Sample records for flammable gas hydrogen

  1. Numerical Investigation of the Hydrogen Jet Flammable Envelope Extent with Account for Unsteady Phenomena

    NASA Astrophysics Data System (ADS)

    Chernyavsky, Boris; Benard, Pierre

    2010-11-01

    An important aspect of safety analysis in hydrogen applications is determination of the extent of flammable gas envelope in case of hydrogen jet release. Experimental investigations had shown significant disagreements between the extent of average flammable envelope predicted by steady-state numerical methods, and the region observed to support ignition, with proposed cause being non-steady jet phenomena resulting in significant variations of instantaneous gas concentration and velocity fields in the jet. In order to investigate the influence of these transient phenomena, a numerical investigation of hydrogen jet at low Mach number had been performed using unsteady Large Eddy Simulation. Instantaneous hydrogen concentration and velocity fields were monitored to determine instantaneous flammable envelope. The evolution of the instantaneous fields, including the development of the turbulence structures carrying hydrogen, their extent and frequency, and their relation with averaged fields had been characterized. Simulation had shown significant variability of the flammable envelope, with jet flapping causing shedding of large scale rich and lean gas pockets from the main jet core, which persist for significant times and substantially alter the extent of flammability envelope.

  2. A summary description of the flammable gas tank safety program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.D.; Sherwood, D.J.

    1994-10-01

    Radioactive liquid waste may produce hydrogen as result of the interaction of gamma radiation and water. If the waste contains organic chelating agents, additional hydrogen as well as nitrous oxide and ammonia may be produced by thermal and radiolytic decomposition of these organics. Several high-level radioactive liquid waste storage tanks, located underground at the Hanford Site in Washington State, are on a Flammable Gas Watch List. Some contain waste that produces and retains gases until large quantities of gas are released rapidly to the tank vapor space. Tanks nearly-filled to capacity have relatively little vapor space; therefore if the wastemore » suddenly releases a large amount of hydrogen and nitrous oxide, a flammable gas mixture could result. The most notable example of a Hanford waste tank with a flammable gas problem is tank 241-SY-101. Upon occasion waste stored in this tank has released enough flammable gas to burn if an ignition source had been present inside of the tank. Several, other Hanford waste tanks exhibit similar behavior although to a lesser magnitude. Because this behavior was hot adequately-addressed in safety analysis reports for the Hanford Tank Farms, an unreviewed safety question was declared, and in 1990 the Flammable Gas Tank Safety Program was established to address this problem. The purposes of the program are a follows: (1) Provide safety documents to fill gaps in the safety analysis reports, and (2) Resolve the safety issue by acquiring knowledge about gas retention and release from radioactive liquid waste and developing mitigation technology. This document provides the general logic and work activities required to resolve the unreviewed safety question and the safety issue of flammable gas mixtures in radioactive liquid waste storage tanks.« less

  3. Flammable gas technical basis document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO, C.A.

    2003-03-22

    This document qualitatively evaluates the frequency and consequences of DST and SST representative flammable gas accidents and associated represented hazardous conditions without controls. Based on the evaluation, it was determined that safety-significant SSCs and/or TSRs were required to prevent or mitigate flammable gas accidents. Controls were selected and the accidents re-evaluated taking credit for the controls.

  4. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HU TA

    2009-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  5. Flammable Gas Technical Basis Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO, C.A.

    2003-07-30

    This document qualitatively evaluates the frequency and consequences of DST and SST representative flammable gas accidents and associated represented hazardous conditions without controls. Based on the evaluation, it was determined that safety-significant SSCs and/or TSRs were required to prevent or mitigate flammable gas accidents. Controls were selected and the accidents re-evaluated taking credit for the controls. Revision 1 incorporates comments received from ORP.

  6. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRIPPS, L.J.

    2005-02-18

    This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the needmore » for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.« less

  7. Flammable Gas Safety Self-Study 52827

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, George

    2016-03-17

    This course, Flammable Gas Safety Self-Study (COURSE 52827), presents an overview of the hazards and controls associated with commonly used, compressed flammable gases at Los Alamos National Laboratory (LANL).

  8. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas...

  9. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas...

  10. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas...

  11. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas...

  12. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas...

  13. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... each flammable gas detection system that is in a gas-dangerous space or area must meet §§ 154.1000... 46 Shipping 5 2014-10-01 2014-10-01 false Flammable gas detection system. 154.1350 Section 154.1350 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES...

  14. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... each flammable gas detection system that is in a gas-dangerous space or area must meet §§ 154.1000... 46 Shipping 5 2012-10-01 2012-10-01 false Flammable gas detection system. 154.1350 Section 154.1350 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES...

  15. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means...

  16. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means...

  17. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means...

  18. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means...

  19. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means...

  20. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... flammable gas concentration over the concentration or volume ranges under paragraph (t) or (u) of this... a cargo concentration that is 30% or less of the lower flammable limit in air of the cargo carried... the space where the gas detection system's readout is located and must meet § 154.1365. (h) Remote...

  1. Flammable gas data evaluation. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, P.D.; Meyer, P.A.; Miller, N.E.

    1996-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Numerous safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate, retain, and periodically release flammable gases. This report documents some of the activities of the Flammable Gas Project Data Evaluation Task conducted for Westinghouse Hanford Company during fiscal year 1996. Described in this report are: (1) the results of examining the in-tank temperature measurements for insights into gas release behavior; (2) the preliminary results of examining the tank waste level measurements formore » insights into gas release behavior; and (3) an explanation for the observed hysteresis in the level/pressure measurements, a phenomenon observed earlier this year when high-frequency tank waste level measurements came on-line.« less

  2. 77 FR 62224 - Hanford Tank Farms Flammable Gas Safety Strategy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... believes that actions are necessary to install real time monitoring to measure tank ventilation flowrates... monitoring. In its August letter, the Board noted that DOE's SAC for flammable gas monitoring exhibited a... flammable gas monitoring, it remained inadequate as a credited safety control. The SAC is less reliable than...

  3. Assessment of the impact of TOA partitioning on DWPF off-gas flammability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.

    2013-06-01

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar L in themore » effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.« less

  4. Thermal Flammable Gas Production from Bulk Vitrification Feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.

    2008-05-21

    The baseline bulk-vitrification (BV) process (also known as in-container vitrification ICV™) includes a mixer/dryer to convert liquid low-activity waste (LAW) into a dried, blended feed for vitrification. Feed preparation includes blending LAW with glass-forming minerals (GFMs) and cellulose and drying the mixture to a suitable dryness, consistency, and particle size for transport to the ICVTM container. The cellulose is to be added to the BV feed at a rate sufficient to destroy 75% of the nitrogen present as nitrate or nitrite. Concern exists that flammable gases may be produced during drying operations at levels that could pose a risk. Themore » drying process is conducted under vacuum in the temperature range of 60 to 80°C. These flammable gases could be produced either through thermal decomposition of cellulose or waste organics or as a by-product of the reaction of cellulose and/or waste organics with nitrate or the postulated small amount of nitrite present in the waste. To help address the concern about flammable gas production during drying, the Pacific Northwest National Laboratory (PNNL) performed studies to identify the gases produced at dryer temperatures and at possible process upset conditions. Studies used a thermogravimetric analyzer (TGA) up to 525°C and isothermal testing up to 120°C to determine flammable gas production resulting from the cellulose and organic constituents in bulk vitrification feed. This report provides the results of those studies to determine the effects of cellulose and waste organics on flammable gas evolution« less

  5. Flammability limits of lithium-ion battery thermal runaway vent gas in air and the inerting effects of halon 1301

    NASA Astrophysics Data System (ADS)

    Karp, Matthew Eugene

    Lithium-ion (rechargeable) and lithium-metal (non-rechargeable) battery cells put aircraft at risk of igniting and fueling fires. Lithium batteries can be packed in bulk and shipped in the cargo holds of freighter aircraft; currently lithium batteries are banned from bulk shipment on passenger aircraft [1]. The federally regulated Class C cargo compartment extinguishing system's utilization of a 5 %vol Halon 1301 knockdown concentration and a sustained 3 %vol Halon 1301 may not be sufficient at inerting lithium-ion battery vent gas and air mixtures [2]. At 5 %vol Halon 1301 the flammability limits of lithium-ion premixed battery vent gas (Li-Ion pBVG) in air range from 13.80 %vol to 26.07 %vol Li-Ion pBVG. Testing suggests that 8.59 %vol Halon 1301 is required to render all ratios of the Li-Ion pBVG in air inert. The lower flammability limit (LFL) and upper flammability limit (UFL) of hydrogen and air mixtures are 4.95 %vol and 76.52 %vol hydrogen, respectively. With the addition of 10 %vol and 20 %vol Halon 1301 the LFL is 9.02 %vol and 11.55 %vol hydrogen, respectively, and the UFL is 45.70 %vol and 28.39 %vol hydrogen, respectively. The minimum inerting concentration (MIC) of Halon 1301 in hydrogen and air mixtures is 26.72 %vol Halon 1301 at 16.2 %vol hydrogen. The LFL and UFL of Li-Ion pBVG and air mixtures are 7.88 %vol and 37.14 %vol Li-Ion pBVG, respectively. With the addition of 5 %vol, 7 %vol, and 8 %vol Halon 1301 the LFL is 13.80 %vol, 16.15 %vol, and 17.62 % vol Li-Ion pBVG, respectively, and the UFL is 26.07 %vol, 23.31 %vol, and 21.84 %vol Li- Ion pBVG, respectively. The MIC of Halon 1301 in Li-Ion pBVG and air mixtures is 8.59 %vol Halon 1301 at 19.52 %vol Li-Ion pBVG. Le Chatelier's mixing rule has been shown to be an effective measure for estimating the flammability limits of Li-Ion pBVGes. The LFL has a 1.79 % difference while the UFL has a 4.53 % difference. The state of charge (SOC) affects the flammability limits in an apparent parabolic

  6. Offsite Radiological Consequence Analysis for the Bounding Flammable Gas Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO, C.A.

    2003-07-30

    This document quantifies the offsite radiological consequences of the bounding flammable gas accident for comparison with the 25 rem Evaluation Guideline established in DOE-STD-3009, Appendix A. The bounding flammable gas accident is a detonation in a single-shell tank The calculation applies reasonably conservation input parameters in accordance with DOE-STD-3009, Appendix A, guidance. Revision 1 incorporates comments received from Office of River Protection.

  7. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...

  8. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...

  9. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...

  10. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...

  11. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...

  12. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, A. S.

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3)more » melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.« less

  13. SIMPLE TRANSIENT CALCULATIONS OF CELL FLAMMABLE GAS CONCENTRATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NOEMAIL), J; David Allison; John Mccord, J

    2009-05-06

    The Saltstone Facility at Savannah River Site (SRS) mixes low-level radiological liquid waste with grout for permanent disposal as cement in vault cells. The grout mixture is poured into each cell in approximately 17 batches (8 to 10 hours duration). The grout mixture contains ten flammable gases of concern that are released from the mixture into the cell. Prior to operations, simple parametric transient calculations were performed to develop batch parameters (including schedule of batch pours) to support operational efficiency while ensuring that a flammable gas mixture does not develop in the cell vapor space. The analysis demonstrated that amore » nonflammable vapor space environment can be achieved, with workable operational constraints, without crediting the ventilation flow as a safety system control. Isopar L was identified as the primary flammable gas of concern. The transient calculations balanced inflows of the flammable gases into the vapor space with credited outflows of diurnal breathing through vent holes and displacement from new grout pours and gases generated. Other important features of the analyses included identifying conditions that inhibited a well-mixed vapor space, the expected frequency and duration of such conditions, and the estimated level of stratification that could develop.« less

  14. THE IMPACT OF OZONE ON THE LOWER FLAMMABLE LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherburne, Carol; Osterberg, Paul; Johnson, Tom

    The Savannah River Site, in conjunction with AREVA Federal services, has designed a process to treat dissolved radioactive waste solids with ozone. It is known that in this radioactive waste process, radionuclides radiolytically break down water into gaseous hydrogen and oxygen, which presents a well defined flammability hazard. Flammability limits have been established for both ozone and hydrogen separately; however, there is little information on mixtures of hydrogen and ozone. Therefore, testing was designed to provide critical flammability information necessary to support safety related considerations for the development of ozone treatment and potential scale-up to the commercial level. Since informationmore » was lacking on flammability issues at low levels of hydrogen and ozone, a testing program was developed to focus on filling this portion of the information gap. A 2-L vessel was used to conduct flammability tests at atmospheric pressure and temperature using a fuse wire ignition source at 1 percent ozone intervals spanning from no ozone to the Lower Flammable Limit (LFL) of ozone in the vessel, determined as 8.4%(v/v) ozone. An ozone generator and ozone detector were used to generate and measure the ozone concentration within the vessel in situ, since ozone decomposes rapidly on standing. The lower flammability limit of hydrogen in an ozone-oxygen mixture was found to decrease from the LFL of hydrogen in air, determined as 4.2 % (v/v) in this vessel. From the results of this testing, Savannah River was able to develop safety procedures and operating parameters to effectively minimize the formation of a flammable atmosphere.« less

  15. A risk-based approach to flammable gas detector spacing.

    PubMed

    Defriend, Stephen; Dejmek, Mark; Porter, Leisa; Deshotels, Bob; Natvig, Bernt

    2008-11-15

    Flammable gas detectors allow an operating company to address leaks before they become serious, by automatically alarming and by initiating isolation and safe venting. Without effective gas detection, there is very limited defense against a flammable gas leak developing into a fire or explosion that could cause loss of life or escalate to cascading failures of nearby vessels, piping, and equipment. While it is commonly recognized that some gas detectors are needed in a process plant containing flammable gas or volatile liquids, there is usually a question of how many are needed. The areas that need protection can be determined by dispersion modeling from potential leak sites. Within the areas that must be protected, the spacing of detectors (or alternatively, number of detectors) should be based on risk. Detector design can be characterized by spacing criteria, which is convenient for design - or alternatively by number of detectors, which is convenient for cost reporting. The factors that influence the risk are site-specific, including process conditions, chemical composition, number of potential leak sites, piping design standards, arrangement of plant equipment and structures, design of isolation and depressurization systems, and frequency of detector testing. Site-specific factors such as those just mentioned affect the size of flammable gas cloud that must be detected (within a specified probability) by the gas detection system. A probability of detection must be specified that gives a design with a tolerable risk of fires and explosions. To determine the optimum spacing of detectors, it is important to consider the probability that a detector will fail at some time and be inoperative until replaced or repaired. A cost-effective approach is based on the combined risk from a representative selection of leakage scenarios, rather than a worst-case evaluation. This means that probability and severity of leak consequences must be evaluated together. In marine and

  16. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  17. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  18. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  19. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  20. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  1. The Effect of the Presence of Ozone on the Lower Flammability Limit (LFL) of Hydrogen in Vessels Containing Savannah River Site High Level Waste - 12387

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherburne, Carol; Osterberg, Paul

    The Enhanced Chemical Cleaning (ECC) process uses ozone to effect the oxidation of metal oxalates produced during the dissolution of sludge in the Savannah River Site (SRS) waste tanks. The ozone reacts with the metal oxalates to form metal oxide and hydroxide precipitants, and the CO{sub 2}, O{sub 2}, H{sub 2}O and any unreacted O{sub 3} gases are discharged into the vapor space. In addition to the non-radioactive metals in the waste, however, the SRS radioactive waste also contains a variety of radionuclides, hence, hydrogen gas is also present in the vapor space of the ECC system. Because hydrogen ismore » flammable, the impact of this resultant gas stream on the Lower Flammability Limit (LFL) of hydrogen must be understood for all possible operating scenarios of both normal and off-normal situations, with particular emphasis at the elevated temperatures and pressures of the typical ECC operating conditions. Oxygen is a known accelerant in combustion reactions, but while there are data associated with the behavior of hydrogen/oxygen environments, recent, relevant studies addressing the effect of ozone on the flammability limit of hydrogen proved scarce. Further, discussions with industry experts verified the absence of data in this area and indicated that laboratory testing, specific to defined operating parameters, was needed to comprehensively address the issue. Testing was thus designed and commissioned to provide the data necessary to support safety related considerations for the ECC process. A test matrix was developed to envelope the bounding conditions considered credible during ECC processing. Each test consists of combining a gas stream of high purity hydrogen with a gas stream comprised of a specified mixture of ozone and oxygen in a temperature and pressure regulated chamber such that the relative compositions of the two streams are controlled. The gases are then stirred to obtain a homogeneous mixture and ignition attempted by applying 10J of

  2. Interstage Flammability Analysis Approach

    NASA Technical Reports Server (NTRS)

    Little, Jeffrey K.; Eppard, William M.

    2011-01-01

    The Interstage of the Ares I launch platform houses several key components which are on standby during First Stage operation: the Reaction Control System (ReCS), the Upper Stage (US) Thrust Vector Control (TVC) and the J-2X with the Main Propulsion System (MPS) propellant feed system. Therefore potentially dangerous leaks of propellants could develop. The Interstage leaks analysis addresses the concerns of localized mixing of hydrogen and oxygen gases to produce deflagration zones in the Interstage of the Ares I launch vehicle during First Stage operation. This report details the approach taken to accomplish the analysis. Specified leakage profiles and actual flammability results are not presented due to proprietary and security restrictions. The interior volume formed by the Interstage walls, bounding interfaces with the Upper and First Stages, and surrounding the J2-X engine was modeled using Loci-CHEM to assess the potential for flammable gas mixtures to develop during First Stage operations. The transient analysis included a derived flammability indicator based on mixture ratios to maintain achievable simulation times. Validation of results was based on a comparison to Interstage pressure profiles outlined in prior NASA studies. The approach proved useful in the bounding of flammability risk in supporting program hazard reviews.

  3. 49 CFR 193.2059 - Flammable vapor-gas dispersion protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Flammable vapor-gas dispersion protection. 193.2059 Section 193.2059 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE...

  4. Lean flammability limit of downward propagating hydrogen-air flames

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    1992-01-01

    Detailed multidimensional numerical simulations that include the effects of wall heat losses have been performed to study the dynamics of downward flame propagation and extinguishment in lean hydrogen-air mixtures. The computational results show that a downward propagating flame in an isothermal channel has a flammability limit of around 9.75 percent. This is in excellent agreement with experimental results. Also in excellent agreement are the detailed observations of the flame behavior at the point of extinguishment. The primary conclusion of this work is that detailed numerical simulations that include wall heat losses and the effect of gravity can adequately simulate the dynamics of the extinguishment process in downward-propagating hydrogen-air flames. These simulations can be examined in detail to gain understanding of the actual extinction process.

  5. Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.

    2013-02-13

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPFmore » to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.« less

  6. Informing hazardous zones for on-board maritime hydrogen liquid and gas systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaylock, Myra L.; Pratt, Joseph William; Bran Anleu, Gabriela A.

    The significantly higher buoyancy of hydrogen compared to natural gas means that hazardous zones defined in the IGF code may be inaccurate if applied to hydrogen. This could place undue burden on ship design or could lead to situations that are unknowingly unsafe. We present dispersion analyses to examine three vessel case studies: (1) abnormal external vents of full blowdown of a liquid hydrogen tank due to a failed relief device in still air and with crosswind; (2) vents due to naturally-occurring boil-off of liquid within the tank; and (3) a leak from the pipes leading into the fuel cellmore » room. The size of the hydrogen plumes resulting from a blowdown of the tank depend greatly on the wind conditions. It was also found that for normal operations releasing a small amount of "boil- off" gas to regulate the pressure in the tank does not create flammable concentrations.« less

  7. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed.more » The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.« less

  8. Flammability of gas mixtures. Part 1: fire potential.

    PubMed

    Schröder, Volkmar; Molnarne, Maria

    2005-05-20

    International and European dangerous substances and dangerous goods regulations refer to the standard ISO 10156 (1996). This standard includes a test method and a calculation procedure for the determination of the flammability of gases and gas mixtures in air. The substance indices for the calculation, the so called "Tci values", which characterise the fire potential, are provided as well. These ISO Tci values are derived from explosion diagrams of older literature sources which do not take into account the test method and the test apparatus. However, since the explosion limits are influenced by apparatus parameters, the Tci values and lower explosion limits, given by the ISO tables, are inconsistent with those measured according to the test method of the same standard. In consequence, applying the ISO Tci values can result in wrong classifications. In this paper internationally accepted explosion limit test methods were evaluated and Tci values were derived from explosion diagrams. Therefore, an "open vessel" method with flame propagation criterion was favoured. These values were compared with the Tci values listed in ISO 10156. In most cases, significant deviations were found. A detailed study about the influence of inert gases on flammability is the objective of Part 2.

  9. Design review report for rotary mode core sample truck (RMCST) modifications for flammable gas tanks, preliminary design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbett, J.E.

    1996-02-01

    This report documents the completion of a preliminary design review for the Rotary Mode Core Sample Truck (RMCST) modifications for flammable gas tanks. The RMCST modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to validate basic design assumptions and concepts to support a path forward leading to a final design. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward a final design review.

  10. Offsite radiological consequence analysis for the bounding flammable gas accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO, C.A.

    2003-03-19

    The purpose of this analysis is to calculate the offsite radiological consequence of the bounding flammable gas accident. DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', requires the formal quantification of a limited subset of accidents representing a complete set of bounding conditions. The results of these analyses are then evaluated to determine if they challenge the DOE-STD-3009-94, Appendix A, ''Evaluation Guideline,'' of 25 rem total effective dose equivalent in order to identify and evaluate safety class structures, systems, and components. The bounding flammable gas accident is a detonation in a single-shell tank (SST).more » A detonation versus a deflagration was selected for analysis because the faster flame speed of a detonation can potentially result in a larger release of respirable material. As will be shown, the consequences of a detonation in either an SST or a double-shell tank (DST) are approximately equal. A detonation in an SST was selected as the bounding condition because the estimated respirable release masses are the same and because the doses per unit quantity of waste inhaled are generally greater for SSTs than for DSTs. Appendix A contains a DST analysis for comparison purposes.« less

  11. Polymer flammability

    DOT National Transportation Integrated Search

    2005-05-01

    This report provides an overview of polymer flammability from a material science perspective and describes currently accepted test methods to quantify burning behavior. Simplifying assumptions about the gas and condensed phase processes of flaming co...

  12. Flammability Indices for Refrigerants

    NASA Astrophysics Data System (ADS)

    Kataoka, Osami

    This paper introduces a new index to classify flammable refrigerants. A question on flammability indices that ASHRAE employs arose from combustion test results of R152a and ammonia. Conventional methods of not only ASHRAE but also ISO and Japanese High-pressure gas safety law to classify the flammability of refrigerants are evaluated to show why these methods conflict with the test results. The key finding of this paper is that the ratio of stoichiometric concentration to LFL concentration (R factor) represents the test results most precisely. In addition, it has excellent correlation with other flammability parameters such as flame speed and pressure rise coefficient. Classification according to this index gives reasonable flammability order of substances including ammonia, R152a and carbon monoxide. Theoretical background why this index gives good correlation is also discussed as well as the insufficient part of this method.

  13. Development of hydrogen gas getters for TRU waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaszuba, J. P.; Mroz, E. J.; Peterson, E.

    2004-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For this reason, the flammable gas (hydrogen) concentration in waste shipment containers (Transuranic Package Transporter-II or TP-II containers) is limited to the lower explosion limit of hydrogen in air (5 vol%). The use of hydrogen getters is being investigated to prevent the build up of hydrogen during storage and transport of the TP-II containers (up to 60 days). Preferred hydrogen getters are solid materials that scavenge hydrogen from the gas phase and chemically and irreversibly bind it in the solid state. One proven getter, 1,4-bis(phenylethynyl)benzenemore » or DEB, belongs to a class of compounds called alkynes, which are characterized by the presence of carbon-carbon triple bonds. These carbon atoms will, in the presence of suitable catalysts such as palladium, irreversibly react with hydrogen to form the corresponding saturated alkane compounds. Because DEB contains two triple bonds, one mole of DEB reacts with 4 moles of hydrogen. The standard formulation for the 'DEB getter' is a mixture of 75% DEB and 25% carbon catalyst (5% palladium on carbon). Certain chemicals such as volatile organic compounds (VOCs) are known to 'poison' and reduce the activity of the catalyst. Therefore, in addition to the standard formulation, a semi-permeable barrier that encapsulates and protects the getter and its catalyst from poisons was also developed. The uncoated and polymer coated getter formulations were subjected to tests that determined the performance of the getters with regard to capacity, operating temperature range (with hydrogen in nitrogen and in air), hydrogen concentration, poisons, aging, pressure, reversibility, and radiation effects. This testing program was designed to address the following performance requirements: (1) Minimum rate for hydrogen removal of 1.2E-5 moles hydrogen per second for 60 days; (2) Sufficient getter material

  14. Fire and Flammability Characteristics of Materials Used in Rail Passenger Cars. A Literature Survey.

    DTIC Science & Technology

    1980-04-01

    Charac- teristics of Fiber -Reinforced Organic-Matrix Composites ," Report No. MAT-77-21, David W. Taylor Naval Ship R&D Center, Annapolis, MD 21402, June...were limited to poly- vinyl chloride, urethanes, wool, and Nomex fiber ;and gas analysis was limited to carbon monoxide, hydrogen cyanide, and...liberation, smoke emission, combustion products, toxicity, pyrolysis, plastics, polymers, synthetic fibers , flammability test methods. 20, A MT’NACT (mftM m

  15. Flammable gas double shell tank expert elicitation presentations (Part A and Part B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bratzel, D.R.

    1998-04-17

    This document is a compilation of presentation packages and white papers for the Flammable Gas Double Shell Tank Expert Elicitation Workshop {number_sign}2. For each presentation given by the different authors, a separate section was developed. The purpose for issuing these workshop presentation packages and white papers as a supporting document is to provide traceability and a Quality Assurance record for future reference to these packages.

  16. Reduction of gaseous pollutant emissions from gas turbine combustors using hydrogen-enriched jet fuel

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1976-01-01

    Recent progress in an evaluation of the applicability of the hydrogen enrichment concept to achieve ultralow gaseous pollutant emission from gas turbine combustion systems is described. The target emission indexes for the program are 1.0 for oxides of nitrogen and carbon monoxide, and 0.5 for unburned hydrocarbons. The basic concept utilizes premixed molecular hydrogen, conventional jet fuel, and air to depress the lean flammability limit of the mixed fuel. This is shown to permit very lean combustion with its low NOx production while simulataneously providing an increased flame stability margin with which to maintain low CO and HC emission. Experimental emission characteristics and selected analytical results are presented for a cylindrical research combustor designed for operation with inlet-air state conditions typical for a 30:1 compression ratio, high bypass ratio, turbofan commercial engine.

  17. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-01

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm

  18. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  19. Room temperature micro-hydrogen-generator

    NASA Astrophysics Data System (ADS)

    Gervasio, Don; Tasic, Sonja; Zenhausern, Frederic

    A new compact and cost-effective hydrogen-gas generator has been made that is well suited for supplying hydrogen to a fuel-cell for providing base electrical power to hand-carried appliances. This hydrogen-generator operates at room temperature, ambient pressure and is orientation-independent. The hydrogen-gas is generated by the heterogeneous catalytic hydrolysis of aqueous alkaline borohydride solution as it flows into a micro-reactor. This reactor has a membrane as one wall. Using the membrane keeps the liquid in the reactor, but allows the hydrogen-gas to pass out of the reactor to a fuel-cell anode. Aqueous alkaline 30 wt% borohydride solution is safe and promotes long application life, because this solution is non-toxic, non-flammable, and is a high energy-density (≥2200 W-h per liter or per kilogram) hydrogen-storage solution. The hydrogen is released from this storage-solution only when it passes over the solid catalyst surface in the reactor, so controlling the flow of the solution over the catalyst controls the rate of hydrogen-gas generation. This allows hydrogen generation to be matched to hydrogen consumption in the fuel-cell, so there is virtually no free hydrogen-gas during power generation. A hydrogen-generator scaled for a system to provide about 10 W electrical power is described here. However, the technology is expected to be scalable for systems providing power spanning from 1 W to kW levels.

  20. Gas diffusion electrodes improve hydrogen gas mass transfer for a hydrogen oxidizing bioanode

    PubMed Central

    Rodenas, Pau; Zhu, Fangqi; Sleutels, Tom; Saakes, Michel; Buisman, Cees

    2017-01-01

    Abstract Background Bioelectrochemical systems (BESs) are capable of recovery of metals at a cathode through oxidation of organic substrate at an anode. Recently, also hydrogen gas was used as an electron donor for recovery of copper in BESs. Oxidation of hydrogen gas produced a current density of 0.8 A m‐2 and combined with Cu2+ reduction at the cathode, produced 0.25 W m‐2. The main factor limiting current production was the mass transfer of hydrogen to the biofilm due to the low solubility of hydrogen in the anolyte. Here, the mass transfer of hydrogen gas to the bioanode was improved by use of a gas diffusion electrode (GDE). Results With the GDE, hydrogen was oxidized to produce a current density of 2.9 A m‐2 at an anode potential of –0.2 V. Addition of bicarbonate to the influent led to production of acetate, in addition to current. At a bicarbonate concentration of 50 mmol L‐1, current density increased to 10.7 A m‐2 at an anode potential of –0.2 V. This increase in current density could be due to oxidation of formed acetate in addition to oxidation of hydrogen, or enhanced growth of hydrogen oxidizing bacteria due to the availability of acetate as carbon source. The effect of mass transfer was further assessed through enhanced mixing and in combination with the addition of bicarbonate (50 mmol L‐1) current density increased further to 17.1 A m‐2. Conclusion Hydrogen gas may offer opportunities as electron donor for bioanodes, with acetate as potential intermediate, at locations where excess hydrogen and no organics are available. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29200586

  1. Potential impact radius formulae for flammable gases other than natural gas subject to 49 CFR 192 : final report.

    DOT National Transportation Integrated Search

    2005-06-01

    This report was prepared in accordance with the Statement of Work and proposal submitted in : response to RFP for Technical Task Order Number 13 (TTO 13) entitled Potential Impact Radius : Formulae for Flammable Gases Other Than Natural Gas. : ...

  2. Maximum Potential Hydrogen Gas Retention in the sRF Resin Ion Exchange Column for the LAWPS Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Wells, Beric E.; Bottenus, Courtney LH

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogenmore » gas is being generated by radiolysis. In normal operations, the generated hydrogen is expected to remain dissolved in the liquid and be continuously removed by liquid flow. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin and below the bottom screen that supports the resin within the column. The purpose of this report is to summarize calculations that estimate the upper-bound volume of hydrogen gas that can be retained in the column and potentially be released to the headspace of the IX column or to process equipment connected to the IX column and, thus, pose a flammability hazard.« less

  3. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the leanmore » operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas

  4. Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rassat, Scot D.; Stewart, Charles W.; Wells, Beric E.

    2000-01-24

    Due primarily to an increase in floating crust thickness, the waste level in Tank 241-SY-101 has grown appreciably and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconvective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. The plan is to transfer some waste out and back-dilute with water in several steps. In this work, mechanisms and rates of waste solidsmore » dissolution and gas releases are evaluated theoretically and experimentally. Particular emphasis is given to crust dissolution processes and associated gas releases, although dissolution and gas release from the mixed-slurry and nonconvective layers are also considered. The release of hydrogen gas to the tank domespace is modeled for a number of scenarios. Under the tank conditions expected at the time of back-dilution, no plausible continuous or sudden gas release scenarios resulting in flammable hydrogen concentrations were identified.« less

  5. Composition for absorbing hydrogen from gas mixtures

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Lee, Myung W.

    1999-01-01

    A hydrogen storage composition is provided which defines a physical sol-gel matrix having an average pore size of less than 3.5 angstroms which effectively excludes gaseous metal hydride poisons while permitting hydrogen gas to enter. The composition is useful for separating hydrogen gas from diverse gas streams which may have contaminants that would otherwise render the hydrogen absorbing material inactive.

  6. Process for hydrogen isotope concentration between liquid water and hydrogen gas

    DOEpatents

    Stevens, William H.

    1976-09-21

    A process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas, wherein liquid water and hydrogen gas are contacted, in an exchange section, with one another and with at least one catalyst body comprising at least one metal selected from Group VIII of the Periodic Table and preferably a support therefor, the catalyst body has a liquid-water-repellent, gas permeable polymer or organic resin coating, preferably a fluorinated olefin polymer or silicone coating, so that the isotope concentration takes place by two simultaneously occurring steps, namely, ##EQU1## WHILE THE HYDROGEN GAS FED TO THE EXCHANGE SECTION IS DERIVED IN A REACTOR VESSEL FROM LIQUID WATER THAT HAS PASSED THROUGH THE EXCHANGE SECTION.

  7. Gas Retention, Gas Release, and Fluidization of Spherical Resorcinol-Formaldehyde (sRF) Ion Exchange Resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Rassat, Scot D.; Linn, Diana

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. When loaded with radioactive Cs, radiolysis of water in the LAW liquid will generate hydrogen gas. In normal operations, the generated hydrogen is expected to remainmore » dissolved in the liquid and be continuously removed by liquid flow. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogen gas is being generated by radiolysis. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin bed and below the bottom screen that supports the resin within the column, which creates a hydrogen flammability hazard. Because there is a potential for a large fraction of the retained hydrogen to be released over a short duration as a gas release event, there is a need to quantify the size and rate of potential gas release events. Due to the potential for a large, rapid gas release event, an evaluation of mitigation methods to eliminate the hydrogen hazard is also needed. One method being considered for mitigating the hydrogen hazard during a loss of flow accident is to have a secondary flow system, with two redundant pumps operating in series, that re-circulates liquid upwards through the bed and into a vented break tank where hydrogen gas is released from the liquid and removed by venting the headspace of the break tank. The mechanism for inducing release of gas from the sRF bed is to fluidize the bed, which should allow

  8. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Rupe, J. H.; Kushida, R. O. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by injecting air and hydrocarbon fuel at one end of a cylindrically shaped chamber to form a mixture and igniting the mixture to provide hot combustion gases by partial oxidation of the hydrocarbon fuel. The combustion gases move away from the ignition region to another region where water is injected to be turned into steam by the hot combustion gases. The steam which is formed mixes with the hot gases to yield a uniform hot gas whereby a steam reforming reaction with the hydrocarbon fuel takes place to produce a hydrogen rich gas.

  9. Initial parametric study of the flammability of plume releases in Hanford waste tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.; Recknagle, K.P.

    This study comprised systematic analyses of waste tank headspace flammability following a plume-type of gas release from the waste. First, critical parameters affecting plume flammability were selected, evaluated, and refined. As part of the evaluation the effect of ventilation (breathing) air inflow on the convective flow field inside the tank headspace was assessed, and the magnitude of the so-called {open_quotes}numerical diffusion{close_quotes} on numerical simulation accuracy was investigated. Both issues were concluded to be negligible influences on predicted flammable gas concentrations in the tank headspace. Previous validation of the TEMPEST code against experimental data is also discussed, with calculated results inmore » good agreements with experimental data. Twelve plume release simulations were then run, using release volumes and flow rates that were thought to cover the range of actual release volumes and rates. The results indicate that most plume-type releases remain flammable only during the actual release ends. Only for very large releases representing a significant fraction of the volume necessary to make the entire mixed headspace flammable (many thousands of cubic feet) can flammable concentrations persist for several hours after the release ends. However, as in the smaller plumes, only a fraction of the total release volume is flammable at any one time. The transient evolution of several plume sizes is illustrated in a number of color contour plots that provide insight into plume mixing behavior.« less

  10. Hydrogen gas storage in fluorinated ultramicroporous tunnel crystal

    NASA Astrophysics Data System (ADS)

    Kataoka, Keisuke; Katagiri, Toshimasa

    2012-07-01

    We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder.We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder. Electronic supplementary information (ESI) available. CCDC 246922. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30940h

  11. Hydrogen gas sensor and method of manufacture

    DOEpatents

    McKee, John M.

    1991-01-01

    A sensor for measuring the pressure of hydrogen gas in a nuclear reactor, and method of manufacturing the same. The sensor comprises an elongated tube of hydrogen permeable material which is connected to a pressure transducer through a feedthrough tube which passes through a wall at the boundary of the region in which hydrogen is present. The tube is pressurized and flushed with hydrogen gas at an elevated temperature during the manufacture of the sensor in order to remove all gasses other than hydrogen from the device.

  12. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    DOEpatents

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  13. Flammable and noxious gas sensing using a microtripolar electrode sensor with diameter and chirality sorted single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cai, Shengbing; Duan, Zhe min; Zhang, Yong

    2013-08-01

    We report on the utilization of densely packed (˜10 SWCNTs µm-1), well-aligned arrays of single-chirality single-walled carbon nanotubes (SWCNTs) as an effective thin-film for integration into a gas sensor with a microtripolar electrode, based on field ionization by dielectrophoretic assembly from a monodisperse SWCNTs solution obtained by polymer-mediated sorting. The sensor is characterized as a field ionization electrode with sorted SWCNTs acting as both the sensing material and transducer gas concentrated directly into an electrical signal, an extractor serving to improve electric field uniformity and a collector electrode completing the current path. The gas sensing properties toward flammable and noxious gases, such as CO and H2, were investigated at room temperature. Besides the high sensitivity, the as-fabricated sensor exhibited attractive behaviors in terms of both the detection limit and a fast response, suggesting that our sensor could be used to partly circumvent the low sensing selectivity, long recovery time or irreversibility and allow for a preferential identification of the selected flammable and noxious analytes. Interestingly, the excellent sensing behaviors of the sensors based on the field ionization effect derive directly from the combined effects of the high-quality, low defect SWCNTs arrays, which leads to a small device-to-device variation in the properties and the optimization of electrode fabrication, highlighting the sensor as an appealing candidate in view of nanotube electronics.

  14. Hydrogen generation from caustic aluminum reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    REYNOLDS, D.A.

    2001-10-23

    A ''crawler'' is to enter the AY farm annulus to clean the metal surface for corrosion measurements. The ''crawler'' weighs about 190 pounds of which 150 pounds are aluminum. (These values are supplied by the vender of the ''crawler''.) There is a potential that cleaning the surface of the metal may cause a leak to occur in the primary tank wall and the waste may contact the aluminum. The hydroxide in the waste may react with the aluminum and form hydrogen gas. The purpose of this analysis is to estimate the rate of hydrogen gas generation and the time tomore » reach the lower flammable limit (LFL) in the annulus. Surface area of the aluminum piece is estimated to be 2 sq.ft. (This value was given by the vender.) SA:= 2 {center_dot} ft{sup 2}.« less

  15. On-Board Hydrogen Gas Production System For Stirling Engines

    DOEpatents

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  16. Wireless Hydrogen Smart Sensor Based on Pt/Graphene-Immobilized Radio-Frequency Identification Tag.

    PubMed

    Lee, Jun Seop; Oh, Jungkyun; Jun, Jaemoon; Jang, Jyongsik

    2015-08-25

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus, appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen-gas leak detection and surveillance systems are needed; additionally, the ability to monitor large areas (e.g., cities) via wireless networks is becoming increasingly important. In this report, we introduce a radio frequency identification (RFID)-based wireless smart-sensor system, composed of a Pt-decorated reduced graphene oxide (Pt_rGO)-immobilized RFID sensor tag and an RFID-reader antenna-connected network analyzer to detect hydrogen gas. The Pt_rGOs, produced using a simple chemical reduction process, were immobilized on an antenna pattern in the sensor tag through spin coating. The resulting Pt_rGO-based RFID sensor tag exhibited a high sensitivity to hydrogen gas at unprecedentedly low concentrations (1 ppm), with wireless communication between the sensor tag and RFID-reader antenna. The wireless sensor tag demonstrated flexibility and a long lifetime due to the strong immobilization of Pt_rGOs on the substrate and battery-independent operation during hydrogen sensing, respectively.

  17. Flow Effects on the Flammability Diagrams of Solid Fuels

    NASA Technical Reports Server (NTRS)

    Cordova, J. L.; Ceamanos, J.; Fernandez-Pello, A. C.; Long, R. T.; Torero, J. L.; Quintiere, J. G.

    1997-01-01

    A research program is currently underway with the final objective of developing a fundamental understanding of the controlling mechanisms underlying the flammability diagrams of solid combustible materials and their derived fire properties. Given that there is a high possibility of an accidental fire occurring in a space-based facility, understanding the fire properties of materials that will be used in such facilities is of critical importance. With this purpose, the flammability diagrams of the materials, as those produced by the Lateral Ignition and Flame Spread Test (LIFT) apparatus and by a new forced flow device, the Forced Flow Ignition and Flame Spread Test (FIST) apparatus, will be obtained. The specific objective of the program is to apply the new flammability apparatus, which will more accurately reflect the potential ambient conditions of space-based environments, to the characterization of the materials for space applications. This paper presents a parametric study of oxidizer flow effects on the ignition curve of the flammability diagrams of PMMA. The dependence of the ignition delay time on the external radiant flux and either the sample width (LIFT) or the flow velocity (FIST) has been studied. Although preliminary, the results indicate that natural and forced convection flow changes, affect the characteristics of the ignition curves of the flammability diagrams. The major effect on the ignition time appears to be due to convective transfer variations at the fuel surface. At high radiant fluxes or high flow velocities, however, it appears that gas phase processes become increasingly important, affecting the overall ignition delay time. A numerical analysis of the solid fuel heating and pyrolysis has also been developed. The theoretical predictions approximate the experiments well for conditions in which the gas phase induction time is negligible.

  18. 16 CFR 1500.44 - Method for determining extremely flammable and flammable solids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and flammable solids. 1500.44 Section 1500.44 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ENFORCEMENT REGULATIONS § 1500.44 Method for determining extremely flammable and flammable solids. (a... with inner dimensions 6 inches long × 1 inch wide × one-fourth inch deep. (2) Rigid and pliable solids...

  19. On the hazard of hydrogen explosions at space shuttle launch pads

    NASA Technical Reports Server (NTRS)

    Russell, John M.

    1988-01-01

    This report was prepared in support of efforts to assess the hazard of accidental explosions of unburned hydrogen at space shuttle launch pads. It begins with presentation of fundamental detonation theory and a review of relevent experiments. A scenario for a catastrophic explosion at a KSC launch pad and a list of necessary conditions contributing to it is proposed with a view to identifying those conditions which, if blocked, would prevent a catastrophe. The balance of the report is devoted to juxtaposition of reassuring and disquieting facts, presentation of a set of recommendations that ignition of hydrogen-air mixtures by weak ignition sources in unconfined geometries may produce a detonation, provided the effective flame area in the initial fireball is rapidly increased by turbulent mixing. Another conclusion is that detonability limits can be different from and narrower than flammability limits only if one restricts the rate of work that can be done on a flammable gas by mechanical agencies acting on its boundaries.

  20. Determination of anabolic steroids with gas chromatography-ion trap mass spectrometry using hydrogen as carrier gas.

    PubMed

    Impens, S; De Wasch, K; De Brabander, H

    2001-01-01

    Helium is considered to be the ideal carrier gas for gas chromatography/mass spectrometry (GC/MS) in general, and for use with an ion trap in particular. Helium is an inert gas, can be used without special precautions for security and, moreover, it is needed as a damping gas in the trap. A disadvantage of helium is the high viscosity resulting in long GC run times. In this work hydrogen was tested as an alternative carrier gas for GC in performing GC/MS analyses. A hydrogen generator was used as a safe source of hydrogen gas. It is demonstrated that hydrogen can be used as a carrier gas for the gas chromatograph in combination with helium as make-up gas for the trap. The analysis time was thus shortened and the chromatographic performance was optimized. Although hydrogen has proven useful as a carrier gas in gas chromatography coupled to standard detectors such as ECD or FID, its use is not mentioned extensively in the literature concerning gas chromatography-ion trap mass spectrometry. However, it is worth considering as a possibility because of its chromatographic advantages and its advantageous price when using a hydrogen generator. Copyright 2001 John Wiley & Sons, Ltd.

  1. 75 FR 49379 - Correction to Internal Citation of “Extremely Flammable Solid” and “Flammable Solid”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Flammable Solid'' and ``Flammable Solid'' AGENCY: Consumer Product Safety Commission. ACTION: Final rule... to correct internal citations to the definitions of ``extremely flammable solid'' and ``flammable solid'' in our regulations. DATES: This rule is effective on August 13, 2010. FOR FURTHER INFORMATION...

  2. Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane

    NASA Astrophysics Data System (ADS)

    Green, M. A.

    2006-04-01

    The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, "How is hydrogen different from flammable gasses that are commonly being used all over the world?" This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standards for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.

  3. Hydrogen Safety Issues Compared to Safety Issues with Methane andPropane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Michael A.

    The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, 'How is hydrogen different from flammable gasses that are commonly being used all over the world?' This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standardsmore » for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.« less

  4. Two-stage coal liquefaction without gas-phase hydrogen

    DOEpatents

    Stephens, H.P.

    1986-06-05

    A process is provided for the production of a hydrogen-donor solvent useful in the liquefaction of coal, wherein the water-gas shift reaction is used to produce hydrogen while simultaneously hydrogenating a donor solvent. A process for the liquefaction of coal using said solvent is also provided. The process enables avoiding the use of a separate water-gas shift reactor as well as high pressure equipment for liquefaction. 3 tabs.

  5. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-02-01

    To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen productionmore » and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.« less

  6. A new technique for pumping hydrogen gas

    USGS Publications Warehouse

    Friedman, I.; Hardcastle, K.

    1970-01-01

    A system for pumping hydrogen gas without isotopic fractionation has been developed. The pump contains uranium metal, which when heated to about 80??C reacts with hydrogen to form UH3. The UH3 is heated to above 500??C to decompose the hydride and regenerate the hydrogen. ?? 1970.

  7. 16 CFR 1611.4 - Flammability test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flammability test. 1611.4 Section 1611.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.4 Flammability test. (a) Apparatus and materials. The...

  8. Promising novel therapy with hydrogen gas for emergency and critical care medicine.

    PubMed

    Sano, Motoaki; Suzuki, Masaru; Homma, Koichiro; Hayashida, Kei; Tamura, Tomoyoshi; Matsuoka, Tadashi; Katsumata, Yoshinori; Onuki, Shuko; Sasaki, Junichi

    2018-04-01

    It has been reported that hydrogen gas exerts a therapeutic effect in a wide range of disease conditions, from acute illness such as ischemia-reperfusion injury, shock, and damage healing to chronic illness such as metabolic syndrome, rheumatoid arthritis, and neurodegenerative diseases. Antioxidant and anti-inflammatory properties of hydrogen gas have been proposed, but the molecular target of hydrogen gas has not been identified. We established the Center for Molecular Hydrogen Medicine to promote non-clinical and clinical research on the medical use of hydrogen gas through industry-university collaboration and to obtain regulatory approval of hydrogen gas and hydrogen medical devices (http://www.karc.keio.ac.jp/center/center-55.html). Studies undertaken by the Center have suggested possible therapeutic effects of hydrogen gas in relation to various aspects of emergency and critical care medicine, including acute myocardial infarction, cardiopulmonary arrest syndrome, contrast-induced acute kidney injury, and hemorrhagic shock.

  9. Automated Hydrogen Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Gencorp Aerojet Automated Hydrogen Gas Leak Detection System was developed through the cooperation of industry, academia, and the Government. Although the original purpose of the system was to detect leaks in the main engine of the space shuttle while on the launch pad, it also has significant commercial potential in applications for which there are no existing commercial systems. With high sensitivity, the system can detect hydrogen leaks at low concentrations in inert environments. The sensors are integrated with hardware and software to form a complete system. Several of these systems have already been purchased for use on the Ford Motor Company assembly line for natural gas vehicles. This system to detect trace hydrogen gas leaks from pressurized systems consists of a microprocessor-based control unit that operates a network of sensors. The sensors can be deployed around pipes, connectors, flanges, and tanks of pressurized systems where leaks may occur. The control unit monitors the sensors and provides the operator with a visual representation of the magnitude and locations of the leak as a function of time. The system can be customized to fit the user's needs; for example, it can monitor and display the condition of the flanges and fittings associated with the tank of a natural gas vehicle.

  10. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    PubMed Central

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-01-01

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures. PMID:24113685

  11. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    PubMed

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-10-09

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  12. Flammability as an ecological and evolutionary driver

    USGS Publications Warehouse

    Pausas, Juli G.; Keeley, Jon E.; Schwilk, Dylan W.

    2017-01-01

    We live on a flammable planet yet there is little consensus on the origin and evolution of flammability in our flora.We argue that part of the problem lies in the concept of flammability, which should not be viewed as a single quantitative trait or metric. Rather, we propose that flammability has three major dimensions that are not necessarily correlated: ignitability, heat release and fire spread rate. These major axes of variation are controlled by different plant traits and have differing ecological impacts during fire.At the individual plant scale, these traits define three flammability strategies observed in fire-prone ecosystems: the non-flammable, the fast-flammable and the hot-flammable strategy (with low ignitability, high flame spread rate and high heat release, respectively). These strategies increase the survival or reproduction under recurrent fires, and thus, plants in fire-prone ecosystems benefit from acquiring one of them; they represent different (alternative) ways to live under recurrent fires.Synthesis. This novel framework based on different flammability strategies helps us to understand variability in flammability across scales, and provides a basis for further research.

  13. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Bella, Francis A.

    2015-04-16

    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary tomore » relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.« less

  14. Methanation of gas streams containing carbon monoxide and hydrogen

    DOEpatents

    Frost, Albert C.

    1983-01-01

    Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

  15. Evaluation of hydrogen as a cryogenic wind tunnel test gas

    NASA Technical Reports Server (NTRS)

    Haut, R. C.

    1977-01-01

    The nondimensional ratios used to describe various flow situations in hydrogen were determined and compared with the corresponding ideal diatomic gas ratios. The results were used to examine different inviscid flow configurations. The relatively high value of the characteristic rotational temperature causes the behavior of hydrogen, under cryogenic conditions, to deviate substantially from the behavior of an ideal diatomic gas in the compressible flow regime. Therefore, if an idea diatomic gas is to be modeled, cryogenic hydrogen is unacceptable as a wind tunnel test gas in a compressible flow situation.

  16. Experimental study on flame propagation characteristics of Hydrogen premixed gas in gas pipeline

    NASA Astrophysics Data System (ADS)

    Ma, Danzhu; Li, Zhuang; Jia, Fengrui; Li, Zhou

    2018-06-01

    Hydrogen is the cleanest high-energy gas fuel, and also is the main industrial material. However, hydrogen is more explosive and more powerful than conventional gas fuels, which restricts its application. In particular, the expansion of premixed combustion under a strong constraint is more complicated, the reaction spreads faster. The flame propagation characteristics of premixed hydrogen/air were investigated by experiment. The mechanism of reaction acceleration is discussed, and then the speed of the flame propagation and the reaction pressure were tested and analysed.

  17. Radiolytic and thermolytic bubble gas hydrogen composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodham, W.

    This report describes the development of a mathematical model for the estimation of the hydrogen composition of gas bubbles trapped in radioactive waste. The model described herein uses a material balance approach to accurately incorporate the rates of hydrogen generation by a number of physical phenomena and scale the aforementioned rates in a manner that allows calculation of the final hydrogen composition.

  18. Adsorption of hydrogen gas and redox processes in clays.

    PubMed

    Didier, Mathilde; Leone, Laura; Greneche, Jean-Marc; Giffaut, Eric; Charlet, Laurent

    2012-03-20

    In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe Mössbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe Mössbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.

  19. Gas Requirements in Pressurized Transfer of Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Gluck, D. F.; Kline, J. F.

    1961-01-01

    Of late, liquid hydrogen has become a very popular fuel for space missions. It is being used in such programs as Centaur and Saturn. Furthermore, hydrogen is the ideal working fluid for nuclear powered space vehicles currently under development. In these applications, liquid hydrogen fuel is generally transferred to the combustion chamber by a combination of pumping and pressurization. The pump forces the liquid propellant from the fuel tank to the combustion chamber; gaseous pressurant holds tank pressure sufficiently high to prevent cavitation at the pump inlet and to maintain the structural rigidity of the tank. The pressurizing system, composed of pressurant, tankage, and associated hardware can be a large portion of the total vehicle weight. Pressurant weight can be reduced by introducing the pressurizing gas at temperatures substantially greater than those of liquid hydrogen. Heat and mass transfer processes thereby induced complicate gas requirements during discharge. These requirements must be known to insure proper design of the pressurizing system. The aim of this paper is to develop from basic mass and energy transfer processes a general method to predict helium and hydrogen gas usage for the pressurized transfer of liquid hydrogen. This required an analytical and experimental investigation, the results of which are described in this paper.

  20. Hyperbaric oxygen therapy for systemic gas embolism after hydrogen peroxide ingestion.

    PubMed

    Byrne, Brendan; Sherwin, Robert; Courage, Cheryl; Baylor, Alfred; Dolcourt, Bram; Brudzewski, Jacek R; Mosteller, Jeffrey; Wilson, Robert F

    2014-02-01

    Hydrogen peroxide is a commonly available product and its ingestion has been demonstrated to produce in vivo gas bubbles, which can embolize to devastating effect. We report two cases of hydrogen peroxide ingestion with resultant gas embolization, one to the portal system and one cerebral embolus, which were successfully treated with hyperbaric oxygen therapy (HBO), and review the literature. Two individuals presented to our center after unintentional ingestion of concentrated hydrogen peroxide solutions. Symptoms were consistent with portal gas emboli (Patient A) and cerebral gas emboli (Patient B), which were demonstrated on imaging. They were successfully treated with HBO and recovered without event. As demonstrated by both our experience as well as the current literature, HBO has been used to successfully treat gas emboli associated with hydrogen peroxide ingestion. We recommend consideration of HBO in any cases of significant hydrogen peroxide ingestion with a clinical picture compatible with gas emboli. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.

  2. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    PubMed Central

    Gu, Haoshuang; Wang, Zhao; Hu, Yongming

    2012-01-01

    Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors. PMID:22778599

  3. A Discussion of SY-101 Crust Gas Retention and Release Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SD Rassat; PA Gauglitz; SM Caley

    1999-02-23

    The flammable gas hazard in Hanford waste tanks was made an issue by the behavior of double-shell Tank (DST) 241-SY-101 (SY-101). Shortly after SY-101 was filled in 1980, the waste level began rising periodically, due to the generation and retention of gases within the slurry, and then suddenly dropping as the gases were released. An intensive study of the tank's behavior revealed that these episodic releases posed a safety hazard because the released gas was flammable, and, in some cases, the volume of gas released was sufficient to exceed the lower flammability limit (LFL) in the tank headspace (Allemann etmore » al. 1993). A mixer pump was installed in SY-101 in late 1993 to prevent gases from building up in the settled solids layer, and the large episodic gas releases have since ceased (Allemann et al. 1994; Stewart et al. 1994; Brewster et al. 1995). However, the surface level of SY-101 has been increasing since at least 1995, and in recent months the level growth has shown significant and unexpected acceleration. Based on a number of observations and measurements, including data from the void fraction instrument (VFI), we have concluded that the level growth is caused largely by increased gas retention in the floating crust. In September 1998, the crust contained between about 21 and 43% void based on VFI measurements (Stewart et al. 1998). Accordingly, it is important to understand the dominant mechanisms of gas retention, why the gas retention is increasing, and whether the accelerating level increase will continue, diminish or even reverse. It is expected that the retained gas in the crust is flammable, with hydrogen as a major constituent. This gas inventory would pose a flammable gas hazard if it were to release suddenly. In May 1997, the mechanisms of bubble retention and release from crust material were the subject of a workshop. The evaluation of the crust and potential hazards assumed a more typical void of roughly 15% gas. It could be similar to

  4. Purification process for .sup.153Gd produced in natural europium targets

    DOEpatents

    Johnsen, Amanda M; Soderquist, Chuck Z; McNamara, Bruce K; Risher, Darrell R

    2013-04-23

    An alteration of the traditional zinc/zinc-amalgam reduction procedure which eliminates both the hazardous mercury and dangerous hydrogen gas generation. In order to avoid the presence of water and hydrated protons in the working solution, which can oxidize Eu.sup.2+ and cause hydrogen gas production, a process utilizing methanol as the process solvent is described. While methanol presents some flammability hazard in a radiological hot cell, it can be better managed and is less of a flammability hazard than hydrogen gas generation.

  5. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  6. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

  7. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drawn from storage shall be kept in properly identified safety cans. (b) Unburied flammable-liquid... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in...

  8. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... drawn from storage shall be kept in properly identified safety cans. (b) Unburied flammable-liquid... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in...

  9. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in... drawn from storage shall be kept in properly identified safety cans. (b) Unburied flammable-liquid...

  10. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in... drawn from storage shall be kept in properly identified safety cans. (b) Unburied flammable-liquid...

  11. Hydrogen and Oxygen Gas Monitoring System Design and Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

    2007-06-01

    This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices ismore » also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or “fencepost”) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of

  12. Solid-phase microextraction may catalize hydrogenation when using hydrogen as carrier in gas chromatography.

    PubMed

    Fiorini, D; Boarelli, M C

    2016-07-01

    When hydrogen is used as carrier gas, carbon-carbon double bonds may be hydrogenated in the hot gas chromatograph (GC) injector if introduced by solid-phase microextraction (SPME). SPME fibers coated with polydimethylsiloxane (PDMS)/carboxen/divinylbenzene (DVB), PDMS/carboxen, polyacrylate, PDMS/DVB and PDMS on fused silica, stableflex or metal alloy core have been tested with fatty acid methyl esters (FAMEs) from olive oil. Using coatings containing DVB, hydrogenation took place with high conversion rates (82.0-92.9%) independently of the core material. With all fibers having a metal core, hydrogenation was observed to a certain extent (27.4-85.3%). PDMS, PDMS/carboxen and polyacrylate coated fibers with a fused silica or stableflex core resulted in negligible hydrogenation (0.2-2.5%). The occurrence of hydrogenation was confirmed also with other substances containing carbon-carbon double bonds (n-alkenes, alkenoic acids, mono- and polyunsaturated fatty acid methyl and ethyl esters). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Harvesting Hydrogen Gas from Air Pollutants with an Unbiased Gas Phase Photoelectrochemical Cell.

    PubMed

    Verbruggen, Sammy W; Van Hal, Myrthe; Bosserez, Tom; Rongé, Jan; Hauchecorne, Birger; Martens, Johan A; Lenaerts, Silvia

    2017-04-10

    The concept of an all-gas-phase photoelectrochemical (PEC) cell producing hydrogen gas from volatile organic contaminated gas and light is presented. Without applying any external bias, organic contaminants are degraded and hydrogen gas is produced in separate electrode compartments. The system works most efficiently with organic pollutants in inert carrier gas. In the presence of oxygen, the cell performs less efficiently but still significant photocurrents are generated, showing the cell can be run on organic contaminated air. The purpose of this study is to demonstrate new application opportunities of PEC technology and to encourage further advancement toward PEC remediation of air pollution with the attractive feature of simultaneous energy recovery and pollution abatement. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  15. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE... color on the FLAMMABLE LIQUID label must be red. [Amdt. 172-123, 56 FR 66257, Dec. 20, 1991] ...

  16. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE... color on the FLAMMABLE LIQUID label must be red. [Amdt. 172-123, 56 FR 66257, Dec. 20, 1991] ...

  17. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE... color on the FLAMMABLE LIQUID label must be red. [Amdt. 172-123, 56 FR 66257, Dec. 20, 1991] ...

  18. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE... color on the FLAMMABLE LIQUID label must be red. [Amdt. 172-123, 56 FR 66257, Dec. 20, 1991] ...

  19. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE... color on the FLAMMABLE LIQUID label must be red. [Amdt. 172-123, 56 FR 66257, Dec. 20, 1991] ...

  20. Prediction and assessment of flammability hazards associated with metered-dose inhalers containing flammable propellants.

    PubMed

    Dalby, R N

    1992-05-01

    Several potential replacements for chlorofluorocarbons (CFCs) in metered-dose inhalers (MDIs) are flammable. The flammability hazard associated with their use was assessed using a range of MDIs containing 0-100% (w/w) n-butane (flammable) in HFC-134a (non-flammable) fitted with either 25-, 63-, or 100-microliters metering valves or continuous valves. In flame projection tests each MDI was fired horizontally into a flame, and the ignited flume length emitted from the MDI was measured. Flame projections of greater than or equal to 60 cm were produced by all formulations fitted with continuous valves which contained greater than or equal to 40% (w/w) n-butane in HFC-134a. Using metering valves the maximum flame projection obtained was 30 cm. This was observed with a formulation containing 90% (w/w) n-butane in HFC-134a and a 100-microliters valve. For a particular formulation, smaller metering valves produced shorter flame projections. Because many MDIs are used in conjunction with extension devices, the likelihood of accidental propellant vapor ignition was determined in Nebuhaler and Inspirease reservoirs and a Breathancer spacer. Ignition was predictable based on propellant composition, metered volume, number of actuations, and spacer capacity. Calculated n-butane concentrations in excess of the lower flammability limit [LFL; 1.9% (v/v)] but below the upper flammability limit [UFL; 8.5% (v/v)] were usually predictive of flammability following ignition by a glowing nichrome wire mounted inside the extension device. No ignition was predicted or observed following one or two 25-microliters actuations of 100% n-butane into large volume Nebuhaler (750 ml) or Inspirease (660 ml) devices.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Biomass & Natural Gas Based Hydrogen Fuel For Gas Turbine (Power Generation)

    EPA Science Inventory

    Significant progress has been made by major power generation equipment manufacturers in the development of market applications for hydrogen fuel use in gas turbines in recent years. Development of a new application using gas turbines for significant reduction of power plant CO2 e...

  2. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...

  3. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...

  4. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...

  5. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...

  6. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Flammable vapor detector. 153.465 Section 153.465... Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship that carries a flammable cargo must have two vapor detectors that meet § 35.30-15(b) of this chapter. (b) At...

  7. 49 CFR 172.420 - FLAMMABLE SOLID label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE SOLID label. 172.420 Section 172.420... SECURITY PLANS Labeling § 172.420 FLAMMABLE SOLID label. (a) Except for size and color, the FLAMMABLE SOLID... the FLAMMABLE SOLID label must be white with vertical red stripes equally spaced on each side of a red...

  8. 49 CFR 172.420 - FLAMMABLE SOLID label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE SOLID label. 172.420 Section 172.420... SECURITY PLANS Labeling § 172.420 FLAMMABLE SOLID label. (a) Except for size and color, the FLAMMABLE SOLID... the FLAMMABLE SOLID label must be white with vertical red stripes equally spaced on each side of a red...

  9. Enhancement of hydrogen gas permeability in electrically aligned MWCNT-PMMA composite membranes.

    PubMed

    Kumar, Sumit; Sharma, Anshu; Tripathi, Balram; Srivastava, Subodh; Agrawal, Shweta; Singh, M; Awasthi, Kamlendra; Vijay, Y K

    2010-10-01

    The multi-walled carbon nanotube (MWCNT) dispersed polymethylmethacrylate (PMMA) composite membranes have been prepared for hydrogen gas permeation application. Composite membranes are characterized by Raman spectroscopy, optical microscopy, X-ray diffraction, electrical measurements and gas permeability measurements. The effect of electric field alignment of MWCNT in PMMA matrix on gas permeation has been studied for hydrogen gas. The permeability measurements indicated that the electrically aligned MWCNT in PMMA has shown almost 2 times higher permeability for hydrogen gas as compare to randomly dispersed MWCNT in PMMA. The enhancement in permeability is explained on the basis of well aligned easy channel provided by MWCNT in electrically aligned sample. The effect of thickness of membrane on the gas permeability also studied and thickness of about 30microm found to be optimum thickness for fast hydrogen gas permeates.

  10. a Study of Using Hydrogen Gas for Steam Boiler in CHOLOR- Alkali Manufacturing

    NASA Astrophysics Data System (ADS)

    Peantong, Sasitorn; Tangjitsitcharoen, Somkiat

    2017-06-01

    Main products of manufacturing of Cholor - Alkali, which commonly known as industrial chemical, are chlorine gas (Cl2), Sodium Hydroxide (NaOH) and hydrogen gas (H2). Chorine gas and sodium hydroxide are two main products for commercial profit; where hydrogen gas is by product. Most industries release hydrogen gas to atmosphere as it is non-profitable and less commercial scale. This study aims to make the most use of hydrogen as a substitute energy of natural gas for steam boiler to save energy cost. The second target of this study is to reduce level of CO2 release to air as a consequence of boiler combustion. This study suggests to install boiler that bases on hydrogen as main power with a high turndown ratio of at least 1:6. However, this case study uses boiler with two mode such as natural gas (NG) mode and mixed mode as they need to be flexible for production. Never the less, the best boiler selection is to use single mode energy of hydrogen. The most concerned issue about hydrogen gas is explosion during combustion stage. Stabilization measures at emergency stop is introduced to control H2 pressure to protect the explosion. This study varies ratio of natural gas to hydrogen gas to find the optimal level of two energy sources for boiler and measure total consumption through costing model; where CO2 level is measured at the boiler stack. The result of this study shows that hydrogen gas can be a substitute energy with natural gas and can reduce cost. Natural gas cost saving is 248,846 baht per month and reduce level of NOx is 80 ppm 7% O2 and 2 % of CO2 release to air as a consequence of boiler combustion.

  11. Gas distribution equipment in hydrogen service - Phase II

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Huang, H. D.

    1980-01-01

    The hydrogen permeability of three different types of commercially available natural gas polyethylene pipes was determined. Ring tensile tests were conducted on permeability-exposed and as-received samples. Hydrogen-methane leakage experiments were also performed. The results show no selective leakage of hydrogen via Poiseuille, turbulent, or orifice flow (through leaks) on the distribution of blends of hydrogen and methane. The data collected show that the polyethylene pipe is 4 to 6 times more permeable to hydrogen than to methane.

  12. Hydrogen-powered flight

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.

    2005-01-01

    As the Nation moves towards a hydrogen economy the shape of aviation will change dramatically. To accommodate a switch to hydrogen the aircraft designs, propulsion, and power systems will look much different than the systems of today. Hydrogen will enable a number of new aircraft capabilities from high altitude long endurance remotely operated aircraft (HALE ROA) that will fly weeks to months without refueling to clean, zero emissions transport aircraft. Design and development of new hydrogen powered aircraft have a number of challenges which must be addressed before an operational system can become a reality. While the switch to hydrogen will be most outwardly noticeable in the aircraft designs of the future, other significant changes will be occurring in the environment. A switch to hydrogen for aircraft will completely eliminate harmful greenhouse gases such as carbon monoxide (CO), carbon dioxide (CO2), sulfur oxides (SOx), unburnt hydrocarbons and smoke. While these aircraft emissions are a small percentage of the amount produced on a daily basis, their placement in the upper atmosphere make them particularly harmful. Another troublesome gaseous emission from aircraft is nitrogen oxides (NOx) which contribute to ozone depletion in the upper atmosphere. Nitrogen oxide emissions are produced during the combustion process and are primarily a function of combustion temperature and residence time. The introduction of hydrogen to a gas turbine propulsion system will not eliminate NOx emissions; however the wide flammability range will make low NOx producing, lean burning systems feasible. A revolutionary approach to completely eliminating NOx would be to fly all electric aircraft powered by hydrogen air fuel cells. The fuel cells systems would only produce water, which could be captured on board or released in the lower altitudes. Currently fuel cell systems do not have sufficient energy densities for use in large aircraft, but the long term potential of eliminating

  13. Compact solid source of hydrogen gas

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2004-06-08

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  14. Study of Hydrogen Production Method using Latent Heat of Liquefied Natural Gas

    NASA Astrophysics Data System (ADS)

    Ogawa, Masaru; Seki, Tatsuyoshi; Honda, Hiroshi; Nakamura, Motomu; Takatani, Yoshiaki

    In recent years, Fuel Cell Electrical Vehicle is expected to improve urban environment. Particularly a hydrogen fuel type FCEV expected for urban use, because its excellent characters such as short startup time, high responsibility and zero emission. On the other hand, as far as hydrogen production is concerned, large amount of CO2 is exhausted into the atmosphere by the process of LNG reforming. In our research, we studied the utilization of LNG latent heat for hydrogen gas production process as well as liquefied hydrogen process. Furthermore, CO2---Capturing as liquid state or solid state from hydrogen gas production process by LNG is also studied. Results of research shows that LNG latent heat is very effect to cool hydrogen gas for conventional hydrogen liquefied process. However, the LNG latent heat is not available for LNG reforming process. If we want to use LNG latent heat for this process, we have to develop new hydrogen gas produce process. In this new method, both hydrogen and CO2 is cooled by LNG directly, and CO2 is removed from the reforming gas. In order to make this method practical, we should develop a new type heat-exchanger to prevent solid CO2 from interfering the performance of it.

  15. 16 CFR 1611.4 - Flammability test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Flammability test. 1611.4 Section 1611.4... FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.4 Flammability test. (a) Apparatus and materials. The... protect the igniter flame and specimen from air currents during tests, yet contain a suitable door or...

  16. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  17. Molecular processes in astrophysics: Calculations of hydrogen + hydrogen gas excitation, de-excitation, and cooling

    NASA Astrophysics Data System (ADS)

    Kelley, Matthew Thomas

    The implications of H+H2 cooling in astrophysics is important to several applications. One of the most significant and pure applications is its role in cooling in the early universe. Other applications would include molecular dynamics in nebulae and their collapse into stars and astrophysical shocks. Shortly after the big bang, the universe was a hot primordial gas of photons, electrons, and nuclei among other ingredients. By far the most dominant nuclei in the early universe was hydrogen. In fact, in the early universe the matter density was 90 percent hydrogen and only 10 percent helium with small amounts of lithium and deuterium. In order for structure to form in the universe, this primordial gas must form atoms and cool. One of the significant cooling mechanisms is the collision of neutral atomic hydrogen with a neutral diatomic hydrogen molecule. This work performs calculations to determine collisional cooling rates of hydrogen using two potential surfaces.

  18. DEVELOPMENT OF AN ANTIFOAM TRACKING SYSTEM AS AN OPTION TO SUPPORT THE MELTER OFF-GAS FLAMMABILITY CONTROL STRATEGY AT THE DWPF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T.; Lambert, D.

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of an additional strategy for confidently satisfying the flammability controls for DWPF’s melter operation. An initial strategy for implementing the operational constraints associated with flammability control in DWPF was based upon an analytically determined carbon concentration from antifoam. Due to the conservative error structure associated with the analytical approach, its implementation has significantly reduced the operating window for processing and has led to recurrent Slurry Mix Evaporator (SME) and Melter Feed Tank (MFT) remediation. Tomore » address the adverse operating impact of the current implementation strategy, SRR issued a Technical Task Request (TTR) to SRNL requesting the development and documentation of an alternate strategy for evaluating the carbon contribution from antifoam. The proposed strategy presented in this report was developed under the guidance of a Task Technical and Quality Assurance Plan (TTQAP) and involves calculating the carbon concentration from antifoam based upon the actual mass of antifoam added to the process assuming 100% retention. The mass of antifoam in the Additive Mix Feed Tank (AMFT), in the Sludge Receipt and Adjustment Tank (SRAT), and in the SME is tracked by mass balance as part of this strategy. As these quantities are monitored, the random and bias uncertainties affecting their values are also maintained and accounted for. This report documents: 1) the development of an alternate implementation strategy and associated equations describing the carbon concentration from antifoam in each SME batch derived from the actual amount of antifoam introduced into the AMFT, SRAT, and SME during the processing of the batch. 2) the equations and error structure for incorporating the proposed strategy into melter off-gas flammability

  19. Evaporation in equilibrium, in vacuum, and in hydrogen gas

    NASA Technical Reports Server (NTRS)

    Nagahara, Hiroko

    1993-01-01

    Evaporation experiments were conducted for SiO2 in three different conditions: in equilibrium, in vacuum, and in hydrogen gas. Evaporation rate in vacuum is about two orders of magnitude smaller than that in equilibrium, which is consistent with previous works. The rate in hydrogen gas changes depending on hydrogen pressure. The rate at 10 exp -7 bar of hydrogen pressure is as small as that of free evaporation, but at 10 exp -5 bar of hydrogen pressure it is larger than that in equilibrium. In equilibrium and in vacuum, the evaporation rate is limited by decomposition of SiO2 on the crystal surface, but it is limited by a diffusion process for evaporation in hydrogen gas. Therefore, evaporation rate of minerals in the solar nebula can be shown neither by that in equilibrium nor by that in vacuum. The maximum temperature of the solar nebula at the midplane at 2-3 AU where chondrites are believed to have originated is calculated to be as low as 150 K, 1500 K, or in between them. The temperature is, in any case, not high enough for total evaporation of the interstellar materials. Therefore, evaporation of interstellar materials is one of the most important processes for the origin and fractionation of solid materials. The fundamental process of evaporation of minerals has been intensively studied for these several years. Those experiments were carried out either in equilibrium or in vacuum; however, evaporation in the solar nebula is in hydrogen (and much smaller amount of helium) gas. In order to investigate evaporation rate and compositional (including isotopic) fractionation during evaporation, vaporization experiments for various minerals in various conditions are conducted. At first, SiO2 was adopted for a starting material, because thermochemical data and its nature of congruent vaporization are well known. Experiments were carried out in a vacuum furnace system.

  20. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general requirement...

  1. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general requirement...

  2. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general requirement...

  3. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general requirement...

  4. The absorption of energetic electrons by molecular hydrogen gas

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.; Victor, G. A.; Dalgarno, A.

    1975-01-01

    The processes by which energetic electrons lose energy in a weakly ionized gas of molecular hydrogen are analyzed, and calculations are carried out taking into account the discrete nature of the excitation processes. The excitation, ionization, and heating efficiencies are computed for electrons with energies up to 100 eV absorbed in a gas with fractional ionizations up to 0.01, and the mean energy per pair of neutral hydrogen atoms is calculated.

  5. Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, J.D.; Chorpening, B.T.; Sidwell, T.

    2007-05-01

    The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustionmore » control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETL’s Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.« less

  6. Hydrogen considerations in light-water power reactons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keilholtz, G.W.

    1976-02-01

    A critical review of the literature now available on hydrogen considerations in light-water power reactors (LWRs) and a bibliography of that literature are presented. The subject matter includes mechanisms for the generation of hydrogen-oxygen mixtures, a description of the fundamental properties of such mixtures, and their spontaneous ignition in both static and dynamic systems. The limits for hydrogen flammability and flame propagation are examined in terms of the effects of pressure, temperature, and additives; the emphasis is on the effects of steam and water vapor. The containment systems for pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) are compared, and methodsmore » to control hydrogen and oxygen under the conditions of both normal operation and postulated accidents are reviewed. It is concluded that hydrogen can be controlled so that serious complications from the production of hydrogen will not occur. The bibliography contains abstracts from the computerized files of the Nuclear Safety Information Center. Key-word, author, and permuted-title indexes are provided. The bibliography includes responses to questions asked by the U. S. Nuclear Regulatory Commission (NRC) which relate to hydrogen, as well as information on normal operations and postulated accidents including generation of hydrogen from core sprays. Other topics included in the ten sections of the bibliography are metal-water reactions, containment atmosphere, radiolytic gas, and recombiners.« less

  7. Hydrodesulphurization of Light Gas Oil using hydrogen from the Water Gas Shift Reaction

    NASA Astrophysics Data System (ADS)

    Alghamdi, Abdulaziz

    2009-12-01

    The production of clean fuel faces the challenges of high production cost and complying with stricter environmental regulations. In this research, the ability of using a novel technology of upgrading heavy oil to treat Light Gas Oil (LGO) will be investigated. The target of this project is to produce cleaner transportation fuel with much lower cost of production. Recently, a novel process for upgrading of heavy oil has been developed at University of Waterloo. It is combining the two essential processes in bitumen upgrading; emulsion breaking and hydroprocessing into one process. The water in the emulsion is used to generate in situ hydrogen from the Water Gas Shift Reaction (WGSR). This hydrogen can be used for the hydrogenation and hydrotreating reaction which includes sulfur removal instead of the expensive molecular hydrogen. This process can be carried out for the upgrading of the bitumen emulsion which would improve its quality. In this study, the hydrodesulphurization (HDS) of LGO was conducted using in situ hydrogen produced via the Water Gas Shift Reaction (WGSR). The main objective of this experimental study is to evaluate the possibility of producing clean LGO over dispersed molybdenum sulphide catalyst and to evaluate the effect of different promoters and syn-gas on the activity of the dispersed Mo catalyst. Experiments were carried out in a 300 ml Autoclave batch reactor under 600 psi (initially) at 391°C for 1 to 3 hours and different amounts of water. After the hydrotreating reaction, the gas samples were collected and the conversion of carbon monoxide to hydrogen via WGSR was determined using a refinery gas analyzer. The sulphur content in liquid sample was analyzed via X-Ray Fluorescence. Experimental results showed that using more water will enhance WGSR but at the same time inhibits the HDS reaction. It was also shown that the amount of sulfur removed depends on the reaction time. The plan is to investigate the effect of synthesis gas (syngas

  8. Regio-Selective Intramolecular Hydrogen/Deuterium Exchange in Gas-Phase Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo

    2017-05-01

    Protein backbone amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) typically utilizes enzymatic digestion after the exchange reaction and before MS analysis to improve data resolution. Gas-phase fragmentation of a peptic fragment prior to MS analysis is a promising technique to further increase the resolution. The biggest technical challenge for this method is elimination of intramolecular hydrogen/deuterium exchange (scrambling) in the gas phase. The scrambling obscures the location of deuterium. Jørgensen's group pioneered a method to minimize the scrambling in gas-phase electron capture/transfer dissociation. Despite active investigation, the mechanism of hydrogen scrambling is not well-understood. The difficulty stems from the fact that the degree of hydrogen scrambling depends on instruments, various parameters of mass analysis, and peptide analyzed. In most hydrogen scrambling investigations, the hydrogen scrambling is measured by the percentage of scrambling in a whole molecule. This paper demonstrates that the degree of intramolecular hydrogen/deuterium exchange depends on the nature of exchangeable hydrogen sites. The deuterium on Tyr amide of neurotensin (9-13), Arg-Pro-Tyr-Ile-Leu, migrated significantly faster than that on Ile or Leu amides, indicating the loss of deuterium from the original sites is not mere randomization of hydrogen and deuterium but more site-specific phenomena. This more precise approach may help understand the mechanism of intramolecular hydrogen exchange and provide higher confidence for the parameter optimization to eliminate intramolecular hydrogen/deuterium exchange during gas-phase fragmentation.

  9. Regio-Selective Intramolecular Hydrogen/Deuterium Exchange in Gas-Phase Electron Transfer Dissociation.

    PubMed

    Hamuro, Yoshitomo

    2017-05-01

    Protein backbone amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) typically utilizes enzymatic digestion after the exchange reaction and before MS analysis to improve data resolution. Gas-phase fragmentation of a peptic fragment prior to MS analysis is a promising technique to further increase the resolution. The biggest technical challenge for this method is elimination of intramolecular hydrogen/deuterium exchange (scrambling) in the gas phase. The scrambling obscures the location of deuterium. Jørgensen's group pioneered a method to minimize the scrambling in gas-phase electron capture/transfer dissociation. Despite active investigation, the mechanism of hydrogen scrambling is not well-understood. The difficulty stems from the fact that the degree of hydrogen scrambling depends on instruments, various parameters of mass analysis, and peptide analyzed. In most hydrogen scrambling investigations, the hydrogen scrambling is measured by the percentage of scrambling in a whole molecule. This paper demonstrates that the degree of intramolecular hydrogen/deuterium exchange depends on the nature of exchangeable hydrogen sites. The deuterium on Tyr amide of neurotensin (9-13), Arg-Pro-Tyr-Ile-Leu, migrated significantly faster than that on Ile or Leu amides, indicating the loss of deuterium from the original sites is not mere randomization of hydrogen and deuterium but more site-specific phenomena. This more precise approach may help understand the mechanism of intramolecular hydrogen exchange and provide higher confidence for the parameter optimization to eliminate intramolecular hydrogen/deuterium exchange during gas-phase fragmentation. Graphical Abstract ᅟ.

  10. Design of a Helium Vapor Shroud for Liquid Hydrogen Fueling of an Unmanned Aerial Vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    Cavender, K.; Evans, C.; Haney, J.; Leachman, J.

    2017-12-01

    Filling a vehicular liquid hydrogen fuel tank presents the potential for flammable mixtures due to oxygen concentration from liquid air condensation. Current liquid hydrogen tank designs utilize insulating paradigms such as aerogel/fiberglass materials, vacuum jackets, or inert gas purge systems to keep the outer surface from reaching the condensation temperature of air. This work examines the heat transfer at the refuelling connection of the tank to identify potential areas of condensation, as well as the surface temperature gradient. A shrouded inert gas purge was designed to minimize vehicle weight and refuelling time. The design of a shrouded inert gas purge system is presented to displace air preventing air condensation. The design investigates 3D printed materials for an inert gas shroud, as well as low-temperature sealing designs. Shroud designs and temperature profiles were measured and tested by running liquid nitrogen through the filling manifold. Materials for the inert gas shroud are discussed and experimental results are compared to analytical model predictions. Suggestions for future design improvements are made.

  11. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Flammable anesthetics. 111.105-37 Section 111.105-37...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR...

  12. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Flammable anesthetics. 111.105-37 Section 111.105-37...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR...

  13. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Flammable anesthetics. 111.105-37 Section 111.105-37...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR...

  14. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Flammable anesthetics. 111.105-37 Section 111.105-37...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR...

  15. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Flammable anesthetics. 111.105-37 Section 111.105-37...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR...

  16. 14 CFR 125.153 - Flammable fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS CERTIFICATION AND OPERATIONS....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable...

  17. 14 CFR 125.153 - Flammable fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS CERTIFICATION AND OPERATIONS....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable...

  18. First detection of hydrogen in the β Pictoris gas disk

    NASA Astrophysics Data System (ADS)

    Wilson, P. A.; Lecavelier des Etangs, A.; Vidal-Madjar, A.; Bourrier, V.; Hébrard, G.; Kiefer, F.; Beust, H.; Ferlet, R.; Lagrange, A.-M.

    2017-03-01

    The young and nearby star β Pictoris (β Pic) is surrounded by a debris disk composed of dust and gas known to host a myriad evaporating exocomets, planetesimals and at least one planet. At an edge-on inclination, as seen from Earth, this system is ideal for debris disk studies providing an excellent opportunity to use absorption spectroscopy to study the planet forming environment. Using the Cosmic Origins Spectrograph (COS) instrument on the Hubble Space Telescope (HST) we observe the most abundant element in the disk, hydrogen, through the H I Lyman α (Ly-α) line. We present a new technique to decrease the contamination of the Ly-α line by geocoronal airglow in COS spectra. This Airglow Virtual Motion (AVM) technique allows us to shift the Ly-α line of the astrophysical target away from the contaminating airglow emission revealing more of the astrophysical line profile. This new AVM technique, together with subtraction of an airglow emission map, allows us to analyse the shape of the β Pic Ly-α emission line profile and from it, calculate the column density of neutral hydrogen surrounding β Pic. The column density of hydrogen in the β Pic stable gas disk at the stellar radial velocity is measured to be log (NH/ 1 cm2) ≪ 18.5. The Ly-α emission line profile is found to be asymmetric and we propose that this is caused by H I falling in towards the star with a bulk radial velocity of 41 ± 6 km s-1 relative to β Pic and a column density of log (NH/ 1 cm2) = 18.6 ± 0.1. The high column density of hydrogen relative to the hydrogen content of CI chondrite meteorites indicates that the bulk of the hydrogen gas does not come from the dust in the disk. This column density reveals a hydrogen abundance much lower than solar, which excludes the possibility that the detected hydrogen could be a remnant of the protoplanetary disk or gas expelled by the star. We hypothesise that the hydrogen gas observed falling towards the star arises from the dissociation of

  19. Selected Parametric Effects on Materials Flammability Limits

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Juarez, Alfredo; Peyton, Gary J.; Harper, Susana A.; Olson, Sandra L.

    2011-01-01

    NASA-STD-(I)-6001B Test 1 is currently used to evaluate the flammability of materials intended for use in habitable environments of U.S. spacecraft. The method is a pass/fail upward flame propagation test conducted in the worst case configuration, which is defined as a combination of a material s thickness, test pressure, oxygen concentration, and temperature that make the material most flammable. Although simple parametric effects may be intuitive (such as increasing oxygen concentrations resulting in increased flammability), combinations of multi-parameter effects could be more complex. In addition, there are a variety of material configurations used in spacecraft. Such configurations could include, for example, exposed free edges where fire propagation may be different when compared to configurations commonly employed in standard testing. Studies involving combined oxygen concentration, pressure, and temperature on flammability limits have been conducted and are summarized in this paper. Additional effects on flammability limits of a material s thickness, mode of ignition, burn-length criteria, and exposed edges are presented. The information obtained will allow proper selection of ground flammability test conditions, support further studies comparing flammability in 1-g with microgravity and reduced gravity environments, and contribute to persuasive scientific cases for rigorous space system fire risk assessments.

  20. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas. Task 1, Literature survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-02-01

    To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen productionmore » and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.« less

  1. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, M.; Ahmed, S.; Kumar, R.; Doshi, R.

    1999-07-27

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400 C for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide. 4 figs.

  2. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    1999-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  3. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Petroleum Products (Reid Method). (2) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (3) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2... 46 Shipping 4 2013-10-01 2013-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping...

  4. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Petroleum Products (Reid Method). (2) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (3) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2... 46 Shipping 4 2012-10-01 2012-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping...

  5. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Petroleum Products (Reid Method). (2) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (3) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2... 46 Shipping 4 2011-10-01 2011-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping...

  6. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Petroleum Products (Reid Method). (2) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (3) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2... 46 Shipping 4 2014-10-01 2014-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping...

  7. 49 CFR 172.546 - FLAMMABLE SOLID placard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE SOLID placard. 172.546 Section 172.546... SECURITY PLANS Placarding § 172.546 FLAMMABLE SOLID placard. (a) Except for size and color, the FLAMMABLE SOLID placard must be as follows: EC02MR91.051 (b) In addition to complying with § 172.519, the...

  8. 49 CFR 172.546 - FLAMMABLE SOLID placard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE SOLID placard. 172.546 Section 172.546... SECURITY PLANS Placarding § 172.546 FLAMMABLE SOLID placard. (a) Except for size and color, the FLAMMABLE SOLID placard must be as follows: EC02MR91.051 (b) In addition to complying with § 172.519, the...

  9. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small quantities...

  10. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small quantities...

  11. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small quantities...

  12. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small quantities...

  13. Inhibited flammability and surface inactivation of wood irradiated by low energy hydrogen ion showers (LEHIS)

    NASA Astrophysics Data System (ADS)

    Blantocas, Gene Q.; Mateum, Philip Edward R.; Orille, Ross William M.; Ramos, Rafael Julius U.; Monasterial, Jonathan Lee C.; Ramos, Henry J.; Bo-ot, Luis Ma. T.

    2007-06-01

    Changes on the properties of wood irradiated by low energy hydrogen ion showers (LEHIS) were examined. The experimental facility employed was an in-house constructed, compact gas discharge ion source with beam energies maintained approximately in the 1 keV range fixed at 1 mA discharge current, 3 mTorr gas filling pressure. Wood specimens used were of species endemic in the Philippines namely Shorea sp., Shorea polysperma and Cocos nucifera. Results showed the processed samples manifested characteristics of inhibited flammability, and became relatively hydrophobic after the treatment. In the fire resistance test, it was also observed during initial flaming that the processed surfaces accumulated less soot attesting to a much lower smoldering rate, i.e. lesser combustibility. To assess the increase in fire endurance time for the processed wood against the control substrates, a non-directional, two-tailed t-test was utilized. Significant at the 0.05 level, the t-statistic measured 9.164 as opposed to only 4.303 in its corresponding critical value at two degrees of freedom. Hence, the treatment appeared to show strong statistical evidence of being effective in enhancing fire resistance. The processed specimens also exhibited moisture absorptive inhibition time of more than 10 min versus an average absorption period of just 8 s for the unprocessed samples. Spectroscopy using a cast steel mass analyzer indicated a predominance of H+ with faint signals of H2+in the ion showers. It is hypothesized that the monatomic ion plays an essential participatory role in the surface modification process. Data from an earlier work using Narra wood (Pterocarpus indicus) [G.Q. Blantocas, H.J. Ramos, M. Wada, Jpn. J. Appl. Phys. 45 (2006) 8498] was extended in the current study to substantiate this hypothesis. The data is now presented as current density ratio H+ /H2+versus the change rate constant K of the wetting model equation. It is shown that wood affinity to water decreased as the

  14. One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams.

    PubMed

    Davis, Rick; Li, Yu-Chin; Gervasio, Michelle; Luu, Jason; Kim, Yeon Seok

    2015-03-25

    In this manuscript, natural materials were combined into a single "pot" to produce flexible, highly fire resistant, and bioinspired coatings on flexible polyurethane foam (PUF). In one step, PUF was coated with a fire protective layer constructed of a polysaccharide binder (starch or agar), a boron fire retardant (boric acid or derivative), and a dirt char former (montmorillonite clay). Nearly all coatings produced a 63% reduction in a critical flammability value, the peak heat release rate (PHRR). One formulation produced a 75% reduction in PHRR. This technology was validated in full-scale furniture fire tests, where a 75% reduction in PHRR was measured. At these PHRR values, this technology could reduce the fire threat of furniture from significant fire damage in and beyond the room of fire origin to being contained to the burning furniture. This flammability reduction was caused by three mechanisms-the gas-phase and condensed-phase processes of the boron fire retardant and the condensed-phase process of the clay. We describe the one-pot coating process and the impact of the coating composition on flammability.

  15. 16 CFR 1500.45 - Method for determining extremely flammable and flammable contents of self-pressurized containers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Method for determining extremely flammable and flammable contents of self-pressurized containers. 1500.45 Section 1500.45 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS HAZARDOUS SUBSTANCES AND...

  16. Hafnium Oxide Film Etching Using Hydrogen Chloride Gas

    NASA Astrophysics Data System (ADS)

    Habuka, Hitoshi; Yamaji, Masahiko; Kobori, Yoshitsugu; Horii, Sadayoshi; Kunii, Yasuo

    2009-12-01

    Hydrogen chloride gas removes the hafnium oxide film formed by atomic layer deposition at the etch rate of about 1 nm/min. A 100 nm-thick hafnium oxide film was perfectly etched off at 1173 K for 60 min by 100% hydrogen chloride gas at 100 sccm. A weight decrease in the hafnium oxide film was observed at temperatures higher than ca. 600 K, which corresponds to the sublimation point of hafnium tetrachloride. The etching by-product is considered to be hafnium tetrachloride. The etching technique developed in this study is expected to be applicable to various processes, such as the cleaning of a hafnium oxide film deposition reactor.

  17. Argon recovery from hydrogen depleted ammonia plant purge gas using a HARP Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamurthy, R.; Lerner, S.L.; Maclean, D.L.

    1987-01-01

    A number of ammonia plants employ membranes or cryogenic hydrogen recovery units to separate hydrogen contained in the purge gas for recycle to the ammonia synthesis loop. The resulting hydrogen depleted purge gas, which is usually used for fuel, is an attractive source of argon. This paper presents the novel features of a process which employs a combination of pressure swing adsorption (PSA) and cryogenic technology to separate the argon from this hydrogen depleted purge gas stream. This new proprietary Hybrid Argon Recovery Progress (HARP) plant is an effective alternative to a conventional all-cryogenic plant.

  18. Control of Materials Flammability Hazards

    NASA Technical Reports Server (NTRS)

    Griffin, Dennis E.

    2003-01-01

    This viewgraph presentation provides information on selecting, using, and configuring spacecraft materials in such a way as to minimize the ability of fire to spread onboard a spacecraft. The presentation gives an overview of the flammability requirements of NASA-STD-6001, listing specific tests and evaluation criteria it requires. The presentation then gives flammability reduction methods for specific spacecraft items and materials.

  19. Hydrogen Production by Steam Reforming of Natural Gas Over Vanadium-Nickel-Alumina Catalysts.

    PubMed

    Yoo, Jaekyeong; Park, Seungwon; Song, Ji Hwan; Song, In Kyu

    2018-09-01

    A series of vanadium-nickel-alumina (xVNA) catalysts were prepared by a single-step sol-gel method with a variation of vanadium content (x, wt%) for use in the hydrogen production by steam reforming of natural gas. The effect of vanadium content on the physicochemical properties and catalytic activities of xVNA catalysts in the steam reforming of natural gas was investigated. It was found that natural gas conversion and hydrogen yield showed volcano-shaped trends with respect to vanadium content. It was also revealed that natural gas conversion and hydrogen yield increased with decreasing nickel crystallite size.

  20. FLAMMABILITY OF HERBICIDE-TREATED GUAVA FOLIAGE

    DTIC Science & Technology

    Guava leaves treated with herbicide were found to be less flammable than untreated green leaves or dead leaves . Differences in flammability were...determined by small-scale laboratory fires, differential thermal analysis, and thermogravimetric analysis. The herbicide-treated leaves had a higher ash

  1. 16 CFR § 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Flammability-general requirement. § 1611.3 Section § 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general...

  2. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids... fluids, shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of...

  3. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft components that are...

  4. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft components that are...

  5. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might..., shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft...

  6. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might..., shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft...

  7. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might..., shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft...

  8. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids... fluids, shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of...

  9. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids... fluids, shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of...

  10. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might..., shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft...

  11. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft components that are...

  12. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft components that are...

  13. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of rotorcraft components that are...

  14. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids... fluids, shutting down equipment, fireproof containment, or use of extinguishing agents. (5) Ability of...

  15. 16 CFR 423.9 - Conflict with flammability standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Conflict with flammability standards. 423.9... TEXTILE WEARING APPAREL AND CERTAIN PIECE GOODS AS AMENDED § 423.9 Conflict with flammability standards. If there is a conflict between this regulation and any regulations issued under the Flammable Fabrics...

  16. Differences in Leaf Flammability, Leaf Traits and Flammability-Trait Relationships between Native and Exotic Plant Species of Dry Sclerophyll Forest

    PubMed Central

    Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.

    2013-01-01

    The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169

  17. TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOUGLAS, J.G.

    2006-07-06

    This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desiresmore » a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected

  18. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids... protective devices. (4) Means available for controlling or extinguishing a fire, such as stopping flow of...

  19. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are critical...

  20. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are critical...

  1. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are critical...

  2. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are critical...

  3. Hydrogen and elemental carbon production from natural gas and other hydrocarbons

    DOEpatents

    Detering, Brent A.; Kong, Peter C.

    2002-01-01

    Diatomic hydrogen and unsaturated hydrocarbons are produced as reactor gases in a fast quench reactor. During the fast quench, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  4. 14 CFR 121.255 - Flammable fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.255 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in...

  5. 14 CFR 121.255 - Flammable fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.255 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in...

  6. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...

  7. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...

  8. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...

  9. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...

  10. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (b) No flammable or combustible liquids may be stowed in any accommodation, control, or service space... in any machinery space. The flammable liquids must be in containers of 3.8 liters (one gallon) or... space. (e) An aggregate of more than 7.6 liters (two gallons) of flammable or combustible liquids stowed...

  11. Safe Detection System for Hydrogen Leaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, Robert A.; Beshay, Manal

    2012-02-29

    Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, andmore » has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.« less

  12. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo

    PubMed Central

    Kawamura, Tomohiro; Wakabayashi, Nobunao; Shigemura, Norihisa; Huang, Chien-Sheng; Masutani, Kosuke; Tanaka, Yugo; Noda, Kentaro; Peng, Ximei; Takahashi, Toru; Billiar, Timothy R.; Okumura, Meinoshin; Toyoda, Yoshiya; Kensler, Thomas W.

    2013-01-01

    Hyperoxic lung injury is a major concern in critically ill patients who receive high concentrations of oxygen to treat lung diseases. Successful abrogation of hyperoxic lung injury would have a huge impact on respiratory and critical care medicine. Hydrogen can be administered as a therapeutic medical gas. We recently demonstrated that inhaled hydrogen reduced transplant-induced lung injury and induced heme oxygenase (HO)-1. To determine whether hydrogen could reduce hyperoxic lung injury and investigate the underlying mechanisms, we randomly assigned rats to four experimental groups and administered the following gas mixtures for 60 h: 98% oxygen (hyperoxia), 2% nitrogen; 98% oxygen (hyperoxia), 2% hydrogen; 98% balanced air (normoxia), 2% nitrogen; and 98% balanced air (normoxia), 2% hydrogen. We examined lung function by blood gas analysis, extent of lung injury, and expression of HO-1. We also investigated the role of NF-E2-related factor (Nrf) 2, which regulates HO-1 expression, by examining the expression of Nrf2-dependent genes and the ability of hydrogen to reduce hyperoxic lung injury in Nrf2-deficient mice. Hydrogen treatment during exposure to hyperoxia significantly improved blood oxygenation, reduced inflammatory events, and induced HO-1 expression. Hydrogen did not mitigate hyperoxic lung injury or induce HO-1 in Nrf2-deficient mice. These findings indicate that hydrogen gas can ameliorate hyperoxic lung injury through induction of Nrf2-dependent genes, such as HO-1. The findings suggest a potentially novel and applicable solution to hyperoxic lung injury and provide new insight into the molecular mechanisms and actions of hydrogen. PMID:23475767

  13. Method of generating hydrogen gas from sodium borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2007-12-11

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  14. A study on flammability limits of fuel mixtures.

    PubMed

    Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki; Sekiya, Akira

    2008-07-15

    Flammability limit measurements were made for various binary and ternary mixtures prepared from nine different compounds. The compounds treated are methane, propane, ethylene, propylene, methyl ether, methyl formate, 1,1-difluoroethane, ammonia, and carbon monoxide. The observed values of lower flammability limits of mixtures were found to be in good agreement to the calculated values by Le Chatelier's formula. As for the upper limits, however, some are close to the calculated values but some are not. It has been found that the deviations of the observed values of upper flammability limits from the calculated ones are mostly to lower concentrations. Modification of Le Chatelier's formula was made to better fit to the observed values of upper flammability limits. This procedure reduced the average difference between the observed and calculated values of upper flammability limits to one-third of the initial value.

  15. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2000-01-01

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

  16. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Extremely flammable contact adhesives; labeling. 1500.133 Section 1500.133 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable contact...

  17. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    NASA Astrophysics Data System (ADS)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  18. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Extremely flammable contact adhesives... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable contact adhesives, also known as contact bonding cements, when distributed in containers intended or suitable for...

  19. Antimisting kerosene atomization and flammability

    NASA Technical Reports Server (NTRS)

    Fleeter, R.; Petersen, R. A.; Toaz, R. D.; Jakub, A.; Sarohia, V.

    1982-01-01

    Various parameters found to affect the flammability of antimisting kerosene (Jet A + polymer additive) are investigated. Digital image processing was integrated into a technique for measurement of fuel spray characteristics. This technique was developed to avoid many of the error sources inherent to other spray assessment techniques and was applied to the study of engine fuel nozzle atomization performance with Jet A and antimisting fuel. Aircraft accident fuel spill and ignition dynamics were modeled in a steady state simulator allowing flammability to be measured as a function of airspeed, fuel flow rate, fuel jet Reynolds number and polymer concentration. The digital imaging technique was employed to measure spray characteristics in this simulation and these results were related to flammability test results. Scaling relationships were investigated through correlation of experimental results with characteristic dimensions spanning more than two orders of magnitude.

  20. Hydrogen generation from natural gas for the fuel cell systems of tomorrow

    NASA Astrophysics Data System (ADS)

    Dicks, Andrew L.

    In most cases hydrogen is the preferred fuel for use in the present generation of fuel cells being developed for commercial applications. Of all the potential sources of hydrogen, natural gas offers many advantages. It is widely available, clean, and can be converted to hydrogen relatively easily. When catalytic steam reforming is used to generate hydrogen from natural gas, it is essential that sulfur compounds in the natural gas are removed upstream of the reformer and various types of desulfurisation processes are available. In addition, the quality of fuel required for each type of fuel cell varies according to the anode material used, and the cell temperature. Low temperature cells will not tolerate high concentrations of carbon monoxide, whereas the molten fuel cell (MCFC) and solid oxide fuel cell (SOFC) anodes contain nickel on which it is possible to electrochemically oxidise carbon monoxide directly. The ability to internally reform fuel gas is a feature of the MCFC and SOFC. Internal reforming can give benefits in terms of increased electrical efficiency owing to the reduction in the required cell cooling and therefore parasitic system losses. Direct electrocatalysis of hydrocarbon oxidation has been the elusive goal of fuel cell developers over many years and recent laboratory results are encouraging. This paper reviews the principal methods of converting natural gas into hydrogen, namely catalytic steam reforming, autothermic reforming, pyrolysis and partial oxidation; it reviews currently available purification techniques and discusses some recent advances in internal reforming and the direct use of natural gas in fuel cells.

  1. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  2. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  3. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  4. Generation of oxy-hydrogen gas and its effect on performance of spark ignition engine

    NASA Astrophysics Data System (ADS)

    Patil, N. N.; Chavan, C. B.; More, A. S.; Baskar, P.

    2017-11-01

    Considering the current scenario of petroleum fuels, it has been observed that, they will last for few years from now. On the other hand, the ever increasing cost of a gasoline fuels and their related adverse effects on environment caught the attention of researchers to find a supplementary source. For commercial fuels, supplementary source is not about replacing the entire fuel, instead enhancing efficiency by simply making use of it in lesser amount. From the recent research that has been carried out, focus on the use of Hydrogen rich gas as a supplementary source of fuel has increased. But the problem related to the storage of hydrogen gas confines the application of pure hydrogen in petrol engine. Using oxy-hydrogen gas (HHO) generator the difficulties of storing the hydrogen have overcome up to a certain limit. The present study highlights on performance evaluation of conventional petrol engine by using HHO gas as a supplementary fuel. HHO gas was generated from the electrolysis of water. KOH solution of 3 Molar concentration was used which act as a catalyst and accelerates the rate of generation of HHO gas. Quantity of gas to be supplied to the engine was controlled by varying amount of current. It was observed that, engine performance was improved on the introduction of HHO gas.

  5. Bark flammability as a fire-response trait for subalpine trees

    PubMed Central

    Frejaville, Thibaut; Curt, Thomas; Carcaillet, Christopher

    2013-01-01

    Relationships between the flammability properties of a given plant and its chances of survival after a fire still remain unknown. We hypothesize that the bark flammability of a tree reduces the potential for tree survival following surface fires, and that if tree resistance to fire is provided by a thick insulating bark, the latter must be few flammable. We test, on subalpine tree species, the relationship between the flammability of bark and its insulating ability, identifies the biological traits that determine bark flammability, and assesses their relative susceptibility to surface fires from their bark properties. The experimental set of burning properties was analyzed by Principal Component Analysis to assess the bark flammability. Bark insulating ability was expressed by the critical time to cambium kill computed from bark thickness. Log-linear regressions indicated that bark flammability varies with the bark thickness and the density of wood under bark and that the most flammable barks have poor insulating ability. Susceptibility to surface fires increases from gymnosperm to angiosperm subalpine trees. The co-dominant subalpine species Larix decidua (Mill.) and Pinus cembra (L.) exhibit large differences in both flammability and insulating ability of the bark that should partly explain their contrasted responses to fires in the past. PMID:24324473

  6. Genetic component of flammability variation in a Mediterranean shrub.

    PubMed

    Moreira, B; Castellanos, M C; Pausas, J G

    2014-03-01

    Recurrent fires impose a strong selection pressure in many ecosystems worldwide. In such ecosystems, plant flammability is of paramount importance because it enhances population persistence, particularly in non-resprouting species. Indeed, there is evidence of phenotypic divergence of flammability under different fire regimes. Our general hypothesis is that flammability-enhancing traits are adaptive; here, we test whether they have a genetic component. To test this hypothesis, we used the postfire obligate seeder Ulex parviflorus from sites historically exposed to different fire recurrence. We associated molecular variation in potentially adaptive loci detected with a genomic scan (using AFLP markers) with individual phenotypic variability in flammability across fire regimes. We found that at least 42% of the phenotypic variation in flammability was explained by the genetic divergence in a subset of AFLP loci. In spite of generalized gene flow, the genetic variability was structured by differences in fire recurrence. Our results provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire. These results highlight the importance of flammability as an adaptive trait in fire-prone ecosystems. © 2014 John Wiley & Sons Ltd.

  7. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a gas...

  8. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a gas...

  9. Para-hydrogen induced polarization of amino acids, peptides and deuterium-hydrogen gas.

    PubMed

    Glöggler, Stefan; Müller, Rafael; Colell, Johannes; Emondts, Meike; Dabrowski, Martin; Blümich, Bernhard; Appelt, Stephan

    2011-08-14

    Signal Amplification by Reversible-Exchange (SABRE) is a method of hyperpolarizing substrates by polarization transfer from para-hydrogen without hydrogenation. Here, we demonstrate that this method can be applied to hyperpolarize small amounts of all proteinogenic amino acids and some chosen peptides down to the nanomole regime and can be detected in a single scan in low-magnetic fields down to 0.25 mT (10 kHz proton frequency). An outstanding feature is that depending on the chemical state of the used catalyst and the investigated amino acid or peptide, hyperpolarized hydrogen-deuterium gas is formed, which was detected with (1)H and (2)H NMR spectroscopy at low magnetic fields of B(0) = 3.9 mT (166 kHz proton frequency) and 3.2 mT (20 kHz deuterium frequency).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, Lenna A.

    Through radiolytic and thermolytic reactions, Hanford tank wastes generate and retain a variety of gases, including hydrogen, nitrous oxide, methane (and other hydrocarbons), ammonia, and nitrogen. This gas generation can be expected to continue during processing in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The generation rates in the WTP will change from those for the in-situ tank waste because of different process temperatures, different dose rates produced by in-process changes in the proportions of solid and liquid, and dilution of the waste liquid. The flammability of the generated gas that is continuously released, and of any retainedmore » gas that might be released into a vessel headspace in quantity due to a spontaneous release, depends on the concentrations not only of the fuel gases—primarily hydrogen (H2), methane, other hydrocarbons, and ammonia—but of the oxidizer nitrous oxide (N2O). As a result of high concentrations of N2O, some gas mixtures are “self-flammable” (i.e., ignition can occur when no air is present because N2O provides the only oxidizer needed). Self-flammability could potentially reduce the effectiveness of using a nitrogen (N2) purge in the headspace as a flammability control, if its effects are not accounted for. A given amount of inertant gas (N2) can accommodate only a certain amount of a generated self-flammable gas before the mixture with inertant gas becomes flammable.« less

  11. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  12. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport.

    PubMed

    Farjoo, Afrooz; Kuznicki, Steve M; Sadrzadeh, Mohtada

    2017-10-06

    Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene) was studied within the temperature and pressure ranges of 25-600 °C and 110-160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption-diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

  13. Apparatus and method for treating pollutants in a gas using hydrogen peroxide and UV light

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clausen, Christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending therebetween. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  14. APPARATUS AND METHOD FOR TREATING POLLUTANTS IN A GAS USING HYDROGEN PEROXIDE AND UV LIGHT

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clauseu, christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending there between. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  15. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... flammable liquid having a Reid 1 vapor pressure of 14 pounds or more. 1 American Society for Testing... Petroleum Products (Reid Method). (b) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (c) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2...

  16. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... flammable liquid having a Reid 1 vapor pressure of 14 pounds or more. 1 American Society for Testing... Petroleum Products (Reid Method). (b) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (c) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2...

  17. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... flammable liquid having a Reid 1 vapor pressure of 14 pounds or more. 1 American Society for Testing... Petroleum Products (Reid Method). (b) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (c) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2...

  18. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... flammable liquid having a Reid 1 vapor pressure of 14 pounds or more. 1 American Society for Testing... Petroleum Products (Reid Method). (b) Grade B. Any flammable liquid having a Reid 1 vapor pressure under 14 pounds and over 81/2 pounds. (c) Grade C. Any flammable liquid having a Reid 1 vapor pressure of 81/2...

  19. Flammability screening tests of resins

    NASA Technical Reports Server (NTRS)

    Arhart, R. W.; Farrar, D. G.; Hughes, B. M.

    1979-01-01

    Selected flammability characteristics of glass cloth laminates of thermosetting resins are evaluated. A protocol for the evaluation of the flammability hazards presented by glass cloth laminates of thermosetting resins and the usefulness of that protocol with two laminates are presented. The glass laminates of an epoxy resin, M-751 are evaluated for: (1) determination of smoke generation from the laminates; (2) analysis of products of oxidative degradation of the laminates; (3) determination of minimum oxygen necessary to maintain flaming oxidation; (4) evaluation of toxicological hazards.

  20. New Gas Polarographic Hydrogen Sensor

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Barile, Ron

    2004-01-01

    Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor. is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H+ ions or protons; H+ ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic 02 sensors are commercially available; a gas polarographic 02 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.

  1. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any...

  2. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any...

  3. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any...

  4. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any...

  5. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any...

  6. An Approach to the Flammability Testing of Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2012-01-01

    Presentation reviews: (1) Current approach to evaluation of spacecraft materials flammability (2) The need for and the approach to alternative routes (3) Examples of applications of the approach recommended a) Crew Module splash down b) Crew Module depressurization c) Applicability of NASA's flammability test data to other sample configurations d) Applicability of NASA's ground flammability test data to spacecraft environments

  7. Recovery of purified helium or hydrogen from gas mixtures

    DOEpatents

    Merriman, J.R.; Pashley, J.H.; Stephenson, M.J.; Dunthorn, D.I.

    1974-01-15

    A process is described for the removal of helium or hydrogen from gaseous mixtures also containing contaminants. The gaseous mixture is contacted with a liquid fluorocarbon in an absorption zone maintained at superatomspheric pressure to preferentially absorb the contaminants in the fluorocarbon. Unabsorbed gas enriched in hydrogen or helium is withdrawn from the absorption zone as product. Liquid fluorocarbon enriched in contaminants is withdrawn separately from the absorption zone. (10 claims)

  8. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  9. Development of an Inexpensive RGB Color Sensor for the Detection of Hydrogen Cyanide Gas.

    PubMed

    Greenawald, Lee A; Boss, Gerry R; Snyder, Jay L; Reeder, Aaron; Bell, Suzanne

    2017-10-27

    An inexpensive red, green, blue (RGB) color sensor was developed for detecting low ppm concentrations of hydrogen cyanide gas. A piece of glass fiber filter paper containing monocyanocobinamide [CN(H 2 O)Cbi] was placed directly above the RGB color sensor and an on chip LED. Light reflected from the paper was monitored for RGB color change upon exposure to hydrogen cyanide at concentrations of 1.0-10.0 ppm as a function of 25%, 50%, and 85% relative humidity. A rapid color change occurred within 10 s of exposure to 5.0 ppm hydrogen cyanide gas (near the NIOSH recommended exposure limit). A more rapid color change occurred at higher humidity, suggesting a more effective reaction between hydrogen cyanide and CN(H 2 O)Cbi. The sensor could provide the first real time respirator end-of-service-life alert for hydrogen cyanide gas.

  10. Hydrogen Gas Inhalation Attenuates Seawater Instillation-Induced Acute Lung Injury via the Nrf2 Pathway in Rabbits.

    PubMed

    Diao, Mengyuan; Zhang, Sheng; Wu, Lifeng; Huan, Le; Huang, Fenglou; Cui, Yunliang; Lin, Zhaofen

    2016-12-01

    Seawater instillation-induced acute lung injury involves oxidative stress and apoptosis. Although hydrogen gas inhalation is reportedly protective in multiple types of lung injury, the effect of hydrogen gas inhalation on seawater instillation-induced acute lung injury remains unknown. This study investigated the effect of hydrogen gas on seawater instillation-induced acute lung injury and explored the mechanisms involved. Rabbits were randomly assigned to control, hydrogen (2 % hydrogen gas inhalation), seawater (3 mL/kg seawater instillation), and seawater + hydrogen (3 mL/kg seawater instillation + 2 % hydrogen gas inhalation) groups. Arterial partial oxygen pressure and lung wet/dry weight ratio were detected. Protein content in bronchoalveolar lavage fluid (BALF) and serum as well as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were determined. Hematoxylin-eosin staining was used to monitor changes in lung specimens, and malondialdehyde (MDA) content and myeloperoxidase (MPO) activity were assayed. In addition, NF-E2-related factor (Nrf) 2 and heme oxygenase (HO)-1 mRNA and protein expression were measured, and apoptosis was assessed by measuring caspase-3 expression and using terminal deoxy-nucleotidyl transferase dUTP nick end-labeling (TUNEL) staining. Hydrogen gas inhalation markedly improved lung endothelial permeability and decreased both MDA content and MPO activity in lung tissue; these changes were associated with decreases in TNF-α, IL-1β, and IL-6 in BALF. Hydrogen gas also alleviated histopathological changes and cell apoptosis. Moreover, Nrf2 and HO-1 expressions were significantly activated and caspase-3 expression was inhibited. These results demonstrate that hydrogen gas inhalation attenuates seawater instillation-induced acute lung injury in rabbits and that the protective effects observed may be related to the activation of the Nrf2 pathway.

  11. 10 CFR 36.69 - Irradiation of explosive or flammable materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...

  12. 10 CFR 36.69 - Irradiation of explosive or flammable materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...

  13. 10 CFR 36.69 - Irradiation of explosive or flammable materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...

  14. 10 CFR 36.69 - Irradiation of explosive or flammable materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...

  15. 10 CFR 36.69 - Irradiation of explosive or flammable materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...

  16. Silicon Carbide-Based Hydrogen and Hydrocarbon Gas Detection

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, D.; Liu, C. C.; Wu, Q. H.R

    1995-01-01

    Hydrogen and hydrocarbon detection in aeronautical applications is important for reasons of safety and emissions control. The use of silicon carbide as a semiconductor in a metal-semiconductor or metal-insulator-semiconductor structure opens opportunities to measure hydrogen and hydrocarbons in high temperature environments beyond the capabilities of silicon-based devices. The purpose of this paper is to explore the response and stability of Pd-SiC Schottky diodes as gas sensors in the temperature range from 100 to 400 C. The effect of heat treating on the diode properties as measured at 100 C is explored. Subsequent operation at 400 C demonstrates the diodes' sensitivity to hydrogen and hydrocarbons. It is concluded that the Pd-SiC Schottky diode has potential as a hydrogen and hydrocarbon sensor over a wide range of temperatures but further studies are necessary to determine the diodes' long term stability.

  17. Microbial electrolysis cells for high yield hydrogen gas production from organic matter.

    PubMed

    Logan, Bruce E; Call, Douglas; Cheng, Shaoan; Hamelers, Hubertus V M; Sleutels, Tom H J A; Jeremiasse, Adriaan W; Rozendal, René A

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (> 0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment.

  18. Criteria Development for Gas Turbine Premixer Flameholding Tendencies of Natural Gas and High Hydrogen Content Fuels

    NASA Astrophysics Data System (ADS)

    Sullivan-Lewis, Elliot Gregory

    Due to increasingly stringent air quality requirements, stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Flashback can cause serious damage to the premixer hardware. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when the fuel contains hydrogen. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design a premixer that will not anchor a flame if flashback occurs. Even with a well-designed combustor, flashback can occur under certain circumstances. Thus it is necessary to determine how to avoid flameholding within the premixer passageways of a gas turbine. To this end, an experiment was designed that would determine the flameholding propensities at elevated pressures and temperatures of three different classes of geometric features commonly found in gas turbine premixers, with both natural gas and hydrogen containing fuel. Experiments to find the equivalence ratio at blow off were conducted within an optically accessible test apparatus with four flameholders: 0.25 and 0.50 inch diameter cylinders, a reverse facing step with a height of 0.25 inches, and a symmetric airfoil with a thickness of 0.25 inches and a chord length of one inch. Tests were carried out at temperatures between 300 K and 750 K, at pressures up to 9 atmospheres. Typical bulk velocities were between 40 and 100 m/s. The effect of the airfoil's angle of rotation was also investigated. Blow off for hydrogen reactions was found to occur at much lower adiabatic flame temperatures than natural gas reactions. Additionally it was observed that at high pressures and high turbulence intensities, reactant velocity does not have a noticeable effect on the point of blow off due in large part to corresponding increases in turbulent flame speed. Finally a semi empirical correlation was developed that predicts flame

  19. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport

    PubMed Central

    Farjoo, Afrooz; Kuznicki, Steve M.

    2017-01-01

    Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene) was studied within the temperature and pressure ranges of 25–600 °C and 110–160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption–diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons. PMID:28984833

  20. Hydrogen gas embrittlement and the disc pressure test

    NASA Technical Reports Server (NTRS)

    Bachelet, E. J.; Troiano, A. R.

    1973-01-01

    A disc pressure test has been used to study the influenced of a hydrogen gas environment on the mechanical properties of three high strength superalloys, Inconel 718, L-605 and A-286, in static and dynamic conditions. The influence of the hydrogen pressure, loading rate, temperature, mechanical and thermal fatigue has investigated. The permeation characteristics of Inconel 718 have been determined in collaboration with the French AEC. The results complemented by a fractographic study are consistent either with a stress-sorption or with an internal embrittlement type of mechanism.

  1. Survey of Hydrogen Combustion Properties

    NASA Technical Reports Server (NTRS)

    Drell, Isadore L; Belles, Frank E

    1958-01-01

    This literature digest of hydrogen-air combustion fundamentals presents data on flame temperature, burning velocity, quenching distance, flammability limits, ignition energy, flame stability, detonation, spontaneous ignition, and explosion limits. The data are assessed, recommended values are given, and relations among various combustion properties are discussed. New material presented includes: theoretical treatment of variation in spontaneous ignition lag with temperature, pressure, and composition, based on reaction kinetics of hydrogen-air composition range for 0.01 to 100 atmospheres and initial temperatures of 0 degrees to 1400 degrees k.

  2. Antimisting fuel breakup and flammability

    NASA Technical Reports Server (NTRS)

    Parikh, P.; Fleeter, R.; Sarohia, V.

    1983-01-01

    The breakup behavior and flammability of antimisting turbine fuels subjected to aerodynamic shear are investigated. Fuels tested were Jet A containing 0.3% FM-9 polymer at various levels of degradation ranging from virgin AMK to neat Jet A. The misting behavior of the fuels was quantified by droplet size distribution measurements. A technique based on high resolution laser photography and digital image processing of photographic records for rapid determination of droplet size distribution was developed. The flammability of flowing droplet-air mixtures was quantified by direct measurements of temperature rise in a flame established in the wake of a continuous ignition source. The temperature rise measurements were correlated with droplet size measurements. The flame anchoring phenomenon associated with the breakup of a liquid fuel in the wake of bluff body was shown to be important in the context of a survivable crash scenario. A pass/fail criterion for flammability testing of antimisting fuels, based on this flame-anchoring phenomenon, was proposed. The role of various ignition sources and their intensity in ignition and post-ignition behavior of antimisting fuels was also investigated.

  3. Empirical Method to Estimate Hydrogen Embrittlement of Metals as a Function of Hydrogen Gas Pressure at Constant Temperature

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2010-01-01

    High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.

  4. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    NASA Astrophysics Data System (ADS)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  5. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable or...

  6. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable or...

  7. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable or...

  8. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable or...

  9. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable or...

  10. Spacecraft and Navy Materials Flammability: Review of Some Concepts and Test Methods

    NASA Technical Reports Server (NTRS)

    Hirsch, David

    2004-01-01

    The agenda covered by this viewgraph presentation includes: 1) Concepts of Spacecraft Fire Safety; 2) Spacecraft materials flammability test methods; 3) Evaluation of flight hardware flammability; 4) Review of flammability data in conditions of interest to the Navy; 5) Overview of some flammability test methods recommended for the Navy.

  11. Modeling of non-thermal plasma in flammable gas mixtures

    NASA Astrophysics Data System (ADS)

    Napartovich, A. P.; Kochetov, I. V.; Leonov, S. B.

    2008-07-01

    An idea of using plasma-assisted methods of fuel ignition is based on non-equilibrium generation of chemically active species that speed up the combustion process. It is believed that gain in energy consumed for combustion acceleration by plasmas is due to the non-equilibrium nature of discharge plasma, which allows radicals to be produced in an above-equilibrium amount. Evidently, the size of the effect is strongly dependent on the initial temperature, pressure, and composition of the mixture. Of particular interest is comparison between thermal ignition of a fuel-air mixture and non-thermal plasma initiation of the combustion. Mechanisms of thermal ignition in various fuel-air mixtures have been studied for years, and a number of different mechanisms are known providing an agreement with experiments at various conditions. The problem is -- how to conform thermal chemistry approach to essentially non-equilibrium plasma description. The electric discharge produces much above-equilibrium amounts of chemically active species: atoms, radicals and ions. The point is that despite excess concentrations of a number of species, total concentration of these species is far below concentrations of the initial gas mixture. Therefore, rate coefficients for reactions of these discharge produced species with other gas mixture components are well known quantities controlled by the translational temperature, which can be calculated from the energy balance equation taking into account numerous processes initiated by plasma. A numerical model was developed combining traditional approach of thermal combustion chemistry with advanced description of the plasma kinetics based on solution of electron Boltzmann equation. This approach allows us to describe self-consistently strongly non-equilibrium electric discharge in chemically unstable (ignited) gas. Equations of pseudo-one-dimensional gas dynamics were solved in parallel with a system of thermal chemistry equations, kinetic equations

  12. 16 CFR Figure 1 to Part 1610 - Sketch of Flammability Apparatus

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Sketch of Flammability Apparatus 1 Figure 1 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... Flammability Apparatus ER25MR08.000 ...

  13. 16 CFR Figure 1 to Part 1610 - Sketch of Flammability Apparatus

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Sketch of Flammability Apparatus 1 Figure 1 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... Flammability Apparatus ER25MR08.000 ...

  14. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Class 3 (flammable liquid) materials in tank cars... CARRIAGE BY RAIL Detailed Requirements for Class 3 (Flammable Liquid) Materials § 174.304 Class 3 (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other...

  15. Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?

    NASA Technical Reports Server (NTRS)

    Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.

    2016-01-01

    NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.

  16. Hydrogen Gas from Serpentinite, Ophiolites and the Modern Ocean Floor as a Source of Green Energy

    NASA Astrophysics Data System (ADS)

    Coveney, R. M.

    2008-12-01

    Hydrogen gas is emitted by springs associated with serpentinites and extensive carbonate deposits in Oman, The Philippines, the USA and other continental locations. The hydrogen springs contain unusually alkaline fluids with pH values between 11 and 12.5. Other workers have described off-ridge submarine springs with comparably alkaline fluid compositions, serpentinite, abundant free hydrogen gas, and associated carbonate edifices such as Lost City on the Atlantis Massif 15 km west of the Mid-Atlantic Ridge (D.S. Kelley and associates, Science 2005). The association of hydrogen gas with ultramafites is a consistent one that has been attributed to a redox couple involving oxidation of divalent iron to the trivalent state during serpentinization, although other possibilities exist. Some of the hydrogen springs on land are widespread. For example in Oman dozens of alkaline springs (Neal and Stanger, EPSL 1983) can be found over thousands of sq km of outcropping ophiolite. While the deposits in Oman and the Philippines are well-known to much of the geochemical community, little interest seems to have been displayed toward either the ophiolitic occurrences or the submarine deposits for energy production. This may be a mistake as the showings because they could lead to an important source of green energy. Widespread skepticism currently exists about hydrogen as a primary energy source. It is commonly said that free hydrogen does not occur on earth and that it is therefore necessary to use other sources of energy to produce hydrogen, obviating the general environmental benefit. However the existence of numerous occurrences of hydrogen gas associated with ophiolites and submarine occurrences of hydrogen suggests the likelihood that natural hydrogen gas may be an important source of clean energy for modern society remaining to be tapped. Calculations in progress should establish whether or not this is likely to be the case.

  17. Advanced IGCC/Hydrogen Gas Turbine Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    York, William; Hughes, Michael; Berry, Jonathan

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CCmore » efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in

  18. Instruction manual for UTEP weld gas hydrogen detector

    NASA Technical Reports Server (NTRS)

    Mcclure, John; Pang, Tonghui

    1992-01-01

    The instrument described in this manual was developed at the University of Texas at El Paso under contract from the National Aeronautics and Space Administration Marshall Space Flight Center. The instrument has been used to detect hydrogen in the shielding gas of Variable Polarity Plasma Arc (VPPA) welds at concentrations of less than 100 ppm. The instrument makes measurements in real time during the welding operation and provides the operator with an easily readable graphic display of the present level of hydrogen in the arc as well as the level of hydrogen over the past approximately five minutes. In this way the welder can not only tell if the present level of hydrogen is excessive, but can see what changes in weld parameters have done to the level of hydrogen. The welder can set the level of hydrogen that is considered critical and the instrument display will indicate when that level has been exceeded. All detection is from the torch side. All needed equipment is supplied by the developer except for an IBM PC compatible computer which must be supplied by the user. Source code is supplied in this manual so that the user can modify the control program as desired.

  19. On the temperature dependence of flammability limits of gases.

    PubMed

    Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki

    2011-03-15

    Flammability limits of several combustible gases were measured at temperatures from 5 to 100 °C in a 12-l spherical flask basically following ASHRAE method. The measurements were done for methane, propane, isobutane, ethylene, propylene, dimethyl ether, methyl formate, 1,1-difluoroethane, ammonia, and carbon monoxide. As the temperature rises, the lower flammability limits are gradually shifted down and the upper limits are shifted up. Both the limits shift almost linearly to temperature within the range examined. The linear temperature dependence of the lower flammability limits is explained well using a limiting flame temperature concept at the lower concentration limit (LFL)--'White's rule'. The geometric mean of the flammability limits has been found to be relatively constant for many compounds over the temperature range studied (5-100 °C). Based on this fact, the temperature dependence of the upper flammability limit (UFL) can be predicted reasonably using the temperature coefficient calculated for the LFL. However, some compounds such as ethylene and dimethyl ether, in particular, have a more complex temperature dependence. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Use of hydrogen as a carrier gas for the analysis of steroids with anabolic activity by gas chromatography-mass spectrometry.

    PubMed

    Muñoz-Guerra, J A; Prado, P; García-Tenorio, S Vargas

    2011-10-14

    Due to the impact in the media and the requirements of sensitivity and robustness, the detection of the misuse of forbidden substances in sports is a really challenging area for analytical chemistry, where any study focused on enhancing the performance of the analytical methods will be of great interest. The aim of the present study was to evaluate the usefulness of using hydrogen instead of helium as a carrier gas for the analysis of anabolic steroids by gas chromatography-mass spectrometry with electron ionization. There are several drawbacks related with the use of helium as a carrier gas: it is expensive, is a non-renewable resource, and has limited availability in many parts of the world. In contrast, hydrogen is readily available using a hydrogen generator or high-pressure bottled gas, and allows a faster analysis without loss of efficiency; nevertheless it should not be forgotten that due to its explosiveness hydrogen must be handled with caution. Throughout the study the impact of the change of the carrier gas will be evaluated in terms of: performance of the chromatographic system, saving of time and money, impact on the high vacuum in the analyzer, changes in the fragmentation behaviour of the analytes, and finally consequences for the limits of detection achieved with the method. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. [Measurement of pancreatic microcirculation using hydrogen gas generated by electrolysis in dogs].

    PubMed

    Nishiwaki, H; Satake, K; Ko, I; Tanaka, H; Kanazawa, G; Nagai, Y; Umeyama, K

    1986-11-01

    Measurements of pancreatic microflow were investigated using hydrogen gas generated by electrolysis in dog. After laparatomy under general anesthesia, uncinate process of the pancreas was punctured by a needle electrode for electrolysis and determination of hydrogen gas. The consecutive measurements of pancreatic microflow revealed the good reproducibility at the same point of the pancreas. The simultaneous measurements of pancreatic microflow by electrolysis and pancreatic tissue blood flow by H2 inhalation method were carried out at the same point of the pancreas. Correlation analysis of both measurements revealed coefficient of 0.751 and a significant relationship was observed (p less than 0.05). However, the value was a little higher in pancreatic microflow as compared with pancreatic tissue blood flow. Pancreatic microflow and pancreatic exocrine secretion increased after intravenous administration of Dopamine and Secretin (10 micrograms/kg/min). It is concluded that the measurement of pancreatic microflow by hydrogen gas generated by electrolysis is a useful method on understanding the microcirculation of the pancreas.

  2. Activation energy for diamond growth from the carbon-hydrogen gas system at low substrate temperatures

    NASA Astrophysics Data System (ADS)

    Stiegler, J.; Lang, T.; von Kaenel, Y.; Michler, J.; Blank, E.

    1997-01-01

    The growth kinetics of diamond films deposited at low substrate temperatures (600-400 °C) from the carbon-hydrogen gas system have been studied. When the substrate temperature alone was varied, independently of all other process parameters in the microwave plasma reactor, an activation energy in the order of 7 kcal/mol was observed. This value did not change with different carbon concentrations in hydrogen. It is supposed that growth kinetics in this temperature range are controlled by a single chemical reaction, probably the abstraction of surface bonded hydrogen by gas phase atomic hydrogen.

  3. EUV tools: hydrogen gas purification and recovery strategies

    NASA Astrophysics Data System (ADS)

    Landoni, Cristian; Succi, Marco; Applegarth, Chuck; Riddle Vogt, Sarah

    2015-03-01

    The technological challenges that have been overcome to make extreme ultraviolet lithography (EUV) a reality have been enormous1. This vacuum driven technology poses significant purity challenges for the gases employed for purging and cleaning the scanner EUV chamber and source. Hydrogen, nitrogen, argon and ultra-high purity compressed dry air (UHPCDA) are the most common gases utilized at the scanner and source level. Purity requirements are tighter than for previous technology node tools. In addition, specifically for hydrogen, EUV tool users are facing not only gas purity challenges but also the need for safe disposal of the hydrogen at the tool outlet. Recovery, reuse or recycling strategies could mitigate the disposal process and reduce the overall tool cost of operation. This paper will review the types of purification technologies that are currently available to generate high purity hydrogen suitable for EUV applications. Advantages and disadvantages of each purification technology will be presented. Guidelines on how to select the most appropriate technology for each application and experimental conditions will be presented. A discussion of the most common approaches utilized at the facility level to operate EUV tools along with possible hydrogen recovery strategies will also be reported.

  4. Analysis of Energy Storage System with Distributed Hydrogen Production and Gas Turbine

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Bartela, Łukasz; Dubiel-Jurgaś, Klaudia

    2017-12-01

    Paper presents the concept of energy storage system based on power-to-gas-to-power (P2G2P) technology. The system consists of a gas turbine co-firing hydrogen, which is supplied from a distributed electrolysis installations, powered by the wind farms located a short distance from the potential construction site of the gas turbine. In the paper the location of this type of investment was selected. As part of the analyses, the area of wind farms covered by the storage system and the share of the electricity production which is subjected storage has been changed. The dependence of the changed quantities on the potential of the hydrogen production and the operating time of the gas turbine was analyzed. Additionally, preliminary economic analyses of the proposed energy storage system were carried out.

  5. A Converter for Producing a Hydrogen-Containing Synthesis Gas

    NASA Astrophysics Data System (ADS)

    Malkov, Yu. P.; Molchanov, O. N.; Britov, B. K.; Fedorov, I. A.

    2016-11-01

    A computational thermodynamic and experimental investigation of the characteristics of a model of a converter for producing a hydrogen-containing synthesis gas from a hydrocarbon fuel (kerosene) with its separate delivery to thermal-oxidative and steam conversions has been carried out. It is shown that the optimum conditions of converter operation correspond to the oxidant excess coefficient in the converter's combustion chamber α > 0.5 at a temperature of the heat-transmitting wall (made from a heat-resistant KhN78T alloy (ÉI 435)) of 1200 K in the case of using a nickel corrugated tape catalyst. The content of hydrogen in the synthesis gas attains in this case 60 vol.%, and there is no release of carbon (soot) in the conversion products as well as no need for water cooling of the converter walls.

  6. Molecular hydrogen consumption in the human body during the inhalation of hydrogen gas.

    PubMed

    Shimouchi, Akito; Nose, Kazutoshi; Mizukami, Tomoe; Che, Dock-Chil; Shirai, Mikiyasu

    2013-01-01

    Inhaling or ingesting hydrogen (H2) gas improves oxidative stress-induced damage in animal models and humans. We previously reported that H2 was consumed throughout the human body after the ingestion of H2-rich water and that the H2 consumption rate ([Formula: see text]) was 1.0 μmol/min/m(2) body surface area. To confirm this result, we evaluated [Formula: see text]during the inhalation of low levels of H2 gas. After measuring the baseline levels of exhaled H2 during room air breathing via a one-way valve and a mouthpiece, the subject breathed low levels (160 ppm) of H2 gas mixed with purified artificial air. The H2 levels of their inspired and expired breath were measured by gas chromatography using a semiconductor sensor. [Formula: see text] was calculated using a ventilation equation derived from the inspired and expired concentrations of O2/CO2/H2, and the expired minute ventilation volume, which was measured with a respiromonitor. As a result, [Formula: see text] was found to be approximately 0.7 μmol/min/m(2)BSA, which was compatible with the findings we obtained using H2-rich water. [Formula: see text] varied markedly when pretreatment fasting to reduce colonic fermentation was not employed, i.e., when the subject's baseline breath hydrogen level was 10 ppm or greater. Our H2 inhalation method might be useful for the noninvasive monitoring of hydroxyl radical production in the human body.

  7. Investigation of low-latitude hydrogen emission in terms of a two-component interstellar gas model

    NASA Technical Reports Server (NTRS)

    Baker, P. L.; Burton, W. B.

    1975-01-01

    High-resolution 21-cm hydrogen line observations at low galactic latitude are analyzed to determine the large-scale distribution of galactic hydrogen. Distribution parameters are found by model fitting, optical depth effects are computed using a two-component gas model suggested by the observations, and calculations are made for a one-component uniform spin-temperature gas model to show the systematic departures between this model and data obtained by incorrect treatment of the optical depth effects. Synthetic 21-cm line profiles are computed from the two-component model, and the large-scale trends of the observed emission profiles are reproduced together with the magnitude of the small-scale emission irregularities. Values are determined for the thickness of the galactic hydrogen disk between half density points, the total observed neutral hydrogen mass of the galaxy, and the central number density of the intercloud hydrogen atoms. It is shown that typical hydrogen clouds must be between 1 and 13 pc in diameter and that optical thinness exists on large-scale despite the presence of optically thin gas.

  8. Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.

    PubMed

    Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2018-01-17

    Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

  9. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... gas-safe; (5) Each hold space, interbarrier space, and other enclosed spaces, except fuel oil or... detection system must not pass through any gas-safe space, except the gas-safe space in which the gas... system in a gas-safe space must: (1) Have a shut-off valve in each sampling line from an enclosed space...

  10. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... gas-safe; (5) Each hold space, interbarrier space, and other enclosed spaces, except fuel oil or... detection system must not pass through any gas-safe space, except the gas-safe space in which the gas... system in a gas-safe space must: (1) Have a shut-off valve in each sampling line from an enclosed space...

  11. Hydrogen Energy Storage and Power-to-Gas: Establishing Criteria for Successful Business Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichman, Joshua; Melaina, Marc

    As the electric sector evolves and increasing amounts of variable generation are installed on the system, there are greater needs for system flexibility, sufficient capacity and greater concern for overgeneration. As a result there is growing interest in exploring the role of energy storage and demand response technologies to support grid needs. Hydrogen is a versatile feedstock that can be used in a variety of applications including chemical and industrial processes, as well as a transportation fuel and heating fuel. Traditionally, hydrogen technologies focus on providing services to a single sector; however, participating in multiple sectors has the potential tomore » provide benefits to each sector and increase the revenue for hydrogen technologies. The goal of this work is to explore promising system configurations for hydrogen systems and the conditions that will make for successful business cases in a renewable, low-carbon future. Current electricity market data, electric and gas infrastructure data and credit and incentive information are used to perform a techno-economic analysis to identify promising criteria and locations for successful hydrogen energy storage and power-to-gas projects. Infrastructure data will be assessed using geographic information system applications. An operation optimization model is used to co-optimizes participation in energy and ancillary service markets as well as the sale of hydrogen. From previous work we recognize the great opportunity that energy storage and power-to-gas but there is a lack of information about the economic favorability of such systems. This work explores criteria for selecting locations and compares the system cost and potential revenue to establish competitiveness for a variety of equipment configurations. Hydrogen technologies offer unique system flexibility that can enable interactions between multiple energy sectors including electric, transport, heating fuel and industrial. Previous research

  12. Process for producing methane from gas streams containing carbon monoxide and hydrogen

    DOEpatents

    Frost, Albert C.

    1980-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. While carbon monoxide-containing gas streams having hydrogen or water present therein can be used only the carbon monoxide available after reaction with said hydrogen or water is decomposed to form said active surface carbon. Although hydrogen or water will be converted, partially or completely, to methane that can be utilized in a combustion zone to generate heat for steam production or other energy recovery purposes, said hydrogen is selectively removed from a CO--H.sub.2 -containing feed stream by partial oxidation thereof prior to disproportionation of the CO content of said stream.

  13. Flammability across the gymnosperm phylogeny: the importance of litter particle size.

    PubMed

    Cornwell, William K; Elvira, Alba; van Kempen, Lute; van Logtestijn, Richard S P; Aptroot, André; Cornelissen, J Hans C

    2015-04-01

    Fire is important to climate, element cycles and plant communities, with many fires spreading via surface litter. The influence of species on the spread of surface fire is mediated by their traits which, after senescence and abscission, have 'afterlife' effects on litter flammability. We hypothesized that differences in litter flammability among gymnosperms are determined by litter particle size effects on litterbed packing. We performed a mesocosm fire experiment comparing 39 phylogenetically wide-ranging gymnosperms, followed by litter size and shape manipulations on two chemically contrasting species, to isolate the underlying mechanism. The first-order control on litter flammability was, indeed, litter particle size in both experiments. Most gymnosperms were highly flammable, but a prominent exception was the non-Pinus Pinaceae, in which small leaves abscised singly produced dense, non-flammable litterbeds. There are two important implications: first, ecosystems dominated by gymnosperms that drop small leaves separately will develop dense litter layers, which will be less prone to and inhibit the spread of surface litter fire. Second, some of the needle-leaved species previously considered to be flammable in single-leaf experiments were among the least flammable in litter fuel beds, highlighting the role of the litter traits of species in affecting surface fire regimes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine

    NASA Astrophysics Data System (ADS)

    Funke, H. H.-W.; Börner, S.; Hendrick, P.; Recker, E.

    2011-10-01

    The control of pollutant emissions has become more and more important by the development of new gas turbines. The use of hydrogen produced by renewable energy sources could be an alternative. Besides the reduction of NOx emissions emerged during the combustion process, another major question is how a hydrogen fuelled gas turbine including the metering unit can be controlled and operated. This paper presents a first insight in modifications on an Auxiliary Power Unit (APU) GTCP 36300 for using gaseous hydrogen as a gas turbine fuel. For safe operation with hydrogen, the metering of hydrogen has to be fast, precise, and secure. So, the quality of the metering unit's control loop has an important influence on this topic. The paper documents the empiric determination of the proportional integral derivative (PID) control parameters for the metering unit.

  15. Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method

    NASA Astrophysics Data System (ADS)

    Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.

  16. Investigation of the applicability of using the triple redundant hydrogen sensor for methane sensing

    NASA Technical Reports Server (NTRS)

    Lantz, J. B.; Wynveen, R. A.

    1983-01-01

    Application specifications for the methane sensor were assembled and design guidelines, development goals and evaluation criteria were formulated. This was done to provide a framework to evaluate sensor performance and any design adjustments to the preprototype sensor that could be required to provide methane sensitivity. Good response to hydrogen was experimentally established for four hydrogen sensor elements to be later evaluated for methane response. Prior results were assembled and analyzed for other prototype hydrogen sensor performance parameters to form a comparison base. The four sensor elements previously shown to have good hydrogen response were experimentally evaluated for methane response in 2.5% methane-in-air. No response was obtained for any of the elements, despite the high methane concentration used (50% of the Lower Flammability Limit). It was concluded that the preprototype sensing elements were insensitive to methane and were hydrogen specific. Alternative sensor operating conditions and hardware design changes were considered to provide methane sensitivity to the preprototype sensor, including a variety of different methane sensing techniques. Minor changes to the existing sensor elements, sensor geometry and operating conditions will not make the preprototype hydrogen sensor respond to methane. New sensor elements that will provide methane and hydrogen sensitivity require replacement of the existing thermistor type elements. Some hydrogen sensing characteristics of the modified sensor will be compromised (larger in situ calibration gas volume and H2 nonspecificity). The preprototype hydrogen sensor should be retained for hydrogen monitoring and a separate methane sensor should be developed.

  17. Application of biofiltration to the degradation of hydrogen sulfide in gas effluents.

    PubMed

    Elías, A; Barona, A; Ríos, F J; Arreguy, A; Munguira, M; Peñas, J; Sanz, J L

    2000-01-01

    A laboratory scale bioreactor has been designed and set up in order to degrade hydrogen sulfide from an air stream. The reactor is a vertical column of 7 litre capacity and 1 meter in height. It is divided into three modules and each module is filled with pellets of agricultural residues as packing bed material. The gas stream fed into the reactor through the upper inlet consists of a mixture of hydrogen sulfide and humidified air. The hydrogen sulfide content in the inlet gas stream was increased in stages until the degradation efficiency was below 90%. The parameters to be controlled in order to reach continuous and stable operation were temperature, moisture content and the percentage of the compound to be degraded at the inlet and outlet gas streams (removal or elimination efficiency). When the H2S mass loading rate was between 10 and 40 g m(-3) h(-1), the removal efficiency was greater than 90%. The support material had a good physical performance throughout operation time, which is evidence that this material is suitable for biofiltration purposes.

  18. Atomic and molecular hydrogen gas temperatures in a low-pressure helicon plasma

    NASA Astrophysics Data System (ADS)

    Samuell, Cameron M.; Corr, Cormac S.

    2015-08-01

    Neutral gas temperatures in hydrogen plasmas are important for experimental and modelling efforts in fusion technology, plasma processing, and surface modification applications. To provide values relevant to these application areas, neutral gas temperatures were measured in a low pressure (< 10 mTorr) radiofrequency helicon discharge using spectroscopic techniques. The atomic and molecular species were not found to be in thermal equilibrium with the atomic temperature being mostly larger then the molecular temperature. In low power operation (< 1 kW), the molecular hydrogen temperature was observed to be linearly proportional to the pressure while the atomic hydrogen temperature was inversely proportional. Both temperatures were observed to rise linearly with input power. For high power operation (5-20 kW), the molecular temperature was found to rise with both power and pressure up to a maximum of approximately 1200 K. Spatially resolved measurements near a graphite target demonstrated localised cooling near the sample surface. The temporal evolution of the molecular gas temperature during a high power 1.1 ms plasma pulse was also investigated and found to vary considerably as a function of pressure.

  19. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  20. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... under the Consumer Product Safety Act extremely flammable contact adhesives covered by this labeling... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Extremely flammable contact adhesives; labeling. 1500.133 Section 1500.133 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL...

  1. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... under the Consumer Product Safety Act extremely flammable contact adhesives covered by this labeling... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Extremely flammable contact adhesives; labeling. 1500.133 Section 1500.133 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL...

  2. Hyperbaric oxygen therapy for the prevention of arterial gas embolism in food grade hydrogen peroxide ingestion.

    PubMed

    Hendriksen, Stephen M; Menth, Nicholas L; Westgard, Bjorn C; Cole, Jon B; Walter, Joseph W; Masters, Thomas C; Logue, Christopher J

    2017-05-01

    Food grade hydrogen peroxide ingestion is a relatively rare presentation to the emergency department. There are no defined guidelines at this time regarding the treatment of such exposures, and providers may not be familiar with the potential complications associated with high concentration hydrogen peroxide ingestions. In this case series, we describe four patients who consumed 35% hydrogen peroxide, presented to the emergency department, and were treated with hyperbaric oxygen therapy. Two of the four patients were critically ill requiring intubation. All four patients had evidence on CT or ultrasound of venous gas emboli and intubated patients were treated as if they had an arterial gas embolism since an exam could not be followed. After hyperbaric oxygen therapy each patient was discharged from the hospital neurologically intact with no other associated organ injuries related to vascular gas emboli. Hyperbaric oxygen therapy is an effective treatment for patients with vascular gas emboli after high concentration hydrogen peroxide ingestion. It is the treatment of choice for any impending, suspected, or diagnosed arterial gas embolism. Further research is needed to determine which patients with portal venous gas emboli should be treated with hyperbaric oxygen therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. 49 CFR 177.840 - Class 2 (gases) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (flammable gas) material. (2) Cylinders for hydrogen, cryogenic liquid. A Specification DOT-4L cylinder containing hydrogen, cryogenic liquid may only be transported on a motor vehicle as follows: (i) The vehicle... the hydrogen venting rates, as marked, on the cylinders transported on one motor vehicle may not...

  4. 49 CFR 177.840 - Class 2 (gases) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (flammable gas) material. (2) Cylinders for hydrogen, cryogenic liquid. A Specification DOT-4L cylinder containing hydrogen, cryogenic liquid may only be transported on a motor vehicle as follows: (i) The vehicle... the hydrogen venting rates, as marked, on the cylinders transported on one motor vehicle may not...

  5. 49 CFR 177.840 - Class 2 (gases) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (flammable gas) material. (2) Cylinders for hydrogen, cryogenic liquid. A Specification DOT-4L cylinder containing hydrogen, cryogenic liquid may only be transported on a motor vehicle as follows: (i) The vehicle... the hydrogen venting rates, as marked, on the cylinders transported on one motor vehicle may not...

  6. 49 CFR 177.840 - Class 2 (gases) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (flammable gas) material. (2) Cylinders for hydrogen, cryogenic liquid. A Specification DOT-4L cylinder containing hydrogen, cryogenic liquid may only be transported on a motor vehicle as follows: (i) The vehicle... the hydrogen venting rates, as marked, on the cylinders transported on one motor vehicle may not...

  7. Pressure Flammability Thresholds in Oxygen of Selected Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Harper, Susana; Beeson, Harold; Ruff, Gary; Pedley, Mike

    2010-01-01

    The experimental approach consisted of concentrating the testing in the flammability transition zone following the Bruceton Up-and-Down Method. For attribute data, the method has been shown to be very repeatable and most efficient. Other methods for characterization of critical levels (Karberand Probit) were also considered. The data yielded the upward limiting pressure index (ULPI), the pressure level where approx.50% of materials self-extinguish in a given environment.Parametric flammability thresholds other than oxygen concentration can be determined with the methodology proposed for evaluating the MOC when extinguishment occurs. In this case, a pressure threshold in 99.8% oxygen was determined with the methodology and found to be 0.4 to 0.9 psia for typical spacecraft materials. Correlation of flammability thresholds obtained with chemical, hot wire, and other ignition sources will be conducted to provide recommendations for using alternate ignition sources to evaluate flammability of aerospace materials.

  8. Impact of pH on hydrogen oxidizing redox processes in aquifers due to gas intrusions

    NASA Astrophysics Data System (ADS)

    Metzgen, Adrian; Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2017-04-01

    Hydrogen production from excess energy and its storage can help increasing the efficiency of solar and wind in the energy mix. Therefore, hydrogen needs large-scale intermediate storage independent of the intended later use as hydrogen gas or as reactant to produce methane in the Sabatier process. A possible storage solution is using the geological subsurface such as caverns built in salt deposits or aquifers that are not used for drinking water production. However, underground storage of hydrogen gas potentially leads to accidental gas leakages into near-surface potable aquifers triggering subsequent geochemical processes. These leakages pose potential risks that are currently not sufficiently understood. To close this gap in knowledge, a high-pressure laboratory column system was used to simulate a hydrogen gas intrusion into a shallow aquifer. Water and sediment were gained from a sandy Pleistocene aquifer near Neumünster, Germany. In the first stage of the experiment, 100% hydrogen gas was used to simulate dissolved hydrogen concentrations between 800 and 4000 µM by varying pH2 between 2 and 15 bars. pH values rose to between 7.9 and 10.4, partly due to stripping CO2 from the groundwater used during H2 gas addition. In a second stage, the pH was regulated in a range of 6.7 to 7.9 by using a gas mixture of 99% H2 and 1% CO2 at 5 bars of total gas pressure. Observed processes included hydrogen oxidation, sulfate reduction, acetogenesis, formate production, and methanogenesis, which were independent of the hydrogen concentration. Hydrogen oxidation and sulfate reduction showed zeroth order reaction rates and rate constants (106 to 412 µM/h and 12 to 33 µM/h, respectively) in the pH range between 8 and 10. At pH levels between 7 and 8, both reactions started out faster near the column's inflow but then seemed limited towards the columns outflow, suggesting the dependence of sulfate reduction on the pH-value. Acetogenesis dominated the pH range between 8 and 10

  9. New generation of α-MnO2 nanowires @PDMS composite as a hydrogen gas sensor

    NASA Astrophysics Data System (ADS)

    Hamidi, Seyedeh Mehri; Mosivand, Alireza; Mahboubi, Mina; Arabi, Hadi; Azad, Narin; Jamal, Murtada Riyadh

    2018-03-01

    New hydrogen gas sensor has been prepared by α-MnO2 nanowires in polydimethylsiloxane matrix. For this purpose, the high aspect ratio α-MnO2 nanowires has been prepared by the aid of hydrothermal method and then dispersed into poly-dimethyl siloxane polymer media. For gas sensing, the samples have been exposed under different gas concentrations from 0 to 5%. The sensor responses have been examined by normalized ellipsometric parameter with respect to the chamber filled with N2 Gas. Our results indicate linear behavior of resonance wavelength in ellipsometric parameter as a function of gas concentrations which can open a new insight for the sample's capability to hydrogen gas sensing applications.

  10. 49 CFR 173.150 - Exceptions for Class 3 (flammable and combustible liquids).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Class 3 (flammable and combustible liquids). (a) General. Exceptions for hazardous materials shipments... flammable liquids (Class 3) and combustible liquids are excepted from labeling requirements, unless the... aircraft, the following combination packagings are authorized: (1) For flammable liquids in Packing Group I...

  11. Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Perng, T. P.; Altstetter, C. J.

    1987-01-01

    Hydrogen-induced slow crack growth (SCG) was compared in austenitic and ferritic stainless steels at 0 to 125 °Cand 11 to 216 kPa of hydrogen gas. No SCG was observed for AISI 310, while AISI 301 was more susceptible to hydrogen embrittlement and had higher cracking velocity than AL 29-4-2 under the same test conditions. The kinetics of crack propagation was modeled in terms of the hydrogen transport in these alloys. This is a function of temperature, microstructure, and stress state in the embrittlement region. The relatively high cracking velocity of AISI 301 was shown to be controlled by the fast transport of hydrogen through the stress-induced α' martensite at the crack tip and low escape rate of hydrogen through the γ phase in the surrounding region. Faster accumulation rates of hydrogen in the embrittlement region were expected for AISI 301, which led to higher cracking velocities. The mechanism of hydrogen-induced SCG was discussed based upon the concept of hydrogen-enhanced plasticity.

  12. Inhaled hydrogen gas therapy for prevention of lung transplant-induced ischemia/reperfusion injury in rats.

    PubMed

    Kawamura, Tomohiro; Huang, Chien-Sheng; Tochigi, Naobumi; Lee, Sungsoo; Shigemura, Norihisa; Billiar, Timothy R; Okumura, Meinoshin; Nakao, Atsunori; Toyoda, Yoshiya

    2010-12-27

    Successful abrogation of ischemia/reperfusion (I/R) injury of lung grafts could significantly improve short- and long-term outcomes for lung transplant (LTx) recipients. Hydrogen gas has potent antioxidant and antiapoptotic properties and has been recently used in number of experimental and clinical studies. The purpose of this research was to investigate whether inhaled hydrogen gas could reduce graft I/R injury during lung transplantation. Orthotopic left LTxs were performed in syngenic Lewis rats. Grafts were perfused with and stored in low potassium dextran solution at 4°C for 6 hr. The recipients received 100% O2 or 98% O2 with 2% N2, 2% He, or 2% H2 during surgery and 1 hr after reperfusion. The effects of hydrogen were assessed by functional, pathologic, and molecular analysis. Gas exchange was markedly impaired in animals exposed to 100% O2, 2% N2, or 2% He. Hydrogen inhalation attenuated graft injury as indicated by significantly improved gas exchange 2 hr after reperfusion. Graft lipid peroxidation was significantly reduced in the presence of hydrogen, demonstrating antioxidant effects of hydrogen in the transplanted lungs. Lung cold I/R injury causes the rapid production and release of several proinflammatory mediators and epithelial apoptosis. Exposure to 2% H2 significantly blocked the production of several proinflammatory mediators and reduced apoptosis with induction of the antiapoptotic molecules B-cell lymphoma-2 and B-cell lymphoma-extra large. Treatment of LTx recipients with inhaled hydrogen can prevent lung I/R injury and significantly improve the function of lung grafts after extended cold preservation, transplant, and reperfusion.

  13. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Flammable and combustible liquids: Carriage. 109.557 Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master...

  14. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Flammable and combustible liquids: Carriage. 109.557 Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master...

  15. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Flammable and combustible liquids: Carriage. 109.557 Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master...

  16. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Flammable and combustible liquids: Carriage. 109.557 Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master...

  17. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Flammable and combustible liquids: Carriage. 109.557 Section 109.557 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The master...

  18. 40 CFR 60.5408 - What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment... § 60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine. (b...

  19. 40 CFR 60.5408 - What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment... § 60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine. (b...

  20. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  1. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....4460 Section 57.4460 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable...

  2. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  3. 46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable... 194.20. (b) Oxidizing materials used as blasting agents are regulated by the appropriate portions of...

  4. 46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable... 194.20. (b) Oxidizing materials used as blasting agents are regulated by the appropriate portions of...

  5. 46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable... 194.20. (b) Oxidizing materials used as blasting agents are regulated by the appropriate portions of...

  6. Use of an accelerometer and a microphone as gas detectors in the online quantitative detection of hydrogen released from ammonia borane by gas chromatography.

    PubMed

    He, Yi-San; Chen, Kuan-Fu; Lin, Chien-Hung; Lin, Min-Tsung; Chen, Chien-Chung; Lin, Cheng-Huang

    2013-03-19

    The use of an accelerometer as a gas detector in gas chromatography (GC) is described for the first time. A milli-whistle was connected to the outlet of the GC capillary. When the eluted and GC carrier gases pass through the capillary and milli-whistle, a sound is produced. After a fast Fourier transform (FFT), the sound wave generated from the milli-whistle is picked up by a microphone and the resulting vibration of the milli-whistle body can be recorded by an accelerometer. The release of hydrogen gas, as the result of thermal energy, from ammonia borane (NH3BH3), which has been suggested as a storage medium for hydrogen, was selected as the model sample. The findings show that the frequencies generated, either by sound or by the vibration from the whistle body, were identical. The concentration levels of the released hydrogen gas can be determined online, based on the frequency changes. Ammonia borane was placed in a brass reservoir, heated continually, and the released hydrogen gas was directly injected into the GC inlet at 0.5 min intervals, using a home-built electromagnetic pulse injector. The concentration of hydrogen for each injection can be calculated immediately. When the ammonia borane was encapsulated within a polycarbonate (PC) microtube array membrane, the temperature required for the release of hydrogen can be decreased, which would make such a material more convenient for use. The findings indicate that 1.0 mg of ammonia borane can produce hydrogen in the range of 1.0-1.25 mL, in the temperature range of 85-115 °C.

  7. 46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable solids and oxidizing materials used as chemical stores and reagents are governed by subparts 194.15 and...

  8. 46 CFR 194.05-11 - Flammable solids and oxidizing materials-Detail requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Flammable solids and oxidizing materials-Detail... and Marking § 194.05-11 Flammable solids and oxidizing materials—Detail requirements. (a) Flammable solids and oxidizing materials used as chemical stores and reagents are governed by subparts 194.15 and...

  9. 49 CFR 173.223 - Packagings for certain flammable solids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Packagings for certain flammable solids. 173.223 Section 173.223 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.223 Packagings for certain flammable solids. (a) Packagings for “Musk xylene...

  10. 49 CFR 173.223 - Packagings for certain flammable solids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Packagings for certain flammable solids. 173.223 Section 173.223 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.223 Packagings for certain flammable solids. (a) Packagings for “Musk xylene...

  11. Highly Sensitive and Selective Hydrogen Gas Sensor Using the Mesoporous SnO₂ Modified Layers.

    PubMed

    Xue, Niuzi; Zhang, Qinyi; Zhang, Shunping; Zong, Pan; Yang, Feng

    2017-10-14

    It is important to improve the sensitivities and selectivities of metal oxide semiconductor (MOS) gas sensors when they are used to monitor the state of hydrogen in aerospace industry and electronic field. In this paper, the ordered mesoporous SnO₂ (m-SnO₂) powders were prepared by sol-gel method, and the morphology and structure were characterized by X-ray diffraction analysis (XRD), transmission electron microscope (TEM) and Brunauer-Emmett-Teller (BET). The gas sensors were fabricated using m-SnO₂ as the modified layers on the surface of commercial SnO₂ (c-SnO₂) by screen printing technology, and tested for gas sensing towards ethanol, benzene and hydrogen with operating temperatures ranging from 200 °C to 400 °C. Higher sensitivity was achieved by using the modified m-SnO₂ layers on the c-SnO₂ gas sensor, and it was found that the S(c/m2) sensor exhibited the highest response (Ra/Rg = 22.2) to 1000 ppm hydrogen at 400 °C. In this paper, the mechanism of the sensitivity and selectivity improvement of the gas sensors is also discussed.

  12. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichman, Joshua

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is comparedmore » to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.« less

  13. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...

  14. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...

  15. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...

  16. 30 CFR 56.4531 - Flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flammable or combustible liquid storage... combustible liquid storage buildings or rooms. (a) Storage buildings or storage rooms in which flammable or... no person's work station is in the building. (c) Flammable or combustible liquids in use for day-to...

  17. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    USGS Publications Warehouse

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  18. Flammability Configuration Analysis for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2014-01-01

    Fire is one of the many potentially catastrophic hazards associated with the operation of crewed spacecraft. A major lesson learned by NASA from the Apollo 204 fire in 1966 was that ignition sources in an electrically powered vehicle should and can be minimized, but can never be eliminated completely. For this reason, spacecraft fire control is based on minimizing potential ignition sources and eliminating materials that can propagate fire. Fire extinguishers are always provided on crewed spacecraft, but are not considered as part of the fire control process. "Eliminating materials that can propagate fire" does not mean eliminating all flammable materials - the cost of designing and building spacecraft using only nonflammable materials is extraordinary and unnecessary. It means controlling the quantity and configuration of such materials to eliminate potential fire propagation paths and thus ensure that any fire would be small, localized, and isolated, and would self-extinguish without harm to the crew. Over the years, NASA has developed many solutions for controlling the configuration of flammable materials (and potentially flammable materials in commercial "off-the-shelf" hardware) so that they can be used safely in air and oxygen-enriched environments in crewed spacecraft. This document describes and explains these design solutions so payload customers and other organizations can use them in designing safe and cost-effective flight hardware. Proper application of these guidelines will produce acceptable flammability configurations for hardware located in any compartment of the International Space Station or other program crewed vehicles and habitats. However, use of these guidelines does not exempt hardware organizations of the responsibility for safety of the hardware under their control.

  19. 16 CFR Figure 2 to Part 1610 - Flammability Apparatus Views

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Flammability Apparatus Views 2 Figure 2 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS... Apparatus Views ER25MR08.001 ...

  20. 16 CFR Figure 2 to Part 1610 - Flammability Apparatus Views

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flammability Apparatus Views 2 Figure 2 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS... Apparatus Views ER25MR08.001 ...

  1. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the entire...

  2. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the entire...

  3. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the entire...

  4. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the entire...

  5. National Combustion Code Used To Study the Hydrogen Injector Design for Gas Turbines

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony C.; Norris, Andrew T.; Shih, Tsan-Hsing

    2005-01-01

    Hydrogen, in the gas state, has been proposed to replace Jet-A (the fuel used for commercial jet engines) as a fuel for gas turbine combustion. For the combustion of hydrogen and oxygen only, water is the only product and the main greenhouse gas, carbon dioxide, is not produced. This is an obvious benefit of using hydrogen as a fuel. The situation is not as simple when air replaces oxygen in the combustion process. (Air is mainly a mixture of oxygen, nitrogen, and argon. Other components comprise a very small part of air and will not be mentioned.) At the high temperatures found in the combustion process, oxygen reacts with nitrogen, and this produces nitrogen oxide compounds, or NOx--the main component of atmospheric smog. The production of NOx depends mainly on two variables: the temperature at which combustion occurs, and the length of time that the products of combustion stay, or reside, in the combustor. Starting from a lean (excess air) air-to-fuel ratio, the goal of this research was to minimize hot zones caused by incomplete premixing and to keep the residence time short while producing a stable flame. The minimization of these two parameters will result in low- NOx hydrogen combustion.

  6. 16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 5 Figure 5 to Part 1610—An Example of a Typical Gas Shield ER25MR08.00...

  7. 16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 5 Figure 5 to Part 1610—An Example of a Typical Gas Shield ER25MR08.00...

  8. 16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 5 Figure 5 to Part 1610—An Example of a Typical Gas Shield ER25MR08.00...

  9. 16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 5 Figure 5 to Part 1610—An Example of a Typical Gas Shield ER25MR08.00...

  10. 16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 5 Figure 5 to Part 1610—An Example of a Typical Gas Shield ER25MR08.00...

  11. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flammable liquid-TB/ALL. 30.10-22 Section 30.10-22 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10... flammable liquid having a Reid 1 vapor pressure of 14 pounds or more. 1 American Society for Testing...

  12. Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming

    NASA Astrophysics Data System (ADS)

    Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.

    2018-04-01

    Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.

  13. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  14. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  15. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  16. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  17. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  18. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  19. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  20. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  1. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  2. 33 CFR 127.1203 - Gas detection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waterfront facility handling LHG that transfers a flammable LHG must have at least two portable gas detectors, or a fixed gas detector, in the marine transfer area for LHG. Each detector must be capable of... detectors, or a fixed gas detector, available in the area. The detectors must be capable of showing whether...

  3. Flammability tests for regulation of building and construction materials

    Treesearch

    K. Sumathipala

    2006-01-01

    The regulation of building materials and products for flammability is critical to ensure the safety of occupants in buildings and other structures. The involvement of exposed building materials and products in fires resulting in the loss of human life often spurs an increase in regulation and new test methods to address the problem. Flammability tests range from those...

  4. Flammability of litter from southeastern trees: a preliminary assessment

    Treesearch

    J. Morgan Varner; Jeffrey M. Kane; Erin M. Banwell; Jesse K. Kreye

    2015-01-01

    The southeastern United States possesses a great diversity of woody species and an equally impressive history of wildland fires. Species are known to vary in their flammability, but little is known about southeastern species. We used published data and our own collections to perform standard litter flammability tests on a diverse suite of 25 native overstory trees from...

  5. Thermodynamic analyses of hydrogen production from sub-quality natural gas. Part I: Pyrolysis and autothermal pyrolysis

    NASA Astrophysics Data System (ADS)

    Huang, Cunping; T-Raissi, Ali

    Sub-quality natural gas (SQNG) is defined as natural gas whose composition exceeds pipeline specifications of nitrogen, carbon dioxide (CO 2) and/or hydrogen sulfide (H 2S). Approximately one-third of the U.S. natural gas resource is sub-quality gas [1]. Due to the high cost of removing H 2S from hydrocarbons using current processing technologies, SQNG wells are often capped and the gas remains in the ground. We propose and analyze a two-step hydrogen production scheme using SQNG as feedstock. The first step of the process involves hydrocarbon processing (via steam-methane reformation, autothermal steam-methane reformation, pyrolysis and autothermal pyrolysis) in the presence of H 2S. Our analyses reveal that H 2S existing in SQNG is stable and can be considered as an inert gas. No sulfur dioxide (SO 2) and/or sulfur trioxide (SO 3) is formed from the introduction of oxygen to SQNG. In the second step, after the separation of hydrogen from the main stream, un-reacted H 2S is used to reform the remaining methane, generating more hydrogen and carbon disulfide (CS 2). Thermodynamic analyses on SQNG feedstock containing up to 10% (v/v) H 2S have shown that no H 2S separation is required in this process. The Part I of this paper includes only thermodynamic analyses for SQNG pyrolysis and autothermal pyrolysis.

  6. Ultraviolet Light-Assisted Copper Oxide Nanowires Hydrogen Gas Sensor

    NASA Astrophysics Data System (ADS)

    Sihar, Nabihah; Tiong, Teck Yaw; Dee, Chang Fu; Ooi, Poh Choon; Hamzah, Azrul Azlan; Mohamed, Mohd Ambri; Majlis, Burhanuddin Yeop

    2018-05-01

    We fabricated copper oxide nanowires (CuO NWs) ultraviolet (UV) light-assisted hydrogen gas sensor. The fabricated sensor shows promising sensor response behavior towards 100 ppm of H2 at room temperature and elevated temperature at 100 °C when exposed to UV light (3.0 mW/cm2). One hundred-cycle device stability test has been performed, and it is found that for sample elevated at 100 °C, the UV-activated sample achieved stability in the first cycle as compared to the sample without UV irradiation which needed about 10 cycles to achieve stability at the initial stage, whereas the sample tested at room temperature was able to stabilize with the aid of UV irradiation. This indicates that with the aid of UV light, after some "warming up" time, it is possible for the conventional CuO NW sensor which normally work at elevated temperature to function at room temperature because UV source is speculated to play a dominant role to increase the interaction of the surface of CuO NWs and hydrogen gas molecules absorbed after the light exposure.

  7. Low-Dimensional Palladium Nanostructures for Fast and Reliable Hydrogen Gas Detection

    PubMed Central

    Noh, Jin-Seo; Lee, Jun Min; Lee, Wooyoung

    2011-01-01

    Palladium (Pd) has received attention as an ideal hydrogen sensor material due to its properties such as high sensitivity and selectivity to hydrogen gas, fast response, and operability at room temperature. Interestingly, various Pd nanostructures that have been realized by recent developments in nanotechnologies are known to show better performance than bulk Pd. This review highlights the characteristic properties, issues, and their possible solutions of hydrogen sensors based on the low-dimensional Pd nanostructures with more emphasis on Pd thin films and Pd nanowires. The finite size effects, relative strengths and weaknesses of the respective Pd nanostructures are discussed in terms of performance, manufacturability, and practical applicability. PMID:22346605

  8. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    PubMed

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...

  10. 30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...

  11. 30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...

  12. 30 CFR 57.4531 - Surface flammable or combustible liquid storage buildings or rooms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface flammable or combustible liquid storage... flammable or combustible liquid storage buildings or rooms. (a) Surface storage buildings or storage rooms in which flammable or combustible liquids, including grease, are stored and that are within 100 feet...

  13. A new numerical formulation of gas leakage and spread into a residential space in terms of hazard analysis.

    PubMed

    Nagaosa, Ryuichi S

    2014-04-30

    This study proposes a new numerical formulation of the spread of a flammable gas leakage. A new numerical approach has been applied to establish fundamental data for a hazard assessment of flammable gas spread in an enclosed residential space. The approach employs an extended version of a two-compartment concept, and determines the leakage concentration of gas using a mass-balance based formulation. The study also introduces a computational fluid dynamics (CFD) technique for calculating three-dimensional details of the gas spread by resolving all the essential scales of fluid motions without a turbulent model. The present numerical technique promises numerical solutions with fewer uncertainties produced by the model equations while maintaining high accuracy. The study examines the effect of gas density on the concentration profiles of flammable gas spread. It also discusses the effect of gas leakage rate on gas concentration profiles. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  14. 16 CFR § 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... under the Consumer Product Safety Act extremely flammable contact adhesives covered by this labeling... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Extremely flammable contact adhesives; labeling. § 1500.133 Section § 1500.133 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL...

  15. Highly Sensitive and Selective Hydrogen Gas Sensor Using the Mesoporous SnO2 Modified Layers

    PubMed Central

    Xue, Niuzi; Zhang, Qinyi; Zhang, Shunping; Zong, Pan; Yang, Feng

    2017-01-01

    It is important to improve the sensitivities and selectivities of metal oxide semiconductor (MOS) gas sensors when they are used to monitor the state of hydrogen in aerospace industry and electronic field. In this paper, the ordered mesoporous SnO2 (m-SnO2) powders were prepared by sol-gel method, and the morphology and structure were characterized by X-ray diffraction analysis (XRD), transmission electron microscope (TEM) and Brunauer–Emmett–Teller (BET). The gas sensors were fabricated using m-SnO2 as the modified layers on the surface of commercial SnO2 (c-SnO2) by screen printing technology, and tested for gas sensing towards ethanol, benzene and hydrogen with operating temperatures ranging from 200 °C to 400 °C. Higher sensitivity was achieved by using the modified m-SnO2 layers on the c-SnO2 gas sensor, and it was found that the S(c/m2) sensor exhibited the highest response (Ra/Rg = 22.2) to 1000 ppm hydrogen at 400 °C. In this paper, the mechanism of the sensitivity and selectivity improvement of the gas sensors is also discussed. PMID:29036898

  16. Compression testing of flammable liquids

    NASA Technical Reports Server (NTRS)

    Briles, O. M.; Hollenbaugh, R. P.

    1979-01-01

    Small cylindrical test chamber determines catalytic effect of given container material on fuel that might contribute to accidental deflagration or detonation below expected temperature under adiabatic compression. Device is useful to producers and users of flammable liquids and to safety specialists.

  17. Flammability on textile of flight crew professional clothing

    NASA Astrophysics Data System (ADS)

    Silva-Santos, M. C.; Oliveira, M. S.; Giacomin, A. M.; Laktim, M. C.; Baruque-Ramos, J.

    2017-10-01

    The issue about flammability of textile materials employed in passenger cabins of commercial aircrafts is an important part of safety routines planning. Once an in-flight emergency initiated with fire or smoke aboard, time becomes critical and the entire crew must be involved in the solution. It is part of the crew functions, notably the attendants, the in-flight firefighting. This study compares the values of textile material of flight attendant working cloths and galley curtain fabric with regard to flammability and Limiting Oxygen Index (LOI). Values to the professional clothing material indicate that they are flammable and the curtains, self-extinguishing. Thus, despite of the occurrences of fire outbreaks in aircrafts are unexceptional, the use of other materials and technologies for uniforms, such as alternative textile fibers and flame retardant finishes should be considered as well as the establishment of performance limits regarding flame and fire exposing.

  18. Fast-quench reactor for hydrogen and elemental carbon production from natural gas and other hydrocarbons

    DOEpatents

    Detering, Brent A.; Kong, Peter C.

    2006-08-29

    A fast-quench reactor for production of diatomic hydrogen and unsaturated carbons is provided. During the fast quench in the downstream diverging section of the nozzle, such as in a free expansion chamber, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  19. 49 CFR 174.204 - Tank car delivery of gases, including cryogenic liquids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., including cryogenic liquids. (a) A tank car containing Class 2 (gases) material may not be unloaded unless... Division 2.1 (flammable gas) material that is a cryogenic liquid; or (ii) A tank car, except for a DOT-106A... ammonia; hydrogen chloride, refrigerated liquid; hydrocarbon gas, liquefied; or liquefied petroleum gas...

  20. 49 CFR 174.204 - Tank car delivery of gases, including cryogenic liquids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., including cryogenic liquids. (a) A tank car containing Class 2 (gases) material may not be unloaded unless... Division 2.1 (flammable gas) material that is a cryogenic liquid; or (ii) A tank car, except for a DOT-106A... ammonia; hydrogen chloride, refrigerated liquid; hydrocarbon gas, liquefied; or liquefied petroleum gas...

  1. 49 CFR 174.204 - Tank car delivery of gases, including cryogenic liquids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., including cryogenic liquids. (a) A tank car containing Class 2 (gases) material may not be unloaded unless... Division 2.1 (flammable gas) material that is a cryogenic liquid; or (ii) A tank car, except for a DOT-106A... ammonia; hydrogen chloride, refrigerated liquid; hydrocarbon gas, liquefied; or liquefied petroleum gas...

  2. 49 CFR 174.204 - Tank car delivery of gases, including cryogenic liquids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., including cryogenic liquids. (a) A tank car containing Class 2 (gases) material may not be unloaded unless... Division 2.1 (flammable gas) material that is a cryogenic liquid; or (ii) A tank car, except for a DOT-106A... ammonia; hydrogen chloride, refrigerated liquid; hydrocarbon gas, liquefied; or liquefied petroleum gas...

  3. 49 CFR 174.204 - Tank car delivery of gases, including cryogenic liquids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., including cryogenic liquids. (a) A tank car containing Class 2 (gases) material may not be unloaded unless... Division 2.1 (flammable gas) material that is a cryogenic liquid; or (ii) A tank car, except for a DOT-106A... ammonia; hydrogen chloride, refrigerated liquid; hydrocarbon gas, liquefied; or liquefied petroleum gas...

  4. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadfarnia, Mohsen; Nibur, Kevin A.; San Marchi, Christopher W.

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} ismore » the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.« less

  5. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nibur, Kevin A.

    2010-11-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} ismore » the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.« less

  6. Species Composition and Fire: Non-Additive Mixture Effects on Ground Fuel Flammability

    PubMed Central

    van Altena, Cassandra; van Logtestijn, Richard S. P.; Cornwell, William K.; Cornelissen, Johannes H. C.

    2012-01-01

    Diversity effects on many aspects of ecosystem function have been well documented. However, fire is an exception: fire experiments have mainly included single species, bulk litter, or vegetation, and, as such, the role of diversity as a determinant of flammability, a crucial aspect of ecosystem function, is poorly understood. This study is the first to experimentally test whether flammability characteristics of two-species mixtures are non-additive, i.e., differ from expected flammability based on the component species in monospecific fuel. In standardized fire experiments on ground fuels, including monospecific fuels and mixtures of five contrasting subarctic plant fuel types in a controlled laboratory environment, we measured flame speed, flame duration, and maximum temperature. Broadly half of the mixture combinations showed non-additive effects for these flammability indicators; these were mainly enhanced dominance effects for temporal dynamics – fire speed and duration. Fuel types with the more flammable value for a characteristic determined the rate of fire speed and duration of the whole mixture; in contrast, maximum temperature of the fire was determined by the biomass-weighted mean of the mixture. These results suggest that ecological invasions by highly flammable species may have effects on ground-fire dynamics well out of proportion to their biomass. PMID:22639656

  7. Modelling leaf, plant and stand flammability for ecological and operational decision making

    NASA Astrophysics Data System (ADS)

    Zylstra, Philip

    2014-05-01

    Numerous factors have been found to affect the flammability of individual leaves and plant parts; however the way in which these factors relate to whole plant flammability, fire behaviour and the overall risk imposed by fire is not straightforward. Similarly, although the structure of plant communities is known to affect the flammability of the stand, a quantified, broadly applicable link has proven difficult to establish and validate. These knowledge gaps have presented major obstacles to the integration into fire behaviour science of research into factors affecting plant flammability, physiology, species succession and structural change, so that the management of ecosystems for fire risk is largely uninformed by these fields. The Forest Flammability Model (Zylstra, 2011) is a process-driven, complex systems model developed specifically to address this disconnect. Flame dimensions and position are calculated as properties emerging from the capacity for convective heat to propagate flame between horizontally and vertically separated leaves, branches, plants and plant strata, and this capacity is determined dynamically from the ignitability, combustibility and sustainability of those objects, their spatial arrangement and a vector-based model of the plume temperature from each burning fuel. All flammability properties as well as the physics of flame dimensions, angle and temperature distributions and the vertical structure of wind within the plant array use published sub-models which can be replaced as further work is developed. This modular structure provides a platform for the immediate application of new work on any aspect of leaf flammability or fire physics. Initial validation of the model examined its qualitative predictions for trends in forest flammability as a function of time since fire. The positive feedback predicted for the subalpine forest examined constituted a 'risky prediction' by running counter to the expectations of the existing approach, however

  8. Raman lidar for hydrogen gas concentration monitoring and future radioactive waste management.

    PubMed

    Liméry, Anasthase; Cézard, Nicolas; Fleury, Didier; Goular, Didier; Planchat, Christophe; Bertrand, Johan; Hauchecorne, Alain

    2017-11-27

    A multi-channel Raman lidar has been developed, allowing for the first time simultaneous and high-resolution profiling of hydrogen gas and water vapor. The lidar measures vibrational Raman scattering in the UV (355 nm) domain. It works in a high-bandwidth photon counting regime using fast SiPM detectors and takes into account the spectral overlap between hydrogen and water vapor Raman spectra. Measurement of concentration profiles of H 2 and H 2 O are demonstrated along a 5-meter-long open gas cell with 1-meter resolution at 85 meters. The instrument precision is investigated by numerical simulation to anticipate the potential performance at longer range. This lidar could find applications in the French project Cigéo for monitoring radioactive waste disposal cells.

  9. Performance of a Small Gas Generator Using Liquid Hydrogen and Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Acker, Loren W.; Fenn, David B.; Dietrich, Marshall W.

    1961-01-01

    The performance and operating problems of a small hot-gas generator burning liquid hydrogen with liquid oxygen are presented. Two methods of ignition are discussed. Injector and combustion chamber design details based on rocket design criteria are also given. A carefully fabricated showerhead injector of simple design provided a gas generator that yielded combustion efficiencies of 93 and 96 percent.

  10. Estimation of the lower flammability limit of organic compounds as a function of temperature.

    PubMed

    Rowley, J R; Rowley, R L; Wilding, W V

    2011-02-15

    A new method of estimating the lower flammability limit (LFL) of general organic compounds is presented. The LFL is predicted at 298 K for gases and the lower temperature limit for solids and liquids from structural contributions and the ideal gas heat of formation of the fuel. The average absolute deviation from more than 500 experimental data points is 10.7%. In a previous study, the widely used modified Burgess-Wheeler law was shown to underestimate the effect of temperature on the lower flammability limit when determined in a large-diameter vessel. An improved version of the modified Burgess-Wheeler law is presented that represents the temperature dependence of LFL data determined in large-diameter vessels more accurately. When the LFL is estimated at increased temperatures using a combination of this model and the proposed structural-contribution method, an average absolute deviation of 3.3% is returned when compared with 65 data points for 17 organic compounds determined in an ASHRAE-style apparatus. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Hydrogen Gas-Mediated Deoxydehydration/Hydrogenation of Sugar Acids: Catalytic Conversion of Glucarates to Adipates.

    PubMed

    Larson, Reed T; Samant, Andrew; Chen, Jianbin; Lee, Woojin; Bohn, Martin A; Ohlmann, Dominik M; Zuend, Stephan J; Toste, F Dean

    2017-10-11

    The development of a system for the operationally simple, scalable conversion of polyhydroxylated biomass into industrially relevant feedstock chemicals is described. This system includes a bimetallic Pd/Re catalyst in combination with hydrogen gas as a terminal reductant and enables the high-yielding reduction of sugar acids. This procedure has been applied to the synthesis of adipate esters, precursors for the production of Nylon-6,6, in excellent yield from biomass-derived sources.

  12. Ultraviolet Light-Assisted Copper Oxide Nanowires Hydrogen Gas Sensor.

    PubMed

    Sihar, Nabihah; Tiong, Teck Yaw; Dee, Chang Fu; Ooi, Poh Choon; Hamzah, Azrul Azlan; Mohamed, Mohd Ambri; Majlis, Burhanuddin Yeop

    2018-05-15

    We fabricated copper oxide nanowires (CuO NWs) ultraviolet (UV) light-assisted hydrogen gas sensor. The fabricated sensor shows promising sensor response behavior towards 100 ppm of H 2 at room temperature and elevated temperature at 100 °C when exposed to UV light (3.0 mW/cm 2 ). One hundred-cycle device stability test has been performed, and it is found that for sample elevated at 100 °C, the UV-activated sample achieved stability in the first cycle as compared to the sample without UV irradiation which needed about 10 cycles to achieve stability at the initial stage, whereas the sample tested at room temperature was able to stabilize with the aid of UV irradiation. This indicates that with the aid of UV light, after some "warming up" time, it is possible for the conventional CuO NW sensor which normally work at elevated temperature to function at room temperature because UV source is speculated to play a dominant role to increase the interaction of the surface of CuO NWs and hydrogen gas molecules absorbed after the light exposure.

  13. Palladium Gate All Around - Hetero Dielectric -Tunnel FET based highly sensitive Hydrogen Gas Sensor

    NASA Astrophysics Data System (ADS)

    Madan, Jaya; Chaujar, Rishu

    2016-12-01

    The paper presents a novel highly sensitive Hetero-Dielectric-Gate All Around Tunneling FET (HD-GAA-TFET) based Hydrogen Gas Sensor, incorporating the advantages of band to band tunneling (BTBT) mechanism. Here, the Palladium supported silicon dioxide is used as a sensing media and sensing relies on the interaction of hydrogen with Palladium-SiO2-Si. The high surface to volume ratio in the case of cylindrical GAA structure enhances the fortuities for surface reactions between H2 gas and Pd, and thus improves the sensitivity and stability of the sensor. Behaviour of the sensor in presence of hydrogen and at elevated temperatures is discussed. The conduction path of the sensor which is dependent on sensors radius has also been varied for the optimized sensitivity and static performance analysis of the sensor where the proposed design exhibits a superior performance in terms of threshold voltage, subthreshold swing, and band to band tunneling rate. Stability of the sensor with respect to temperature affectability has also been studied, and it is found that the device is reasonably stable and highly sensitive over the bearable temperature range. The successful utilization of HD-GAA-TFET in gas sensors may open a new door for the development of novel nanostructure gas sensing devices.

  14. Identical spin rotation effect and electron spin waves in quantum gas of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Lehtonen, L.; Vainio, O.; Ahokas, J.; Järvinen, J.; Novotny, S.; Sheludyakov, S.; Suominen, K.-A.; Vasiliev, S.; Khmelenko, V. V.; Lee, D. M.

    2018-05-01

    We present an experimental study of electron spin waves in atomic hydrogen gas compressed to high densities of ∼5 × 1018 cm‑3 at temperatures ranging from 0.26 to 0.6 K in the strong magnetic field of 4.6 T. Hydrogen gas is in a quantum regime when the thermal de-Broglie wavelength is much larger than the s-wave scattering length. In this regime the identical particle effects play a major role in atomic collisions and lead to the identical spin rotation effect (ISR). We observed a variety of spin wave modes caused by this effect with strong dependence on the magnetic potential caused by variations of the polarizing magnetic field. We demonstrate confinement of the ISR modes in the magnetic potential and manipulate their properties by changing the spatial profile of the magnetic field. We have found that at a high enough density of H gas the magnons accumulate in their ground state in the magnetic trap and exhibit long coherence, which has a profound effect on the electron spin resonance spectra. Such macroscopic accumulation of the ground state occurs at a certain critical density of hydrogen gas, where the chemical potential of the magnons becomes equal to the energy of their ground state in the trapping potential.

  15. Pressure Effects on Oxygen Concentration Flammability Thresholds of Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2006-01-01

    Spacecraft materials selection is based on an upward flammability test conducted in a quiescent environment in the highest-expected oxygen-concentration environment. However, NASA s advanced space exploration program is anticipating using various habitable environments. Because limited data is available to support current program requirements, a different test logic is suggested to address these expanded atmospheric environments through the determination of materials self-extinguishment limits. This paper provides additional pressure effects data on oxygen concentration and partial pressure self-extinguishment limits under quiescent conditions. For the range of total pressures tested, the oxygen concentration and oxygen partial pressure flammability thresholds show a near linear function of total pressure. The oxygen concentration/oxygen partial pressure flammability thresholds depend on the total pressure and appear to increase with increasing oxygen concentration (and oxygen partial pressure). For the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk because of oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats.

  16. Numerical estimation of ultrasonic production of hydrogen: Effect of ideal and real gas based models.

    PubMed

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-01-01

    Based on two different assumptions regarding the equation describing the state of the gases within an acoustic cavitation bubble, this paper studies the sonochemical production of hydrogen, through two numerical models treating the evolution of a chemical mechanism within a single bubble saturated with oxygen during an oscillation cycle in water. The first approach is built on an ideal gas model, while the second one is founded on Van der Waals equation, and the main objective was to analyze the effect of the considered state equation on the ultrasonic hydrogen production retrieved by simulation under various operating conditions. The obtained results show that even when the second approach gives higher values of temperature, pressure and total free radicals production, yield of hydrogen does not follow the same trend. When comparing the results released by both models regarding hydrogen production, it was noticed that the ratio of the molar amount of hydrogen is frequency and acoustic amplitude dependent. The use of Van der Waals equation leads to higher quantities of hydrogen under low acoustic amplitude and high frequencies, while employing ideal gas law based model gains the upper hand regarding hydrogen production at low frequencies and high acoustic amplitudes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Gas-controlled dynamic vacuum insulation with gas gate

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.

  18. Gas-controlled dynamic vacuum insulation with gas gate

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  19. Erosion of graphite surface exposed to hot supersonic hydrogen gas

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.

    1972-01-01

    A theoretical model based on laminar boundary layer flow equations is developed to predict the erosion rate of a graphite (AGCarb-101) surface exposed to a hot supersonic stream of hydrogen gas. The supersonic flow in the nozzle outside the boundary layer formed over the surface of the specimen is determined by assuming one-dimensional isentropic conditions. An overall surface reaction rate expression based on the experimental studies by Clarke and Fox is used to describe the interaction of hydrogen with graphite. A satisfactory agreement is found between the results of the computation, and the available experimental data. Some shortcomings of the model, and further possible improvements are discussed.

  20. Erosion of graphite surface exposed to hot supersonic hydrogen gas

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.

    1972-01-01

    A theoretical model based on laminar boundary layer flow equations was developed to predict the erosion rate of a graphite (AGCarb-101) surface exposed to a hot supersonic stream of hydrogen gas. The supersonic flow in the nozzle outside the boundary layer formed over the surface of the specimen was determined by assuming one-dimensional isentropic conditions. An overall surface reaction rate expression based on experimental studies was used to describe the interaction of hydrogen with graphite. A satisfactory agreement was found between the results of the computation, and the available experimental data. Some shortcomings of the model and further possible improvements are discussed.

  1. Novel insights into hydrogen sulfide--mediated cytoprotection.

    PubMed

    Calvert, John W; Coetzee, William A; Lefer, David J

    2010-05-15

    Hydrogen sulfide (H(2)S) is a colorless, water soluble, flammable gas that has the characteristic smell of rotten eggs. Like other members of the gasotransmitter family (nitric oxide and carbon monoxide), H(2)S has traditionally been considered to be a highly toxic gas and environmental hazard. However, much like for nitric oxide and carbon monoxide, the initial negative perception of H(2)S has evolved with the discovery that H(2)S is produced enzymatically in mammals under normal conditions. As a result of this discovery, there has been a great deal of work to elucidate the physiological role of H(2)S. H(2)S is now recognized to be cytoprotective in various models of cellular injury. Specifically, it has been demonstrated that the acute administration of H(2)S, either prior to ischemia or at reperfusion, significantly ameliorates in vitro or in vivo myocardial and hepatic ischemia-reperfusion injury. These studies have also demonstrated a cardioprotective role for endogenous H(2)S. This review article summarizes the current body of evidence demonstrating the cytoprotective effects of H(2)S with an emphasis on the cardioprotective effects. This review also provides a detailed description of the current signaling mechanisms shown to be responsible for these cardioprotective actions.

  2. Laboratory Studies of Hydrogen Gas Generation Using the Cobalt Chloride Catalyzed Sodium Borohydride-Water Reaction

    DTIC Science & Technology

    2015-07-01

    already use hydrogen for weather balloons . Besides cost, hydrogen has other advantages over helium. Hydrogen has more lift than helium, so larger...of water vapor entering the gas stream, and avoid damaging the balloon /aerostat (aerostats typically have an operational temperature range of -50 to...Aerostats: “Gepard” Tethered Aerostats with Mobile Mooring Systems. Available at http://rosaerosystems.com/aero/obj7. Accessed June 4, 2015. 11

  3. 29 CFR 1910.125 - Additional requirements for dipping and coating operations that use flammable or combustible...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that use flammable or combustible liquids. 1910.125 Section 1910.125 Labor Regulations Relating to... requirements for dipping and coating operations that use flammable or combustible liquids. If you use flammable...: And: •The flashpoint of the flammable or combustible liquid is 200 °F (93.3 °C) or above •The liquid...

  4. 16 CFR 1609.1 - Text of the Flammable Fabrics Act of 1953, as amended in 1954.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Text of the Flammable Fabrics Act of 1953... FLAMMABLE FABRICS ACT REGULATIONS TEXT OF THE FLAMMABLE FABRICS ACT OF 1953, AS AMENDED IN 1954, PRIOR TO 1967 AMENDMENT AND REVISION § 1609.1 Text of the Flammable Fabrics Act of 1953, as amended in 1954. The...

  5. 16 CFR 1609.1 - Text of the Flammable Fabrics Act of 1953, as amended in 1954.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Text of the Flammable Fabrics Act of 1953... FLAMMABLE FABRICS ACT REGULATIONS TEXT OF THE FLAMMABLE FABRICS ACT OF 1953, AS AMENDED IN 1954, PRIOR TO 1967 AMENDMENT AND REVISION § 1609.1 Text of the Flammable Fabrics Act of 1953, as amended in 1954. The...

  6. Credit PSR. The flammable waste materials shed appears as seen ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. The flammable waste materials shed appears as seen when looking south (186°) from South Liquid Loop Road. Note the catch basin for retaining accidentally spilled substances. Wastes are stored in drums and other safety containers until disposal by burning at the Incinerator (4249/E-50) or by other means. Note the nearby sign warning of corrosive, flammable materials, and calling attention to a fire extinguisher; a telephone is provided to call for assistance in the event of an emergency. This structure is isolated to prevent the spread of fire, and it is lightly built so damage from a fire will be inexpensive to repair - Jet Propulsion Laboratory Edwards Facility, Waste Flammable Storage Building, Edwards Air Force Base, Boron, Kern County, CA

  7. Flammability Limits of Gases Under Low Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.

    1985-01-01

    The purpose of this combustion science investigation is to determine the effect of zero, fractional, and super gravity on the flammability limits of a premixed methane air flame in a standard 51 mm diameter flammability tube and to determine, if possible, the fluid flow associated with flame passage under zero-g conditions and the density (and hence, temperature) profiles associated with the flame under conditions of incipient extinction. This is accomplished by constructing an appropriate apparatus for placement in NASA's Lewis Research Center Lear Jet facility and flying the prescribed g-trajectories while the experiment is being performed. Data is recorded photographically using the visible light of the flame. The data acquired is: (1) the shape and propagation velocity of the flame under various g-conditions for methane compositions that are inside the flammable limits, and (2) the effect of gravity on the limits. Real time accelerometer readings for the three orthogonal directions are displayed in full view of the cameras and the framing rate of the cameras is used to measure velocities.

  8. Adsorption and Desorption of Hydrogen by Gas-Phase Palladium Clusters Revealed by In Situ Thermal Desorption Spectroscopy.

    PubMed

    Takenouchi, Masato; Kudoh, Satoshi; Miyajima, Ken; Mafuné, Fumitaka

    2015-07-02

    Adsorption and desorption of hydrogen by gas-phase Pd clusters, Pdn(+), were investigated by thermal desorption spectroscopy (TDS) experiments and density functional theory (DFT) calculations. The desorption processes were examined by heating the clusters that had adsorbed hydrogen at room temperature. The clusters remaining after heating were monitored by mass spectrometry as a function of temperature up to 1000 K, and the temperature-programmed desorption (TPD) curve was obtained for each Pdn(+). It was found that hydrogen molecules were released from the clusters into the gas phase with increasing temperature until bare Pdn(+) was formed. The threshold energy for desorption, estimated from the TPD curve, was compared to the desorption energy calculated by using DFT, indicating that smaller Pdn(+) clusters (n ≤ 6) tended to have weakly adsorbed hydrogen molecules, whereas larger Pdn(+) clusters (n ≥ 7) had dissociatively adsorbed hydrogen atoms on the surface. Highly likely, the nonmetallic nature of the small Pd clusters prevents hydrogen molecule from adsorbing dissociatively on the surface.

  9. Oxygen Concentration Flammability Thresholds of Selected Aerospace Materials Considered for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Williams, James H.; Harper, Susan A.; Beeson, Harold; Pedley, Michael D.

    2007-01-01

    Materials selection for spacecraft is based on an upward flammability test conducted in a quiescent environment in the highest expected oxygen concentration environment. The test conditions and its pass/fail test logic do not provide sufficient quantitative materials flammability information for an advanced space exploration program. A modified approach has been suggested determination of materials self-extinguishment limits. The flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats. This paper provides data on oxygen concentration self-extinguishment limits under quiescent conditions for selected materials considered for the Constellation Program.

  10. ISO 14624 Series - Space Systems - Safety and Compatibility of Materials Flammability Assessment of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2007-01-01

    A viewgraph presentation on the flammability of spacecraft materials is shown. The topics include: 1) Spacecraft Fire Safety; 2) Materials Flammability Test; 3) Impetus for enhanced materials flammability characterization; 4) Exploration Atmosphere Working Group Recommendations; 5) Approach; and 6) Status of implementation

  11. Decontamination assessment of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surfaces using a hydrogen peroxide gas generator.

    PubMed

    Rogers, J V; Sabourin, C L K; Choi, Y W; Richter, W R; Rudnicki, D C; Riggs, K B; Taylor, M L; Chang, J

    2005-01-01

    To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Bacillus anthracis, B. subtilis, and G. stearothermophilus spores were dried on seven types of indoor surfaces and exposed to > or =1000 ppm hydrogen peroxide gas for 20 min. Hydrogen peroxide exposure significantly decreased viable B. anthracis, B. subtilis, and G. stearothermophilus spores on all test materials except G. stearothermophilus on industrial carpet. Significant differences were observed when comparing the reduction in viable spores of B. anthracis with both surrogates. The effectiveness of gaseous hydrogen peroxide on the growth of biological indicators and spore strips was evaluated in parallel as a qualitative assessment of decontamination. At 1 and 7 days postexposure, decontaminated biological indicators and spore strips exhibited no growth, while the nondecontaminated samples displayed growth. Significant differences in decontamination efficacy of hydrogen peroxide gas on porous and nonporous surfaces were observed when comparing the mean log reduction in B. anthracis spores with B. subtilis and G. stearothermophilus spores. These results provide comparative information for the decontamination of B. anthracis spores with surrogates on indoor surfaces using hydrogen peroxide gas.

  12. Studies of Hydrogen Production by the Water Gas Shift Reaction and Related Chemistry

    DTIC Science & Technology

    1983-04-15

    HYDROGEN PRODUCTION BY THE WATER GAS SHIFT REACTION AND RELATED CHEMISTRY Institution: The University of Rochester Department of Chemistry -. Rochester...been in siated for the catalysis of the water gas shift reaction, W20 + CO H𔃼 + C02, and for electrocatalytic oxidation of CO, CO + H󈧘 C02 + 2H...particular interest in adopting water gas shift catalysts to act as electrocatalysts for the anode reaction of CO fuel cells. Under these conditions the best

  13. Effect of a zero g environment on flammability limits as determined using a standard flammability tube apparatus

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Reuss, D. L.

    1980-01-01

    Flammability limits in a zero gravity environment were defined. Key aspects of a possible spacelab experiment were investigated analytically, experimentally on the bench, and in drop tower facilities. A conceptual design for a spacelab experiment was developed.

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BIOQUELL, INC. CLARIS C HYDROGEN PEROXIDE GAS GENERATOR

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Clarus C Hydrogen Peroxide Gas Generator, a biological decontamination device manufactured by BIOQUELL, Inc. The unit was tested by evaluating its ability to decontaminate seven types...

  15. Extended Le Chatelier's formula for carbon dioxide dilution effect on flammability limits.

    PubMed

    Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki

    2006-11-02

    Carbon dioxide dilution effect on the flammability limits was measured for various flammable gases. The obtained values were analyzed using the extended Le Chatelier's formula developed in a previous study. As a result, it has been found that the flammability limits of methane, propane, propylene, methyl formate, and 1,1-difluoroethane are adequately explained by the extended Le Chatelier's formula using a common set of parameter values. Ethylene, dimethyl ether, and ammonia behave differently from these compounds. The present result is very consistent with what was obtained in the case of nitrogen dilution.

  16. Seasonal and local differences in leaf litter flammability of six Mediterranean tree species.

    PubMed

    Kauf, Zorica; Fangmeier, Andreas; Rosavec, Roman; Španjol, Željko

    2015-03-01

    One of the suggested management options for reducing fire danger is the selection of less flammable plant species. Nevertheless, vegetation flammability is both complex and dynamic, making identification of such species challenging. While large efforts have been made to connect plant traits to fire behavior, seasonal changes and within species variability of traits are often neglected. Currently, even the most sophisticated fire danger systems presume that intrinsic characteristics of leaf litter stay unchanged, and plant species flammability lists are often transferred from one area to another. In order to assess if these practices can be improved, we performed a study examining the relationship between morphological characteristics and flammability parameters of leaf litter, thereby taking into account seasonal and local variability. Litter from six Mediterranean tree species was sampled throughout the fire season from three different locations along a climate gradient. Samples were subjected to flammability testing involving an epiradiator operated at 400 °C surface temperature with 3 g sample weight. Specific leaf area, fuel moisture content, average area, and average mass of a single particle had significant influences on flammability parameters. Effects of sampling time and location were significant as well. Due to the standardized testing conditions, these effects could be attributed to changes in intrinsic characteristics of the material. As the aforementioned effects were inconsistent and species specific, these results may potentially limit the generalization of species flammability rankings. Further research is necessary in order to evaluate the importance of our findings for fire danger modeling.

  17. Applicability of Aerospace Materials Ground Flammability Test Data to Spacecraft Environments Theory and Applied Technologies

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2009-01-01

    This slide presentation reviews the use of ground test data in reference to flammability to spacecraft environments. It reviews the current approach to spacecraft fire safety, the challenges to fire safety that the Constellation program poses, the current trends in the evaluation of the Constellation materials flammability, and the correlation of test data from ground flammability tests with the spacecraft environment. Included is a proposal for testing and the design of experiments to test the flammability of materials under similar spacecraft conditions.

  18. Low Emission Hydrogen Combustors for Gas Turbines Using Lean Direct Injection

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Smith, Timothy D.; Kundu, Krishna

    2005-01-01

    One of the key technology challenges for the use of hydrogen in gas turbine engines is the performance of the combustion system, in particular the fuel injectors. To investigate the combustion performance of gaseous hydrogen fuel injectors flame tube combustor experiments were performed. Tests were conducted to measure the nitrogen oxide (NOx) emissions and combustion performance at inlet conditions of 600 to 1000 deg F, 60 to 200 pounds per square inch absolute (psia), and equivalence ratios up to 0.48. All the injectors were based on Lean Direct Injection (LDI) technology with multiple injection points and quick mixing. One challenge to hydrogen based premixing combustion systems is flashback since hydrogen has a reaction rate over seven times that of Jet-A. To reduce the risk, design mixing times were kept short and velocities high to minimize flashback. Five fuel injector designs were tested in 2.5 and 3.5-in. diameter flame tubes with non-vitiated heated air and gaseous hydrogen. Data is presented on measurements of NOx emissions and combustion efficiency for the hydrogen injectors at 1.0, 3.125, and 5.375 in. from the injector face. Results show that for some configurations, NOx emissions are comparable to that of state of the art Jet-A LDI combustor concepts.

  19. Low-Emission Hydrogen Combustors for Gas Turbines Using Lean Direct Injection

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Smith, Timothy D.; Kundu, Krishna

    2007-01-01

    One of the key technology challenges for the use of hydrogen in gas turbine engines is the performance of the combustion system, in particular the fuel injectors. To investigate the combustion performance of gaseous hydrogen fuel injectors flame tube combustor experiments were performed. Tests were conducted to measure the nitrogen oxide (NO(x)) emissions and combustion performance at inlet conditions of 588 to 811 K, 0.4 to 1.4 MPa, and equivalence ratios up to 0.48. All the injectors were based on Lean Direct Injection (LDI) technology with multiple injection points and quick mixing. One challenge to hydrogen-based premixing combustion systems is flashback since hydrogen has a reaction rate over 7 times that of Jet-A. To reduce the risk, design mixing times were kept short and velocities high to minimize flashback. Five fuel injector designs were tested in 6.35- and 8.9-cm-diameter flame tubes with non-vitiated heated air and gaseous hydrogen. Data is presented on measurements of NO(x) emissions and combustion efficiency for the hydrogen injectors at 2.540, 7.937, and 13.652 cm from the injector face. Results show that for some configurations, NO(x) emissions are comparable to that of state of the art Jet-A LDI combustor concepts.

  20. 46 CFR 147A.43 - Other sources of ignition; flammable fumigants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... sources of ignition; flammable fumigants. While the space that is fumigated is being sealed or during fumigation, no person may use matches, smoking materials, fires, open flames, or any other source of ignition... 46 Shipping 5 2010-10-01 2010-10-01 false Other sources of ignition; flammable fumigants. 147A.43...

  1. Hydrogen Embrittlement

    NASA Technical Reports Server (NTRS)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  2. The Use of Cryogenically Cooled 5A Molecular Sieves for Large Volume Reduction of Tritiated Hydrogen Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniazzi, A.B.; Bartoszek, F.E.; Sherlock, A.M.

    2006-07-01

    A commercial hydrogen isotope separation system based on gas chromatography (AGC-ISS) has been built. The system operates in two modes: stripping and volume reduction. The purpose of the stripping mode is to reduce a large volume of tritiated hydrogen gas to a small volume of tritium rich hydrogen gas. The results here illustrate the effectiveness of the AGC-ISS in the stripping and volume reduction phases. Column readiness for hydrogen isotope separation is confirmed by room temperature air separation tests. Production runs were initially carried out using natural levels of deuterium (110-160 ppm) in high purity hydrogen. After completion of themore » deuterium/hydrogen runs the system began operations with tritiated hydrogen. The paper presents details of the AGC-ISS design and results of tritium tests. The heart of the AGC-ISS consists of two packed columns (9 m long, 3.8 cm OD) containing 5A molecular sieve material of 40/60 mesh size. Each column has 5 individually controlled heaters along the length of the column and is coiled around an inverted inner dewar. The coiled column and inner dewar are both contained within an outer dewar. In this arrangement liquid nitrogen, used to cryogenically cool the columns, flows into and out off the annular space defined by the two dewars, allowing for alternate heating and cooling cycles. Tritiated hydrogen feed is injected in batch quantities. The batch size is variable with the maximum quantity restricted by the tritium concentration in the exhausted hydrogen. The stripping operations can be carried out in full automated mode or in full manual mode. The average cycle time between injections is about 75 minutes. To date, the maximum throughput achieved is 10.5 m{sup 3}/day. A total of 37.8 m{sup 3} of tritiated hydrogen has been processed during commissioning. The system has demonstrated that venting of >99.95% of the feed gas is possible while retaining 99.98% of the tritium. At a maximum tritium concentration of

  3. Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

    2013-03-21

    Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation ofmore » hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.« less

  4. Aqueous process for recovering sulfur from hydrogen sulfide-bearing gas

    DOEpatents

    Basu, Arunabha

    2015-05-05

    A process for recovering sulfur from a hydrogen sulfide-bearing gas utilizes an aqueous reaction medium, a temperature of about 110-150.degree. C., and a high enough pressure to maintain the aqueous reaction medium in a liquid state. The process reduces material and equipment costs and addresses the environmental disadvantages associated with known processes that rely on high boiling point organic solvents.

  5. Optimization Study of Hydrogen Gas Adsorption on Zig-zag Single-walled Carbon Nanotubes: The Artificial Neural Network Analysis

    NASA Astrophysics Data System (ADS)

    Nasruddin; Lestari, M.; Supriyadi; Sholahudin

    2018-03-01

    The use of hydrogen gas in fuel cell technology has a huge opportunity to be applied in upcoming vehicle technology. One of the most important problems in fuel cell technology is the hydrogen storage. The adsorption of hydrogen in carbon-based materials attracts a lot of attention because of its reliability. This study investigated the adsorption of hydrogen gas in Single-walled Carbon Nano Tubes (SWCNT) with chilarity of (0, 12), (0, 15), and (0, 18) to find the optimum chilarity. Artificial Neural Networks (ANN) can be used to predict the hydrogen storage capacity at different pressure and temperature conditions appropriately, using simulated series of data. The Artificial Neural Network is modeled as a predictor of the hydrogen adsorption capacity which provides solutions to some deficiencies in molecular dynamics (MD) simulations. In a previous study, ANN configurations have been developed for 77k, 233k, and 298k temperatures in hydrogen gas storage. To prepare this prediction, ANN is modeled to find out the configurations that exist in the set of training and validation of specified data selection, the distance between data, and the number of neurons that produce the smallest error. This configuration is needed to make an accurate artificial neural network. The configuration of neural network was then applied to this research. The neural network analysis results show that the best configuration of artificial neural network in hydrogen storage is at 233K temperature i.e. on SWCNT with chilarity of (0.12).

  6. Permeability and flammability study of composite sandwich structures for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Bubacz, Monika

    Fiber reinforced plastics offer advantageous specific strength and stiffness compared to metals and has been identified as candidates for the reusable space transportation systems primary structures including cryogenic tanks. A number of carbon and aramid fiber reinforced plastics have been considered for the liquid hydrogen tanks. Materials selection is based upon mechanical properties and containment performance (long and short term) and upon manufacturing considerations. The liquid hydrogen tank carries shear, torque, end load, and bending moment due to gusts, maneuver, take-off, landing, lift, drag, and fuel sloshing. The tank is pressurized to about 1.5 atmosphere (14.6psi or 0.1 MPa) differential pressure and on ascent maintains the liquid hydrogen at a temperature of 20K. The objective of the research effort into lay the foundation for developing the technology required for reliable prediction of the effects of various design, manufacturing, and service parameters on the susceptibility of composite tanks to develop excessive permeability to cryogenic fuels. Efforts will be expended on developing the materials and structural concepts for the cryogenic tanks that can meet the functional requirements. This will include consideration for double wall composite sandwich structures, with inner wall to meet the cryogenic requirements. The structure will incorporate nanoparticles for properties modifications and developing barriers. The main effort will be extended to tank wall's internal skin design. The main requirements for internal composite stack are: (1) introduction of barrier film (e.g. honeycomb material paper sheet) to reduce the wall permeability to hydrogen, (2) introduction of nanoparticles into laminate resin to prevent micro-cracking or crack propagation. There is a need to characterize and analyze composite sandwich structural damage due to burning and explosion. Better understanding of the flammability and blast resistance of the composite structures

  7. Clothing Flammability and Burn Injuries: Public Opinion Concerning an Overlooked, Preventable Public Health Problem.

    PubMed

    Frattaroli, Shannon; Spivak, Steven M; Pollack, Keshia M; Gielen, Andrea C; Salomon, Michele; Damant, Gordon H

    2016-01-01

    The objective of this study was to describe knowledge of clothing flammability risk, public support for clothing flammability warning labels, and stronger regulation to reduce the risk. As part of a national survey of homeowners about residential sprinkler systems, the authors included questions about clothing flammability. The authors used an online web panel to sample homeowners and descriptive methods to analyze the resulting data. The sample included 2333 homeowners. Knowledge of clothing flammability and government oversight of clothing flammability risk was low. Homeowners were evenly split about the effectiveness of current standards; however, when presented with clothing-related burn injury and death data, a majority (53%) supported stricter standards. Most homeowners (64%) supported warning labels and indicated that such labels would either have no effect on their purchasing decisions (64%) or be an incentive (24%) to purchase an item. Owners of sprinkler-equipped homes were more likely to support these interventions than owners of homes without sprinkler systems. Public knowledge about clothing flammability risks is low. Most homeowners supported clothing labels to inform consumers of this risk and increased government intervention to reduce the risk.

  8. Reduced-order modellin for high-pressure transient flow of hydrogen-natural gas mixture

    NASA Astrophysics Data System (ADS)

    Agaie, Baba G.; Khan, Ilyas; Alshomrani, Ali Saleh; Alqahtani, Aisha M.

    2017-05-01

    In this paper the transient flow of hydrogen compressed-natural gas (HCNG) mixture which is also referred to as hydrogen-natural gas mixture in a pipeline is numerically computed using the reduced-order modelling technique. The study on transient conditions is important because the pipeline flows are normally in the unsteady state due to the sudden opening and closure of control valves, but most of the existing studies only analyse the flow in the steady-state conditions. The mathematical model consists in a set of non-linear conservation forms of partial differential equations. The objective of this paper is to improve the accuracy in the prediction of the HCNG transient flow parameters using the Reduced-Order Modelling (ROM). The ROM technique has been successfully used in single-gas and aerodynamic flow problems, the gas mixture has not been done using the ROM. The study is based on the velocity change created by the operation of the valves upstream and downstream the pipeline. Results on the flow characteristics, namely the pressure, density, celerity and mass flux are based on variations of the mixing ratio and valve reaction and actuation time; the ROM computational time cost advantage are also presented.

  9. 29 CFR 1910.125 - Additional requirements for dipping and coating operations that use flammable liquids or liquids...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that use flammable liquids or liquids with flashpoints greater than 199.4 °F (93 °C). 1910.125... flammable liquids or liquids with flashpoints greater than 199.4 °F (93 °C). If you use flammable liquids... provide: (i) Manual fire extinguishers that are suitable for flammable and combustible liquid fires and...

  10. 29 CFR 1910.125 - Additional requirements for dipping and coating operations that use flammable liquids or liquids...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that use flammable liquids or liquids with flashpoints greater than 199.4 °F (93 °C). 1910.125... flammable liquids or liquids with flashpoints greater than 199.4 °F (93 °C). If you use flammable liquids... provide: (i) Manual fire extinguishers that are suitable for flammable and combustible liquid fires and...

  11. Evaluation of Less-Flammable Insulation Fluids and Fire-Prevention Guidance for Transformers

    NASA Astrophysics Data System (ADS)

    Yamagishi, Akira; Sugawa, Osami

    This paper concerns the definition and evaluation of less-flammable of insulation fluids for transformers. In particular it focuses on the ISO5660 cone calorimeter method, which is widely used as an evaluation method for the less-flammable of solids, and proposes that such method is also valid for quantitative evaluation of the less-flammable of insulating fluids. Quantifying the combustion characteristics of insulation fluids and analyzing the causes of fires can be said to be the first step toward implementing appropriate safety measures that will render electric utility equipment more fire retardant or fireproof in the future.

  12. Gas phase hydrogen permeation in alpha titanium and carbon steels

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Shah, K. K.; Reeves, B. H.; Gadgeel, V. L.

    1980-01-01

    Commercially pure titanium and heats of Armco ingot iron and steels containing from 0.008-1.23 w/oC were annealed or normalized and machined into hollow cylinders. Coefficients of diffusion for alpha-Ti and alpha-Fe were determined by the lag-time technique. Steady state permeation experiments yield first power pressure dependence for alpha-Ti and Sievert's law square root dependence for Armco iron and carbon steels. As in the case of diffusion, permeation data confirm that alpha-titanium is subject to at least partial phase boundary reaction control while the steels are purely diffusion controlled. The permeation rate in steels also decreases as the carbon content increases. As a consequence of Sievert's law, the computed hydrogen solubility decreases as the carbon content increases. This decreases in explained in terms of hydrogen trapping at carbide interfaces. Oxidizing and nitriding the surfaces of alpha-titanium membranes result in a decrease in the permeation rate for such treatment on the gas inlet surfaces but resulted in a slight increase in the rate for such treatment on the gas outlet surfaces. This is explained in terms of a discontinuous TiH2 layer.

  13. Operational Considerations for Oxygen Flammability Risks: Concentrated Oxygen Diffusion and Permeation Behaviors

    NASA Technical Reports Server (NTRS)

    Harper, Susana; Smith, Sarah; Juarez, Alfredo; Hirsch, David

    2010-01-01

    Increased human spaceflight operations utilize oxygen concentrations that are frequently varied with use of concentrations up to 100 percent oxygen. Even after exiting a higher percentage oxygen environment, high oxygen concentrations can still be maintained due to material saturation and oxygen entrapment between barrier materials. This paper examines the material flammability concerns that arise from changing oxygen environments during spaceflight operations. We examine the time required for common spacecraft and spacesuit materials exposed to oxygen to return to reduced ignitability and flammability once removed from the increased concentration. Various common spacecraft materials were considered: spacecraft cabin environment foams, Extra Vehicular Mobility Unit materials and foams, Advanced Crew Escape Suit materials, and other materials of interest such as Cotton, Nomex^ HT90-40, and Tiburon Surgical Drape. This paper presents calculated diffusion coefficients derived from experimentally obtained oxygen transmission rates for the tested materials and the analytically derived times necessary for reduced flammability to be achieved based on NASA flammability criteria. Oxygen material saturation and entrapment scenarios are examined. Experimental verification data on oxygen diffusion in saturation scenarios are also presented and discussed. We examine how to use obtained data to address flammability concerns during operational planning to reduce the likelihood of fires while improving efficiency for procedures.

  14. Heat and mass transfer rates during flow of dissociated hydrogen gas over graphite surface

    NASA Technical Reports Server (NTRS)

    Nema, V. K.; Sharma, O. P.

    1986-01-01

    To improve upon the performance of chemical rockets, the nuclear reactor has been applied to a rocket propulsion system using hydrogen gas as working fluid and a graphite-composite forming a part of the structure. Under the boundary layer approximation, theoretical predictions of skin friction coefficient, surface heat transfer rate and surface regression rate have been made for laminar/turbulent dissociated hydrogen gas flowing over a flat graphite surface. The external stream is assumed to be frozen. The analysis is restricted to Mach numbers low enough to deal with the situation of only surface-reaction between hydrogen and graphite. Empirical correlations of displacement thickness, local skin friction coefficient, local Nusselt number and local non-dimensional heat transfer rate have been obtained. The magnitude of the surface regression rate is found low enough to ensure the use of graphite as a linear or a component of the system over an extended period without loss of performance.

  15. Ultrafine hydrogen storage powders

    DOEpatents

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  16. Numerical modeling of gas mixing and bio-chemical transformations during underground hydrogen storage within the project H2STORE

    NASA Astrophysics Data System (ADS)

    Hagemann, B.; Feldmann, F.; Panfilov, M.; Ganzer, L.

    2015-12-01

    The change from fossil to renewable energy sources is demanding an increasing amount of storage capacities for electrical energy. A promising technological solution is the storage of hydrogen in the subsurface. Hydrogen can be produced by electrolysis using excessive electrical energy and subsequently converted back into electricity by fuel cells or engine generators. The development of this technology starts with adding small amounts of hydrogen to the high pressure natural gas grid and continues with the creation of pure underground hydrogen storages. The feasibility of hydrogen storage in depleted gas reservoirs is investigated in the lighthouse project H2STORE financed by the German Ministry for Education and Research. The joint research project has project members from the University of Jena, the Clausthal University of Technology, the GFZ Potsdam and the French National Center for Scientic Research in Nancy. The six sub projects are based on laboratory experiments, numerical simulations and analytical work which cover the investigation of mineralogical, geochemical, physio-chemical, sedimentological, microbiological and gas mixing processes in reservoir and cap rocks. The focus in this presentation is on the numerical modeling of underground hydrogen storage. A mathematical model was developed which describes the involved coupled hydrodynamic and microbiological effects. Thereby, the bio-chemical reaction rates depend on the kinetics of microbial growth which is induced by the injection of hydrogen. The model has been numerically implemented on the basis of the open source code DuMuX. A field case study based on a real German gas reservoir was performed to investigate the mixing of hydrogen with residual gases and to discover the consequences of bio-chemical reactions.

  17. Hydrogen Gas Ameliorates Hepatic Reperfusion Injury After Prolonged Cold Preservation in Isolated Perfused Rat Liver.

    PubMed

    Shimada, Shingo; Wakayama, Kenji; Fukai, Moto; Shimamura, Tsuyoshi; Ishikawa, Takahisa; Fukumori, Daisuke; Shibata, Maki; Yamashita, Kenichiro; Kimura, Taichi; Todo, Satoru; Ohsawa, Ikuroh; Taketomi, Akinobu

    2016-12-01

    Hydrogen gas reduces ischemia and reperfusion injury (IRI) in the liver and other organs. However, the precise mechanism remains elusive. We investigated whether hydrogen gas ameliorated hepatic I/R injury after cold preservation. Rat liver was subjected to 48-h cold storage in University of Wisconsin solution. The graft was reperfused with oxygenated buffer with or without hydrogen at 37° for 90 min on an isolated perfusion apparatus, comprising the H 2 (+) and H 2 (-) groups, respectively. In the control group (CT), grafts were reperfused immediately without preservation. Graft function, injury, and circulatory status were assessed throughout the perfusion. Tissue samples at the end of perfusion were collected to determine histopathology, oxidative stress, and apoptosis. In the H 2 (-) group, IRI was indicated by a higher aspartate aminotransferase (AST), alanine aminotransferase (ALT) leakage, portal resistance, 8-hydroxy-2-deoxyguanosine-positive cell rate, apoptotic index, and endothelial endothelin-1 expression, together with reduced bile production, oxygen consumption, and GSH/GSSG ratio (vs. CT). In the H 2 (+) group, these harmful changes were significantly suppressed [vs. H 2 (-)]. Hydrogen gas reduced hepatic reperfusion injury after prolonged cold preservation via the maintenance of portal flow, by protecting mitochondrial function during the early phase of reperfusion, and via the suppression of oxidative stress and inflammatory cascades thereafter. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Flammability test for sunglasses: developing a system

    NASA Astrophysics Data System (ADS)

    Magri, Renan; Ventura, Liliane

    2014-02-01

    Recent investigations show the need for certificating sunglasses to ensure the safety and health to population. The Brazilian Standard ABNT NBR 15111 regulates features to sunglasses, however, there is not a sunglasses certification office in Brazil, therefore, our lab has been developing several equipment for sunglasses testing. This work refers to one of them: the flammability test system for sunglasses in compliance with the NBR 15111. The standard provides requirements for the flammability test procedure which requires that the equipment must operate at a temperature of 650 °C +/- 20 °C the end of a steel rod of 300 mm length and 6 mm diameter should be heated and pressed over the surface of the lenses for five seconds; the flammability is checked by visual inspection. The furnace is made of ceramic. We used a power electronic circuit to control the power in the furnace using ON/OFF mode and for measuring the temperature, we used a K-type thermocouple. A stepper motor with pulley lifts the steel rod. The system reaches the working temperature in 15 minutes for a step input of 61 V in open loop system. The electronics control are under development in order to shorten the time necessary to reach the working temperature and maintain the temperature variation in the furnace within the limits imposed by the standard as next steps.

  19. Hydrogen storage materials discovery via high throughput ball milling and gas sorption.

    PubMed

    Li, Bin; Kaye, Steven S; Riley, Conor; Greenberg, Doron; Galang, Daniel; Bailey, Mark S

    2012-06-11

    The lack of a high capacity hydrogen storage material is a major barrier to the implementation of the hydrogen economy. To accelerate discovery of such materials, we have developed a high-throughput workflow for screening of hydrogen storage materials in which candidate materials are synthesized and characterized via highly parallel ball mills and volumetric gas sorption instruments, respectively. The workflow was used to identify mixed imides with significantly enhanced absorption rates relative to Li2Mg(NH)2. The most promising material, 2LiNH2:MgH2 + 5 atom % LiBH4 + 0.5 atom % La, exhibits the best balance of absorption rate, capacity, and cycle-life, absorbing >4 wt % H2 in 1 h at 120 °C after 11 absorption-desorption cycles.

  20. Hydrofluoric acid burn resulting from ignition of gas from a compressed air duster.

    PubMed

    Foster, Kevin N; Jones, LouAnn; Caruso, Daniel M

    2003-01-01

    A young female suffered burns to her hand after the ignition of gas from a compressed air duster. After debridement and dressing, the patient continued to have pain out of proportion to injury that was refractory to intravenous morphine. The material safety data sheet revealed that the chemical used was 1,1-difluoroethane. High temperatures can cause decompensation to form hydrofluoric acid. Calcium gluconate gel was applied topically to the patient's burns, which caused prompt and complete relief of her pain. A review of different compressed air duster products revealed that the main ingredient in each was a halogenated hydrocarbon. Although not considered flammable, all products have warnings regarding the possibility of ignition under various circumstances. Ignition of the gas in compressed air cleaners not only can cause flame burns, it can also cause chemical damage from exposure to hydrogen and fluoride ions. Prompt recognition and treatment is necessary to prevent severe injury.

  1. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area immediately behind the firewall, and each portion of any engine pod attaching structure containing flammable...

  2. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area immediately behind the firewall, and each portion of any engine pod attaching structure containing flammable...

  3. 46 CFR 30.10-29 - Gas free-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Gas free-TB/ALL. 30.10-29 Section 30.10-29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-29 Gas free—TB/ALL. The term gas free means free from dangerous concentrations of flammable or toxic gases. ...

  4. 46 CFR 30.10-29 - Gas free-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Gas free-TB/ALL. 30.10-29 Section 30.10-29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-29 Gas free—TB/ALL. The term gas free means free from dangerous concentrations of flammable or toxic gases. ...

  5. 46 CFR 30.10-29 - Gas free-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Gas free-TB/ALL. 30.10-29 Section 30.10-29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-29 Gas free—TB/ALL. The term gas free means free from dangerous concentrations of flammable or toxic gases. ...

  6. 46 CFR 30.10-29 - Gas free-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Gas free-TB/ALL. 30.10-29 Section 30.10-29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-29 Gas free—TB/ALL. The term gas free means free from dangerous concentrations of flammable or toxic gases. ...

  7. 46 CFR 30.10-29 - Gas free-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Gas free-TB/ALL. 30.10-29 Section 30.10-29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-29 Gas free—TB/ALL. The term gas free means free from dangerous concentrations of flammable or toxic gases. ...

  8. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Definition of Terms Used in This Part § 105.10-15 Flammable... vapor pressure of 14 pounds or more. 1 American Society of Testing Materials Standard D 323...

  9. Mobile measurement of methane and hydrogen sulfide at natural gas production site fence lines in the Texas Barnett Shale.

    PubMed

    Eapi, Gautam R; Sabnis, Madhu S; Sattler, Melanie L

    2014-08-01

    Production of natural gas from shale formations is bringing drilling and production operations to regions of the United States that have seen little or no similar activity in the past, which has generated considerable interest in potential environmental impacts. This study focused on the Barnett Shale Fort Worth Basin in Texas, which saw the number of gas-producing wells grow from 726 in 2001 to 15,870 in 2011. This study aimed to measure fence line concentrations of methane and hydrogen sulfide at natural gas production sites (wells, liquid storage tanks, and associated equipment) in the four core counties of the Barnett Shale (Denton, Johnson, Tarrant, and Wise). A mobile measurement survey was conducted in the vicinity of 4788 wells near 401 lease sites, representing 35% of gas production volume, 31% of wells, and 38% of condensate production volume in the four-county core area. Methane and hydrogen sulfide concentrations were measured using a Picarro G2204 cavity ring-down spectrometer (CRDS). Since the research team did not have access to lease site interiors, measurements were made by driving on roads on the exterior of the lease sites. Over 150 hr of data were collected from March to July 2012. During two sets of drive-by measurements, it was found that 66 sites (16.5%) had methane concentrations > 3 parts per million (ppm) just beyond the fence line. Thirty-two lease sites (8.0%) had hydrogen sulfide concentrations > 4.7 parts per billion (ppb) (odor recognition threshold) just beyond the fence line. Measured concentrations generally did not correlate well with site characteristics (natural gas production volume, number of wells, or condensate production). t tests showed that for two counties, methane concentrations for dry sites were higher than those for wet sites. Follow-up study is recommended to provide more information at sites identified with high levels of methane and hydrogen sulfide. Implications: Information regarding air emissions from shale gas

  10. Probing the Low-Barrier Hydrogen Bond in Hydrogen Maleate in the Gas Phase: A Photoelectron Spectroscopy and ab Initio Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Hin-koon; Wang, Xue B.; Wang, Lai S.

    2005-12-01

    The strength of the low-barrier hydrogen bond in hydrogen maleate in the gas phase was investigated by low-temperature photoelectron spectroscopy and ab initio calculations. Photoelectron spectra of maleic and fumaric acid monoanions (cis-/trans-HO2CCHdCHCO2 -) were obtained at low temperatures and at 193 nm photon energy. Vibrational structure was observed for trans-HO2CCHdCHCO2 - due to the OCO bending modes; however, cis-HO2CCHdCHCO2 - yielded a broad and featureless spectrum. The electron binding energy of cis-HO2CCHdCHCO2 - is about 1 eV blue-shifted relative to trans-HO2CCHdCHCO2 - due to the formation of intramolecular hydrogen bond in the cis-isomer. Theoretical calculations (CCSD(T)/ aug-cc-pVTZ and B3LYP/aug-cc-pVTZ)more » were carried out to estimate the strength of the intramolecular hydrogen bond in cis-HO2CCHdCHCO2 -. Combining experimental and theoretical calculations yields an estimate of 21.5 ( 2.0 kcal/mol for the intramolecular hydrogen bond strength in hydrogen maleate.« less

  11. Characterization of flammability properties of some thermoplastic and thermoset resins. [for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1978-01-01

    The thermochemical and flammability properties of some thermally stable polymers considered for use in aircraft interiors are described. The properties studied include: (1) thermomechanical properties such as glass transition and melt temperature; (2) dynamic thermogravimetric analysis in anaerobic environment; (3) flammability properties such as oxygen index, flame spread, and smoke evolution; and (4) selected physical properties. The thermoplastic polymers evaluated included polyphenylene sulfide, polyaryl sulfone, 9,9-bis(4-hydroxyphenyl)-fluorene polycarbonate-poly(dimethylsiloxane) and polyether sulfone. The thermoset polymers evaluated included epoxy, bismaleimide, a modified phenolic and polyaromatic melamine resin. These resins were primarily used in the fabrication of glass reinforced prepregs for the construction of experimental panels. Test results and relative rankings of some of the flammability parameters are presented and the relationship of the molecular structure, char yield, and flammability properties of these polymers are discussed.

  12. 30 CFR 57.4463 - Liquefied petroleum gas use underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Liquefied petroleum gas use underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4463 Liquefied petroleum gas use underground. Use of liquefied petroleum gases underground shall be limited to maintenance work...

  13. 49 CFR 173.150 - Exceptions for Class 3 (flammable and combustible liquids).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....11), when transported via motor vehicle, vessel, or rail, is not subject to the requirements of this... containing ethyl alcohol classed as a flammable liquid or flammable solid containing not more than 70% ethyl alcohol by volume for liquids, by weight for solids are excepted from the HMR provided that: (i) For non...

  14. Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems

    NASA Astrophysics Data System (ADS)

    Ally, Jamie; Pryor, Trevor

    The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

  15. Development and use of hydrogen-air torches in an altitude facility

    NASA Technical Reports Server (NTRS)

    Lottig, Roy A.; Huber, Gary T.

    1993-01-01

    A hydrogen-air ignition torch concept that had been used successfully in two rocket engine test facilities to consume excess hydrogen in their exhausters at atmospheric conditions was experimentally evaluated and developed in an altitude test facility at NASA Lewis Research Center. The idea was to use several of these torches in conjunction with hydrogen detectors and dilution air to prevent excess accumulation of unburned hydrogen or mixtures of hydrogen and air exceeding the sea-level lower flammability limit in the altitude facility exhaust system during hydrogen-fueled propulsion system tests. The torches were evaluated for a range of fuel-to-air ratios from 0.09 to 0.39 and for a range of exit diameters from 19/64 to 49/64 in. From the results of these tests a torch geometry and a fuel-to-air ratio were selected that produced a reasonably sized torch exhaust flame for consumption of unburned hydrogen at altitude pressures from sea level to 4 psia.

  16. Studies of Hydrogen Production by the Water Gas Shift Reaction and Related Chemistry

    DTIC Science & Technology

    1983-04-15

    STUDIES OF HYDROGEN PRODUCTION BY THE WATER GAS SHIFT REACTION AND RELATED CHEMISTRY Institution: The University of Rochester Department of Chemistry...been app-’.iv -7 for public release and sale; it di.,tribution is unlimited. Abstract Many systems have been investigated for the catalysis of the water ...temperatures (80 - 100’C). In addition aqueous acidic conditions for these systems have been pursued with particular interest in adopting water gas shift

  17. Development of a Prototype Optical Hydrogen Gas Sensor Using a Getter-Doped Polymer Transducer for Monitoring Cumulative Exposure: Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small IV, W; Maitland, D J; Wilson, T S

    2008-06-05

    A novel prototype optical sensor for monitoring cumulative hydrogen gas exposure was fabricated and evaluated. Chemical-to-optical transduction was accomplished by detecting the intensity of 670 nm laser light transmitted through a hydrogen getter-doped polymer film mounted at the end of an optical fiber; the transmittance of the composite film increased with uptake of hydrogen by the embedded getter. The composite film consisted of the hydrogen getter 1,4-bis(phenylethynyl)benzene, also known as DEB, with carbon-supported palladium catalyst embedded in silicone elastomer. Because the change in transmittance was irreversible and occurred continuously as the getter captured hydrogen, the sensor behaved like a dosimeter,more » providing a unique indication of the cumulative gas exposure.« less

  18. Electrochemical separation and concentration of hydrogen sulfide from gas mixtures

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  19. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  20. Hydrogenation apparatus

    DOEpatents

    Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  1. Hydrogenation apparatus

    DOEpatents

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  2. 46 CFR 182.480 - Flammable vapor detection systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.480 Flammable vapor... permit calibration in a vapor free atmosphere. (g) Electrical connections, wiring, and components for a...

  3. Impacts of glycolate and formate radiolysis and thermolysis on hydrogen generation rate calculations for the Savannah River Site tank farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C. L.; King, W. D.

    Savannah River Remediation (SRR) personnel requested that the Savannah River National Laboratory (SRNL) evaluate available data and determine its applicability to defining the impact of planned glycolate anion additions to Savannah River Site (SRS) High Level Waste (HLW) on Tank Farm flammability (primarily with regard to H 2 production). Flammability evaluations of formate anion, which is already present in SRS waste, were also needed. This report describes the impacts of glycolate and formate radiolysis and thermolysis on Hydrogen Generation Rate (HGR) calculations for the SRS Tank Farm.

  4. Hydrogen gas improves left ventricular hypertrophy in Dahl rat of salt-sensitive hypertension.

    PubMed

    Matsuoka, Hiroki; Miyata, Seiko; Okumura, Nozomi; Watanabe, Takuya; Hashimoto, Katsunori; Nagahara, Miki; Kato, Kazuko; Sobue, Sayaka; Takeda, Kozue; Ichihara, Masatoshi; Iwamoto, Takashi; Noda, Akiko

    2018-06-14

    Hypertension is an important risk factor for death resulting from stroke, myocardial infarction, and end-stage renal failure. Hydrogen (H 2 ) gas protects against many diseases, including ischemia-reperfusion injury and stroke. The effects of H 2 on hypertension and its related left ventricular (LV) function have not been fully elucidated. The purpose of this study was to investigate the effects of H 2 gas on hypertension and LV hypertrophy using echocardiography. Dahl salt-sensitive (DS) rats were randomly divided into three groups: those fed an 8% NaCl diet until 12 weeks of age (8% NaCl group), those additionally treated with H 2 gas (8% NaCl + H 2 group), and control rats maintained on a diet containing 0.3% NaCl until 12 weeks of age (0.3% NaCl group). H 2 gas was supplied through a gas flowmeter and delivered by room air (2% hydrogenated room air, flow rate of 10 L/min) into a cage surrounded by an acrylic chamber. We evaluated interventricular septal wall thickness (IVST), LV posterior wall thickness (LVPWT), and LV mass using echocardiography. IVST, LVPWT, and LV mass were significantly higher in the 8% NaCl group than the 0.3% NaCl group at 12 weeks of age, whereas they were significantly lower in the 8% NaCl + H 2 group than the 8% NaCl group. There was no significant difference in systolic blood pressure between the two groups. Our findings suggest that chronic H 2 gas inhalation may help prevent LV hypertrophy in hypertensive DS rats.

  5. Treating landfill gas hydrogen sulphide with mineral wool waste (MWW) and rod mill waste (RMW).

    PubMed

    Bergersen, Ove; Haarstad, Ketil

    2014-01-01

    Hydrogen sulphide (H2S) gas is a major odorant at municipal landfills. The gas can be generated from different waste fractions, for example demolition waste containing gypsum based plaster board. The removal of H2S from landfill gas was investigated by filtering it through mineral wool waste products. The flow of gas varied from 0.3 l/min to 3.0 l/min. The gas was typical for landfill gas with a mean H2S concentration of ca. 4500 ppm. The results show that the sulphide gas can effectively be removed by mineral wool waste products. The ratios of the estimated potential for sulphide precipitation were 19:1 for rod mill waste (RMW) and mineral wool waste (MWW). A filter consisting of a mixture of MWW and RMW, with a vertical perforated gas tube through the center of filter material and with a downward gas flow, removed 98% of the sulfide gas over a period of 80 days. A downward gas flow was more efficient in contacting the filter materials. Mineral wool waste products are effective in removing hydrogen sulphide from landfill gas given an adequate contact time and water content in the filter material. Based on the estimated sulphide removal potential of mineral wool and rod mill waste of 14 g/kg and 261 g/kg, and assuming an average sulphide gas concentration of 4500 ppm, the removal capacity in the filter materials has been estimated to last between 11 and 308 days. At the studied location the experimental gas flow was 100 times less than the actual gas flow. We believe that the system described here can be upscaled in order to treat this gas flow. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Plant traits determine forest flammability

    NASA Astrophysics Data System (ADS)

    Zylstra, Philip; Bradstock, Ross

    2016-04-01

    Carbon and nutrient cycles in forest ecosystems are influenced by their inherent flammability - a property determined by the traits of the component plant species that form the fuel and influence the micro climate of a fire. In the absence of a model capable of explaining the complexity of such a system however, flammability is frequently represented by simple metrics such as surface fuel load. The implications of modelling fire - flammability feedbacks using surface fuel load were examined and compared to a biophysical, mechanistic model (Forest Flammability Model) that incorporates the influence of structural plant traits (e.g. crown shape and spacing) and leaf traits (e.g. thickness, dimensions and moisture). Fuels burn with values of combustibility modelled from leaf traits, transferring convective heat along vectors defined by flame angle and with plume temperatures that decrease with distance from the flame. Flames are re-calculated in one-second time-steps, with new leaves within the plant, neighbouring plants or higher strata ignited when the modelled time to ignition is reached, and other leaves extinguishing when their modelled flame duration is exceeded. The relative influence of surface fuels, vegetation structure and plant leaf traits were examined by comparing flame heights modelled using three treatments that successively added these components within the FFM. Validation was performed across a diverse range of eucalypt forests burnt under widely varying conditions during a forest fire in the Brindabella Ranges west of Canberra (ACT) in 2003. Flame heights ranged from 10 cm to more than 20 m, with an average of 4 m. When modelled from surface fuels alone, flame heights were on average 1.5m smaller than observed values, and were predicted within the error range 28% of the time. The addition of plant structure produced predicted flame heights that were on average 1.5m larger than observed, but were correct 53% of the time. The over-prediction in this

  7. Hydrogen-fueled engine

    NASA Technical Reports Server (NTRS)

    Laumann, E. A.; Reynolds, R. K. (Inventor)

    1978-01-01

    A hydrogen-oxygen fueled internal combustion engine is described, which utilizes an inert gas, such as argon, as a working fluid to increase the efficiency of the engine, eliminate pollution, and facilitate operation of a closed cycle energy system. In a system where sunlight or other intermittent energy source is available to separate hydrogen and oxygen from water, the oxygen and inert gas are taken into a diesel engine into which hydrogen is injected and ignited. The exhaust is cooled so that it contains only water and the inert gas. The inert gas in the exhaust is returned to the engine for use with fresh oxygen, while the water in the exhaust is returned to the intermittent energy source for reconversion to hydrogen and oxygen.

  8. Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions

    NASA Astrophysics Data System (ADS)

    Milani Moghaddam, Hossain; Nasirian, Shahruz

    2014-10-01

    The resistance-based sensors of polyaniline/titania (rutile) nanocomposite (TPNC) were prepared by spin coating technique onto an epoxy glass substrate with Cu-interdigited electrodes to study their hydrogen (H2) gas sensing features. Our findings are that the change of the surface morphology, porosity and wt% of titania in TPNCs have a significant effect on H2 gas sensing of sensors. All of the sensors had a reproducibility response toward 0.8 vol% H2 gas at room temperature, air pressure and 50% relative humidity. A sensor with 40 wt% of titania nanoparticles had better response/recovery time and the response than other sensors. Moreover, H2 gas sensing mechanism of TPNC sensors based contact areas and the correlation of energy levels between PANI chains and the titania grains were studied.

  9. Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials.

    PubMed

    Kawasaki, Haruhisa; Guan, Jianjun; Tamama, Kenichi

    2010-07-02

    Cell therapy with bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) represents a promising approach in the field of regenerative medicine. Low frequency of MSCs in adult bone marrow necessitates ex vivo expansion of MSCs after harvest; however, such a manipulation causes cellular senescence with loss of differentiation, proliferative, and therapeutic potentials of MSCs. Hydrogen molecules have been shown to exert organ protective effects through selective reduction of hydroxyl radicals. As oxidative stress is one of the key insults promoting cell senescence in vivo as well as in vitro, we hypothesized that hydrogen molecules prevent senescent process during MSC expansion. Addition of 3% hydrogen gas enhanced preservation of colony forming early progenitor cells within MSC preparation and prolonged the in vitro replicative lifespan of MSCs without losing differentiation potentials and paracrine capabilities. Interestingly, 3% hydrogen gas treatment did not decrease hydroxyl radical, protein carbonyl, and 8-hydroxydeoxyguanosine, suggesting that scavenging hydroxyl radical might not be responsible for these effects of hydrogen gas in this study. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Haruhisa; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210; Guan, Jianjun

    2010-07-02

    Cell therapy with bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) represents a promising approach in the field of regenerative medicine. Low frequency of MSCs in adult bone marrow necessitates ex vivo expansion of MSCs after harvest; however, such a manipulation causes cellular senescence with loss of differentiation, proliferative, and therapeutic potentials of MSCs. Hydrogen molecules have been shown to exert organ protective effects through selective reduction of hydroxyl radicals. As oxidative stress is one of the key insults promoting cell senescence in vivo as well as in vitro, we hypothesized that hydrogen molecules prevent senescent process during MSC expansion.more » Addition of 3% hydrogen gas enhanced preservation of colony forming early progenitor cells within MSC preparation and prolonged the in vitro replicative lifespan of MSCs without losing differentiation potentials and paracrine capabilities. Interestingly, 3% hydrogen gas treatment did not decrease hydroxyl radical, protein carbonyl, and 8-hydroxydeoxyguanosine, suggesting that scavenging hydroxyl radical might not be responsible for these effects of hydrogen gas in this study.« less

  11. Effects of Post-Treatment Hydrogen Gas Inhalation on Uveitis Induced by Endotoxin in Rats.

    PubMed

    Yan, Weiming; Chen, Tao; Long, Pan; Zhang, Zhe; Liu, Qian; Wang, Xiaocheng; An, Jing; Zhang, Zuoming

    2018-06-07

    BACKGROUND Molecular hydrogen (H2) has been widely reported to have benefiicial effects in diverse animal models and human disease through reduction of oxidative stress and inflammation. The aim of this study was to investigate whether hydrogen gas could ameliorate endotoxin-induced uveitis (EIU) in rats. MATERIAL AND METHODS Male Sprague-Dawley rats were divided into a normal group, a model group, a nitrogen-oxygen (N-O) group, and a hydrogen-oxygen (H-O) group. EIU was induced in rats of the latter 3 groups by injection of lipopolysaccharide (LPS). After that, rats in the N-O group inhaled a gas mixture of 67% N2 and 33% O2, while those in the H-O group inhaled a gas mixture of 67% H2 and 33% O2. All rats were graded according to the signs of uveitis after electroretinography (ERG) examination. Protein concentration in the aqueous humor (AqH) was measured. Furthermore, hematoxylin-eosin staining and immunostaining of anti-ionized calcium-binding adapter molecule 1 (Iba1) in the iris and ciliary body (ICB) were carried out. RESULTS No statistically significant differences existed in the graded score of uveitis and the b-wave peak time in the Dark-adapted 3.0 ERG among the model, N-O, and H-O groups (P>0.05), while rats of the H-O group showed a lower concentration of AqH protein than that of the model or N-O group (P<0.05). The number of the infiltrating cells in the ICB of rats from the H-O group was not significantly different from that of the model or N-O group (P>0.05), while the activation of microglia cells in the H-O group was somewhat reduced (P<0.05). CONCLUSIONS Post-treatment hydrogen gas inhalation did not ameliorate the clinical signs, or reduce the infiltrating cells of EIU. However, it inhibited the elevation of protein in the AqH and reduced the microglia activation.

  12. Hydrogen gas concentration measurement in small area using raman lidar measurement technnology

    NASA Astrophysics Data System (ADS)

    Sugimoto, Sachiyo; Asahi, Ippei; Shiina, Tatuso

    2018-04-01

    When change of hydrogen(H2) gas concentration in a certain point is measured, non-contact measurement technology with high temporal and spatial resolution is necessary. In this study, H2 concentration in the small area of <1cm2 under the gas flow was measured by using a Raman lidar. Raman scattering light at the measurement point of 750mm ahead was detected by the Raman lidar. As a result, it was proved that the H2 concentration of more than 100ppm could be successfully measured.

  13. Hydrogen from coal

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Hydrogen production from coal by hydrogasification is described. The process involves the solubilization of coal to form coal liquids, which are hydrogasified to produce synthetic pipeline gas; steam reforming this synthetic gas by a nuclear heat source produces hydrogen. A description is given of the hydrogen plant, its performance, and its effect on the environment.

  14. Hydrogen gas sensors using a thin Ta2O5 dielectric film

    NASA Astrophysics Data System (ADS)

    Kim, Seongjeen

    2014-12-01

    A capacitive-type hydrogen gas sensor with a MIS (metal-insulator-semiconductor) structure was investigated for high-temperature applications. In this work, a tantalum oxide (Ta2O5) layer of tens of nanometers in thickness formed by oxidizing tantalum film in rapid thermal processing (RTP) was exploited with the purpose of sensitivity improvement. Silicon carbide (SiC), which is good even at high temperatures over 500 °C, was used as the substrate. We fabricated sensors composed of Pd/Ta2O5/SiC, and the dependences of the capacitance response properties and the I-V characteristics on the hydrogen concentration were analyzed from the temperature range of room temperature to 500 °C. As a result, our hydrogen sensor showed promising performance with respect to the sensitivity and the adaptability at high temperature.

  15. Space Systems - Safety and Compatibility of Materials - Method to Determine the Flammability Thresholds of Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David

    2009-01-01

    Spacecraft fire safety emphasizes fire prevention, which is achieved primarily through the use of fire-resistant materials. Materials selection for spacecraft is based on conventional flammability acceptance tests, along with prescribed quantity limitations and configuration control for items that are non-pass or questionable. ISO 14624-1 and -2 are the major methods used to evaluate flammability of polymeric materials intended for use in the habitable environments of spacecraft. The methods are upward flame-propagation tests initiated in static environments and using a well-defined igniter flame at the bottom of the sample. The tests are conducted in the most severe flaming combustion environment expected in the spacecraft. The pass/fail test logic of ISO 14624-1 and -2 does not allow a quantitative comparison with reduced gravity or microgravity test results; therefore their use is limited, and possibilities for in-depth theoretical analyses and realistic estimates of spacecraft fire extinguishment requirements are practically eliminated. To better understand the applicability of laboratory test data to actual spacecraft environments, a modified ISO 14624 protocol has been proposed that, as an alternative to qualifying materials as pass/fail in the worst-expected environments, measures the actual upward flammability limit for the material. A working group established by NASA to provide recommendations for exploration spacecraft internal atmospheres realized the importance of correlating laboratory data with real-life environments and recommended NASA to develop a flammability threshold test method. The working group indicated that for the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extravehicular landers and habitats

  16. Species mixture effects on flammability across plant phylogeny: the importance of litter particle size and the special role for non-Pinus Pinaceae.

    PubMed

    Zhao, Weiwei; Cornwell, William K; van Pomeren, Marinda; van Logtestijn, Richard S P; Cornelissen, Johannes H C

    2016-11-01

    Fire affects and is affected by plants. Vegetation varies in flammability, that is, its general ability to burn, at different levels of ecological organization. To scale from individual plant traits to community flammability states, understanding trait effects on species flammability variation and their interaction is important. Plant traits are the cumulative result of evolution and they show, to differing extents, phylogenetic conservatism. We asked whether phylogenetic distance between species predicts species mixture effects on litterbed flammability. We conducted controlled laboratory burns for 34 phylogenetically wide-ranging species and 34 random two-species mixtures from them. Generally, phylogenetic distance did not predict species mixture effects on flammability. Across the plant phylogeny, most species were flammable except those in the non- Pinus Pinaceae, which shed small needles producing dense, poorly ventilated litterbeds above the packing threshold and therefore nonflammable. Consistently, either positive or negative dominance effects on flammability of certain flammable or those non-flammable species were found in mixtures involving the non- Pinus Pinaceae. We demonstrate litter particle size is key to explaining species nonadditivity in fuelbed flammability. The potential of certain species to influence fire disproportionately to their abundance might increase the positive feedback effects of plant flammability on community flammability state if flammable species are favored by fire.

  17. Impact of scaling on the nitric-glycolic acid flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D.

    Savannah River Remediation (SRR) is considering using glycolic acid as a replacement for formic acid in Sludge Receipt and Adjustment Tank (SRAT) processing in the Defense Waste Processing Facility (DWPF). Catalytic decomposition of formic acid is responsible for the generation of hydrogen, a potentially flammable gas, during processing. To prevent the formation of a flammable mixture in the offgas, an air purge is used to dilute the hydrogen concentration below the 60% of the Composite Lower Flammability Limit (CLFL). The offgas is continuously monitored for hydrogen using Gas Chromatographs (GCs). Since formic acid is much more volatile and toxic thanmore » glycolic acid, a formic acid spill would lead to the release of much larger quantities to the environment. Switching from formic acid to glycolic acid is expected to eliminate the hydrogen flammability hazard leading to lower air purges, thus downgrading of Safety Significant GCs to Process Support GCs, and minimizing the consequence of a glycolic acid tank leak in DWPF. Overall this leads to a reduction in process operation costs and an increase in safety margin. Experiments were completed at three different scales to demonstrate that the nitric-glycolic acid flowsheet scales from the 4-L lab scale to the 22-L bench scale and 220-L engineering scale. Ten process demonstrations of the sludge-only flowsheet for SRAT and Slurry Mix Evaporator (SME) cycles were performed using Sludge Batch 8 (SB8)-Tank 40 simulant. No Actinide Removal Process (ARP) product or strip effluent was added during the runs. Six experiments were completed at the 4-L scale, two experiments were completed at the 22-L scale, and two experiments were completed at the 220-L scale. Experiments completed at the 4-L scale (100 and 110% acid stoichiometry) were repeated at the 22-L and 220-L scale for scale comparisons.« less

  18. 46 CFR 132.390 - Added requirements for carriage of flammable or combustible cargo.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... if GT ITC is not assigned). (b) Cargo tanks containing flammable or combustible liquids must not be located beneath the accommodations or machinery space. Separation by cofferdams is not acceptable for... cubic meters or more intended for the carriage of flammable or combustible liquids with a closed-cup...

  19. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Another spinoff from spacecraft fuel cell technology is the portable hydrogen generator shown. Developed by General Electric Company, it is an aid to safer operation of systems that use hydrogen-for example, gas chromatographs, used in laboratory analysis of gases. or flame ionization detectors used as $ollution monitors. The generator eliminates the need for high-pressure hydrogen storage bottles, which can be a safety hazard, in laboratories, hospitals and industrial plants. The unit supplies high-purity hydrogen by means of an electrochemical process which separates the hydrogen and oxygen in distilled water. The oxygen is vented away and the hydrogen gas is stored within the unit for use as needed. GE's Aircraft Equipment Division is producing about 1,000 of the generators annually.

  20. Hydrogen separation process

    DOEpatents

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  1. Flammability testing of 22 conventional European pediculicides.

    PubMed

    Dörge, Dorian D; Kuhn, Thomas; Klimpel, Sven

    2017-04-01

    Lice have been parasitizing humans for at least 10,000 years. Since then, humans have tried to rid themselves of these unpleasant and potentially disease-carrying insects. Despite various plant extracts and chemical compounds being used to combat recurring infestations to this date, several lice populations have developed resistance to some of the abundantly used compounds. This resulted in the development of anti-louse products that physically kill the different lice stages. Today, a widely used group of delousing agents are dimethicones (polydimethylsiloxane PDMS) which function by suffocating the lice. However, many dimethicones and related products are highly flammable which makes them potentially dangerous for treatment. In the present study, we tested the flammability of 22 delousing agents in order to shed some light onto this currently unresolved problem in the product design of pediculicides. Thirteen products were easily ignitable, some even by distant contact with a sparkler.

  2. Hydrogenation of carbonaceous materials

    DOEpatents

    Friedman, Joseph; Oberg, Carl L.; Russell, Larry H.

    1980-01-01

    A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

  3. The possibility of a reversal of material flammability ranking from normal gravity to microgravity

    NASA Technical Reports Server (NTRS)

    T'Ien, James S.

    1990-01-01

    The purpose of the discussion is to show, by a theoretical model, that one of the material flammability indices, the flammability limit, can be reversed in proper circumstances. A stagnation-point diffusion flame adjacent to a spherical solid-fuel surface is considered. It is shown that a reversal of the limiting oxygen indices from normal gravity and microgravity is possible. Although the example is based on a particular theoretical model with a particular flame configuration and specifically for an oxygen limit, the flammability-limit reversal phenomenon is believed to be more general.

  4. Container and method for absorbing and reducing hydrogen concentration

    DOEpatents

    Wicks, George G.; Lee, Myung W.; Heung, Leung K.

    2001-01-01

    A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.

  5. Treatment of portal venous gas embolism with hyperbaric oxygen after accidental ingestion of hydrogen peroxide: a case report and review of the literature.

    PubMed

    Papafragkou, Sotirios; Gasparyan, Anna; Batista, Richard; Scott, Paul

    2012-07-01

    It is well known that hydrogen peroxide ingestion can cause gas embolism. To report a case illustrating that the definitive, most effective treatment for gas embolism is hyperbaric oxygen therapy. We present a case of a woman who presented to the Emergency Department with acute abdominal pain after an accidental ingestion of concentrated hydrogen peroxide. Complete recovery from her symptoms occurred quickly with hyperbaric oxygen therapy. This is a case report of the successful use of hyperbaric oxygen therapy to treat portal venous gas embolism caused by hydrogen peroxide ingestion. Hyperbaric oxygen therapy can be considered for the treatment of symptomatic hydrogen peroxide ingestion. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Lessons Learned from the Space Shuttle Engine Hydrogen Flow Control Valve Poppet Breakage

    NASA Technical Reports Server (NTRS)

    Martinez, Hugo E.; Damico, Stephen; Brewer, John

    2011-01-01

    The Main Propulsion System (MPS) uses three Flow Control Valves (FCV) to modulate the flow of pressurant hydrogen gas from the Space Shuttle Main Engines (SSME) to the hydrogen External Tank (ET). This maintains pressure in the ullage volume as the liquid level drops, preserving ET structural integrity and assuring the engines receive a sufficient amount of head pressure. On Space Transportation System (STS)-126 (2009), with only a handful of International Space Station (ISS) assembly flights from the end of the Shuttle program, a portion of a single FCV?s poppet head broke off at about a minute and a half after liftoff. The risk of the poppet head failure is that the increased flow area through the FCV could result in excessive gaseous hydrogen flow back to the external tank, which could result in overboard venting of hydrogen ullage pressure. If the hydrogen venting were to occur in first stage (i.e., lower atmosphere), a flammability hazard exists that could lead to catastrophic loss of crew and vehicle. Other failure risks included particle impact damage to MPS downstream hardware. Although the FCV design had been plagued by contamination-related sluggish valve response problems prior to a redesign at STS-80 (1996), contamination was ruled out as the cause of the STS-126 failure. Employing a combination of enhanced hardware inspection and a better understanding of the consequences of a poppet failure, safe flight rationale for subsequent flights (STS-119 and later) was achieved. This paper deals with the technical lessons learned during the investigation and mitigation of this problem at a time when assembly flights were each in the critical path to Space Station success.

  7. 14 CFR 121.1117 - Flammability reduction means.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flammability reduction means. 121.1117 Section 121.1117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...) Retrofit. Except as provided in paragraphs (j), (k), and (l) of this section, after the dates specified in...

  8. 14 CFR 121.1117 - Flammability reduction means.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flammability reduction means. 121.1117 Section 121.1117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...) Retrofit. Except as provided in paragraphs (j), (k), and (l) of this section, after the dates specified in...

  9. 14 CFR 121.1117 - Flammability reduction means.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flammability reduction means. 121.1117 Section 121.1117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...) Retrofit. Except as provided in paragraphs (j), (k), and (l) of this section, after the dates specified in...

  10. 14 CFR 121.1117 - Flammability reduction means.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flammability reduction means. 121.1117 Section 121.1117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...) Retrofit. Except as provided in paragraphs (j), (k), and (l) of this section, after the dates specified in...

  11. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... storage tanks shall be mounted securely on firm foundations. Outlet piping shall be provided with flexible connections or other special fittings to prevent adverse effects from tank settling. (c) Fuel lines shall be... hazards. (d) Areas surrounding flammable-liquid storage tanks and electric substations and transformers...

  12. A New Screening Method for Methane in Soil Gas Using Existing Groundwater Monitoring Wells

    EPA Science Inventory

    Methane in soil gas may have undesirable consequences. The soil gas may be able to form a flammable mixture with air and present an explosion hazard. Aerobic biodegradation of the methane in soil gas may consume oxygen that would otherwise be available for biodegradation of gasol...

  13. Logging slash flammability after five years

    Treesearch

    George R. Fahnestock; John H. Dieterich

    1962-01-01

    This paper reports the final phase of research that has determined the flammability of slash for nine species of northern Rocky Mountain conifers at three ages. Visual characteristics, rate of fire spread, and fire intensity for 5-year-old slash were studied by essentially the same methods as had been used previously on freshly cut and 1-year-old material. Final...

  14. Two-dimensional gas chromatography-online hydrogenation for improved characterization of petrochemical samples.

    PubMed

    Potgieter, H; Bekker, R; Govender, A; Rohwer, E

    2016-05-06

    The Fischer-Tropsch (FT) process produces a variety of hydrocarbons over a wide carbon number range and during subsequent product workup a large variety of synthetic fuels and chemicals are produced. The complexity of the product slate obtained from this process is well documented and the high temperature FT (HT-FT) process products are spread over gas, oil and water phases. The characterization of these phases is very challenging even when using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS). Despite the increase in separation power, peak co-elution still occurs when samples containing isomeric compounds are analysed by comprehensive two dimensional GC. The separation of isomeric compounds with the same double bond equivalents is especially difficult since these compounds elute in a similar position on the GC×GC chromatogram and have identical molecular masses and similar fragmentation patterns in their electron ionization (EI) mass spectra. On-line hydrogenation after GC×GC separation is a possible way to distinguish between these isomeric compounds since the number of rings and alkene double bonds can be determined from the mass spectra of the compounds before and after hydrogenation. This paper describes development of a GC×GC method with post column hydrogenation for the determination of the backbone of cyclic/olefinic structures enabling us to differentiate between classes like dienes and cyclic olefins in complex petrochemical streams. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Guide for Hydrogen Hazards Analysis on Components and Systems

    NASA Technical Reports Server (NTRS)

    Beeson, Harold; Woods, Stephen

    2003-01-01

    The physical and combustion properties of hydrogen give rise to hazards that must be considered when designing and operating a hydrogen system. One of the major concerns in the use of hydrogen is that of fire or detonation because of hydrogen's wide flammability range, low ignition energy, and flame speed. Other concerns include the contact and interaction of hydrogen with materials, such as the hydrogen embrittlement of materials and the formation of hydrogen hydrides. The low temperature of liquid and slush hydrogen bring other concerns related to material compatibility and pressure control; this is especially important when dissimilar, adjoining materials are involved. The potential hazards arising from these properties and design features necessitate a proper hydrogen hazards analysis before introducing a material, component, or system into hydrogen service. The objective of this guide is to describe the NASA Johnson Space Center White Sands Test Facility hydrogen hazards analysis method that should be performed before hydrogen is used in components and/or systems. The method is consistent with standard practices for analyzing hazards. It is recommended that this analysis be made before implementing a hydrogen component qualification procedure. A hydrogen hazards analysis is a useful tool for hydrogen-system designers, system and safety engineers, and facility managers. A hydrogen hazards analysis can identify problem areas before hydrogen is introduced into a system-preventing damage to hardware, delay or loss of mission or objective, and possible injury or loss of life.

  16. 14 CFR 25.1183 - Flammable fluid-carrying components.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... safeguard against the ignition of leaking flammable fluid. An integral oil sump of less than 25-quart..., essential services or equipment. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25-11, 32...

  17. 14 CFR 25.1183 - Flammable fluid-carrying components.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... safeguard against the ignition of leaking flammable fluid. An integral oil sump of less than 25-quart..., essential services or equipment. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25-11, 32...

  18. 14 CFR 25.1183 - Flammable fluid-carrying components.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... safeguard against the ignition of leaking flammable fluid. An integral oil sump of less than 25-quart..., essential services or equipment. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25-11, 32...

  19. 14 CFR 25.1183 - Flammable fluid-carrying components.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... safeguard against the ignition of leaking flammable fluid. An integral oil sump of less than 25-quart..., essential services or equipment. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25-11, 32...

  20. Comparison of the safety-related physical and combustion properties of liquid hydrogen and liquid natural gas in the context of the SF-BREEZE high-speed fuel-cell ferry

    DOE PAGES

    Klebanoff, L. E.; Pratt, J. W.; LaFleur, C. B.

    2016-11-25

    Here, we review liquid hydrogen (LH 2) as a maritime vessel fuel, from descriptions of its fundamental properties to its practical application and safety aspects, in the context of the San Francisco Bay Renewable Energy Electric Vessel with Zero Emissions (SF-BREEZE) high-speed fuel-cell ferry. Since marine regulations have been formulated to cover liquid natural gas (LNG) as a primary propulsion fuel, we frame our examination of LH 2 as a comparison to LNG, for both maritime use in general, and the SF-BREEZE in particular. Due to weaker attractions between molecules, LH 2 is colder than LNG, and evaporates more easily.more » We describe the consequences of these physical differences for the size and duration of spills of the two cryogenic fuels. The classical flammability ranges are reviewed, with a focus on how fuel buoyancy modifies these combustion limits. We examine the conditions for direct fuel explosion (detonation) and contrast them with initiation of normal (laminar) combustion. Direct fuel detonation is not a credible accident scenario for the SF-BREEZE. For both fuels, we review experiments and theory elucidating the deflagration to detonation transition (DDT). LH 2 fires have a shorter duration than energy-equivalent LNG fires, and produce significantly less thermal radiation. The thermal (infrared) radiation from hydrogen fires is also strongly absorbed by humidity in the air. Hydrogen permeability is not a leak issue for practical hydrogen plumbing. We describe the chemistry of hydrogen and methane at iron surfaces, clarifying their impact on steel-based hydrogen storage and transport materials. These physical, chemical and combustion properties are pulled together in a comparison of how a LH 2 or LNG pool fire on the Top Deck of the SF-BREEZE might influence the structural integrity of the aluminum deck. Neither pool fire scenario leads to net heating of the aluminum decking. Overall, LH 2 and LNG are very similar in their physical and combustion