Science.gov

Sample records for flame zone grid

  1. Numerical Simulation of the Combustion of Fuel Droplets: Finite Rate Kinetics and Flame Zone Grid Adaptation (CEFD)

    NASA Technical Reports Server (NTRS)

    Gogos, George; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The NASA Nebraska Space Grant (NSGC) & EPSCoR programs have continued their effort to support outstanding research endeavors by funding the Numerical Simulation of the Combustion of Fuel Droplets study at the University of Nebraska at Lincoln (UNL). This team of researchers has developed a transient numerical model to study the combustion of suspended and moving droplets. The engines that propel missiles, jets, and many other devices are dependent upon combustion. Therefore, data concerning the combustion of fuel droplets is of immediate relevance to aviation and aeronautical personnel, especially those involved in flight operations. The experiments being conducted by Dr. Gogos and Dr. Nayagam s research teams, allow investigators to gather data for comparison with theoretical predictions of burning rates, flame structures, and extinction conditions. The consequent improved hndamental understanding droplet combustion may contribute to the clean and safe utilization of fossil hels (Williams, Dryer, Haggard & Nayagam, 1997, 72). The present state of knowledge on convective extinction of he1 droplets derives fiom experiments conducted under normal gravity conditions. However, any data obtained with suspended droplets under normal gravity are grossly affected by gravity. The need to obtain experimental data under microgravity conditions is therefore well justified and addresses one of the goals of NASA s Human Exploration and Development of Space (HEDS) microgravity combustion experiment.

  2. Flames in fractal grid generated turbulence

    NASA Astrophysics Data System (ADS)

    Goh, K. H. H.; Geipel, P.; Hampp, F.; Lindstedt, R. P.

    2013-12-01

    Twin premixed turbulent opposed jet flames were stabilized for lean mixtures of air with methane and propane in fractal grid generated turbulence. A density segregation method was applied alongside particle image velocimetry to obtain velocity and scalar statistics. It is shown that the current fractal grids increase the turbulence levels by around a factor of 2. Proper orthogonal decomposition (POD) was applied to show that the fractal grids produce slightly larger turbulent structures that decay at a slower rate as compared to conventional perforated plates. Conditional POD (CPOD) was also implemented using the density segregation technique and the results show that CPOD is essential to segregate the relative structures and turbulent kinetic energy distributions in each stream. The Kolmogorov length scales were also estimated providing values ∼0.1 and ∼0.5 mm in the reactants and products, respectively. Resolved profiles of flame surface density indicate that a thin flame assumption leading to bimodal statistics is not perfectly valid under the current conditions and it is expected that the data obtained will be of significant value to the development of computational methods that can provide information on the conditional structure of turbulence. It is concluded that the increase in the turbulent Reynolds number is without any negative impact on other parameters and that fractal grids provide a route towards removing the classical problem of a relatively low ratio of turbulent to bulk strain associated with the opposed jet configuration.

  3. Multiblock grid generation with automatic zoning

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.

    1995-01-01

    An overview will be given for multiblock grid generation with automatic zoning. We shall explore the many advantages and benefits of this exciting technology and will also see how to apply it to a number of interesting cases. The technology is available in the form of a commercial code, GridPro(registered trademark)/az3000. This code takes surface geometry definitions and patterns of points as its primary input and produces high quality grids as its output. Before we embark upon our exploration, we shall first give a brief background of the environment in which this technology fits.

  4. A method for generating volumetric fault zone grids for pillar gridded reservoir models

    NASA Astrophysics Data System (ADS)

    Qu, Dongfang; Røe, Per; Tveranger, Jan

    2015-08-01

    The internal structure and petrophysical property distribution of fault zones are commonly exceedingly complex compared to the surrounding host rock from which they are derived. This in turn produces highly complex fluid flow patterns which affect petroleum migration and trapping as well as reservoir behavior during production and injection. Detailed rendering and forecasting of fluid flow inside fault zones require high-resolution, explicit models of fault zone structure and properties. A fundamental requirement for achieving this is the ability to create volumetric grids in which modeling of fault zone structures and properties can be performed. Answering this need, a method for generating volumetric fault zone grids which can be seamlessly integrated into existing standard reservoir modeling tools is presented. The algorithm has been tested on a wide range of fault configurations of varying complexity, providing flexible modeling grids which in turn can be populated with fault zone structures and properties.

  5. Occurrence and characterization of carbon nanoparticles below the soot laden zone of a partially premixed flame

    SciTech Connect

    Paul, Bireswar; Datta, Amitava; Datta, Aparna; Saha, Abhijit

    2009-12-15

    An experimental study has been performed to detect the occurrence of nanosized carbon particulates below the soot laden zone of a co-flowing partially premixed flame. Samples have been extracted from different points across the flame and passed through DI water. Absorption and fluorescence spectroscopies have been performed with the collected water suspensions. The occurrence of carbon nanoparticles is evident across the inner flame front. In addition, evidence of naphthalene has also been found inside the inner rich premixed flame. The concentration of naphthalene decreases while that of the carbon nanoparticles increases as the inner flame front is reached. The stability of the nanoparticles in the sample has been ensured by observing that the change in fluorescence quantum yield from the sample over a long duration is small. The band gap energy has been evaluated using the absorption data to characterize the likely structures of the particles in the collected suspension. Two kinds of particles having different zones of band gap energy are found in the flame. Dynamic light scattering measurements show that the particle size grows with the increase in height in the lower part of the flame. While, at 3 and 6 mm elevations the particles are observed to be below 2.5 nm in diameter, the particles at 10 mm elevation are found in the size range of 2.5-5.5 nm. (author)

  6. FLame

    Energy Science and Technology Software Center (ESTSC)

    1995-03-03

    FLAME is data processing software explicitly written to support the ACAP software of DSP Technologies, Inc., of Fremont, CA. ACAP acquires and processes in-cylinder pressure data for reciprocating engines. However, it also has the capability to acquire data for two Sandia-developed technologies, ionization-probe instrumented head gaskets and fiber-optic instrumented spark plugs. FLAME post processes measurements of flame arrival from data files aquired with ACAP. Flame arrival time is determined from analog ionization-probe or visible-emission signals.more » The resulting data files are integrated with the standard ACAP files, providing a common data base for engine development.« less

  7. Grid and Zone Selection for AMR and ALE Schemes

    SciTech Connect

    Jameson, L; Johnson, J; Bihari, B; Eliason, D; Peyser, T

    2002-09-11

    Numerical algorithms are based fundamentally on polynomial interpolation. In regions of the computational domain where a low order polynomial fits the data well one will find small errors in the computed quantities. Therefore, in order to design robust methods for grid selection for AMR schemes or zone selection for ALE schemes, one needs some information on the local polynomial structure of the fields being computed. We provide here algorithms and software for selecting zones based on local estimates of polynomial interpolation error. The algorithms are based on multiresolution and wavelet analysis.

  8. Recirculation zone dynamics of a transversely excited swirl flow and flame

    NASA Astrophysics Data System (ADS)

    O'Connor, Jacqueline; Lieuwen, Tim

    2012-07-01

    This work investigates the response of the vortex breakdown region of a swirling, annular jet to transverse acoustic excitation for both non-reacting and reacting flows. This swirling flow field consists of a central vortex breakdown region, two shear layers, and an annular fluid jet. The vortex breakdown bubble, a region of highly turbulent recirculating flow in the center of the flowfield, is the result of a global instability of the swirling jet. Additionally, the two shear layers originating from the inner and outer edge of the annular nozzle are convectively unstable and rollup due to the Kelvin-Helmholtz instability. Unlike the convectively unstable shear layers that respond in a monotonic manner to acoustic forcing, the recirculation zone exhibits a range of response characteristics, ranging from minimal response to exhibiting abrupt bifurcations at large forcing amplitudes. In this study, the response of the time-average and fluctuating recirculation zone is measured as a function of forcing frequency, amplitude, and symmetry. The time-average flow field is shown to exhibit both monotonically varying and abrupt bifurcation features as acoustic forcing amplitude is increased. The unsteady motion in the recirculation zone is dominated by the low frequency precession of the vortex breakdown bubble. In the unforced flow, the azimuthal m = -2 and m = -1 modes (i.e., disturbances rotating in the same direction as the swirl flow) dominate the velocity disturbance field. These modes correspond to large scale deformation of the jet column and two small-scale precessing vortical structures in the recirculation zone, respectively. The presence of high amplitude acoustic forcing changes the relative amplitude of these two modes, as well as the character of the self-excited motion. For the reacting flow problem, we argue that the direct effect of these recirculation zone fluctuations on the flame response to flow forcing is not significant. Rather, flame wrinkling in

  9. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles.

    PubMed

    Di Sarli, Valeria; Di Benedetto, Almerinda; Russo, Gennaro

    2010-08-15

    In this work, an assessment of different sub-grid scale (sgs) combustion models proposed for large eddy simulation (LES) of steady turbulent premixed combustion (Colin et al., Phys. Fluids 12 (2000) 1843-1863; Flohr and Pitsch, Proc. CTR Summer Program, 2000, pp. 61-82; Kim and Menon, Combust. Sci. Technol. 160 (2000) 119-150; Charlette et al., Combust. Flame 131 (2002) 159-180; Pitsch and Duchamp de Lageneste, Proc. Combust. Inst. 29 (2002) 2001-2008) was performed to identify the model that best predicts unsteady flame propagation in gas explosions. Numerical results were compared to the experimental data by Patel et al. (Proc. Combust. Inst. 29 (2002) 1849-1854) for premixed deflagrating flame in a vented chamber in the presence of three sequential obstacles. It is found that all sgs combustion models are able to reproduce qualitatively the experiment in terms of step of flame acceleration and deceleration around each obstacle, and shape of the propagating flame. Without adjusting any constants and parameters, the sgs model by Charlette et al. also provides satisfactory quantitative predictions for flame speed and pressure peak. Conversely, the sgs combustion models other than Charlette et al. give correct predictions only after an ad hoc tuning of constants and parameters. PMID:20471163

  10. Triple flames and flame stabilization

    NASA Technical Reports Server (NTRS)

    Broadwell, James E.

    1994-01-01

    It is now well established that when turbulent jet flames are lifted, combustion begins, i.e., the flame is stabilized, at an axial station where the fuel and air are partially premixed. One might expect, therefore, that the beginning of the combustion zone would be a triple flame. Such flames have been described; however, other experiments provide data that are difficult to reconcile with the presence of triple flames. In particular, laser images of CH and OH, marking combustion zones, do not exhibit shapes typical of triple flames, and, more significantly, the lifted flame appears to have a propagation speed that is an order of magnitude higher than the laminar flame speed. The speed of triple flames studied thus far exceeds the laminar value by a factor less than two. The objective of the present task is the resolution of the apparent conflict between the experiments and the triple flame characteristics, and the clarification of the mechanisms controlling flame stability. Being investigated are the resolution achieved in the experiments, the flow field in the neighborhood of the stabilization point, propagation speeds of triple flames, laboratory flame unsteadiness, and the importance of flame ignition limits in the calculation of triple flames that resemble lifted flames.

  11. Mixer assembly for a gas turbine engine having a pilot mixer with a corner flame stabilizing recirculation zone

    NASA Technical Reports Server (NTRS)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor)

    2012-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer, and a pilot mixer having an annular housing in which a corner is formed between an aft portion of the housing and a bulkhead wall in which a corner recirculation zone is located to stabilize and anchor the flame of the pilot mixer. The pilot mixer can further include features to cool the annular housing, including in the area of the corner recirculation zone.

  12. Flame zone of a composite propellant expanded by a laser source

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Hertzberg, M.; Mc Hale, E.; Von Elbe, G.

    1971-01-01

    Technique scales flame structure linearly with gas kinetic mean free path, which increases two to three orders of magnitude as pressure decreases like amount. Kinetic and transport time scales expand in proportion so that regression rates for laser-induced flames are two to three orders of magnitude slower.

  13. Temperature and velocity measurements in premixed turbulent flames

    NASA Technical Reports Server (NTRS)

    Dandekar, K. V.; Gouldin, F. C.

    1981-01-01

    Turbulent flame speed data for premixed flames of methane-air, propane-air and ethylene-air mixtures stabilized in grid turbulence are reported and discussed. It is shown that turbulence effects on flame speed cannot be fully correlated by the turbulence length scale and r.m.s. velocity in the cold flow. Rather there appear to be significant flame-flow-turbulence interactions affecting both turbulence level in the reaction zone and measured flame speeds. Results of detailed velocity measurements, including autocorrelations, by laser velocimetry are used to elucidate the nature of these interactions. It is concluded that flame speed experiments must be designed and conducted to provide sufficient information (e.g., boundary conditions) to allow for reconstruction of the flow field and these interactions by modelers if the data are to be of value in turbulent combustion model development and evaluation.

  14. Importance of atomic oxygen in preheating zone in plasma-assisted combustion of a steady-state premixed burner flame

    NASA Astrophysics Data System (ADS)

    Zaima, K.; Akashi, H.; Sasaki, K.

    2015-09-01

    It is widely believed that electron impact processes play essential roles in plasma-assisted combustion. However, the concrete roles of high-energy electrons have not been fully understood yet. In this work, we examined the density of atomic oxygen in a premixed burner flame with the superposition of dielectric barrier discharge (DBD). The density of atomic oxygen in the reaction zone was not affected by the superposition of DBD, indicating that the amount of atomic oxygen produced by combustion reactions was much larger than that produced by electron impact processes. On the other hand, in the preheating zone, we observed high-frequency oscillation of the density of atomic oxygen at the timings of the pulsed current of DBD. The oscillation suggests the rapid consumption of additional atomic oxygen by combustion reactions. A numerical simulation using Chemkin indicates the shortened ignition delay time when adding additional atomic oxygen in the period of low-temperature oxidation. The present results reveals the importance of atomic oxygen, which is produced by the effect of high-energy electrons, in the preheating zone in plasma-assisted combustion of the steady-state premixed burner flame.

  15. A multi-zone chemistry mapping approach for direct numerical simulation of auto-ignition and flame propagation in a constant volume enclosure

    NASA Astrophysics Data System (ADS)

    Jangi, M.; Yu, R.; Bai, X. S.

    2012-04-01

    A direct numerical simulation (DNS) coupling with multi-zone chemistry mapping (MZCM) is presented to simulate flame propagation and auto-ignition in premixed fuel/air mixtures. In the MZCM approach, the physical domain is mapped into a low-dimensional phase domain with a few thermodynamic variables as the independent variables. The approach is based on the fractional step method, in which the flow and transport are solved in the flow time steps whereas the integration of the chemical reaction rates and heat release rate is performed in much finer time steps to accommodate the small time scales in the chemical reactions. It is shown that for premixed mixtures, two independent variables can be sufficient to construct the phase space to achieve a satisfactory mapping. The two variables can be the temperature of the mixture and the specific element mass ratio of H atom for fuels containing hydrogen atoms. An aliasing error in the MZCM is investigated. It is shown that if the element mass ratio is based on the element involved in the most diffusive molecules, the aliasing error of the model can approach zero when the grid in the phase space is refined. The results of DNS coupled with MZCM (DNS-MZCM) are compared with full DNS that integrates the chemical reaction rates and heat release rate directly in physical space. Application of the MZCM to different mixtures of fuel and air is presented to demonstrate the performance of the method for combustion processes with different complexity in the chemical kinetics, transport and flame-turbulence interaction. Good agreement between the results from DNS and DNS-MZCM is obtained for different fuel/air mixtures, including H2/air, CO/H2/air and methane/air, while the computational time is reduced by nearly 70%. It is shown that the MZCM model can properly address important phenomena such as differential diffusion, local extinction and re-ignition in premixed combustion.

  16. Fully Automated Single-Zone Elliptic Grid Generation for Mars Science Laboratory (MSL) Aeroshell and Canopy Geometries

    NASA Technical Reports Server (NTRS)

    kaul, Upender K.

    2008-01-01

    A procedure for generating smooth uniformly clustered single-zone grids using enhanced elliptic grid generation has been demonstrated here for the Mars Science Laboratory (MSL) geometries such as aeroshell and canopy. The procedure obviates the need for generating multizone grids for such geometries, as reported in the literature. This has been possible because the enhanced elliptic grid generator automatically generates clustered grids without manual prescription of decay parameters needed with the conventional approach. In fact, these decay parameters are calculated as decay functions as part of the solution, and they are not constant over a given boundary. Since these decay functions vary over a given boundary, orthogonal grids near any arbitrary boundary can be clustered automatically without having to break up the boundaries and the corresponding interior domains into various zones for grid generation.

  17. Gas sampling method for determining pollutant concentrations in the flame zone of two swirl-can combustor modules

    NASA Technical Reports Server (NTRS)

    Duerr, R. A.

    1975-01-01

    A gas sampling probe and traversing mechanism were developed to obtain detailed measurements of gaseous pollutant concentrations in the primary and mixing regions of combustors in order to better understand how pollutants are formed. The gas sampling probe was actuated by a three-degree-of-freedom traversing mechanism and the samples obtained were analyzed by an on-line gas analysis system. The pollutants in the flame zone of two different swirl-can combustor modules were measured at an inlet-air temperature of 590 K, pressure of 6 atmospheres, and reference velocities of 23 and 30 meters per second at a fuel-air ratio of 0.02. Typical results show large spatial gradients in the gaseous pollutant concentration close to the swirl-can module. Average concentrations of unburned hydrocarbons and carbon monoxide decrease rapidly in the downstream wake regions of each module. By careful and detailed probing, the effect of various module design features on pollutant formation can be assessed. The techniques presently developed seem adequate to obtain the desired information.

  18. Occurrence of halogenated flame retardants in sediment off an urbanized coastal zone: association with urbanization and industrialization.

    PubMed

    Liu, Hui-Hui; Hu, Yuan-Jie; Luo, Pei; Bao, Lian-Jun; Qiu, Jian-Wen; Leung, Kenneth M Y; Zeng, Eddy Y

    2014-01-01

    To examine the impacts of urbanization and industrialization on the coastal environment, sediment samples were collected from an urbanized coastal zone (i.e., Daya Bay and Hong Kong waters of South China) and analyzed for 20 polybrominated diphenyl ethers (PBDEs) and 10 alternative halogenated flame retardants (AHFRs). The sum concentration of PBDEs was in the range of 1.7-55 (mean: 17) ng g(-1), suggesting a moderate pollution level compared to the global range. The higher fractions of AHFRs (i.e., TBB+TBPH, BTBPE and DBDPE) than those of legacy PBDEs (i.e., penta-BDE, octa-BDE and deca-BDE) corresponded with the phasing out of PBDEs and increasing demand for AHFRs. Heavy contamination occurred at the estuary of Dan'ao River flowing through the Daya Bay Economic Zone, home to a variety of petrochemicals and electronics manufacturing facilities. The concentrations of HFRs in surface sediments of Hong Kong were the highest in Victoria Harbor, which receives around 1.4 million tons of primarily treated sewage daily, and a good relationship (r(2) = 0.80; p < 0.0001) between the HFR concentration and population density in each council district was observed, highlighting the effect of urbanization. Moreover, the AHFR concentrations were significantly correlated (r(2) > 0.73; p < 0.05) with the production volume of electronic devices, production value of electronic industries and population size, demonstrating the importance of industrializing and urbanizing processes in dictating the historical input patterns of AHFRs. PMID:24988362

  19. Flame hole dynamics simulation of Sandia Flame F

    NASA Astrophysics Data System (ADS)

    Knaus, Robert; Hewson, John; Domino, Stefan; Pantano, Carlos

    2014-11-01

    The Sandia Flame ``F'' is a piloted methane/air diffusion flame containing high levels of local extinction. These regions of local extinction reduce the efficiency of combustion and can increase the production of certain pollutants (e.g. carbon monoxide) as well as limit the overall stability of the flame. We present a flame hole dynamics model describing evolution of local extinction zones (flame holes) in a turbulent diffusion flame and apply it to perform a direct numerical simulation of the Sandia Flame F using Sandia's ``SIERRA low Mach Module, Nalu.'' The flame hole dynamics model is a phase-field model that describes the state of the flame (burning or extinguished) through a surface partial differential equation modeling extinction, reignition and advection of the flame state on the moving stoichiometric surface using edge flame properties. The solution of the surface equation is then extended away from the surface and used for state evaluations using a flamelet library with steady flamelets in the burning region and a transient solution in the quenched regions. The flame hole dynamics approach allows tracking extinction and reignition in turbulent diffusion flames without using the computationally costly detailed chemistry explicitly.

  20. Large Eddy Simulations of forced ignition of a non-premixed bluff-body methane flame with Conditional Moment Closure

    SciTech Connect

    Triantafyllidis, A.; Mastorakos, E.; Eggels, R.L.G.M.

    2009-12-15

    Large Eddy Simulations (LES) of forced ignition of a bluff-body stabilised non-premixed methane flame using the Conditional Moment Closure (CMC) turbulent combustion model have been performed. The aim is to investigate the feasibility of the use of CMC/LES for ignition problems and to examine which, if any, of the characteristics already observed in related experiments could be predicted. A three-dimensional formulation of the CMC equation was used with simple and detailed chemical mechanisms, and sparks with different parameters (location, size) were used. It was found that the correct pattern of flame expansion and overall flame appearance were predicted with reasonable accuracy with both mechanisms, but the detailed mechanism resulted in expansion rates closer to the experiment. Moreover, the distribution of OH was predicted qualitatively accurately, with patches of high and low concentration in the recirculation zone during the ignition transient, consistent with experimental data. The location of the spark relative to the recirculation zone was found to determine the pattern of the flame propagation and the total time for the flame stabilisation. The size was also an important parameter, since it was found that the flame extinguishes when the spark is very small, in agreement with expectations from experiment. The stabilisation mechanism of the flame was dominated by the convection and sub-grid scale diffusion of hot combustion products from the recirculation zone to the cold gases that enter the burner, as revealed by analysis of the CMC equation. (author)

  1. Health risk characterization for resident inhalation exposure to particle-bound halogenated flame retardants in a typical e-waste recycling zone.

    PubMed

    Luo, Pei; Bao, Lian-Jun; Wu, Feng-Chang; Li, Shao-Meng; Zeng, Eddy Y

    2014-01-01

    Inhalation of pollutants is an important exposure route for causing human health hazards, and inhalation exposure assessment must take into account particle size distribution because particle-bound pollutants are size-dependent. Such information is scarce, particularly for residents dwelling within e-waste recycling zones where abundant atmospheric halogenated flame retardants (HFRs) commonly used in electronic/electrical devices have been widely reported. Atmospheric size-fractioned particle samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor from an e-waste recycling zone in South China. The deposition efficiencies and fluxes of size-fractioned HFRs including polybrominated diphenyl ethers (PBDEs), alternative brominated flame retardants, and Dechlorane Plus in the human respiratory tract were estimated using the International Commission on Radiological Protection deposition model. The majority of HFRs was found to deposit in the head airways, with coarse particles (aerodynamic diameter (Dp) > 1.8 μm) contributing the most (69-91%). Conversely, fine particles (Dp < 1.8 μm) were dominant in the alveolar region (62-80%). The inhalation intake of PBDEs within the e-waste recycling zone was 44 ng/d (95% confidence interval (CI): 30-65 ng/d), close to those through food consumption in non-e-waste recycling regions. The estimated total hazard quotient of particle-bound HFRs was 5.6 × 10(-4) (95% CI: 3.8 × 10(-4)-8.8 × 10(-4)). In addition, incremental lifetime cancer risk induced by BDE-209 was 1.36 × 10(-10) (95% CI: 7.3 × 10(-11)-2.3 × 10(-10)), much lower than the Safe Acceptable Range (1.0 × 10(-6)-1.0 × 10(-4)) established by the United States Environmental Protection Agency. These results indicate that the potential health risk from inhalation exposure to particle-bound HFRs for residents dwelling in the e-waste recycling zone was low. PMID:24992563

  2. Distributed Flexibility Characterization and Resource Allocation Strategies for Multi-zone Commercial Buildings in the Smart Grid

    SciTech Connect

    Hao, He; Lian, Jianming; Kalsi, Karanjit; Stoustrup, Jakob

    2015-12-15

    The HVAC (Heating, Ventilation, and Air- Conditioning) system of commercial buildings is a complex system with a large number of dynamically interacting components. In particular, the thermal dynamics of each zone are coupled with those of the neighboring zones. In this paper, we study a multi-agent based approach to model and control commercial building HVAC system for providing grid services. In the multi-agent system (MAS), individual zones are modeled as agents that can communicate, interact, and negotiate with one another to achieve a common objective. We first propose a distributed characterization method on the aggregated airflow (and thus fan power) flexibility that the HVAC system can provide to the ancillary service market. Then, we propose a Nash-bargaining based airflow allocation strategy to track a dispatch signal (that is within the offered flexibility limit) while respecting the preference and flexibility of individual zones. Moreover, we devise a distributed algorithm to obtain the Nash bargaining solution via dual decomposition and average consensus. Numerical simulations illustrate that the proposed distributed protocols are much more scalable than the centralized approaches especially when the system becomes larger and more complex.

  3. Radiant Extinction Of Gaseous Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Berhan, S.; Chernovsky, M.; Atreya, A.; Baum, Howard R.; Sacksteder, Kurt R.

    2003-01-01

    The absence of buoyancy-induced flows in microgravity (mu:g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and :g flames have been reported in experiments on candle flames [1, 2], flame spread over solids [3, 4], droplet combustion [5,6], and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the Aweak@ (low burning rate per unit flame area) :g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in :g will burn indefinitely [1]. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the :g experiments and modeling because: (i) It reduces the complexity by making the problem

  4. Numerical and experimental study on flame structure characteristics in a supersonic combustor with dual-cavity

    NASA Astrophysics Data System (ADS)

    Yang, Yixin; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo; Li, Li

    2015-12-01

    Combined numerical and experimental approaches have been implemented to investigate the quasi-steady flame characteristics of supersonic combustion in tandem and parallel dual-cavity. In simulation, a hybrid Large Eddy Simulation (LES)/assumed sub-grid Probability Density Function (PDF) closure model was carried out. Comparison of calculation and experiment as well as comparison of the two configurations are qualitatively and quantitatively performed regarding the flame structure and other flowfield features. Simulation shows a good level of agreement with experimental observation and measurement in terms of instantaneous and time-averaged results. Given the same fuel equivalence ratio, the parallel dual-cavity with the two opposite injections gathers the major combustion around the cavities, thus leading to the concentrated heat release, the greatly extended recirculation zones and the converging-diverging core flow path. Only intermittent stray flame packets can be found in the downstream region. Flame in the combustor with tandem dual-cavity appears to be stabilized by the upstream cavity shear layer and grows gradually to the second cavity, peaking its most intensity in the middle section between the two cavities. For both dual-cavity configurations, the strongest reaction takes place in near chemistry stoichiometric region around the flame edge, and is mainly confined in the supersonic region supported by the inner subsonic combustion. The coexistence of three parts plays a vital role in flame stabilization in the parallel and tandem dual-cavity: a reacting reservoir transferring hot products and activated radicals within the cavity recirculation zone, the hydrogen-rich premixed flame in the jet mixing region, and the downstream diffusion flames supported by the upstream premixed combustion region. In addition, for the parallel dual-cavity under the given condition, significant reaction are present near jet exit upstream the cavity leading edge.

  5. Flame temperature theory-based model for evaluation of the flammable zones of hydrocarbon-air-CO2 mixtures.

    PubMed

    Shu, Gequn; Long, Biao; Tian, Hua; Wei, Haiqiao; Liang, Xingyu

    2015-08-30

    Theoretical models to evaluate the flammable zones of mixtures made up of hydrocarbon, carbon dioxide and air have been proposed in present study. A three-step reaction hypothesis for hydrocarbon combustion was introduced for predicting the upper flammability limit. The method to predict the parameters at fuel inertization point was put forward as well. Validation of these models has been conducted on existing experimental data reported in the literature, including the cases of methane, propane, propylene and isobutane, and an acceptable precision has been achieved. The average relative differences between the estimated results and experimental ones, except for the results at fuel inertization point, are less than 8.8% and 3.3% for upper and lower flammability limit, respectively. This work also indicated that these models possess practical application capacity and can provide safe prediction limits for nonflammable ranges of hydrocarbon diluted with carbon dioxide. PMID:25867586

  6. Flame Spectra.

    ERIC Educational Resources Information Center

    Cromer, Alan

    1983-01-01

    When salt (NaCl) is introduced into a colorless flame, a bright yellow light (characteristic of sodium) is produced. Why doesn't the chlorine produce a characteristic color of light? The answer to this question is provided, indicating that the flame does not excite the appropriate energy levels in chlorine. (JN)

  7. Some Effects of Small-scale Flow Disturbance on Nozzle-burner Flames

    NASA Technical Reports Server (NTRS)

    Wong, Edgar L

    1956-01-01

    Laminar-like and brush-like propane-air flames were obtained when wire grids were used as turbulence generators in a 1/2-inch nozzle burner. The laminar-like flames for grid-disturbed flow had a slightly higher burning velocity than "true" laminar flames (no grid used). The brush-like flames were similar to those obtained with pipe turbulent flow. Their burning-velocity dependence on a "flow disturbance" Reynolds number compared favorably with that obtained for pipe turbulent flames. Hot-wire-anemometer equipment was used to measure the flow disturbance intensity in the cold flow with and without the grids in place.

  8. Studies of Flame Structure in Microgravity

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Sung, C. J.; Zhu, D. L.

    1997-01-01

    The present research endeavor is concerned with gaining fundamental understanding of the configuration, structure, and dynamics of laminar premixed and diffusion flames under conditions of negligible effects of gravity. Of particular interest is the potential to establish and hence study the properties of spherically- and cylindrically-symmetric flames and their response to external forces not related to gravity. For example, in an earlier experimental study of the burner-stabilized cylindrical premixed flames, the possibility of flame stabilization through flow divergence was established, while the resulting one-dimensional, adiabatic, stretchless flame also allowed an accurate means of determining the laminar flame speeds of combustible mixtures. We have recently extended our studies of the flame structure in microgravity along the following directions: (1) Analysis of the dynamics of spherical premixed flames; (2) Analysis of the spreading of cylindrical diffusion flames; (3) Experimental observation of an interesting dual luminous zone structure of a steady-state, microbuoyancy, spherical diffusion flame of air burning in a hydrogen/methane mixture environment, and its subsequent quantification through computational simulation with detailed chemistry and transport; (4) Experimental quantification of the unsteady growth of a spherical diffusion flame; and (5) Computational simulation of stretched, diffusionally-imbalanced premixed flames near and beyond the conventional limits of flammability, and the substantiation of the concept of extended limits of flammability. Motivation and results of these investigations are individually discussed.

  9. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  10. Syngas formation in methane flames and carbon monoxide release during quenching

    SciTech Connect

    Weinberg, Felix; Carleton, Fred; Houdmont, Raphael; Dunn-Rankin, Derek; Karnani, Sunny

    2011-02-15

    Following a recent investigation into chemi-ionization and chemiluminescence during gradual aeration of small, laminar methane flames, we proposed that partial oxidation products, or syngas constituents, formed in the pre-flame zone well below the luminous region, were responsible for the observed effects. We therefore map temperature, CO, and H{sub 2} for geometries and conditions relevant to burners in domestic boiler systems, to assess the potential hazard of CO release into the ambient atmosphere, should any partial quenching occur. CO concentrations peaks of 5.5 volume % are recorded in the core surrounding the axis. Appreciable CO concentrations are also found in the absence of added air. Experiments on various burner port geometries and temperatures suggest that this is not due to air entrainment at the flame base but to diffusion from zones closer to the flame. Next, quenching surfaces such as grids, perforated plates and flame trap matrices of different metals are progressively lowered into the flame. To avoid flow line distortion, suction aspirates the quenched products. The highest emission rate occurs with the quenching plane some 4 mm above the burner; further lowering of the quenching surface causes flame extinction. The maximum CO release is close to converting 10% of the CH{sub 4} feed, with some variation with quenching material. Expressing this potential release in terms of, e.g. boiler power, predicts a potentially serious hazard. Results of numerical simulations adequately parallel the experimental sampling profiles and provide insights into local concentrations, as well as the spatially resolved CO flux, which is calculated for a parabolic inlet flow profile. Integration across the stream implies, on the basis of the simulation, a possible tripling of the experimental CO release, were quenching simply to release the local gas composition into the atmosphere. Comparison with experiment suggests some chemical interaction with the quenching

  11. Flame Hair

    PubMed Central

    Miteva, Mariya; Tosti, Antonella

    2015-01-01

    Background ‘Flame hairs’ is a trichoscopic feature described as hair residue from pulling anagen hairs in trichotillomania. Objective: To detect whether flame hairs are present in other hair loss disorders. Methods We retrospectively, independently and blindly reviewed the trichoscopic images of 454 consecutive patients with alopecia areata (99 cases), trichotillomania (n = 20), acute chemotherapy-induced alopecia (n = 6), acute radiotherapy-induced alopecia (n = 2), tinea capitis (n = 13), lichen planopilaris (n = 33), frontal fibrosing alopecia (n = 60), discoid lupus erythematosus (n = 30), dissecting cellulitis (n = 11), central centrifugal cicatricial alopecia (n = 94) and traction alopecia (n = 86) for the presence of flame hairs. We prospectively obtained trichoscopy-guided scalp biopsies from flame hairs in trichotillomania, alopecia areata, traction alopecia and central centrifugal cicatricial alopecia (1 case each). Results Flame hairs were detected in 100% of the acute chemotherapy- and radiotherapy-induced alopecias, where they were the predominant hair abnormality. They were also found in trichotillomania (55%), alopecia areata (21%), traction alopecia (4%) and central centrifugal cicatricial alopecia (3%). On pathology, they corresponded to distorted hair shafts. Conclusion The flame hair is a type of broken hair which can be seen in various hair loss disorders. It results from traumatic pulling of anagen hairs or from anagen arrest due to inflammation or drugs. © 2015 S. Karger AG, Basel PMID:27171360

  12. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    NASA Astrophysics Data System (ADS)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO

  13. Structure of laminar sooting inverse diffusion flames

    SciTech Connect

    Mikofski, Mark A.; Fernandez-Pello, A. Carlos; Williams, Timothy C.; Shaddix, Christopher R.; Blevins, Linda G.

    2007-06-15

    The flame structure of laminar inverse diffusion flames (IDFs) was studied to gain insight into soot formation and growth in underventilated combustion. Both ethylene-air and methane-air IDFs were examined, fuel flow rates were kept constant for all flames of each fuel type, and airflow rates were varied to observe the effect on flame structure and soot formation. Planar laser-induced fluorescence of hydroxyl radicals (OH PLIF) and polycyclic aromatic hydrocarbons (PAH PLIF), planar laser-induced incandescence of soot (soot PLII), and thermocouple-determined gas temperatures were used to draw conclusions about flame structure and soot formation. Flickering, caused by buoyancy-induced vortices, was evident above and outside the flames. The distances between the OH, PAH, and soot zones were similar in IDFs and normal diffusion flames (NDFs), but the locations of those zones were inverted in IDFs relative to NDFs. Peak OH PLIF coincided with peak temperature and marked the flame front. Soot appeared outside the flame front, corresponding to temperatures around the minimum soot formation temperature of 1300 K. PAHs appeared outside the soot layer, with characteristic temperature depending on the wavelength detection band. PAHs and soot began to appear at a constant axial position for each fuel, independent of the rate of air flow. PAH formation either preceded or coincided with soot formation, indicating that PAHs are important components in soot formation. Soot growth continued for some time downstream of the flame, at temperatures below the inception temperature, probably through reaction with PAHs. (author)

  14. Hysteresis and transition in swirling nonpremixed flames

    SciTech Connect

    Tummers, M.J.; Huebner, A.W.; van Veen, E.H.; Hanjalic, K.; van der Meer, T.H.

    2009-02-15

    Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change from an attached swirling flame (unidirectional or with a weak bluff-body recirculation), to a lifted flame with a strong toroidal vortex occupying the bulk of the flame. Despite dramatic differences in their structures, mixing intensities and combustion performance, both flame types can be realised at identical flow rates, equivalence ratio and swirl intensity. We report here on comprehensive investigations of the two flame regimes at the same conditions in a well-controlled experiment in which the swirl was generated by the rotating outer pipe of the annular burner air passage. Fluid velocity measured with PIV (particle image velocimetry), the qualitative detection of reaction zones from OH PLIF (planar laser-induced fluorescence) and the temperature measured by CARS (coherent anti-Stokes Raman spectroscopy) revealed major differences in vortical structures, turbulence, mixing and reaction intensities in the two flames. We discuss the transition mechanism and arguments for the improved mixing, compact size and a broader stability range of the blue flame in comparison to the long yellow flame. (author)

  15. Radiant extinction of gaseous diffusion flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Agrawal, Sanjay; Shamim, Tariq; Pickett, Kent; Sacksteder, Kurt R.; Baum, Howard R.

    1995-01-01

    The absence of buoyancy-induced flows in microgravity significantly alters the fundamentals of many combustion processes. Substantial differences between normal-gravity and microgravity flames have been reported during droplet combustion, flame spread over solids, candle flames, and others. These differences are more basic than just in the visible flame shape. Longer residence time and higher concentration of combustion products create a thermochemical environment which changes the flame chemistry. Processes such as flame radiation, that are often ignored under normal gravity, become very important and sometimes even controlling. This is particularly true for conditions at extinction of a microgravity diffusion flame. Under normal-gravity, the buoyant flow, which may be characterized by the strain rate, assists the diffusion process to transport the fuel and oxidizer to the combustion zone and remove the hot combustion products from it. These are essential functions for the survival of the flame which needs fuel and oxidizer. Thus, as the strain rate is increased, the diffusion flame which is 'weak' (reduced burning rate per unit flame area) at low strain rates is initially 'strengthened' and eventually it may be 'blown-out'. Most of the previous research on diffusion flame extinction has been conducted at the high strain rate 'blow-off' limit. The literature substantially lacks information on low strain rate, radiation-induced, extinction of diffusion flames. At the low strain rates encountered in microgravity, flame radiation is enhanced due to: (1) build-up of combustion products in the flame zone which increases the gas radiation, and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which further increases the flame radiation. It is expected that this radiative heat loss will extinguish the already 'weak' diffusion flame under certain conditions. Identifying these conditions (ambient atmosphere, fuel flow rate, fuel

  16. Experimental study of premixed flames in intense isotropic turbulence

    SciTech Connect

    Bedat, B.; Cheng, R.K.

    1994-04-01

    A methodology for investigating premixed turbulent flames propagating in intense isotropic turbulence has been developed. The burner uses a turbulence generator developed by Videto and Santavicca and the flame is stabilized by weak-swirl generated by air injectors. This set-up produces stable premixed turbulent flames under a wide range of mixture conditions and turbulence intensities. The experiments are designed to investigate systematically the changes in flame structures for conditions which can be classified as wrinkled laminar flames, corrugated flames and flames with distributed reaction zones. Laser Doppler anemometry and Rayleigh scattering techniques are used to determine the turbulence and scalar statistics. In the intense turbulence, the flames are found to produce very little changes in the mean and rams velocities. Their flame speed increase linearly with turbulence intensity as for wrinkled laminar flames. The Rayleigh scattering pdfs for flames within the distributed reaction zone regime are distinctly bimodal. The probabilities of the reacting states (i.e. contributions from within the reaction zone) is not higher than those of wrinkled laminar flame. These results show that there is no drastic changes in flame structures at Karlovitz number close to unity. This suggest that the Klimov-Williams criterion under-predicts the resilience of wrinkled flamelets to intense turbulence.

  17. Blowoff dynamics of bluff body stabilized turbulent premixed flames

    SciTech Connect

    Chaudhuri, Swetaprovo; Kostka, Stanislav; Renfro, Michael W.; Cetegen, Baki M.

    2010-04-15

    This article concerns the flame dynamics of a bluff body stabilized turbulent premixed flame as it approaches lean blowoff. Time resolved chemiluminescence imaging along with simultaneous particle image velocimetry and OH planar laser-induced fluorescence were utilized in an axisymmetric bluff body stabilized, propane-air flame to determine the sequence of events leading to blowoff and provide a quantitative analysis of the experimental results. It was found that as lean blowoff is approached by reduction of equivalence ratio, flame speed decreases and the flame shape progressively changes from a conical to a columnar shape. For a stably burning conical flame away from blowoff, the flame front envelopes the shear layer vortices. Near blowoff, the columnar flame front and shear layer vortices overlap to induce high local stretch rates that exceed the extinction stretch rates instantaneously and in the mean, resulting in local flame extinction along the shear layers. Following shear layer extinction, fresh reactants can pass through the shear layers to react within the recirculation zone with all other parts of the flame extinguished. This flame kernel within the recirculation zone may survive for a few milliseconds and can reignite the shear layers such that the entire flame is reestablished for a short period. This extinction and reignition event can happen several times before final blowoff which occurs when the flame kernel fails to reignite the shear layers and ultimately leads to total flame extinguishment. (author)

  18. Flame retardants

    NASA Technical Reports Server (NTRS)

    Troitzsch, J.

    1988-01-01

    The use of flame retardants in plastics has grown only slightly in recent years and will probably grow slowly in the future. The reasons for this are slow economic growth and the absence of fundamentally new requirements for future fire prevention. The trends are toward the increasing use of easily handled, dust-free and well-dispersed flame retardant compounds and master batches; there are no spectacular new developments. In the future, questions of smoke evolution, toxicity and corrosiveness of combustion gases will become increasingly important, especially due to new regulations and rising requirements for environmental protection.

  19. A high-pressure premixed flat-flame burner for chemical process studies. [of pollutant formation in hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.

    1978-01-01

    A premixed flat-flame burner was designed and tested with methane-air mixtures at pressures from 1.1 to 20 atm and equivalence ratios from 0.7 to 1.1. Reactant velocity in the burner mixing chamber was used to characterize the range of stable flames at each pressure-equivalence-ratio condition. Color photographs of the flames were used to determine flame zone thickness and flame height. The results show that this burner can be used for chemical process studies in premixed high pressure methane-air flames up to 20 atm.

  20. Subfilter Scale Combustion Modelling for Large Eddy Simulation of Turbulent Premixed Flames

    NASA Astrophysics Data System (ADS)

    Shahbazian, Nasim

    Large eddy simulation (LES) is a powerful computational tool for modelling turbulent combustion processes. However, for reactive flows, LES is still under significant development. In particular, for turbulent premixed flames, a considerable complication of LES is that the flame thickness is generally much smaller than the LES filter width such that the flame front and chemical reactions cannot be resolved on the grid. Accurate and robust subfilter-scale (SFS) models of the unresolved turbulence-chemistry interactions are therefore required and studies are needed to evaluate and improve them. In this thesis, a detailed comparison and evaluation of five different SFS models for turbulence- chemistry interactions in LES of premixed flames is presented. These approaches include both flamelet- and non-flamelet-based models, coupled with simple or tabulated chemistry. The mod- elling approaches considered herein are: algebraic- and transport-equation variants of the flame surface density (FSD) model, the presumed conditional moment (PCM) with flame prolongation of intrinsic low-dimensional manifold (FPI) tabulated chemistry, or PCM-FPI approach, evaluated with two different presumed probability density function (PDF) models; and conditional source-term estimation (CSE) approach. The predicted LES solutions are compared to the existing laboratory-scale experimental observation of Bunsen-type turbulent premixed methane-air flames, corresponding to lean and stoichiometric conditions lying from the upper limit of the flamelet regime to well within the thin reaction zones regime of the standard regimes diagram. Direct comparison of different SFS approaches allows investigation of stability and performance of the models, while the weaknesses and strengths of each approach are identified. Evaluation of algebraic and transported FSD models highlights the importance of non-equilibrium transport in turbulent premixed flames. The effect of the PDF type for the reaction progress

  1. Numerical calculations of strained premixed laminar flames

    NASA Astrophysics Data System (ADS)

    Darabiha, N.; Candel, S.; Marble, F. E.

    The structure of a strained laminar flame in the vicinity of a stagnation point is examined numerically. The stagnation point is established by the counterflow of fresh mixture and hot products. This situation is described by standard reactive boundary layer equations. The numerical scheme used to solve the similar boundary layer equations put in F-V form (block-implicit) is an adaptation of the schemes proposed by Blottner (1979). The calculations are performed first on an uniform grid and then confirmed with an adaptive grid method due to Smooke (1982). Numerical calculations allow an exact description of the flame structure in physical and also reduced coordinates. Predictions of Libby and Williams (1982) for high and intermediate values of the strain rate based on activation energy asymptotics are confirmed. For low strain rates (ordinary unstrained laminar flame) the mass rate of reaction per unit flame area differs from that obtained by activation energy asymptotics.

  2. Flames in vortices & tulip-flame inversion

    NASA Astrophysics Data System (ADS)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  3. Triple flame structure and diffusion flame stabilization

    NASA Technical Reports Server (NTRS)

    Veynante, D.; Vervisch, L.; Poinsot, T.; Linan, A.; Ruetsch, G.

    1994-01-01

    The stabilization of diffusion flames is studied using asymptotic techniques and numerical tools. The configuration studied corresponds to parallel streams of cold oxidizer and fuel initially separated by a splitter plate. It is shown that stabilization of a diffusion flame may only occur in this situation by two processes. First, the flame may be stabilized behind the flame holder in the wake of the splitter plate. For this case, numerical simulations confirm scalings previously predicted by asymptotic analysis. Second, the flame may be lifted. In this case a triple flame is found at longer distances downstream of the flame holder. The structure and propagation speed of this flame are studied by using an actively controlled numerical technique in which the triple flame is tracked in its own reference frame. It is then possible to investigate the triple flame structure and velocity. It is shown, as suggested from asymptotic analysis, that heat release may induce displacement speeds of the triple flame larger than the laminar flame speed corresponding to the stoichiometric conditions prevailing in the mixture approaching the triple flame. In addition to studying the characteristics of triple flames in a uniform flow, their resistance to turbulence is investigated by subjecting triple flames to different vortical configurations.

  4. Electrical Aspects of Impinging Flames

    NASA Astrophysics Data System (ADS)

    Chien, Yu-Chien

    from the flame to the plate can be controlled using the electric field are the two main goals of this research. Multiple diagnostic techniques are employed such as OH chemiluminescence to identify the reaction zone, OH PLIF to characterize the location of this radical species, CO released from the flame, IR imaging and OH PLIF thermometry to understand the surface and gas temperature distribution, respectively. The principal finding is that carbon monoxide release from an impinging diffusion flame results from the escape of carbon monoxide created on the fuel side of the flame along the boundary layer near the surface where it avoids oxidation by OH, which sits to the air side of the reaction sheet interface. In addition, the plate proximity to the flame has a stronger influence on the emission of toxic carbon monoxide than does the electric field strength. There is, however, a narrow region of burner to surface distance where the electric field is most effective. The results also show that heat transfer can be spatially concentrated effectively using an electric field driven ion wind, particularly at some burner to surface distances.

  5. Laminar Diffusion Flame Studies (Ground- and Space-Based Studies)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    facilities, cannot involve soot emitting flames in order to ensure that test chamber windows used for experimental observations are not blocked by soot deposits, thereby compromising unusually valuable experimental results. Another important motivation to define conditions where soot is present in diffusion flames is that flame chemistry, transport and radiation properties are vastly simplified when soot is absent, making such flames far more tractable for detailed numerical simulations than corresponding soot-containing flames. Motivated by these observations, the objectives of this phase of the investigation were as follows: (1) Observe flame-sheet shapes (the location of the reaction zone near phi=1) of nonluminous (soot free) laminar jet diffusion flames in both still and coflowing air and use these results to develop simplified models of flame-sheet shapes for these conditions; (2) Observe luminous flame boundaries of luminous (soot-containing) laminar jet diffusion flames in both still and coflowing air and use these results to develop simplified models of luminous flame boundaries for these conditions. In order to fix ideas here, maximum luminous flame boundaries at the laminar smoke point conditions were sought, i.e., luminous flame boundaries at the laminar smoke point; (3) Observe effects of coflow on laminar soot- and smoke-point conditions because coflow has been proposed as a means to control soot emissions and minimize the presence of soot in diffusion flames.

  6. Disc stabilized flame afterburner

    SciTech Connect

    Weber, R.; Huddleston, B.C.

    1984-08-21

    Industrial pollution is directed into an afterburner conduit. An air cooled conical bluff body positioned in the conduit near the entrance acts as a flow condensing element. A recirculation zone consists of a toroidal vortex adjacent the downstream edge of the bluff body. In the zone, flow is reversed and particles in the reversed flow are reintroduced into the afterburner flow. A ring of burners located near the midpoint of the bluff body heats the gas stream flowing past the bluff body to near auto-ignition temperature. A second ring of burners located downstream of the bluff body assists in the establishment of a stabilized flame downstream of the bluff body. Air is heated as it flows through tubes wrapped around the conduit. The heated air is introduced tangentially to the afterburner flow by air injectors positioned downstream of the bluff body and downstream of the second ring of burners.

  7. The Effects of Flame Structure on Extinction of CH4-O2-N2 Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Du, J.; Axelbaum, R. L.; Gokoglu, S. (Technical Monitor)

    1996-01-01

    The effects of flame structure on the extinction limits of CH4-O2-N2 counterflow diffusion flames were investigated experimentally and numerically by varying the stoichiometric mixture fraction Z(sub st), Z(sub st) was varied by varying free-stream concentrations, while the adiabatic flame temperature T(sub ad) was held fixed by maintaining a fixed amount of nitrogen at the flame. Z(sub st) was varied between 0.055 (methane-air flame) and 0.78 (diluted- methane-oxygen flame). The experimental results yielded an extinction strain rate K(sub ext) of 375/s for the methane-air flame, increasing monotonically to 1042/s for the diluted-methane-oxygen flame. Numerical results with a 58-step Cl mechanism yielded 494/s and 1488/s, respectively. The increase in K(sub ext) with Z(sub st) for a fixed T(sub ad) is explained by the shift in the O2 profile toward the region of maximum temperature and the subsequent increase in rates for chain-branching reactions. The flame temperature at extinction reached a minimum at Z(sub st) = 0.65, where it was 200 C lower than that of the methane-air flame. This significant increase in resistance to extinction is seen to correspond to the condition in which the OH and O production zones are centered on the location of maximum temperature.

  8. Turbulent Deflagrated Flame Interaction with a Fluidic Jet Flow for Deflagration-to-Detonation Flame Acceleration

    NASA Astrophysics Data System (ADS)

    Chambers, Jessica; McGarry, Joseph; Ahmed, Kareem

    2015-11-01

    Detonation is a high energetic mode of pressure gain combustion. Detonation combustion exploits the pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. The driving mechanism of deflagrated flame acceleration to detonation is turbulence generation and induction. A fluidic jet is an innovative method for the production of turbulence intensities and flame acceleration. Compared to traditional obstacles, the jet reduces the pressure losses and heat soak effects while providing turbulence generation control. The investigation characterizes the turbulent flame-flow interactions. The focus of the study is on classifying the turbulent flame dynamics and the temporal evolution of turbulent flame regime. The turbulent flame-flow interactions are experimentally studied using a LEGO Detonation facility. Advanced high-speed laser diagnostics, particle image velocimetry (PIV), planar laser induced florescence (PLIF), and Schlieren imaging are used in analyzing the physics of the interaction and flame acceleration. Higher turbulence induction is observed within the turbulent flame after contact with the jet, leading to increased flame burning rates. The interaction with the fluidic jet results in turbulent flame transition from the thin reaction zones to the broken reaction regime.

  9. An experimental study of air-assist atomizer spray flames

    NASA Technical Reports Server (NTRS)

    Mao, Chien-Pei; Wang, Geng; Chigier, Norman

    1988-01-01

    It is noted that air-assisted atomizer spray flames encountered in furnaces, boilers, and gas turbine combustors possess a more complex structure than homogeneous turbulent diffusion flames, due to the swirling motion introduced into the fuel and air flows for the control of flame stability, length, combustion intensity, and efficiency. Detailed comparisons are presented between burning and nonburning condition measurements of these flames obtained by nonintrusive light scattering phase/Doppler detection. Spray structure is found to be drastically changed within the flame reaction zone, with changes in the magnitude and shape of drop number density, liquid flux, mean drop size diameter, and drop mean axial velocity radial distributions.

  10. Effects of gravity on turbulent nonpremixed flames

    NASA Astrophysics Data System (ADS)

    Elghobashi, S.; Zhong, R.; Boratav, O.

    1999-10-01

    The paper examines the effects of buoyancy on the behavior of turbulent nonpremixed flames using the method of direct numerical simulation. We examine the effects of the interactions between turbulence, chemical reaction, and buoyancy on the fields of vorticity, turbulence kinetic energy, scalar dissipation, and reaction rate. In the buoyant flame, the baroclinic torque creates strong counter-rotating vortices saddling the flame surface. These vortices result in a significantly more wrinkled flame surface than in the nonbuoyant case. One of the effects of wrinkling is that it reduces the distances between the isosurfaces of the mixture fraction F, thus augmenting the local ∇F and the scalar dissipation ɛF, and consequently the reaction rate ṙT. The zones of maximum ṙT coincide with those of maximum tangential extensional strain. Our results show a direct correlation between ɛF and ṙT for both the buoyant and nonbuoyant flames.

  11. Candle Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; T'ien, J. S.; Chang, P.; Shu, Y.

    1999-01-01

    This work is a study of a candle flame in a microgravity environment. The purpose of the work is to determine if a steady (or quasi-steady) flame can exist in a microgravity environment, study the characteristics of the steady flame, investigate the pre-extinction flame oscillations observed in a previous experiment in more detail, and finally, determine the nature of the interactions between two closely spaced candle flames. The candle flame in microgravity is used as a model of a non-propagating, steady-state, pure diffusion flame. The present work is a continuation of two small-scale, space-based experiments on candle flames, one on the Shuttle and the other on the Mir OS. The previous studies showed nearly steady dim blue flames with flame lifetimes as high as 45 minutes, and 1 Hz spontaneous flame oscillations prior to extinction. The present paper summarizes the results of the modeling efforts to date.

  12. DNS of autoigniting turbulent jet flame

    NASA Astrophysics Data System (ADS)

    Asaithambi, Rajapandiyan; Mahesh, Krishnan

    2014-11-01

    Direct numerical simulation of a round turbulent hydrogen jet injected into vitiated coflowing air is performed at a jet Reynolds number of 10,000 and the results are discussed. A predictor-corrector density based method for DNS/LES of compressible chemically reacting flows is developed and used on a cylindrical grid. A novel strategy to remove the center-line stiffness is developed. A fully developed turbulent pipe flow simulation is prescribed as the velocity inlet for the fuel jet. The flame base is observed to be stabilized primarily by autoignition. Further downstream the flame exhibits a diffusion flame structure with regions of rich and lean premixed regimes flanking the central diffusion flame. The lift-off height is well predicted by a simple relation between the ignition delay of the most-reactive mixture fraction and the streamwise velocity of the jet and coflow.

  13. On Soot Inception in Nonpremixed Flames and the Effects of Flame Structure

    NASA Technical Reports Server (NTRS)

    Chao, B. H.; Liu, S.; Axelbaum, R. L.; Gokoglu, Suleyman (Technical Monitor)

    1998-01-01

    A simplified three-step model of soot inception has been employed with high activation energy asymptotics to study soot inception in nonpremixed counterflow systems with emphasis on understanding the effects of hydrodynamics and transport. The resulting scheme yields three zones: (1) a fuel oxidation zone wherein the fuel and oxidizer react to form product as well as a radical R, (e.g., H), (2) a soot/precursor formation zone where the radical R reacts with fuel to form "soot/precursor" S, and (3) a soot/precursor consumption zone where S reacts with the oxidizer to form product. The kinetic scheme, although greatly simplified, allows the coupling between soot inception and flame structure to be assessed. The results yield flame temperature, flame location, and a soot/precursor index S(sub I) as functions of Damkohler number for S formation. The soot/precursor index indicates the amount of S at the boundary of the formation region. The flame temperature indirectly indicates the total amount of S integrated over the formation region because as S is formed less heat release is available. The results show that unlike oxidation reactions, an extinction turning-point behavior does not exist for soot. Instead, the total amount of S slowly decreases with decreasing Damkohler number (increasing strain rate), which is consistent with counterflow flame experiments. When the Lewis number of the radical is decreased from unity, the total S reduces due to reduced residence time for the radical in the soot formation region. Similarly, when the Lewis number of the soot/precursor is increased from unity the amount of S increases for all Damkohler numbers. In addition to studying fuel-air (low stoichiometric mixture fraction) flames, the air-side nitrogen was substituted into the fuel, yielding diluted fuel-oxygen (high stoichiometric mixture fraction) flames with the same flame temperature as the fuel - air flames. The relative flame locations were different however, and

  14. Coherent structure dynamics during turbulence-flame interaction

    NASA Astrophysics Data System (ADS)

    Haffner, Eileen; Green, Melissa; Hamlington, Peter; Poludnenko, Alexi; Oran, Elaine

    2015-11-01

    Several studies have been conducted to characterize the turbulence-flame interaction in reacting flows quantitatively. It has been observed that increased turbulence intensity both wrinkles and broadens the flame front throughout the preheat zone and reaction zone. In addition, previous studies showed that interaction with the flame changes the orientation of turbulent structures and and in some cases incites loss of vorticity, but the physical mechanism of this interaction was still unclear. An Eulerian analysis (Q criterion) is preformed to track structures through the flow, and to visualize the vortex transformation as it encounters the flame. This is coupled with the contours of the fuel-mass fraction, density, and pressure throughout the flame brush to provide insight into the physical interaction between turbulent structures and the flame. A complete description of the physical mechanism could provide insight into ways to design engine inlets for efficient mixing in combustion applications.

  15. Pentan isomers compound flame front structure

    SciTech Connect

    Mansurov, Z.A.; Mironenko, A.W.; Bodikov, D.U.; Rachmetkaliev, K.N.

    1995-08-13

    The fuels (hexane, pentane, diethyl ether) and conditions investigated in this study are relevant to engine knock in spark- ignition engines. A review is provided of the field of low temperature hydrocarbon oxidation. Studies were made of radical and stable intermediate distribution in the front of cool flames: Maximum concentrations of H atoms and peroxy radicals were observed in the luminous zone of the cool flame front. Peroxy radicals appear before the luminous zone at 430 K due to diffusion. H atoms were found in cool flames of butane and hexane. H atoms diffuses from the luminous zone to the side of the fresh mixture, and they penetrate into the fresh mixture to a small depth. Extension of action sphear of peroxy radicals in the fresh mixture is much greater than that of H atoms due to their small activity and high concentrations.

  16. Effect of Intense Sound Waves on a Stationary Gas Flame

    NASA Technical Reports Server (NTRS)

    Hahnemann, H; Ehret, L

    1950-01-01

    Intense sound waves with a resonant frequency of 5000 cycles per second were imposed on a stationary propane-air flame issuing from a nozzle. In addition to a slight increase of the flame velocity, a fundamental change both in the shape of the burning zone and in the flow pattern could be observed. An attempt is made to explain the origin of the variations in the flame configuration on the basis of transition at the nozzle from jet flow to potential flow.

  17. NO concentration imaging in turbulent nonpremixed flames

    SciTech Connect

    Schefer, R.W.

    1993-12-01

    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  18. Effects of Swirl on Strongly-Pulsed Turbulent Diffusion Flames

    NASA Astrophysics Data System (ADS)

    Liao, Y.-H.; Hermanson, J. C.

    2009-11-01

    The dynamics of large-scale structures in strongly-pulsed, swirling, turbulent jet diffusion flames were examined experimentally. The combustor used a combination of axial and tangentially-injected air to produce a range of swirl numbers. Gaseous ethylene fuel was injected through a 2 mm diameter nozzle on the combustor centerline with a jet-on Reynolds number of 5000. The flames were fully-modulated, with the fuel flow completely shut off between pulses. High-speed imaging of the flame luminosity was employed to examine the flame dimensions and the celerity of the large-scale flame structures. The flames were found to be approximately 15-20% shorter when swirl was imposed, depending on the injection time. The more compact flames in swirl appear to be due to the presence of recirculation inside the flames. For longer injection times, the celerity of the flame structures generally decreases as the swirl intensity increases. This is evidently due to the reversed velocity in the recirculation zone. For shorter injection times, the flame celerity has an increasing trend with increased swirl intensity due to flames being closer to the fuel nozzle at burnout.

  19. Progress and challenges in swirling flame dynamics

    NASA Astrophysics Data System (ADS)

    Candel, Sébastien; Durox, Daniel; Schuller, Thierry; Palies, Paul; Bourgouin, Jean-François; Moeck, Jonas P.

    2012-11-01

    In many continuous combustion processes the flame is stabilized by swirling the injected flow. This is the case for example in aeroengine combustors or in gas turbines where aerodynamic injectors impart a rotating component to the flow to create a central recirculation zone which anchors the flame. Swirling flame dynamics is of technical interest and also gives rise to interesting scientific issues. Some of the recent progress in this field will be reviewed. It is first shown that the swirler response to incident acoustic perturbations generates a vorticity wave which is convected by the flow. A result of this process is that the swirl number fluctuates. It is then shown that the flame response is defined by a combination of heat release rate fluctuations induced by the incoming acoustic and convective perturbations. This is confirmed by experimental measurements and by large eddy simulations of the reactive flow. Measured flame describing functions (FDFs) are then used to characterize the nonlinear response of swirling flames to incident perturbations and determine the regimes of instability of a generic system comprising an upstream manifold, an injector equipped with a swirler and a combustion chamber confining the flame. The last part of this article is concerned with interactions of the precessing vortex core (PVC) with incoming acoustic perturbations. The PVC is formed at high swirl number and this hydrodynamic helical instability gives rise to some interesting nonlinear interactions between the acoustic frequency, the PVC frequency and their difference frequency.

  20. Understanding flame rods

    SciTech Connect

    McAuley, J.A. Jr.

    1995-11-01

    The flame rod is probably the least understood method of flame detection. Although it is not recommended for oilfired equipment, it is very common on atmospheric, or {open_quotes}in-shot,{close_quotes} gas burners. It is also possible, although not common, to have an application with a constant gas pilot, monitored by a flame rod, and maintaining an oil main flame. Regardless of the application, chances are that flame rods will be encountered during the course of servicing. The technician today must be versatile and able to work on many different types of equipment. One must understand the basic principles of flame rods, and how to correct potential problems. The purpose of a flame detection system is two-fold: (1) to prove there is no flame when there shouldn`t be one, and (2) to prove there is a flame when there should be one. Flame failure response time is very important. This is the amount of time it takes to realize there is a loss of flame, two to four seconds is typical today. Prior to flame rods, either bi-metal or thermocouple type flame detectors were common. The response time for these detectors was up to three minutes, seldom less than one minute.

  1. The Science of Flames.

    ERIC Educational Resources Information Center

    Cornia, Ray

    1991-01-01

    Describes an exercise using flames that allows students to explore the complexities of a seemingly simple phenomenon, the lighting of a candle. Contains a foldout that provides facts about natural gas flames and suggestions for classroom use. (ZWH)

  2. The flame anchoring mechanism and associated flow structure in bluff-body stabilized lean premixed flames

    NASA Astrophysics Data System (ADS)

    Michaels, Dan; Shanbhogue, Santosh; Ghoniem, Ahmed

    2015-11-01

    We present numerical analysis of a lean premixed flame anchoring on a heat conducting bluff-body. Different mixtures of CH4/H2/air are analyzed in order to systematically vary the burning velocity, adiabatic flame temperature and extinction strain rate. The study was motivated by our experimental measurements in a step combustor which showed that both the recirculation zone length and stability map under acoustically coupled conditions for different fuels and thermodynamic conditions collapse using the extinction strain rate. The model fully resolves unsteady two-dimensional flow with detailed chemistry and species transport, and without artificial flame anchoring boundary conditions. The model includes a low Mach number operator-split projection algorithm, coupled with a block-structured adaptive mesh refinement and an immersed boundary method for the solid body. Calculations reveal that the recirculation zone length correlates with the flame extinction strain rate, consistent with the experimental evidence. It is found that in the vicinity of the bluff body the flame is highly stretched and its leading edge location is controlled by the reactants combustion characteristics under high strain. Moreover, the flame surface location relative to the shear layer influences the vorticity thus impacting the velocity field and the recirculation zone. The study sheds light on the experimentally observed collapse of the combustor dynamics using the reactants extinction strain rate.

  3. Flame front configuration of turbulent premixed flames

    SciTech Connect

    Furukawa, Junichi; Maruta, Kaoru; Hirano, Toshisuke

    1998-02-01

    The present study is performed to explore dependence of the wrinkle scale of propane-air turbulent premixed flames on the characteristics of turbulence in the nonreacting flow, burner size, and mixture ratio. The wrinkle scales are examined and expressed in the frequency distribution of the radii of flame front curvatures. The average wrinkle scale depends not only on the characteristics of turbulence in the nonreacting flow but also on burner diameter and mixture ratio. The average wrinkle scale of a lean propane-air flame is larger than those of the near stoichiometric and rich flames. The smallest wrinkle scale of turbulent premixed flame is in the range of 0.75--1.0 mm, which is much larger than the Kolmogorov scale of turbulence in the nonreacting flow.

  4. Candle Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Ross, Howard D.; Frate, David T.; Tien, James S.; Shu, Yong

    1997-01-01

    This work is a study of a candle flame in a microgravity environment. The purpose of the work is to determine if a steady (or quasi-steady) flame can exist in a microgravity environment, study the characteristics of the steady flame, investigate the pre-extinction flame oscillations observed in a previous experiment in more detail, and finally, determine the nature of the interactions between two closely spaced candle flames. The candle flame is used as a model combustion system, in that in microgravity it is one of the only examples of a non-propagating, steady-state, pure diffusion flame. Others have used the candle to study a number of combustion phenomena including flame flicker, flame oscillations, electric field effects and enhanced and reduced gravitational effects in flames. The present work is a continuation of a small-scale Shuttle experiment on candle flames. That study showed that the candle flame lifetimes were on the order of 40 seconds, the flames were dim blue after a transient ignition period, and that just prior to extinction the flames oscillated spontaneously for about five seconds at a frequency of 1 Hz. The authors postulated that the gas phase in the immediate vicinity of the flame was quasi-steady. Further away from the flame, however, the assertion of a quasi-steady flame was less certain, thus the authors did not prove that a steady flame could exist. They also speculated that the short lifetime of the candle flame was due to the presence of the small, weakly perforated box that surrounded the candle. The Candle Flames in Microgravity (CFM) experiment, with revised hardware, was recently flown aboard the Mir orbiting station, and conducted inside the glovebox facility by Dr. Shannon Lucid. In addition to the purposes described above, the experiments were NASA's first ability to ascertain the merits of the Mir environment for combustion science studies. In this article, we present the results of that experiment. We are also in the process

  5. CFD analysis of baffle flame stabilization

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Sen; Farmer, Richard C.

    1991-06-01

    A computational fluid dynamics analysis of ignition and combustion in baffle flame stabilized combustors was developed in order to increase the understanding of combustion efficiency and stability. The objectives of this investigation were to develop and verify a computational model of the ignition and combustion of typical augmenter configurations and to generalize the model for application to the combustion occurring in a generic gas turbine engine with augmenters, upstream vitiation, and a downstream chocked nozzle. Triangular bar and cone stabilized flames were simulated. Quasi-global propane and methane kinetics models were employed in the computation. A more detailed methane-air kinetics model was also used. An ignition procedure was devised by initially providing a 1200 K hot spot near the base to start the flame. The recirculation zone lengths of cold and hot flows were well predicted. Time averaged flow quantities were used for data comparisons since the predicted recirculating zones of the reacting flows were unsteady.

  6. Flame inhibition by hydrogen halides - Some spectroscopic measurements

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Cagliostro, D. E.

    1973-01-01

    The far-ultraviolet absorption spectrum of an air-propane diffusion flame inhibited with hydrogen halides has been studied. Plots of the absorption of light by hydrogen halides as a function of position in the flame and also as a function of the amount of hydrogen halide added to the flame have been obtained. The hydrogen halides are shown to be more stable on the fuel side of the reaction zone than they are on the air side. Thermal diffusion is seen to be important in determining the concentration distribution of the heavier hydrogen halides in diffusion flames. The relationship between the concentration distribution of the hydrogen halides in the flame and the flame inhibition mechanism is discussed.

  7. Premixing quality and flame stability: A theoretical and experimental study

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.; Heywood, J. B.; Tabaczynski, R. J.

    1979-01-01

    Models for predicting flame ignition and blowout in a combustor primary zone are presented. A correlation for the blowoff velocity of premixed turbulent flames is developed using the basic quantities of turbulent flow, and the laminar flame speed. A statistical model employing a Monte Carlo calculation procedure is developed to account for nonuniformities in a combustor primary zone. An overall kinetic rate equation is used to describe the fuel oxidation process. The model is used to predict the lean ignition and blow out limits of premixed turbulent flames; the effects of mixture nonuniformity on the lean ignition limit are explored using an assumed distribution of fuel-air ratios. Data on the effects of variations in inlet temperature, reference velocity and mixture uniformity on the lean ignition and blowout limits of gaseous propane-air flames are presented.

  8. Systematic approach based on holographic interferometry measurements to characterize the flame structure of partially premixed flames.

    PubMed

    Xiao, X; Puri, I K

    2001-02-20

    Partially premixed flames (PPF's) represent a class of hybrid flames that contain multiple reaction zones. A detailed understanding of the temperature distribution in PPF's is important from both practical and scientific considerations. Path-integrated or line-of-sight measurement techniques, such as holographic interferometry (HI), that are based on the change in the optical phase of a light beam can be used to reconstruct the refractive index n in flames and thereafter to infer the temperature distribution. Therefore to describe the flame structure in the context of these measurements requires that a systematic approach be developed that relates the density, the temperature, and the composition to the refractive index. We demonstrate that a conserved scalar xi that transforms the flame structure from a spatial to a generic distribution can be inferred from the refractive-index distribution. Thereafter measurements of the density, the temperature, and the composition in two-dimensional PPF's become feasible. We report the first application, to our knowledge, of this method to HI. Specifically, we used HI to measure the refractive-index distributions in methane-air PPF's. One PPF is a double flame that has two reaction zones, and the other is a triple flame that contains three reaction zones. We have applied the procedure to infer the distribution of the modified mixture fraction and thereafter the local temperature and the local mass fractions. We find the local temperature differences, DT(x, y) = |T[n(x, y)] - T?[xi(x, y)]|, to be relatively small. We conclude that it is possible to use HI to infer the mixture-fraction distribution and thereafter the flame structures by the application of state relations in the case of PPF's. PMID:18357052

  9. Flame Imaging System

    NASA Technical Reports Server (NTRS)

    Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)

    1998-01-01

    A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.

  10. The mechanisms of flame holding in the wake of a bluff body

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Malik, S.

    1985-01-01

    The flame holding mechanism for lean methane- and lean propane-air flames is examined under conditions where the recirculation zone is absent. The main objective of this work is to study the holding process in detail in an attempt to determine the mechanism of flame holding and also the conditions where this mechanism is viable and when it fails and blow-off occurs. Inverted flames held in the wake of a flat strip were studied. Experiments with different sizes of flame holders were performed. The velocity flow field was determined using a laser Doppler velocimetry technique. Equation of continuity was used to calculate the flame temperature from the change in area of flow streamlines before and after the flame. Observations of the inverted flame itself were obtained using schlieren and direct photography. Results show that there are different mechanisms operative at the time of blow-off for lean propane and methane flames. Blow-off or extinction occurs for lean propane-air flame in spite of the reaction going to completion and the disparity between the heat loss and the gain in mass diffusion in the reaction zone i.e., Le 1.0 causes the flame to blow-off. For methane-air flame the controlling factor or blow-off is incomplete reaction due to higher blowing rate leading to reduced residence time in the reaction zone.

  11. Effects Of Electric Field On Hydrocarbon-Fueled Flames

    NASA Technical Reports Server (NTRS)

    Yuan, Z.-G.; Hegde, U.

    2003-01-01

    It has been observed that flames are susceptible to electric fields that are much weaker than the breakdown field strength of the flame gases. When an external electric field is imposed on a flame, the ions generated in the flame reaction zone drift in the direction of the electric forces exerted on them. The moving ions collide with the neutral species and change the velocity distribution in the affected region. This is often referred to as ionic wind effect. In addition, the removal of ions from the flame reaction zone can alter the chemical reaction pathway of the flame. On the other hand, the presence of space charges carried by moving ions affects the electric field distribution. As a result, the flame often changes its shape, location and color once an external electric field is applied. The interplay between the flame movement and the change of electric field makes it difficult to determine the flame location for a given configuration of electrodes and fuel source. In normal gravity, the buoyancy-induced flow often complicates the problem and hinders detailed study of the interaction between the flame and the electric field. In this work, the microgravity environment established at the 2.2 Second Drop Tower at the NASA Glenn Research Center is utilized to effectively remove the buoyant acceleration. The interaction between the flame and the electric field is studied in a one-dimensional domain. A specially designed electrode makes flame current measurements possible; thus, the mobility of ions, ion density, and ionic wind effect can be evaluated.

  12. Prediction of flame velocities of hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Simon, Dorothy M

    1954-01-01

    The laminar-flame-velocity data previously reported by the Lewis Laboratory are surveyed with respect to the correspondence between experimental flame velocities and values predicted by semitheoretical and empirical methods. The combustible mixture variables covered are hydrocarbon structure (56 hydrocarbons), equivalence ratio of fuel-air mixture, mole fraction of oxygen in the primary oxygen-nitrogen mixture (0.17 to 0.50), and initial mixture temperature (200 degrees to 615 degrees k). The semitheoretical method of prediction considered are based on three approximate theoretical equations for flame velocity: the Semenov equation, the Tanford-Pease equation, and the Manson equation.

  13. Sensing flame structure by process tomography.

    PubMed

    Liu, Jing; Liu, Shi; Zhou, Wanting; Qi, Xin; Lei, Jing; Mu, Huaiping

    2016-06-28

    Non-intrusive visualization of the structure of flames can offer us many advantages in studying the reaction mechanisms of combustion and observing special distributions of the parameters required for the development of equipment such as jet engines and gas turbines. Process tomography is a relatively new technique for such a task, but is useful owing to its fast speed and capability of detecting signals related to ionizations caused by chemical reactions and thermal effects. Electric capacitance tomography (ECT) is one of the process tomographic techniques. ECT usually comprises a sensor array of electrodes that detect permittivity variations in the measuring zone, a data-logging device and a computer that controls data acquisition and carries out image reconstruction. There have been studies on ECT imaging of flames; however, ECT has not been exploited sufficiently to reveal the inner structure of the flames. In this study, a sensor with planar electrodes is created, and the associated three-dimensional sensitivity map is generated by the finite-element method to detect flame structure. A series of experiments are carried out covering a range of feed rates of fuel and air. Data are collected by the ECT sensor and hardware. The results of the ECT reconstruction show good agreement with actual features, and the structure of the flame is found. This opens up a new route for the study of flames. This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185962

  14. Growth of a freely-propagating, two-dimensional turbulent-like flame

    SciTech Connect

    Ashurst, W.T.

    1996-01-12

    Using a thin flame model with a constant density ratio across the flame and a constant burning velocity, numerical simulations of flame propagation into defined, non-decaying turbulent-like flow reveals a succession of growth rate behaviors. Starting with laminar growth, the flame length then acquires an exponential growth rate when the turbulence distorts the early flame so that an inner flame radius is a small fraction of the largest outer radius. As the flame continues to grow, the difference between the inner radius and the outer radius, referred to as the flame zone thickness L{sub Z}, becomes constant and small compared to the flame size--this yields a constant growth rate, but with magnitude much larger than the initial laminar value. The flame size, using either the average radius or the maximum radius, grows like R {approximately} V{sub C} t, where the flame convection V{sub C} is created by volume expansion distributed throughout the flame zone L{sub Z}. This constant growth rate appears to evolve into a power-law growth rate, R {approximately} t{sup 1+q}, where q > 0, similar to the growth of the flame length, L{sub F} {approximately} t{sup 1+p}, where p > q. which follows its exponential growth period. This accelerated growth rate of flame size can be related to the temporal growth in V{sub C}, which is related to a fractal-like nature of the flame length and a constant flame zone thickness. While there is no direct connection with these synthetic simulations, it is noted that large-scale experiments also exhibit a power-law behavior: R {approximately} t{sup 1.5}.

  15. Candle flames in microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Tien, J. S.

    1995-01-01

    The candle flame in both normal and microgravity is non-propagating. In microgravity, however, the candle flame is also non-convective where (excepting Stefan flow) pure diffusion is the only transport mode. It also shares many characteristics with another classical problem, that of isolated droplet combustion. Given their qualitatively similar flame shapes and the required heat feedback to condensed-phase fuels, the gas-phase flow and temperature fields should be relatively similar for a droplet and a candle in reduced gravity. Unless the droplet diameter is maintained somehow through non-intrusive replenishment of fuel, the quasi-steady burning characteristics of a droplet can be maintained for only a few seconds. In contrast, the candle flame in microgravity may achieve a nearly steady state over a much longer time and is therefore ideal for examining a number of combustion-related phenomena. In this paper, we examine candle flame behavior in both short-duration and long-duration, quiescent, microgravity environments. Interest in this type of flame, especially 'candle flames in weightlessness', is demonstrated by very frequent public inquiries. The question is usually posed as 'will a candle flame burn in zero gravity', or, 'will a candle burn indefinitely (or steadily) in zero gravity in a large volume of quiescent air'. Intuitive speculation suggests to some that, in the absence of buoyancy, the accumulation of products in the vicinity of the flame will cause flame extinction. The classical theory for droplet combustion with its spherically-shaped diffusion flame, however, shows that steady combustion is possible in the absence of buoyancy if the chemical kinetics are fast enough. Previous experimental studies of candle flames in reduced and microgravity environments showed the flame could survive for at least 5 seconds, but did not reach a steady state in the available test time.

  16. The Behavior of Methane-Air Partially Premixed Flames Under Normal- and Zero-G Conditions

    NASA Technical Reports Server (NTRS)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Choi, Chun Wai; Hegde, Uday

    2001-01-01

    Partially premixed flames (PPFs) represent a class of hybrid flames containing multiple reaction zones. These flames are established when less than stoichiometric quantity of oxidizer is molecularly mixed with the fuel stream before entering the reaction zone where additional oxidizer is available for complete combustion. This mode of combustion can be used to exploit the advantages of both nonpremixed and premixed flames regarding operational safety, lower pollutant emissions and flame stabilization. A double flame containing a fuel-rich premixed reaction zone, which is anchored by a nonpremixed reaction zone, is one example of a partially premixed flame. A triple flame is also a PPF that contains three reaction zones, namely, a fuel-rich premixed zone, a fuel-lean premixed zone, and a nonpremixed reaction zone. Herein we focus on two aspects of our investigation, one involving the development of optical diagnostics that can be used on a microgravity rig, which has been recently fabricated, and the other on the numerically predicted differences between normal- and zero-gravity PPFs. Both the measurements and simulations examine the detailed structure of methane-air PPFs stabilized on a Wolfhard-Parker slot burner.

  17. Flame front geometry in premixed turbulent flames

    SciTech Connect

    Shepherd, I.G.; Ashurst, W.T.

    1991-12-01

    Experimental and numerical determinations of flame front curvature and orientation in premixed turbulent flames are presented. The experimental data is obtained from planar, cross sectional images of stagnation point flames at high Damkoehler number. A direct numerical simulation of a constant energy flow is combined with a zero-thickness, constant density flame model to provide the numerical results. The computational domain is a 32{sup 3} cube with periodic boundary conditions. The two-dimensional curvature distributions of the experiments and numerical simulations compare well at similar q{prime}/S{sub L} values with means close to zero and marked negative skewness. At higher turbulence levels the simulations show that the distributions become symmetric about zero. These features are also found in the three dimensional distributions of curvature. The simulations support assumptions which make it possible to determine the mean direction cosines from the experimental data. This leads to a reduction of 12% in the estimated flame surface area density in the middle of the flame brush. 18 refs.

  18. Cool Flame Quenching

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Chapek, Richard

    2001-01-01

    Cool flame quenching distances are generally presumed to be larger than those associated with hot flames, because the quenching distance scales with the inverse of the flame propagation speed, and cool flame propagation speeds are often times slower than those associated with hot flames. To date, this presumption has never been put to a rigorous test, because unstirred, non-isothermal cool flame studies on Earth are complicated by natural convection. Moreover, the critical Peclet number (Pe) for quenching of cool flames has never been established and may not be the same as that associated with wall quenching due to conduction heat loss in hot flames, Pe approx. = 40-60. The objectives of this ground-based study are to: (1) better understand the role of conduction heat loss and species diffusion on cool flame quenching (i.e., Lewis number effects), (2) determine cool flame quenching distances (i.e, critical Peclet number, Pe) for different experimental parameters and vessel surface pretreatments, and (3) understand the mechanisms that govern the quenching distances in premixtures that support cool flames as well as hot flames induced by spark-ignition. Objective (3) poses a unique fire safety hazard if conditions exist where cool flame quenching distances are smaller than those associated with hot flames. For example, a significant, yet unexplored risk, can occur if a multi-stage ignition (a cool flame that transitions to a hot flame) occurs in a vessel size that is smaller than that associated with the hot quenching distance. To accomplish the above objectives, a variety of hydrocarbon-air mixtures will be tested in a static reactor at elevated temperature in the laboratory (1g). In addition, reactions with chemical induction times that are sufficiently short will be tested aboard NASA's KC-135 microgravity (mu-g) aircraft. The mu-g results will be compared to a numerical model that includes species diffusion, heat conduction, and a skeletal kinetic mechanism

  19. Flame Holder System

    NASA Technical Reports Server (NTRS)

    Haskin, Henry H. (Inventor); Vasquez, Peter (Inventor)

    2013-01-01

    A flame holder system includes a modified torch body and a ceramic flame holder. Catch pin(s) are coupled to and extend radially out from the torch body. The ceramic flame holder has groove(s) formed in its inner wall that correspond in number and positioning to the catch pin(s). Each groove starts at one end of the flame holder and can be shaped to define at least two 90.degree.turns. Each groove is sized to receive one catch pin therein when the flame holder is fitted over the end of the torch body. The flame holder is then manipulated until the catch pin(s) butt up against the end of the groove(s).

  20. Turbulent Flames in Supernovae

    NASA Astrophysics Data System (ADS)

    Khokhlov, A. M.

    1994-05-01

    First results of three-dimensional simulations of a thermonuclear flame in Type Ia supernovae are obtained using a new flame-capturing algorithm, and a PPM hydrodynamical code. In the absence of gravity, the flame is stabilized with respect to the Landau (1944) instability due to the difference in the behaviour of convex and concave portions of the perturbed flame front. The transition to turbulence in supernovae occurs on scales =~ 0.1 - 10 km in agreement with the non-linear estimate lambda =~ 2pi D(2_l/geff) based on the Zeldovich (1966) model for a perturbed flame when the gravity acceleration increases; D_l is the normal speed of the laminar flame, and geff is the effective acceleration. The turbulent flame is mainly spread by large scale motions driven by the Rayleigh-Taylor instability. Small scale turbulence facilitates rapid incineration of the fuel left behind the front. The turbulent flame speed D_t approaches D_t =~ U', where U' is the root mean square velocity of turbulent motions, when the turbulent flame forgets initial conditions and reaches a steady state. The results indicate that in a steady state the turbulent flame speed should be independent of the normal laminar flame speed D_l. The three-dimensional results are in sharp contrast with the results of previous two-dimensional simulations which underestimate flame speed due to the lack of turbulent cascade directed in three dimensions from big to small spatial scales. The work was supported by the NSF grants AST 92-18035 and AST 93-005P.

  1. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, V. R.

    2006-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated. A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  2. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2007-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm) (Fig. 1, left). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated (Fig. 1, right). A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  3. Extinction conditions of a premixed flame in a channel

    SciTech Connect

    Alliche, Mounir; Haldenwang, Pierre; Chikh, Salah

    2010-06-15

    A local refinement method is used to numerically predict the propagation and extinction conditions of a premixed flame in a channel considering a thermodiffusive model. A local refinement method is employed because of the numerous length scales that characterize this phenomenon. The time integration is self adaptive and the solution is based on a multigrid method using a zonal mesh refinement in the flame reaction zone. The objective is to determine the conditions of extinction which are characterized by the flame structure and its properties. We are interested in the following properties: the curvature of the flame, its maximum temperature, its speed of propagation and the distance separating the flame from the wall. We analyze the influence of heat losses at the wall through the thermal conductivity of the wall and the nature of the fuel characterized by the Lewis number of the mixture. This investigation allows us to identify three propagation regimes according to heat losses at the wall and to the channel radius. The results show that there is an intermediate value of the radius for which the flame can bend and propagate provided that its curvature does not exceed a certain limit value. Indeed, small values of the radius will choke the flame and extinguish it. The extinction occurs if the flame curvature becomes too small. Furthermore, this study allows us to predict the limiting values of the heat loss coefficient at extinction as well as the critical value of the channel radius above which the premixed flame may propagate without extinction. A dead zone of length 2-4 times the flame thickness appears between the flame and the wall for a Lewis number (Le) between 0.8 and 2. For small values of Le, local extinctions are observed. (author)

  4. The mechanisms of flame holding in the wake of a bluff body

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Malik, S.

    1984-01-01

    The flame holding mechanism for lean methane and lean propane air flames is examined under conditions where the recirculation zone is absent. The holding process is studied in detail in an attempt to determine the mechanism of flame holding and also the conditions where this mechanism is viable and when it fails and blow off occurs. Inverted flames held in the wake of a flat strip are studied. The velocity flow field is determined using a Laser Doppler Velocimetry technique. Equation of continuity is used to calculate the flame temperature from the change in area of flow streamlines before and after the flame. For methane air flame the controlling factor for blow off is incomplete reaction due to higher blowing rate leading to reduced residence time in the reaction zone.

  5. A study of flat flames on porous plug burners: Structure, standoff distance, and oscillation

    SciTech Connect

    Yuuki, A.; Matsui, Y.

    1987-07-01

    The stable structure and the time-varying behavior of stoichiometric methane-air flames on a porous metal burner at atmospheric pressure were studied using a numerical model which includes detailed chemical reactions. It has been confirmed that the model gives quantitative agreement with experiment for stable flame structures such as flame temperature, radical concentrations, and standoff distance, and also flame oscillation. It was shown that the overall activation energy and the standoff distance increase rapidly in the region of flame temperature <1550K. Furthermore, it was also confirmed that the flame intrinsically oscillates due to the propagating time lag of the temperature disturbance from the burner surface to the reaction zone, and its instability is enhanced by a large standoff distance. On the basis of these results, it is asserted that the critical flame temperature for the stability of stoichiometric methane-air flames on porous plug burner is near 1550K.

  6. Dynamics and structure of turbulent premixed flames

    NASA Technical Reports Server (NTRS)

    Bilger, R. W.; Swaminathan, N.; Ruetsch, G. R.; Smith, N. S. A.

    1995-01-01

    In earlier work (Mantel & Bilger, 1994) the structure of the turbulent premixed flame was investigated using statistics based on conditional averaging with the reaction progress variable as the conditioning variable. The DNS data base of Trouve and Poinsot (1994) was used in this investigation. Attention was focused on the conditional dissipation and conditional axial velocity in the flame with a view to modeling these quantities for use in the conditional moment closure (CMC) approach to analysis of kinetics in premixed flames (Bilger, 1993). Two remarkable findings were made: there was almost no acceleration of the axial velocity in the flame front itself; and the conditional scalar dissipation remained as high, or higher, than that found in laminar premixed flames. The first finding was surprising since in laminar flames all the fluid acceleration occurs through the flame front, and this could be expected also for turbulent premixed flames at the flamelet limit. The finding gave hope of inventing a new approach to the dynamics of turbulent premixed flames through use of rapid distortion theory or an unsteady Bernoulli equation. This could lead to a new second order closure for turbulent premixed flames. The second finding was contrary to our measurements with laser diagnostics in lean hydrocarbon flames where it is found that conditional scalar dissipation drops dramatically below that for laminar flamelets when the turbulence intensity becomes high. Such behavior was not explainable with a one-step kinetic model, even at non-unity Lewis number. It could be due to depletion of H2 from the reaction zone by preferential diffusion. The capacity of the flame to generate radicals is critically dependent on the levels of H2 present (Bilger, et al., 1991). It seemed that a DNS computation with a multistep reduced mechanism would be worthwhile if a way could be found to make this feasible. Truly innovative approaches to complex problems often come only when there is the

  7. Complex Volume Grid Generation Through the Use of Grid Reusability

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    This paper presents a set of surface and volume grid generation techniques which reuse existing surface and volume grids. These methods use combinations of data manipulations to reduce grid generation time, improve grid characteristics, and increase the capabilities of existing domain discretization software. The manipulation techniques utilize physical and computational domains to produce basis function on which to operate and modify grid character and smooth grids using Trans-Finite Interpolation, a vector interpolation method and parametric re-mapping technique. With these new techniques, inviscid grids can be converted to viscous grids, multiple zone grid adaption can be performed to improve CFD solver efficiency, and topological changes to improve modeling of flow fields can be done simply and quickly. Examples of these capabilities are illustrated as applied to various configurations.

  8. Structure of low-stretch methane nonpremixed flames

    SciTech Connect

    Han, Bai; Ibarreta, Alfonso F.; Sung, Chih-Jen; T'ien, James S.

    2007-04-15

    The present study experimentally and numerically investigates the structure associated with extremely low-stretch ({proportional_to}2 s{sup -1}) gaseous nonpremixed flames. The study of low-stretch flames aims to improve our fundamental understanding of the flame radiation effects on flame response and extinction limits. Low-stretch flames are also relevant to fire safety in reduced-gravity environments and to large buoyant fires, where localized areas of low stretch are attainable. In this work, ultra-low-stretch flames are established in normal gravity by bottom burning of a methane/nitrogen mixture discharged from a porous spherically symmetric burner of large radius of curvature. The large thickness of the resulting nonpremixed flame allows detailed mapping of the flame structure. Several advanced nonintrusive optical diagnostics are used to study the flame structure. Gas phase temperatures are measured by Raman scattering, while the burner surface temperatures are obtained by IR imaging. In addition, OH-PLIF and chemiluminescence imaging techniques are used to help characterize the extent of the flame reaction zone. These experimental results allow direct comparison with a quasi-one-dimensional numerical model including detailed chemistry, thermodynamic/transport properties, and radiation treatment. In addition, the radiative interactions between the flame and porous burner (modeled as a gray surface) are accounted for in the present model. The numerical modeling is demonstrated to be able to simulate the low-stretch flame structure. Using the current model, the extinction limits under different conditions are also examined. The computational results are consistent with experimental observations. (author)

  9. Non-premixed acoustically perturbed swirling flame dynamics

    SciTech Connect

    Idahosa, Uyi; Saha, Abhishek; Xu, Chengying; Basu, Saptarshi

    2010-09-15

    An investigation into the response of non-premixed swirling flames to acoustic perturbations at various frequencies (f{sub p}=0-315 Hz) and swirl intensities (S=0.09 and 0.34) is carried out. Perturbations are generated using a loudspeaker at the base of an atmospheric co-flow burner with resulting velocity oscillation amplitudes vertical stroke u'/U{sub avg} vertical stroke in the 0.03-0.30 range. The dependence of flame dynamics on the relative richness of the flame is investigated by studying various constant fuel flow rate flame configurations. Flame heat release rate is quantitatively measured using a photomultiplier with a 430 nm bandpass filter for observing CH* chemiluminescence which is simultaneously imaged with a phase-locked CCD camera. The flame response is observed to exhibit a low-pass filter characteristic with minimal flame response beyond pulsing frequencies of 200 Hz. Flames at lower fuel flow rates are observed to remain attached to the central fuel pipe at all acoustic pulsing frequencies. PIV imaging of the associated isothermal fields show the amplification in flame aspect ratio is caused by the narrowing of the inner recirculation zone (IRZ). Good correlation is observed between the estimated flame surface area and the heat release rate signature at higher swirl intensity flame configurations. A flame response index analogous to the Rayleigh criterion in non-forced flames is used to assess the potential for a strong flame response at specific perturbation configurations and is found to be a good predictor of highly responsive modes. Phase conditioned analysis of the flame dynamics yield additional criteria in highly responsive modes to include the effective amplitude of velocity oscillations induced by the acoustic pulsing. In addition, highly responsive modes were characterized by velocity to heat release rate phase differences in the {+-}{pi}/2 range. A final observed characteristic in highly responsive flames is a Strouhal number between

  10. Turbulent flame propagation in partially premixed flames

    NASA Technical Reports Server (NTRS)

    Poinsot, T.; Veynante, D.; Trouve, A.; Ruetsch, G.

    1996-01-01

    Turbulent premixed flame propagation is essential in many practical devices. In the past, fundamental and modeling studies of propagating flames have generally focused on turbulent flame propagation in mixtures of homogeneous composition, i.e. a mixture where the fuel-oxidizer mass ratio, or equivalence ratio, is uniform. This situation corresponds to the ideal case of perfect premixing between fuel and oxidizer. In practical situations, however, deviations from this ideal case occur frequently. In stratified reciprocating engines, fuel injection and large-scale flow motions are fine-tuned to create a mean gradient of equivalence ratio in the combustion chamber which provides additional control on combustion performance. In aircraft engines, combustion occurs with fuel and secondary air injected at various locations resulting in a nonuniform equivalence ratio. In both examples, mean values of the equivalence ratio can exhibit strong spatial and temporal variations. These variations in mixture composition are particularly significant in engines that use direct fuel injection into the combustion chamber. In this case, the liquid fuel does not always completely vaporize and mix before combustion occurs, resulting in persistent rich and lean pockets into which the turbulent flame propagates. From a practical point of view, there are several basic and important issues regarding partially premixed combustion that need to be resolved. Two such issues are how reactant composition inhomogeneities affect the laminar and turbulent flame speeds, and how the burnt gas temperature varies as a function of these inhomogeneities. Knowledge of the flame speed is critical in optimizing combustion performance, and the minimization of pollutant emissions relies heavily on the temperature in the burnt gases. Another application of partially premixed combustion is found in the field of active control of turbulent combustion. One possible technique of active control consists of pulsating

  11. Theoretical and Numerical Investigation of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ray, Anjan

    1996-01-01

    The influence of soot radiation on diffusion flames was investigated using both analytical and numerical techniques. Soot generated in diffusion flames dominate the flame radiation over gaseous combustion products and can significantly lower the temperature of the flame. In low gravity situations there can be significant accumulation of soot and combustion products in the vicinity of the primary reaction zone owing to the absence of any convective buoyant flow. Such situations may result in substantial suppression of chemical activities in a flame, and the possibility of a radiative extinction may also be anticipated. The purpose of this work was to not only investigate the possibility of radiative extinction of a diffusion flame but also to qualitatively and quantitatively analyze the influence of soot radiation on a diffusion flame. In this study, first a hypothetical radiative loss profile of the form of a sech(sup 2) was assumed to influence a pure diffusion flame. It was observed that the reaction zone can, under certain circumstances, move through the radiative loss zone and locate itself on the fuel side of the loss zone contrary to our initial postulate. On increasing the intensity and/or width of the loss zone it was possible to extinguish the flame, and extinction plots were generated. In the presence of a convective flow, however, the movement of the temperature and reaction rate peaks indicated that the flame behavior is more complicated compared to a pure diffusional flame. A comprehensive model of soot formation, oxidation and radiation was used in a more involved analysis. The soot model of Syed, Stewart and Moss was used for soot nucleation and growth and the model of Nagle and Strickland-Constable was used for soot oxidation. The soot radiation was considered in the optically thin limit. An analysis of the flame structure revealed that the radiative loss term is countered both by the reaction term and the diffusion term. The essential balance for

  12. The Flame Tree

    ERIC Educational Resources Information Center

    Lewis, Richard

    2004-01-01

    Lewis's own experiences living in Indonesia are fertile ground for telling "a ripping good story," one found in "The Flame Tree." He hopes people will enjoy the tale and appreciate the differences of an unfamiliar culture. The excerpt from "The Flame Tree" will reel readers in quickly.

  13. Candle Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Chang, P.; T'ien, J. S.

    2001-01-01

    The goal of this work is to study both experimentally and numerically the behavior of a candle flame burning in a microgravity environment. Two space experiments (Shuttle and Mir) have shown the candle flame in microgravity to be small (approximately 1.5 cm diameter), dim blue, and hemispherical. Near steady flames with very long flame lifetimes (up to 45 minutes in some tests) existed for many of the tests. Most of the flames spontaneously oscillated with a period of approximately 1 Hz just prior to extinction). In a previous model of candle flame in microgravity, a porous sphere wetted with liquid fuel simulated the evaporating wick. The sphere, with a temperature equal to the boiling temperature of the fuel, was at the end of an inert cone that had a prescribed temperature. This inert cone produces the quenching effect of the candle wax in the real configuration. Although the computed flame shape resembled that observed in the microgravity experiment, the model was not able to differentiate the effect of wick geometry, e.g., a long vs. a short wick. This paper presents recent developments in the numerical model of the candle flame. The primary focus has been to more realistically account for the actual shape of the candle.

  14. Brominated Flame Retardants

    EPA Science Inventory

    Brominated flame retardants (BFRs) belong to a large class of compounds known as organohalogens. BFRs are currently the largest marketed flame retardant group due to their high performance efficiency and low cost. In the commercial market, more than 75 different BFRs are recogniz...

  15. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    SciTech Connect

    Chakrabarty, Rajan K.; Novosselov, Igor V.; Beres, Nicholas D.; Moosmüller, Hans; Sorensen, Christopher M.; Stipe, Christopher B.

    2014-06-16

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10{sup 6} s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  16. Structures and stabilization of low calorific value gas turbulent partially premixed flames in a conical burner

    SciTech Connect

    Yan, B.; Liu, C.; Li, B.; Sun, Z.W.; Li, Z.S.; Alden, M.; Baudoin, E.; Bai, X.S.; Chen, G.; Mansour, M.S.

    2010-04-15

    Experiments are carried out on partially premixed turbulent flames stabilized in a conical burner. The investigated gaseous fuels are methane, methane diluted with nitrogen, and mixtures of CH{sub 4}, CO, CO{sub 2}, H{sub 2} and N{sub 2}, simulating typical products from gasification of biomass, and co-firing of gasification gas with methane. The fuel and air are partially premixed in concentric tubes. Flame stabilization behavior is investigated and significantly different stabilization characteristics are observed in flames with and without the cone. Planar laser induced fluorescence (LIF) imaging of a fuel-tracer species, acetone, and OH radicals is carried out to characterize the flame structures. Large eddy simulations of the conical flames are carried out to gain further understanding of the flame/flow interaction in the cone. The data show that the flames with the cone are more stable than those without the cone. Without the cone (i.e. jet burner) the critical jet velocities for blowoff and liftoff of biomass derived gases are higher than that for methane/nitrogen mixture with the same heating values, indicating the enhanced flame stabilization by hydrogen in the mixture. With the cone the stability of flames is not sensitive to the compositions of the fuels, owing to the different flame stabilization mechanism in the conical flames than that in the jet flames. From the PLIF images it is shown that in the conical burner, the flame is stabilized by the cone at nearly the same position for different fuels. From large eddy simulations, the flames are shown to be controlled by the recirculation flows inside cone, which depends on the cone angle, but less sensitive to the fuel compositions and flow speed. The flames tend to be hold in the recirculation zones even at very high flow speed. Flame blowoff occurs when significant local extinction in the main body of the flame appears at high turbulence intensities. (author)

  17. The development of kilohertz planar laser diagnostics for applications in high power turbulent flames

    NASA Astrophysics Data System (ADS)

    Slabaugh, Carson Daniel

    In modern gas-turbine combustors, flame stabilization is achieved by inducing exhaust gas circulation within the flame zone through swirl-induced vortex breakdown. Swirling flows exhibit strong shear regions resulting in high turbulence and effective mixing. In combustion, these flows are characterized by complex unsteady interactions between turbulent flow structures and chemical reactions. Developments in high-resolution, quantitative, experimental measurement techniques must continue to improve fundamental understanding and support modeling efforts. This work describes the development of a gas turbine combustion experiment to support the application of advanced optical measurement techniques in flames operating at realistic engine conditions. Facility requirements are addressed, including instrumentation and control needs for remote operation when working with high energy flows. The methodology employed in the design of the optically-accessible combustion chamber is elucidated, including window considerations and thermal management of the experimental hardware under extremely high heat loads. Experimental uncertainties are also quantified. The stable operation of the experiment is validated using multiple techniques and the boundary conditions are verified. The successful prediction of operating conditions by the design analysis is documented and preliminary data is shown to demonstrate the capability of the experiment to produce high-fidelity datasets for advanced combustion research. Building on this experimental infrastructure, simultaneous measurements of velocity and scalar fields were performed in turbulent nonpremixed flames at gas turbine engine operating conditions using 5 kHz Particle-Image Velocimetry (PIV) and OH Planar Laser Induced Fluorescence (OH-PLIF). The experimental systems and the challenges associated with acquiring useful data at high pressures and high thermal powers are discussed. The quality of the particle scattering images used in the

  18. A Role of the Reaction Kernel in Propagation and Stabilization of Edge Diffusion Flames of C1-C3 Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2003-01-01

    Diffusion flame stabilization is of essential importance in both Earth-bound combustion systems and spacecraft fire safety. Local extinction, re-ignition, and propagation processes may occur as a result of interactions between the flame zone and vortices or fire-extinguishing agents. By using a computational fluid dynamics code with a detailed chemistry model for methane combustion, the authors have revealed the chemical kinetic structure of the stabilizing region of both jet and flat-plate diffusion flames, predicted the flame stability limit, and proposed diffusion flame attachment and detachment mechanisms in normal and microgravity. Because of the unique geometry of the edge of diffusion flames, radical back-diffusion against the oxygen-rich entrainment dramatically enhanced chain reactions, thus forming a peak reactivity spot, i.e., reaction kernel, responsible for flame holding. The new results have been obtained for the edge diffusion flame propagation and attached flame structure using various C1-C3 hydrocarbons.

  19. NO formation in counterflow partially premixed flames

    SciTech Connect

    Mungekar, Hemant; Atreya, Arvind

    2007-02-15

    An experimental and computational study of NO formation in low-strain-rate partially premixed methane counterflow flames is reported. For progressive fuel-side partial premixing the peak NO concentration increased and the NO distribution along the stagnation streamline broadened. New temperature-dependent emissivity data for a SiO{sub 2}-coated Pt thermocouple was used to estimate the radiation correction for the thermocouple, thus improving the accuracy of the reported flame temperature. Flame structure computations with GRIMech 3.00 showed good agreement between measured and computed concentration distributions of NO and OH radical. With progressive partial premixing the contribution of the thermal NO pathway to NO formation increases. The emission index of NO (EINO) first increased and then decreased, reaching its peak value for the level of partial premixing that corresponds to location of the nonpremixed reaction zone at the stagnation plane. The observation of a maximum in EINO at a level of partial premixing corresponding to the nonpremixed reaction zone at the stagnation plane seems to be a consistent feature of low (<20 s{sup -1})-strain-rate counterflow flames. (author)

  20. Turbulence-Flame Interactions in Type Ia Supernovae

    SciTech Connect

    Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720; Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064; Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794; Aspden, Andrew J; Aspden, Andrew J.; Bell, John B.; Day, Marc S.; Woosley, Stan E.; Zingale, Mike

    2008-05-27

    The large range of time and length scales involved in type Ia supernovae (SN Ia) requires the use of flame models. As a prelude to exploring various options for flame models, we consider, in this paper, high-resolution three-dimensional simulations of the small-scale dynamics of nuclear flames in the supernova environment in which the details of the flame structure are fully resolved. The range of densities examined, 1 to 8 x 107 g cm-3, spans the transition from the laminar flamelet regime to the distributed burning regime where small scale turbulence disrupts the flame. The use of a low Mach number algorithm facilitates the accurate resolution of the thermal structure of the flame and the inviscid turbulent kinetic energy cascade, while implicitly incorporating kinetic energy dissipation at the grid-scale cutoff. For an assumed background of isotropic Kolmogorov turbulence with an energy characteristic of SN Ia, we find a transition density between 1 and 3 x 107 g cm-3 where the nature of the burning changes ualitatively. By 1 x 107 g cm-3, energy diffusion by conduction and radiation is exceeded, on the flame scale, by turbulent advection. As a result, the effective Lewis Number approaches unity. That is, the flame resembles a laminar flame, but is turbulently broadened with an effective diffusion coefficient, D_T \\sim u' l, where u' is the turbulent intensity and l is the integral scale. For the larger integral scales characteristic of a real supernova, the flame structure is predicted to become complex and unsteady. Implications for a possible transition to detonation are discussed.

  1. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue C02 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  2. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z. G. (Technical Monitor)

    2001-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smokepoint conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smokepoint conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  3. Structure of confined laminar spray diffusion flames: Numerical investigation

    NASA Technical Reports Server (NTRS)

    Mawid, M. A.; Bulzan, D. L.; Aggarwal, S. K.

    1993-01-01

    The structure of confined laminar spray diffusion flames is investigated numerically by solving the gas-phase conservation equations for mass species, continuity, momentum, and energy and the liquid-phase equations for droplet position, velocity, size, and temperature. A one-step global reaction scheme along with six equilibrium reactions are employed to model the flame chemistry. Monodisperse as well as polydisperse sprays are considered. The numerical results demonstrate that liquid spray flames substantially differ from gaseous flames in their structure, i.e., temperature, concentration, and velocity fields, shape, and dimensions under the same conditions. Spray flames are predicted to be taller and narrower than their counterpart gaseous ones and their shapes are almost cylindrical. This is in agreement with experimental observations. The numerical computations also show that the use of the equilibrium reactions with the one-step reaction scheme decreases the flame temperature compared to the one-step reaction scheme without the equilibrium reactions and more importantly increases the surface area of the flame zone due to a phenomenon termed 'equilibrium broadening.' The spray flames also possess a finite thickness with minimal overlap of the fuel and oxygen species. A case for which a fuel-mixture consisting of 20 to 80 percent gas-liquid by mass is introduced into the combustor is also investigated and compared with predictions using only gaseous or liquid fuel.

  4. Time resolved density measurements in premixed turbulent flames

    NASA Technical Reports Server (NTRS)

    Dandekar, K. V.; Gouldin, F. C.

    1982-01-01

    Premixed, turbulent flames are important in connection with investigations of fundamental, turbulent-reacting-flow processes and the study of practical combustion devices, such as spark ignition engines and premixed, prevaporized gas turbine combustors which burn premixed reactants. The considered investigation is concerned with the application of laser induced Rayleigh scattering to measure the gas density in premixed, methane-air flames. A description is provided of the results of density and velocity measurements in an open, lean, premixed methane-air flame stabilized in grid turbulence of low Reynolds number. It is found that where applicable, Rayleigh scattering can be used to good advantage to measure molecular number density. Mean and rms density results show that the mean flame thickens with axial distance but that the maximum in rms does not change appreciably.

  5. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    SciTech Connect

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.

  6. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    DOE PAGESBeta

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmore » the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.« less

  7. Extremely weak hydrogen flames

    SciTech Connect

    Lecoustre, V.R.; Sunderland, P.B.; Chao, B.H.; Axelbaum, R.L.

    2010-11-15

    Hydrogen jet diffusion flames were observed near their quenching limits. These involved downward laminar flow of hydrogen from a stainless steel hypodermic tube with an inside diameter of 0.15 mm. Near their quenching limits these flames had hydrogen flow rates of 3.9 and 2.1 {mu}g/s in air and oxygen, respectively. Assuming complete combustion, the associated heat release rates are 0.46 and 0.25 W. To the authors' knowledge, these are the weakest self-sustaining steady flames ever observed. (author)

  8. Effects of Buoyancy on the Flowfields of Lean Premixed Turbulent V-Flames

    NASA Technical Reports Server (NTRS)

    Cheng, R. K.; Greenberg, P.; Bedat, B.; Yegian, D. T.

    1999-01-01

    Open laboratory turbulent flames used for investigating fundament flame turbulence interactions are greatly affected by buoyancy. Though much of our current knowledge is based on observations made in these open flames, the effects of buoyancy are usually not included in data interpretation, numerical analysis or theories. This inconsistency remains an obstacle to merging experimental observations and theoretical predictions. To better understanding the effects of buoyancy, our research focuses on steady lean premixed flames propagating in fully developed turbulence. We hypothesize that the most significant role of buoyancy forces on these flames is to influence their flowfields through a coupling with mean and fluctuating pressure fields. Changes in flow pattern alter the mean aerodynamic stretch and in turn affect turbulence fluctuation intensities both upstream and downstream of the flame zone. Consequently, flame stabilization, reaction rates, and turbulent flame processes are all affected. This coupling relates to the elliptical problem that emphasizes the importance of the upstream, wall and downstream boundary conditions in determining all aspects of flame propagation. Therefore, buoyancy has the same significance as other parameters such as flow configuration, flame geometry, means of flame stabilization, flame shape, enclosure size, mixture conditions, and flow conditions.

  9. Effects of buoyancy on the flowfields of lean premixed turbulentv-flames

    SciTech Connect

    Cheng, R.K.; Bedat, B.; Yegian, D.T.; Greenberg, P.

    2001-03-01

    Open laboratory turbulent flames used for investigating fundament flame turbulence interactions are greatly affected by buoyancy. Though much of our current knowledge is based on observations made in these open flames, the effects of buoyancy are usually not included in data interpretation, numerical analysis or theories. This inconsistency remains an obstacle to merging experimental observations and theoretical predictions. To better understanding the effects of buoyancy, our research focuses on steady lean premixed flames propagating in fully developed turbulence. We hypothesize that the most significant role of buoyancy forces on these flames is to influence their flowfields through a coupling with mean and fluctuating pressure fields. Changes in flow pattern alter the mean aerodynamic stretch and in turn affect turbulence fluctuation intensities both upstream and downstream of the flame zone. Consequently, flame stabilization, reaction rates, and turbulent flame processes are all affected. This coupling relates to the elliptical problem that emphasizes the importance of the upstream, wall and downstream boundary conditions in determining all aspects of flame propagation. Therefore, buoyancy has the same significance as other parameters such as flow configuration, flame geometry, means of flame stabilization, flame shape, enclosure size, mixture conditions, and flow conditions.

  10. Diffusion Flame Extinction in a Low Strain Flow

    NASA Technical Reports Server (NTRS)

    Sutula, Jason; Jones, Joshua; Torero, Jose L.; Borlik, Jeffrey; Ezekoye, Ofodike A.

    1997-01-01

    mechanism controlling fuel transport to the reaction zone, conduction towards the inlets is the main source of heat losses. As the distance increases the flame becomes linear and thickens, remaining blue at the oxidizer side and turning yellow at the fuel side. Here, convection brings fuel and oxidizer together and the reaction occurs in the viscous layer formed between the fuel and oxidizer streams. This region corresponds to the characteristic counter-flow flame where conduction and convection become negligible forms of heat losses and radiation becomes dominant. The flame in the third (mixed) region, between the two others, results from the combination of the scenarios presented above.

  11. Stratification effects on laminar premixed-flame response to mixture perturbations

    NASA Astrophysics Data System (ADS)

    Casey, Tiernan; Chen, Jyh-Yuan

    2015-11-01

    While complete mixing on the molecular level is desirable for ensuring that combustion processes are limited by chemical kinetics rather than mass transport, it is often the case that practical devices operate with some degree of unmixedness. As such, phenomena such as ignition or flame propagation will inevitably occur in regions that exhibit mixture or thermal non-uniformity. Here we present unsteady simulations of laminar premixed flames in the low-Mach limit subject to mixture perturbations of varying wavelength and amplitude, and qualify their effect on the flame behavior. When flames experience variations in mixture the transport processes in the flame zone vary with time and the flame behavior can depend on the burned gas history. Also, the possibility of extending flames beyond their flammability limits so as to maximize the overall mass of fuel burned is explored by exploiting these unsteady effects.

  12. Flame-resistant textiles

    NASA Technical Reports Server (NTRS)

    Fogg, L. C.; Stringham, R. S.; Toy, M. S.

    1980-01-01

    Flame resistance treatment for acid resistant polyamide fibers involving photoaddition of fluorocarbons to surface has been scaled up to treat 10 yards of commercial width (41 in.) fabric. Process may be applicable to other low cost polyamides, polyesters, and textiles.

  13. Flame spread across liquids

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Miller, Fletcher; Schiller, David; Sirignano, William

    1995-01-01

    Recent reviews of our understanding of flame spread across liquids show that there are many unresolved issues regarding the phenomenology and causal mechanisms affecting ignition susceptibility, flame spread characteristics, and flame spread rates. One area of discrepancy is the effect of buoyancy in both the uniform and pulsating spread regimes. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity (1g) and microgravity (micro g) experiments; and (2) numerical modeling at different gravitational levels. Of special interest to this work, as discussed at the previous workshop, is the determination of whether, and under what conditions, pulsating spread occurs in micro g. Microgravity offers a unique ability to modify and control the gas-phase flow pattern by utilizing a forced air flow over the pool surface.

  14. "Magic Eraser" Flame Tests

    NASA Astrophysics Data System (ADS)

    Landis, Arthur M.; Davies, Malonne I.; Landis, Linda

    2009-05-01

    Cleaning erasers are used to support methanol-fueled flame tests. This safe demonstration technique requires only small quantities of materials, provides clean colors for up to 45 seconds, and can be used in the classroom or the auditorium.

  15. Ionization and chemiluminescence during the progressive aeration of methane flames

    SciTech Connect

    Weinberg, Felix; Carleton, Fred

    2009-12-15

    Saturation currents and chemiluminescence, especially at the CH{sup *} and C{sub 2}{sup *} wavelengths, are measured for a range of small, laminar methane flames during progressive addition of air, with the principal objective of distinguishing between pure diffusion flames, premixed flames of compositions falling between the upper and lower flammability limits, and the broad range of aerated flames lying in between these regimes. Flame areas defined by the loci of maximum luminosity and by schlieren contours were recorded, so that saturation current densities, CH{sup *} and C{sub 2}{sup *} emission per unit flame area, as well as burning velocities could be deduced. For admixtures of less than 70 vol.%, air appears to act, surprisingly, as an inert diluent as regards saturation currents, so that saturation currents are essentially proportional to fuel flow alone. Much the same applies to chemiluminescence. However, schlieren contours, which were recorded both to provide a basis for burning velocity measurements and to explore density changes in the reactants, indicated the presence of a burner - stabilised propagating reaction zone ahead of the luminous flame surface starting at around 50 vol.% and possibly even at lower air admixtures. This evidence of a steep change in refractive index is indicative of a premixed reaction zone involving the added oxygen, which however generates no chemi-ionization and emits no light. Even photographing the flame by radiation emitted at the CH{sup *} and C{sub 2}{sup *} wavelengths shows no sign of its existence. Its burning velocity is about 10 cm/s, when stabilized by the surrounding diffusion flame. The most plausible rationale for these observations is the formation of syngas by the partial oxidation of methane. The subsequent burning of CO and H{sub 2} is known to occur without chemi-ionization or appreciable light emission. (author)

  16. Oscillating edge-flames

    NASA Astrophysics Data System (ADS)

    Buckmaster, J.; Zhang, Yi

    1999-09-01

    It has been known for some years that when a near-limit flame spreads over a liquid pool of fuel, the edge of the flame can oscillate. It is also known that when a near-asphyxiated candle-flame burns in zero gravity, the edge of the (hemispherical) flame can oscillate violently prior to extinction. We propose that these oscillations are nothing more than a manifestation of the large Lewis number instability well known in chemical reactor studies and in combustion studies, one that is exacerbated by heat losses. As evidence of this we examine an edge-flame confined within a fuel-supply boundary and an oxygen-supply boundary, anchored by a discontinuity in data at the fuel-supply boundary. We show that when the Lewis number of the fuel is 2, and the Lewis number of the oxidizer is 1, oscillations of the edge occur when the Damköhler number is reduced below a critical value. During a single oscillation period there is a short premixed propagation stage and a long diffusion stage, behaviour that has been observed in flame spread experiments. Oscillations do not occur when both Lewis numbers are equal to 1.

  17. Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in a heated coflow: flame stabilization and structure

    SciTech Connect

    Chen, Jackie; Sankaran, Ramanan; Yoo, Chun S

    2009-01-01

    Direct numerical simulation (DNS) of the near field of a three-dimensional spatially developing turbulent lifted hydrogen jet flame in heated coflow is performed with a detailed mechanism to determine the stabilization mechanism and the flame structure. The DNS was performed at a jet Reynolds number of 11,000 with over 940 million grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. A chemical flux analysis shows the occurrence of near-isothermal chemical chain branching preceding thermal runaway upstream of the stabilization point, indicative of hydrogen auto-ignition in the second limit. The Damkoehler number and key intermediate-species behaviour near the leading edge of the lifted flame also verify that auto-ignition occurs at the flame base. At the lifted-flame base, it is found that heat release occurs predominantly through ignition in which the gradients of reactants are opposed. Downstream of the flame base, both rich-premixed and non-premixed flames develop and coexist with auto-ignition. In addition to auto-ignition, Lagrangian tracking of the flame base reveals the passage of large-scale flow structures and their correlation with the fluctuations of the flame base. In particular, the relative position of the flame base and the coherent flow structure induces a cyclic motion of the flame base in the transverse and axial directions about a mean lift-off height. This is confirmed by Lagrangian tracking of key scalars, heat release rate and velocity at the stabilization point.

  18. Triple flames in microgravity flame spread

    NASA Technical Reports Server (NTRS)

    Wichman, Indrek S.

    1995-01-01

    The purpose of this project is to examine in detail the influence of the triple flame structure on the flame spread problem. It is with an eye to the practical implications that this fundamental research project must be carried out. The microgravity configuration is preferable because buoyancy-induced stratification and vorticity generation are suppressed. A more convincing case can be made for comparing our predictions, which are zero-g, and any projected experiments. Our research into the basic aspects will employ two models. In one, flows of fuel and oxidizer from the lower wall are not considered. In the other, a convective flow is allowed. The non-flow model allows us to develop combined analytical and numerical solution methods that may be used in the more complicated convective-flow model.

  19. Hydroxyl time series and recirculation in turbulent nonpremixed swirling flames

    SciTech Connect

    Guttenfelder, Walter A.; Laurendeau, Normand M.; Ji, Jun; King, Galen B.; Gore, Jay P.; Renfro, Michael W.

    2006-10-15

    Time-series measurements of OH, as related to accompanying flow structures, are reported using picosecond time-resolved laser-induced fluorescence (PITLIF) and particle-imaging velocimetry (PIV) for turbulent, swirling, nonpremixed methane-air flames. The [OH] data portray a primary reaction zone surrounding the internal recirculation zone, with residual OH in the recirculation zone approaching chemical equilibrium. Modeling of the OH electronic quenching environment, when compared to fluorescence lifetime measurements, offers additional evidence that the reaction zone burns as a partially premixed flame. A time-series analysis affirms the presence of thin flamelet-like regions based on the relation between swirl-induced turbulence and fluctuations of [OH] in the reaction and recirculation zones. The OH integral time-scales are found to correspond qualitatively to local mean velocities. Furthermore, quantitative dependencies can be established with respect to axial position, Reynolds number, and global equivalence ratio. Given these relationships, the OH time-scales, and thus the primary reaction zone, appear to be dominated by convection-driven fluctuations. Surprisingly, the OH time-scales for these nominally swirling flames demonstrate significant similarities to previous PITLIF results in nonpremixed jet flames. (author)

  20. Parametric study on a compound-drop spray flame

    NASA Astrophysics Data System (ADS)

    Hsuan, Chung-Yao; Lin, Ta-Hui

    2012-06-01

    The introduction of compound-drop spray in a combustion system is a new concept. These droplets bear two gasification stages to cause an integral positive or negative effect on a premixed flame to raise or lower the local temperature of the gasification region. In this paper, we adopt a compound drop which contains a water core encased by a layer of shell fuel. A one-dimensional homogeneous lean or rich premixed flame with the dilute compound-drop spray was investigated by using large activation energy asymptotic analysis. The compound-drop spray burning mode was defined and divided into completely pre-vaporised burning (CPB), shell pre-vaporised burning (SPB) and shell partially pre-vaporised (SPP) burning modes by way of the gasification zones of the shell fuel and the core water relative to the flame position. The influences of the initial droplet radius, the shell-fuel mass fraction and the liquid loading of the compound-drop spray on the lean and rich flames were analysed. By means of the normalisation parameter of flame propagation mass flux (?), enhancement, suppression or extinction of the compound-drop spray flame can be represented clearly. Furthermore, from the observation of extinction, the necessary conditions of extinction of a lean spray flame by the internal heat transfer are that the spray is a negative effect and causes a sufficient heat loss rate at flame sheet downstream side. For a rich spray flame, three extinction patterns were observed; they occur in SPP, SPB or at the critical SPB mode, but do not in CPB. The extinction maps of the compound-drop spray demarcate the patterns and also indicate the limitations and corresponding conditions of the flame extinction.

  1. The structure of partially premixed methane flames in high-intensity turbulent flows

    SciTech Connect

    Yaldizli, Murat; Mehravaran, Kian; Mohammad, Hyderuddin; Jaberi, Farhad A.

    2008-09-15

    Direct numerical simulations (DNS) are conducted to study the structure of partially premixed and non-premixed methane flames in high-intensity two-dimensional isotropic turbulent flows. The results obtained via ''flame normal analysis'' show local extinction and reignition for both non-premixed and partially premixed flames. Dynamical analysis of the flame with a Lagrangian method indicates that the time integrated strain rate characterizes the finite-rate chemistry effects and the flame extinction better than the strain rate. It is observed that the flame behavior is affected by the ''pressure-dilatation'' and ''viscous-dissipation'' in addition to strain rate. Consistent with previous studies, high vorticity values are detected close to the reaction zone, where the vorticity generation by the ''baroclinic torque'' was found to be significant. The influences of (initial) Reynolds and Damkoehler numbers, and various air-fuel premixing levels on flame and turbulence variables are also studied. It is observed that the flame extinction occurs similarly in flames with different fuel-air premixing. Our simulations also indicate that the CO emission increases as the partial premixing of the fuel with air increases. Higher values of the temperature, the OH mass fraction and the CO mass fraction are observed within the flame zone at higher Reynolds numbers. (author)

  2. Combustion analysis for flame stability predictions at ground level and altitude in aviation gas turbine engines with low emissions combustors

    NASA Astrophysics Data System (ADS)

    Turek, Tomas

    Low emissions combustors operating with low fuel/air ratios may have challenges with flame stability. As combustion is made leaner in the primary zone, the flame can lose its stability, resulting in operability problems such as relight, flameout or cold starting. This thesis analyzes combustion processes for the prediction of flame stability in low emissions combustors. A detailed review of the literature on flame stability was conducted and main approaches in flame stability modelling were indicated. Three flame stability models were proposed (Characteristic Time, Loading Parameter, and Combustion Efficiency models) and developed into a unique Preliminary Multi-Disciplinary Design Optimization (PMDO) tool. Results were validated with a database of experimental combustor test data and showed that flame stability can be predicted for an arbitrary shape of combustors running at any operational conditions including ground and altitude situations with various jet fuels and nozzles. In conclusion, flame stability can be predicted for newly designed low emission combustors.

  3. DETAIL VIEW IN THE FLAME TRENCH LOOKING NORTH, FLAME DEFLECTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW IN THE FLAME TRENCH LOOKING NORTH, FLAME DEFLECTOR IN THE FOREGROUND, WATER PIPES AND VALVE ASSEMBLIES ON THE FOREGROUND. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  4. Gravitationally Unstable Flames: Rayleigh-Taylor Stretching versus Turbulent Wrinkling

    NASA Astrophysics Data System (ADS)

    Hicks, E. P.; Rosner, R.

    2013-07-01

    In this paper, we provide support for the Rayleigh-Taylor-(RT)-based subgrid model used in full-star simulations of deflagrations in Type Ia supernovae explosions. We use the results of a parameter study of two-dimensional direct numerical simulations of an RT unstable model flame to distinguish between the two main types of subgrid models (RT or turbulence dominated) in the flamelet regime. First, we give scalings for the turbulent flame speed, the Reynolds number, the viscous scale, and the size of the burning region as the non-dimensional gravity (G) is varied. The flame speed is well predicted by an RT-based flame speed model. Next, the above scalings are used to calculate the Karlovitz number (Ka) and to discuss appropriate combustion regimes. No transition to thin reaction zones is seen at Ka = 1, although such a transition is expected by turbulence-dominated subgrid models. Finally, we confirm a basic physical premise of the RT subgrid model, namely, that the flame is fractal, and thus self-similar. By modeling the turbulent flame speed, we demonstrate that it is affected more by large-scale RT stretching than by small-scale turbulent wrinkling. In this way, the RT instability controls the flame directly from the large scales. Overall, these results support the RT subgrid model.

  5. Jet Diffusion Flame Stabilization via Pulsed Plasma Forcing

    NASA Astrophysics Data System (ADS)

    Mungal, Godfrey

    2008-10-01

    In this work we investigate the use of high repetition rate pulsed plasma sources as a means to enhance the stability of jet diffusion flames for application to practical combustion devices. Such plasma sources have recently become popular owing to their low power requirements and their proven abilities to ignite leaner mixtures and hold stable flames. They are known to create a radical pool which can enhance combustion chemistry and thus provide increased flame stability. By first investigating a fully premixed methane/air environment we show that the resulting radical species quickly decay but leave behind a set of stable chemical species. Thus, the plasma source appears to act as a fuel reformer leading to the formation of a ``cool flame'' -- a trailing zone of weak oxidation consisting of a slightly elevated temperature stream of products containing small amounts of hydrogen and carbon monoxide. These two key species are then directly responsible for the enhanced flame behaviors. Flame stability enhancements are shown for methane jets in co-flow and cross-flow in room temperature air, and in elevated temperature vitiated air environments. Elevated ambient temperatures deplete the hydrogen and carbon monoxide due to enhanced oxidation, so while there is an enhancement to flame stability, the beneficial effects diminish with increasing temperatures in a non-linear fashion, and ultimately, provide very limited benefits at ˜1000K ambient temperature for the present studies. The conclusions here are supported by simple plasma and chemical kinetic modeling and spectroscopic and chemiluminescence measurements.

  6. Numerical computations and optical diagnostics of unsteady partially premixed methane/air flames

    SciTech Connect

    Nogenmyr, K.J.; Bai, X.S.; Kiefer, J.; Li, Z.S.; Alden, M.

    2010-05-15

    The structures and dynamics of unsteady laminar partially premixed methane/air Bunsen flames are studied by means of numerical simulations, OH and CH PLIF imaging, and high speed chemiluminescence imaging employing a high framing speed intensified charge coupled device camera. The Bunsen burner has a diameter of 22 mm. Rich methane/air mixtures with an equivalence ratio of 1.5 are injected from the burner into atmosphere at different flow speeds ranging from 0.77 to 1.7 m/s, with Reynolds numbers based on the nozzle flow ranging from 1100 to 2500. The numerical simulations are based on a two-scalar flamelet manifold tabulation approach. Detailed chemistry is used to generate the flamelet manifold tabulation which relates the species concentrations, reaction rates, temperature and density to a distance function G and mixture fraction Z. Two distinct reaction zones are identified using CH and OH PLIF imaging and numerical simulations; one inner reaction zone corresponds to premixed flames on the rich side of the mixture and one outer reaction zone corresponds to mixing controlled diffusion flames on the lean side of the mixture. Under normal gravity conditions both the inner premixed flames and the outer diffusion flames are unsteady. The outer diffusion flames oscillate with a flickering frequency of about 15 Hz, which slightly increases with the burner exit velocity. The inner premixed flames are more random with much more small-scale wrinkling structures. Under zero gravity conditions the outer diffusion flames are stable whereas the inner premixed flames are unstable and highly wrinkled. It appears that the outer diffusion flames are governed by the Rayleigh-Taylor instability whereas the inner premixed flames are dictated by Landau-Darrieus instability. The two-scalar flamelet approach is shown to capture the basic structures and dynamics of the investigated unsteady partially premixed flames. (author)

  7. Grid Work

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pointwise Inc.'s, Gridgen Software is a system for the generation of 3D (three dimensional) multiple block, structured grids. Gridgen is a visually-oriented, graphics-based interactive code used to decompose a 3D domain into blocks, distribute grid points on curves, initialize and refine grid points on surfaces and initialize volume grid points. Gridgen is available to U.S. citizens and American-owned companies by license.

  8. A Dramatic Flame Test Demonstration.

    ERIC Educational Resources Information Center

    Johnson, Kristin A.; Schreiner, Rodney

    2001-01-01

    Flame tests are used for demonstration of atomic structure. Describes a demonstration that uses spray bottles filled with methanol and a variety of salts to produce a brilliantly colored flame. (Contains 11 references.) (ASK)

  9. Flame propagation through periodic vortices

    SciTech Connect

    Dold, J.W.; Kerr, O.S.; Nikolova, I.P.

    1995-02-01

    The discovery of a new class of Navier-Stokes solutions representing steady periodic stretched vortices offers a useful test-bed for examining interactions between flames and complex flow-fields. After briefly describing these vortex solutions and their wide-ranging parameterization in terms of wavelength and amplitude, this article examines their effect on flames of constant normal propagation speed as observed through numerical solutions of an eikonal equation. Over certain ranges of vortex amplitude and flame-speed, a corridor of enhanced flame passage is seen to be created as a leading flame-tip managers to leap-frog between successive vortices. However, for large enough amplitudes of vorticity or small enough flame-speeds, the flame fails to be able to benefit from the advection due to the vortices. It is shown that the leading tips of such flames are effectively trapped by the stretched vortices.

  10. Flame resistant elastic elastomeric fibers

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Massucco, A. A.

    1972-01-01

    Development of materials to improve flame resistance of elastic elastomeric fibers is discussed. Two approaches, synthesis of polyether based urethanes and modification of synthesized urethanes with flame ratardant additives, are described. Specific applications of both techniques are presented.

  11. Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity

    NASA Technical Reports Server (NTRS)

    Takahashi, F.; Katta, V. R.

    2001-01-01

    Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.

  12. An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Wichman, Indrek; Guenther, Mark; Ray, Anjan; Agrawal, Sanjay

    1993-01-01

    In a recent paper on 'Observations of candle flames under various atmospheres in microgravity' by Ross et al., it was found that for the same atmosphere, the burning rate per unit wick surface area and the flame temperature were considerably reduced in microgravity as compared with normal gravity. Also, the flame (spherical in microgravity) was much thicker and further removed from the wick. It thus appears that the flame becomes 'weaker' in microgravity due to the absence of buoyancy generated flow which serves to transport the oxidizer to the combustion zone and remove the hot combustion products from it. The buoyant flow, which may be characterized by the strain rate, assists the diffusion process to execute these essential functions for the survival of the flame. Thus, the diffusion flame is 'weak' at very low strain rates and as the strain rate increases the flame is initially 'strengthened' and eventually it may be 'blown out'. The computed flammability boundaries of T'ien show that such a reversal in material flammability occurs at strain rates around 5 sec. At very low or zero strain rates, flame radiation is expected to considerably affect this 'weak' diffusion flame because: (1) the concentration of combustion products which participate in gas radiation is high in the flame zone; and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which is usually responsible for a major portion of the radiative heat loss. We anticipate that flame radiation will eventually extinguish this flame. Thus, the objective of this project is to perform an experimental and theoretical investigation of radiation-induced extinction of diffusion flames under microgravity conditions. This is important for spacecraft fire safety.

  13. Analysis of reaction-diffusion systems for flame capturing in type IA supernova simulations

    NASA Astrophysics Data System (ADS)

    Zhyglo, Andriy V.

    2009-06-01

    We present a study of numerical behavior of a thickened flame used in Flame Capturing (FC, Khokhlov (1995)) for tracking thin physical flames in deflagration simulations. This technique, used extensively in astrophysics, utilizes artificial flame variable to evolve flame region, width of which is resolved in simulations, with physically motivated propagation speed. We develop a steady-state procedure for calibrating flame model used in FC, and test it against analytical results. Original flame model is properly calibrated with taking matter expansion into consideration and keeping artificial flame width at predetermined value regardless of expansion. We observe numerical noises generated by original realization of the technique. Alternative artificial burning rates are discussed, which produce acceptably quiet flames (relative dispersion in propagation speed within 0.1% at physically interesting ratios of fuel and ash densities). Two new quiet models are calibrated to yield required "flame" speed and width, and further studied in 2D and 3D setting. Landau-Darrieus type instabilities of the flames are observed. One model also shows significantly anisotropic propagation speed on the grid, both effects increasingly pronounced at larger matter expansion as a result of burning; these 2D/3D effects make that model unacceptable for use in type Ia supernova simulations at fuel densities below about 100 tons per cubic centimeter. Another model, first presented here, looks promising for use in flame capturing at fuel to ash density ratio of order 3 and below, the interval of most interest for astrophysical applications. No model was found to significantly inhibit LD instability development at larger expansions without increasing flame width. The model we propose, "Model B", yields flames completely localized within a region 6 cells wide at any expansion. We study Markstein effect (speed of the flame dependence on its curvature) for flame models described, through direct

  14. Flame retardant spandex type polyurethanes

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Sidman, K. R.; Massucco, A. A. (Inventor)

    1978-01-01

    Flame retardant elastomeric compositions were developed, comprised of: (1) spandex type polyurethane having incorporated into the polymer chain, halogen containing polyols; (2) conventional spandex type polyurethanes in physical admixture flame retardant additives; and (3) fluoroelastomeric resins in physical admixture with flame retardant additives. Methods of preparing fibers of the flame retardant elastomeric materials are presented and articles of manufacture comprised of the elastomeric materials are mentioned.

  15. Flame resistant elastic elastomeric fiber

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Massucco, A. A.; Sidman, K. R.

    1974-01-01

    Compositions exhibit elastomeric properties and possess various degrees of flame resistance. First material polyurethane, incorporates halogen containing polyol and is flame resistant in air; second contains spandex elastomer with flame retardant additives; and third material is prepared from fluorelastomer composition of copolymer of vinylidene fluoride and hexafluoropropylene.

  16. NOX FORMATION IN CO FLAMES

    EPA Science Inventory

    The report gives results of an experimental study to determine if early NO and NO2 can be observed in CO flames, since prompt NO is not anticipated and since HO2 levels might be expected to be lower in CO flames. (Previous studies of NO and NO2 production in methane flames with a...

  17. MAGNETIC GRID

    DOEpatents

    Post, R.F.

    1960-08-01

    An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.

  18. Triaxial Burke-Schumann Flames with Applications to Flame Synthesis

    NASA Technical Reports Server (NTRS)

    Chao, B. H.; Axelbaum, R. L.; Gokoglu, Suleyman (Technical Monitor)

    2000-01-01

    The problem of a flame generated by three coaxial flows is solved by extending the Burke-Schumann methodology to include a third stream. The solution is particularly relevant to flame synthesis wherein multiple tubes are often employed either to introduce inert as a diffusion barrier or to introduce more than two reactants. The general problem is solved where the inner and outer tubes contain reactants and the middle tube contains either an inert or a third reactant. Relevant examples are considered and the results show that the triaxial Burke-Schumann flame can be substantially more complicated than the traditional Burke-Schumann flame. When the middle flow is inert the flame temperature is no longer constant but increases axially, reaching a maximum at the flame centerline. At the exit the flame does not sit on the tube exit but instead resides between the inner and outer tubes, resulting in an effective barrier for particle build-up on the burner rim. For the case of a third reactant in the middle flow, synthesis chemistry where the inner reaction is endothermic and the outer reaction is exothermic is considered. In addition to showing the flame temperature and flame shape, the results identify conditions wherein reaction is not possible due to insufficient heat transfer from the outer flame to support the inner flame reaction.

  19. Electrical control of the thermodiffusive instability in premixed propane-air flames

    SciTech Connect

    Wisman, D.L.; Marcum, S.D.; Ganguly, B.N.

    2007-12-15

    This work focuses upon the effects of DC electric fields on the stability of downward propagating atmospheric pressure premixed propane-air flames under experimental conditions that provide close coupling of the electric field to the flame. With the appropriate electrode geometry, modest applied voltages are shown to drive a stable conical flame first into a wrinkled-laminar flamelet geometry, and then further toward either a highly unstable distributed flamelet regime or a collective oscillation of the flame front. Applied potentials up through +5kV over a 40-mm gap encompassing the flame front have been used to force the above transition sequence in flames with equivalence ratios between 0.8 and 1.3 and flow velocities up to 1.7 m/s. Experiments are reported that characterize the field-induced changes in the geometry of the reaction zone and the structure of the resulting unstable flame. The former is quantified by combustion intensity enhancement estimates derived from high-speed two-dimensional direct and spectroscopic imaging of chemiluminescence signals. The flame fluid mechanical response to the applied field, brought about by forcing positive flame ions counter to the flow, drives the effective flame Lewis number to values suitable for the onset of the thermodiffusive instability, even near stoichiometric conditions. Possible field-driven flame ion recombination chemistry that would produce light reactants near the burner head and precipitate the onset of the thermodiffusive instability is proposed. Electrical measurements are also reported that establish that minimal electrical power input is required to produce the observed flame instabilities. Current continuity-based calculations allow estimates of the level of deficient light reactant necessary to cause the flame to become unstable. This applied-electric-field-induced modification of the thermodiffusive effect could serve as a potentially attractive means of controlling flame fluid

  20. Vortex/Flame Interactions in Microgravity Pulsed Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Y.; Hegde, U.; Stocker, D. P.

    2001-01-01

    Significant differences have been observed between the structure of laminar, transitional, and turbulent flames under downward, upward, and microgravity conditions. These include flame height, jet shear layer, flame instability, flicker, lift-off height, blow-off Reynolds number, and radiative properties. The primary objective of this investigation is to identify the mechanisms involved in the generation and interaction of large-scale structures in microgravity flames. This involves a study of vortex/flame interactions in a space-flight experiment utilizing a controlled, well-defined set of disturbances imposed on a laminar diffusion flame. The results provide a better understanding of the naturally occurring structures that are an inherent part of microgravity turbulent flames. The paper presents the current progress in this program.

  1. Three-dimensional direct numerical simulation of soot formation and transport in a temporally evolving nonpremixed ethylene jet flame

    SciTech Connect

    Lignell, David O.; Chen, Jacqueline H.; Smith, Philip J.

    2008-10-15

    Three-dimensional direct numerical simulation of soot formation with complex chemistry is presented. The simulation consists of a temporally evolving, planar, nonpremixed ethylene jet flame with a validated, 19-species reduced mechanism. A four-step, three-moment, semiempirical soot model is employed. Previous two-dimensional decaying turbulence simulations have shown the importance of multidimensional flame dynamical effects on soot concentration [D.O. Lignell, J.H. Chen, P.J. Smith, T. Lu, C.K. Law, Combust. Flame 151 (1-2) (2007) 2-28]. It was shown that flame curvature strongly impacts the diffusive motion of the flame relative to soot (which is essentially convected with the flow), resulting in soot being differentially transported toward or away from the flame zone. The proximity of the soot to the flame directly influences soot reactivity and radiative properties. Here, the analysis is extended to three dimensions in a temporal jet configuration with mean shear. Results show that similar local flame dynamic effects of strain and curvature are important, but that enhanced turbulent mixing of fuel and oxidizer streams has a first-order effect on transport of soot toward flame zones. Soot modeling in turbulent flames is a challenge due to the complexity of soot formation and transport processes and the lack of detailed experimental soot-flame-flow structural data. The present direct numerical simulation provides the first step toward providing such data. (author)

  2. On the structure of gaseous confined laminar diffusion flames: Numerical investigation

    NASA Technical Reports Server (NTRS)

    Mawid, M. A.; Bulzan, D. L.; Aggarwal, S. K.

    1993-01-01

    The structure and characteristics of gaseous confined laminar diffusion flames are investigated by numerically solving the time-dependent two-dimensional axisymmetric conservation equations. The numerical model accounts for the important chemical and physical processes involved, including axial diffusion, viscous effects, radial convection, and finite-rate chemistry. The numerical results clearly show that the flame has a finite thickness and leakage of fuel vapor into the flame zone is possible. The effect of heat release is found to induce some radial flow. Predicted flame shape and dimensions are compared to the classical Burke-Schumann flame. The numerically calculated flame is observed to be about 15 percent taller and 5 percent narrower than that of the Burke-Schumann solution under the same conditions.

  3. Effects of Buoyancy on Laminar and Turbulent Premixed V-Flame

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.; Bedat, Benoit

    1997-01-01

    Turbulent combustion occurs naturally in almost all combustion systems and involves complex dynamic coupling of chemical and fluid mechanical processes. It is considered as one of the most challenging combustion research problems today. Though buoyancy has little effect on power generating systems operating under high pressures (e.g., IC engines and turbines), flames in atmospheric burners and the operation of small to medium furnaces and boilers are profoundly affected by buoyancy. Changes in burner orientation impacts on their blow-off, flash-back and extinction limits, and their range of operation, burning rate, heat transfer, and emissions. Theoretically, buoyancy is often neglected in turbulent combustion models. Yet the modeling results are routinely compared with experiments of open laboratory flames that are obviously affected by buoyancy. This inconsistency is an obstacle to reconciling experiments and theories. Consequently, a fundamental understanding of the coupling between turbulent flames and buoyancy is significant to both turbulent combustion science and applications. The overall effect of buoyancy relates to the dynamic interaction between the flame and its surrounding, i.e., the so-called elliptical problem. The overall flame shape, its flowfield, stability, and mean and local burning rates are dictated by both upstream and downstream boundary conditions. In steady propagating premixed flames, buoyancy affects the products region downstream of the flame zone. These effects are manifested upstream through the mean and fluctuating pressure fields to influence flame stretch and flame wrinkling. Intuitively, the effects buoyancy should diminish with increasing flow momentum. This is the justification for excluding buoyancy in turbulent combustion models that treats high Reynolds number flows. The objectives of our experimental research program is to elucidate flame-buoyancy coupling processes in laminar and turbulent premixed flames, and to

  4. Flame annealing of ion implanted silicon

    SciTech Connect

    Narayan, J.; Young, R.T.

    1983-01-01

    The authors investigated flame annealing of ion implantation damage (consisting of amorphous layers and dislocation loops) in (100) and (111) silicon substrates. The temperature of a hydrogen flame was varied from 1050 to 1200/sup 0/C and the interaction time from 5 to 10 seconds. Detailed TEM results showed that a defect-free annealing of amorphous layers by solid-phase-epitaxial growth could be achieved up to a certain concentration. However, dislocation loops in the region below the amorphous layer exhibited coarsening, i.e., the average loop size increased while the number density of loops decreased. Above a critical loop density, which was found to be a function of ion implantation variables and substrate temperature, formation of 90/sup 0/ dislocations (a cross-grid of dislocation in (100) and a triangular grid in (111) specimens) were observed. Electrical (Van der Pauw) measurements indicated nearly a complete electrical activation of dopants with mobility comparable to pulsed laser annealed specimens. The characteristics of p-n junction diodes showed a good diode perfection factor of 1.20-1.25 and low reverse bias currents.

  5. Direct Flame Impingement

    SciTech Connect

    2005-09-01

    During the DFI process, high velocity flame jets impinge upon the material being heated, creating a high heat transfer rate. As a result, refractory walls and exhaust gases are cooler, which increases thermal efficiency and lowers NOx emissions. Because the jet nozzles are located a few inches from the load, furnace size can be reduced significantly.

  6. Flame Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Claus, R. W.; Humenik, F. M.; Neely, G. M.

    1983-01-01

    Spectral and total flame radiation measurements exhibited: (1) that radiant heat flux increases with vision combustor inlet air pressure; (2) the effect of fuel atomization characteristics on radiant heat flux; and (3) that a reduction in fuel hydrogen content produces a significant increase in radiant heat flux primarily at low combustor pressures.

  7. Modeling turbulent flame propagation

    SciTech Connect

    Ashurst, W.T.

    1994-08-01

    Laser diagnostics and flow simulation techniques axe now providing information that if available fifty years ago, would have allowed Damkoehler to show how turbulence generates flame area. In the absence of this information, many turbulent flame speed models have been created, most based on Kolmogorov concepts which ignore the turbulence vortical structure, Over the last twenty years, the vorticity structure in mixing layers and jets has been shown to determine the entrainment and mixing behavior and these effects need to be duplicated by combustion models. Turbulence simulations reveal the intense vorticity structure as filaments and simulations of passive flamelet propagation show how this vorticity Creates flame area and defines the shape of the expected chemical reaction surface. Understanding how volume expansion interacts with flow structure should improve experimental methods for determining turbulent flame speed. Since the last decade has given us such powerful new tools to create and see turbulent combustion microscopic behavior, it seems that a solution of turbulent combustion within the next decade would not be surprising in the hindsight of 2004.

  8. "Magic Eraser" Flame Tests

    ERIC Educational Resources Information Center

    Landis, Arthur M.; Davies, Malonne I.; Landis, Linda

    2009-01-01

    Cleaning erasers are used to support methanol-fueled flame tests. This safe demonstration technique requires only small quantities of materials, provides clean colors for up to 45 seconds, and can be used in the classroom or the auditorium. (Contains 1 note.)

  9. Analysis of a strong mass-based flame stretch model for turbulent premixed combustion

    NASA Astrophysics Data System (ADS)

    Bastiaans, R. J. M.; van Oijen, J. A.; de Goey, L. P. H.

    2009-01-01

    In the present paper a theory describing effects of strong flame stretch on turbulent flame propagation [L. P. H. de Goey and J. H. M. ten Thije Boonkkamp, "A flamelet description of premixed laminar flames and the relation with flame stretch," Combust. Flame 119, 253 (1999)] is extended to volume averaged quantities and validated with direct numerical simulation (DNS). The extended theory describes the fuel consumption rate in terms of subgrid scale contributions connected to propagation effects including strong flame stretch. In case there is no preferential diffusion present, it is predicted that the total consumption rate is not affected by local stretch at all. Then the total consumption is described by the unstretched mass burning rate multiplied with the flame surface density. DNSs of turbulent flame kernels have been carried out in order to support the results from the theory. The chemistry is described by application of the flamelet generated manifold technique. The strong stretch theory is shown to be valid up to realizations in the thin reaction zone regime by three independent methods. The local effects of stretch are described, evaluated, and interpreted. Locally the mass burning rate changes by fuel leakage tangential to the flame, but this has no integral effect. The method can be used for subgrid scale modeling of turbulent flame propagation.

  10. Graphene based multifunctional flame sensor.

    PubMed

    Ferry, Darim B; Pavan Kumar, R; Reddy, Siva K; Mukherjee, Anwesha; Misra, Abha

    2015-05-15

    Recently, graphene has attracted much attention due to its unique electrical and thermal properties along with its high surface area, and hence presents an ideal sensing material. We report a novel configuration of a graphene based flame sensor by exploiting the response of few layer graphene to a flame along two different directions, where flame detection results from a difference in heat transfer mechanisms. A complete sensor module was developed with a signal conditioning circuit that compensates for any drift in the baseline of the sensor, along with a flame detection algorithm implemented in a microcontroller to detect the flame. A pre-defined threshold for either of the sensors is tunable, which can be varied based on the nature of the flame, hence presenting a system that can be used for detection of any kind of flame. This finding also presents a scalable method that opens avenues to modify complicated sensing schemes. PMID:25900408

  11. Graphene based multifunctional flame sensor

    NASA Astrophysics Data System (ADS)

    Ferry, Darim B.; Pavan Kumar, R.; Reddy, Siva K.; Mukherjee, Anwesha; Misra, Abha

    2015-05-01

    Recently, graphene has attracted much attention due to its unique electrical and thermal properties along with its high surface area, and hence presents an ideal sensing material. We report a novel configuration of a graphene based flame sensor by exploiting the response of few layer graphene to a flame along two different directions, where flame detection results from a difference in heat transfer mechanisms. A complete sensor module was developed with a signal conditioning circuit that compensates for any drift in the baseline of the sensor, along with a flame detection algorithm implemented in a microcontroller to detect the flame. A pre-defined threshold for either of the sensors is tunable, which can be varied based on the nature of the flame, hence presenting a system that can be used for detection of any kind of flame. This finding also presents a scalable method that opens avenues to modify complicated sensing schemes.

  12. REPORT FOR NON-FLAME HAZARDOUS WASTE THERMAL DESTRUCTION

    EPA Science Inventory

    A laboratory apparatus, identified as the Thermal Decomposition Unit-Gas Chromatograph (TDU-GC) system, has been used to investigate the impact of key factors of the post-flame zone in the combustion process upon the effluent decomposition products. The results from thermal treat...

  13. Instantaneous temperature imaging of diffusion flames using two-line atomic fluorescence.

    PubMed

    Medwell, Paul R; Chan, Qing N; Kalt, Peter A M; Alwahabi, Zeyad T; Dally, Bassam B; Nathan, Graham J

    2010-02-01

    This work investigates the first demonstration of nonlinear regime two-line atomic fluorescence (NTLAF) thermometry in laminar non-premixed flames. The results show the expediency of the technique in the study of the reaction zone and reveals interesting findings about the indium atomization process. Indium fluorescence is observed to be strongest at the flame-front, where the temperature exceeds 1000 K. The uncertainty in the deduced temperature measurement is approximately 6%. The temperature profile across the reaction zone shows good agreement with laminar flame calculations. The advantages and inherent limitations of the technique are discussed. PMID:20149278

  14. The Grid

    SciTech Connect

    White, Vicky

    2003-05-21

    By now almost everyone has heard of 'The Grid', or 'Grid Computing' as it should more properly be described. There are frequent articles in both the popular and scientific press talking about 'The Grid' or about some specific Grid project. Run II Experiments, US-CMS, BTeV, the Sloane Digital Sky Survey and the Lattice QCD folks are all incorporating aspects of Grid Computing in their plans, and the Fermilab Computing Division is supporting and encouraging these efforts. Why are we doing this and what does it have to do with running a physics experiment or getting scientific results? I will explore some of these questions and try to give an overview, not so much of the technical aspects of Grid Computing, rather of what the phenomenon means for our field.

  15. Candle Flames in Microgravity Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video of a candle flame burning in space was taken by the Candle Flames in Microgravity (CFM) experiment on the Russian Mir space station. It is actually a composite of still photos from a 35mm camera since the video images were too dim. The images show a hemispherically shaped flame, primarily blue in color, with some yellow early int the flame lifetime. The actual flame is quite dim and difficult to see with the naked eye. Nearly 80 candles were burned in this experiment aboard Mir. NASA scientists have also studied how flames spread in space and how to detect fire in microgravity. Researchers hope that what they learn about fire and combustion from the flame ball experiments will help out here on Earth. Their research could help create things such as better engines for cars and airplanes. Since they use very weak flames, flame balls require little fuel. By studying how this works, engineers may be able to design engines that use far less fuel. In addition, microgravity flame research is an important step in creating new safety precautions for astronauts living in space. By understanding how fire works in space, the astronauts can be better prepared to fight it.

  16. Effect of fuel mixture fraction and velocity perturbations on the flame transfer function of swirl stabilized flames

    NASA Astrophysics Data System (ADS)

    Wysocki, Stefan; Di-Chiaro, Giacomo; Biagioli, Fernando

    2015-11-01

    A novel methodology is developed to decompose the classic Flame Transfer Function (FTF) used in the thermo-acoustic stability analysis of lean premix combustors into contributions of different types. The approach is applied, in the context of Large Eddy Simulation (LES), to partially-premixed and fully-premixed flames, which are stabilized via a central recirculation zone as a result of the vortex breakdown phenomenon. The first type of decomposition is into contributions driven by fuel mixture fraction and dynamic velocity fluctuations. Each of these two contributions is further split into the components of turbulent flame speed and flame surface area. The flame surface area component, driven by the pure dynamic velocity fluctuation, which is shown to be a dominant contribution to the overall FTF, is also additionally decomposed over the coherent flow structures using proper orthogonal decomposition. Using a simplified model for the dynamic response of premixed flames, it is shown that the distribution of the FTF, as obtained from LES, is closely related to the characteristics of the velocity field frequency response to the inlet perturbation. Initially, the proposed method is tested and validated with a well characterized laboratory burner geometry. Subsequently, the method is applied to an industrial gas turbine burner.

  17. Fibonacci Grids

    NASA Technical Reports Server (NTRS)

    Swinbank, Richard; Purser, James

    2006-01-01

    Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude-longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges). One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as "Fibonacci grids". They can be thought of as mathematically ideal generalizations of the patterns occurring naturally in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples (to give two of the many botanical examples). These grids possess virtually uniform and highly isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of these grids in shallow water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional semi-implicit and semi-Lagrangian weather prediction or climate models.

  18. DNS of a turbulent lifted DME jet flame

    DOE PAGESBeta

    Minamoto, Yuki; Chen, Jacqueline H.

    2016-05-07

    A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatialmore » locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.« less

  19. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  20. Vortex/Flame Interactions in Microgravity Pulsed Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Y.; Hegde, U.; Stocker, D. P.

    1999-01-01

    The problem of vortex/flame interaction is of fundamental importance to turbulent combustion. These interactions have been studied in normal gravity. It was found that due to the interactions between the imposed disturbances and buoyancy induced instabilities, several overall length scales dominated the flame. The problem of multiple scales does not exist in microgravity for a pulsed laminar flame, since there are no buoyancy induced instabilities. The absence of buoyant convection therefore provides an environment to study the role of vortices interacting with flames in a controlled manner. There are strong similarities between imposed and naturally occurring perturbations, since both can be described by the same spatial instability theory. Hence, imposing a harmonic disturbance on a microgravity laminar flame creates effects similar to those occurring naturally in transitional/turbulent diffusion flames observed in microgravity. In this study, controlled, large-scale, axisymmetric vortices are imposed on a microgravity laminar diffusion flame. The experimental results and predictions from a numerical model of transient jet diffusion flames are presented and the characteristics of pulsed flame are described.

  1. Combustor flame flashback

    NASA Technical Reports Server (NTRS)

    Proctor, M. P.; Tien, J. S.

    1985-01-01

    A stainless steel, two-dimensional (rectangular), center-dump, premixed-prevaporized combustor with quartz window sidewalls for visual access was designed, built, and used to study flashback. A parametric study revealed that the flashback equivalence ratio decreased slightly as the inlet air temperature increased. It also indicated that the average premixer velocity and premixer wall temperature were not governing parameters of flashback. The steady-state velocity balance concept as the flashback mechanism was not supported. From visual observation several stages of burning were identified. High speed photography verified upstream flame propagation with the leading edge of the flame front near the premixer wall. Combustion instabilities (spontaneous pressure oscillations) were discovered during combustion at the dump plane and during flashback. The pressure oscillation frequency ranged from 40 to 80 Hz. The peak-to-peak amplitude (up to 1.4 psi) increased as the fuel/air equivalence ratio was increased attaining a maximum value just before flashback. The amplitude suddenly decreased when the flame stabilized in the premixer. The pressure oscillations were large enough to cause a local flow reversal. A simple test using ceramic fiber tufts indicated flow reversals existed at the premixer exit during flickering. It is suspected that flashback occurs through the premixer wall boundary layer flow reversal caused by combustion instability. A theoretical analysis of periodic flow in the premixing channel has been made. The theory supports the flow reversal mechanism.

  2. Japan's research on gaseous flames

    NASA Technical Reports Server (NTRS)

    Niioka, Takashi

    1995-01-01

    Although research studies on gaseous flames in microgravity in Japan have not been one-sided, they have been limited, for the most part, to comparatively fundamental studies. At present it is only possible to achieve a microgravity field by the use of drop towers, as far as gaseous flames are concerned. Compared with experiments on droplets, including droplet arrays, which have been vigorously performed in Japan, studies on gaseous flames have just begun. Experiments on ignition of gaseous fuel, flammability limits, flame stability, effect of magnetic field on flames, and carbon formation from gaseous flames are currently being carried out in microgravity. Seven subjects related to these topics are introduced and discussed herein.

  3. Flame Imaging for Safety Surveillance

    NASA Astrophysics Data System (ADS)

    Fukuchi, Tetsuo

    Flame detection is important for prevention of spreading of accidental fires. When combustible gas is ignited under daylight conditions, the flame is often difficult to detect by conventional imaging because of the high background radiation. The flame can be visualized by selectively detecting the emission of the OH radical, which is present in hydrocarbon or hydrogen flames. By detecting the OH radical emission in the solar blind region of wavelength below 290 nm, the background radiation can be effectively eliminated. In this study, an experimental device for visualization of flame at wavelength 285 nm was constructed. A combination of two narrowband interference filters was found to be sufficient to eliminate background radiation and selectively image the OH emission. The device could detect butane burner flame under daylight conditions.

  4. Soot formation and temperature structure in small methane-oxygen diffusion flames at subcritical and supercritical pressures

    SciTech Connect

    Joo, Hyun I.; Guelder, Oemer L.

    2010-06-15

    An experimental study was conducted to examine the characteristics of laminar methane-oxygen diffusion flames up to 100 atmospheres. The influence of pressure on soot formation and on the structure of the temperature field was investigated over the pressure range of 10-90 atmospheres in a high-pressure combustion chamber using a non-intrusive, line-of-sight spectral soot emission diagnostic technique. Two distinct zones characterized the appearance of a methane and pure oxygen diffusion flame: an inner luminous zone similar to the methane-air diffusion flames, and an outer diffusion flame zone which is mostly blue. The flame height, marked by the visible soot radiation emission, was reduced by over 50% over the pressure range of 10-100 atmospheres. Between 10 and 40 atmospheres, the soot levels increased with increasing pressure; however, above 40 atmospheres the soot concentrations decreased with increasing pressure. (author)

  5. Candle Flames in Non-Buoyant Atmospheres

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Shu, Y.; Tien, J. S.

    1999-01-01

    This paper addresses the behavior of a candle flame in a long-duration, quiescent microgravity environment both on the space Shuttle and the Mir Orbiting Station (OS). On the Shuttle, the flames became dim blue after an initial transient where there was significant yellow (presumably soot) in the flame. The flame lifetimes were typically less than 60 seconds. The safety-mandated candlebox that contained the candle flame inhibited oxygen transport to the flame and thus limited the flame lifetime. 'Me flames on the Mir OS were similar, except that the yellow luminosity persisted longer into the flame lifetime because of a higher initial oxygen concentration. The Mir flames burned for as long as 45 minutes. The difference in the flame lifetime between the Shuttle and Mir flames was primarily the redesigned candlebox that did not inhibit oxygen transport to the flame. In both environments, the flame intensity and the height-to-width ratio gradually decreased as the ambient oxygen content in the sealed chamber slowly decreased. Both sets of experiments showed spontaneous, axisymmetric flame oscillations just prior to extinction. The paper also presents a numerical model of candle flame. The model is detailed in the gas-phase, but uses a simplified liquid/wick phase. 'Me model predicts a steady flame with a shape and size quantitatively similar to the Shuttle and Mir flames. ne model also predicts pre-extinction flame oscillations if the decrease in ambient oxygen is small enough.

  6. NCN detection in atmospheric flames

    SciTech Connect

    Sun, Z.W.; Li, Z.S.; Alden, M.; Dam, N.J.

    2010-04-15

    The first extensive spectra of NCN in atmospheric pressure flames are reported, as well as qualitative planar LIF images of its spatial distribution. The spectra have been recorded by LIF in lifted, fuel-rich CH4/N2O/N2 and CH4/air flames, and are compared to simulations. In the CH4/air flames, the NCN LIF signal peaks around {phi} = 1.2. Planar LIF imaging illustrates the very confined NCN distribution in the CH4/N2O/N2 flame.

  7. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations

    SciTech Connect

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A.

    2010-09-15

    This article describes an experimental investigation of the forced response of a swirl-stabilized partially premixed flame when it is subjected to acoustic velocity and equivalence ratio fluctuations. The flame's response is analyzed using phase-resolved CH{sup *} chemiluminescence images and flame transfer function (FTF) measurements, and compared with the response of a perfectly premixed flame under acoustic perturbations. The nonlinear response of the partially premixed flame is manifested by a partial extinction of the reaction zone, leading to rapid reduction of flame surface area. This nonlinearity, however, is observed only when the phase difference between the acoustic velocity and the equivalence ratio at the combustor inlet is close to zero. The condition, {delta}{phi}{sub {phi}}'-V'{approx}0 , indicates that reactant mixtures with high equivalence ratio impinge on the flame front with high velocity, inducing large fluctuations of the rate of heat release. It is found that the phase difference between the acoustic velocity and equivalence ratio nonuniformities is a key parameter governing the linear/nonlinear response of a partially premixed flame, and it is a function of modulation frequency, inlet velocity, fuel injection location, and fuel injector impedance. The results presented in this article will provide insight into the response of a partially premixed flame, which has not been well explored to date. (author)

  8. Spherical Ethylene/Air Diffusion Flames Subject to Concentric DC Electric Field in Microgravity

    NASA Technical Reports Server (NTRS)

    Yuan, Z. -G.; Hegde, U.; Faeth, G. M.

    2001-01-01

    It is well known that microgravity conditions, by eliminating buoyant flow, enable many combustion phenomena to be observed that are not possible to observe at normal gravity. One example is the spherical diffusion flame surrounding a porous spherical burner. The present paper demonstrates that by superimposing a spherical electrical field on such a flame, the flame remains spherical so that we can study the interaction between the electric field and flame in a one-dimensional fashion. Flames are susceptible to electric fields that are much weaker than the breakdown field of the flame gases owing to the presence of ions generated in the high temperature flame reaction zone. These ions and the electric current of the moving ions, in turn, significantly change the distribution of the electric field. Thus, to understand the interplay between the electric field and the flame is challenging. Numerous experimental studies of the effect of electric fields on flames have been reported. Unfortunately, they were all involved in complex geometries of both the flow field and the electric field, which hinders detailed study of the phenomena. In a one-dimensional domain, however, the electric field, the flow field, the thermal field and the chemical species field are all co-linear. Thus the problem is greatly simplified and becomes more tractable.

  9. Simultaneous high-speed 3D flame front detection and tomographic PIV

    NASA Astrophysics Data System (ADS)

    Ebi, Dominik; Clemens, Noel T.

    2016-03-01

    A technique capable of detecting the instantaneous, time-resolved, 3D flame topography is successfully demonstrated in a lean-premixed swirl flame undergoing flashback. A simultaneous measurement of the volumetric velocity field is possible without the need for additional hardware. Droplets which vaporize in the preheat zone of the flame serve as the marker for the flame front. The droplets are illuminated with a laser and imaged from four different views followed by a tomographic reconstruction to obtain the volumetric particle field. Void regions in the reconstructed particle field, which correspond to regions of burnt gas, are detected with a series of image processing steps. The interface separating the void region from regions filled with particles is defined as the flame surface. The velocity field in the unburnt gas is measured using tomographic PIV. The resulting data include the simultaneous 3D flame front and 3D volumetric velocity field at 5 kHz. The technique is applied to a lean-premixed (ϕ  =  0.8), swirling methane-air flame and validated against simultaneously acquired planar measurements. The mean error associated with the reconstructed 3D flame topography is about 0.4 mm, which is smaller than the flame thickness under the studied conditions. The mean error associated with the volumetric velocity field is about 0.2 m s-1.

  10. DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry

    SciTech Connect

    Domingo, Pascale; Vervisch, Luc; Payet, Sandra; Hauguel, Raphaeel

    2005-12-01

    Two complementary simulations of premixed turbulent flames are discussed. Low Reynolds number two-dimensional direct numerical simulation of a premixed turbulent V flame is first performed, to further analyze the behavior of various flame quantities and to study key ingredients of premixed turbulent combustion modeling. Flame surface density, subgrid-scale variance of progress variables, and unresolved turbulent fluxes are analyzed. These simulations include fully detailed chemistry from a flame-generated tabulation (FPI) and the analysis focuses on the dynamics of the thin flame front. Then, a novel subgrid scale closure for large eddy simulation of premixed turbulent combustion (FSD-PDF) is proposed. It combines the flame surface density (FSD) approach with a presumed probability density function (PDF) of the progress variable that is used in FPI chemistry tabulation. The FSD is useful for introducing in the presumed PDF the influence of the spatially filtered thin reaction zone evolving within the subgrid. This is achieved via the exact relation between the PDF and the FSD. This relation involves the conditional filtered average of the magnitude of the gradient of the progress variable. In the modeling, this conditional filtered mean is approximated from the filtered gradient of the progress variable of the FPI laminar flame. Balance equations providing mean and variance of the progress variable together with the measure of the filtered gradient are used to presume the PDF. A three-dimensional larger Reynolds number flow configuration (ORACLES experiment) is then computed with FSD-PDF and the results are compared with measurements.

  11. A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow

    SciTech Connect

    Yoo, Chun S

    2011-01-01

    Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damkoehler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals the passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453-481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic 'saw-tooth' shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.

  12. A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow

    SciTech Connect

    Yoo, C. S.; Richardson, E.; Sankaran, R.; Chen, J. H.

    2011-01-01

    Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damköhler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals the passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453–481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic ‘saw-tooth’ shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.

  13. Parallel Simulation of Unsteady Turbulent Flames

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1996-01-01

    Time-accurate simulation of turbulent flames in high Reynolds number flows is a challenging task since both fluid dynamics and combustion must be modeled accurately. To numerically simulate this phenomenon, very large computer resources (both time and memory) are required. Although current vector supercomputers are capable of providing adequate resources for simulations of this nature, the high cost and their limited availability, makes practical use of such machines less than satisfactory. At the same time, the explicit time integration algorithms used in unsteady flow simulations often possess a very high degree of parallelism, making them very amenable to efficient implementation on large-scale parallel computers. Under these circumstances, distributed memory parallel computers offer an excellent near-term solution for greatly increased computational speed and memory, at a cost that may render the unsteady simulations of the type discussed above more feasible and affordable.This paper discusses the study of unsteady turbulent flames using a simulation algorithm that is capable of retaining high parallel efficiency on distributed memory parallel architectures. Numerical studies are carried out using large-eddy simulation (LES). In LES, the scales larger than the grid are computed using a time- and space-accurate scheme, while the unresolved small scales are modeled using eddy viscosity based subgrid models. This is acceptable for the moment/energy closure since the small scales primarily provide a dissipative mechanism for the energy transferred from the large scales. However, for combustion to occur, the species must first undergo mixing at the small scales and then come into molecular contact. Therefore, global models cannot be used. Recently, a new model for turbulent combustion was developed, in which the combustion is modeled, within the subgrid (small-scales) using a methodology that simulates the mixing and the molecular transport and the chemical kinetics

  14. Continuous Diffusion Flames and Flame Streets in Micro-Channels

    NASA Astrophysics Data System (ADS)

    Mohan, Shikhar; Matalon, Moshe

    2015-11-01

    Experiments of non-premixed combustion in micro-channels have shown different modes of burning. Normally, a flame is established along, or near the axis of a channel that spreads the entire mixing layer and separates a region of fuel but no oxidizer from a region with only oxidizer. Often, however, a periodic sequence of extinction and reignition events, termed collectively as ``flame streets'', are observed. They constitute a series of diffusion flames, each with a tribrachial leading edge stabilized along the channel. This work focuses on understanding the underlying mechanism responsible for these distinct observations. Numerical simulations were conducted in the thermo-diffusive limit in order to study the effects of confinement and heat loss on non-premixed flames in three-dimensional micro-channels with low aspect ratios. The three dimensionality of the channel was captured qualitatively through a systematic asymptotic analysis that led to a two dimensional problem with an effective parameter representing heat losses in the vertical direction. There exist three key flame regimes: (1) a stable continuous diffusion flame, (2) an unsteady flame, and (3) a stable ``flame street'' the transition between regimes demarcated primarily by Reynolds and Nusselt numbers.

  15. Effects of Flame Structure and Hydrodynamics on Soot Particle Inception and Flame Extinction in Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Chen, R.; Sunderland, P. B.; Urban, D. L.; Liu, S.; Chao, B. H.

    2001-01-01

    This paper summarizes recent studies of the effects of stoichiometric mixture fraction (structure) and hydrodynamics on soot particle inception and flame extinction in diffusion flames. Microgravity experiments are uniquely suited for these studies because, unlike normal gravity experiments, they allow structural and hydrodynamic effects to be independently studied. As part of this recent flight definition program, microgravity studies have been performed in the 2.2 second drop tower. Normal gravity counterflow studies also have been employed and analytical and numerical models have been developed. A goal of this program is to develop sufficient understanding of the effects of flame structure that flames can be "designed" to specifications - consequently, the program name Flame Design. In other words, if a soot-free, strong, low temperature flame is required, can one produce such a flame by designing its structure? Certainly, as in any design, there will be constraints imposed by the properties of the available "materials." For hydrocarbon combustion, the base materials are fuel and air. Additives could be considered, but for this work only fuel, oxygen and nitrogen are considered. Also, the structure of these flames is "designed" by varying the stoichiometric mixture fraction. Following this line of reasoning, the studies described are aimed at developing the understanding of flame structure that is needed to allow for optimum design.

  16. Grid oscillators

    NASA Technical Reports Server (NTRS)

    Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.

    1988-01-01

    Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.

  17. Influence of a Simple Heat Loss Profile on a Pure Diffusion Flame

    NASA Technical Reports Server (NTRS)

    Ray, Anjan; Wichman, Indrek S.

    1996-01-01

    The presence of soot on the fuel side of a diffusion flame results in significant radiative heat losses. The influence of a fuel side heat loss zone on a pure diffusion flame established between a fuel and an oxidizer wall is investigated by assuming a hypothetical sech(sup 2) heat loss profile. The intensity and width of the loss zone are parametrically varied. The loss zone is placed at different distances from the Burke-Schumann flame location. The migration of the temperature and reactivity peaks are examined for a variety of situations. For certain cases the reaction zone breaks through the loss zone and relocates itself on the fuel side of the loss zone. In all cases the temperature and reactivity peaks move toward the fuel side with increased heat losses. The flame structure reveals that the primary balance for the energy equation is between the reaction term and the diffusion term. Extinction plots are generated for a variety of situations. The heat transfer from the flame to the walls and the radiative fraction is also investigated, and an analytical correlation formula, derived in a previous study, is shown to produce excellent predictions of our numerical results when an O(l) numerical multiplicative constant is employed.

  18. A model of concurrent flow flame spread over a thin solid fuel

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul V.

    1993-01-01

    A numerical model is developed to examine laminar flame spread and extinction over a thin solid fuel in lowspeed concurrent flows. The model provides a more precise fluid-mechanical description of the flame by incorporating an elliptic treatment of the upstream flame stabilization zone near the fuel burnout point. Parabolic equations are used to treat the downstream flame, which has a higher flow Reynolds number. The parabolic and elliptic regions are coupled smoothly by an appropriate matching of boundary conditions. The solid phase consists of an energy equation with surface radiative loss and a surface pyrolysis relation. Steady spread with constant flame and pyrolysis lengths is found possible for thin fuels and this facilitates the adoption of a moving coordinate system attached to the flame with the flame spread rate being an eigen value. Calculations are performed in purely forced flow in a range of velocities which are lower than those induced in a normal gravity buoyant environment. Both quenching and blowoff extinction are observed. The results show that as flow velocity or oxygen percentage is reduced, the flame spread rate, the pyrolysis length, and the flame length all decrease, as expected. The flame standoff distance from the solid and the reaction zone thickness, however, first increase with decreasing flow velocity, but eventually decrease very near the quenching extinction limit. The short, diffuse flames observed at low flow velocities and oxygen levels are consistent with available experimental data. The maximum flame temperature decreases slowly at first as flow velocity is reduced, then falls more steeply close to the quenching extinction limit. Low velocity quenching occurs as a result of heat loss. At low velocities, surface radiative loss becomes a significant fraction of the total combustion heat release. In addition, the shorter flame length causes an increase in the fraction of conduction downstream compared to conduction to the fuel

  19. Grid Computing

    NASA Astrophysics Data System (ADS)

    Foster, Ian

    2001-08-01

    The term "Grid Computing" refers to the use, for computational purposes, of emerging distributed Grid infrastructures: that is, network and middleware services designed to provide on-demand and high-performance access to all important computational resources within an organization or community. Grid computing promises to enable both evolutionary and revolutionary changes in the practice of computational science and engineering based on new application modalities such as high-speed distributed analysis of large datasets, collaborative engineering and visualization, desktop access to computation via "science portals," rapid parameter studies and Monte Carlo simulations that use all available resources within an organization, and online analysis of data from scientific instruments. In this article, I examine the status of Grid computing circa 2000, briefly reviewing some relevant history, outlining major current Grid research and development activities, and pointing out likely directions for future work. I also present a number of case studies, selected to illustrate the potential of Grid computing in various areas of science.

  20. Flame Resistant Foam

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Solimide manufactured by Imi-Tech Corporation, is a lightweight fire resistant material produced under a manufacturing process that allows it to be uniformly foamed. Can be produced in a variety of densities and structural configurations and remains resilient under exposure to temperatures ranging from minus 300 to plus 500 degrees Fahrenheit. Is resistant to open flame and generates virtually no smoke or toxic by-products. Used in aircraft for its superior damping characteristics, lighter weight and fire barrier properties, it's also applicable to ships and surface transportation systems such as transit cars, trains, buses and automobiles.

  1. Flame retarded asphalt blend composition

    SciTech Connect

    Walters, R.B.

    1987-04-21

    This patent describes a flame retarded asphalt composition consisting essentially of a blend of: (a) thermoplastic elastomer modified bitumen; (b) 20-30 wt % inert filler; (c) 1-20 wt % of at least one halogenated flame retardant; and (d) 1-5 wt % of at least one inorganic phosphorus containing compound selected from the group consisting of ammonium phosphate compounds and red phosphorus.

  2. Statistics of premixed flame cells

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1991-01-01

    The statistics of random cellular patterns in premixed flames are analyzed. Agreement is found with a variety of topological relations previously found for other networks, namely, Lewis's law and Aboav's law. Despite the diverse underlying physics, flame cells are shown to share a broad class of geometric properties with other random networks-metal grains, soap foams, bioconvection, and Langmuir monolayers.

  3. Statistics of premixed flame cells

    SciTech Connect

    Noever, D.A. )

    1991-07-15

    The statistics of random cellular patterns in premixed flames are analyzed. Agreement is found with a variety of topological relations previously found for other networks, namely, Lewis's law and Aboav's law. Despite the diverse underlying physics, flame cells are shown to share a broad class of geometric properties with other random networks---metal grains, soap foams, bioconvection, and Langmuir monolayers.

  4. Dynamics and structure of stretched flames

    SciTech Connect

    Law, C.K.

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  5. Role of buoyant flame dynamics in wildfire spread

    PubMed Central

    Finney, Mark A.; Cohen, Jack D.; Forthofer, Jason M.; McAllister, Sara S.; Gollner, Michael J.; Gorham, Daniel J.; Saito, Kozo; Akafuah, Nelson K.; Adam, Brittany A.; English, Justin D.

    2015-01-01

    Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is available to form the basis for the precise predictions needed to manage fires more effectively and reduce their environmental, economic, ecological, and climate impacts. Here, we report new experiments conducted at multiple scales that appear to reveal how wildfire spread derives from the tight coupling between flame dynamics induced by buoyancy and fine-particle response to convection. Convective cooling of the fine-sized fuel particles in wildland vegetation is observed to efficiently offset heating by thermal radiation until convective heating by contact with flames and hot gasses occurs. The structure and intermittency of flames that ignite fuel particles were found to correlate with instabilities induced by the strong buoyancy of the flame zone itself. Discovery that ignition in wildfires is critically dependent on nonsteady flame convection governed by buoyant and inertial interaction advances both theory and the physical basis for practical modeling. PMID:26183227

  6. Stability characteristics and flame structure of low swirl burner

    SciTech Connect

    Mansour, Mohy; Chen, Yung-Cheng

    2008-07-15

    Low swirl burner provides stable lifted flames for fundamental studies of flame structure and turbulence/chemistry interaction in well defined boundary conditions. In the present study the stability characteristics of the burner have been investigated with four tangential jets at the same stoichiometry as the main jet. Two different burner nozzles with 40 mm and 53.5 mm diameters have been used for the stability measurements. In addition, a combined two-dimensional Rayleigh/LIPF-OH technique has been applied for simultaneous measurements of temperature and OH-radical for reaction zone and flame front investigation. Three flames have been selected near extinction for detailed measurements. The data show that the relation between of the main jet velocity, U, and the velocity of the four tangential jets, u, is linear. For the present data set with the nozzles investigated the linear trend can lead to an almost constant ratio of UD/u as 5.08 mm with D as the nozzle diameter of the burner. The flame structure varies from corrugated to highly wrinkle according to the turbulence level. (author)

  7. Role of buoyant flame dynamics in wildfire spread.

    PubMed

    Finney, Mark A; Cohen, Jack D; Forthofer, Jason M; McAllister, Sara S; Gollner, Michael J; Gorham, Daniel J; Saito, Kozo; Akafuah, Nelson K; Adam, Brittany A; English, Justin D

    2015-08-11

    Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is available to form the basis for the precise predictions needed to manage fires more effectively and reduce their environmental, economic, ecological, and climate impacts. Here, we report new experiments conducted at multiple scales that appear to reveal how wildfire spread derives from the tight coupling between flame dynamics induced by buoyancy and fine-particle response to convection. Convective cooling of the fine-sized fuel particles in wildland vegetation is observed to efficiently offset heating by thermal radiation until convective heating by contact with flames and hot gasses occurs. The structure and intermittency of flames that ignite fuel particles were found to correlate with instabilities induced by the strong buoyancy of the flame zone itself. Discovery that ignition in wildfires is critically dependent on nonsteady flame convection governed by buoyant and inertial interaction advances both theory and the physical basis for practical modeling. PMID:26183227

  8. Linear analysis of diffusional-thermal instability in diffusion flames with Lewis numbers close to unity

    NASA Astrophysics Data System (ADS)

    Kim, J. S.

    1997-03-01

    A general theory of diffusional-thermal instability for diffusion flames is developed by considering the diffusion-flame regime of activation-energy asymptotics. Attention is focused on near-extinction flames in a distinguished limit in which Lewis numbers deviate from unity by a small amount. This instability analysis differs from that of premixed flames in that two orders of the inner reaction-zone analyses are required to obtain the dispersion relation. The results, illustrated for a one-dimensional convective diffusion flame as a model, exhibit two types of unstable solution branches, depending on whether Lewis number is less than or greater than unity. For flames with Lewis numbers sufficiently less than unity, a cellular instability is predicted, which can give rise to stripe patterns of the flame-quenching zones with maximum growth rate occuring at a finite wavelength comparable with the thickness of the mixing layer. The result for the critical Lewis number shows that the tendency toward cellular instability diminishes as the Peclét number of the flame decreases. On the other hand, for flames with Lewis numbers sufficiently greater than unity, a pulsating instability is predicted, which occurs most strongly when the Peclét number is small. For this type of instability, the planar disturbance is found to be most unstable with a real grow rate, and a conjugate pair of complex solutions bifurcates from the turning point of the real-solution branch and extends to higher wave numbers. An increase of the reaction intensity is found to stabilize the flame at all wavelengths. Employing the Peclét number as a small parameter, an approximate dispersion relation is derived as a quadratic equation, which correctly predicts all of the qualitative characteristics of the instability.

  9. Flame retardant polyphosphazenes

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Karle, D. W.; Kratzer, R. H.

    1973-01-01

    Six polyphosphazene compositions were prepared by reaction of three bis-tertiary phosphines with two phenyl-s-triazine derived diazides. All six polyphosphazenes produced were completely characterized, four of them were furthermore subjected to isothermal gravimetric analysis, smoke density measurements, flammability and oxidative thermal degradation testing. The results of the characterization studies indicate that only low molecular weight oligomers, possibly of a cyclic structure, were obtained in the polymerization reactions. Despite this, however, two of the materials showed no weight loss after 96 hr at 200 C, one did not autoignite at 500 C in air, and all four self extinguished when exposed to a flame as soon as contact between flame and resin was lost. The only toxic decomposition products to be concerned about were found to be hydrogen cyanide and benzene. Under the conditions employed it was proven, however, that the quantities of toxic products are greatly reduced if no ignition takes place, e.g., if thermal decomposition proceeds at a sufficiently low rate.

  10. Turbulent Flame Processes Via Diffusion Flame-Vortex Ring Interactions

    NASA Technical Reports Server (NTRS)

    Dahm, Werner J. A.; Chen, Shin-Juh; Silver, Joel A.; Piltch, Nancy D.; VanderWal, Randall L.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in turbulent reacting flows. This configuration contains many of the fundamental aspects of the coupling between fluid dynamics and combustion that could be investigated with more controllable conditions than are possible under direct investigations of turbulent flames. Diffusion flame-vortex ring interaction contains many of the fundamental elements of flow, transport, combustion, and soot processes found in turbulent diffusion flames. Some of these elements include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, soot formation and oxidation, and heat release effects. Such simplified flowfield allows the complex processes to be examined more closely and yet preserving the physical processes present in turbulent reacting flows. Furthermore, experimental results from the study of flame-vortex interactions are useful for the validation of numerical simulations and more importantly to deepen our understanding of the fundamental processes present in reacting flows. Experimental and numerical results obtained under microgravity conditions of the diffusion flame-vortex ring interaction are summarized in this paper. Results are obtained using techniques that include Flame Luminosity Imaging (FLI), Laser Soot-Mie Scattering (LSMS), Computational Fluid Dynamics and Combustion (CFDC), and Diode Laser Spectroscopy/Iterative Temperature with Assumed Chemistry (DLS/ITAC).

  11. Structure of turbulent non-premixed flames modeled with two-step chemistry

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Mahalingam, S.; Puri, I. K.; Vervisch, L.

    1992-01-01

    Direct numerical simulations of turbulent diffusion flames modeled with finite-rate, two-step chemistry, A + B yields I, A + I yields P, were carried out. A detailed analysis of the turbulent flame structure reveals the complex nature of the penetration of various reactive species across two reaction zones in mixture fraction space. Due to this two zone structure, these flames were found to be robust, resisting extinction over the parameter ranges investigated. As in single-step computations, mixture fraction dissipation rate and the mixture fraction were found to be statistically correlated. Simulations involving unequal molecular diffusivities suggest that the small scale mixing process and, hence, the turbulent flame structure is sensitive to the Schmidt number.

  12. An Investigation of a Hybrid Mixing Model for PDF Simulations of Turbulent Premixed Flames

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Li, Shan; Wang, Hu; Ren, Zhuyin

    2015-11-01

    Predictive simulations of turbulent premixed flames over a wide range of Damköhler numbers in the framework of Probability Density Function (PDF) method still remain challenging due to the deficiency in current micro-mixing models. In this work, a hybrid micro-mixing model, valid in both the flamelet regime and broken reaction zone regime, is proposed. A priori testing of this model is first performed by examining the conditional scalar dissipation rate and conditional scalar diffusion in a 3-D direct numerical simulation dataset of a temporally evolving turbulent slot jet flame of lean premixed H2-air in the thin reaction zone regime. Then, this new model is applied to PDF simulations of the Piloted Premixed Jet Burner (PPJB) flames, which are a set of highly shear turbulent premixed flames and feature strong turbulence-chemistry interaction at high Reynolds and Karlovitz numbers. Supported by NSFC 51476087 and NSFC 91441202.

  13. The Cool Flames Experiment

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Chapek, Richard; Neville, Donna; Sheredy, William; Wu, Ming-Shin; Tornabene, Robert

    2001-01-01

    A space-based experiment is currently under development to study diffusion-controlled, gas-phase, low temperature oxidation reactions, cool flames and auto-ignition in an unstirred, static reactor. At Earth's gravity (1g), natural convection due to self-heating during the course of slow reaction dominates diffusive transport and produces spatio-temporal variations in the thermal and thus species concentration profiles via the Arrhenius temperature dependence of the reaction rates. Natural convection is important in all terrestrial cool flame and auto-ignition studies, except for select low pressure, highly dilute (small temperature excess) studies in small vessels (i.e., small Rayleigh number). On Earth, natural convection occurs when the Rayleigh number (Ra) exceeds a critical value of approximately 600. Typical values of the Ra, associated with cool flames and auto-ignitions, range from 104-105 (or larger), a regime where both natural convection and conduction heat transport are important. When natural convection occurs, it alters the temperature, hydrodynamic, and species concentration fields, thus generating a multi-dimensional field that is extremely difficult, if not impossible, to be modeled analytically. This point has been emphasized recently by Kagan and co-workers who have shown that explosion limits can shift depending on the characteristic length scale associated with the natural convection. Moreover, natural convection in unstirred reactors is never "sufficiently strong to generate a spatially uniform temperature distribution throughout the reacting gas." Thus, an unstirred, nonisothermal reaction on Earth does not reduce to that generated in a mechanically, well-stirred system. Interestingly, however, thermal ignition theories and thermokinetic models neglect natural convection and assume a heat transfer correlation of the form: q=h(S/V)(T(bar) - Tw) where q is the heat loss per unit volume, h is the heat transfer coefficient, S/V is the surface to

  14. Computational Studies of Flame Structures

    NASA Astrophysics Data System (ADS)

    Amin, Vaishali

    This thesis is concerned with computational studies of laminar flame structures using detailed and skeletal chemical kinetic mechanisms. Elementary reactions in these mechanisms control the observable combustion properties such as flame speed, autoignition temperature, ignition delay time, and extinction characteristics in nonpremixed and premixed flame phenomena. First part of thesis deals with computational investigations of influence of carbon monoxide and hydrogen addition on methane flames stabilized in counterflow configuration. Computations were performed employing detailed chemical kinetic mechanism---the San Diego mechanism. In case of nonpremixed flames, effect of carbon xvi monoxide addition on structure and critical condition of extinction were examined. Differences between addition on fuel and oxidizer sides were investigated and plausible explanation given for the differences. For premixed flames, effect of addition of hydrogen and carbon monoxide to reactant mixture was studied. Critical conditions of extinction were predicted using computations for various compositions. Rates of production and consumption of various species were calculated and flame structure was analyzed for nonpremixed and premixed flames. It was found that moderate amount of carbon monoxide addition to methane enhances flame reactivity. However, with large amount of carbon monoxide addition, additive chemistry dominates. Addition of increasing amounts of hydrogen in premixed reactant stream enhances methane flame reactivity. In second part of thesis, kinetic modeling was performed to elucidate the structure and mechanism of extinction and autoignition of nonpremixed toluene flames in counterflow configuration. Computations were performed using detailed chemistry to determine flame structure and to obtain values for critical conditions of extinction and autoignition. Sensitivity analysis of rate parameters, reaction pathway analysis, and spatial reaction rate profiles were used to

  15. Candle Flames in Non-Buoyant Atmospheres

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Shu, Y.; Chang, P.; Tien, J. S.

    2000-01-01

    This paper addresses the behavior of a candle flame in a long-duration, quiescent microgravity environment both on the space Shuttle and the Mir Orbiting Station. On the Shuttle, the flames became dim blue after an initial transient where there was significant yellow (presumably soot) in the flame. The flame lifetimes were typically less than 60 seconds. The safety-mandated candlebox that contained the candle flame inhibited oxygen transport to the flame and thus limited the flame lifetime. The flames on the Mir were similar, except that the yellow luminosity persisted longer into the flame lifetime because of a higher initial oxygen concentration, The Mir flames burned for as long as 45 minutes. The difference in the flame lifetime between the Shuttle and Mir flames was primarily the redesigned candlebox that did not inhibit oxygen transport to the flame. In both environments, the flame intensity and the height-to-width ratio gradually decreased as the ambient oxygen content in the sealed chamber slowly decreased. Both sets of experiments showed spontaneous, axisymmetric flame oscillations just prior to extinction. The paper also presents a numerical model of a candle flame. The formulation is two-dimensional and time-dependent in the gas phase with constant specific heats, thermal conductivity and Lewis number (although different species can have different Lewis numbers), one-step finite-rate kinetics, and gas-phase radiative losses from CO2 and H2O. The treatment of the liquid/wick phase assumes that the, fuel evaporates from a constant diameter sphere connected to an inert cone. The model predicts a steady flame with a shape and size quantitatively similar to the Shuttle and Mir flames. The computation predicts that the flame size will increase slightly with increasing ambient oxygen mole fraction. The model also predicts pre-extinction flame oscillations if the rate of decrease in ambient oxygen is small enough, such as that which would occur for a flame

  16. A three-region, moving boundary model of a furnace flame

    SciTech Connect

    Wilson, T.L.

    1996-02-01

    A dynamic model of a furnace flame is presented. The model simulates the preheat, combustion, and postcombustion regions of a wall-fired coal furnace. The set of nonlinear differential equations describing the flame dynamics are derived from the fundamental equations of conservation of mass and energy. The key approximations for flows across the moving boundary and spatial distribution functions for the carbon and oxygen concentrations in the combustion zone are developed. Sample results of transient calculations are presented.

  17. Effects of fuel type and equivalence ratios on the flickering of triple flames

    SciTech Connect

    Sahu, K.B.; Kundu, A.; Ganguly, R.; Datta, A.

    2009-02-15

    An experimental study has been conducted in axisymmetric, co-flowing triple flames with different equivalence ratios of the inner and outer reactant streams (2<{phi}{sub in}<3 and 0{<=}{phi}{sub out}<0.7). Different fuel combinations, like propane/propane, propane/methane or methane/methane in the inner and outer streams respectively, have been used in the experiments. The structures of the triple flames have been compared for the different fuel combinations and equivalence ratios. The conditions under which triple flames exhibit oscillation have been identified. During the oscillation, the non-premixed flame and the outer lean premixed flame flicker strongly, while the inner rich premixed flame remains more or less stable. The flickering frequency has been evaluated through image processing and fast Fourier transform (FFT) of the average pixel intensity of the image frames. It is observed that, for all the fuel combinations, the frequency decreases with the increase in the outer equivalence ratio, while it is relatively invariant with the change in the inner equivalence ratio. However, an increase in the inner equivalence ratio affects the structure of the flame by increasing the heights of the inner premixed flame and non-premixed flame and also enlarges the yellow soot-laden zone at the tip of the inner flame. A scaling analysis of the oscillating flames has been performed based on the measured parameters, which show a variation of Strouhal number (St) with Richardson number (Ri) as St {proportional_to} Ri{sup 0.5}. The fuel type is found to have no influence on this correlation. (author)

  18. Numerical Modeling of Spray Combustion with an Unstructured-Grid Method

    NASA Technical Reports Server (NTRS)

    Shang, H. M.; Chen, Y. S.; Liaw, P.; Shih, M. H.; Wang, T. S.

    1996-01-01

    The present unstructured-grid method follows strictly the basic finite volume forms of the conservation laws of the governing equations for the entire flow domain. High-order spatially accurate formulation has been employed for the numerical solutions of the Navier-Stokes equations. A two-equation k-epsilon turbulence model is also incorporated in the unstructured-grid solver. The convergence of the resulted linear algebraic equation is accelerated with preconditioned Conjugate Gradient method. A statistical spray combustion model has been incorporated into the present unstructured-grid solver. In this model, spray is represented by discrete particles, rather than by continuous distributions. A finite number of computational particles are used to predict a sample of total population of particles. Particle trajectories are integrated using their momentum and motion equations and particles exchange mass, momentum and energy with the gas within the computational cell in which they are located. The interaction calculations are performed simultaneously and eliminate global iteration for the two-phase momentum exchange. A transient spray flame in a high pressure combustion chamber is predicted and then the solution of liquid-fuel combusting flow with a rotating cup atomizer is presented and compared with the experimental data. The major conclusion of this investigation is that the unstructured-grid method can be employed to study very complicated flow fields of turbulent spray combustion. Grid adaptation can be easily achieved in any flow domain such as droplet evaporation and combustion zone. Future applications of the present model can be found in the full three-dimensional study of flow fields of gas turbine and liquid propulsion engine combustion chambers with multi-injectors.

  19. Organic solvents as interferents in arsenic determination by hydride generation atomic absorption spectrometry with flame atomization

    NASA Astrophysics Data System (ADS)

    Karadjova, Irina B.; Lampugnani, Leonardo; Dědina, Jiri; D'Ulivo, Alessandro; Onor, Massimo; Tsalev, Dimiter L.

    2006-05-01

    Interference effects of various organic solvents miscible with water on arsenic determination by hydride generation atomic absorption spectrometry have been studied. Arsine was chemically generated in continuous flow hydride generation system and atomized by using a flame atomizer able to operate in two modes: miniature diffusion flame and flame-in-flame. The effects of experimental variables and atomization mode were investigated: tetrahydroborate and hydrochloric acid concentrations, argon, hydrogen and oxygen supply rates for the microflame, and the distance from the atomization region to the observation zone. The nature of the species formed in the flame due to the pyrolysis of organic solvent vapors entering the flame volume together with arsine is discussed. The observed signal depression in the presence of organic solvents has been mainly attributed to the atomization interference due to heterogeneous gas-solid reaction between the free arsenic atoms and finely dispersed carbon particles formed by carbon radicals recombination. The best tolerance to interferences was obtained by using flame-in-flame atomization (5-10 ml min - 1 of oxygen flow rate), together with higher argon and hydrogen supply rates and elevated observation heights.

  20. Flame Acceleration and Transition to Detonation in Channels

    NASA Astrophysics Data System (ADS)

    Goodwin, Gabriel; Houim, Ryan; Oran, Elaine

    2015-11-01

    Two-dimensional numerical simulations of a confined, homogeneous, chemically reactive gas were used to compute and catalog interactions leading to deflagration-to-detonation transition (DDT). The geometrical configuration was a long rectangular channel with regularly spaced obstacles and adiabatic boundary conditions on all of the surfaces. The channel contained a stoichiometric mixture of ethylene-oxygen at 300 K and one atm that was ignited with a circular flame. The reactive Navier-Stokes equations were solved on an adapting grid by a high-order Godunov algorithm. The channel height was fixed at 0.32 cm and obstacle heights created blockage ratios ranging from 0.8 to 0.05, where the blockage ratio is defined as the obstacle height divided by the channel height. The computations show the development of a turbulent flame, the creation of shocks, shock-flame interactions, and a host of fluid and chemical-fluid instabilities. The result is an accelerating flame and eventual DDT in unburned, but shock-heated, material. Several DDT mechanisms were observed; these will be shown and discussed, with an emphasis on several new observations related to shock interactions. This work is supported by the Office of Naval Research.

  1. Effects of gravity on sheared and nonsheared turbulent nonpremixed flames

    NASA Technical Reports Server (NTRS)

    Elghobashi, Said; Lee, Yong-Yao; Zhong, Rongbin

    1995-01-01

    The present numerical study is concerned with the fundamental physics of the multiway interaction between turbulence, chemical reaction, and buoyancy in a nonpremixed flame. The method of direct numerical simulation (DNS) is used to solve the instantaneous, three-dimensional governing equations. Because of the present supercomputer limitations, we consider two simple flow geometries, namely an initially uniform flow without shear (equivalent to grid-generated turbulence) and an initially uniform shear flow. In each flow, the fuel and oxidant initially exist as two separate streams. As the reactants mix, chemical reaction takes place and exothermic energy is released causing variations in density. In the presence of a gravity field, the spatial and temporal distributions of the induced buoyancy forces depend on the local density gradients and the direction of the gravitational acceleration. The effects of buoyancy include the generation of local shear, baroclinic production or destruction of vorticity, and countergradient heat and mass transport. Increased vorticity and small-scale turbulence promote further mixing and reaction. However, if the strain-rates become too high, local flame extinction can occur. Our objective is to gain an understanding of the complex interactions between the physical phenomena involved, with particular attention to the effects of buoyancy on the turbulence structure, flame behavior, and factors influencing flame extinction.

  2. MESH2D GRID GENERATOR DESIGN AND USE

    SciTech Connect

    Flach, G.; Smith, F.

    2012-01-20

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.

  3. Flame spraying of polymers

    SciTech Connect

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.

    1997-08-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs.

  4. Invisible Flame Imaging

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Stennis Space Center uses more than one million gallons of liquid hydrogen per month in its rocket testing program. Firefighters responding to a hydrogen fire had to give the area "the broom test" to determine the presence and location of a fire. This technique has significant safety and accuracy shortfalls. Stennis then developed technology to visually assess the presence, location and extent of hydrogen fires. SafetyScan, LLC. is now manufacturing FIRESCAPE, the first affordable commercial product for invisible (or ashless) fire imaging based on the original technology, to aid firefighters in seeing the invisible flames from alcohol and hydrogen fires during the day and even through smoke. The hand-held device weighs five pounds, is used like a pair of binoculars and can run for up to two hours before recharging.

  5. Response mechanisms of attached premixed flames subjected to harmonic forcing

    NASA Astrophysics Data System (ADS)

    Shreekrishna

    The persistent thrust for a cleaner, greener environment has prompted air pollution regulations to be enforced with increased stringency by environmental protection bodies all over the world. This has prompted gas turbine manufacturers to move from nonpremixed combustion to lean, premixed combustion. These lean premixed combustors operate quite fuel-lean compared to the stochiometric, in order to minimize CO and NOx productions, and are very susceptible to oscillations in any of the upstream flow variables. These oscillations cause the heat release rate of the flame to oscillate, which can engage one or more acoustic modes of the combustor or gas turbine components, and under certain conditions, lead to limit cycle oscillations. This phenomenon, called thermoacoustic instabilities, is characterized by very high pressure oscillations and increased heat fluxes at system walls, and can cause significant problems in the routine operability of these combustors, not to mention the occasional hardware damages that could occur, all of which cumulatively cost several millions of dollars. In a bid towards understanding this flow-flame interaction, this research works studies the heat release response of premixed flames to oscillations in reactant equivalence ratio, reactant velocity and pressure, under conditions where the flame preheat zone is convectively compact to these disturbances, using the G-equation. The heat release response is quantified by means of the flame transfer function and together with combustor acoustics, forms a critical component of the analytical models that can predict combustor dynamics. To this end, low excitation amplitude (linear) and high excitation amplitude (nonlinear) responses of the flame are studied in this work. The linear heat release response of lean, premixed flames are seen to be dominated by responses to velocity and equivalence ratio fluctuations at low frequencies, and to pressure fluctuations at high frequencies which are in the

  6. A Rapid Method for Determination of the Main Conjugated Linoleic Acid Precursors (C18:2 n-6 and C18:3 n-3) in Forage by Capillary Zone Electrophoresis with Ultraviolet Detection Using Gas Chromatography with Flame Ionization Detection as a Comparative Method.

    PubMed

    de Jesus Coelho Castro, Renata; Sobrinho, Fausto Souza; Sundfeld da Gama, Marco Antônio; Takabayashi Sato, Renata; Lavorato Lima, Larissa; Leal de Oliveira, Marcone Augusto

    2015-01-01

    A rapid method has been proposed for determination of the main conjugated linoleic acid precursors such as linoleic (C18:2 n-6) and linolenic (C18:3 n-3) acids in forages by capillary zone electrophoresis (CZE) with direct UV detection at 200 nm. Among the fatty acids found in forages, C18:2 n-6 and C18:3 n-3 have received particular attention due to their roles as precursors for the synthesis of conjugated linoleic acid, a class of health-enhancing compounds that is predominantly found in dairy products. The electrolyte background consisted of 12.0 mmol/L tetraborate buffer (pH 9.2) added to 12.0 mmol/L Brij 35®, 17% acetonitrile, and 33% methanol. Under the optimized conditions, the baseline separation of C18:2 n-6 and C18:3 n-3 was achieved within 4 min. The CZE-UV method was compared to GC with a flame ionization detector, which is the American Oil Chemists' Society (AOCS 996.06) official method for fatty acid analysis. The methods did not show any evidence of significant differences within 95% confidence interval (P>0.05). The CZE-UV method was successfully applied to the analysis of 80 genotypes of Brachiaria ruzizienses clones submitted to a genetic improvement program in agricultural research. PMID:26651572

  7. Biomass cofiring impacts on flame structure and emissions

    SciTech Connect

    Bradley Damstedt; Jesper M. Pederson; Dane Hansen; Todd Knighton; Justin Jones; Craig Christensen; Larry Baxter; Dale Tree

    2007-07-01

    The impacts of cofiring biomass and coal on flame structure and NO emissions are investigated in the context of a swirl-stabilized, pilot-scale burner with straw and coal fired independently. The comparatively low energy density of biomass generally leads to higher transport air requirements per unit energy, increasing the momentum of biomass streams relative to an energy equivalent coal stream in burner feeds. Increasing the primary momentum in this manner alters the flow field and stoichiometry patterns of the burner. Detailed species concentration measurements as well as particle sampling were employed to investigate the flame structures of both high and low straw primary air flowrates. Large straw particles penetrate the internal recirculation zone at the high primary air flowrate, elongating the flame structure by forming fuel-rich eddies. The knees (relatively dense sections of straw) of the straw penetrated much further into the reactor, forming a secondary combustion zone. The NO emission was seen to decrease as the straw primary air flowrate increased because of increased numbers of fuel-rich eddies providing more reducing zone, where the fuel nitrogen from the large particles was released. It is also shown that the fuel-rich eddies served as reburning and/or advanced reburning centers, reducing the effluent NO emission further. 27 refs., 9 figs., 2 tabs.

  8. Neurotoxicity of brominated flame retardants

    EPA Science Inventory

    Polybrominated diphenyl ethers (PBDEs) have been commonly used as commercial flame retardants in a variety of products including plastics and textiles. Despite their decreasing usage worldwide, congeners continue to accumulate in the environment, including soil, dust, food, anima...

  9. INTRODUCTION TO BROMINATED FLAME RETARDANTS

    EPA Science Inventory

    Brominated flame retardants (BFRs) are a large and diverse class of major industrial products used to provide fire safety. Tetrabromobisphenol A (TBBPA), Hexabromocylocodecane (HBCD), and Polybrominated Diphenyl Ethers (PBDEs) are the major commercial compounds. TBBPA is a react...

  10. Making Thermoplastics Flame-Resistant

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Ingham, J. D.; Reilly, W. W.

    1984-01-01

    Inorganic hydrate-salt filler coated with elastomer containing acidic groups imparts flame and smoke retardancy to thermoplastics while preventing degradation of impact resistance that results from high filler loadings in thermoplastic.

  11. An experimental study of turbulent diffusion flames established on a porous plate behind a backward-facing step

    SciTech Connect

    Rohmat, T.A.; Yoshihashi, Teruo; Obara, Tetsuro; Ohyagi, Shigeharu

    1999-07-01

    A study on diffusion flame established on a porous plate behind a backward-facing step disturbed in a parallel air stream was performed experimentally using an apparatus shown in a figure. As a turbulence generator, a turbulent grid or a cylinder was located upstream of the step. Methane was used as fuel and injected uniformly through a porous plate burner. Visualization of flame was performed by both direct and color schlieren photography. Thermal structures of the flame were measured using thin thermocouple and the data obtained were compensated digitally for thermal response.

  12. Micro flame-based detector suite for universal gas sensing.

    SciTech Connect

    Hamilton, Thomas Warren; Washburn, Cody M.; Moorman, Matthew Wallace; Manley, Robert George; Lewis, Patrick Raymond; Miller, James Edward; Clem, Paul Gilbert; Shelmidine, Gregory J.; Manginell, Ronald Paul; Okandan, Murat

    2005-11-01

    A microflame-based detector suit has been developed for sensing of a broad range of chemical analytes. This detector combines calorimetry, flame ionization detection (FID), nitrogen-phosphorous detection (NPD) and flame photometric detection (FPD) modes into one convenient platform based on a microcombustor. The microcombustor consists in a micromachined microhotplate with a catalyst or low-work function material added to its surface. For the NPD mode a low work function material selectively ionizes chemical analytes; for all other modes a supported catalyst such as platinum/alumina is used. The microcombustor design permits rapid, efficient heating of the deposited film at low power. To perform calorimetric detection of analytes, the change in power required to maintain the resistive microhotplate heater at a constant temperature is measured. For FID and NPD modes, electrodes are placed around the microcombustor flame zone and an electrometer circuit measures the production of ions. For FPD, the flame zone is optically interrogated to search for light emission indicative of deexcitation of flame-produced analyte compounds. The calorimetric and FID modes respond generally to all hydrocarbons, while sulfur compounds only alarm in the calorimetric mode, providing speciation. The NPD mode provides 10,000:1 selectivity of nitrogen and phosphorous compounds over hydrocarbons. The FPD can distinguish between sulfur and phosphorous compounds. Importantly all detection modes can be established on one convenient microcombustor platform, in fact the calorimetric, FID and FPD modes can be achieved simultaneously on only one microcombustor. Therefore, it is possible to make a very universal chemical detector array with as little as two microcombustor elements. A demonstration of the performance of the microcombustor in each of the detection modes is provided herein.

  13. Flame spread across liquid pools

    NASA Technical Reports Server (NTRS)

    Ross, Howard; Miller, Fletcher; Schiller, David; Sirignano, William A.

    1993-01-01

    For flame spread over liquid fuel pools, the existing literature suggests three gravitational influences: (1) liquid phase buoyant convection, delaying ignition and assisting flame spread; (2) hydrostatic pressure variation, due to variation in the liquid pool height caused by thermocapillary-induced convection; and (3) gas-phase buoyant convection in the opposite direction to the liquid phase motion. No current model accounts for all three influences. In fact, prior to this work, there was no ability to determine whether ignition delay times and flame spread rates would be greater or lesser in low gravity. Flame spread over liquid fuel pools is most commonly characterized by the relationship of the initial pool temperature to the fuel's idealized flash point temperature, with four or five separate characteristic regimes having been identified. In the uniform spread regime, control has been attributed to: (1) gas-phase conduction and radiation; (2) gas-phase conduction only; (3) gas-phase convection and liquid conduction, and most recently (4) liquid convection ahead of the flame. Suggestions were made that the liquid convection was owed to both vuoyancy and thermocapillarity. Of special interest to this work is the determination of whether, and under what conditions, pulsating spread can and will occur in microgravity in the absence of buoyant flows in both phases. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity experiments and advanced diagnostics; (2) microgravity experiments; and (3) numerical modelling at arbitrary gravitational level.

  14. Analysis of the laminar flamelet concept for nonpremixed laminar flames

    SciTech Connect

    Claramunt, K.; Consul, R.; Carbonell, D.; Perez-Segarra, C.D.

    2006-06-15

    The goal of this paper is to investigate the application of the laminar flamelet concept to the multidimensional numerical simulation of nonpremixed laminar flames. The performance of steady and unsteady flamelets is analyzed. The deduction of the mathematical formulation of flamelet modeling is exposed and some commonly used simplifications are examined. Different models for the scalar dissipation rate dependence on the mixture fraction variable are analyzed. Moreover, different criteria to evaluate the Lagrangian-type flamelet lifetime for unsteady flamelets are investigated. Inclusion of phenomena such as differential diffusion with constant Lewis number for each species and radiation heat transfer are also studied. A confined co-flow axisymmetric nonpremixed methane/air laminar flame experimentally investigated by McEnally and Pfefferle (Combust. Sci. Technol. 116-117 (1996) 183-209) and numerically investigated by Bennett, McEnally, Pfefferle, and Smooke (Combust. Flame 123 (2000) 522-546), Consul, Perez-Segarra, Claramunt, Cadafalch, and Oliva (Combust. Theory Modelling 7 (3) (2003) 525-544), and Claramunt, Consul, Perez-Segarra, and Oliva (Combust. Flame 137 (2004) 444-457) has been used as a test case. Results obtained using the flamelet concept have been compared to data obtained from the full resolution of the complete transport equations using primitive variables. Finite-volume techniques over staggered grids are used to discretize the governing equations. A parallel multiblock algorithm based on domain decomposition techniques running with loosely coupled computers has been used. To assess the quality of the numerical solutions presented in this paper, a verification process based on the generalized Richardson extrapolation technique and on the grid convergence index (GCI) has been applied. (author)

  15. Coupling of wrinkled laminar flames with gravity

    NASA Technical Reports Server (NTRS)

    Bedat, Benoit; Kostiuk, Larry W.; Cheng, Robert K.

    1995-01-01

    The overall objective of our research is to understand flame-gravity coupling processes in laminar and low turbulent Reynolds number, Re(sub l), premixed flames (i.e. wrinkled- laminar flames). The approach we have developed is to compare the flowfields and mean flame properties under different gravitational orientations. Key to our study is the investigation of microgravity (mu g) flames. These mu g experiments provide vital information to reconcile the differences between flames in normal gravity (+g, flame pointing upward) and reverse gravity (-g, flame pointing downwards). Traditionally, gravity effects are assumed to be insignificant or circumvented in the laboratory, therefore, not much is available in the literature on the behavior of -g flames.

  16. TURBOGRID - Turbomachinery applications of grid generation

    NASA Astrophysics Data System (ADS)

    Soni, Bharat K.; Shih, Ming-Hsin

    1990-07-01

    Numerical grid generation algorithm associated with the field region about turbomachinery systems is presented. The algorithm is incorporated as a module, TIGER (Turbomachinery Interactive Grid genERation) of the modular general purpose computer code GENIE. Interactive definitions of the mathematical description of blades, hub and shroud with minimal user interactions, adaption of the weighted transfinite interpolation technique for efficient generation of grid blocks/zones, automatic construction of the Bezier curves to accomplish slope continuity, and efficient utilization of IRIS-graphics capabilities are the salient features of this algorithm which results in a significant time savings for a given turbomachinery geometry-grid application.

  17. Droplet evaporation in a nonpremixed counterflowing flame

    NASA Astrophysics Data System (ADS)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Chen, Gang

    1991-01-01

    A numerical study is conducted that considers droplets in a conterflowing flame established by flowing two opposing streams of gaseous methane and air against each other. It is noted that this investigation is similar to the flowfield studied experimentally by Puri and Libby (1989), the results of which are used in combination with the results from this experiment in order to develop a further understanding of droplet motion in counterflowing streams. Based on calculations, it is concluded that, in a rapidly changing ambient medium, when the droplet residence time in the high-temperature region is small compared to the time spent in the entire couterflowing flowfield, the choice of gasification models is unimportant. Droplets at different locations in the flowfield, experiencing similar convective conditions, and having the same residence times in the high-temperature zone, are found to possess the same radius history.

  18. A Numerical and Experimental Study of Coflow Laminar Diffusion Flames: Effects of Gravity and Inlet Velocity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Bennett, B. A. V.; Ma, B.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2015-01-01

    In this work, the influence of gravity, fuel dilution, and inlet velocity on the structure, stabilization, and sooting behavior of laminar coflow methane-air diffusion flames was investigated both computationally and experimentally. A series of flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) was assessed numerically under microgravity and normal gravity conditions with the fuel stream CH4 mole fraction ranging from 0.4 to 1.0. Computationally, the MC-Smooth vorticity-velocity formulation of the governing equations was employed to describe the reactive gaseous mixture; the soot evolution process was considered as a classical aerosol dynamics problem and was represented by the sectional aerosol equations. Since each flame is axisymmetric, a two-dimensional computational domain was employed, where the grid on the axisymmetric domain was a nonuniform tensor product mesh. The governing equations and boundary conditions were discretized on the mesh by a nine-point finite difference stencil, with the convective terms approximated by a monotonic upwind scheme and all other derivatives approximated by centered differences. The resulting set of fully coupled, strongly nonlinear equations was solved simultaneously using a damped, modified Newton's method and a nested Bi-CGSTAB linear algebra solver. Experimentally, the flame shape, size, lift-off height, and soot temperature were determined by flame emission images recorded by a digital camera, and the soot volume fraction was quantified through an absolute light calibration using a thermocouple. For a broad spectrum of flames in microgravity and normal gravity, the computed and measured flame quantities (e.g., temperature profile, flame shape, lift-off height, and soot volume fraction) were first compared to assess the accuracy of the numerical model. After its validity was established, the influence of gravity, fuel dilution, and inlet velocity on the structure, stabilization, and sooting

  19. Effects of soot formation on shape of a nonpremixed laminar flame established in a shear boundary layer in microgravity

    NASA Astrophysics Data System (ADS)

    Y Wang, H.; Merino, J. L. F.; Dagaut, P.

    2011-12-01

    A numerical study was performed to give a quantitative description of a heavily sooting, nonpremixed laminar flame established in a shear boundary layer in microgravity. Controlling mechanisms of three dimensional flow, combustion, soot and radiation are coupled. Soot volume fraction were predicted by using three approaches, referred respectively to as the fuel, acetylene and PAH inception models. It is found that the PAH inception model, which is based on the formation of two and three-ringed aromatic species, reproduces correctly the experimental data from a laminar ethylene diffusion flame. The PAH inception model serves later to better understand flame quenching, flame stand-off distance and soot formation as a function of the dimensionless volume coefficient, defined as Cq = VF/Vox where VF is the fuel injection velocity, and Vox air stream velocity. The present experiments showed that a blue unstable flame, negligible radiative feedback, may change to a yellow stable flame, significant radiative loss with an increase of Cq; this experimental trend was numerically reproduced. The flame quenching occurs at the trailing edge due to radiative heat loss which is significantly amplified by increasing VF or decreasing Vox, favouring soot formation. Along a semi-infinite fuel zone, the ratio, df/db, where df is the flame standoff distance, and db the boundary layer thickness, converges towards a constant value of 1.2, while soot resides always within the boundary layer far away from the flame sheet.

  20. Turbulent flame-wall interaction: a DNS study

    SciTech Connect

    Chen, Jackie; Hawkes, Evatt R; Sankaran, Ramanan; Gruber, Andrea

    2010-01-01

    A turbulent flame-wall interaction (FWI) configuration is studied using three-dimensional direct numerical simulation (DNS) and detailed chemical kinetics. The simulations are used to investigate the effects of the wall turbulent boundary layer (i) on the structure of a hydrogen-air premixed flame, (ii) on its near-wall propagation characteristics and (iii) on the spatial and temporal patterns of the convective wall heat flux. Results show that the local flame thickness and propagation speed vary between the core flow and the boundary layer, resulting in a regime change from flamelet near the channel centreline to a thickened flame at the wall. This finding has strong implications for the modelling of turbulent combustion using Reynolds-averaged Navier-Stokes or large-eddy simulation techniques. Moreover, the DNS results suggest that the near-wall coherent turbulent structures play an important role on the convective wall heat transfer by pushing the hot reactive zone towards the cold solid surface. At the wall, exothermic radical recombination reactions become important, and are responsible for approximately 70% of the overall heat release rate at the wall. Spectral analysis of the convective wall heat flux provides an unambiguous picture of its spatial and temporal patterns, previously unobserved, that is directly related to the spatial and temporal characteristic scalings of the coherent near-wall turbulent structures.

  1. The flame structure of AP/HTPB sandwiches

    NASA Astrophysics Data System (ADS)

    Chorpening, Benjamin Todd

    2000-10-01

    splitting of the calculated reaction zone and a splitting of the base of the high temperature region. This seems to correspond to the splitting of the ultraviolet emission flame base observed in the experiments.

  2. Pressure change and transport process on flames formed in a stretched, rotating flow

    SciTech Connect

    Yamamoto, Kazuhiro

    1999-08-01

    Flame characteristics in a stretched, rotating flow have been investigated by numerical simulation of tubular laminar flames for lean hydrogen, methane, and propane/air mixtures. Twin planar flames in counterflow have been also simulated for comparison. A fixed inlet velocity at the porous wall of the burner was assumed in all cases, and the cylindrical containing tube (radius R = 9.5 mm) was either maintained stationary or rotated. Results showed that, within the range studied, the flame temperatures always increase monotonically with increasing fuel concentration, and at the same time the reaction zones move outwards. However, while the introduction of rotation also causes a monotonic temperature increase of hydrogen and methane air mixtures, that of a propane/air mixture decreases. The temperature change with rotation becomes smaller with an increase of the fuel concentration. As a consequence of the centrifugal force, {rho}{nu}{sub {theta}}{sup 2}/r, induced by the rotation, a pressure gradient is formed in the cylindrical containing tube, with low pressure along the axis. The pressure gradient at the outer, unburnt edge of the flame reaction zone becomes smaller as the fuel concentration increases. The resultant decreased mass transport by pressure diffusion provides an explanation for part of the above-mentioned temperature change associated with rotation. The remainder of the effect is associated with changed stretch characteristics of the flames.

  3. Turbulent partially premixed flames of nitrogen-diluted methane near extinction

    SciTech Connect

    Mansour, M.S.; Bilger, R.W. ); Dibble, R.W. )

    1991-05-01

    Spontaneous Raman/Rayleigh measurements have been carried out in turbulent partially premixed flames of nitrogen-diluted methane near extinction. The flames are created in a reverse flow reactor (RFR) and are stabilized by means of a recirculation zone. The flames are stretched by reducing the residence time of the flow within the reactor. The mean profiles, scatter plots, and conditional pdfs are used to study the flame structure in the present investigation. The detailed structure studies have been carried out in two shear layers, where the stretch rates are highest. The data presented in this article are for two flames close to extinction at low residence times (3.6 and 5.1 ms). The flame structure at both shear layers shows quite significant chemical kinetic effects on approaching extinction. These effects reduce the products concentration and temperature and increase the reactants. Also, these effects increase the CO concentration. A substantial decrease in the reactedness of the reactive scalars has also been found at both shear layers on approaching extinction. The flame structure shows broad distribution between the equilibrium and frozen limits with no obvious bimodality. From the conditional pdfs, the reactedness decreases around stoichiometric and increases at the lean side of the stoichiometric.

  4. Numerical simulations of turbulent premixed H2/O2/N2 flames with complex chemistry

    NASA Technical Reports Server (NTRS)

    Baum, M.; Poinsot, T. J.; Haworth, D. C.

    1992-01-01

    Premixed stoichiometric H2/O2/N2 flames propagating in two-dimensional turbulence were studied using direct numerical simulation (simulations in which all fluid and thermochemical scales are fully resolved) including realistic chemical kinetics and molecular transport. Results are compared with earlier zero-chemistry (flame sheet) and one-step chemistry simulations. Consistent with the simpler models, the turbulent flame with realistic chemistry aligns preferentially with extensive strain rates in the tangent plane and flame curvature probability density functions are close to symmetric with near-zero means. By contrast to simple-chemistry results with non-unity Lewis numbers (ratio of thermal to species diffusivity), local flame structure does not correlate with curvature but rather with tangential strain rate. Turbulent straining results in substantial thinning of the flame relative to the steady unstrained laminar case. Heat release and H2O2 contours remain thin and connected ('flamelet-like') while species including H-atom and OH are more diffuse. Peak OH concentration occurs well behind the peak heat-release zone. The feasibility of incorporating realistic chemistry into full turbulence simulations to address issues such as pollutant formation in hydrocarbon-air flames is suggested.

  5. Presumed PDF Modeling of Early Flame Propagation in Moderate to Intense Turbulence Environments

    NASA Technical Reports Server (NTRS)

    Carmen, Christina; Feikema, Douglas A.

    2003-01-01

    The present paper describes the results obtained from a one-dimensional time dependent numerical technique that simulates early flame propagation in a moderate to intense turbulent environment. Attention is focused on the development of a spark-ignited, premixed, lean methane/air mixture with the unsteady spherical flame propagating in homogeneous and isotropic turbulence. A Monte-Carlo particle tracking method, based upon the method of fractional steps, is utilized to simulate the phenomena represented by a probability density function (PDF) transport equation. Gaussian distributions of fluctuating velocity and fuel concentration are prescribed. Attention is focused on three primary parameters that influence the initial flame kernel growth: the detailed ignition system characteristics, the mixture composition, and the nature of the flow field. The computational results of moderate and intense isotropic turbulence suggests that flames within the distributed reaction zone are not as vulnerable, as traditionally believed, to the adverse effects of increased turbulence intensity. It is also shown that the magnitude of the flame front thickness significantly impacts the turbulent consumption flame speed. Flame conditions studied have fuel equivalence ratio s in the range phi = 0.6 to 0.9 at standard temperature and pressure.

  6. Combustion Characteristics in a Non-Premixed Cool-Flame Regime of n-Heptane in Microgravity

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.; Hicks, Michael C.

    2015-01-01

    A series of distinct phenomena have recently been observed in single-fuel-droplet combustion tests performed on the International Space Station (ISS). This study attempts to simulate the observed flame behavior numerically using a gaseous n-heptane fuel source in zero gravity and a time-dependent axisymmetric (2D) code, which includes a detailed reaction mechanism (127 species and 1130 reactions), diffusive transport, and a radiation model (for CH4, CO, CO2, H2O, and soot). The calculated combustion characteristics depend strongly on the air velocity around the fuel source. In a near-quiescent air environment (< or = 2 mm/s), with a sufficiently large fuel injection velocity (1 cm/s), a growing spherical diffusion flame extinguishes at ˜1200 K due to radiative heat losses. This is typically followed by a transition to the low-temperature (cool-flame) regime with a reaction zone (at ˜700 K) in close proximity to the fuel source. The 'cool flame' regime is formed due to the negative temperature coefficient in the low-temperature chemistry. After a relatively long period (˜18 s) of the cool flame regime, a flash re-ignition occurs, associated with flame-edge propagation and subsequent extinction of the re-ignited flame. In a low-speed (˜3 mm/s) airstream (which simulates the slight droplet movement), the diffusion flame is enhanced upstream and experiences a local extinction downstream at ˜1200 K, followed by steady flame pulsations (˜0.4 Hz). At higher air velocities (4-10 mm/s), the locally extinguished flame becomes steady state. The present axisymmetric computational approach helps in revealing the non-premixed 'cool flame' structure and 2D flame-flow interactions observed in recent microgravity droplet combustion experiments.

  7. An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind

    1995-01-01

    The objective of this research was to experimentally and theoretically investigate the radiation-induced extinction of gaseous diffusion flames in microgravity. The microgravity conditions were required because radiation-induced extinction is generally not possible in 1-g but is highly likely in microgravity. In 1-g, the flame-generated particulates (e.g. soot) and gaseous combustion products that are responsible for flame radiation, are swept away from the high temperature reaction zone by the buoyancy-induced flow and a steady state is developed. In microgravity, however, the absence of buoyancy-induced flow which transports the fuel and the oxidizer to the combustion zone and removes the hot combustion products from it enhances the flame radiation due to: (1) transient build-up of the combustion products in the flame zone which increases the gas radiation, and (2) longer residence time makes conditions appropriate for substantial amounts of soot to form which is usually responsible for most of the radiative heat loss. Numerical calculations conducted during the course of this work show that even non-radiative flames continue to become "weaker" (diminished burning rate per unit flame area) due to reduced rates of convective and diffusive transport. Thus, it was anticipated that radiative heat loss may eventually extinguish the already "weak" microgravity diffusion flame. While this hypothesis appears convincing and our numerical calculations support it, experiments for a long enough microgravity time could not be conducted during the course of this research to provide an experimental proof. Space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in microgravity will burn indefinitely. It was hoped that radiative extinction can be experimentally shown by the aerodynamically stabilized gaseous diffusion flames where the fuel supply rate was externally controlled. While substantial progress toward this

  8. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations

    SciTech Connect

    Balachandran, R.; Dowling, A.P.; Mastorakos, E.; Ayoola, B.O.; Kaminski, C.F.

    2005-10-01

    This paper describes an experimental investigation of acoustically forced lean premixed turbulent bluff-body-stabilised flames in an enclosure short enough so that no coupling of the combustor downstream acoustics occurred for the frequencies studied here, which allows an unambiguous examination of the flame response to inlet velocity fluctuations. Special emphasis was placed on the amplitude dependence of this response. Measurements of the heat release rate were performed with OH{sup *} and CH{sup *} chemiluminescence, planar laser-induced fluorescence (PLIF) of OH from which the flame surface density (FSD) was computed, and simultaneous CH{sub 2}O and OH PLIF imaging from which the local heat release rate (RX) was estimated. The global heat release measured with chemiluminescence and that integrated from the local FSD measurements were in close agreement, while a comparison between FSD and high-resolution RX imaging also showed good agreement. This suggests that estimates of the flame area are sufficient to determine heat release rate for this flow. The heat release response became nonlinear after inlet velocity amplitudes of around 15% of the bulk velocity. This value depended on the forcing frequency and the equivalence ratio. The nonlinearity was found to occur when the shear layers rolled up into vortices. The vortices induced by the inlet velocity fluctuations not only generated flame area when the flame wrapped around them, but also caused cusps and even large-scale flame annihilation events, as observed in time-resolved OH PLIF images. Such events occurred when parts of the flame stabilised on the inner shear layer close to the recirculation zone collapsed on parts of the flame stabilised on the outer recirculation zone, a phenomenon that was made more prominent with increasing forcing amplitude. A further nonlinearity occurred at high amplitudes and at some equivalence ratios, where a significant leakage of energy to higher harmonics was observed, but the

  9. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Abid, M.; Aung, K.; Ronney, P. D.; Sharif, J. A.; Wu, M.-S.

    1999-01-01

    Several topics relating to combustion limits in premixed flames at reduced gravity have been studied. These topics include: (1) flame balls; (2) numerical simulation of flame ball and planar flame structure and stability; (3) experimental simulation of buoyancy effects in premixed flames using aqueous autocatalytic reactions; and (4) premixed flame propagation in Hele-Shaw cells.

  10. Laser Spectrometric Measurement System for Local Express Diagnostics of Flame at Combustion of Liquid Hydrocarbon Fuels

    NASA Astrophysics Data System (ADS)

    Kobtsev, V. D.; Kozlov, D. N.; Kostritsa, S. A.; Smirnov, V. V.; Stel'makh, O. M.; Tumanov, A. A.

    2016-03-01

    A laboratory laser spectrometric measurement system for investigation of spatial distributions of local temperatures in a flame at combustion of vapors of various liquid hydrocarbon fuels in oxygen or air at atmospheric pressure is presented. The system incorporates a coherent anti-Stokes Raman spectrometer with high spatial resolution for local thermometry of nitrogen-containing gas mixtures in a single laser shot and a continuous operation burner with a laminar diffusion flame. The system test results are presented for measurements of spatial distributions of local temperatures in various flame zones at combustion of vapor—gas n-decane/nitrogen mixtures in air. Its applicability for accomplishing practical tasks in comparative laboratory investigation of characteristics of various fuels and for research on combustion in turbulent flames is discussed.

  11. Dynamic formulation of thickened flame model for LES of premixed turbulent combustion.

    NASA Astrophysics Data System (ADS)

    Meneveau, C.; Nottin, C.; Veynante, D.

    2000-11-01

    As demonstrated in Colin et al. (Phys. Fluids 12, p. 1843, 2000) the thickened flame model for LES of premixed combustion (TFLES) has a number of attractive features such as correct asymptotics in the limit of DNS, in the case of a thickened laminar, steady flame, etc.. For the general case of turbulent, unsteady and curved, premixed flames, the model requires empirical parameters to be specified. With the aim of decreasing the dependence on empirical parameters, the dynamic procedure is applied to this problem. We find that the traditional application of the Germano identity, which seeks undetermined multiplicative model coefficients, fails because of a trivial cancellation of the coefficients when inserted in the Germano identity. We suggest that this is a general problem when applying the dynamic model to phenomena that occur at very disparate length-scales (here the true reaction occurs in a region which is typically much thinner than the LES grid-size). On the other hand, we find that the dynamic procedure is well-posed when searching for unknown scaling exponents (instead of coefficients). A new power-law formulation of dynamic TFLES is developed, and tested using a fully compressible, sixth-order finite-difference code (NTMIX). Applications to several cases are discussed: (a) 1-D laminar flame, (b) laminar flame-vortex interaction, and (c) flame propagation through 2-D decaying isotropic turbulence.

  12. Direct spectral/hp element simulation of piloted jet non-premixed flames

    NASA Astrophysics Data System (ADS)

    Nastase, Cristian R.

    2004-11-01

    The spectral/hp element method is used for direct numerical simulation (DNS) of piloted non premixed methane jet flames. This method combines the accuracy of spectral methods with versatility of finite element methods, and allows accurate simulations of complex flows on structured and unstructured grids. Here, the methodology is extended for simulation of multi-species, reactive flows using the discontinuous Galerkin formulation. Parallel computation is performed via MPI standards coupled with a domain decomposition methodology. The overall computational scheme allows for an efficient partitioning of the flow configuration. Tests performed with up to 64 processors show quasi-linear parallel performance and scalability. The flame configurations are similar to the piloted jet non-premixed flame considered at the Combustion Research Facility at the Sandia National Laboratories. For a momentum dominated flame, the simulated results portray many of the features observed experimentally. This pertains to both the spatial and the compositional structures of the flow. For a buoyancy controlled flame (at elevated gravity levels), the results indicate an increase in both the turbulence levels and flow acceleration. Departure from equilibrium, including localized extinction is observed on a significant portion of this flame.

  13. Premixed Turbulent Flame Propagation in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.

    1997-01-01

    Papers included address the following topics: (1) Turbulent premixed flame propagation in microgravity; (2) The effect of gravity on turbulent premixed flame propagation - a preliminary cold flow study; and (3) Characteristics of a subgrid model for turbulent premixed combustion.

  14. Lifted Partially Premixed Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Lock, Andrew J.; Ganguly, Ranjan; Puri, Ishwar K.; Aggarwal, Suesh K.; Hegde, Uday

    2004-01-01

    Lifted Double and Triple flames are established in the UIC-NASA Partially Premixed microgravity rig. The flames examined in this paper are established above a coannular burner because its axisymmetric geometry allows for future implementation of other non-intrusive optical diagnostic techniques easily. Both burner-attached stable flames and lifted flames are established at normal and microgravity conditions in the drop tower facility.

  15. Oscillatory Extinction Of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Yoo, S. W.; Christianson, E. W.

    2003-01-01

    Since extinction has been observed in an oscillatory manner in Le greater than 1 premixed flames, it is not unreasonable to expect that extinction could occur in an unsteady manner for diffusion flames. Indeed, near-limit oscillations have been observed experimentally under microgravity conditions for both candle flames and droplet flames. Furthermore, the analysis of Cheatham and Matalon on the unsteady behavior of diffusion flames with heat loss, identified an oscillatory regime which could be triggered by either a sufficiently large Lewis number (even without heat loss) or an appreciable heat loss (even for Le=1). In light of these recent understanding, the present investigation aims to provide a well-controlled experiment that can unambiguously demonstrate the oscillation of diffusion flames near both the transport- and radiation-induced limits. That is, since candle and jet flames are stabilized through flame segments that are fundamentally premixed in nature, and since premixed flames are prone to oscillate, there is the possibility that the observed oscillation of these bulk diffusion flames could be triggered and sustained by the oscillation of the premixed flame segments. Concerning the observed oscillatory droplet extinction, it is well-known that gas-phase oscillation in heterogeneous burning can be induced by and is thereby coupled with condensed-phase unsteadiness. Consequently, a convincing experiment on diffusion flame oscillation must exclude any ingredients of premixed flames and other sources that may either oscillate themselves or promote the oscillation of the diffusion flame. The present experiment on burner-generated spherical flames with a constant reactant supply endeavored to accomplish this goal. The results are further compared with those from computational simulation for further understanding and quantification of the flame dynamics and extinction.

  16. Production of fullerenic nanostructures in flames

    DOEpatents

    Howard, Jack B.; Vander Sande, John B.; Chowdhury, K. Das

    1999-01-01

    A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

  17. Production Of Fullerenic Soot In Flames

    DOEpatents

    Howard, Jack B.; Vander Sande, John B.; Chowdhury, K. Das

    2000-12-19

    A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

  18. Displacement speeds in turbulent premixed flame simulations

    SciTech Connect

    Day, Marcus S.; Shepherd, Ian G.; Bell, J.; Grcar, Joseph F.; Lijewski, Michael J.

    2007-07-01

    The theory of turbulent premixed flames is based on acharacterization of the flame as a discontinuous surface propagatingthrough the fluid. The displacement speed, defined as the local speed ofthe flame front normal to itself, relative to the unburned fluid,provides one characterization of the burning velocity. In this paper, weintroduce a geometric approach to computing displacement speed anddiscuss the efficacy of the displacement speed for characterizing aturbulent flame.

  19. Self-turbulizing flame fronts

    NASA Astrophysics Data System (ADS)

    Clavin, P.; Searby, G.

    A heuristic derivation of a flame front model is presented that takes into account the effects of gravity, nonlinear effects introduced by advection of the front, and gradients in the tangential component of the flow. A local equation is defined to relate the normal flame speed to the upstream gas flow characteristics. Jump conditions are obtained from an asymptotic analysis of the local structure of the wrinkled flame in order to address the hydrodynamic problem possed by the front being treated as a free boundary between fresh and burnt gases. The expression for the jump conditions is defined in Fourier space. The model extends the equations defined in Fourier space. The model extends the equations defined by Sivashinsky (1977) to cover the effects of gas expansion.

  20. Dynamics of the flame flowfields in a low-swirl burner

    SciTech Connect

    Cheng, Robert; Johnson, Matthew R.; Cheng, Robert K.

    2003-07-01

    The concept of using low swirl to stabilize lean premixed turbulent flame was introduced in 1992. Since then, the low-swirl burner (LSB) has become a useful laboratory tool for the study of detailed flame structures as well as turbulent burning speeds. Its main attribute is that the flame is freely propagating and is locally normal to the turbulent approach flow (Figure 1). Therefore, the turbulent flame brush is not influence by physical boundaries. The capability of LSB to support very lean flames and very turbulent flames [1, 2] was further exploited in recent studies to test the validity of the flame regime concept. Using 2D imaging diagnostics (e.g. planar laser induced fluorescence, PLIF, and planar laser induced Rayleigh scattering) our analysis showed that the wrinkled flame regime to be valid at a turbulence intensity level much higher than previously thought [3-5]. This provided experimental verification of a new 'thin reaction zone' regime for the Kalovitz number range of 1 < Ka < 10 (Ka = (u{prime}/s{sub L}){sup 3/2} (l{sub x}/d{sub L}){sup 1/2}) proposed by Peters. Due to its freely propagating nature, modeling and simulations of LSB flames are non-trivial. The flame position cannot be specified a priori because it is coupled to the turbulent flowfield and the turbulent flame speed may be required as input. This has not been a significant issue when treating the LSB flame as a close approximation to a 1D premixed turbulent flame. However, to support the development of more robust 3D simulation methods, accurate information on the flowfield dynamics in particular those at the burner exit and the interactions between the core and swirl air flows becomes important. In the past, velocity measurements in LSB have concentrated on collecting information along the centerline. The objective of this investigation is to conduct a detailed study using particle image velocimetry (PIV) to provide the flowfield information that are more suited to support 3D

  1. Soot Formation in Purely-Curved Premixed Flames and Laminar Flame Speeds of Soot-Forming Flames

    NASA Technical Reports Server (NTRS)

    Buchanan, Thomas; Wang, Hai

    2005-01-01

    The research addressed here is a collaborative project between University of Delaware and Case Western Reserve University. There are two basic and related scientific objectives. First, we wish to demonstrate the suitability of spherical/cylindrical, laminar, premixed flames in the fundamental study of the chemical and physical processes of soot formation. Our reasoning is that the flame standoff distance in spherical/cylindrical flames under microgravity can be substantially larger than that in a flat burner-stabilized flame. Therefore the spherical/cylindrical flame is expected to give better spatial resolution to probe the soot inception and growth chemistry than flat flames. Second, we wish to examine the feasibility of determining the laminar flame speed of soot forming flames. Our basic assumption is that under the adiabatic condition (in the absence of conductive heat loss), the amount and dynamics of soot formed in the flame is unique for a given fuel/air mixture. The laminar flame speed can be rigorously defined as long as the radiative heat loss can be determined. This laminar flame speed characterizes the flame soot formation and dynamics in addition to the heat release rate. The research involves two integral parts: experiments of spherical and cylindrical sooting flames in microgravity (CWRU), and the computational counterpart (UD) that aims to simulate sooting laminar flames, and the sooting limits of near adiabatic flames. The computations work is described in this report, followed by a summary of the accomplishments achieved to date. Details of the microgra+ experiments will be discussed in a separate, final report prepared by the co-PI, Professor C-J. Sung of CWRU. Here only a brief discussion of these experiments will be given.

  2. 30 CFR 14.20 - Flame resistance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... test determined by MSHA to be equivalent under 30 CFR §§ 6.20 and 14.4(e). ... MINING PRODUCTS REQUIREMENTS FOR THE APPROVAL OF FLAME-RESISTANT CONVEYOR BELTS Technical Requirements § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant...

  3. 30 CFR 14.20 - Flame resistance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... test determined by MSHA to be equivalent under 30 CFR §§ 6.20 and 14.4(e). ... MINING PRODUCTS REQUIREMENTS FOR THE APPROVAL OF FLAME-RESISTANT CONVEYOR BELTS Technical Requirements § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant...

  4. Environmental Considerations for Flame Resistant Textiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virtually all common textiles will ignite and burn. There are mandatory and voluntary cigarette and open-flame ignition regulations to address unreasonable fire risks associated with textile products that require them to be treated with and/or contain flame retardant chemicals to make them flame res...

  5. Premixed flame propagation in vertical tubes

    NASA Astrophysics Data System (ADS)

    Kazakov, Kirill A.

    2016-04-01

    Analytical treatment of the premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations for a quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by a strong gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are identified. Acceleration of methane-air flames in open tubes is shown to be a combined effect of the hydrostatic pressure difference produced by the ambient cold air and the difference of dynamic gas pressure at the tube ends. On the other hand, a strong spontaneous acceleration of the fast methane-oxygen flames at the initial stage of their evolution in open-closed tubes is conditioned by metastability of the quasi-steady propagation regimes. An extensive comparison of the obtained results with the experimental data is made.

  6. Model flames in a hydrostatic atmosphere

    NASA Astrophysics Data System (ADS)

    Caceres Calleja, Alvaro

    A model flame system based on the advection-diffusion-reaction method is defined and used to numerically study the problem of a flame propagating up an initially hydrostatic atmosphere, in 2-D. We identify and characterize the flame's steady states over a range of parameters, in the case where the gravitational scale height is much greater than the size of the flame, which itself is much greater than the flame's laminar width. We observe both laminar and turbulent steady flames and verify that, for strong enough gravity G, the turbulent flame speed is independent of the laminar flame speed and scales like the square root of GL, where L is the size of our domain. As this scaling law is commonly used to implement flame subgrid models, one of the aims of this thesis is to understand its robustness. We describe the flame geometry and discuss its relationship with the flame speed. The flow statistics inside turbulent flames are measured and found to be gaussian and isotropic, corresponding to strong mixing.

  7. Flame and Soot Boundaries of Laminar Jet Diffusion Flames. Appendix A

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2002-01-01

    The shapes (flame-sheet and luminous-flame boundaries) or steady weakly buoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K. ambient pressures of 4-50 kPa, jet-exit Reynolds numbers of 3-54, initial air/fuel velocity ratios of 0-9, and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at microgravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary-layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 of the lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions because of the presence of luminous soot particles in the fuel-lean region of the flames.

  8. Temperature measurements in steady axisymmetric partially premixed flames by use of rainbow schlieren deflectometry.

    PubMed

    Xiao, Xudong; Puri, Ishwar K; Agrawal, Ajay K

    2002-04-01

    We focus on the utility of rainbow schlieren as a tool for measuring the temperature of axisymmetric partially premixed flames (PPFs). Methane-air PPFs are established on a coannular burner. The flames involve two spatially distinct reaction zones, one in an inner premixed region that has a curved tip and a spatially planar wing portion and another that involves an outer nonpremixed zone in which intermediate species burn in air. Schlieren images are found to visualize clearly these PPF characteristics through light deflection by steep refractive-index gradients in the two reaction zone fronts. The temperature distributions of two flames established at fuel-rich mixture equivalence ratios of phi(r) = 1.5 and 2.0, with bulk-averaged velocities, Vreac = 60 cm s(-1) and Vair = 50 cm s(-1), are inferred from color schlieren images, and a measurement error analysis is performed. Errors arise from two sources. One lies in the process of inferring the temperature from the refractive-index measurement by making assumptions regarding the local composition of the flame. We have shown through simulations that the average temperature deviations due to these assumptions are 1.7% for the phi(r) = 1.5 flame and 2.3% for the phi(r) = 2.0 flame. Another source involves the local uncertainty in the measurement of the transverse ray displacement at the filter plane that is used to determine the refractive index and thereafter the flame temperature. We have ascertained that a maximum error of 4.3% in the temperature determination can be attributed to this local measurement uncertainty. This investigation demonstrates the capability of the schlieren technique for providing not only qualitative displays of the PPFs but also full-field-of-view temperature measurements that are accurate, spatially resolved, and nonintrusive. PMID:11936791

  9. Flame Speed and Spark Intensity

    NASA Technical Reports Server (NTRS)

    Randolph, D W; Silsbee, F B

    1925-01-01

    This report describes a series of experiments undertaken to determine whether or not the electrical characteristics of the igniting spark have any effect on the rapidity of flame spread in the explosive gas mixtures which it ignites. The results show very clearly that no such effect exists. The flame velocity in carbon-monoxide oxygen, acetylene oxygen, and gasoline-air mixtures was found to be unaffected by changes in spark intensity from sparks which were barely able to ignite the mixture up to intense condenser discharge sparks having fifty time this energy. (author)

  10. Three-dimensional Numerical Simulations of Rayleigh-Taylor Unstable Flames in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Zingale, M.; Woosley, S. E.; Rendleman, C. A.; Day, M. S.; Bell, J. B.

    2005-10-01

    Flame instabilities play a dominant role in accelerating the burning front to a large fraction of the speed of sound in a Type Ia supernova. We present a three-dimensional numerical simulation of a Rayleigh-Taylor unstable carbon flame, following its evolution through the transition to turbulence. A low-Mach number hydrodynamics method is used, freeing us from the harsh time step restrictions imposed by sound waves. We fully resolve the thermal structure of the flame and its reaction zone, eliminating the need for a flame model. A single density is considered, 1.5×107 g cm-3, and half-carbon, half-oxygen fuel: conditions under which the flame propagated in the flamelet regime in our related two-dimensional study. We compare to a corresponding two-dimensional simulation and show that while fire polishing keeps the small features suppressed in two dimensions, turbulence wrinkles the flame on far smaller scales in the three-dimensional case, suggesting that the transition to the distributed burning regime occurs at higher densities in three dimensions. Detailed turbulence diagnostics are provided. We show that the turbulence follows a Kolmogorov spectrum and is highly anisotropic on the large scales, with a much larger integral scale in the direction of gravity. Furthermore, we demonstrate that it becomes more isotropic as it cascades down to small scales. On the basis of the turbulent statistics and the flame properties of our simulation, we compute the Gibson scale. We show the progress of the turbulent flame through a classic combustion regime diagram, indicating that the flame just enters the distributed burning regime near the end of our simulation.

  11. Quantitative computational infrared imaging of buoyant diffusion flames

    NASA Astrophysics Data System (ADS)

    Newale, Ashish S.

    Studies of infrared radiation from turbulent buoyant diffusion flames impinging on structural elements have applications to the development of fire models. A numerical and experimental study of radiation from buoyant diffusion flames with and without impingement on a flat plate is reported. Quantitative images of the radiation intensity from the flames are acquired using a high speed infrared camera. Large eddy simulations are performed using fire dynamics simulator (FDS version 6). The species concentrations and temperature from the simulations are used in conjunction with a narrow-band radiation model (RADCAL) to solve the radiative transfer equation. The computed infrared radiation intensities rendered in the form of images and compared with the measurements. The measured and computed radiation intensities reveal necking and bulging with a characteristic frequency of 7.1 Hz which is in agreement with previous empirical correlations. The results demonstrate the effects of stagnation point boundary layer on the upstream buoyant shear layer. The coupling between these two shear layers presents a model problem for sub-grid scale modeling necessary for future large eddy simulations.

  12. Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F

    SciTech Connect

    Vreman, A.W.; Albrecht, B.A.; van Oijen, J.A.; de Goey, L.P.H.; Bastiaans, R.J.M.

    2008-05-15

    Premixed and nonpremixed flamelet-generated manifolds have been constructed and applied to large-eddy simulation of the piloted partially premixed turbulent flames Sandia Flame D and F. In both manifolds the chemistry is parameterized as a function of the mixture fraction and a progress variable. Compared to standard nonpremixed flamelets, premixed flamelets cover a much larger part of the reaction domain. Comparison of the results for the two manifolds with experimental data of flame D show that both manifolds yield predictions of comparable accuracy for the mean temperature, mixture fraction, and a number of chemical species, such as CO{sub 2}. However, the nonpremixed manifold outperforms the premixed manifold for other chemical species, the most notable being CO and H{sub 2}. If the mixture is rich, CO and H{sub 2} in a premixed flamelet are larger than in a nonpremixed flamelet, for a given value of the progress variable. Simulations have been performed for two different grids to address the effect of the large-eddy filter width. The inclusion of modeled subgrid variances of mixture fraction and progress variable as additional entries to the manifold have only small effects on the simulation of either flame. An exception is the prediction of NO, which (through an extra transport equation) was found to be much closer to experimental results when modeled subgrid variances were included. The results obtained for flame D are satisfactory, but despite the unsteadiness of the LES, the extinction measured in flame F is not properly captured. The latter finding suggests that the extinction in flame F mainly occurs on scales smaller than those resolved by the simulation. With the presumed {beta}-pdf approach, significant extinction does not occur, unless the scalar subgrid variances are overestimated. A thickened flame model, which maps unresolved small-scale dynamics upon resolved scales, is able to predict the experimentally observed extinction to some extent

  13. GridMan: A grid manipulation system

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Wang, Zhu

    1992-01-01

    GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.

  14. Numerical Parametric Studies of Laminar Flame Structures in Opposed Jets of Partially Premixed Methane-Air Streams

    NASA Astrophysics Data System (ADS)

    Arun, C. R.; Raghavan, Vasudevan

    2012-09-01

    Interactions of fuel-rich and fuel-lean mixtures and formation of interlinked multiple flame zones are observed in gas turbines and industrial furnaces. For fundamentally understanding such flames, numerical investigation of heat and mass transport, and chemical reaction processes, in laminar, counter flowing partially premixed rich and lean streams of methane and air mixtures, is presented. An axisymmetric numerical reactive flow model, with C2 detailed mechanism for describing methane oxidation in air and an optically thin radiation sub-model, is used in simulations. The numerical results are validated against the experimental results from literature. The equivalence ratios of counter flowing rich and lean reactant streams and the resulting strain rates have been varied. The effect of these parameters on the flame structure is presented. For a given rich and lean side equivalence ratios, by varying the strain rates, triple, double and single flame zones are obtained.

  15. Turbulent Jet Flames Into a Vitiated Coflow. PhD Thesis awarded Spring 2003

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Cabra, Ricardo

    2004-01-01

    coflow or jet velocity. An explanation for this phenomenon is that entrainment of ambient air at the high lift-off heights prevents autoignition. Analysis of the results suggests that flame stabilization occurs through a combination of flame propagation, autoignition, and localized extinction processes. Proposed is an expanded view of distributed reaction combustion based on analysis of the distributions of probe volume conditions at the stabilization region of the lifted hydrogen and methane flames. Turbulent eddies the size of the flame thickness mix fuel and hot coflow across the flame front, thereby enhancing the reaction zone with autoignition of reactants at elevated temperatures; this is the reverse effect of turbulent flames in ambient air, where intense turbulence in cool mixtures result in localized extinction. Each of the three processes (i.e., flame propagation, autoignition and localized extinction) contributes to flame stabilization in varying degrees, depending on flow conditions.

  16. Forced Flow Flame-Spreading Test (FFFT)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Forced Flow Flame-Spreading Test was designed to study flame spreading over solid fuels when air is flowing at a low speed in the same direction as the flame spread. Previous research has shown that in low-speed concurrent airflows, some materials are more flammable in microgravity than earth. This image shows a 10-cm flame in microgravity that burns almost entirely blue on both sides of a thin sheet of paper. The glowing thermocouple in the lower half of the flame provides temperature measurements.

  17. Flame stabilizer for stagnation flow reactor

    DOEpatents

    Hahn, David W.; Edwards, Christopher F.

    1999-01-01

    A method of stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability.

  18. KSC Launch Pad Flame Trench Environment Assessment

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.

    2010-01-01

    This report summarizes conditions in the Launch Complex 39 (LC-39) flame trenches during a Space Shuttle Launch, as they have been measured to date. Instrumentation of the flame trench has been carried out by NASA and United Space Alliance for four Shuttle launches. Measurements in the flame trench are planned to continue for the duration of the Shuttle Program. The assessment of the launch environment is intended to provide guidance in selecting appropriate test methods for refractory materials used in the flame trench and to provide data used to improve models of the launch environment in the flame trench.

  19. Burning Laminar Jet Diffusion Flame

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence was taken July 15, 1997, MET:14/10:34 (approximate) and shows the ignition and extinction of this flame. LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel -- like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (518KB, 20-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300182.html.

  20. Flex-flame burner and combustion method

    DOEpatents

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  1. Soot Formation in Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Krishnan, S. S.; Faeth, G. M.

    1999-01-01

    Soot processes within hydrocarbon-fueled flames affect emissions of pollutant soot, thermal loads on combustors, hazards of unwanted fires and capabilities for computational combustion. In view of these observations, the present study is considering processes of soot formation in both burner-stabilized and freely-propagating laminar premixed flames. These flames are being studied in order to simplify the interpretation of measurements and to enhance computational tractability compared to the diffusion flame environments of greatest interest for soot processes. In addition, earlier studies of soot formation in laminar premixed flames used approximations of soot optical and structure properties that have not been effective during recent evaluations, as well as questionable estimates of flow residence times). The objective of present work was to exploit methods of avoiding these difficulties developed for laminar diffusion flames to study soot growth in laminar premixed flames. The following description of these studies is brief.

  2. Nurbs and grid generation

    SciTech Connect

    Barnhill, R.E.; Farin, G.; Hamann, B.

    1995-12-31

    This paper provides a basic overview of NURBS and their application to numerical grid generation. Curve/surface smoothing, accelerated grid generation, and the use of NURBS in a practical grid generation system are discussed.

  3. Simulation of flame surface density and burning rate of a premixed turbulent flame using contour advection

    SciTech Connect

    Tang, B.H.Y.; Chan, C.K.

    2006-10-15

    In this paper, a 2-dimensional rod-stabilized V-shaped flame is simulated using contour advection with surgery as well as the random vortex method. Effects of turbulence on various quantities, such as flame brush thickness and flame surface density, are investigated. The flame surface density S is estimated using the Bray-Moss-Libby formulation, which involves the use of a mean orientation factor {sigma}{sub c}. As a comparison, values of S are also obtained using Shepherd's model, which employs the values of mean flame surface area and mean flame length. Local flame structure is characterized in terms of turbulent flame brush, orientation factor, and flame surface density. Profiles of S obtained using the two different models are compared and show that discrepancy is more evident with increasing turbulence intensity. (author)

  4. Experimental study of turbulent flame kernel propagation

    SciTech Connect

    Mansour, Mohy; Peters, Norbert; Schrader, Lars-Uve

    2008-07-15

    Flame kernels in spark ignited combustion systems dominate the flame propagation and combustion stability and performance. They are likely controlled by the spark energy, flow field and mixing field. The aim of the present work is to experimentally investigate the structure and propagation of the flame kernel in turbulent premixed methane flow using advanced laser-based techniques. The spark is generated using pulsed Nd:YAG laser with 20 mJ pulse energy in order to avoid the effect of the electrodes on the flame kernel structure and the variation of spark energy from shot-to-shot. Four flames have been investigated at equivalence ratios, {phi}{sub j}, of 0.8 and 1.0 and jet velocities, U{sub j}, of 6 and 12 m/s. A combined two-dimensional Rayleigh and LIPF-OH technique has been applied. The flame kernel structure has been collected at several time intervals from the laser ignition between 10 {mu}s and 2 ms. The data show that the flame kernel structure starts with spherical shape and changes gradually to peanut-like, then to mushroom-like and finally disturbed by the turbulence. The mushroom-like structure lasts longer in the stoichiometric and slower jet velocity. The growth rate of the average flame kernel radius is divided into two linear relations; the first one during the first 100 {mu}s is almost three times faster than that at the later stage between 100 and 2000 {mu}s. The flame propagation is slightly faster in leaner flames. The trends of the flame propagation, flame radius, flame cross-sectional area and mean flame temperature are related to the jet velocity and equivalence ratio. The relations obtained in the present work allow the prediction of any of these parameters at different conditions. (author)

  5. The discrete regime of flame propagation

    NASA Astrophysics Data System (ADS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew

    The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment

  6. Data Grid Management Systems

    NASA Technical Reports Server (NTRS)

    Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne

    2004-01-01

    The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.

  7. Soot formation, transport, and radiation in unsteady diffusion flames : LDRD final report.

    SciTech Connect

    Suo-Anttila, Jill Marie; Williams, Timothy C.; Shaddix, Christopher R.; Jensen, Kirk A.; Blevins, Linda Gail; Kearney, Sean Patrick; Schefer, Robert W.

    2004-10-01

    Fires pose the dominant risk to the safety and security of nuclear weapons, nuclear transport containers, and DOE and DoD facilities. The thermal hazard from these fires primarily results from radiant emission from high-temperature flame soot. Therefore, it is necessary to understand the local transport and chemical phenomena that determine the distributions of soot concentration, optical properties, and temperature in order to develop and validate constitutive models for large-scale, high-fidelity fire simulations. This report summarizes the findings of a Laboratory Directed Research and Development (LDRD) project devoted to obtaining the critical experimental information needed to develop such constitutive models. A combination of laser diagnostics and extractive measurement techniques have been employed in both steady and pulsed laminar diffusion flames of methane, ethylene, and JP-8 surrogate burning in air. For methane and ethylene, both slot and coannular flame geometries were investigated, as well as normal and inverse diffusion flame geometries. For the JP-8 surrogate, coannular normal diffusion flames were investigated. Soot concentrations, polycyclic aromatic hydrocarbon (PAH) laser-induced fluorescence (LIF) signals, hydroxyl radical (OH) LIF, acetylene and water vapor concentrations, soot zone temperatures, and the velocity field were all successfully measured in both steady and unsteady versions of these various flames. In addition, measurements were made of the soot microstructure, soot dimensionless extinction coefficient (&), and the local radiant heat flux. Taken together, these measurements comprise a unique, extensive database for future development and validation of models of soot formation, transport, and radiation.

  8. Study on Turbulent Premixed Flame Regimes with Ignition Using a Reactor Assisted Turbulent Slot Burner

    NASA Astrophysics Data System (ADS)

    Won, Sang Hee; Reuter, Christopher; Windom, Bret; Ju, Yiguang

    2015-11-01

    Turbulent premixed flames of n-heptane/air and toluene/air mixtures affected by ignition have been experimentally investigated by using a reactor-assisted turbulent slot (RATS) burner at two burner temperatures, 450 K and 700 K. Turbulent burning velocities (ST) and flame structures have been measured by the simultaneous OH and CH2O planar laser-induced fluorescence (PLIF) imaging at various equivalence ratios and turbulent Reynolds numbers. Three distinct turbulent premixed flame regimes are identified for n-heptane/air mixture; chemical frozen (CF) regime at low temperature, low temperature ignition (LTI) regime, and high temperature ignition (HTI) regime for respectively lean and rich conditions at 700 K. For CF regime, the measured turbulent burning velocities of n-heptane and toluene at 450 K follow a conventional correlation of turbulent intensity (defined as u'/SL). In LTI regime, substantial changes in chemical composition alter the laminar flame speed and transport property, leading to rapid increase of turbulent burning velocity. In HTI regime, it is found that the turbulent premixed flame structure is significantly modified by the appearance of volumetric ignition kernel structures associated with the transition from LTI to HTI. The turbulent premixed flame regime in HTI is no longer represented by the thin reaction zone regime. The measured turbulent burning velocities in HTI regime increase substantially as increasing ignition Damkőhler number over those in LTI regime.

  9. Control of flames by tangential jet actuators in oxy-fuel burners

    SciTech Connect

    Boushaki, Toufik; Sautet, Jean-Charles; Labegorre, Bernard

    2009-11-15

    The active control of oxy-fuel flames from burners with separated jets is investigated. The control system consists of four small jet actuators, placed tangential to the exit of the main jets to generate a swirling flow. These actuators are able to modify the flow structure and to act on mixing between the reactants and consequently on the flame behavior. The burner (25 kW) is composed of separated jets, one jet of natural gas and one or two jets of pure oxygen. Experiments are conducted with three burner configurations, according to the number of jets, the jet exit velocities, and the separation distance between the jets. OH chemiluminescence measurements, particle image velocimetry, and measurements of NO{sub x} emissions are used to characterize the flow and the flame structure. Results show that the small jet actuators have a significant influence on the behavior of jets and the flame characteristics, particularly in the stabilization zone. It is shown that the control leads to a decrease in lift-off heights and to better stability of the flame. The use of jet actuators induces high jet spreading and an increase in turbulence intensity, which improves the mixing between the reactants and the surrounding fluid. Pollutant measurements show important results in terms of NO{sub x} reductions (up to 60%), in particular for low swirl intensity. The burner parameters, such as the number of jets and the spacing between the jets, also impact the flame behavior and NO{sub x} formation. (author)

  10. Nanoparticle synthesis in low pressure flames

    NASA Astrophysics Data System (ADS)

    Colibaba-Evulet, Andrei

    The results of an experimental and computational study of nanoparticle synthesis in low pressure flames are presented. In a stagnation point flow configuration, hydrogen/oxygen low pressure flat flames were supplied with metalorganic vapor precursors and the flame conditions were identified for nanoparticle formation and growth, followed by deposition on a cooled substrate. The effects of pressure, burner to substrate distance, stoichiometry and flowrate on the particle size, morphology and phase were examined. Titania, alumina and zirconia non-agglomerated nanopowders were synthesized and analyzed using X-ray diffraction, BET gas absorption and TEM. A flame model with complex chemistry is used for the prediction of the temperature and flow fields. Thermophoretic effects upon the particle dynamics are estimated and the time/temperature profiles for several flames are predicted. A collision/coalescence mechanism growth model based on the predicted time/temperature is employed for computation of the deposited particle size. Laser induced fluorescence is used for determination of temperature and monoxide concentration profiles in the flame. Temperature measurements using two line fluorescence thermometry in an nitric oxide seeded flame indicate that the flame model predicts temperatures to within 200 K for simple flames. The temperatures of the precursor fed flames exceed the simple flame temperatures by as much as 600 K, showing that precursor decomposition/pyrolysls highly affects the thermochemistry of the flame. Radical concentration measurements in flames synthesizing titania, alumina and zirconia indicate that try monitoring the respective metal monoxides, the location of precursor decomposition and monomer formation in the flame can be inferred. A parametric study of the zirconia synthesis flame showed a certain degree of control on the particle size, agglomeration and crystallinity. Flames hotter than 1700 K and with high quenching rates produced a mixture of

  11. The initial development of a tulip flame

    SciTech Connect

    Matalon, M.; Mcgreevy, J.L.

    1994-12-31

    The initial development of a ``tulip flame``, often observed during flame propagation in closed tubes, is attributed to a combustion instability. The roles of hydrodynamic and of the diffusional-thermal processes on the onset of instability are investigated through a linear stability analysis in which the growth or decay of small disturbances, superimposed on an otherwise smooth and planar flame front, are followed. A range of the Markstein parameter, related to the mixture composition through an appropriately defined Lewis number, has been identified where a tulip flame could be observed. For a given value of the Markstein parameter within this range, a critical wavelength is identified as the most unstable mode. This wavelength is directly related to the minimal aspect ratio of the tube where a tulip flame could be observed. The time of onset of instability is identified as the time when the most unstable disturbance, associated with the critical wavelength, grows at a faster rate than the flame front itself and exceeds a certain threshold. This occurs after the flame has propagated a certain distance down the tube: a value which has been explicitly determined in terms of the relevant parameters. Experimental records on the tulip flame phenomenon support the finding of the analysis. That is, the tulip flame forms after the flame has traveled half the tube`s length, it does not form in short tubes, and its formation depends on the mixture composition and on the initial pressure in the tube.

  12. Numerical simulation of tulip flame dynamics

    SciTech Connect

    Cloutman, L.D.

    1991-11-30

    A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a ``tulip flame`` in the literature, occurred. The ``tulip flame`` was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.

  13. A numerical study of thin flame representations

    SciTech Connect

    Rotman, D.A.; Pindera, M.Z.

    1989-08-11

    In studies of reacting flows, the flame may be viewed as a moving discontinuity endowed with certain properties; notably, it acts as a source of velocity and vorticity. Asymptotic analysis shows this to be justified provided that the flame curvature is small compared to the flame thickness. Such an approach is useful when one is interested in the hydrodynamic effects of the flame on the surrounding flowfield. In numerical models of this kind it is customary to treat the discontinuity as a collection of discrete velocity blobs. In this study, we show that the velocities associated with such a representation can be very non-smooth, particularly very near to the flame surface. As an alternative, we propose the use of a finite line source as the basic flame element. Comparisons of the two flame representations are made for several simple test cases as well as for a flame propagating through an enclosure forming the tulip shape. The results show that the use of line sources eliminates spurious fluctuations in nearfield velocities thus allowing for a more accurate calculation of flame propagation and flame-flowfield interactions. 7 refs., 15 figs.

  14. Numerical simulation of tulip flame dynamics

    SciTech Connect

    Cloutman, L.D.

    1991-11-30

    A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a tulip flame'' in the literature, occurred. The tulip flame'' was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.

  15. Fully Modulated Turbulent Diffusion Flames in Microgravity*

    NASA Astrophysics Data System (ADS)

    Sangras, Ravikiran; Hermanson, James C.; Johari, Hamid; Stocker, Dennis P.; Hegde, Uday G.

    2001-11-01

    Fully modulated, turbulent diffusion flames are studied in microgravity in 2.2 s drop-tower tests with a co-flow combustor. The fuel consists of pure ethylene or a 50/50 mixture with nitrogen; the oxidizer is either normal air or up to 40% oxygen in nitrogen. A fast solenoid valve is used to fully modulate (completely shut off) the fuel flow. The injection times range from 5 to 400 ms with a duty-cycle of 0.1 - 0.5. The fuel nozzle is 2 mm in diameter with a jet Reynolds number of 5000. The shortest injection times yield compact puffs with a mean flame length as little as 20% of that of the steady-state flame. The reduction in flame length appears to be somewhat greater in microgravity than in normal gravity. As the injection time increases, elongated flames result with a mean flame length comparable to that of a steady flame. The injection time for which the steady-state flame length is approached is shorter for lower air/fuel ratios. For a given duty-cycle, the separation between puffs is greater in microgravity than in normal gravity. For compact puffs, increasing the duty-cycle appears to increase the flame length more in microgravity than in normal gravity. The microgravity flame puffs do not exhibit the vortex-ring-like structure seen in normal gravity.

  16. Inflamed by the Flames?

    PubMed Central

    Canetti, Daphna; Russ, Eric; Luborsky, Judith; Gerhart, James; Hobfoll, Stevan

    2015-01-01

    The physiological impact of citizens’ prolonged exposure to violence and conflict is a crucial, yet underexplored issue within the political science and biology literature. We examined the impact of high levels of exposure to rocket and terrorist attacks on biological markers of immunity and inflammation in a sample of Israelis. A stratified random sample of individuals were drawn from a pool of subjects in Israel who have previously been interviewed regarding their stress exposure and psychological distress during a period of active rocket and terrorist attacks. These individuals were re-interviewed and blood samples were collected to assess antibodies to cytomegalovirus (CMV antibodies) and C-reactive protein (CRP). We concluded that PTSD was significantly related to CRP, controlling for BMI, depression, and exposure to terrorism. Depression scores did not significantly predict CRP (or CMV antibodies levels). In contrast to the established convention that psychological distress is the sole outcome of terrorism exposure, these findings reveal that individuals exposed to terrorism are at dual risk for PTSD/depression, and inflammation. This study has important ramifications for how policy makers and medical health professionals formulate public health policies and medically treat individuals living in conflict zones. PMID:24948537

  17. Effects of Buoyancy on Lean Premixed V-Flames Part I: Laminar and Turblent Flame Structure

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.; Bedat, Benoit; Kostiuk, Larry W.

    1998-01-01

    Laser schlieren and planar laser-induced fluorescence techniques have been used to investigate laminar and turbulent v-flames in +g, -g, and micro g under flow conditions that span the regimes of momentum domination (Ri < 0. 1) and buoyancy domination (Ri > 0.1). Overall flame features shown by schlieren indicate that buoyancy dominates the entire flow field for conditions close to Ri = 1. With decreasing Ri, buoyancy effects are observed only in the far-field regions. Analyses of the mean flame angles demonstrate that laminar and turbulent flames do not have similar responses to buoyancy. Difference in the laminar +g and -g flame angles decrease with Ri (i.e., increasing Re) and converge to the microgravity flame angle at the momentum limit (Ri - 0). This is consistent with the notion that the effects of buoyancy diminish with increasing flow momentum. The +g and -g turbulent flame angles, however, do not converge at Ri = 0. As shown by OH-PLIF images, the inconsistency in +g and -g turbulent flame angles is associated with the differences in flame wrinkles. Turbulent flame wrinkles evolve more slowly in +g than in -g. The difference in flame wrinkle structures, however, cannot be explained in terms of buoyancy effects on flame instability mechanisms. It seems to be associated with the field effects of buoyancy that stretches the turbulent flame brushes in +g and compresses the flame brush in -g. Flame wrinkling offers a mechanism through which the flame responds to the field effects of buoyancy despite increasing flow momentum. These observations point to the need to include both upstream and downstream contributions in theoretical analysis of flame turbulence interactions.

  18. Bifurcation characteristics and flame dynamics of a ducted non-premixed flame with finite rate chemistry

    NASA Astrophysics Data System (ADS)

    Rana, Subhas Chandra; Sujith, Raman

    2015-09-01

    The influence of system parameters such as the flame location, Peclet number and Damköhler number on the bifurcation characteristics and flame dynamics of a ducted non-premixed flame with finite rate chemistry is presented in this paper. In the bifurcation plot with flame location as the bifurcation parameter, subcritical Hopf bifurcation is found for lower values of flame location and supercritical Hopf bifurcation for higher values of flame location, for all the Damköhler numbers used in this study. The flame shapes are captured at eight different phases of a cycle of time series data of acoustic velocity at both the fold and Hopf points for bifurcation with flame location as the parameter. We find that the range of flame height variations at the Hopf point is more than the range of flame height variations obtained at the fold point. We also find that the flame oscillates in the same phase as pressure fluctuation but in a phase different from both velocity and heat release rate fluctuations in the region of hysteresis for bifurcation with flame location. The non-dimensional hysteresis width is plotted as a function of Damköhler number for variation of flame location in the subcritical region. An inverse power law relation is found between the non-dimensional hysteresis width and the Damköhler number. The bifurcation plot with Peclet number as parameter shows a subcritical Hopf bifurcation.

  19. OH radical imaging in a DI diesel engine and the structure of the early diffusion flame

    SciTech Connect

    Dec, J.E.; Coy, E.B.

    1996-03-01

    Laser-sheet imaging studies have considerably advanced our understanding of diesel combustion; however, the location and nature of the flame zones within the combusting fuel jet have been largely unstudied. To address this issue, planar laser-induced fluorescence (PLIF) imaging of the OH radical has been applied to the reacting fuel jet of a direct-injection diesel engine of the ``heavy-duty`` size class, modified for optical access. An Nd:YAG-based laser system was used to pump the overlapping Q{sub 1}9 and Q{sub 2}8 lines of the (1,0) band of the A{yields}X transition at 284.01 nm, while the fluorescent emission from both the (0,O) and (1, I) bands (308 to 320 nm) was imaged with an intensified video camera. This scheme allowed rejection of elastically scattered laser light, PAH fluorescence, and laser-induced incandescence. OH PLIF is shown to be an excellent diagnostic for diesel diffusion flames. The signal is strong, and it is confined to a narrow region about the flame front because the threebody recombination reactions that reduce high flame-front OH concentrations to equilibrium levels occur rapidly at diesel pressures. No signal was evident in the fuel-rich premixed flame regions where calculations and burner experiments indicate that OH concentrations will be below detectable limits. Temporal sequences of OH PLIF images are presented showing the onset and development of the early diffusion flame up to the time that soot obscures the images. These images show that the diffusion flame develops around the periphery of the-downstream portion of the reacting fuel jet about half way through the premixed burn spike. Although affected by turbulence, the diffusion flame remains at the jet periphery for the rest of the imaged sequence.

  20. Effects of Lewis number on vorticity and enstrophy transport in turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Chakraborty, Nilanjan; Konstantinou, Ilias; Lipatnikov, Andrei

    2016-01-01

    The effects of Lewis number Le on both vorticity and enstrophy transport within the flame brush have been analysed using direct numerical simulation data of freely propagating statistically planar turbulent premixed flames, representing the thin reaction zone regime of premixed turbulent combustion. In the simulations, Le was ranged from 0.34 to 1.2 by keeping the laminar flame speed, thermal thickness, Damköhler, Karlovitz, and Reynolds numbers unchanged. The enstrophy has been shown to decay significantly from the unburned to the burned gas side of the flame brush in the Le ≈ 1.0 flames. However, a considerable amount of enstrophy generation within the flame brush has been observed for the Le = 0.34 case and a similar qualitative behaviour has been observed in a much smaller extent for the Le = 0.6 case. The vorticity components have been shown to exhibit anisotropic behaviour within the flame brush, and the extent of anisotropy increases with decreasing Le. The baroclinic torque term has been shown to be principally responsible for this anisotropic behaviour. The vortex stretching and viscous dissipation terms have been found to be the leading order contributors to the enstrophy transport for all cases, but the baroclinic torque and the sink term due to dilatation play increasingly important role for flames with decreasing Le. Furthermore, the correlation between the fluctuations of enstrophy and dilatation rate has been shown to play an important role in determining the material derivative of enstrophy based on the mean flow in the case of a low Le.

  1. Three-dimensional elliptic grid generation for an F-16

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese L.

    1988-01-01

    A case history depicting the effort to generate a computational grid for the simulation of transonic flow about an F-16 aircraft at realistic flight conditions is presented. The flow solver for which this grid is designed is a zonal one, using the Reynolds averaged Navier-Stokes equations near the surface of the aircraft, and the Euler equations in regions removed from the aircraft. A body conforming global grid, suitable for the Euler equation, is first generated using 3-D Poisson equations having inhomogeneous terms modeled after the 2-D GRAPE code. Regions of the global grid are then designated for zonal refinement as appropriate to accurately model the flow physics. Grid spacing suitable for solution of the Navier-Stokes equations is generated in the refinement zones by simple subdivision of the given coarse grid intervals. That grid generation project is described, with particular emphasis on the global coarse grid.

  2. Numerical investigations of gaseous spherical diffusion flames

    NASA Astrophysics Data System (ADS)

    Lecoustre, Vivien R.

    Spherical diffusion flames have several unique characteristics that make them attractive from experimental and theoretical perspectives. They can be modeled with one spatial dimension, which frees computational resources for detailed chemistry, transport, and radiative loss models. This dissertation is a numerical study of two classes of spherical diffusion flames: hydrogen micro-diffusion flames, emphasizing kinetic extinction, and ethylene diffusion flames, emphasizing sooting limits. The flames were modeled using a one-dimensional, time-accurate diffusion flame code with detailed chemistry and transport. Radiative losses from products were modeled using a detailed absorption/emission statistical narrow band model and the discrete ordinates method. During this work the code has been enhanced by the implementation of a soot formation/oxidation model using the method of moments. Hydrogen micro-diffusion flames were studied experimentally and numerically. The experiments involved gas jets of hydrogen. At their quenching limits, these flames had heat release rates of 0.46 and 0.25 W in air and in oxygen, respectively. These are the weakest flames ever observed. The modeling results confirmed the quenching limits and revealed high rates of reactant leakage near the limits. The effects of the burner size and mass flow rate were predicted to have a significant impact on the flame chemistry and species distribution profiles, favoring kinetic extinction. Spherical ethylene diffusion flames at their sooting limits were also examined. Seventeen normal and inverse spherical flames were considered. Initially sooty, these flames were experimentally observed to reach their sooting limits 2 s after ignition. Structure of the flames at 2 s was considered, with an emphasis on the relationships among local temperature, carbon to oxygen atom ratio (C/O), and scalar dissipation rate. A critical C/O ratio was identified, along with two different sooting limit regimes. Diffusion flames

  3. Spatial services grid

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Li, Qi; Cheng, Jicheng

    2005-10-01

    This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.

  4. Laminar Jet Diffusion Flame Burning

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence, using propane fuel, was taken STS-94, July 4 1997, MET:2/05:30 (approximate). LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel-like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (983KB, 9-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300184.html.

  5. Premixed flames in closed cylindrical tubes

    NASA Astrophysics Data System (ADS)

    Metzener, Philippe; Matalon, Moshe

    2001-09-01

    We consider the propagation of a premixed flame, as a two-dimensional sheet separating unburned gas from burned products, in a closed cylindrical tube. A nonlinear evolution equation, that describes the motion of the flame front as a function of its mean position, is derived. The equation contains a destabilizing term that results from the gas motion induced by thermal expansion and has a memory term associated with vorticity generation. Numerical solutions of this equation indicate that, when diffusion is stabilizing, the flame evolves into a non-planar form whose shape, and its associated symmetry properties, are determined by the Markstein parameter, and by the initial data. In particular, we observe the development of convex axisymmetric or non-axisymmetric flames, tulip flames and cellular flames.

  6. Heat and mass transfer in flames

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1986-01-01

    Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.

  7. Nongradient diffusion in premixed turbulent flames

    NASA Technical Reports Server (NTRS)

    Libby, Paul A.

    1988-01-01

    Recent theoretical and experimental results demonstrating the interaction between force fields and density inhomogeneities as they arise in premixed turbulent flames are discussed. In such flames, the density fluctuates between two levels, the high density in reactants rho sub r and the low density in products rho sub p, with the ratio rho sub r/rho sub p on the order of five to ten in flows of applied interest. The force fields in such flames arise from the mean pressure drop across the flame or from the Reynolds shear stresses in tangential flames with constrained streamlines. The consequence of the interaction is nongradient turbulent transport, countergradient in the direction normal to the flame and nongradient in the tangential direction. The theoretical basis for these results, the presently available experimental support therefore and the implications for other variable density turbulent flows are discussed.

  8. Transitional Gas Jet Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Alammar, Khalid; Gollahalli, S. R.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Drop tower experiments were performed to identify buoyancy effects in transitional hydrogen gas jet diffusion flames. Quantitative rainbow schlieren deflectometry was utilized to optically visualize the flame and to measure oxygen concentration in the laminar portion of the flame. Test conditions consisted of atmospheric pressure flames burning in quiescent air. Fuel from a 0.3mm inside diameter tube injector was issued at jet exit Reynolds numbers (Re) of 1300 to 1700. Helium mole percentage in the fuel was varied from 0 to 40%. Significant effects of buoyancy were observed in near field of the flame even-though the fuel jets were momentum-dominated. Results show an increase of breakpoint length in microgravity. Data suggest that transitional flames in earth-gravity at Re<1300 might become laminar in microgravity.

  9. Effect of fuel composition and differential diffusion on flame stabilization in reacting syngas jets in turbulent cross-flow

    DOE PAGESBeta

    Minamoto, Yuki; Kolla, Hemanth; Grout, Ray W.; Gruber, Andrea; Chen, Jacqueline H.

    2015-07-24

    Here, three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization aremore » located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H2 or CO species reveals that hydrogen

  10. Effect of fuel composition and differential diffusion on flame stabilization in reacting syngas jets in turbulent cross-flow

    SciTech Connect

    Minamoto, Yuki; Kolla, Hemanth; Grout, Ray W.; Gruber, Andrea; Chen, Jacqueline H.

    2015-07-24

    Here, three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization are located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H2 or CO species reveals that

  11. Flame propagation over a layer of crude oil floating on water

    SciTech Connect

    Arai, M. ); Saito, K. ); Altenkirch, R.A. )

    1993-01-01

    The velocity of propagation of a flame over layers of three types of crude oil of various thicknesses on water was measured at different initial temperatures and times of exposure to the air. The rate of propagation was slower, and the width of the preheating zone was narrower the thinner the layer of crude oil. The pattern of propagation varied with the type of crude oil, its temperature, and the time of exposure, but, as the time of exposure increased, the effects of the type of crude oil and the temperature diminished, i.e., the diffusional flame is the controlling factor in this phenomenon.

  12. Effects of buoyancy on lean premixed v-flames. Part 1: Laminar and turbulent flame structures

    SciTech Connect

    Cheng, R.K.; Bedat, B.; Kostiuk, L.W.

    1999-02-01

    Laser schlieren and planar laser-induced fluorescence techniques have been used to investigate laminar and turbulent v-flames in normal, inverse, and microgravity conditions under flow conditions that span the regimes of momentum domination (Ri < 0.1) and buoyancy domination (Ri > 0.1). Overall flame features shown by schlieren indicate that buoyancy dominates the entire flow field for conditions close to Ri = 1. With decreasing Ri, buoyancy effects are observed only in the far-field regions. Analyses of the mean flame angles demonstrate that laminar and turbulent flames do not have similar responses to buoyancy. Difference in the laminar +g and {minus}g flame angles decrease with Ri (i.e., increasing Re) and converge to the {micro}g flame angle at the momentum limit (Ri = 0). This is consistent with the notion that the effects of buoyancy diminish with increasing flow momentum. The +g and {minus}g turbulent flame angles, however, do not converge at Ri = 0. As shown by OH-PLIF images, the inconsistency in +g and {minus}g turbulent flame angles is associated with the differences in flame wrinkles. Turbulent flame wrinkles evolve more slowly in +g than in {minus}g. The difference in flame wrinkle structures, however, cannot be explained in terms of buoyancy that stretches the turbulent flame brushes in +g and compresses the flame brush in {minus}g. Flame wrinkling offers a mechanism through which the flame responds to the field effects of buoyancy despite increasing flow momentum. These observations point to the need to include both upstream and downstream contributions in theoretical analysis of flame turbulence interactions.

  13. Flame Suppression Agent, System and Uses

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2013-01-01

    Aqueous droplets encapsulated in a flame retardant polymer are useful in suppressing combustion. Upon exposure to a flame, the encapsulated aqueous droplets rupture and vaporize, removing heat and displacing oxygen to retard the combustion process. The polymer encapsulant, through decomposition, may further add free radicals to the combustion atmosphere, thereby further retarding the combustion process. The encapsulated aqueous droplets may be used as a replacement to halon, water mist and dry powder flame suppression systems.

  14. Kinetics of Chemical Reactions in Flames

    NASA Technical Reports Server (NTRS)

    Zeldovich, Y.; Semenov, N.

    1946-01-01

    In part I of the paper the theory of flame propagation is developed along the lines followed by Frank-Kamenetsky and one of the writers. The development of chain processes in flames is considered. A basis is given for the application of the method of stationary concentrations to reactions in flames; reactions with branching chains are analyzed. The case of a diffusion coefficient different from the coefficient of temperature conductivity is considered.

  15. Microgravity Turbulent Gas-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A gas-jet diffusion flame is similar to the flame on a Bunsen burner, where a gaseous fuel (e.g., propane) flows from a nozzle into an oxygen-containing atmosphere (e.g., air). The difference is that a Bunsen burner allows for (partial) premixing of the fuel and the air, whereas a diffusion flame is not premixed and gets its oxygen (principally) by diffusion from the atmosphere around the flame. Simple gas-jet diffusion flames are often used for combustion studies because they embody the mechanisms operating in accidental fires and in practical combustion systems. However, most practical combustion is turbulent (i.e., with random flow vortices), which enhances the fuel/air mixing. These turbulent flames are not well understood because their random and transient nature complicates analysis. Normal gravity studies of turbulence in gas-jet diffusion flames can be impeded by buoyancy-induced instabilities. These gravitycaused instabilities, which are evident in the flickering of a candle flame in normal gravity, interfere with the study of turbulent gas-jet diffusion flames. By conducting experiments in microgravity, where buoyant instabilities are avoided, we at the NASA Lewis Research Center hope to improve our understanding of turbulent combustion. Ultimately, this could lead to improvements in combustor design, yielding higher efficiency and lower pollutant emissions. Gas-jet diffusion flames are often researched as model flames, because they embody mechanisms operating in both accidental fires and practical combustion systems (see the first figure). In normal gravity laboratory research, buoyant air flows, which are often negligible in practical situations, dominate the heat and mass transfer processes. Microgravity research studies, however, are not constrained by buoyant air flows, and new, unique information on the behavior of gas-jet diffusion flames has been obtained.

  16. Simultaneous NO and temperature imaging measurements in turbulent nonpremixed flames

    SciTech Connect

    Namazian, M.; Kelly, J.; Schefer, R.

    1994-12-31

    A quantitative laser-induced fluorescence imaging technique was developed with sufficient sensitivity to detect low NO concentration levels present in turbulent flames. For this linear fluorescence technique, quenching and population corrections are necessary for quantitative NO imaging. A correction procedure was developed that utilizes temperature measurements and flamelet or distributed reaction model results. The model results showed that the quenching correction can be related to temperature. Simultaneously with NO imaging, Rayleigh scattering imaging was used to determine the temperature. The measured temperature was combined with model results to estimate the quenching and population corrections for the NO signal. Analysis showed that this data reduction methodology has less than 10% error and the total error is within 25%. The imaging setup uses a multipass cell, to create a thin sheet of laser light, and a 0.8/f collection optics for the NO signal. The in-flame detectability of the imaging system is 1 ppm. To validate the technique, NO was measured and compared at two different rotational levels. Imaging results were also compared with NO{sub x} probe and thermocouple temperature measurements. The results of different measurement methods compared well, thus confirming the validity of the technique. The technique was applied to the flame initiation zone of lifted turbulent non-premixed-methane flames. NO was found to correspond closely to the temperature field. As the turbulence altered the structure of the temperature field, NO was similarly altered. Distributed reaction model results were favorably compared to the imaging data. This further supports the validity of both experimental and model results.

  17. 33 CFR 154.822 - Detonation arresters, flame arresters, and flame screens.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Detonation arresters, flame... BULK Vapor Control Systems § 154.822 Detonation arresters, flame arresters, and flame screens. (a) Each detonation arrester required by this part must: (1) Be capable of arresting a detonation from either side...

  18. Gravitational Effects on Cellular Flame Structure

    NASA Technical Reports Server (NTRS)

    Dunsky, C. M.; Fernandez-Pello, A. C.

    1991-01-01

    An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.

  19. Confined superadiabatic premixed flame-flow interaction

    SciTech Connect

    Najm, H.N.

    1995-12-31

    Laminar premixed unity-Lewis number flames are studied numerically, to examine flow-flame interaction in a two-dimensional closed domain. Two opposed planar flame fronts are perturbed sinusoidally and allowed to develop by consuming premixed reactants. Combustion heat release leads to global pressure and temperature rise in the domain, due to confinement. A superadiabatic condition, with products temperature rising with distance behind the flame front, is observed due to stagnation pressure rise. Variations in tangential strain rate behind the perturbed flame fronts, due to flame curvature and heat release, result in a modified local superadiabatic temperature gradient in the products. These variations in temperature gradients are shown to determine the net local confinement-heating rate in the products, leading to corresponding deviations in products temperature, and the local reaction rate along the flame front. These observations, which are not consistent with one-dimensional superadiabatic stagnation flame behavior, are a direct result of the unrestrained unsteady nature of two-dimensional flame-flow interaction.

  20. Imaging of premixed flames in microgravity

    NASA Astrophysics Data System (ADS)

    Kostiuk, L. W.; Cheng, R. K.

    1994-12-01

    A laser schlieren system which uses video recording and digital images analysis has been developed and applied successfully to microgravity combustion experiments performed in a drop-tower. The optical system and the experiment are installed within a small package which is subjected to free-fall. The images are recorded on video tape and are digitized and analyzed by a computer-controlled image processor. The experimental results include laminar and turbulent premixed conical flames in microgravity, normal positive gravity (upward), and reverse gravity (downward). The procedures to extract frequency information from the digitized images are described. Many gross features of the effects of gravity on premixed conical flames are found. Flames that ignite easily in normal gravity fail to ignite in microgravity. Buoyancy driven instabilities associated with an interface formed between the hot products and the cold surrounding air is the mechanism through which gravity influences premixed laminar and turbulent flames. In normal gravity, this causes the flame to flicker. In reverse gravity, - g, and microgravity, μg, the interface is stable and flame flickering ceases. The flickering frequencies of + g flames vary with changing upstream boundary conditions. The absence of flame flickering in μg suggest that μg flames would be less sensitive to these changes.

  1. Atomic absorption spectroscopy with high temperature flames.

    PubMed

    Willis, J B

    1968-07-01

    An account is given of the history of the development of high temperature flames for the atomic absorption measurement of metals forming refractory oxides. The principles governing the design of premix burners for such flames, and the relative merits of different types of nebulizer burner systems are described. After a brief account of the structure and emission characteristics of the premixed oxygen-acetylene and nitrous oxide-acetylene flames, the scope and limitations of the latter flame in chemical analysis are discussed. PMID:20068790

  2. Conditions for a split diffusion flame

    SciTech Connect

    Hertzberg, J.R.

    1997-05-01

    An unusual phenomenon has been observed in a methane jet diffusion flame subjected to axial acoustic forcing. At specific excitation frequencies and amplitudes, the driven flame splits into a central jet and one or two side jets. The splitting is accompanied by a partial detachment of the flame from the nozzle exit, a shortening of the flame by a factor of 2, and a change from the common yellow color of soot radiation to a clear blue flame. Such a phenomenon may be useful for the control of soot production or product species. The splitting is intermittent in time, bifurcating between the split flame and an ordinary single jet diffusion flame. The experiment consists of an unconfined axisymmetric methane jet formed by a short length of 0.4 cm diameter pipe. The pipe is connected to a large plenum surrounding a bass reflex loudspeaker enclosure that provides the excitation. Conditions producing split and bifurcated flames are presented. The drive frequencies required to cause bifurcation correspond to the first two peaks in the system`s frequency response curve. Bifurcating behavior was observed at a wide range of flow rates, ranging from very small flames of Reynolds number 240 up to turbulent lift-off, at Re = 1,000, based on the inner pipe diameter. It was not sensitive to nozzle length, but the details of the nozzle tip, such as orifice or pipe geometry, can affect the frequency range.

  3. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.

    2002-01-01

    This is the final report of a research program considering interactions between flow and soot properties within laminar diffusion flames. Laminar diffusion flames were considered because they provide model flame systems that are far more tractable for theoretical and experimental studies than more practical turbulent diffusion flames. In particular, understanding the transport and chemical reaction processes of laminar flames is a necessary precursor to understanding these processes in practical turbulent flames and many aspects of laminar diffusion flames have direct relevance to turbulent diffusion flames through application of the widely recognized laminar flamelet concept of turbulent diffusion flames. The investigation was divided into three phases, considering the shapes of nonbuoyant round laminar jet diffusion flames in still air, the shapes of nonbuoyant round laminar jet diffusion flames in coflowing air, and the hydrodynamic suppression of soot formation in laminar diffusion flames.

  4. Soot profiles in boundary-layer flames

    SciTech Connect

    Beier, R.A.; Pagni, P.J.

    1981-12-01

    Carbon particulate volume fractions and approximate particle size distributions are measured in a free laminar combusting boundary layer for liquid hydrocarbon fuels (n-heptane, iso-octane, cyclohexane, cyclohexene, toluene) and polymethylmethacrylate (PMMA). A multiwavelength laser transmission technique determines a most probable radius and the total particle concentration, which are two parameters in an assumed form for the size distribution. In the combusting boundary layer, a sooting region exists between the pyrolyzing fuel surface and the flame zone. The liquid fuel soot volume fractions, f/sub v/, range from f/sub v/ approx. 10/sup -7/ for n-heptane, a paraffin, to f/sub v approx. 10/sup -5/ for toluene, an aromatic. The PMMA volume fractions, f/sub v/ approx. 5 X 10/sup -7/, are approximately the same as the values previously reported for pool fires. The soot volume fractions increase with height; convection of carbon particles downstream widens the soot region with height. For all fuels tested, the most probable radius is between 20 nm and 50 nm, and it changes only slightly with height and distance from the fuel surface.

  5. Experimental study on thermophoretic deposition of soot particles in laminar diffusion flames along a solid wall in microgravity

    SciTech Connect

    Choi, Jae-Hyuk; Chung, Suk Ho; Fujita, Osamu; Tsuiki, Takafumi; Kim, Junhong

    2008-09-15

    Soot deposition process in diffusion flames along a solid wall has been investigated experimentally under a microgravity environment. An ethylene (C{sub 2}H{sub 4}) diffusion flame was formed around a cylindrical rod-burner with the surrounding air velocities of V{sub a} = 2.5, 5, and 10 cm/s, the oxygen concentration of 35%, and the burner wall temperature of 300 K. A laser extinction method was adopted to measure the distribution of soot volume fraction. The experiments determined the trace of maximum soot concentration together with the relative distance of the trace of flame. Results showed that the distance was about 2-5 mm. As the surrounding air velocity increased, the region of the soot particle distribution moved closer to the burner wall. The soot particles near the flame zone tended to move away from the flame zone because of the thermophoretic force and to concentrate at a certain narrow region inside the flame. Because of the simultaneous effects of convection and the thermophoresis, soot particles finally adhered to the burner wall. It has been found that there existed an optimal air velocity for the early deposition of soot on the furnace wall. (author)

  6. Hybrid Grid Generation Using NW Grid

    SciTech Connect

    Jones-Oliveira, Janet B.; Oliveira, Joseph S.; Trease, Lynn L.; Trease, Harold E.; B.K. Soni, J. Hauser, J.F. Thompson, P.R. Eiseman

    2000-09-01

    We describe the development and use of a hybrid n-dimensional grid generation system called NWGRID. The Applied Mathematics Group at Pacific Northwest National Laboratory (PNNL) is developing this tool to support the Laboratory's computational science efforts in chemistry, biology, engineering and environmental (subsurface and atmospheric) modeling. NWGRID is the grid generation system, which is designed for multi-scale, multi-material, multi-physics, time-dependent, 3-D, hybrid grids that are either statically adapted or evolved in time. NWGRID'S capabilities include static and dynamic grids, hybrid grids, managing colliding surfaces, and grid optimization[using reconnections, smoothing, and adaptive mesh refinement (AMR) algorithms]. NWGRID'S data structure can manage an arbitrary number of grid objects, each with an arbitrary number of grid attributes. NWGRID uses surface geometry to build volumes by using combinations of Boolean operators and order relations. Point distributions can be input, generated using either ray shooting techniques or defined point-by-point. Connectivity matrices are then generated automatically for all variations of hybrid grids.

  7. Predictions of Transient Flame Lift-Off Length With Comparison to Single-Cylinder Optical Engine Experiments

    DOE PAGESBeta

    Senecal, P. K.; Pomraning, E.; Anders, J. W.; Weber, M. R.; Gehrke, C. R.; Polonowski, C. J.; Mueller, C. J.

    2014-05-28

    A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less

  8. Predictions of Transient Flame Lift-Off Length With Comparison to Single-Cylinder Optical Engine Experiments

    SciTech Connect

    Senecal, P. K.; Pomraning, E.; Anders, J. W.; Weber, M. R.; Gehrke, C. R.; Polonowski, C. J.; Mueller, C. J.

    2014-05-28

    A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate, and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.

  9. Parallel grid population

    DOEpatents

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  10. Flame acceleration studies in the MINIFLAME facility

    SciTech Connect

    Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.

    1989-07-01

    Flame acceleration and deflagration-to-detonation transition (DDT) studies have been conducted in a 19.4-cm high, 14.5-cm wide, and 2. 242-m long channel (MINIFLAME) that is a 1:12.6 scale model of the 136-m{sup 3} FLAME facility. Tests were conducted with two levels of hydrogen concentration -- 20% and 30%, with and without obstacles in the channel, and with three levels of transverse top venting -- 0%, 13%, and 50%. The flame acceleration results in MINIFLAME are qualitatively similar to those in FLAME; however, the small-scale results are more benign quantitatively. The results show that insufficient venting, 13% venting in this case, can promote flame acceleration due to turbulence produced by the flow through the vents in smooth channels. However, with obstacle-generated turbulence in the channel, 13% top venting was found to be beneficial. Flame acceleration resulting in DDT was shown to occur in as little as 35 liters of mixture. Comparison of the DDT data with obstacles in MINIFLAME and FLAME supports d/{lambda} scaling of DDT, where {lambda} is the detonation cell width of the mixture and d is the characteristic open diameter of the channel. In the MINIFLAME and FLAME tests, DDT occurred for d/{lambda} greater than approximately three. Comparison with other experiments shows that the value of d/{lambda} for DDT is not constant but depends on the obstacle type, spacing, and channel geometry. The comparison of MINIFLAME and FLAME experiments extends the use of d/{lambda} scaling to different geometries and larger scales than previous studies. Small-scale-model testing of flame acceleration and DDT with the same combustible mixture as the full-scale prototype underpredicts flame speeds, overpressures, and the possibility of DDT. 18 refs., 16 figs.

  11. Unsteady planar diffusion flames: Ignition, travel, burnout

    NASA Technical Reports Server (NTRS)

    Fendell, F.; Wu, F.

    1995-01-01

    In microgravity, a thin planar diffusion flame is created and thenceforth travels so that the flame is situated at all times at an interface at which the hydrogen and oxygen meet in stoichiometric proportion. If the initial amount of hydrogen is deficient relative to the initial amount of oxygen, then the planar flame will travel further and further into the half volume initially containing hydrogen, until the hydrogen is (virtually) fully depleted. Of course, when the amount of residual hydrogen becomes small, the diffusion flame is neither vigorous nor thin; in practice, the flame is extinguished before the hydrogen is fully depleted, owing to the finite rate of the actual chemical-kinetic mechanism. The rate of travel of the hydrogen-air diffusion flame is much slower than the rate of laminar flame propagation through a hydrogen-air mixture. This slow travel facilitates diagnostic detection of the flame position as a function of time, but the slow travel also means that the time to burnout (extinction) probably far exceeds the testing time (typically, a few seconds) available in earth-sited facilities for microgravity-environment experiments. We undertake an analysis to predict (1) the position and temperature of the diffusion flame as a function of time, (2) the time at which extinction of the diffusion flame occurs, and (3) the thickness of quench layers formed on side walls (i.e., on lateral boundaries, with normal vectors parallel to the diffusion-flame plane), and whether, prior to extinction, water vapor formed by burning will condense on these cold walls.

  12. Tulip flames: changes in shape of premixed flames propagating in closed tubes

    NASA Astrophysics Data System (ADS)

    Dunn-Rankin, D.; Sawyer, R. F.

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel.

  13. Flame temperature and location measurements of sooting premixed Bunsen flames by rainbow schlieren deflectometry.

    PubMed

    Ibarreta, Alfonso F; Sung, Chih-Jen

    2005-06-10

    Rainbow schlieren deflectometry (RSD) provides a simple and nonintrusive way of determining the temperature field of axisymmetric flames. This technique is specially suited for the detection of large temperature gradients, such as those near the flame location. We explore the feasibility and accuracy of using RSD to obtain the flame location and thermal structure of premixed Bunsen flames for varying fuel types, equivalence ratios, and soot loadings. Uncertainty analysis is also carried out to provide various ways to reduce RSD experimental error. The RSD technique is demonstrated to give useful data even for moderately and heavily sooting flames. PMID:16007857

  14. Three-Dimensional Ignition and Flame Propagation Above Liquid Fuel Pools: Computational Analysis

    NASA Technical Reports Server (NTRS)

    Cai, Jinsheng; Sirignano, William A.

    2001-01-01

    A three-dimensional unsteady reactive Navier-Stokes code is developed to study the ignition and flame spread above liquid fuels initially below the flashpoint temperature. Opposed air flow to the flame spread due to forced and/or natural convection is considered. Pools of finite width and length are studied in air channels of prescribed height and width. Three-dimensional effects of the flame front near the edge of the pool are captured in the computation. The formation of a recirculation zone in the gas phase similar to that found in two-dimensional calculations is also present in the three-dimensional calculations. Both uniform spread and pulsating spread modes are found in the calculated results.

  15. Measurement of temperature distributions in large pool fires with the use of directional flame thermometers

    SciTech Connect

    KOSKI,JORMAN A.

    2000-05-09

    Temperatures inside the flame zone of large regulatory pool fires measured during tests of radioactive materials packages vary widely with both time and position. Measurements made with several Directional Flame Thermometers, in which a thermocouple is attached to a thin metal sheet that quickly approaches flame temperatures, have been used to construct fire temperature distributions and cumulative probability distributions. As an aid to computer simulations of these large fires, these distributions are presented. The distributions are constructed by sorting fire temperature data into bins 10 C wide. A typical fire temperature distribution curve has a gradual increase starting at about 600 C, with the number of observations increasing to a peak near 1000 C, followed by an abrupt decrease in frequency, with no temperatures observed above 1200 C.

  16. Scalar-Filtered Mass-Density-Function Simulation of Swirling Reacting Flows on Unstructured Grids

    SciTech Connect

    Ansari, N.; Pisciuneri, P. H.; Strakey, P. A.; Givi, P.

    2012-11-01

    The scalar-filtered mass-density-function methodology is employed for large-eddy simulation of two swirl-stabilized nonpremixed flames. These are low-swirl (SM1) and high-swirl (SMA2) Sydney methane flames, both of which have been the subject of detailed laboratory measurements. Combustion chemistry is modeled via a flamelet model for the low-swirl flame, and a detailed finite-rate kinetics model for the high-swirl flame. The scalar-filtered mass-density-function is simulated by a Lagrangian Monte Carlo method on a domain discretized by unstructured grids. The simulated results are assessed via comparison with experimental data and show very good agreement. This demonstrates the capability of scalar-filtered mass-density-function for large-eddy simulation of complex flows and warrants future applications of the methodology for large-eddy simulation of practical combustor configurations.

  17. Effect of Reynolds Number in Turbulent-Flow Range on Flame Speeds of Bunsen Burner Flames

    NASA Technical Reports Server (NTRS)

    Bollinger, Lowell M; Williams, David T

    1949-01-01

    The effect of flow conditions on the geometry of the turbulent Bunsen flame was investigated. Turbulent flame speed is defined in terms of flame geometry and data are presented showing the effect of Reynolds number of flow in the range of 3000 to 35,000 on flame speed for burner diameters from 1/4 to 1 1/8 inches and three fuels -- acetylene, ethylene, and propane. The normal flame speed of an explosive mixture was shown to be an important factor in determining its turbulent flame speed, and it was deduced from the data that turbulent flame speed is a function of both the Reynolds number of the turbulent flow in the burner tube and of the tube diameter.

  18. NON-PREMIXED TURBULENT JET FLAMES

    EPA Science Inventory

    The paper, part of a general investigation of mixing and chemical reaction in turbulent jets, concerns the length of non-premixed turbulent jet flames in a stationary environment. Experimental results for the turbulent flame length of chemically reacting jets in water show both i...

  19. Flaming in CMC: Prometheus' Fire or Inferno's?

    ERIC Educational Resources Information Center

    Abrams, Zsuzsanna Ittzes

    2003-01-01

    Reports on a descriptive study with 75 intermediate college learners of German participating in two sessions of synchronous computer mediated communication during the course of a semester that investigated students' flaming behavior--aggressive interpersonal language and rude behavior. Shows that not only is flaming a very infrequent occurrence,…

  20. Active control for turbulent premixed flame simulations

    SciTech Connect

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.

    2004-03-26

    Many turbulent premixed flames of practical interest are statistically stationary. They occur in combustors that have anchoring mechanisms to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. As a result, typical detailed simulations are performed in simplified model configurations such as decaying isotropic turbulence or inflowing turbulence. In these configurations, the turbulence seen by the flame either decays or, in the latter case, increases as the flame accelerates toward the turbulent inflow. This limits the duration of the eddy evolutions experienced by the flame at a given level of turbulent intensity, so that statistically valid observations cannot be made. In this paper, we apply a feedback control to computationally stabilize an otherwise unstable turbulent premixed flame in two dimensions. For the simulations, we specify turbulent in flow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm. We use the simulations to study the propagation and the local chemical variability of turbulent flame chemistry.

  1. Simple Flame Test Techniques Using Cotton Swabs

    ERIC Educational Resources Information Center

    Sanger, Michael J.; Phelps, Amy J.; Banks, Catherine

    2004-01-01

    Three alternative methods for performing flame tests using cheaply and easily available cotton swabs are described. These flame tests are useful for chemical demonstrations or laboratory experiments because they are quick and easy to perform with easy cleanup and disposal methods.

  2. Analysis of Stabilization Mechanisms in Lifted Flames

    NASA Astrophysics Data System (ADS)

    Navarro-Martinez, S.; Kronenburg, A.

    2009-12-01

    Flame stabilization and the mechanisms that govern the dynamics at the flame base have been subject to numerous studies in recent years. Recent results using a combined Large Eddy Simulation-Conditional Moment Closure (LES-CMC) approach to model the turbulent flow field and the turbulence-chemistry interactions has been successful in predicting flame ignition and stabilization by auto-ignition, but LES-CMCs capability of the accurate modelling of the competition between turbulent quenching and laminar and turbulent flame propagation at the anchor point has not been resolved. This paper will consolidate LES-CMC results by analysing a wide range of lifted flame geometries with different prevailing stabilization mechanisms. The simulations allow a clear distinction of the prevailing stabilization mechanisms for the different flames, LES-CMC accurately predicts the competition between turbulence and chemistry during the auto-ignition process, however, the dynamics of the extinction process and turbulent flame propagation are not well captured. The averaging process inherent in the CMC methods does not allow for an instant response of the transported conditionally averaged reactive species to the changes in the flow conditions and any response of the scalars will therefore be delayed. Stationary or quasi-stationary conditions, however, can be well predicted for all flame configurations.

  3. Flame retardant cotton based highloft nonwovens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flame retardancy has been a serious bottleneck to develop cotton blended very high specific volume bulky High loft fabrics. Alternately, newer approach to produce flame retardant cotton blended High loft fabrics must be employed that retain soft feel characteristics desirable of furnishings. Hence, ...

  4. Development of PIV for Microgravity Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Wernet, Mark P.; Yanis, William; Urban, David L.; Sunderland, Peter B.

    2003-01-01

    Results are presented from the application of Particle Image Velocimetry(PIV) to the overfire region of a laminar gas jet diffusion flame in normal gravity. A methane flame burning in air at 0.98 bar was considered. The apparatus demonstrated here is packaged in a drop rig designed for use in the 2.2 second drop tower.

  5. Dynamics of premixed confined swirling flames

    NASA Astrophysics Data System (ADS)

    Palies, P.; Durox, D.; Schuller, T.; Morenton, P.; Candel, S.

    2009-06-01

    Considerable effort is currently being extended to examine the fundamental mechanisms of combustion instabilities and develop methods allowing predictions of these phenomena. One central aspect of this problem is the dynamical response of the flame to incoming perturbations. This question is examined in the present article, which specifically considers the response of premixed swirling flames to perturbations imposed on the upstream side of the flame in the feeding manifold. The flame response is characterized by measuring the unsteady heat release induced by imposed velocity perturbations. A flame describing function is defined by taking the ratio of the relative heat release rate fluctuation to the relative velocity fluctuation. This quantity is determined for a range of frequencies and for different levels of incoming velocity perturbations. The flame dynamics is also documented by calculating conditional phase averages of the light emission from the flame and taking the Abel transform of these average images to obtain the flame geometry at various instants during the cycle of oscillation. These data can be useful to the determination of possible regimes of instability. To cite this article: P. Palies et al., C. R. Mecanique 337 (2009).

  6. Near field flow structure of isothermal swirling flows and reacting non-premixed swirling flames

    SciTech Connect

    Olivani, Andrea; Solero, Giulio; Cozzi, Fabio; Coghe, Aldo

    2007-04-15

    Two confined lean non-premixed swirl-stabilized flame typologies were investigated in order to achieve detailed information on the thermal and aerodynamic field in the close vicinity of the burner throat and provide correlation with the exhaust emissions. Previous finding indicated the generation of a partially premixed flame with radial fuel injection and a purely diffusive flame with co-axial injection in a swirling co-flow. In the present work, the experimental study is reported which has been conducted on a straight exit laboratory burner with no quarl cone, fuelled by natural gas and air, and fired vertically upwards with the flame stabilized at the end of two concentric pipes with the annulus supplying swirled air and the central pipe delivering the fuel. Two fuel injection typologies, co-axial and radial (i.e., transverse), leading to different mixing mechanisms, have been characterized through different techniques: particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) for a comprehensive analysis of the velocity field, still photography for the detection of flame front and main visible features, and thermocouples for the temperature distribution. Isothermal flow conditions have been included in the experimental investigation to provide a basic picture of the flow field and to comprehend the modifications induced by the combustion process. The results indicated that, although the global mixing process and the main flame structure are governed by the swirl motion imparted to the air stream, the two different fuel injection methodologies play an important role on mixture formation and flame stabilization in the primary mixing zone. Particularly, it has been found that, in case of axial injection, the turbulent interaction between the central fuel jet and the backflow generated by the swirl can induce an intermittent fuel penetration in the recirculated hot products and the formation of a central sooting luminous plume, a phenomenon totally

  7. A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow

    SciTech Connect

    Yoo, Chun Sang; Chen, Jacqueline H.; Frank, Jonathan H.

    2008-11-15

    oxidizer leaks through the reaction zone such that the flame is located at fuel lean rather than stoichiometric mixture fraction conditions. (author)

  8. A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow

    SciTech Connect

    Yoo, Chun Sang; Chen, Jacqueline H.; Frank, Jonathan H.

    2009-01-15

    oxidizer leaks through the reaction zone such that the flame is located at fuel lean rather than stoichiometric mixture fraction conditions. (author)

  9. A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow.

    SciTech Connect

    Yoo, Chun Sang; Chen, Jacqueline H.; Frank, Jonathan H.

    2008-08-01

    oxidizer leaks through the reaction zone such that the flame is located at fuel lean rather than stoichiometric mixture fraction conditions.

  10. Public health implications of components of plastics manufacture. Flame retardants.

    PubMed Central

    Pearce, E M; Liepins, R

    1975-01-01

    The four processes involved in the flammability of materials are described and related to the various flame retardance mechanisms that may operate. Following this the four practical approaches used in improving flame retardance of materials are described. Each approach is illustrated with a number of typical examples of flame retardants or synthetic procedures used. This overview of flammability, flame retardance, and flame retardants used is followed by a more detailed examination of most of the plastics manufactured in the United States during 1973, their consumption patterns, and the primary types of flame retardants used in the flame retardance of the most used plastics. The main types of flame retardants are illustrated with a number of typical commercial examples. Statistical data on flame retardant market size, flame retardant growth in plastics, and price ranges of common flame retardants are presented. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. PMID:1175568

  11. Swirl effects on combustion characteristics of premixed flames

    SciTech Connect

    Daurer, M.; Gupta, A.K.; Lewis, M.J.

    1998-07-01

    The effects of swirl direction on the structure of two different premixed flames are investigated in a double concentric premixed swirl burner. The flames were stabilized with two annular jets and a central pipe. Mean and fluctuating temperatures, thermal integral and micro time scales and direct flame photographs were taken to receive information about global flame structures, flame stability and the distribution of the thermal field in these flames. Direct flame photographs, compensated temperature data as well as thermal micro-time scales of temperature data are presented to give a complete insight in the thermal distribution in these flames. It was found that the swirl direction of the stabilizing annular jets seems to take great influence on flame symmetry. The flame with the counter-swirling jets showed a very unsymmetrical behavior which was confirmed in flame photographs, temperature maps and time scales.

  12. Propagation of a Free Flame in a Turbulent Gas Stream

    NASA Technical Reports Server (NTRS)

    Mickelsen, William R; Ernstein, Norman E

    1956-01-01

    Effective flame speeds of free turbulent flames were measured by photographic, ionization-gap, and photomultiplier-tube methods, and were found to have a statistical distribution attributed to the nature of the turbulent field. The effective turbulent flame speeds for the free flame were less than those previously measured for flames stabilized on nozzle burners, Bunsen burners, and bluff bodies. The statistical spread of the effective turbulent flame speeds was markedly wider in the lean and rich fuel-air-ratio regions, which might be attributed to the greater sensitivity of laminar flame speed to flame temperature in those regions. Values calculated from the turbulent free-flame-speed analysis proposed by Tucker apparently form upper limits for the statistical spread of free-flame-speed data. Hot-wire anemometer measurements of the longitudinal velocity fluctuation intensity and longitudinal correlation coefficient were made and were employed in the comparison of data and in the theoretical calculation of turbulent flame speed.

  13. Numerical simulation of turbulent gas flames in tubes.

    PubMed

    Salzano, E; Marra, F S; Russo, G; Lee, J H S

    2002-12-01

    Computational fluid dynamics (CFD) is an emerging technique to predict possible consequences of gas explosion and it is often considered a powerful and accurate tool to obtain detailed results. However, systematic analyses of the reliability of this approach to real-scale industrial configurations are still needed. Furthermore, few experimental data are available for comparison and validation. In this work, a set of well documented experimental data related to the flame acceleration obtained within obstacle-filled tubes filled with flammable gas-air mixtures, has been simulated. In these experiments, terminal steady flame speeds corresponding to different propagation regimes were observed, thus, allowing a clear and prompt characterisation of the numerical results with respect to numerical parameters, as grid definition, geometrical parameters, as blockage ratio and to mixture parameters, as mixture reactivity. The CFD code AutoReagas was used for the simulations. Numerical predictions were compared with available experimental data and some insights into the code accuracy were determined. Computational results are satisfactory for the relatively slower turbulent deflagration regimes and became fair when choking regime is observed, whereas transition to quasi-detonation or Chapman-Jogouet (CJ) were never predicted. PMID:12423940

  14. Effects of Gravity on Sheared and Nonsheared Turbulent Nonpremixed Flames

    NASA Technical Reports Server (NTRS)

    Elghobashi, Said; Boratav, Olus; Zhong, Rong-Bin

    1997-01-01

    The present numerical study is concerned with the fundamental physics of the multi-way interaction between turbulence, chemical reaction and buoyancy in a nonpremixed flame. The method of direct numerical simulation (DNS) is used to solve the instantaneous three-dimensional governing equations (continuity, Navier-Stokes, species mass fractions and energy) under the zero-Mach number assumption. Because of the present supercomputer limitations, we consider two simple flow geometries, namely an initially uniform flow without shear (equivalent to grid-generated turbulence) and an initially uniform shear flow. In each flow, the fuel and oxidant initially exist as two separate streams. As the reactants mix, chemical reaction takes place and exothermic energy is released causing variations in density. In the presence of a gravity field, the spatial and temporal distributions of the induced buoyancy forces depend on the local density gradients and the direction of the gravitational acceleration.

  15. Flame-vortex interactions imaged in microgravity

    NASA Technical Reports Server (NTRS)

    Driscoll, James F.; Dahm, Werner J. A.; Sichel, Martin

    1995-01-01

    The scientific objective is to obtain high quality color-enhanced digital images of a vortex exerting aerodynamic strain on premixed and nonpremixed flames with the complicating effects of buoyancy removed. The images will provide universal (buoyancy free) scaling relations that are required to improve several types of models of turbulent combustion, including KIVA-3, discrete vortex, and large-eddy simulations. The images will be used to help quantify several source terms in the models, including those due to flame stretch, flame-generated vorticity, flame curvature, and preferential diffusion, for a range of vortex sizes and flame conditions. The experiment is an ideal way to study turbulence-chemistry interactions and isolate the effect of vortices of different sizes and strengths in a repeatable manner. A parallel computational effort is being conducted which considers full chemistry and preferential diffusion.

  16. Flame propagation in partially premixed conditions

    NASA Astrophysics Data System (ADS)

    Ruetsch, G.; Poinsot, T.; Veynante, D.; Trouvé, A.

    1996-11-01

    Turbulent flame propagation is studied under inhomogenously premixed conditions via data from direct numerical simulations. Departures from the premixed case are studied using four different configurations, ranging from one dimensional unsteady flames to turbulent three-dimensional simulations. Simulations are performed in these cases with various values of the mean equivalence ratio, fluctuations about the mean equivlalence ratio, correlation length scales, and probability denisty functions of the mixture composition. Propagation characteristics are described in terms of the flamelet approach, where the the main contribution of partial premixing on flame propagation is due to flame wrinkling relative to modification of the mean flamelet structure. This behavior is consistent over a broad range of conditions, with the exception being extreme departures from stoichiometric conditions where flamability limits are exceeded and flame quenching is observed.

  17. Explosion triggering by an accelerating flame.

    PubMed

    Bychkov, Vitaly; Akkerman, V'yacheslav

    2006-06-01

    The analytical theory of explosion triggering by an accelerating flame is developed. The theory describes the structure of a one-dimensional isentropic compression wave pushed by the flame front. The condition of explosion in the gas mixture ahead of the flame front is derived; the instant of the explosion is determined provided that a mechanism of chemical kinetics is known. As an example, it is demonstrated how the problem is solved in the case of a single reaction of Arrhenius type, controlling combustion both inside the flame front and ahead of the flame. The model of an Arrhenius reaction with a cutoff temperature is also considered. The limitations of the theory due to the shock formation in the compression wave are found. Comparison of the theoretical results to the previous numerical simulations shows good agreement. PMID:16906974

  18. Interaction Between Flames and Electric Fields Studied

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Hegde, Uday

    2003-01-01

    The interaction between flames and electric fields has long been an interesting research subject that has theoretical importance as well as practical significance. Many of the reactions in a flame follow an ionic pathway: that is, positive and negative ions are formed during the intermediate steps of the reaction. When an external electric field is applied, the ions move according to the electric force (the Coulomb force) exerted on them. The motion of the ions modifies the chemistry because the reacting species are altered, it changes the velocity field of the flame, and it alters the electric field distribution. As a result, the flame will change its shape and location to meet all thermal, chemical, and electrical constraints. In normal gravity, the strong buoyant effect often makes the flame multidimensional and, thus, hinders the detailed study of the problem.

  19. Outwardly Propagating Flames at Elevated Pressures

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Rozenchan, G.; Tse, S. D.; Zhu, D. L.

    2001-01-01

    Spherical, outwardly-propagating flames of CH4-O2-inert and H2-O2-inert mixtures were experimentally studied in a high pressure apparatus. Stretch-free flame speeds and Markstein lengths were extracted for a wide range of pressures and equivalence ratios for spherically-symmetric, smooth flamefronts and compared to numerical computations with detailed chemistry and transport, as well as existing data in the literature. Wrinkle development was examined for propagating flames that were unstable under our experimental conditions. Hydrodynamic cells developed for most H2-air and CH4-air flames at elevated pressures, while thermal-diffusive instabilities were also observed for lean and near-stoichiometric hydrogen flames at pressures above atmospheric. Strategies in suppressing or delaying the onset of cell formation have been assessed. Buoyancy effects affected sufficiently off-stoichiometric CH4 mixtures at high pressures.

  20. The Structure and Stability of Laminar Flames

    NASA Technical Reports Server (NTRS)

    Buckmaster, John

    1993-01-01

    This review paper on the structure and stability of laminar flames considers such phenomena as heterogeneous mixtures, acoustic instabilities, flame balls and related phenomena, radiation effects, the iodate oxidation of arsenous acid and 'liquid flame fronts', approximate kinetic mechanisms and asymptotic approximations, and tribrachial or triple flames. The topics examined here indicate three themes that may play an important role in laminar flame theory in the coming years: microgravity experiments, kinetic modeling, and turbulence modeling. In the discussion of microgravity experiments it is pointed out that access to drop towers, the Space Shuttle and, in due course, the Space Station Freedom will encourage the development of experiments well designed to isolate the fundamental physics of combustion.

  1. Propagation Regime of Iron Dust Flames

    NASA Technical Reports Server (NTRS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew J.

    2012-01-01

    A flame propagating through an iron-dust mixture can propagate in two asymptotic regimes. When the characteristic time of heat transfer between particles is much smaller than the characteristic time of particle combustion, the flame propagates in the continuum regime where the heat released by reacting particles can be modelled as a space-averaged function. In contrast, when the characteristic time of heat transfer is much larger than the particle reaction time, the flame can no longer be treated as a continuum due to dominating effects associated with the discrete nature of the particle reaction. The discrete regime is characterized by weak dependence of the flame speed on the oxygen concentration compared to the continuum regime. The discrete regime is observed in flames propagating through an iron dust cloud within a gas mixture containing xenon, while the continuum regime is obtained when xenon is substituted with helium.

  2. Density fluctuations in premixed turbulent flames

    SciTech Connect

    Namazian, M.; Talbot, L.; Robben, F.

    1984-03-01

    The simultaneous two-point density fluctuations in a V-shaped turbulent flame are measured using a two-point Rayleigh scattering method. A wrinkle laminar flame model with finite instantaneous flame thickness is developed for the flames studied. The reaction front probability density function (pdf) is both measured directly and also calculated from the measured mean density. An analytical expression for this pdf is given which is derived based on a thin flame model. The mean, rms and correlation coefficients are calculated using the finite reaction front thickness model and the results are compared with the experimental data. The pdf of the intermediate states are shown to be due to the reaction front thickness.

  3. Edge Diffusion Flame Propagation and Stabilization Studied

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2004-01-01

    In most practical combustion systems or fires, fuel and air are initially unmixed, thus forming diffusion flames. As a result of flame-surface interactions, the diffusion flame often forms an edge, which may attach to burner walls, spread over condensed fuel surfaces, jump to another location through the fuel-air mixture formed, or extinguish by destabilization (blowoff). Flame holding in combustors is necessary to achieve design performance and safe operation of the system. Fires aboard spacecraft behave differently from those on Earth because of the absence of buoyancy in microgravity. This ongoing in-house flame-stability research at the NASA Glenn Research Center is important in spacecraft fire safety and Earth-bound combustion systems.

  4. Rayleigh-Taylor Unstable Flames -- Fast or Faster?

    NASA Astrophysics Data System (ADS)

    Hicks, E. P.

    2015-04-01

    Rayleigh-Taylor (RT) unstable flames play a key role in the explosions of supernovae Ia. However, the dynamics of these flames are still not well understood. RT unstable flames are affected by both the RT instability of the flame front and by RT-generated turbulence. The coexistence of these factors complicates the choice of flame speed subgrid models for full-star Type Ia simulations. Both processes can stretch and wrinkle the flame surface, increasing its area and, therefore, the burning rate. In past research, subgrid models have been based on either the RT instability or turbulence setting the flame speed. We evaluate both models, checking their assumptions and their ability to correctly predict the turbulent flame speed. Specifically, we analyze a large parameter study of 3D direct numerical simulations of RT unstable model flames. This study varies both the simulation domain width and the gravity in order to probe a wide range of flame behaviors. We show that RT unstable flames are different from traditional turbulent flames: they are thinner rather than thicker when turbulence is stronger. We also show that none of the several different types of turbulent flame speed models accurately predicts measured flame speeds. In addition, we find that the RT flame speed model only correctly predicts the measured flame speed in a certain parameter regime. Finally, we propose that the formation of cusps may be the factor causing the flame to propagate more quickly than predicted by the RT model.

  5. Experimental Study of Isothermal Wake-Flow Characteristics of Various Flame-Holder Shapes

    NASA Technical Reports Server (NTRS)

    Younger, G. G.; Gabriel, D. S.; Mickelsen, W. R.

    1952-01-01

    An investigation of the isothermal wake-flow characteristics of several flame-holder shapes was carried out in a 4- by 4-inch flow chamber. The effects of flame-holder-shape changes on the characteristics of the Karman vortices and thus on the recirculation zones to which experimenters have related the combustion process were obtained for several flame holders. The results may furnish a basis of correlation, of combustion efficiency and stability for similarly shaped flame holders in combustion studies. Values of the spacing ratio-(ratio of lateral spacing to longitudinal spacing of vortices] obtained for the various shapes approximated the theoretical value of 0.36 given by the Karman stability analysis. Variations in vortex strength of more than 200 percent and in frequency of more than 60 percent were accomplished by varying flame-holder shape. A maximum increase in the recirculation parameter of 56 percent over that for a conventional V-gutter was also obtained. Varying flameholder shape and size enables the designer to select many schedules of variations in vortex strength and frequency- not obtainable by changing size only and may make it possible to approach theoretical maximum vortex strength for any given frequency.

  6. Kinetics of Hydrogen Oxidation Downstream of Lean Propane and Hydrogen Flames

    NASA Technical Reports Server (NTRS)

    Fine, Burton

    1961-01-01

    The decay of hydrogen was measured downstream of lean, flat, premixed hydrogen and propane-air flames seated on cooled porous burners. Experimental variables included temperature, pressure, initial equivalence ratio and diluent. Sampling of burned gas was done through uncooled quartz orifice probes, and the analysis was based on gas chromatography. An approximate treatment of the data in which diffusion was neglected led to the following rate expression for the zone downstream of hydrogen flames d[H (sub 2)] divided by (d times t) equals 1.7 times 10 (sup 10) [H (sub 2)] (sup 3) divided by (sub 2) [O (sub 2)]e (sup (-8100 divided by RT)) moles per liters per second. On the basis of a rate expression of this form, the specific rate constant for the reaction downstream of hydrogen flames was about three times as great as that determined downstream of propane flames. This result was explained on the basis of the existence of a steady state between hydrogen and carbon monoxide in the burned gas downstream of propane flames.

  7. Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame

    SciTech Connect

    Castaldi, M.J.; Marinov, N.M.; Melius, C.F.

    1996-02-01

    Experimental and detailed chemical kinetic modeling has been performed to investigate aromatic and polyaromatic hydrocarbon formation pathways in a rich, sooting, ethylene-oxygen-argon premixed flame. An atmospheric pressure, laminar flat flame operated at an equivalence ratio of 2.5 was used to acquire experimental data for model validation. Gas composition analysis was conducted by an on-line gas chromatograph/mass spectrometer (GC/MS) technique. Measurements were made in the flame and post-flame zone for a number of low molecular weight species, aliphatics, aromatics and polycyclic aromatic hydrocarbons (PAHs) ranging from two to five-aromatic fused rings. The modeling results show the key reaction sequences leading to aromatic and polycyclic aromatic hydrocarbon growth involve the combination of resonantly stabilized radicals. In particular, propargyl and 1-methylallenyl combination reactions lead to benzene and methyl substituted benzene formation, while polycyclic aromatics are formed from cyclopentadienyl radicals and fused rings that have a shared C{sub 5} side structure. Naphthalene production through the reaction step of cyclopentadienyl self-combination and phenanthrene formation from indenyl and cyclopentadienyl combination were shown to be important in the flame modeling study. The removal of phenyl by O{sub 2} leading to cyclopentadienyl formation is expected to play a pivotal role in the PAH or soot precursor growth process under fuel-rich oxidation conditions.

  8. Plasma-assisted combustion: Systematic decoupling of the kinetic enhancement mechanisms of ignition, flame propagation, and flame stabilization by long-lifetime species

    NASA Astrophysics Data System (ADS)

    Ombrello, Timothy M.

    the existence of new ignition regimes for NO x addition that were strongly dependent upon the strain rates (residence times) in the system. The addition of small concentrations of fuel to the air upstream of the plasma produced fuel fragments and partially oxidized products that inhibited ignition. The dominating effects of plasma-produced NOx significantly mitigated the inhibitive effects of these species on chain-branching reaction pathways. To further decouple the plasma-flame interaction, the two long-lifetime plasma species of O3 and O2(a1Delta g) were produced, isolated, measured, and transported to a lifted flame burner to investigate their effect on flame propagation speed. The effects of O3 at atmospheric and sub-atmospheric pressure were found to be significant because of the decomposition of O3 releasing O to rapidly react with the fuel and extract chemical heat early in the pre-heat zone of the flame. The effect of O2(a1Delta g) was isolated by the addition of NO to the plasma afterglow to eliminate O3 and O catalytically. The O2(a1Delta g) was isolated, measured quantitatively using high sensitivity off-axis integrated cavity output absorption spectroscopy, and observed to enhance flame speed. The comparison of experimental and numerical simulation results showed that the current enhancement mechanism including O2(a 1Deltag) could not accurately explain the increase in flame speed observed. Furthermore, a novel filter system was developed to minimize the concentration of all plasma-produced species other than O3 and O2(a1Deltag) through gas phase and wall surface quenching. Lastly, a new simplified and well-defined plasma-combustion system was developed to provide a platform to study the plasma-flame interaction. In addition, a flow visualization technique was proposed by using plasma activation and NO seeding which could be applied to a system where particle seeding of the flow is prohibitive.

  9. Laser-induced incandescence technique to identify soot nucleation and very small particles in low-pressure methane flames

    NASA Astrophysics Data System (ADS)

    Mouton, Thomas; Mercier, Xavier; Wartel, Maxime; Lamoureux, Nathalie; Desgroux, Pascale

    2013-09-01

    This paper presents the study we carried out on the formation of soot particles in low-pressure premixed CH4/O2/N2 flames by using Laser-Induced Incandescence (LII). Flames were stabilised at 26.6 kPa (200 torr). Four different equivalence ratios were tested (Φ = 1.95, 205, 2.15 and 2.32), Φ = 1.95 corresponding to the equivalence ratio for which LII signals begin to be measurable along the flame. The evolution of the LII signals with laser fluence (fluence curve), time (temporal decay) and emission wavelength is reported at different heights above the burner. We specifically took advantage of the low-pressure conditions to probe with a good spatial resolution the soot inception zone of the flames. Significant different behaviours of the fluence curves are observed according to the probed region of the flames and Φ. In addition, while the surface growth process is accompanied by an increase in the LII decay-times (indicator of the primary particle diameter) at higher Φ, decay-times become increasingly short at lower Φ reaching a constant value along the flame at Φ = 1.95. These behaviours are consistent with the detection of the smallest incandescent particles in the investigated flames, these particles having experienced very weak surface growth. Flame modelling including soot formation has been implemented in flames Φ = 2.05 and 2.32. Experimental quantitative soot volume fraction profiles were satisfactorily reproduced by adjusting the fraction of reactive soot surface available for reactions. The qualitative variation of the computed soot particle diameter and the relative weight of surface growth versus nucleation were consistent with the experimental observations.

  10. Method of grid generation

    DOEpatents

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  11. Dynamic Power Grid Simulation

    Energy Science and Technology Software Center (ESTSC)

    2015-09-14

    GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.

  12. IPG Power Grid Overview

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas

    2003-01-01

    This presentation will describe what is meant by grids and then cover the current state of the IPG. This will include an overview of the middleware that is key to the operation of the grid. The presentation will then describe some of the future directions that are planned for the IPG. Finally the presentation will conclude with a brief overview of the Global Grid Forum, which is a key activity that will contribute to the successful availability of grid components.

  13. The flaming gypsy skirt injury.

    PubMed

    Leong, S C L; Emecheta, I E; James, M I

    2007-01-01

    On review of admissions over a 12-month period, we noted a significant number of women presenting with gypsy skirt burns. We describe all six cases to highlight the unique distribution of the wounds and the circumstances in which the accidents occurred. Four skirts were ignited by open fire heaters: two skirts ignited whilst the women were standing nearby, distracted with a telephone conversation; one brushed over the flame as she was walking past the heater; other whilst dancing in the lounge. One skirt was ignited by decorative candles placed on the floor during a social gathering. Another skirt was set alight by cigarette ember, whilst smoking in the toilet. Percentage surface area burned, estimated according to the rule of nines, showed that gypsy skirt burns were significant ranging from 7 to 14% total body surface area (TBSA) and averaging 9% TBSA. Two patients required allogenic split-skin grafts. Common sense care with proximity to naked flame is all that is needed to prevent this injury. PMID:17081546

  14. Chimera Grid Tools

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  15. Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame

    NASA Technical Reports Server (NTRS)

    Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.

    1992-01-01

    UV spontaneous vibrational Raman scattering and laser-induced predissociative fluorescence (LIPF) techniques are combined and applied to a lifted hydrogen jet diffusion flame. Simultaneous, temporally and spatially resolved point measurements of temperature, major species concentrations (H2, O2, N2, H2O), and absolute hydroxyl radical concentration (OH) are obtained with a 'single' excimer laser for the first time. For OH measurements, the use of LIPF makes quenching corrections unnecessary. Results demonstrate that fuel and oxidizer are in a rich, premixed, and unignited condition in the center core of the lifted flame base. In the lifted zone, combustion occurs in an intermittent annular turbulent flame brush and strong finite-rate chemistry effects result in nonequilibrium values of temperature, major species, and OH radicals. Downstream in the slow three-body recombination zone, the major species concentrations are in partial equilibrium, the OH concentrations are in superequilibrium, and the temperatures are in subequilibrium. Far downstream in the flame, equilibrium values of temperature, OH radical, and major species are found.

  16. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K.

    2013-09-01

    In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a ReT,f0.5 scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given ReT,f, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by ReT,M0.5 irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.

  17. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations.

    PubMed

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K

    2013-09-01

    In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a Re_{T,f}^{0.5} scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given Re_{T,f}^{}, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by Re_{T,M}^{0.5} irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames. PMID:24125342

  18. Droplet Measurement below Single-Layer Grid Fill

    NASA Astrophysics Data System (ADS)

    Vitkovic, Pavol

    2016-03-01

    The main part of the heat transfer in a cooling tower is in a fill zone. This one is consist of a cooling fill. For the cooling tower is used a film fill or grid fill or splash fill in the generally. The grid fill has lower heat transfer performance like film fill usually. But their advantage is high resistance to blockage of the fill. The grid fill is consisted with independent layers made from plastic usually. The layers consist of several bars connected to the different shapes. For experiment was used the rhombus shape. The drops diameter was measured above and below the Grid fill.

  19. Two-dimensional imaging of molecular hydrogen in H2-air diffusion flames using two-photon laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Lempert, W.; Kumar, V.; Glesk, I.; Miles, R.; Diskin, G.

    1991-01-01

    The use of a tunable ArF laser at 193.26 nm to record simultaneous single-laser-shot, planar images of molecular hydrogen and hot oxygen in a turbulent H2-air diffusion flame. Excitation spectra of fuel and oxidant-rich flame zones confirm a partial overlap of the two-photon H2 and single-photon O2 Schumann-Runge absorption bands. UV Rayleigh scattering images of flame structure and estimated detection limits for the H2 two-photon imaging are also presented.

  20. Flaming: More than a Necessary Evil for Academic Mailing Lists?

    ERIC Educational Resources Information Center

    Wang, Hongjie

    1996-01-01

    States that although Internet "gurus" advocate that users refrain from "flaming," in fact, flaming permeates the Internet. Explores the nature of flaming in its characteristics and forms as seen in academic discussion groups. Argues that flaming educates the ignorant, tames the uncouth, and promotes effective communication. (PA)

  1. Laminar Soot Processes Experiment Shedding Light on Flame Radiation

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    1998-01-01

    The Laminar Soot Processes (LSP) experiment investigated soot processes in nonturbulent, round gas jet diffusion flames in still air. The soot processes within these flames are relevant to practical combustion in aircraft propulsion systems, diesel engines, and furnaces. However, for the LSP experiment, the flames were slowed and spread out to allow measurements that are not tractable for practical, Earth-bound flames.

  2. Grid Architecture 2

    SciTech Connect

    Taft, Jeffrey D.

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  3. FermiGrid

    SciTech Connect

    Yocum, D.R.; Berman, E.; Canal, P.; Chadwick, K.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; /Fermilab

    2007-05-01

    As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.

  4. CONTROL OF POLLUTANT EMISSIONS IN NATURAL GAS DIFFUSION FLAMES BY USING CASCADE BURNERS

    SciTech Connect

    Ala Qubbaj

    2001-03-30

    The advanced CFDRC software package was installed on a SUN-SPARC dual processor workstation (UTPA funded). The literature pertinent to the project was collected. The physical model was set and all parameters and variables were identified. Based on the physical model, the geometric modeling and grid generation processes were performed using the CFD-GEOM (Interactive Geometric Modeling and Grid Generation software). A total number of 11160 cells (248 x 45) were generated. The venturis in the cascade were modeled as two-dimensional axisymmetric convergent nozzles around the jet. With the cascade being added to the jet, the geometric complexity of the problem increased; which required multi-domain structured grid systems to be connected and matched on the boundaries. The natural gas/propane jet diffusion flame is being numerically analyzed. The numerical computations are being conducted using the CFDRC-ACE+ (advanced computational environment) software package. The results are expected soon.

  5. Flame Oscillations In Non-Premixed Systems Diffusion Flames and Edge-Flames

    NASA Technical Reports Server (NTRS)

    Matalon, Moshe

    2003-01-01

    Diffusive-thermal instabilities are well known features of premixed and diffusion flames. In one of its form the instability appears as spontaneous oscillations. In premixed systems oscillations are predicted to occur when the effective Lewis number, defined as the ratio of the thermal diffusivity of the mixture to the mass diffusivity of the deficient component, is sufficiently larger than one. Oscillations would therefore occur in mixtures that are deficient in the less mobile reactant, namely in lean hydrocarbon-air or rich hydrogen-air mixtures. The theoretical predictions summarized above are in general agreement with experimental results; see for example [5] where a jet configuration was used and experiments were conducted for various inert-diluted propane and methane flames burning in inert-diluted oxygen. Nitrogen, argon and SF6 were used as inert in order to produce conditions of substantially different Lewis numbers and mixture strength. In accord with the predicted trend, it was found that oscillations arise at near extinction conditions, that for oscillations to occur it suffices that one of the two Lewis numbers be sufficiently large, and that oscillations are more likely to be observed when is relatively large.

  6. Structure of Propagating and Attached Hydrocarbon Flames

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath

    2004-01-01

    Direct numerical simulations with C3-chemistry and radiative heat-loss models have been performed to reveal the internal structure of propagating and attached flames in an axisymmetric fuel jet of methane, ethane, ethylene, acetylene, or propane in air under normal and zero gravity. Observations of the flames were also made at the NASA Glenn 2.2-Second Drop Tower. In computations, the fuel issued into quasi-quiescent air for a fixed mixing time before it was ignited along the centerline at stoichiometry. The edge of the flame propagated through a flammable layer at the laminar flame speed of the stoichiometric fuel-air mixture independent of gravity. For all cases, a peak reactivity spot, i.e., reaction kernel, was formed in the flame base, thereby holding a trailing diffusion flame. The location of the reaction kernel in the attached flames depended inversely on the reactivity. The reaction-kernel correlations between the reactivity and the velocity were developed further using variables related to local Damkahler and Peclet numbers.

  7. Fluid-Plasma Coupling in Hydrogen Flames

    NASA Astrophysics Data System (ADS)

    Massa, Luca; Retter, Jonathan; Glumac, Nick; Elliot, Gregg; Freund, Jonathan

    2015-11-01

    Recent experiments show that hydrogen diffusion flames at low Reynolds number can be markedly affected by a dielectric barrier discharge (DBD) plasma. The flame surface deforms and flattens, and light emissions increase. We develop a simulation model to analyze the mechanisms that causes these changes, and apply it to numerical calculations of axisymmetric flames with co-annular DBD, matching the corresponding experiments. Body forces due to charge sheaths are found to be the main mechanism, with radicals produced by plasma excitation playing a secondary role for the present conditions. The non-actuated flame flickers at approximately 10 Hz, in good agreement with the experiments. As the DBD voltage is increased, the flame flattens and oscillations decrease, eventually ceasing above a threshold value. The fully flattened case has a stoichiometric surface lying flat across the fuel orifice, with flame temperature exceeding significantly the adiabatic flame value. A force based on a linearized plasma sheath model, calibrated against air experiments, reproduces the main features of the experiments and provides a good estimate for the threshold flattening potential. In faster flowing regimes, radical production by the plasma becomes more important.

  8. Premixed turbulent flame propagation in microgravity

    NASA Technical Reports Server (NTRS)

    Menon, S.; Jagoda, J.; Sujith, R.

    1995-01-01

    To reduce pollutant formation there is, at present, an increased interest in employing premixed fuel/air mixture in combustion devices. It is well known that greater control over local temperature can be achieved with premixed flames and with lean premixed mixtures, significant reduction of pollutants such as NO(x) can be achieved. However, an issue that is still unresolved is the predictability of the flame propagation speed in turbulent premixed mixtures, especially in lean mixtures. Although substantial progress has been made in recent years, there is still no direct verification that flame speeds in turbulent premixed flows are highly predictable in complex flow fields found in realistic combustors. One of the problems associated with experimental verification is the difficulty in obtaining access to all scales of motion in typical high Reynolds number flows, since, such flows contain scales of motion that range from the size of the device to the smallest Kolmogorov scale. The overall objective of this study is to characterize the behavior of turbulent premixed flames at reasonable high Reynolds number, Re(sub L). Of particular interest here is the thin flame limit where the laminar flame thickness is much smaller than the Kolmogorov scale. Thin flames occur in many practical combustion devices and will be numerically studied using a recently developed new formulation that is briefly described.

  9. Particle clustering in turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    F, Battista; F, Picano; G, Troiani; M, Casciola C.

    2011-12-01

    Transport of inertial particles in turbulent reacting flows is frequent in a number of engineering and natural systems. Aim of this work is to illustrate the effect of the fluctuating instantaneous flame front on the particle spatial distribution. To this purpose a Direct Numerical Simulation of a Bunsen premixed flame seeded with small inertial particles is performed. The flamelet Stokes number Stfl, defined as the ratio between the particle relaxation time and the flame front time scale, is found to be the proper parameter to characterize the particle dynamics in a premixed flame. Clustering of inertial particles is apparent, especially beyond the flame front. The amount of particle segregation is here quantified by the clustering index and two distinct contributions are found to interplay. The first is independent of the particle inertia and affects also tracers. Actually it is associated to the abrupt variation of the particle concentration induced by the fluid expansion across the flame front. The second effect is mainly due to the time lag associated to the particle inertia that, in proximity of the front, affects both the mean and the fluctuation of the particle number in a fixed volume. The global effect results in an intense clustering of the inertial particles in the flame brush region with a maximum for particles with flamelet Stokes number: Stfl = Script O(1).

  10. Manipulating Flames with AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Bishop, Kyle

    2013-11-01

    Time-oscillating electric fields applied to plasmas present in flames create steady flows of gas capable of shaping, directing, enhancing, or even extinguishing flames. Interestingly, electric winds induced by AC electric fields can be stronger that those due to static fields of comparable magnitude. Furthermore, unlike static fields, the electric force due to AC fields is localized near the surface of the flame. Consequently, the AC response depends only on the local field at the surface of the flame - not on the position of the electrodes used to generate the field. These results suggest that oscillating electric fields can be used to manipulate and control combustion processes at a distance. To characterize and explain these effects, we investigate a simple experimental system comprising a laminar methane-air flame positioned between two parallel-plate electrodes. We quantify both the electric and hydrodynamic response of the flame as a function of frequency and magnitude of the applied field. A theoretical model shows how steady gas flows emerge from the time-averaged electrical force due to the field-induced motion of ions generated within the flame and by their disappearance by recombination. These results provide useful insights into the application of AC fields to direct combustion processes.

  11. Investigation of non-premixed flame combustion characters in GO2/GH2 shear coaxial injectors using non-intrusive optical diagnostics

    NASA Astrophysics Data System (ADS)

    Dai, Jian; Yu, NanJia; Cai, GuoBiao

    2015-12-01

    Single-element combustor experiments are conducted for three shear coaxial geometry configuration injectors by using gaseous oxygen and gaseous hydrogen (GO2/GH2) as propellants. During the combustion process, several spatially and timeresolved non-intrusive optical techniques, such as OH planar laser induced fluorescence (PLIF), high speed imaging, and infrared imaging, are simultaneously employed to observe the OH radical concentration distribution, flame fluctuations, and temperature fields. The results demonstrate that the turbulent flow phenomenon of non-premixed flame exhibits a remarkable periodicity, and the mixing ratio becomes a crucial factor to influence the combustion flame length. The high speed and infrared images have a consistent temperature field trend. As for the OH-PLIF images, an intuitionistic local flame structure is revealed by single-shot instantaneous images. Furthermore, the means and standard deviations of OH radical intensity are acquired to provide statistical information regarding the flame, which may be helpful for validation of numerical simulations in future. Parameters of structure configurations, such as impinging angle and oxygen post thickness, play an important role in the reaction zone distribution. Based on a successful flame contour extraction method assembled with non-linear anisotropic diffusive filtering and variational level-set, it is possible to implement a fractal analysis to describe the fractal characteristics of the non-premixed flame contour. As a result, the flame front cannot be regarded as a fractal object. However, this turbulent process presents a self-similarity characteristic.

  12. Computational Study of the Effect of Compositionally Inhomogeneous Fuel Streams on Turbulent Jet Flames

    NASA Astrophysics Data System (ADS)

    Mueller, Michael E.; Perry, Bruce A.; Masri, Assaad R.

    2015-11-01

    A new piloted turbulent jet burner has been developed at The University of Sydney to investigate how inhomogeneous partially premixed inlet conditions affect flame structure and stability characteristics. Compositional inhomogeneity at the inlet is achieved by recessing a central tube that separates the fuel stream and a surrounding annular air flow to allow for a controlled amount of mixing before the gases reach the nozzle exit. In this work, Large Eddy Simulation of the burner is performed using a conventional nonpremixed flamelet/progress variable model. The geometry is divided into three separately computed domains: fully developed pipe/annulus flow, pipe flow in the region of fuel/air mixing upstream of the nozzle, and the turbulent flame. The results for two recess distances of the central tube (inhomogeneous fuel inlet and effectively homogeneous fuel inlet) are compared to recent experimental measurements. Discrepancies between the simulation and experiment show that premixed combustion is dominant only for the inhomogeneous case at the base of the flame. Sensitivitiese to grid resolution in both the upstream mixing domain and the turbulent flame domain as well as pilot conditions are assessed.

  13. Role of compressibility in moderating flame acceleration in tubes.

    PubMed

    Bychkov, Vitaly; Akkerman, V'yacheslav; Valiev, Damir; Law, Chung K

    2010-02-01

    The effect of gas compression on spontaneous flame acceleration leading to deflagration-to-detonation transition is studied theoretically for small Reynolds number flame propagation from the closed end of a tube. The theory assumes weak compressibility through expansion in small Mach number. Results show that the flame front accelerates exponentially during the initial stage of propagation when the Mach number is negligible. With continuous increase in the flame velocity with respect to the tube wall, the flame-generated compression waves subsequently moderate the acceleration process by affecting the flame shape and velocity, as well as the flow driven by the flame. PMID:20365653

  14. Hydrodynamic and chemical effects of hydrogen dilution on soot evolution in turbulent nonpremixed bluff body ethylene flames

    NASA Astrophysics Data System (ADS)

    Deng, Sili; Mueller, Michael E.; Chan, Qing N.; Qamar, Nader H.; Dally, Bassam B.; Alwahabi, Zeyad T.; Nathan, Graham J.

    2015-11-01

    A turbulent nonpremixed bluff body ethylene/hydrogen (volume ratio 2:1) flame is studied and compared with the ethylene counterpart [Mueller et al., Combust. Flame, 160, 2013]. Similar to the ethylene buff body flame, a low-strain recirculation zone, a high-strain neck region, and a downstream jet-like region are observed. However, the maximum soot volume fraction in the recirculation zone of the hydrogen diluted case is significantly lower than the ethylene case. Large Eddy Simulation is used to further investigate soot evolution in the recirculation zone and to elucidate the role of hydrogen dilution. Since the central jet Reynolds numbers in both cases are the same (approximately 30,900), the jet velocity of the hydrogen diluted case is higher, resulting in a shorter and leaner recirculation zone. In addition, hydrogen dilution chemically suppresses soot formation due to the reduction of C/H ratio. Consequently, the reduction of the soot volume fraction for the hydrogen diluted ethylene flame is attributed to two major effects: hydrodynamic and chemical effects.

  15. Large Eddy simulation of the Sandia Flame series (D-F) using the Eulerian stochastic field method

    SciTech Connect

    Jones, W.P.; Prasad, V.N.

    2010-09-15

    Three turbulent piloted methane jet flames with increasing levels of local extinction (Sandia Flames D-F) have been computed using Large Eddy simulation. The smallest unresolved scales of the flow, in which combustion occurs, are represented using the filtered probability density function method where the corresponding evolution equation is solved directly. A dynamic model for the sub-grid stresses together with a simple gradient diffusion approximation for the scalar fluxes is applied in conjunction with the linear mean square estimation closure for sub-filter scale mixing. An augmented reduced mechanism (ARM) derived from the full GRI 3.0 mechanism is incorporated to describe the chemical reaction. The results demonstrate the ability of the method in capturing quantitatively finite rate effects such as extinction and re-ignition in turbulent flames. (author)

  16. Flame-Generated Vorticity Production in Premixed Flame-Vortex Interactions

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    2003-01-01

    In this study, we use detailed time-dependent, multi-dimensional numerical simulations to investigate the relative importance of the processes leading to FGV in flame-vortex interactions in normal gravity and microgravity and to determine if the production of vorticity in flames in gravity is the same as that in zero gravity except for the contribution of the gravity term. The numerical simulations will be performed using the computational model developed at NRL, FLAME3D. FLAME3D is a parallel, multi-dimensional (either two- or three-dimensional) flame model based on FLIC2D, which has been used extensively to study the structure and stability of premixed hydrogen and methane flames.

  17. Understanding The Smart Grid

    SciTech Connect

    2007-11-15

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology

  18. Flaming alcoholic drinks: flirting with danger.

    PubMed

    Tan, Alethea; Frew, Quentin; Yousif, Ali; Ueckermann, Nicola; Dziewulksi, Peter

    2014-01-01

    Alcohol-related burn injuries carry significant mortality and morbidity rates. Flaming alcoholic beverages served in trendy bars and clubs are becoming increasingly popular. The dangers associated with an ignited alcoholic drink are often underestimated by party goers whose risk assessment ability is already impaired by heavy alcohol consumption. The authors present two cases demonstrating the varied severity of burn injuries associated with flaming alcoholic drinks, and their clinical management. Consumption of flaming alcoholic drinks poses potential risks for burn injuries. Further support is required to enable national and local agencies to implement effective interventions in drinking environments. PMID:24043236

  19. Biodegradation of brominated and organophosphorus flame retardants.

    PubMed

    Waaijers, Susanne L; Parsons, John R

    2016-04-01

    Brominated flame retardants account for about 21% of the total production of flame retardants and many of these have been identified as persistent, bioaccumulative and toxic. Nevertheless, debromination of these chemicals under anaerobic conditions is well established, although this can increase their toxicity. Consequently, the production and use of these chemicals has been restricted and alternative products have been developed. Many of these are brominated compounds and share some of the disadvantages of the chemicals they are meant to replace. Therefore, other, nonbrominated, flame retardants such as organophosphorus compounds are also being used in increasing quantities, despite the fact that knowledge of their biodegradation and environmental fate is often lacking. PMID:26748263

  20. Aromatics oxidation and soot formation in flames

    SciTech Connect

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T.

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  1. Flame Resistant Fibrous Materials Development

    NASA Technical Reports Server (NTRS)

    Coskren, R. J.

    1982-01-01

    Since 1973, Albany International Research Co. has been engaged by NASA-JSC under Contract No. NAS9-13673 to conduct studies aimed at developing fibers and flexible structures made therefrom which would provide improved flame resistance over existing commercially available materials in oxygen enriched atmospheres. A portion of the crew bay area life support system and crew equipment for the space shuttle was initially designed to function at a 30% oxygen, 70% nitrogen atmosphere at 9 psia pressure. This oxygen concentration imposed certain fire safety and smoke generation requirements which could not be completely met by commonly accepted textiles. Potentially useful new polymers were investigated both for fire safety and mechanical properties. During the course of the work, three candidate fibers were studied and evaluated and the results of each of these efforts are summarized.

  2. Flame resistant nontoxic polymer development

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Karle, D. W.; Kratzer, R. H.

    1975-01-01

    A number of homopolymers, copolymers, and terpolymers were synthesized employing styrene and four derivatives of diphenyl-p-styrylphosphine. The various polymeric compositions were prepared by two processes, (1) monomer bulk polymerizations and (2) substitution of preformed polydiphenyl-p-styrylphosphine. Results indicate that the majority of the compositions exhibit superior melting and flame retardant characteristics as compared to polystyrene, but are inferior in molding and film forming capability. Terpolymerization appears to result in the materials with the best overall combination of properties. Toxicological evaluation of three representative basic compositions in the form of molded washers showed that no mortalities occurred among the test animals exposed to the products of the oxidative thermal decomposition of the three materials.

  3. Flame tolerant secondary fuel nozzle

    SciTech Connect

    Khan, Abdul Rafey; Ziminsky, Willy Steve; Wu, Chunyang; Zuo, Baifang; Stevenson, Christian Xavier

    2015-02-24

    A combustor for a gas turbine engine includes a plurality of primary nozzles configured to diffuse or premix fuel into an air flow through the combustor; and a secondary nozzle configured to premix fuel with the air flow. Each premixing nozzle includes a center body, at least one vane, a burner tube provided around the center body, at least two cooling passages, a fuel cooling passage to cool surfaces of the center body and the at least one vane, and an air cooling passage to cool a wall of the burner tube. The cooling passages prevent the walls of the center body, the vane(s), and the burner tube from overheating during flame holding events.

  4. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Kwon, O. C.; Abid, M.; Porres, J.; Liu, J. B.; Ronney, P. D.; Struk, P. M.; Weiland, K. J.

    2003-01-01

    Several topics relating to premixed flame behavior at reduced gravity have been studied. These topics include: (1) flame balls; (2) flame structure and stability at low Lewis number; (3) experimental simulation of buoyancy effects in premixed flames using aqueous autocatalytic reactions; and (4) premixed flame propagation in Hele-Shaw cells. Because of space limitations, only topic (1) is discussed here, emphasizing results from experiments on the recent STS-107 Space Shuttle mission, along with numerical modeling efforts.

  5. Grid quality improvement by a grid adaptation technique

    NASA Technical Reports Server (NTRS)

    Lee, K. D.; Henderson, T. L.; Choo, Y. K.

    1991-01-01

    A grid adaptation technique is presented which improves grid quality. The method begins with an assessment of grid quality by defining an appropriate grid quality measure. Then, undesirable grid properties are eliminated by a grid-quality-adaptive grid generation procedure. The same concept has been used for geometry-adaptive and solution-adaptive grid generation. The difference lies in the definition of the grid control sources; here, they are extracted from the distribution of a particular grid property. Several examples are presented to demonstrate the versatility and effectiveness of the method.

  6. Navigation in Grid Space with the NAS Grid Benchmarks

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We present a navigational tool for computational grids. The navigational process is based on measuring the grid characteristics with the NAS Grid Benchmarks (NGB) and using the measurements to assign tasks of a grid application to the grid machines. The tool allows the user to explore the grid space and to navigate the execution at a grid application to minimize its turnaround time. We introduce the notion of gridscape as a user view of the grid and show how it can be me assured by NGB, Then we demonstrate how the gridscape can be used with two different schedulers to navigate a grid application through a rudimentary grid.

  7. Multi-Dimensional Measurements of Combustion Species in Flame Tube and Sector Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda Royce

    1996-01-01

    The higher temperature and pressure cycles of future aviation gas turbine combustors challenge designers to produce combustors that minimize their environmental impact while maintaining high operation efficiency. The development of low emissions combustors includes the reduction of unburned hydrocarbons, smoke, and particulates, as well as the reduction of oxides of nitrogen (NO(x)). In order to better understand and control the mechanisms that produce emissions, tools are needed to aid the development of combustor hardware. Current methods of measuring species within gas turbine combustors use extractive sampling of combustion gases to determine major species concentrations and to infer the bulk flame temperature. These methods cannot be used to measure unstable combustion products and have poor spatial and temporal resolution. The intrusive nature of gas sampling may also disturb the flow structure within a combustor. Planar laser-induced fluorescence (PLIF) is an optical technique for the measurement of combustion species. In addition to its non-intrusive nature, PLIF offers these advantages over gas sampling: high spatial resolution, high temporal resolution, the ability to measure unstable species, and the potential to measure combustion temperature. This thesis considers PLIF for in-situ visualization of combustion species as a tool for the design and evaluation of gas turbine combustor subcomponents. This work constitutes the first application of PLIF to the severe environment found in liquid-fueled, aviation gas turbine combustors. Technical and applied challenges are discussed. PLIF of OH was used to observe the flame structure within the post flame zone of a flame tube combustor, and within the flame zone of a sector combustor, for a variety of fuel injector configurations. OH was selected for measurement because it is a major combustion intermediate, playing a key role in the chemistry of combustion, and because its presence within the flame zone can

  8. Heat release and flame structure measurements of self-excited acoustically-driven premixed methane flames

    SciTech Connect

    Kopp-Vaughan, Kristin M.; Tuttle, Steven G.; Renfro, Michael W.; King, Galen B.

    2009-10-15

    An open-open organ pipe burner (Rijke tube) with a bluff-body ring was used to create a self-excited, acoustically-driven, premixed methane-air conical flame, with equivalence ratios ranging from 0.85 to 1.05. The feed tube velocities corresponded to Re = 1780-4450. Coupled oscillations in pressure, velocity, and heat release from the flame are naturally encouraged at resonant frequencies in the Rijke tube combustor. This coupling creates sustainable self-excited oscillations in flame front area and shape. The period of the oscillations occur at the resonant frequency of the combustion chamber when the flame is placed {proportional_to}1/4 of the distance from the bottom of the tube. In this investigation, the shape of these acoustically-driven flames is measured by employing both OH planar laser-induced fluorescence (PLIF) and chemiluminescence imaging and the images are correlated to simultaneously measured pressure in the combustor. Past research on acoustically perturbed flames has focused on qualitative flame area and heat release relationships under imposed velocity perturbations at imposed frequencies. This study reports quantitative empirical fits with respect to pressure or phase angle in a self-generated pressure oscillation. The OH-PLIF images were single temporal shots and the chemiluminescence images were phase averaged on chip, such that 15 exposures were used to create one image. Thus, both measurements were time resolved during the flame oscillation. Phase-resolved area and heat release variations throughout the pressure oscillation were computed. A relation between flame area and the phase angle before the pressure maximum was derived for all flames in order to quantitatively show that the Rayleigh criterion was satisfied in the combustor. Qualitative trends in oscillating flame area were found with respect to feed tube flow rates. A logarithmic relation was found between the RMS pressure and both the normalized average area and heat release rate

  9. Experimental Observations on a Low Strain Counter-Flow Diffusion Flame: Flow and Bouyancy Effects

    NASA Technical Reports Server (NTRS)

    Sutula, J. A.; Torero, J. L.; Ezekoye, O. A.

    1999-01-01

    Diffusion flames are of great interest in fire safety and many industrial processes. The counter-flow configuration provides a constant strain flow, and therefore is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in microgravity conditions have begun to explore the low strain regimes. Numerical work has shown the coupling between gas phase reaction rates, soot reaction rates, and radiation. For these programs, size, geometry and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. When the physical boundaries can not be considered infinitely far from the reaction zone discrepancies arise. A computational study that includes boundary effects and accounts for the deviations occurring when the major potential flow assumptions are relaxed was presented by Borlik et al. This development properly incorporates all heat loss terms and shows the possibility of extinction in the low strain regime. A major constraint of studying the low strain regime is buoyancy. Buoyant instabilities have been shown to have a significant effect on the nature of reactants and heat transport, and can introduce instabilities on the flow that result in phenomena such as flickering or fingering. The counter-flow configuration has been shown to provide a flame with no symmetry disrupting instabilities for inlet velocities greater than 50 mm/s. As the velocity approaches this limit, the characteristic length of the experiment has to be reduced to a few millimetres so as to keep the Rayleigh number (Ra(sub L) = (Beta)(g(sub 0))(L(exp 3) del T)/(alpha(v))) below 2000. In this work, a rectangular counter-flow burner was used to study a two-dimensional counter-flow diffusion flame. Flow visualisation and Particle Image Velocimetry served to describe

  10. Grid enabled Service Support Environment - SSE Grid

    NASA Astrophysics Data System (ADS)

    Goor, Erwin; Paepen, Martine

    2010-05-01

    The SSEGrid project is an ESA/ESRIN project which started in 2009 and is executed by two Belgian companies, Spacebel and VITO, and one Dutch company, Dutch Space. The main project objectives are the introduction of a Grid-based processing on demand infrastructure at the Image Processing Centre for earth observation products at VITO and the inclusion of Grid processing services in the Service Support Environment (SSE) at ESRIN. The Grid-based processing on demand infrastructure is meant to support a Grid processing on demand model for Principal Investigators (PI) and allow the design and execution of multi-sensor applications with geographically spread data while minimising the transfer of huge volumes of data. In the first scenario, 'support a Grid processing on demand model for Principal Investigators', we aim to provide processing power close to the EO-data at the processing and archiving centres. We will allow a PI (non-Grid expert user) to upload his own algorithm, as a process, and his own auxiliary data from the SSE Portal and use them in an earth observation workflow on the SSEGrid Infrastructure. The PI can design and submit workflows using his own processes, processes made available by VITO/ESRIN and possibly processes from other users that are available on the Grid. These activities must be user-friendly and not requiring detailed knowledge about the underlying Grid middleware. In the second scenario we aim to design, implement and demonstrate a methodology to set up an earth observation processing facility, which uses large volumes of data from various geographically spread sensors. The aim is to provide solutions for problems that we face today, like wasting bandwidth by copying large volumes of data to one location. We will avoid this by processing the data where they are. The multi-mission Grid-based processing on demand infrastructure will allow developing and executing complex and massive multi-sensor data (re-)processing applications more

  11. Localized microwave pulsed plasmas for ignition and flame front enhancement

    NASA Astrophysics Data System (ADS)

    Michael, James Bennett

    Modern combustor technologies require the ability to match operational parameters to rapidly changing demands. Challenges include variable power output requirements, variations in air and fuel streams, the requirement for rapid and well-controlled ignition, and the need for reliability at low fuel mixture fractions. Work on subcritical microwave coupling to flames and to weakly ionized laser-generated plasmas has been undertaken to investigate the potential for pulsed microwaves to allow rapid combustion control, volumetric ignition, and leaner combustion. Two strategies are investigated. First, subcritical microwaves are coupled to femtosecond laser-generated ionization to ignite methane/air mixtures in a quasi-volumetric fashion. Total energy levels are comparable to the total minimum ignition energies for laser and spark discharges, but the combined strategy allows a 90 percent reduction in the required laser energy. In addition, well-defined multi-dimensional ignition patterns are designated with multiple laser passes. Second, microwave pulse coupling to laminar flame fronts is achieved through interaction with chemiionization-produced electrons in the reaction zone. This energy deposition remains well-localized for a single microwave pulse, resulting in rapid temperature rises of greater than 200 K and maintaining flame propagation in extremely lean methane/air mixtures. The lean flammability limit in methane/air mixtures with microwave coupling has been decreased from an equivalence ratio 0.6 to 0.3. Additionally, a diagnostic technique for laser tagging of nitrogen for velocity measurements is presented. The femtosecond laser electronic excitation tagging (FLEET) technique utilizes a 120 fs laser to dissociate nitrogen along a laser line. The relatively long-lived emission from recombining nitrogen atoms is imaged with a delayed and fast-gated camera to measure instantaneous velocities. The emission strength and lifetime in air and pure nitrogen allow

  12. Kinetic Effects of Aromatic Molecular Structures on Diffusion Flame Extinction

    SciTech Connect

    Won, Sang Hee; Dooley, S.; Dryer, F. L.; Ju, Yiguang

    2011-01-01

    Kinetic effects of aromatic molecular structures for jet fuel surrogates on the extinction of diffusion flames have been investigated experimentally and numerically in the counterflow configuration for toluene, n-propylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. Quantitative measurement of OH concentration for aromatic fuels was conducted by directly measuring the quenching rate from the emission lifetimes of OH planar laser induced fluorescence (LIF). The kinetic models for toluene and 1,2,4-trimethylbenzene were validated against the measurements of extinction strain rates and LIF measurements. A semi-detailed n-propylbenzene kinetic model was developed and tested. The experimental results showed that the extinction limits are ranked from highest to lowest as n-propylbenzene, toluene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. The present models for toluene and n-propylbenzene agree reasonably well with the measurements, whereas the model for 1,2,4-trimethylbenzene under-estimates extinction limits. Kinetic pathways of OH production and consumption were analyzed to investigate the impact of fuel fragmentation on OH formation. It was found that, for fuels with different molecular structures, the fuel decomposition pathways and their propagation into the formation of radical pool play an important role to determine the extinction limits of diffusion flames. Furthermore, OH concentrations were found to be representative of the entire radical pool concentration, the balance between chain branching and propagation/termination reactions and the balance between heat production from the reaction zone and heat losses to the fuel and oxidizer sides. Finally, a proposed “OH index,” was defined to demonstrate a linear correlation between extinction strain rate and OH index and fuel mole fraction, suggesting that the diffusion flame extinctions for the tested aromatic fuels can be determined by the capability of a fuel to establish a radical pool

  13. Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II

    NASA Technical Reports Server (NTRS)

    Cheng, W. K.; Lai, M.-C.; Chue, T.-H.

    1991-01-01

    A flame sheet model for heat release is incorporated into a multi-dimensional fluid mechanical simulation for gas turbine application. The model assumes that the chemical reaction takes place in thin sheets compared to the length scale of mixing, which is valid for the primary combustion zone in a gas turbine combustor. In this paper, the details of the model are described and computational results are discussed.

  14. Study on the Enhancement Effect of Dielectric Barrier Discharge on the Premixed Methane/Oxygen/Helium Flame Velocity

    NASA Astrophysics Data System (ADS)

    Mu, Haibao; Yu, Lin; Li, Ping; Tang, Chenglong; Wang, Jinhua; Zhang, Guanjun

    2015-12-01

    Recently, plasma-assisted combustion has become a potentially applicable technology in many combustion scenarios. In this paper, a dielectric barrier discharge (DBD) plasma generator is designed to explore the effect of plasma on the CH4 oxidation process, and several properties of combustion are considered. First, in the presence or absence of plasma discharge, physical appearance of the flame is examined and analyzed. Second, the flame propagation velocity is calculated by the flame front extracted from the imaging data with the Bunsen burner method. Finally, the main molecular components and their intensity variation in the flame and the plasma zones are identified with an emission spectrograph to analyze the effect of active species on the combustion process. We also discuss the possible kinetic regime of plasma-assisted combustion. Experimental results imply that plasma discharge applied to the premixed CH4/O2/He mixture significantly raises the flame speed with equivalence ratios ranging from 0.85 to 1.10, with the flame speed improved by 17% to 35%. It can be seen that plasma can improve methane oxidation efficiency in the premixed fuel/oxidizer, especially at a low equivalence ratio. supported by the Fundamental Research Funds for the Central Universities of China (No. xjj2013086), Natural Science Basic Research Plan in Shaanxi Province of China (No. 2014JQ7254) and National Natural Science Foundation of China (No. 51477135)

  15. Partially premixed flames in stagnating turbulence: The merging of planar triple flames

    SciTech Connect

    Bray, Ken; Champion, Michel; Libby, Paul A.

    2008-07-15

    The aim of this work, which takes a RANS perspective, is to consider the prospect of establishing a planar turbulent triple flame whose mean consists of two parallel premixed flame brushes separated by a nonpremixed flame brush. Experiments involving a counterflow between fuel-rich and fuel-lean turbulent streams are considered. A correlation of published experimental data is used to estimate premixed turbulent flame brush locations and brush thicknesses. Previously validated model calculations then allow an estimate to be made of the thickness of a central nonpremixed flame or mixing layer, a thickness which is shown to be strongly influenced by flame-turbulence interactions in the premixed flames. This thickness turns out to be orders-of-magnitude greater than the width of the hot burned gas region between the two premixed flames strongly suggesting that the three reacting flow regions will merge with each other. It is concluded that unlike the corresponding laminar counterflow planar turbulent triple flames will be difficult to establish in laboratory scale experiments. (author)

  16. Triple flame structure and dynamics at the stabilization point of a lifted jet diffusion flame

    SciTech Connect

    Najm, H.N.; Milne, R.B.; Devine, K.D.; Kempka, S.N.

    1998-03-01

    A coupled Lagrangian-Eulerian low-Mach-number numerical scheme is developed, using the vortex method for the momentum equations, and a finite difference approach with adaptive mesh refinement for the scalar conservation equations. The scheme is used to study the structure and dynamics of a forced lifted buoyant planar jet flame. Outer buoyant structures, driven by baroclinic vorticity generation, are observed. The flame base is found to stabilize in a region where flow velocities are sufficiently small to allow its existence. A triple flame is observed at the flame base, a result of premixing of fuel and oxidizer upstream of the ignition point. The structure and dynamics of the triple flame, and its modulation by jet vortex structures, are studied. The spatial extent of the triple flame is small, such that it fits wholly within the rounded flame base temperature field. The dilatation rate field outlines the edge of the hot fluid at the flame base. Neither the temperature field nor the dilatation rate field seem appropriate for experimental measurement of the triple flame in this flow.

  17. High pressure flame system for pollution studies with results for methane-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Maahs, H. G.

    1977-01-01

    A high pressure flame system was designed and constructed for studying nitrogen oxide formation in fuel air combustion. Its advantages and limitations were demonstrated by tests with a confined laminar methane air diffusion flame over the pressure range from 1 to 50 atm. The methane issued from a 3.06 mm diameter port concentrically into a stream of air contained within a 20.5 mm diameter chimney. As the combustion pressure is increased, the flame changes in shape from wide and convex to slender and concave, and there is a marked increase in the amount of luminous carbon. The height of the flame changes only moderately with pressure.

  18. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames

    SciTech Connect

    Burke, Michael P.; Chen, Zheng; Ju, Yiguang; Dryer, Frederick L.

    2009-04-15

    The effect of nonspherical (i.e. cylindrical) bomb geometry on the evolution of outwardly propagating flames and the determination of laminar flame speeds using the conventional constant-pressure technique is investigated experimentally and theoretically. The cylindrical chamber boundary modifies the propagation rate through the interaction of the wall with the flow induced by thermal expansion across the flame (even with constant pressure), which leads to significant distortion of the flame surface for large flame radii. These departures from the unconfined case, especially the resulting nonzero burned gas velocities, can lead to significant errors in flame speeds calculated using the conventional assumptions, especially for large flame radii. For example, at a flame radius of 0.5 times the wall radius, the flame speed calculated neglecting confinement effects can be low by {proportional_to}15% (even with constant pressure). A methodology to estimate the effect of nonzero burned gas velocities on the measured flame speed in cylindrical chambers is presented. Modeling and experiments indicate that the effect of confinement can be neglected for flame radii less than 0.3 times the wall radius while still achieving acceptable accuracy (within 3%). The methodology is applied to correct the flame speed for nonzero burned gas speeds, in order to extend the range of flame radii useful for flame speed measurements. Under the proposed scaling, the burned gas speed can be well approximated as a function of only flame radius for a given chamber geometry - i.e. the correction function need only be determined once for an apparatus and then it can be used for any mixture. Results indicate that the flow correction can be used to extract flame speeds for flame radii up to 0.5 times the wall radius with somewhat larger, yet still acceptable uncertainties for the cases studied. Flow-corrected burning velocities are measured for hydrogen and syngas mixtures at atmospheric and

  19. Securing smart grid technology

    NASA Astrophysics Data System (ADS)

    Chaitanya Krishna, E.; Kosaleswara Reddy, T.; Reddy, M. YogaTeja; Reddy G. M., Sreerama; Madhusudhan, E.; AlMuhteb, Sulaiman

    2013-03-01

    In the developing countries electrical energy is very important for its all-round improvement by saving thousands of dollars and investing them in other sector for development. For Growing needs of power existing hierarchical, centrally controlled grid of the 20th Century is not sufficient. To produce and utilize effective power supply for industries or people we should have Smarter Electrical grids that address the challenges of the existing power grid. The Smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure along with modern IT services, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability and so on. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues like security, efficiency to communications layer field. In this paper we propose new model for security in Smart Grid Technology that contains Security Module(SM) along with DEM which will enhance security in Grid. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

  20. Large Eddy Simulation/Probability Density Function Modeling of a Turbulent CH4/H2/N2 Jet Flame

    SciTech Connect

    Wang, Haifeng; Pope, Stephen B.

    2011-01-01

    In this work, we develop the large-eddy simulation (LES)/probability density function (PDF) simulation capability for turbulent combustion and apply it to a turbulent CH{sub 4}/H{sub 2}/N{sub 2} jet flame (DLR Flame A). The PDF code is verified to be second-order accurate with respect to the time-step size and the grid size in a manufactured one-dimensional test case. Three grids (64×64×16,192×192×48,320×320×80)(64×64×16,192×192×48,320×320×80) are used in the simulations of DLR Flame A to examine the effect of the grid resolution. The numerical solutions of the resolved mixture fraction, the mixture fraction squared, and the density are duplicated in the LES code and the PDF code to explore the numerical consistency between them. A single laminar flamelet profile is used to reduce the computational cost of treating the chemical reactions of the particles. The sensitivity of the LES results to the time-step size is explored. Both first and second-order time splitting schemes are used for integrating the stochastic differential equations for the particles, and these are compared in the jet flame simulations. The numerical results are found to be sensitive to the grid resolution, and the 192×192×48192×192×48 grid is adequate to capture the main flow fields of interest for this study. The numerical consistency between LES and PDF is confirmed by the small difference between their numerical predictions. Overall good agreement between the LES/PDF predictions and the experimental data is observed for the resolved flow fields and the composition fields, including for the mass fractions of the minor species and NO. The LES results are found to be insensitive to the time-step size for this particular flame. The first-order splitting scheme performs as well as the second-order splitting scheme in predicting the resolved mean and rms mixture fraction and the density for this flame.

  1. Brominated Flame Retardants and Perfluorinated Chemicals

    EPA Science Inventory

    Brominated flame retardants (BFRs) and perfluorinated chemicals (PFCs) belong to a large class of chemicals known as organohalogens. It is believed that both BFRs and PFCs saved lives by reducing flammability of materials commonly used and bactericidal (biocidal) properties. Thes...

  2. Stability of the porous plug burner flame

    SciTech Connect

    Buckmaster, J.

    1983-12-01

    The linear stability of a premixed flame attached to a porous plug burner, using activaton energy asymptotics, is examined. Limit function-expansions are not an appropriate mathematical framework for this problem, and are avoided. A dispersion relation is obtained which defines the stability boundaries in the wave-, Lewis-number plane, and the movement of these boundaries is followed as the mass flux is reduced below the adiabatic value and the flame moves towards the burner from infinity. Cellular instability is suppressed by the burner, but the pulsating instability usually associated with Lewis numbers greater than 1 is, at first, enhanced. For some parameter values the flame is never stable for all wavenumbers the Lewis number stability band that exists for the unbounded flame disappears. For sufficiently small values of the stand-off distance the pulsating instability is suppressed. 9 references.

  3. Light collection device for flame emission detectors

    DOEpatents

    Woodruff, Stephen D.; Logan, Ronald G.; Pineault, Richard L.

    1990-01-01

    A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.

  4. Shatter-Resistant, Flame-Resistant Window

    NASA Technical Reports Server (NTRS)

    Richardson, William R.; Walker, Ernie D.

    1989-01-01

    Combustion-chamber window combines properties of polycarbonate and sapphire. Inner layer of sapphire, withstands flame in chamber. Outer layer of polycarbonate tough but susceptible to weakening by flame and protected from flame by sapphire layer. Resists flames, shattering, and high pressure. Windows withstand 60 lb/in. to second power (414 kPa) in hydrostatic pressure vessel. Also survives leak test under internal pressure of 2 atm (0.2 MPa) of helium and external pressure of 10 to negative fifth power torr (1.3 mPa). Has transmission density of 0.08 to 0.11 in visible light. In contrast, unbonded layers have transmission density of 0.13 to 0.16.

  5. Flame balls - Past, present and future

    NASA Technical Reports Server (NTRS)

    Buckmaster, J.; Ronney, P.; Smooke, M.

    1993-01-01

    This paper discusses analytical and numerical work that has been carried out in order to understand flame-balls and related phenomena that have been observed in microgravity experiments. The importance of heat losses is identified, whether from conduction, convection, or radiation. Accurate numerical simulations for hydrogen-air mixtures with radiation losses reveal a flammability limit of 3.5 percent of hydrogen by volume, a value close to the experimental one. The important role of stability analyses is emphasized, with particular attention to the role of three-dimensional instabilities in explaining unsteady spheroidal flames and flame-strings, objects that are observed in the experiments. We speculate that the dynamics of flame-strings is affected by in-depth radiation absorption for mixtures containing SF6, and report on some preliminary calculations in which this phenomenon is accounted for.

  6. PCBs, PBBs and Brominated Flame Retardants

    EPA Science Inventory

    This chapter introduces selected organohalogen chemicals such as polychlorinated biphenyls (PCB5), polychiorinated biphenyls (PBBs), and brominated flame retardants (BFRs) with emphasis on the background, physicochemical properties, environmental levels, health effects and possib...

  7. Transport budgets in turbulent lifted flames of methane autoigniting in a vitiated co-flow

    SciTech Connect

    Gordon, Robert L.; Masri, Assaad R.; Pope, Stephen B.; Goldin, Graham M.

    2007-11-15

    Autoignition of hydrocarbon fuels is an outstanding research problem of significant practical relevance in engines and gas turbine applications. This paper presents a numerical study of the autoignition of methane, the simplest in the hydrocarbon family. The model burner used here produces a simple, yet representative lifted jet flame issuing in a vitiated surrounding. The calculations employ a composition probability density function (PDF) approach coupled to the commercial CFD package, FLUENT. The in situ adaptive tabulation (ISAT) method is used to implement detailed chemical kinetics. An analysis of species concentrations and transport budgets of convection, turbulent diffusion, and chemical reaction terms is performed with respect to selected species at the base of the lifted turbulent flames. This analysis provides a clearer understanding of the mechanism and the dominant species that control autoignition. Calculations are also performed for test cases that clearly distinguish autoignition from premixed flame propagation, as these are the two most plausible mechanisms for flame stabilization for the turbulent lifted flames under investigation. It is revealed that a radical pool of precursors containing minor species such as CH{sub 3}, CH{sub 2}O, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, HO{sub 2}, and H{sub 2}O{sub 2} builds up prior to autoignition. The transport budgets show a clear convective-reactive balance when autoignition occurs. This is in contrast to the reactive-diffusive balance that occurs in the reaction zone of premixed flames. The buildup of a pool of radical species and the convective-reactive balance of their transport budgets are deemed to be good indicators of the occurrence of autoignition. (author)

  8. Temperature field measurement of an array of laminar premixed slot flame Jets using Mach-Zehnder interferometry

    NASA Astrophysics Data System (ADS)

    Najafian Ashrafi, Z.; Ashjaee, M.

    2015-05-01

    An experimental study was performed to investigate the influence of Reynolds number (Re) and non-dimensional jet-to-jet spacing (S/Dh) on flame shape, structure and temperature field of an array of laminar premixed slot flame jets. Mach-Zehnder interferometry technique is used to obtain an insight to the overall temperature field between single, twin and triple slot flame jets. The slot jets with large aspect ratio (L/W), length of L=60 mm and width of W=6 mm were used to eliminate the three-dimensional effect of temperature field. The effect of jet-to-jet spacing was investigated on flame characteristics under the test conditions of 200≤Re≤400 and equivalence ratio (φ) of unity. The present measurement reveals that the variation of maximum flame temperature with increment of Reynolds number is mainly due to heat transfer effects and is negligible while the flame height is increased. For the cases of twin and triple flame jets by increasing Reynolds number and decreasing non-dimensional jet-to-jet spacing (S/Dh), the interferences between the jets are increased and the jets attracted each other. Strong interference was observed at S/Dh=1.15. For the case of triple jets at this S/Dh, the central jet was suppressed while the side jets deflected towards the inner jet. The interference between jets was found to reduce the heat flux in the jet-to-jet interacting zone due to incomplete combustion. Also the optimum jet-to-jet spacing of triple flame jets is obtained at each Reynolds number to enhance the heat transfer performance of the jets.

  9. Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study

    SciTech Connect

    Echavarria, Carlos A.; Sarofim, Adel F.; Lighty, JoAnn S.; D'Anna, Andrea

    2011-01-15

    The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames. (author)

  10. Modeling of hydrogen-air diffusion flame

    NASA Technical Reports Server (NTRS)

    Isaac, K. M.

    1988-01-01

    Work performed during the first six months of the project duration for NASA Grant (NAG-1-861) is reported. An analytical and computational study of opposed jet diffusion flame for the purpose of understanding the effects of contaminants in the reactants and thermal diffusion of light species on extinction and reignition of diffusion flames is in progress. The methodologies attempted so far are described.

  11. Flame resistant fibrous materials. [developed from chlorofluoropolymers

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Four chlorofluoropolymer systems were developed that satisfactorily met the criteria for classification as self-extinguishing. Three of these systems consisted of Halar (a copolymer of chlorotrifluoroethylene and ethylene) and tin-based flame retardants. The fourth system was a copolymer of chlorotrifluoroethylene and tetrafluoroethylene with no flame retardants added. Production of fibers from all four candidates, by melt extrusion, was demonstrated. Fibers produced from the chlorotrifluoroethylene tetrafluoroethylene copolymer showed the most promise.

  12. Propagation of Turbulent Flames in Supernovae

    NASA Astrophysics Data System (ADS)

    Khokhlov, Alexei M.

    1995-08-01

    Turbulent thermonuclear burning is studied on scales relevant to the explosion of Type Ia supernovae. A scaling law is formulated for turbulent burning in a uniform gravitational field. The steady state turbulent flame speed is Dδt = f(α) √gL in the regime where the Froude number F = D2l/gL ≪ 1; g, L, Dl, and α = ρ0/P1 > 1 are the acceleration, characteristic scale of the problem, normal speed of the laminar flame, and ratio of the densities ahead and behind the flame, respectively; and f ≃ 1 is a universal function. In this regime, the turbulent flame speed does not depend on the laminar speed Dl and on details of burning on scales ≪L. A flame-capturing technique for modeling turbulent burning is described. It is used to numerically study the transition to turbulence and turbulent flame propagation in three dimensions. The results confirm the scaling law. The self-regulating mechanism underlying the scaling law is discussed. In Type Ia supernovae, steady state burning takes place on scales less than the radius of the flame, where the effects of spherical geometry and expansion are small. Larger scales influenced by these effects need to be resolved explicitly. Direct, ab initio three-dimensional numerical simulations of deflagration in supernovae thus become feasible. Effects of spherical geometry and expansion of matter on the propagation of turbulent flames are discussed. The expansion decreases large-scale turbulent motions and reduces the bulk rate of deflagration in a massive carbon-oxygen white dwarf. Results of a large-scale three-dimensional simulation of the deflagration explosion of a Type Ia supernova are presented.

  13. Solar cell grid patterns

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.; Berman, P. A. (Inventor)

    1976-01-01

    A grid pattern is described for a solar cell of the type which includes a semiconductive layer doped to a first polarity and a top counter-doped layer. The grid pattern comprises a plurality of concentric conductive grids of selected geometric shapes which are centered about the center of the exposed active surface of the counter-doped layer. Connected to the grids is one or more conductors which extend to the cell's periphery. For the pattern area, the grids and conductors are arranged in the pattern to minimize the maximum distance which any injected majority carriers have to travel to reach any of the grids or conductors. The pattern has a multiaxes symmetry with respect to the cell center to minimize the maximum temperature differentials between points on the cell surface and to provide a more uniform temperature distribution across the cell face.

  14. The structure of particle cloud premixed flames

    NASA Technical Reports Server (NTRS)

    Seshadri, K.; Berlad, A. L.

    1992-01-01

    The structure of premixed flames propagating in combustible systems containing uniformly distributed volatile fuel particles in an oxidizing gas mixture is analyzed. This analysis is motivated by experiments conducted at NASA Lewis Research Center on the structure of flames propagating in combustible mixtures of lycopodium particles and air. Several interesting modes of flame propagation were observed in these experiments depending on the number density and the initial size of the fuel particle. The experimental results show that steady flame propagation occurs even if the initial equivalence ratio of the combustible mixture based on the gaseous fuel available in the particles, phi sub u, is substantially larger than unity. A model is developed to explain these experimental observations. In the model, it is presumed that the fuel particles vaporize first to yield a gaseous fuel of known chemical composition which then reacts with oxygen in a one-step overall process. The activation energy of the chemical reaction is presumed to be large. The activation energy characterizing the kinetics of vaporization is also presumed to be large. The equations governing the structure of the flame were integrated numerically. It is shown that the interplay of vaporization kinetics and oxidation process can result in steady flame propagation in combustible mixtures where the value of phi sub u is substantially larger than unity. This prediction is in agreement with experimental observations.

  15. Premixed Turbulent Flame Propagation in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1999-01-01

    A combined numerical-experimental study has been carried out to investigate the structure and propagation characteristics of turbulent premixed flames with and without the influence of buoyancy. Experimentally, the premixed flame characteristics are studied in the wrinkled regime using a Couette flow facility and an isotropic flow facility in order to resolve the scale of flame wrinkling. Both facilities were chosen for their ability to achieve sustained turbulence at low Reynolds number. This implies that conventional diagnostics can be employed to resolve the smallest scales of wrinkling. The Couette facility was also built keeping in mind the constraints imposed by the drop tower requirements. Results showed that the flow in this Couette flow facility achieves full-developed turbulence at low Re and all turbulence statistics are in good agreement with past measurements on large-scale facilities. Premixed flame propagation studies were then carried out both using the isotropic box and the Couette facility. Flame imaging showed that fine scales of wrinkling occurs during flame propagation. Both cases in Ig showed significant buoyancy effect. To demonstrate that micro-g can remove this buoyancy effect, a small drop tower was built and drop experiments were conducted using the isotropic box. Results using the Couette facility confirmed the ability to carry out these unique reacting flow experiments at least in 1g. Drop experiments at NASA GRC were planned but were not completed due to termination of this project.

  16. Soot formation in unstrained diffusion flames

    NASA Astrophysics Data System (ADS)

    Robert, Etienne; Olofsson, Nils-Erik; Johnsson, Jonathan; Bladh, Henrik; Bengtsson, Per-Erik

    2011-11-01

    The formation of soot particles has been investigated in CH4/O2 diffusion flames using a burner which allows the creation of a nearly unstrained planar reaction sheet. The sooting limits, soot volume fraction and particle size were measured as a function of bulk flow across the flame mixture strength and transport properties of the reactants. Mass spectrometry was used to measure the effective mixture composition close to the flame and Laser Induced Incandescence (LII)for the soot volume fraction and particle size. The parameter space was mapped as follows: Starting from a stable non-sooting baseline flame, the mixture strength was progressively increased by raising the fuel volume fraction while keeping other parameters constant (bulk flow across the flame, oxidant and inert composition). As the mixture strength was increased, the soot volume fraction and particle size increased up to a point where very big soot particle aggregates became visible to the naked eye on the flame side of the sooting layer. The exact mechanism by which these super aggregates arise is unknown but it is postulated that the absence of strain in the flow field and the thermophoretic effect allows soot particles to remain in a region of the burning chamber suitable for growth for an extended period of time.

  17. Polydisperse spray diffusion flames in oscillating flow

    NASA Astrophysics Data System (ADS)

    Greenberg, Jerrold Barry; Katoshevski, David

    2016-03-01

    The phenomenon of droplet clustering or grouping found when a spray of droplets is moving in an oscillating host flow field is investigated for the case of a polydisperse spray that fuels a laminar co-flow diffusion flame. A mathematical solution is developed for the liquid phase based on use of small Stokes numbers for size sections into which the polydisperse spray size distribution is divided. Droplet clustering in the oscillatory flow field is accounted for by constructing a special model for the sectional vaporization Damkohler numbers in accordance with droplet size. Combining this with a formal solution for a gas phase Schvab-Zel'dovich variable yields the means whereby flame dynamics can be described. Results calculated from this solution demonstrate that preferential droplet size behaviour (with smaller droplets tending to cluster to a greater extent and reduce the vaporization Damkohler number more than larger ones) can have a major impact on the flame dynamics through local droplet enrichment with attendant consequences on the production of fuel vapour. The dynamics of the sort of flame (over- or under-ventilated) and the occurrence of flame pinching leading to multiple flame sheets are altered under these circumstances. However, potential control of the actual initial spray polydispersity may reduce the intensity of such effects.

  18. An elementary discussion of propellant flame geometry

    SciTech Connect

    Buckmaster, J.; Jackson, T.L.; Yao, J.

    1999-05-01

    The authors examine the geometry of diffusion flames generated by the burning of a heterogeneous solid propellant, using a simple model designed to provide qualitative insights. In the fast chemistry limit a strategy is used which has its roots in Burke and Schumann`s 1928 study of diffusion flames, albeit with different boundary conditions. This shows that the stoichiometric level surface (SLS) intersects the propellant surface at a point displaced from the fuel/oxidizer interface, and the variations of this displacement with Peclet number are discussed. The authors show that for model sandwich propellants, or their axisymmetric counterpart, the geometry of the SLS when the core is oxidizer is quite different from the geometry of the SLS when the core is fuel. Also, it is much easier to quench the flame on an oxidizer core, by reducing the Peclet number, than it is to quench the flame on a fuel core. When finite chemistry effects are accounted for, the flame only occupies a portion of the SLS, and there is a leading edge structure in which premixing plays a role. Enhancement of the burning rate due to premixing is identified, but a well-defined tribrachial structure is not observed. The authors show how a sharp reduction in pressure can lead to a detachment of the flame from the SLS, with subsequent quenching as it is swept downstream.

  19. Quantitative Species Measurements In Microgravity Combustion Flames

    NASA Technical Reports Server (NTRS)

    Chen, Shin-Juh; Pilgrim, Jeffrey S.; Silver, Joel A.; Piltch, Nancy D.

    2003-01-01

    The capability of models and theories to accurately predict and describe the behavior of low gravity flames can only be verified by quantitative measurements. Although video imaging, simple temperature measurements, and velocimetry methods have provided useful information in many cases, there is still a need for quantitative species measurements. Over the past decade, we have been developing high sensitivity optical absorption techniques to permit in situ, non-intrusive, absolute concentration measurements for both major and minor flames species using diode lasers. This work has helped to establish wavelength modulation spectroscopy (WMS) as an important method for species detection within the restrictions of microgravity-based measurements. More recently, in collaboration with Prof. Dahm at the University of Michigan, a new methodology combining computed flame libraries with a single experimental measurement has allowed us to determine the concentration profiles for all species in a flame. This method, termed ITAC (Iterative Temperature with Assumed Chemistry) was demonstrated for a simple laminar nonpremixed methane-air flame at both 1-g and at 0-g in a vortex ring flame. In this paper, we report additional normal and microgravity experiments which further confirm the usefulness of this approach. We also present the development of a new type of laser. This is an external cavity diode laser (ECDL) which has the unique capability of high frequency modulation as well as a very wide tuning range. This will permit the detection of multiple species with one laser while using WMS detection.

  20. Quantitative Species Measurements in Microgravity Combustion Flames

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.; Wood, William R.; Chen, Shin-Juh; Dahm, Werner J. A.; Piltch, Nancy D.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in complicated turbulent reacting flows. The elegant simplicity of the flame-vortex interaction permits the study of these complex interactions under relatively controllable experimental configurations, in contrast to direct measurements in turbulent flames. The ability to measure and model the fundamental phenomena that occur in a turbulent flame, but with time and spatial scales which are amenable to our diagnostics, permits significant improvements in the understanding of turbulent combustion under both normal and reduced gravity conditions. In this paper, we report absolute mole fraction measurements of methane in a reacting vortex ring. These microgravity experiments are performed in the 2.2-sec drop tower at NASA Glenn Research Center. In collaboration with Drs. Chen and Dahm at the University of Michigan, measured methane absorbances are incorporated into a new model from which the temperature and concentrations of all major gases in the flame can be determined at all positions and times in the development of the vortex ring. This is the first demonstration of the ITAC (Iterative Temperature with Assumed Chemistry) approach, and the results of these computations and analyses are presented in a companion paper by Dahm and Chen at this Workshop. We believe that the ITAC approach will become a powerful tool in understanding a wide variety of combustion flames under both equilibrium and non-equilibrium conditions.

  1. A Method to Measure Flame Index in Turbulent Partially-Premixed Flames

    NASA Astrophysics Data System (ADS)

    Rosenberg, David Ari

    This dissertation describes the development of a diagnostic technique and data processing routine to measure the flame index in partially-premixed flames, called the Flame Index Measurement Method. Many modern combustion applications involve conditions in which the fuel and oxidizer are only partially mixed prior to entering the flame. These partially-premixed flames contain some regions of premixed and some regions of non-premixed flamelets. New computational approaches use the flame index concept: premixed regions are identified and a premixed model is applied; non-premixed regions are also identified and a non-premixed model is applied. The flame index is defined as the normalized dot product of the gradients of the fuel and oxidizer mass fractions; it is +1 in premixed flamelets and is -1 in non-premixed flamelets. Previously there had been no experimentally measured values of flame index available to assess the modeling approaches. A new method has been developed to measure the flame index using planar laser-induced fluorescence tracers to indicate the sign and direction of the fuel and oxygen gradients. Through the modeling of premixed and non-premixed flamelets, acetone was selected as a fuel tracer and nitrogen dioxide was selected as an oxygen tracer. The fluorescence properties of both acetone and nitrogen dioxide were studied. With acetone seeded into the fuel, and nitrogen dioxide seeded into the air, the Flame Index Measurement Method was evaluated in laminar premixed and non-premixed methane/acetone/air flames, as well as in a well-defined turbulent partially-premixed burner, the Gas Turbine Model Combustor (GTMC). The flame index was measured in the GTMC with methane, propane, and syngas flames. Statistics (mean, variance, and probability mass functions) of the flame index are reported for the highly-turbulent partially-premixed GTMC flames. Two new statistical quantities were developed that describe the probability for the occurrence of premixed

  2. Flame Inhibition by Phosphorus-Containing Compounds in Lean and Rich Propane Flames

    SciTech Connect

    Curran, H; Korobeinichev, O P; Shvartsberg, V M; Shmakov, A G; Bolshova, T A; Jayaweera, T M; Melius, C F; Pitz, W J; Westbrook, C K

    2003-12-19

    Chemical inhibition of laminar propane flames by organophosphorus compounds has been studied experimentally, using a laboratory Mache Hebra nozzle burner and a flat flame burner with molecular beam mass spectrometry (MBMS), and with a computational flame model using a detailed chemical kinetic reaction mechanism. Both fuel-lean and fuel-rich propane flames were studied to examine the role of equivalence ratio in flame inhibition. The experiments examined a wide variety of organophosphorus compounds. We report on the experimental species flame profiles for tri-methyl phosphate (TMP) and compare them with the species flame profile results from modeling of TMP and di-methyl methyl phosphonate (DMMP). Both the experiments and kinetic modeling support and illustrate previous experimental studies in both premixed and non-premixed flames that inhibition efficiency is effectively the same for all of the organophosphorus compounds examined, independent of the molecular structure of the initial inhibitor molecule. The chemical inhibition is due to reactions involving the small P-bearing species HOPO{sub 2} and HOPO that are produced by the organophosphorus compounds (OPCs). The ratios of the HOPO{sub 2} and HOPO concentrations differ between the lean and rich flames, with HOPO{sub 2} dominant in lean flames while HOPO dominates in rich flames. The resulting HOPO{sub 2} and HOPO species profiles do not depend significantly on the initial source of the HOPO{sub 2} and HOPO and thus are relatively insensitive to the initial OPC inhibitor. A more generalized form of the original Twarowski mechanism for hydrocarbon radical recombination is developed to account for the results observed, and new theoretical values have been determined for heats of formation of the important P-containing species, using the BAC-G2 method.

  3. A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model

    DOE PAGESBeta

    Kemenov, Konstantin A.; Calhoon, William H.

    2015-03-24

    Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable,more » the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.« less

  4. A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model

    SciTech Connect

    Kemenov, Konstantin A.; Calhoon, William H.

    2015-03-24

    Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable, the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.

  5. Enhanced Elliptic Grid Generation

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2007-01-01

    An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are

  6. A grid amplifier

    NASA Technical Reports Server (NTRS)

    Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.

    1991-01-01

    A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.

  7. Challenges facing production grids

    SciTech Connect

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  8. Propagation and stability of expanding spherical flames

    NASA Astrophysics Data System (ADS)

    Jomaas, Grunde

    High-fidelity experiments were conducted to determine the laminar flame speeds of various fuels, to define the transition boundaries of both cellular and spiral flame front instabilities that develop over the flame surface, and to determine the cellular flame acceleration constants for outwardly propagating spherical flames in a near-constant pressure environment up to 60 atmospheres. The flame front movement was monitored using schlieren cinematography and recorded with a high-speed digital camera. Experiments were conducted for a wide range of pressures and equivalence ratios to yield flame speed data for acetylene, ethylene, ethane, propylene, propane, dimethyl ether, and hydrogen/carbon monoxide in air. These data were post-processed in order to account for stretch effects, yielding laminar, unstretched flame speeds and Markstein lengths. The results were compared with existing chemical kinetics mechanisms and used to suggest improvements. The instant of transition to cellularity was experimentally determined for various fuels and fuel mixtures and subsequently interpreted on the basis of hydrodynamic and diffusional-thermal instabilities. Experimental results show that the transition Peclet number, Pec = Rc/ℓL, assumes an almost constant value for the near-equidiffusive acetylene and ethylene flames with wide ranges in the mixture stoichiometry, oxygen concentration, and pressure, where Rc is the flame radius at transition and ℓL the laminar flame thickness. However, for the non-equidiffusive hydrogen and propane flames, Pec respectively increases and decreases somewhat linearly with the mixture equivalence ratio. Evaluation of Pec using the theory of Bechtold and Matalon show complete qualitative agreement and satisfactory quantitative agreement, demonstrating the insensitivity of Pec to all system parameters for equidiffusive mixtures, and the dominance of the Markstein number, Ze(Le-1), in destabilization for non-equidiffusive mixtures, where Ze is the

  9. Laminar and Turbulent Gaseous Diffusion Flames. Appendix C

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Recent measurements and predictions of the properties of homogeneous (gaseous) laminar and turbulent non-premixed (diffusion) flames are discussed, emphasizing results from both ground- and space-based studies at microgravity conditions. Initial considerations show that effects of buoyancy not only complicate the interpretation of observations of diffusion flames but at times mislead when such results are applied to the non-buoyant diffusion flame conditions of greatest practical interest. This behavior motivates consideration of experiments where effects of buoyancy are minimized; therefore, methods of controlling the intrusion of buoyancy during observations of non-premixed flames are described, considering approaches suitable for both normal laboratory conditions as well as classical microgravity techniques. Studies of laminar flames at low-gravity and microgravity conditions are emphasized in view of the computational tractability of such flames for developing methods of predicting flame structure as well as the relevance of such flames to more practical turbulent flames by exploiting laminar flamelet concepts.

  10. Characterisation of an oxy-coal flame through digital imaging

    SciTech Connect

    Smart, John; Riley, Gerry; Lu, Gang; Yan, Yong

    2010-06-15

    This paper presents investigations into the impact of oxy-fuel combustion on flame characteristics through the application of digital imaging and image processing techniques. The characteristic parameters of the flame are derived from flame images that are captured using a vision-based flame monitoring system. Experiments were carried out on a 0.5 MW{sub th} coal combustion test facility. Different flue gas recycle ratios and furnace oxygen levels were created for two different coals. The characteristics of the flame and the correlation between the measured flame parameters and corresponding combustion conditions are described and discussed. The results show that the flame temperature decreases with the recycle ratio for both test coals, suggesting that the flame temperature is effectively controlled by the flue gas recycle ratio. The presence of high levels of CO{sub 2} at high flue gas recycle ratios may result in delayed combustion and thus has a detrimental effect on the flame stability. (author)

  11. A Computational Investigation of Sooting Limits of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lecoustre, V. R.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2007-01-01

    Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, and residence time. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with residence times longer than 200 ms were found to have temperatures near 1190 K where C/O = 0.6, whereas flames with shorter residence times required increased temperatures. Acetylene was found to be a reasonable surrogate for soot precursor species in these flames, having peak mole fractions of about 0.01.

  12. Gravitational effects on the structure and propagation of premixed flames

    NASA Astrophysics Data System (ADS)

    Hamins, A.; Heitor, M.; Libby, P. A.

    The influence of gravity on the propagation velocity and shape of premixed laminar flames is studied experimentally over the entire flammability range of methane-air mixtures. In the experiments reported here a vertical tube 10 cm dia, closed on both ends and open in the middle is filled with reactants and ignited in its central plane so that flames propagate in both the upward and downward directions. Additional experiments are made in a vertical tube 5 cm dia with flames propagating from an open towards a closed end. Steady flame propagation is achieved over the entire range of equivalence ratios by locating a series of holes along the length of the tubes covered with a thin film which is vaporized by the passage of the flame. Measurements in the larger tube indicate that gravity affects both rich and lean laminar flames in that upward propagating flames are faster than downward. The shape of the flames is complex with the former roughly hemispherical, the latter flat but with a cellular structure. In near stoichiometric mixtures the flames are oscillatory, are unaffected by gravity and correspond to weakly turbulent flames. The results in the smaller tube indicate that upward moving flames propagate faster than downward moving flames over the entire range of equivalence ratios studied and that the flame shape is always hemispherical. The preliminary results for turbulent premixed flames propagating upward and downward are discussed.

  13. Flame attenuation effects on surface temperature measurements using IR thermography

    NASA Astrophysics Data System (ADS)

    de Vries, Jaap; Tabinowski, Robert

    2016-05-01

    Long-wave infrared (LWIR) cameras provide the unique ability to see through smoke and condensed water vapor. However, soot generated inside the flame does attenuate the LWIR signal. This work focuses on gas flame attenuation effects of LWIR signals originating from a blackbody. The experimental setup consists of time averaged, laboratory-scale turbulent diffusion flames with heat release rates set at 5 kW, 10 kW, and 15 kW. Propylene and ethylene were used as fuel, providing two different soot yields. A 30 cm by 30 cm blackbody was used with maximum surface temperatures set to 600°C. Both instantaneous and time-averaged blackbody temperature profiles through the flame were measured using a LWIR microbolometer camera (7.5-14 μm). Flame intermittency was quantified by color segmenting visible images. The experiments showed that low blackbody temperatures were significantly affected by the presence of the flame. At 600°C, the effect of flame absorption matches the emitted radiation from the flame itself. Using data obtained at various blackbody temperatures, the flame transmittance was obtained using a Generalized Reduced Gradient optimization method. The transmittance was lower for propylene flames compared to ethylene flames. Ethylene flames were shown to have higher temperatures. Using the values for flame radiance and transmissivity, the total averaged radiance of the flame plus the blackbody could be reproduced with 1% accuracy.

  14. The Effects of Gravity on Wrinkled Laminar Flames

    NASA Technical Reports Server (NTRS)

    Kostiuk, Larry W.; Zhou, Liming; Cheng, Robert K.

    1993-01-01

    The effects of gravity are significant to the dynamics of idealized unconfined open premixed flames. Moderate to low turbulence Reynolds number flames, i.e., wrinkled laminar flames, of various unconfined geometries have been used extensively for investigating fundamental processes of turbulent flame propagation and to validate theoretical models. Without the wall constraints, the flames are free to expand and interact with surrounding ambient air. The flow field in which the flame exists is determined by a coupling of burner geometry, flame orientation and the gravity field. These complex interactions raise serious questions regarding the validity of comparing the experimental data of open flames with current theoretical and numerical models that do not include the effects of gravity nor effects of the larger aerodynamic flowfield. Therefore, studies of wrinkled laminar flame in microgravity are needed for a better understanding of the role of gravity on flame characteristics such as the orientation, mean aerodynamics stretch, flame wrinkle size and burning rate. Our approach to characterize and quantify turbulent flame structures under microgravity is to exploit qualitative and quantitative flow visualization techniques coupled with video recording and computer controlled image analysis technologies. The experiments will be carried out in the 2.2 second drop tower at the NASA Lewis Research Center. The longest time scales of typical wrinkled laminar flames in the geometries considered here are in the order of 10 msec. Hence, the duration of the drop is sufficient to obtain the amount of statistical data necessary for characterize turbulent flame structures.

  15. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy.

    PubMed

    Bartula, Renata J; Ghandhi, Jaal B; Sanders, Scott T; Mierkiewicz, Edwin J; Roesler, Fred L; Harlander, John M

    2007-12-20

    We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span approximately 308-310 nm with a resolution of 0.03 nm, even though an extended source (extent of approximately 2x10(-7) m(2) rad(2)) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines. PMID:18091974

  16. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartula, Renata J.; Ghandhi, Jaal B.; Sanders, Scott T.; Mierkiewicz, Edwin J.; Roesler, Fred L.; Harlander, John M.

    2007-12-01

    We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span ~308-310 nm with a resolution of 0.03 nm, even though an extended source (extent of ~2×10-7 m2 rad2) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines.

  17. Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Yiyang; Li, Shuiqing; Ren, Yihua; Yao, Qiang; Law, Chung K.

    2014-01-01

    Two-dimensional imaging of gas/particle phase transition of metal oxides in their native high-temperature flow conditions, using laser-driven localized nanoplasmas, was obtained by utilizing the gap between the excitation energies of the gas and particle phases such that only the Ti atoms in the particle phase were selectively excited without detectable Bremsstrahlung background. These in situ images of the particle phase Ti distribution allow the quantitative visualization of the transition of the gas precursors to the nanoparticle phase across the flame sheet as well as diffusion of the particle concentration in the post-flame zone.

  18. Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas

    SciTech Connect

    Zhang, Yiyang; Li, Shuiqing Ren, Yihua; Yao, Qiang; Law, Chung K.

    2014-01-13

    Two-dimensional imaging of gas/particle phase transition of metal oxides in their native high-temperature flow conditions, using laser-driven localized nanoplasmas, was obtained by utilizing the gap between the excitation energies of the gas and particle phases such that only the Ti atoms in the particle phase were selectively excited without detectable Bremsstrahlung background. These in situ images of the particle phase Ti distribution allow the quantitative visualization of the transition of the gas precursors to the nanoparticle phase across the flame sheet as well as diffusion of the particle concentration in the post-flame zone.

  19. Characteristics of Non-Premixed Turbulent Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Yuan, Z. G.; Stocker, D. P.; Bahadori, M. Y.

    2001-01-01

    This project is concerned with the characteristics of turbulent hydrocarbon (primarily propane) gas-jet diffusion flames in microgravity. A microgravity environment provides the opportunity to study the structure of turbulent diffusion flames under momentum-dominated conditions (large Froude number) at moderate Reynolds number which is a combination not achievable in normal gravity. This paper summarizes progress made since the last workshop. Primarily, the features of flame radiation from microgravity turbulent jet diffusion flames in a reduced gravity environment are described. Tests were conducted for non-premixed, nitrogen diluted propane flames burning in quiescent air in the NASA Glenn 5.18 Second Zero Gravity Facility. Measured flame radiation from wedge-shaped, axial slices of the flame are compared for microgravity and normal gravity flames. Results from numerical computations of the flame using a k-e model for the turbulence are also presented to show the effects of flame radiation on the thermal field. Flame radiation is an important quantity that is impacted by buoyancy as has been shown in previous studies by the authors and also by Urban et al. It was found that jet diffusion flames burning under microgravity conditions have significantly higher radiative loss (about five to seven times higher) compared to their normal gravity counterparts because of larger flame size in microgravity and larger convective heat loss fraction from the flame in normal gravity. These studies, however, were confined to laminar flames. For the case of turbulent flames, the flame radiation is a function of time and both the time-averaged and time-dependent components are of interest. In this paper, attention is focused primarily on the time-averaged level of the radiation but the turbulent structure of the flame is also assessed from considerations of the radiation power spectra.

  20. Development of numerical Grids for UZ Flow and Transport Modeling

    SciTech Connect

    P. Dobson

    2004-08-31

    This report describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain, Nevada. Numerical grid generation is an integral part of the development of the unsaturated zone (UZ) flow and transport model, a complex, three-dimensional (3-D) model of Yucca Mountain. This revision contains changes made to improve the clarity of the description of grid generation. The numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal-loading conditions. The technical scope, content, and management for the current revision of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 2). Grids generated and documented in this report supersede those documented in Revision 00 of this report, ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2001 [DIRS 159356]). The grids presented in this report are the same as those developed in Revision 01 (BSC 2003 [DIRS 160109]); however, the documentation of the development of the grids in Revision 02 has been updated to address technical inconsistencies and achieve greater transparency, readability, and traceability. The constraints, assumptions, and limitations associated with this report are discussed in the appropriate sections that follow.

  1. Modeling Candle Flame Behavior In Variable Gravity

    NASA Technical Reports Server (NTRS)

    Alsairafi, A.; Tien, J. S.; Lee, S. T.; Dietrich, D. L.; Ross, H. D.

    2003-01-01

    The burning of a candle, as typical non-propagating diffusion flame, has been used by a number of researchers to study the effects of electric fields on flame, spontaneous flame oscillation and flickering phenomena, and flame extinction. In normal gravity, the heat released from combustion creates buoyant convection that draws oxygen into the flame. The strength of the buoyant flow depends on the gravitational level and it is expected that the flame shape, size and candle burning rate will vary with gravity. Experimentally, there exist studies of candle burning in enhanced gravity (i.e. higher than normal earth gravity, g(sub e)), and in microgravity in drop towers and space-based facilities. There are, however, no reported experimental data on candle burning in partial gravity (g < g(sub e)). In a previous numerical model of the candle flame, buoyant forces were neglected. The treatment of momentum equation was simplified using a potential flow approximation. Although the predicted flame characteristics agreed well with the experimental results, the model cannot be extended to cases with buoyant flows. In addition, because of the use of potential flow, no-slip boundary condition is not satisfied on the wick surface. So there is some uncertainty on the accuracy of the predicted flow field. In the present modeling effort, the full Navier-Stokes momentum equations with body force term is included. This enables us to study the effect of gravity on candle flames (with zero gravity as the limiting case). In addition, we consider radiation effects in more detail by solving the radiation transfer equation. In the previous study, flame radiation is treated as a simple loss term in the energy equation. Emphasis of the present model is on the gas-phase processes. Therefore, the detailed heat and mass transfer phenomena inside the porous wick are not treated. Instead, it is assumed that a thin layer of liquid fuel coated the entire wick surface during the burning process

  2. Structure of Flame Balls at Low Lewis-Number

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.; Ronney, Paul

    1998-01-01

    The Structure of Flame Balls at Low Lewis-Number (SOFBALL) experiment explored the behavior of a newly discovered flame phenomena called "flame balls." These spherical, stable, stationary flame structures, observed only in microgravity, provide a unique opportunity to study the interactions of the two most important processes necessary for combustion (chemical reaction and heat and mass transport) in the simplest possible configuration. The previously unobtainable experimental data provided a comparison with models of flame stability and flame propagation limits that are crucial both in assessing fire safety and in designing efficient, clean-burning combustion engines.

  3. DISTRIBUTED FLAMES IN TYPE Ia SUPERNOVAE

    SciTech Connect

    Aspden, A. J.; Bell, J. B.; Woosley, S. E.

    2010-02-20

    At a density near a few x10{sup 7} g cm{sup -3}, the subsonic burning in a Type Ia supernova (SN) enters the distributed regime (high Karlovitz number). In this regime, turbulence disrupts the internal structure of the flame, and so the idea of laminar burning propagated by conduction is no longer valid. The nature of the burning in this distributed regime depends on the turbulent Damkoehler number (Da{sub T}), which steadily declines from much greater than one to less than one as the density decreases to a few x10{sup 6} g cm{sup -3}. Classical scaling arguments predict that the turbulent flame speed s{sub T} , normalized by the turbulent intensity u-check, follows s{sub T}/u-check = Da{sub T}{sup 1/2} for Da{sub T} {approx}< 1. The flame in this regime is a single turbulently broadened structure that moves at a steady speed, and has a width larger than the {integral} scale of the turbulence. The scaling is predicted to break down at Da{sub T} {approx} 1, and the flame burns as a turbulently broadened effective unity Lewis number flame. This flame burns locally with speed s{sub l}ambda and width l{sub l}ambda, and we refer to this kind of flame as a lambda-flame. The burning becomes a collection of lambda-flames spread over a region approximately the size of the {integral} scale. While the total burning rate continues to have a well-defined average, s{sub T}{approx}u-check, the burning is unsteady. We present a theoretical framework, supported by both one-dimensional and three-dimensional numerical simulations, for the burning in these two regimes. Our results indicate that the average value of s{sub T} can actually be roughly twice u-check for Da{sub T} {approx}> 1, and that localized excursions to as much as 5 times u-check can occur. We also explore the properties of the individual flames, which could be sites for a transition to detonation when Da{sub T} {approx} 1. The lambda-flame speed and width can be predicted based on the turbulence in the star

  4. Turbulent Premixed Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1996-01-01

    The experimental cold-flow facility is now full operational and is currently being used to obtain baseline turbulence data in a Couette flow. The baseline turbulence data is necessary to confirm the capability of the chosen device to generate and maintain the required turbulence intensity. Subsequent reacting flow studies will assume that a similar turbulent flow field exists ahead of the premixed flame. Some modifications and refinements had to be made to enable accurate measurements. It consists of two rollers, one (driven by a motor) which drives a continuous belt and four smaller rollers used to set the belt spacing and tension to minimize belt flutter. The entire assemble is enclosed in a structure that has the dimensions to enable future drop tower experiments of the hot facility. All critical dimensions are the same as the original plans except for the pulley ratio which has been changed to enable a wider operating regime in terms of the Reynolds number. With the current setup, Reynolds numbers as low as 100 and as high as 14,000 can be achieved. This is because the in-between belt spacing can be varied from 1 cm to 7.6 cm, and the belt speed can be accurately varied from .15 m/sec to 3.1 m/sec.

  5. Engineering Flame Retardant Biodegradable Nanocomposites

    NASA Astrophysics Data System (ADS)

    He, Shan; Yang, Kai; Guo, Yichen; Zhang, Linxi; Pack, Seongchan; Davis, Rachel; Lewin, Menahem; Ade, Harald; Korach, Chad; Kashiwagi, Takashi; Rafailovich, Miriam

    2013-03-01

    Cellulose-based PLA/PBAT polymer blends can potentially be a promising class of biodegradable nanocomposites. Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but homogeneously dispersing hydrophilic cellulose in the hydrophobic polymer matrix poses a significant challenge. We here show that resorcinol diphenyl phosphates (RDP) can be used to modify the surface energy, not only reducing phase separation between two polymer kinds but also allowing the cellulose particles and the Halloysite clay to be easily dispersed within polymer matrices to achieve synergy effect using melt blending. Here in this study we describe the use of cellulose fiber and Halloysite clay, coated with RDP surfactant, in producing the flame retardant polymer blends of PBAT(Ecoflex) and PLA which can pass the stringent UL-94 V0 test. We also utilized FTIR, SEM and AFM nanoindentation to elucidate the role RDP plays in improving the compatibility of biodegradable polymers, and to determine structure property of chars that resulted in composites that could have optimized mechanical and thermal properties. Supported by Garcia Polymer Center and NSF Foundation.

  6. Globally Gridded Satellite (GridSat) Observations for Climate Studies

    NASA Technical Reports Server (NTRS)

    Knapp, Kenneth R.; Ansari, Steve; Bain, Caroline L.; Bourassa, Mark A.; Dickinson, Michael J.; Funk, Chris; Helms, Chip N.; Hennon, Christopher C.; Holmes, Christopher D.; Huffman, George J.; Kossin, James P.; Lee, Hai-Tien; Loew, Alexander; Magnusdottir, Gudrun

    2012-01-01

    Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them: there is no central archive of geostationary data for all international satellites, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multi-satellite climate studies. The International Satellite Cloud Climatology Project set the stage for overcoming these issues by archiving a subset of the full resolution geostationary data at approx.10 km resolution at 3 hourly intervals since 1983. Recent efforts at NOAA s National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in the netCDF format using standards that permit a wide variety of tools and libraries to quickly and easily process the data. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone.

  7. Effects of jet momentum distribution on thermal characteristics of co-swirling flames

    SciTech Connect

    Marshall, A.W.

    1996-12-31

    Thermal characteristics of flames with various axial and angular inlet momentum distributions are investigated in this experimental study. These flames were stabilized with a co-annular swirl burner having two annular air jets and a central fuel pipe. The heat loading, the Reynolds number, and the overall equivalence ratio were held constant while the swirl and flow distribution were systematically varied between the two air jets. Seven strikingly different unconfined flames were created in this manner. Temperatures were measured with a fine wire thermocouple. A digital compensation technique was used to decrease the thermocouple response time. Fluctuating temperature measurements were obtained in the recirculation zone, shear layer, and post combustion regions. The total swirl number and the total equivalence ratio were insufficient in characterizing thermal effects in these flames. Additional governing parameters are presented which more accurately describe behavior in co-annular burners. These parameters account for the swirl number in each jet, the relative jet strength, and the local stoichiometry at the inlet of the burner.

  8. Planar laser-induced fluorescence imaging of OH distribution in lean premixed swirling flames

    SciTech Connect

    Birouk, M.; Gupta, A.K.; Lewis, M.J.

    1998-07-01

    The spatial distribution of OH specie in lean premixed methane-air swirling flames at atmospheric pressure conditions has been investigated using a Planar Laser-Induced Fluorescence (PLIF) technique. Tests were conducted in a burner with a central nozzle surrounded by two concentric annuli, through which the methane-air mixture could be injected with variable equivalence ratio, swirl and momentum. The geometry was chosen to simulate a single burner in a typical gas turbine combustor. Experiments were carried out across a range of three independently-varied parameters: the swirl distribution in the outer annulus, the axial momentum in the inner annulus, and the premixed equivalence ratio ({phi} = 0.75, 0.68, and 0.61). Instantaneous and ensemble-averaged OH images were obtained at vertical cross-sections of the flame (referenced through the centerline) under different flame conditions. These images provide information on the flame reaction zone which is of interest for understanding the complex structure and dynamics of a swirling premixed combustion system. These images also assist in understanding why lean premixed gas turbine combustion systems may experience combustion instability, particularly under leaner conditions.

  9. Spectral characteristics of the aerodynamic field of a turbulent diffusion flame at a low Froude number

    NASA Astrophysics Data System (ADS)

    Gengembre, E.; Cambray, P.; Bellet, J.-C.

    1982-09-01

    Turbulent diffusion flames, like those found in a propulsive system, are examined in the case of a low Froude number (no more than 1/100,000). The gaseous products initially have a low velocity, with an inertia which is weak compared to that of gravity. Experimental results are presented from trials run with a specially designed burner emitting fine refractory particles, i.e., propane gas laced with zirconium dioxide particles averaging 2 microns across. Laser anemometry was employed for counting the particles, in conjunction with a computer. Vertical profiles were developed of the flame, covering the velocity fluctuations and their frequency, and with three different energy inputs (15.8, 23, and 38 kW) into the flame. A characteristic low frequency peak was observed, as well as a transition zone to the turbulence. The fuel burning was confined to periodic or quasi-periodic regions of the flow. Turbulence is concluded to be confined to the final combustion phase in flames with a low Froude number.

  10. Diffusion Flame Structure of a Vortex Ring under μg Conditions

    NASA Astrophysics Data System (ADS)

    Chen, Shin-Juh; Dahm, Werner J. A.

    1996-11-01

    Experimental results are presented for the structure of a gaseous diffusion flame formed when a vortex ring of various fuel compositions burns in air under normal gravity and under microgravity conditions. The experiment provides a canonical representation of vortex-diffusion flame interactions in turbulent reacting flows, and is closely related to the earlier vortex pair analysis of Karagozian & Manda (1986) and Manda & Karagozian (1988). Experimental conditions allow the competing hydrodynamic and chemical time scales to span from the near-equilibrium mixing-chemistry coupling regime to the deep-nonequilibrium regime. Microgravity experiments were conducted in the NASA LeRC 2.2 sec drop tower, for which the hydrostatic contribution to baroclininc generation is suppressed. Results extend from the initial ring formation time through the consumption of the entire fuel in the ring or through strain-out of the reaction process. These show interactions of the reaction zones during rollup of the ring, as well as strained flame phenomena at the forward stagnation point, providing a controlled environment for studying a wide range of vortex-diffusion flame interactions. (Supported by NASA Grant No. NAG-1639.)

  11. Geometric grid generation

    NASA Technical Reports Server (NTRS)

    Ives, David

    1995-01-01

    This paper presents a highly automated hexahedral grid generator based on extensive geometrical and solid modeling operations developed in response to a vision of a designer-driven one day turnaround CFD process which implies a designer-driven one hour grid generation process.

  12. Internet 2 Access Grid.

    ERIC Educational Resources Information Center

    Simco, Greg

    2002-01-01

    Discussion of the Internet 2 Initiative, which is based on collaboration among universities, businesses, and government, focuses on the Access Grid, a Computational Grid that includes interactive multimedia within high-speed networks to provide resources to enable remote collaboration among the research community. (Author/LRW)

  13. Security for grids

    SciTech Connect

    Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.

    2005-08-14

    Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.

  14. Can we characterize turbulence in premixed flames?

    SciTech Connect

    Lipatnikov, A.N.

    2009-06-15

    Modeling of premixed turbulent combustion involves averaging reaction rates in turbulent flows. The focus of most approaches to resolving this problem has been placed on determining the dependence of the mean rate w of product creation on the laminar flame speed S{sub L}, the rms turbulence velocity u', etc. The goal of the present work is to draw attention to another issue: May the input quantity u{sup '} for a model of w= w(u'/S{sub L},..) be considered to be known? The point is that heat release substantially affects turbulence and, hence, turbulence characteristics in premixed flames should be modeled. However, standard moment methods for numerically simulating turbulent flows do not allow us to evaluate the true turbulence characteristics in a flame. For instance, the Reynolds stresses in premixed flames are affected not only by turbulence itself, but also by velocity jump across flamelets. A common way to resolving this problem consists of considering the Reynolds stresses conditioned on unburned (or burned) mixture to be the true turbulence characteristics. In the present paper, this widely accepted but never proved hypothesis is put into question, first, by considering simple model constant-density problems (flame motion in an oscillating one-dimensional laminar flow; flame stabilized in a periodic shear, one-dimensional, laminar flow; turbulent mixing). In all the cases, the magnitude of velocity fluctuations, calculated using the conditioned Reynolds stresses, is affected by the intermittency of reactants and products and, hence, is not the true rms velocity. Second, the above claim is further supported by comparing balance equations for the mean and conditioned Reynolds stresses. The conditioned Reynolds stresses do not characterize the true turbulence in flames, because conditional averaging cuts off flow regions characterized by either high or low velocities. (author)

  15. Gravity Effects Observed In Partially Premixed Flames

    NASA Technical Reports Server (NTRS)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Gauguly, Ranjan; Hegde, Uday

    2003-01-01

    Partially premixed flames (PPFs) contain a rich premixed fuel air mixture in a pocket or stream, and, for complete combustion to occur, they require the transport of oxidizer from an appropriately oxidizer-rich (or fuel-lean) mixture that is present in another pocket or stream. Partial oxidation reactions occur in fuel-rich portions of the mixture and any remaining unburned fuel and/or intermediate species are consumed in the oxidizer-rich portions. Partial premixing, therefore, represents that condition when the equivalence ratio (phi) in one portion of the flowfield is greater than unity, and in another section its value is less than unity. In general, for combustion to occur efficiently, the global equivalence ratio is in the range fuel-lean to stoichiometric. These flames can be established by design by placing a fuel-rich mixture in contact with a fuel-lean mixture, but they also occur otherwise in many practical systems, which include nonpremixed lifted flames, turbulent nonpremixed combustion, spray flames, and unwanted fires. Other practical applications of PPFs are reported elsewhere. Although extensive experimental studies have been conducted on premixed and nonpremixed flames under microgravity, there is a absence of previous experimental work on burner stabilized PPFs in this regard. Previous numerical studies by our group employing a detailed numerical model showed gravity effects to be significant on the PPF structure. We report on the results of microgravity experiments conducted on two-dimensional (established on a Wolfhard-Parker slot burner) and axisymmetric flames (on a coannular burner) that were investigated in a self-contained multipurpose rig. Thermocouple and radiometer data were also used to characterize the thermal transport in the flame.

  16. Data Grid Implementations

    SciTech Connect

    Moore, Reagan W.; Studham, Ronald S.; Rajasekar, Arcot; Watson, Chip; Stockinger, Heinz; Kunszt, Peter; Charlie Catlett and Ian Foster

    2002-02-27

    Data grids link distributed, heterogeneous storage resources into a coherent data management system. From a user perspective, the data grid provides a uniform name space across the underlying storage systems, while supporting retrieval and storage of files. In the high energy physics community, at least six data grids have been implemented for the storage and distribution of experimental data. Data grids are also being used to support projects as diverse as digital libraries (National Library of Medicine Visible Embryo project), federation of multiple astronomy sky surveys (NSF National Virtual Observatory project), and integration of distributed data sets (Long Term Ecological Reserve). Data grids also form the core interoperability mechanisms for creating persistent archives, in which data collections are migrated to new technologies over time. The ability to provide a uniform name space across multiple administration domains is becoming a critical component of national-scale, collaborative projects.

  17. The SIM astronmetric grid

    NASA Technical Reports Server (NTRS)

    Swartz, R.

    2002-01-01

    The Space Interferometry Mission (SIM) is fundamentally a one-dimensional instrument with a 15-degree field-of-regard. Mission objectives require a global reference grid of thousands of well-understood stars with positions known to 4 microarcseconds which will be used to establish the instrument baseline vector during scientific observations. This accuracy will be achieved by frequently observing a set of stars throughout the mission and performing a global fit of the observations to determine position, proper motion and parallax for each star. Each star will be observed approximately 200 times with about 6.5 stars per single instrument field on the sky. We describe the nature of the reference grid, the candidate objects, and the results of simulations demonstrating grid performance, including estimates of the grid robustness when including effects such as instrument drift and possible contamination of the grid star sample by undetected binaries.

  18. A Theory of Oscillating Edge Flames

    NASA Technical Reports Server (NTRS)

    Buckmaster, J.; Zhang, Yi

    1999-01-01

    It has been known for some years that when a near-limit flame spreads over a liquid pool of fuel, the edge of the flame can oscillate relative to a frame moving with the mean speed. Each period of oscillation is characterized by long intervals of modest motion during which the edge gases radiate like those of a diffusion flame, punctuated by bursts of rapid advance during which the edge gases radiate like those in a deflagration. Substantial resources have been brought to bear on this issue within the microgravity program, both experimental and numerical. It is also known that when a near-asphyxiated candle-flame burns at zero gravity, the edge of the (hemispherical) flame can oscillate violently prior to extinction. Thus a web-surfer, turning to the NASA web-site at http://microgravity.msfc.nasa.gov, and following the trail combustion science/experiments/experimental results/candle flame, will find photographs and a description of candle burning experiments carried out on board both the Space-shuttle and the Russian space station Mir. A brief report can also be found in the proceedings of the Fourth Workshop. And recently, in a third microgravity program, the leading edge of the flame supported by injection of ethane through the porous surface of a plate over which air is blown has been found to oscillate when conditions are close to blow-off. A number of important points can be made with respect to these observations: It is the edge itself which oscillates, advancing and retreating, not the diffusion flame that trails behind the edge; oscillations only occur under near limit conditions; in each case the Lewis number of the fuel is significantly larger than 1; and because of the edge curvature, the heat losses from the reacting edge structure are larger than those from the trailing diffusion flame. We propose a general theory for these oscillations, invoking Occam's 'Law of Parsimony' in an expanded form, to wit: The same mechanism is responsible for the

  19. Launch Pad Flame Trench Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Bucherl, Cori; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark; Perusich, Steve; Whitten, Mary

    2010-01-01

    The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of

  20. Premixed silane-oxygen-nitrogen flames

    SciTech Connect

    Tokuhashi, K.; Horiguchi, S.; Uranco, Y.; Iwasaka, M.; Ohtani, H.; Kondo, S. )

    1990-10-01

    The burning velocities of lean premised silane-oxygen-nitrogen flames were measured in the silane and oxygen concentration ranges from 1.6% to 2.9% and from 4% to 24%, respectively. Combustion product analyses and flame temperature measurements were also carried out. The burning velocity of a silane-air flame is around 55 cm/ at a silane concentration of 2%. For lean mixtures, when the oxygen concentration is reduced, dependence of burning velocity upon silane concentration decreases but does not significantly affect the flame temperature. For extremely lean flames, the degree of hydrogen production increase with decreasing silane, although silane is consumed almost completely. On the other hand, if the silane concentration exceeds stoichiometric, the burning velocity increases gradually with increasing silane concentration. In that case, silane as well as oxygen are consumed completely and, at the same time, hydrogen rather than water production becomes dominant. The mechanism of silane combustion is discussed, based on numerical calculations, where the mechanism used in the calculation is assembled by analogy of silane to methane combustion.

  1. Optimization Of A Computational Grid

    NASA Technical Reports Server (NTRS)

    Pearce, Daniel G.

    1993-01-01

    In improved method of generation of computational grid, grid-generation process decoupled from definition of geometry. Not necessary to redefine boundary. Instead, continuous boundaries in physical domain specified, and then grid points in computational domain mapped onto continuous boundaries.

  2. A second-order coupled immersed boundary-SAMR construction for chemically reacting flow over a heat-conducting Cartesian grid-conforming solid

    NASA Astrophysics Data System (ADS)

    Kedia, Kushal S.; Safta, Cosmin; Ray, Jaideep; Najm, Habib N.; Ghoniem, Ahmed F.

    2014-09-01

    In this paper, we present a second-order numerical method for simulations of reacting flow around heat-conducting immersed solid objects. The method is coupled with a block-structured adaptive mesh refinement (SAMR) framework and a low-Mach number operator-split projection algorithm. A “buffer zone” methodology is introduced to impose the solid-fluid boundary conditions such that the solver uses symmetric derivatives and interpolation stencils throughout the interior of the numerical domain; irrespective of whether it describes fluid or solid cells. Solid cells are tracked using a binary marker function. The no-slip velocity boundary condition at the immersed wall is imposed using the staggered mesh. Near the immersed solid boundary, single-sided buffer zones (inside the solid) are created to resolve the species discontinuities, and dual buffer zones (inside and outside the solid) are created to capture the temperature gradient discontinuities. The development discussed in this paper is limited to a two-dimensional Cartesian grid-conforming solid. We validate the code using benchmark simulations documented in the literature. We also demonstrate the overall second-order convergence of our numerical method. To demonstrate its capability, a reacting flow simulation of a methane/air premixed flame stabilized on a channel-confined bluff-body using a detailed chemical kinetics model is discussed.

  3. Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor

    SciTech Connect

    Steinberg, A.M.; Boxx, I.; Stoehr, M.; Meier, W.; Carter, C.D.

    2010-12-15

    A detailed analysis of the flow-flame interactions associated with acoustically coupled heat-release rate fluctuations was performed for a 10 kW, CH{sub 4}/air, swirl stabilized flame in a gas turbine model combustor exhibiting self-excited thermo-acoustic oscillations at 308 Hz. High-speed stereoscopic particle image velocimetry, OH planar laser induced fluorescence, and OH* chemiluminescence measurements were performed at a sustained repetition rate of 5 kHz, which was sufficient to resolve the relevant combustor dynamics. Using spatio-temporal proper orthogonal decomposition, it was found that the flow-field contained several simultaneous periodic motions: the reactant flux into the combustion chamber periodically oscillated at the thermo-acoustic frequency (308 Hz), a helical precessing vortex core (PVC) circumscribed the burner nozzle at 515 Hz, and the PVC underwent axial contraction and extension at the thermo-acoustic frequency. The global heat release rate fluctuated at the thermo-acoustic frequency, while the heat release centroid circumscribed the combustor at the difference between the thermo-acoustic and PVC frequencies. Hence, the three-dimensional location of the heat release fluctuations depended on the interaction of the PVC with the flame surface. This motivated the compilation of doubly phase resolved statistics based on the phase of both the acoustic and PVC cycles, which showed highly repeatable periodic flow-flame configurations. These include flames stabilized between the inflow and inner recirculation zone, large-scale flame wrap-up by the PVC, radial deflection of the inflow by the PVC, and combustion in the outer recirculation zones. Large oscillations in the flame surface area were observed at the thermo-accoustic frequency that significantly affected the total heat-release oscillations. By filtering the instantaneous reaction layers at different scales, the importance of the various flow-flame interactions affecting the flame area was

  4. Flame-vortex interaction and mixing behaviors of turbulent non-premixed jet flames under acoustic forcing

    SciTech Connect

    Kim, Munki; Choi, Youngil; Oh, Jeongseog; Yoon, Youngbin

    2009-12-15

    This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen non-premixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NO{sub x} emissions. Acoustic excitation causes the flame length to decrease by 15% and consequently, a 25% reduction in EINO{sub x} is achieved, compared to coaxial air flames without acoustic excitation at the same coaxial air to fuel velocity ratio. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NO{sub x} emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface. (author)

  5. Flame acceleration in the early stages of burning in tubes

    SciTech Connect

    Bychkov, Vitaly; Fru, Gordon; Petchenko, Arkady; Akkerman, V'yacheslav; Eriksson, Lars-Erik

    2007-09-15

    Acceleration of premixed laminar flames in the early stages of burning in long tubes is considered. The acceleration mechanism was suggested earlier by Clanet and Searby [Combust. Flame 105 (1996) 225]. Acceleration happens due to the initial ignition geometry at the tube axis when a flame develops to a finger-shaped front, with surface area growing exponentially in time. Flame surface area grows quite fast but only for a short time. The analytical theory of flame acceleration is developed, which determines the growth rate, the total acceleration time, and the maximal increase of the flame surface area. Direct numerical simulations of the process are performed for the complete set of combustion equations. The simulations results and the theory are in good agreement with the previous experiments. The numerical simulations also demonstrate flame deceleration, which follows acceleration, and the so-called ''tulip flames''. (author)

  6. EFFECT OF ORGANOPHOSPHORUS FLAME RETARDANTS ON NEURONAL DEVELOPMENT IN VITRO

    EPA Science Inventory

    The increased use of organophosphorus compounds as alternatives to brominated flame retardants (BFRs) has led to widespread human exposure, There is, however, limited information on their potential health effects. This study compared the effects of nii ne organophosphorus flame...

  7. 39. View looking down on torch and flame from top ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. View looking down on torch and flame from top of scaffolding; ventilator cap has been removed from flame prior to removal of torch on July 4, 1984. July 1984. - Statue of Liberty, Liberty Island, Manhattan, New York County, NY

  8. 41. HISTORIC VIEW LOOKING SOUTH FROM THE FLAME TRENCH AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. HISTORIC VIEW LOOKING SOUTH FROM THE FLAME TRENCH AT THE TEST STAND AND LOOKING INTO THE FLAME DEFLECTOR. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  9. Flashback flame arrester devices for fuel cargo tank vapor vents

    NASA Technical Reports Server (NTRS)

    Bjorklund, R. A.; Kushida, R. O.

    1981-01-01

    The flame quenching capability of four types of flame arresting devices suitable for installation on fuel cargo tank vents of marine transport vessels is evaluated. A single 30 mesh screen, a dual 20 mesh screen, a spiral wound crimped metal ribbon, and a packed bed of ballast rings were tested. Flame speed and flame penetration of the test arresters were determined. Eight fuels representative of bulk cargoes were tested. The test arresters quenched a minimum of three flashback flames from all eight fuels, with one exception: high speed ethylene flames penetrated the dual 20 mesh screen on three tests. The arresters withstood the sustained flame from a propane/air mixture for 30 minutes. None of the arresters withstood the sustained flame from an ethylene/air mixture for more than 7 minutes.

  10. Development of video processing based on coal flame detector system

    SciTech Connect

    He Wanqing; Yu Yuefeng; Xu Weiyong; Ma Liqun

    1999-07-01

    The principle and development of a set of pulverized coal combustion flame detection system, which is called intelligent image flame detector device based on digital video processing, is addressed in this paper. The system realizes multi-burner flame detection and processing using a distributive structure of engineering workstation and flame detectors via multi-serial-port communication. The software can deal with multi-tasks in a parallel way based on multi-thread mechanism. Streaming video capture and storage is provided to safe and playback the accidental Audio and Visual Interfaces (AVI) clips. The layer flame detectors can give the flame on/off signal through image processing. Pseudo-color visualization of flame temperature calculated from chromatic CCD signal is integrated into the system. The image flame detector system has been successfully used in thermal power generation units in China.

  11. Decentral Smart Grid Control

    NASA Astrophysics Data System (ADS)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.

  12. Fundamental mechanisms in premixed flame propagation via vortex-flame interactions: Numerical simulations

    NASA Technical Reports Server (NTRS)

    Mantel, Thierry

    1994-01-01

    The goal of the present study is to assess numerically the ability of single-step and two-step chemical models to describe the main features encountered during the interaction between a two-dimensional vortex pair and a premixed laminar flame. In the two-step mechanism, the reaction kinetics are represented by a first chain branching reaction A + X yields 2X and a second chain termination reaction X + X yields P. This paper presents the fundamental mechanisms occurring during vortex-flame interactions and the relative impact of the major parameters encountered in turbulent premixed flames and suspected of playing a role in quenching mechanism: (1) Influence of stretch is investigated by analyzing the contribution of curvature and tangential strain on the local structure of the flame. The effect of Lewis number on the flame response to a strained field is analyzed. (2) Radiative heat losses which are suspected to be partially or totally responsible for quenching are also investigated. (3) The effect of the diffusion of the radicals is studied using a two-step mechanism in which an intermediate species is present. The parameters of the two-step mechanism are entirely determined from physical arguments. (4) Precise quantitative comparisons between the DNS and the experimental results of Samaniego et al are performed. These comparisons concern the evolution of the minimum heat release rate found along the flame front during the interaction and the distribution of the heat release rate along the flame front.

  13. Flame-Vortex Studies to Quantify Markstein Numbers Needed to Model Flame Extinction Limits

    NASA Technical Reports Server (NTRS)

    Driscoll, James F.; Feikema, Douglas A.

    2003-01-01

    This has quantified a database of Markstein numbers for unsteady flames; future work will quantify a database of flame extinction limits for unsteady conditions. Unsteady extinction limits have not been documented previously; both a stretch rate and a residence time must be measured, since extinction requires that the stretch rate be sufficiently large for a sufficiently long residence time. Ma was measured for an inwardly-propagating flame (IPF) that is negatively-stretched under microgravity conditions. Computations also were performed using RUN-1DL to explain the measurements. The Markstein number of an inwardly-propagating flame, for both the microgravity experiment and the computations, is significantly larger than that of an outwardy-propagating flame. The computed profiles of the various species within the flame suggest reasons. Computed hydrogen concentrations build up ahead of the IPF but not the OPF. Understanding was gained by running the computations for both simplified and full-chemistry conditions. Numerical Simulations. To explain the experimental findings, numerical simulations of both inwardly and outwardly propagating spherical flames (with complex chemistry) were generated using the RUN-1DL code, which includes 16 species and 46 reactions.

  14. Effect of Spray Cone Angle on Flame Stability in an Annular Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Kumar, S. Kishore; Chandel, Sunil

    2016-04-01

    Effect of fuel spray cone angle in an aerogas turbine combustor has been studied using computational fluid dynamics (CFD) and full-scale combustor testing. For CFD analysis, a 22.5° sector of an annular combustor is modeled and the governing equations are solved using the eddy dissipation combustion model in ANSYS CFX computational package. The analysis has been carried out at 125 kPa and 303 K inlet conditions for spray cone angles from 60° to 140°. The lean blowout limits are established by studying the behavior of combustion zone during transient engine operation from an initial steady-state condition. The computational study has been followed by testing the practical full-scale annular combustor in an aerothermal test facility. The experimental result is in a good agreement with the computational predictions. The lean blowout fuel-air ratio increases as the spray cone angle is decreased at constant operating pressure and temperature. At higher spray cone angle, the flame and high-temperature zone moves upstream close to atomizer face and a uniform flame is sustained over a wide region causing better flame stability.

  15. Turbulent piloted partially-premixed flames with varying levels of O2/N2: stability limits and PDF calculations

    NASA Astrophysics Data System (ADS)

    Juddoo, Mrinal; Masri, Assaad R.; Pope, Stephen B.

    2011-12-01

    This paper reports measured stability limits and PDF calculations of piloted, turbulent flames of compressed natural gas (CNG) partially-premixed with either pure oxygen, or with varying levels of O2/N2. Stability limits are presented for flames of CNG fuel premixed with up to 20% oxygen as well as CNG-O2-N2 fuel where the O2 content is varied from 8 to 22% by volume. Calculations are presented for (i) Sydney flame B [Masri et al. 1988] which uses pure CNG as well as flames B15 to B25 where the CNG is partially-premixed with 15-25% oxygen by volume, respectively and (ii) Sandia methane-air (1:3 by volume) flame E [Barlow et al. 2005] as well as new flames E15 and E25 that are partially-premixed with 'reconstituted air' where the O2 content in nitrogen is 15 and 25% by volume, respectively. The calculations solve a transported PDF of composition using a particle-based Monte Carlo method and employ the EMST mixing model as well as detailed chemical kinetics. The addition of oxygen to the fuel increases stability, shortens the flames, broadens the reaction zone, and shifts the stoichiometric mixture fraction towards the inner side of the jet. It is found that for pure CNG flames where the reaction zone is narrow (∼0.1 in mixture fraction space), the PDF calculations fail to reproduce the correct level of local extinction on approach to blow-off. A broadening in the reaction zone up to about 0.25 in mixture fraction space is needed for the PDF/EMST approach to be able to capture these finite-rate chemistry effects. It is also found that for the same level of partial premixing, increasing the O2/N2 ratio increases the maximum levels of CO and NO but shifts the peak to richer mixture fractions. Over the range of oxygenation investigated here, stability limits have shown to improve almost linearly with increasing oxygen levels in the fuel and with increasing the contribution of release rate from the pilot.

  16. The DESY Grid Centre

    NASA Astrophysics Data System (ADS)

    Haupt, A.; Gellrich, A.; Kemp, Y.; Leffhalm, K.; Ozerov, D.; Wegner, P.

    2012-12-01

    DESY is one of the world-wide leading centers for research with particle accelerators, synchrotron light and astroparticles. DESY participates in LHC as a Tier-2 center, supports on-going analyzes of HERA data, is a leading partner for ILC, and runs the National Analysis Facility (NAF) for LHC and ILC in the framework of the Helmholtz Alliance, Physics at the Terascale. For the research with synchrotron light major new facilities are operated and built (FLASH, PETRA-III, and XFEL). DESY furthermore acts as Data-Tier1 centre for the Neutrino detector IceCube. Established within the EGI-project DESY operates a grid infrastructure which supports a number of virtual Organizations (VO), incl. ATLAS, CMS, and LHCb. Furthermore, DESY hosts some of HEP and non-HEP VOs, such as the HERA experiments and ILC as well as photon science communities. The support of the new astroparticle physics VOs IceCube and CTA is currently set up. As the global structure of the grid offers huge resources which are perfect for batch-like computing, DESY has set up the National Analysis Facility (NAF) which complements the grid to allow German HEP users for efficient data analysis. The grid infrastructure and the NAF use the same physics data which is distributed via the grid. We call the conjunction of grid and NAF the DESY Grid Centre. In the contribution to CHEP2012 we will in depth discuss the conceptional and operational aspects of our multi-VO and multi-community Grid Centre and present the system setup. We will in particular focus on the interplay of Grid and NAF and present experiences of the operations.

  17. The transient response of strained laminar-premixed flames

    SciTech Connect

    Petrov, C.A.; Ghoniem, A.F.

    1995-08-01

    Modeling and simulation of turbulent combustion in premixed gases, for relatively large-scale and low-intensity turbulence, have traditionally been based on the assumption that the flame response to strain is instantaneous. In this paper, the authors revisit the validity of this assumption by examining the time-dependent response of a premixed laminar flame when subjected to a sudden change in strain and a periodic strain. They find that at unity Lewis number and for a stepwise increase in strain, the settling time of the flame varies between the chemical time, the flame time and the flow time as the Karlovitz number changes from low to intermediate to high values, respectively, over the entire range of flame temperatures. At nonunity Lewis numbers, the settling time changes from the flame time to the flow time as the strain jump increases from intermediate to high Karlovitz numbers and over the entire range of flame temperatures. For given Lewis and Karlovitz numbers, the settling time decreases as these flame temperature increases. Thus, in a flamelet or thin flame modeling, and over the entire range of Lewis number, the response of a premixed flame can be considered instantaneous only for high flame temperatures. The same is found to be true for intermediate flame temperatures when the Lewis number is unity. Otherwise, for low and intermediate flame tempera tues, and nonunity Lewis number, corrections reflecting the lag between the flow an the flame should be considered. The response of the flame to oscillating strain whose maximum value is below unity Karlovitz number is also investigated for two values of the flame temperatures.

  18. The Transition to Turbulence of Rayleigh-Taylor Unstable Flames

    NASA Astrophysics Data System (ADS)

    Hicks, Elizabeth P.; Rosner, R.

    2011-01-01

    Part of the uncertainty surrounding the explosion mechanism of Type 1A supernovae is the extent to which the turbulence created by the flame front can speed the flame up. A premixed flame moving against a sufficiently strong gravitational field becomes deformed and creates vorticity. If gravity is strong enough, this vorticity is shed and deposited behind the flame front. We have completed some two-dimensional direct numerical simulations of this shedding process for various values of the gravitational force. If gravity is weak enough, the flame front remains flat and no vorticity is created. If gravity is slightly stronger, the flame front becomes cusped and creates vorticity; long vortices attach to the flame front and extend behind it. For even larger values of gravity, the far end of these vortices becomes unstable and sheds more vortices. For simulations with increased gravity, the position of the shedding instability moves closer to the flame front. Next, the vortex shedding disturbs the flame front, causing the flame to pulsate. These pulsations lose their left/right symmetry and the period of oscillation doubles. For even higher values of gravity, an additional frequency is introduced into the system as the Rayleigh-Taylor instability begins to dominate over burning. Eventually, the pulsations of the flame become quite complex and the interaction between the flame front and the vortices can't be simply described. We have measured the subsequent wrinkling of the flame front by computing its fractal dimension and the energy spectra behind the flame front. Measurements of the fractal dimension suggest that it saturates, implying that any additional speed up of the flame must be due to large-scale stretching or disruption of the flame front. Our simulations were performed at NERSC which is supported by the Department of Energy.

  19. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1993-01-01

    The work of the Principal Investigator (PI) has encompassed four topics related to the experimental and theoretical study of combustion limits in premixed flames at microgravity, as discussed in the following sections. These topics include: (1) radiation effects on premixed gas flames; (2) flame structure and stability at low Lewis number; (3) flame propagation and extinction is cylindrical tubes; and (4) experimental simulation of combustion processes using autocatalytic chemical reactions.

  20. Aerothermodynamic properties of stretched flames in enclosures

    NASA Astrophysics Data System (ADS)

    Rotman, D. A.; Oppenheim, A. K.

    Flames are stretched by being pulled along their frontal surface by the flow field in which they reside. Their trajectories tend to approach particle paths, acquiring eventually the role of contact boundaries, -interfaces between the burnt and unburnt medium that may broaden solely as a consequence of diffusion. Fundamental properties of flow fields governing such flames are determined here on the basis of the zero Mach number model, providng a rational method of approach to the computational analysis of combustion fields in enclosures where, besides the aerodynamic properties flow, the thermodynamic process of compression must be taken into account. To illustrate its application, the method is used to reveal the mechanism of formation of a tulip-shape flame in a rectangular enclosure under nonturbulent flow conditions.

  1. Fatal rhabdomyolysis in a flame burn patient.

    PubMed

    Lazarus, D; Hudson, D A

    1997-08-01

    Rhabdomyolysis due to flame burns is not well described. A case of fatal rhabdomyolysis in an epileptic patient who sustained 65 per cent body surface area, very deep, flame burns is described. It appears as if the sustained muscle compression from the restrictive, circumferential eschar was the major factor in the aetiology of the rhabdomyolysis. Despite aggressive fluid management, the patient died of acute renal failure and adult respiratory distress syndrome. We have subsequently identified three other cases of pigmenturia occurring following burns. It would seem as if rhabdomyolysis following extensive full thickness burns may be more common than previously suggested. Fluid requirements are in excess of those proposed by traditional protocols. Rhabdomyolysis in flame burn patients indicates a poor prognosis. PMID:9426917

  2. White Flame Energy switches to backhoes

    SciTech Connect

    Fiscor, S.

    2005-06-01

    The mountaintop coal operator, White Flame Energy has switched to different truck-shovel arrangement. Along with many surface mining operations throughout central Appalachia, the company is using hoe-configured hydraulic excavators as opposed to the traditional front-shovel arrangements. Located in Varney, WV, White Flame Energy uses two Terex O & K mining shovels, an RH170 and an RH 200, which have the capacity to move 2 million cu yards per month from five seams, primarily the Coalburg, Stockton, and No 5 Block and associated rider seams. The article records conversations on the operations with Mike Vines, the general manager, and Don Nicewonder, the owner of White Flame Energy. 2 photos.

  3. Trends in life science grid: from computing grid to knowledge grid

    PubMed Central

    Konagaya, Akihiko

    2006-01-01

    Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:17254294

  4. Numerical modelling of ion transport in flames

    NASA Astrophysics Data System (ADS)

    Han, Jie; Belhi, Memdouh; Bisetti, Fabrizio; Mani Sarathy, S.

    2015-11-01

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model's predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018.

  5. Large Scale Flame Spread Environmental Characterization Testing

    NASA Technical Reports Server (NTRS)

    Clayman, Lauren K.; Olson, Sandra L.; Gokoghi, Suleyman A.; Brooker, John E.; Ferkul, Paul V.; Kacher, Henry F.

    2013-01-01

    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation

  6. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    NASA Astrophysics Data System (ADS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l- 1 and 1.0 ng l- 1, respectively.

  7. 63. VIEW OF FLAME BUCKET AND LAUNCHER FROM SOUTHEAST. TRICHLOROETHENE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. VIEW OF FLAME BUCKET AND LAUNCHER FROM SOUTHEAST. TRICHLOROETHENE RECOVERY TANK LEFT OF FLAME BUCKET; LIQUID OXYGEN CATCH TANK RIGHT OF FLAME BUCKET. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. 30 CFR 75.600-1 - Approved cables; flame resistance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Approved cables; flame resistance. 75.600-1... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.600-1 Approved cables; flame resistance. Cables shall be accepted or approved by MSHA as flame resistant....

  9. The Forced Flow Flame-Spreading Test (FFFT)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Forced Flow Flame-Spreading Test was designed to study flame spreading over solid fuels when air is flowing at a low speed concurrent airflows, some materials are more flammable in microgravity than earth. 1.5 cm flame in microgravity that melts a polyethylene cylinder into a liquid ball.

  10. 30 CFR 56.6904 - Smoking and open flames.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Smoking and open flames. 56.6904 Section 56.6904 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Requirements § 56.6904 Smoking and open flames. Smoking and use of open flames shall not be permitted within...

  11. 30 CFR 56.7805 - Smoking and open flames.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking and open flames. 56.7805 Section 56... Jet Piercing Rotary Jet Piercing § 56.7805 Smoking and open flames. Persons shall not smoke and open... smoking and open flames shall be posted in these areas....

  12. 27 CFR 555.212 - Smoking and open flames.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Smoking and open flames..., AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.212 Smoking and open flames. Smoking, matches, open flames, and spark producing devices are not permitted: (a) In...

  13. 30 CFR 57.7805 - Smoking and open flames.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking and open flames. 57.7805 Section 57... Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7805 Smoking and open flames. Persons shall not... warning against smoking and open flames shall be posted in these areas....

  14. 27 CFR 555.212 - Smoking and open flames.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Smoking and open flames..., AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.212 Smoking and open flames. Smoking, matches, open flames, and spark producing devices are not permitted: (a) In...

  15. 30 CFR 57.7805 - Smoking and open flames.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Smoking and open flames. 57.7805 Section 57... Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7805 Smoking and open flames. Persons shall not... warning against smoking and open flames shall be posted in these areas....

  16. 30 CFR 56.6904 - Smoking and open flames.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking and open flames. 56.6904 Section 56.6904 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Requirements § 56.6904 Smoking and open flames. Smoking and use of open flames shall not be permitted within...

  17. 30 CFR 56.7805 - Smoking and open flames.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Smoking and open flames. 56.7805 Section 56... Jet Piercing Rotary Jet Piercing § 56.7805 Smoking and open flames. Persons shall not smoke and open... smoking and open flames shall be posted in these areas....

  18. 30 CFR 56.6904 - Smoking and open flames.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Smoking and open flames. 56.6904 Section 56.6904 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Requirements § 56.6904 Smoking and open flames. Smoking and use of open flames shall not be permitted within...

  19. 30 CFR 57.7805 - Smoking and open flames.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Smoking and open flames. 57.7805 Section 57... Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7805 Smoking and open flames. Persons shall not... warning against smoking and open flames shall be posted in these areas....

  20. 30 CFR 56.6904 - Smoking and open flames.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Smoking and open flames. 56.6904 Section 56.6904 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Requirements § 56.6904 Smoking and open flames. Smoking and use of open flames shall not be permitted within...