, in support of NASA Microgravity Science and Applications Program. The primary focus of this research is on investigating fundamental questions concerning the propagation and extinction of premixed flames in earth gravity and in microgravity environments. Our approach is to use detailed time-dependent, multispecies, numerical models as tools to simulate flames in different gravity environments. The models include a detailed chemical kinetics mechanism consisting of elementary reactions among the eight reactive species involved in hydrogen combustion, coupled to algorithms for convection, thermal conduction, viscosity, molecular and thermal diffusion, and external forces. The external force, gravity, can be put in any direction relative to flame propagation and can have a range of values. Recently more advanced wall boundary conditions such as isothermal and no-slip have been added to the model. This enables the simulation of flames propagating in more practical systems than before. We have used the numerical simulations to investigate the effects of heat losses and buoyancy forces on the structure and stability of flames, to help resolve fundamental questions on the existence of flammability limits when there are no external losses or buoyancy forces in the system, to understand the interaction between the various processes leading to flame instabilities and extinguishment, and to study the dynamics of cell formation and splitting. Our studies have been able to bring out the differences between upward- and downward-propagating flames and predict the zero-gravity behavior of these flames. The simulations have also highlighted the dominant role of wall heat losses in the case of downward-propagating flames. The simulations have been able to qualitatively predict the

  19. Structure and Early Soot Oxidation Properties of Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Faeth, G. M.

    2001-01-01

    Soot is an important unsolved problem of combustion science because it is present in most hydrocarbon-fueled flames and current understanding of the reactive and physical properties of soot in flame environments is limited. This lack of understanding affects progress toward developing reliable predictions of flame radiation properties, reliable predictions of flame pollutant emission properties and reliable methods of computational combustion, among others. Motivated by these observations, the present investigation extended past studies of soot formation in this laboratory, to consider soot oxidation in laminar diffusion flames using similar methods. Early work showed that O2 was responsible for soot oxidation in high temperature O2-rich environments. Subsequent work in high temperature flame environments having small O2 concentrations, however, showed that soot oxidation rates substantially exceeded estimates based on the classical O2 oxidation rates of Nagle and Strickland-Constable and suggests that radicals such as O and OH might be strong contributors to soot oxidation for such conditions. Neoh et al. subsequently made observations in premixed flames, supported by later work, that showed that OH was responsible for soot oxidation at these conditions with a very reasonable collision efficiency of 0.13. Subsequent studies in diffusion flames, however, were not in agreement with the premixed flame studies: they agreed that OH played a dominant role in soot oxidation in flames, but found collision efficiencies that varied with flame conditions and were not in good agreement with each other or with Neoh et al. One explanation for these discrepancies is that optical scattering and extinction properties were used to infer soot structure properties for the studies that have not been very successful for representing the optical properties of soot. Whatever the source of the problem, however, these differences among observations of soot oxidation in premixed and

  20. Exploring Hypersonic, Unstructured-Grid Issues through Structured Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.; Kleb, Bill

    2007-01-01

    Pure-tetrahedral unstructured grids have been shown to produce asymmetric heat transfer rates for symmetric problems. Meanwhile, two-dimensional structured grids produce symmetric solutions and as documented here, introducing a spanwise degree of freedom to these structured grids also yields symmetric solutions. The effects of grid skewness and other perturbations of structured-grids are investigated to uncover possible mechanisms behind the unstructured-grid solution asymmetries. By using controlled experiments around a known, good solution, the effects of particular grid pathologies are uncovered. These structured-grid experiments reveal that similar solution degradation occurs as for unstructured grids, especially for heat transfer rates. Non-smooth grids within the boundary layer is also shown to produce large local errors in heat flux but do not affect surface pressures.