Science.gov

Sample records for flammable gas issues

  1. Characterization strategy for the flammable gas safety issue

    SciTech Connect

    Stewart, C.W.; Brewster, M.E.; Roberts, J.S.

    1997-06-01

    The characterization strategy for resolving the flammable gas safety issue for Hanford waste tanks is based on a structured logic diagram (SLD) that displays the outcomes necessary to reach the desired goal of making flammable gas risk acceptable. The diagram provides a structured path that can identify all information inputs, data as well as models, needed to achieve the goal. Tracing the path from need to outcome provides an immediate and clear justification and defense of a specific need. The diagram itself is a {open_quote}picture of a risk calculation{close_quote} and forms the basis for a quantitative model of risk. The SLID, with the risk calculation, identifies options for characterization, mitigation, and controls that have the maximum effect in reducing risk. It provides quantitative input to risk-based decision making so that options are chosen for maximum impact at least cost.

  2. Flammable gas issues in double-contained receiver tanks. Revision 2

    SciTech Connect

    Peurrung, L.M.; Mahoney, L.A.; Stewart, C.W.; Gauglitz, P.A.; Pederson, L.R.; Bryan, S.A.; Shepard, C.L.

    1998-08-01

    Four double-contained receiver tanks (DCRTs) at Hanford will be used to store salt-well pumped liquids from tanks on the Flammable Gas Watch List. This document was created to serve as a reference document describing the current knowledge of flammable gas issues in DCRTs. The document identifies, describes, evaluates, and attempts to quantify potential gas carryover and release mechanisms. It estimates several key parameters needed for these calculations, such as initial aqueous concentrations and ventilation rate, and evaluates the uncertainty in those estimates. It justifies the use of the Schumpe model for estimating vapor-liquid equilibrium constants. It identifies several potential waste compatibility issues (such as mixing and pH or temperature changes) that could lead to gas release and provides a basis for calculating their effects. It evaluates the potential for gas retention in precipitated solids within a DCRT and whether retention could lead to a buoyant displacement instability (rollover) event. It discusses rates of radiolytic, thermal, and corrosive hydrogen generation within the DCRT. It also describes in detail the accepted method of calculating the lower flammability limit (LFL) for mixtures of flammable gases. The report incorporates these analyses into two models for calculating headspace flammability, one based on instantaneous equilibrium between dissolved gases and the headspace and one incorporating limited release rates based on mass-transfer considerations. Finally, it demonstrates the use of both models to estimate headspace flammable gas concentrations and minimum ventilation rates required to maintain concentrations below 25% of the LFL.

  3. Flammable gas issues in double-contained receiver tanks. Revision 1

    SciTech Connect

    Peurrung, L.M.; Mahoney, L.A.; Stewart, C.W.; Gauglitz, P.A.; Pederson, L.R.; Bryan, S.A.; Shepard, C.L.

    1998-06-01

    Four double-contained receiver tanks (DCRTs) at Hanford will be used to store salt-well pumped liquids from tanks on the Flammable Gas Watch List. This document was created to serve as a technical basis or reference document for flammable gas issues in DCRTs. The document identifies, describes, evaluates, and attempts to quantify potential gas carryover and release mechanisms. It estimates several key parameters needed for these calculations, such as initial aqueous concentrations and ventilation rate, and evaluates the uncertainty in those estimates. It justifies the use of the Schumpe model for estimating vapor-liquid equilibrium constants. It identifies several potential waste compatibility issues (such as mixing and pH or temperature changes) that could lead to gas release and provides a basis for calculating their effects. It evaluates the potential for gas retention in precipitated solids within a DCRT and whether retention could lead to a buoyant displacement instability (rollover) event. It discusses rates of radiolytic, thermal, and corrosive hydrogen generation within the DCRT. It also describes in detail the accepted method of calculating the lower flammability limit (LFL) for mixtures of flammable gases.

  4. Summary of tank information relating salt well pumping to flammable gas safety issues

    SciTech Connect

    Caley, S.M.; Mahoney, L.A.; Gauglitz, P.A.

    1996-09-01

    The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. Active use of these SSTs was phased out completely by November 1980, and the first step toward final disposal of the waste in the SSTs is interim stabilization, which involves removing essentially all of the drainable liquid from the tank. Stabilization can be achieved administratively, by jet pumping to remove drainable interstitial liquid, or by supernatant pumping. To date, 116 tanks have been declared interim stabilized; 44 SSTs have had drainable liquid removed by salt well jet pumping. Of the 149 SSTs, 19 are on the Flammable Gas Watch List (FGWL) because the waste in these tanks is known or suspected, in all but one case, to generate and retain mixtures of flammable gases, including; hydrogen, nitrous oxide, and ammonia. Salt well pumping to remove the drainable interstitial liquid from these SSTs is expected to cause the release of much of the retained gas, posing a number of safety concerns. The scope of this work is to collect and summarize information, primarily tank data and observations, that relate salt well pumping to flammable gas safety issues. While the waste within FGWL SSTs is suspected offering flammable gases, the effect of salt well pumping on the waste behavior is not well understood. This study is being conducted for the Westinghouse Hanford Company as part of the Flammable Gas Project at the Pacific Northwest National Laboratory (PNNL). Understanding the historical tank behavior during and following salt well pumping will help to resolve the associated safety issues.

  5. Flammable gas project topical report

    SciTech Connect

    Johnson, G.D.

    1997-01-29

    The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

  6. Methodology for flammable gas evaluations

    SciTech Connect

    Hopkins, J.D., Westinghouse Hanford

    1996-06-12

    There are 177 radioactive waste storage tanks at the Hanford Site. The waste generates flammable gases. The waste releases gas continuously, but in some tanks the waste has shown a tendency to trap these flammable gases. When enough gas is trapped in a tank`s waste matrix, it may be released in a way that renders part or all of the tank atmosphere flammable for a period of time. Tanks must be evaluated against previously defined criteria to determine whether they can present a flammable gas hazard. This document presents the methodology for evaluating tanks in two areas of concern in the tank headspace:steady-state flammable-gas concentration resulting from continuous release, and concentration resulting from an episodic gas release.

  7. Investigation of flammable gas and thermal safety issues for retrieval of waste from Tank 241-AN-105

    SciTech Connect

    Caley, S.M.; Stewart, C.W.; Antoniak, Z.I.; Cuta, J.M.; Mahoney, L.A.; Panisko, F.E.

    1998-09-01

    The primary purpose of this report is to identify and resolve some of the flammable gas and thermal safety issues potentially associated with the retrieval of waste from Tank 241-AN-105 (AN-105), which is the first double-shell tank scheduled for waste retrieval at Hanford. The planned retrieval scenario includes the following steps in AN-105: (1) degas the tank using two submerged mixing pumps, (2) turn off the mixer pump(s) and allow any suspended solids to settle, (3) decant the supernatant to the intermediate feed staging tank(s) (IFSTs) (AP-102 and/or AP-104) using water/caustic dilution at the transfer pump inlet, (4) add the remaining dilution water/caustic to the slurry remaining in AN-105, (5) mix the tank with the mixer pump(s) until the soluble solids dissolve, (6) turn off the mixer pump(s) and let the insoluble solids settle, and (7) decant the new supernatant to the IFST(s), leaving the insoluble solids behind. Three waste retrieval safety issues are addressed in this report. They are (1) the controlled degassing of AN-105 to ensure that the headspace remains <25% of the lower flammability limit (LFL), (2) an assessment of how dissolved gas (mainly ammonia) released during the transfer of the supernatant in AN-105 to the IFSTs and the water/caustic dilution of the remaining slurry in AN-105 will affect the flammability in these tanks; and (3) an assessment of the maximum waste temperatures that might occur in AN-105 during retrieval operations.

  8. Flammable gas program topical report

    SciTech Connect

    Johnson, G.D.

    1996-10-30

    The major emphasis of this report is to describe what has been learned about the generation, retention, and release of flammable gas mixtures in high-level waste tanks. A brief overview of efforts to characterize the gas composition will be provided. The report also discusses what needs to be learned about the phenomena, how the Unreviewed Safety Question will be closed, and the approach for removing tanks from the Watch List.

  9. Retained Gas Sampling Results for the Flammable Gas Program

    SciTech Connect

    J.M. Bates; L.A. Mahoney; M.E. Dahl; Z.I. Antoniak

    1999-11-18

    The key phenomena of the Flammable Gas Safety Issue are generation of the gas mixture, the modes of gas retention, and the mechanisms causing release of the gas. An understanding of the mechanisms of these processes is required for final resolution of the safety issue. Central to understanding is gathering information from such sources as historical records, tank sampling data, tank process data (temperatures, ventilation rates, etc.), and laboratory evaluations conducted on tank waste samples.

  10. 49 CFR 172.532 - FLAMMABLE GAS placard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE GAS placard. 172.532 Section 172.532... SECURITY PLANS Placarding § 172.532 FLAMMABLE GAS placard. (a) Except for size and color, the FLAMMABLE GAS... on the FLAMMABLE GAS placard must be red. The symbol, text, class number and inner border must...

  11. 49 CFR 172.417 - FLAMMABLE GAS label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE GAS label. 172.417 Section 172.417... SECURITY PLANS Labeling § 172.417 FLAMMABLE GAS label. (a) Except for size and color, the FLAMMABLE GAS... on the FLAMMABLE GAS label must be red....

  12. 49 CFR 172.417 - FLAMMABLE GAS label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE GAS label. 172.417 Section 172.417... SECURITY PLANS Labeling § 172.417 FLAMMABLE GAS label. (a) Except for size and color, the FLAMMABLE GAS... on the FLAMMABLE GAS label must be red....

  13. 49 CFR 172.532 - FLAMMABLE GAS placard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false FLAMMABLE GAS placard. 172.532 Section 172.532... SECURITY PLANS Placarding § 172.532 FLAMMABLE GAS placard. (a) Except for size and color, the FLAMMABLE GAS... on the FLAMMABLE GAS placard must be red. The symbol, text, class number and inner border must...

  14. 49 CFR 172.417 - FLAMMABLE GAS label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false FLAMMABLE GAS label. 172.417 Section 172.417... SECURITY PLANS Labeling § 172.417 FLAMMABLE GAS label. (a) Except for size and color, the FLAMMABLE GAS... on the FLAMMABLE GAS label must be red....

  15. 49 CFR 172.417 - FLAMMABLE GAS label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false FLAMMABLE GAS label. 172.417 Section 172.417... SECURITY PLANS Labeling § 172.417 FLAMMABLE GAS label. (a) Except for size and color, the FLAMMABLE GAS... on the FLAMMABLE GAS label must be red....

  16. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... through 154.1015. (k) Each flammable gas detection system must have enough flame arrestors for all gas... 46 Shipping 5 2014-10-01 2014-10-01 false Flammable gas detection system. 154.1350 Section 154... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a...

  17. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... through 154.1015. (k) Each flammable gas detection system must have enough flame arrestors for all gas... 46 Shipping 5 2011-10-01 2011-10-01 false Flammable gas detection system. 154.1350 Section 154... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a...

  18. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... through 154.1015. (k) Each flammable gas detection system must have enough flame arrestors for all gas... 46 Shipping 5 2013-10-01 2013-10-01 false Flammable gas detection system. 154.1350 Section 154... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a...

  19. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... through 154.1015. (k) Each flammable gas detection system must have enough flame arrestors for all gas... 46 Shipping 5 2010-10-01 2010-10-01 false Flammable gas detection system. 154.1350 Section 154... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a...

  20. 46 CFR 154.1350 - Flammable gas detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... through 154.1015. (k) Each flammable gas detection system must have enough flame arrestors for all gas... 46 Shipping 5 2012-10-01 2012-10-01 false Flammable gas detection system. 154.1350 Section 154... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a...

  1. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means any flammable gas having a Reid...

  2. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means any flammable gas having a Reid...

  3. 49 CFR 172.528 - NON-FLAMMABLE GAS placard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... background color on the NON-FLAMMABLE GAS placard must be green. The letters in both words must be at least... 49 Transportation 2 2014-10-01 2014-10-01 false NON-FLAMMABLE GAS placard. 172.528 Section 172.528... SECURITY PLANS Placarding § 172.528 NON-FLAMMABLE GAS placard. (a) Except for size and color, the...

  4. 49 CFR 172.415 - NON-FLAMMABLE GAS label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... color on the NON-FLAMMABLE GAS label must be green. ... 49 Transportation 2 2014-10-01 2014-10-01 false NON-FLAMMABLE GAS label. 172.415 Section 172.415... SECURITY PLANS Labeling § 172.415 NON-FLAMMABLE GAS label. (a) Except for size and color, the...

  5. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means any flammable gas having a Reid vapor pressure exceeding 40 p.s.i. which has been liquefied....

  6. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means any flammable gas having a Reid vapor pressure exceeding 40 p.s.i. which has been liquefied....

  7. 46 CFR 188.10-43 - Liquefied flammable gas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Liquefied flammable gas. 188.10-43 Section 188.10-43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-43 Liquefied flammable gas. This term means any flammable gas having a Reid...

  8. The Chemistry of Flammable Gas Generation

    SciTech Connect

    ZACH, J.J.

    2000-10-30

    The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data.

  9. Flammable gas interlock spoolpiece flow response test plan and procedure

    SciTech Connect

    Schneider, T.C., Fluor Daniel Hanford

    1997-02-13

    The purpose of this test plan and procedure is to test the Whittaker electrochemical cell and the Sierra Monitor Corp. flammable gas monitors in a simulated field flow configuration. The sensors are used on the Rotary Mode Core Sampling (RMCS) Flammable Gas Interlock (FGI), to detect flammable gases, including hydrogen and teminate the core sampling activity at a predetermined concentration level.

  10. Flammable gas data evaluation. Progress report

    SciTech Connect

    Whitney, P.D.; Meyer, P.A.; Miller, N.E.

    1996-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Numerous safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate, retain, and periodically release flammable gases. This report documents some of the activities of the Flammable Gas Project Data Evaluation Task conducted for Westinghouse Hanford Company during fiscal year 1996. Described in this report are: (1) the results of examining the in-tank temperature measurements for insights into gas release behavior; (2) the preliminary results of examining the tank waste level measurements for insights into gas release behavior; and (3) an explanation for the observed hysteresis in the level/pressure measurements, a phenomenon observed earlier this year when high-frequency tank waste level measurements came on-line.

  11. Flammable Gas Detection for the D-Zero Gas System

    SciTech Connect

    Spires, L.D.; Foglesong, J.; /Fermilab

    1991-02-11

    The use of flammable gas and high voltage in detector systems is common in many experiments at Fermilab. To mitigate the hazards associated with these systems, Fermilab Engineering Standard SD-45B (Ref. 1) was adopted. Since this note is meant to be a guide and not a mandatory standard, each experiment is reviewed for compliance with SD-45B by the flammable gas safety subcommittee. Currently, there are only two types of flammable gas in use, ethane (Appendix A) and methane (Appendix B). The worst flammable-gas case is C2H6 (ethane), which has an estimated flow rate that is 73% of the CH4 (methane) flow but a heat of combustion (in kcal/g-mole) that is 173% of that of methane. In the worst case, if ethane were to spew through its restricting orifice into its gas line at 0 psig and then through a catastrophic leak into Room 215 (TRD) or Room 511 (CDC/FDCNTX), the time that would be required to build up a greater than Class 1 inventory (0.4kg H2 equivalent) would be 5.2 hours (Ref. 2). Therefore a worst-case flammable gas leak would have to go undetected for over 5 hours in order to transform a either mixing room to an environment with a Risk Class greater than Class 1. The mixing systems, gas lines, and detectors themselves will be thoroughly leak checked prior to active service. All vessels that are part of the mixing systems will be protected from overpressure by safety valves vented outside the building. Both the input and output of all detector volumes are protected from overpressure in the same way. The volume immediately outside the central tracking detectors is continuously purged by nitrogen from boiloff from the main nitrogen dewar at the site. However, if flammable gas were to build up in the mixing rooms or particular detector areas, no matter how unlikely, flammable gas detectors that are part of the interlock chain of each gas mixing system will shut down the appropriate system. This includes shutting off the output of flammable gas manifolds within the

  12. 49 CFR 172.528 - NON-FLAMMABLE GAS placard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false NON-FLAMMABLE GAS placard. 172.528 Section 172.528... SECURITY PLANS Placarding § 172.528 NON-FLAMMABLE GAS placard. (a) Except for size and color, the NON-FLAMMABLE GAS placard must be as follows: EC02MR91.045 (b) In addition to complying with § 172.519,...

  13. 49 CFR 172.528 - NON-FLAMMABLE GAS placard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false NON-FLAMMABLE GAS placard. 172.528 Section 172.528... SECURITY PLANS Placarding § 172.528 NON-FLAMMABLE GAS placard. (a) Except for size and color, the NON-FLAMMABLE GAS placard must be as follows: EC02MR91.045 (b) In addition to complying with § 172.519,...

  14. 49 CFR 172.415 - NON-FLAMMABLE GAS label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false NON-FLAMMABLE GAS label. 172.415 Section 172.415... SECURITY PLANS Labeling § 172.415 NON-FLAMMABLE GAS label. (a) Except for size and color, the NON-FLAMMABLE GAS label must be as follows: EC02MR91.020 (b) In addition to complying with § 172.407, the...

  15. 49 CFR 172.415 - NON-FLAMMABLE GAS label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false NON-FLAMMABLE GAS label. 172.415 Section 172.415... SECURITY PLANS Labeling § 172.415 NON-FLAMMABLE GAS label. (a) Except for size and color, the NON-FLAMMABLE GAS label must be as follows: EC02MR91.020 (b) In addition to complying with § 172.407, the...

  16. 49 CFR 172.415 - NON-FLAMMABLE GAS label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false NON-FLAMMABLE GAS label. 172.415 Section 172.415... SECURITY PLANS Labeling § 172.415 NON-FLAMMABLE GAS label. (a) Except for size and color, the NON-FLAMMABLE GAS label must be as follows: EC02MR91.020 (b) In addition to complying with § 172.407, the...

  17. 49 CFR 172.528 - NON-FLAMMABLE GAS placard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false NON-FLAMMABLE GAS placard. 172.528 Section 172.528... SECURITY PLANS Placarding § 172.528 NON-FLAMMABLE GAS placard. (a) Except for size and color, the NON-FLAMMABLE GAS placard must be as follows: EC02MR91.045 (b) In addition to complying with § 172.519,...

  18. 49 CFR 172.415 - NON-FLAMMABLE GAS label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false NON-FLAMMABLE GAS label. 172.415 Section 172.415... SECURITY PLANS Labeling § 172.415 NON-FLAMMABLE GAS label. (a) Except for size and color, the NON-FLAMMABLE GAS label must be as follows: EC02MR91.020 (b) In addition to complying with § 172.407, the...

  19. 49 CFR 172.528 - NON-FLAMMABLE GAS placard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false NON-FLAMMABLE GAS placard. 172.528 Section 172.528... SECURITY PLANS Placarding § 172.528 NON-FLAMMABLE GAS placard. (a) Except for size and color, the NON-FLAMMABLE GAS placard must be as follows: EC02MR91.045 (b) In addition to complying with § 172.519,...

  20. 46 CFR 148.420 - Flammable gas analyzers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Flammable gas analyzers. 148.420 Section 148.420... MATERIALS THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.420 Flammable gas analyzers..., each vessel transporting the material, other than an unmanned barge, must have on board a gas...

  1. 46 CFR 148.420 - Flammable gas analyzers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Flammable gas analyzers. 148.420 Section 148.420... MATERIALS THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.420 Flammable gas analyzers..., each vessel transporting the material, other than an unmanned barge, must have on board a gas...

  2. 46 CFR 148.420 - Flammable gas analyzers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Flammable gas analyzers. 148.420 Section 148.420... MATERIALS THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.420 Flammable gas analyzers..., each vessel transporting the material, other than an unmanned barge, must have on board a gas...

  3. 49 CFR 172.532 - FLAMMABLE GAS placard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false FLAMMABLE GAS placard. 172.532 Section 172.532 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... on the FLAMMABLE GAS placard must be red. The symbol, text, class number and inner border must...

  4. 49 CFR 172.532 - FLAMMABLE GAS placard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE GAS placard. 172.532 Section 172.532 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... on the FLAMMABLE GAS placard must be red. The symbol, text, class number and inner border must...

  5. STEADY-STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect

    HU TA

    2007-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The methodology of flammability analysis for Hanford tank waste is developed. The hydrogen generation rate model was applied to calculate the gas generation rate for 177 tanks. Flammability concentrations and the time to reach 25% and 100% of the lower flammability limit, and the minimum ventilation rate to keep from 100 of the LFL are calculated for 177 tanks at various scenarios.

  6. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    SciTech Connect

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  7. Offsite Radiological Consequence Analysis for the Bounding Flammable Gas Accident

    SciTech Connect

    CARRO, C.A.

    2003-07-30

    This document quantifies the offsite radiological consequences of the bounding flammable gas accident for comparison with the 25 rem Evaluation Guideline established in DOE-STD-3009, Appendix A. The bounding flammable gas accident is a detonation in a single-shell tank The calculation applies reasonably conservation input parameters in accordance with DOE-STD-3009, Appendix A, guidance. Revision 1 incorporates comments received from Office of River Protection.

  8. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect

    MEACHAM JE

    2008-11-17

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for al1 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 13 days for DSTs (i.e., tank 241-AZ-102) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 12 days for DSTs (i.e., tank 241-AZ-102) and 34 days for SSTs (i.e., tank 241-B-203).

  9. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect

    MEACHAM JE

    2009-10-26

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for all 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 11 days for DSTs (i.e., tank 241-AZ-10l) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 10 days for DSTs (i.e., tank 241-AZ-101) and 34 days for SSTs (i.e., tank 241-B-203).

  10. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE [SEC 1 & 2

    SciTech Connect

    HU, T.A.

    2003-09-30

    Report in the Tank Waste Information Network System, and the waste temperature data in the Surveillance Analysis Computer System (SACS) (dated July 2003). However, the release rate of methane, ammonia, and nitrous oxide is based on the input data (dated October 1999) as stated in Revision 0 of this report. Scenarios for adding waste to existing waste levels (dated July 2003) have been studied to determine the gas generation rates and the effect of smaller dome space on the flammability limits to address the issues of routine water additions and other possible waste transfer operations. In the flammability evaluation with zero ventilation, the sensitivity to waste temperature and to water addition was calculated for double-shell tanks 241-AY-102, 241-AN-102,241-AZ-101,241-AN-107,241-AY-101 and 241-AZ-101. These six have the least margin to flammable conditions among 28 double-shell tanks.

  11. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable...

  12. Flammable gas cloud build up in a ventilated enclosure.

    PubMed

    Ivings, M J; Gant, S E; Saunders, C J; Pocock, D J

    2010-12-15

    Ventilation is frequently used as a means for preventing the build up of flammable or toxic gases in enclosed spaces. The effectiveness of the ventilation often has to be considered as part of a safety case or risk assessment. In this paper methods for assessing ventilation effectiveness for hazardous area classification are examined. The analysis uses data produced from Computational Fluid Dynamics (CFD) simulations of low-pressure jet releases of flammable gas in a ventilated enclosure. The CFD model is validated against experimental measurements of gas releases in a ventilation-controlled test chamber. Good agreement is found between the model predictions and the experimental data. Analysis of the CFD results shows that the flammable gas cloud volume resulting from a leak is largely dependent on the mass release rate of flammable gas and the ventilation rate of the enclosure. The effectiveness of the ventilation for preventing the build up of flammable gas can therefore be assessed by considering the average gas concentration at the enclosure outlet(s). It is found that the ventilation rate of the enclosure provides a more useful measure of ventilation effectiveness than considering the enclosure air change rate. PMID:20855156

  13. Flammable gas tank waste level reconciliation for 241-SX-105

    SciTech Connect

    Brevick, C.H.; Gaddie, L.A.

    1997-06-23

    Fluor Daniel Northwest was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-SX-105 (SX-105, typical). The trapped gas evaluation document states that Tank SX-105 exceeds the 25% of the lower flammable limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The Welty Report is also a part of the trapped gas evaluation document criteria. The Welty Report contains various tank information, including: physical information, status, levels, and dry wells. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank SX-105 transfers and reported a net cumulative change of 20.75 in. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank SX-105 initially received waste from REDOX starting the second quarter of 1955. After June 1975, the tank primarily received processed waste (slurry) from the 242-S Evaporator/Crystallizer and transferred supernate waste to Tanks S-102 and SX-102. The Welty Report shows a cumulative change of 20.75 in. from June 1973 through December 1980.

  14. Safety basis For activities in double-shell tanks with flammable gas concerns

    SciTech Connect

    Schlosser, R.L.

    1996-02-05

    This is full revision to Revision 0 of this report. The purpose of this report is to provide a summary of analyses done to support activities performed for double shell tanks. These activities are encompassed by the flammable gas Unreviewed Safety Question (USQ). The basic controls required to perform these activities involve the identification, elimination and/or control of ignition sources and monitoring for flammable gases. Controls are implemented through the Interim Safety Basis (ISB), IOSRs, and OSDs. Since this report only provides a historical compendium of issues and activities, it is not to be used as a basis to perform USQ screenings and evaluations. Furthermore, these analyses and others in process will be used as the basis for developing the Flammable Gas Topical Report for the ISB Upgrade.

  15. Safety basis for selected activities in single-shell tanks with flammable gas concerns. Revision 1

    SciTech Connect

    Schlosser, R.L.

    1996-02-05

    This is full revision to Revision 0 of this report. The purpose of this report is to provide a summary of analyses done to support activities performed for single-shell tanks. These activities are encompassed by the flammable gas Unreviewed Safety Question (USQ). The basic controls required to perform these activities involve the identification, elimination and/or control of ignition sources and monitoring for flammable gases. Controls are implemented through the Interim Safety Basis (ISB), IOSRs, and OSDs. Since this report only provides a historical compendium of issues and activities, it is not to be used as a basis to perform USQ screenings and evaluations. Furthermore, these analyses and others in process will be used as the basis for developing the Flammable Gas Topical Report for the ISB Upgrade.

  16. Flammable gas interlock spoolpiece flow response test report

    SciTech Connect

    Schneider, T.C., Fluor Daniel Hanford

    1997-03-24

    The purpose of this test report is to document the testing performed under the guidance of HNF-SD-WM-TC-073, {ital Flammable Gas Interlock Spoolpiece Flow Response Test Plan and Procedure}. This testing was performed for Lockheed Martin Hanford Characterization Projects Operations (CPO) in support of Rotary Mode Core Sampling jointly by SGN Eurisys Services Corporation and Numatec Hanford Company. The testing was conducted in the 305 building Engineering Testing Laboratory (ETL). NHC provides the engineering and technical support for the 305 ETL. The key personnel identified for the performance of this task are as follows: Test responsible engineering manager, C. E. Hanson; Flammable Gas Interlock Design Authority, G. P. Janicek; 305 ETL responsible manager, N. J. Schliebe; Cognizant RMCS exhauster engineer, E. J. Waldo/J. D. Robinson; Cognizant 305 ETL engineer, K. S. Witwer; Test director, T. C. Schneider. Other support personnel were supplied, as necessary, from 305/306 ETL. The testing, on the flammable Gas Interlock (FGI) system spoolpiece required to support Rotary Mode Core Sampling (RMCS) of single shell flammable gas watch list tanks, took place between 2-13-97 and 2-25-97.

  17. OFFSITE RADIOLOGICAL CONSEQUENCE ANALYSIS FOR THE BOUNDING FLAMMABLE GAS ACCIDENT

    SciTech Connect

    KRIPPS, L.J.

    2005-02-18

    This document quantifies the offsite radiological consequences of the bounding flammable gas accident for comparison with the 25 rem Evaluation Guideline established in DOE-STD-3009, Appendix A. The bounding flammable gas accident is a detonation in a SST. The calculation applies reasonably conservative input parameters in accordance with guidance in DOE-STD-3009, Appendix A. The purpose of this analysis is to calculate the offsite radiological consequence of the bounding flammable gas accident. DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', requires the formal quantification of a limited subset of accidents representing a complete set of bounding conditions. The results of these analyses are then evaluated to determine if they challenge the DOE-STD-3009-94, Appendix A, ''Evaluation Guideline,'' of 25 rem total effective dose equivalent in order to identify and evaluate safety-class structures, systems, and components. The bounding flammable gas accident is a detonation in a single-shell tank (SST). A detonation versus a deflagration was selected for analysis because the faster flame speed of a detonation can potentially result in a larger release of respirable material. A detonation in an SST versus a double-shell tank (DST) was selected as the bounding accident because the estimated respirable release masses are the same and because the doses per unit quantity of waste inhaled are greater for SSTs than for DSTs. Appendix A contains a DST analysis for comparison purposes.

  18. Control Decisions for Flammable Gas Hazards in Waste Transfer Systems

    SciTech Connect

    KRIPPS, L.J.

    2000-06-28

    This report describes the control decisions for flammable gas hazards in waste transfer systems (i.e., waste transfer piping and waste transfer-associated structures) made at control decision meetings on November 30, 1999a and April 19, 2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996). Following the Contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the US. Department of Energy (DOE), Office of River Protection (ORP) for review and approval. The control decision meeting on November 30, 1999 to address flammable gas hazards in waste transfer systems followed the control decision process and the criteria for control decisions described in Section 3.3.1.5 of the FSAR. The control decision meeting agenda, attendance list, and introductory and background presentations are included in Attachments 1 through 4. The control decision discussions on existing and other possible controls for flammable gas hazards in waste transfer systems and the basis for selecting or not selecting specific controls are summarized in this report.

  19. 49 CFR 172.532 - FLAMMABLE GAS placard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false FLAMMABLE GAS placard. 172.532 Section 172.532 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE, SPECIAL PROVISIONS, HAZARDOUS...

  20. 49 CFR 172.417 - FLAMMABLE GAS label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false FLAMMABLE GAS label. 172.417 Section 172.417 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE, SPECIAL PROVISIONS, HAZARDOUS...

  1. Project W-030 flammable gas verification monitoring test

    SciTech Connect

    BARKER, S.A.

    1999-02-24

    This document describes the verification monitoring campaign used to document the ability of the new ventilation system to mitigate flammable gas accumulation under steady state tank conditions. This document reports the results of the monitoring campaign. The ventilation system configuration, process data, and data analysis are presented.

  2. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas having a Reid vapor pressure exceeding 40...

  3. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas having a Reid vapor pressure exceeding 40...

  4. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas having a Reid vapor pressure exceeding 40...

  5. 46 CFR 30.10-39 - Liquefied flammable gas-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Liquefied flammable gas-TB/ALL. 30.10-39 Section 30.10-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-39 Liquefied flammable gas—TB/ALL. The term liquefied flammable gas means any flammable gas having a Reid vapor pressure exceeding 40...

  6. SIMPLE TRANSIENT CALCULATIONS OF CELL FLAMMABLE GAS CONCENTRATIONS

    SciTech Connect

    , J; David Allison , D; John Mccord, J

    2009-05-06

    The Saltstone Facility at Savannah River Site (SRS) mixes low-level radiological liquid waste with grout for permanent disposal as cement in vault cells. The grout mixture is poured into each cell in approximately 17 batches (8 to 10 hours duration). The grout mixture contains ten flammable gases of concern that are released from the mixture into the cell. Prior to operations, simple parametric transient calculations were performed to develop batch parameters (including schedule of batch pours) to support operational efficiency while ensuring that a flammable gas mixture does not develop in the cell vapor space. The analysis demonstrated that a nonflammable vapor space environment can be achieved, with workable operational constraints, without crediting the ventilation flow as a safety system control. Isopar L was identified as the primary flammable gas of concern. The transient calculations balanced inflows of the flammable gases into the vapor space with credited outflows of diurnal breathing through vent holes and displacement from new grout pours and gases generated. Other important features of the analyses included identifying conditions that inhibited a well-mixed vapor space, the expected frequency and duration of such conditions, and the estimated level of stratification that could develop.

  7. Thermal Flammable Gas Production from Bulk Vitrification Feed

    SciTech Connect

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.

    2008-05-21

    The baseline bulk-vitrification (BV) process (also known as in-container vitrification ICV™) includes a mixer/dryer to convert liquid low-activity waste (LAW) into a dried, blended feed for vitrification. Feed preparation includes blending LAW with glass-forming minerals (GFMs) and cellulose and drying the mixture to a suitable dryness, consistency, and particle size for transport to the ICVTM container. The cellulose is to be added to the BV feed at a rate sufficient to destroy 75% of the nitrogen present as nitrate or nitrite. Concern exists that flammable gases may be produced during drying operations at levels that could pose a risk. The drying process is conducted under vacuum in the temperature range of 60 to 80°C. These flammable gases could be produced either through thermal decomposition of cellulose or waste organics or as a by-product of the reaction of cellulose and/or waste organics with nitrate or the postulated small amount of nitrite present in the waste. To help address the concern about flammable gas production during drying, the Pacific Northwest National Laboratory (PNNL) performed studies to identify the gases produced at dryer temperatures and at possible process upset conditions. Studies used a thermogravimetric analyzer (TGA) up to 525°C and isothermal testing up to 120°C to determine flammable gas production resulting from the cellulose and organic constituents in bulk vitrification feed. This report provides the results of those studies to determine the effects of cellulose and waste organics on flammable gas evolution

  8. Evaluation of 241 AN tank farm flammable gas behavior

    SciTech Connect

    Reynolds, D.A.

    1994-01-01

    The 241 AN Tank Farm tanks 241-AN-103, -104, and 105 are Flammable Gas Watch List tanks. Characteristics exhibited by these tanks (i.e., surface level drops, pressure increases, and temperature profiles) are similar to those exhibited by tank 241-SY-101, which is also a Watch List tank. Although the characteristics exhibited by tank 241-SY-101 are also present in tanks 241-AN-103, -104, and 105, they are exhibited to a lesser degree in the AN Tank Farm tanks. The 241 AN Tank Farm tanks have only small surface level drops, and the pressure changes that occur are not sufficient to release an amount of gas that would cause the dome space to exceed the lower flammability limit (LFL) for hydrogen. Therefore, additional restrictions are probably unnecessary for working within the 241 AN Tank Farm, either within the dome space of the tanks or in the waste.

  9. Flammable gas double shell tank expert elicitation presentations (Part A and Part B)

    SciTech Connect

    Bratzel, D.R.

    1998-04-17

    This document is a compilation of presentation packages and white papers for the Flammable Gas Double Shell Tank Expert Elicitation Workshop {number_sign}2. For each presentation given by the different authors, a separate section was developed. The purpose for issuing these workshop presentation packages and white papers as a supporting document is to provide traceability and a Quality Assurance record for future reference to these packages.

  10. Flammable gas concentrations in ex-tank volumes

    SciTech Connect

    Wittekind, W.D.

    1998-06-17

    A simple two-volume model was defined and used for calculating flammable gas concentrations within headspace volumes of single-shell tanks, and within smaller ex-tank volumes connected to the headspace. Assumptions and parameters used to characterize the headspace portion of the model were taken from the GRE Analysis Tool (AT) for simulating gas release events. Additional assumptions used to construct the ex-tank portion of the two-volume model were conservative extensions of those made within the AT, and chosen to simulate headspace to ex-tank gas-flow conditions that would maximize ex-tank concentrations. Numerical evaluations of the two-volume model were performed over a range of headspace GRE conditions and representative ex-tank parameters. To assure consistency with the AT, the range of headspace parameters was taken from 1000 simulated GREs generated by the AT computer code RESOLVE. Based upon waste level fill factors, three tanks (TX-102, SX-103, and TX 112) were chosen to represent typical large, medium, and small headspace volumes available in actual SSTs. Engineering drawings of these tanks were used to determine values of their ex-tank parameters (V2`s and estimates for the gas-flow fraction ``a`` into the specific V2). The results of these evaluations were used to compare time periods for which flammable gas concentrations in the tank headspace and the ex-tank volumes exceeded the lower flammability limit for upward flame propagation. These results indicate that even for relatively small flow fractions, headspace concentrations that exceed the LFI, can cause delayed ex-tank concentrations to also exceed the LFLU. The extent to which this occurs is determined mostly by the geometrical aspects of the model, as expressed in the effective volume fraction parameter.

  11. A risk-based approach to flammable gas detector spacing.

    PubMed

    Defriend, Stephen; Dejmek, Mark; Porter, Leisa; Deshotels, Bob; Natvig, Bernt

    2008-11-15

    Flammable gas detectors allow an operating company to address leaks before they become serious, by automatically alarming and by initiating isolation and safe venting. Without effective gas detection, there is very limited defense against a flammable gas leak developing into a fire or explosion that could cause loss of life or escalate to cascading failures of nearby vessels, piping, and equipment. While it is commonly recognized that some gas detectors are needed in a process plant containing flammable gas or volatile liquids, there is usually a question of how many are needed. The areas that need protection can be determined by dispersion modeling from potential leak sites. Within the areas that must be protected, the spacing of detectors (or alternatively, number of detectors) should be based on risk. Detector design can be characterized by spacing criteria, which is convenient for design - or alternatively by number of detectors, which is convenient for cost reporting. The factors that influence the risk are site-specific, including process conditions, chemical composition, number of potential leak sites, piping design standards, arrangement of plant equipment and structures, design of isolation and depressurization systems, and frequency of detector testing. Site-specific factors such as those just mentioned affect the size of flammable gas cloud that must be detected (within a specified probability) by the gas detection system. A probability of detection must be specified that gives a design with a tolerable risk of fires and explosions. To determine the optimum spacing of detectors, it is important to consider the probability that a detector will fail at some time and be inoperative until replaced or repaired. A cost-effective approach is based on the combined risk from a representative selection of leakage scenarios, rather than a worst-case evaluation. This means that probability and severity of leak consequences must be evaluated together. In marine and

  12. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect

    HU, T.A.

    2005-10-27

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  13. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect

    HU TA

    2009-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  14. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c)...

  15. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c)...

  16. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c)...

  17. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c)...

  18. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c)...

  19. An Improved Analytical Approach to Determine the Explosive Effects of Flammable Gas-Air Mixtures

    SciTech Connect

    Yang, J M

    2005-11-10

    The U.S. Department of Energy (DOE) Complex includes many sites and laboratories that store quantities of low-level, solid nuclear waste in drums and other types of shipping containers. The drums may be stored for long periods of time prior to being transported and final dispositioning. Based on the radioactivity (e.g., Pu{sup 239} equivalent), chemical nature (e.g. volatile organic compounds) and other characteristics of the stored waste, flammable gases may evolve. Documented safety analyses (DSAs) for storage of these drums must address storage and safety management issues to protect workers, the general public, and the environment. This paper discusses an improved analytical method for determining the explosion effects flammable gas-air mixtures as well as the subsequent accident phenomenology.

  20. Research Division flammable gas system calibration procedure and stability studies

    SciTech Connect

    Semenchenko, A.; Hojvat, C.

    1993-03-01

    The number of detectors which shifted from initial 50% LEL calibration by more than 5% over 90 days period is small enough in order to increase the time interval between calibrations at least to 120 days, but with any further increase in time between the calibrations probability of SC100 failure greatly increases. In order to keep the number of detectors with abnormal sensitivity low, we would recommend 120 days to be the maximum allowable interval for our present environmental conditions. Information is also presentd on the calibration of the SC100 Combustible Gas Sensor and the DC110 controller. The sensorand controlled form part of the flammable gas detecting systems installed at Fermilab.

  1. Waste tank 241-SY-101 dome airspace and ventilation system response to a flammable gas plume burn

    SciTech Connect

    Heard, F.J.

    1995-11-01

    A series of flammable gas plume burn and transient pressure analyses have been completed for a nuclear waste tank (241-SY-101) and associated tank farm ventilation system at the U.S. Department of Energy`s Hanford facility. The subject analyses were performed to address issues concerning the effects of transient pressures resulting from igniting a small volume of concentrated flammable gas just released from the surface of the waste as a plume and before the flammable gas concentration could be reduced by mixing with the dome airspace by local convection and turbulent diffusion. Such a condition may exist as part of an in progress episode gas release (EGR) or gas plume event. The analysis goal was to determine the volume of flammable gas that if burned within the dome airspace would result in a differential pressure, after propagating through the ventilation system, greater than the current High Efficiency Particulate Filter (HEPA) limit of 2.49 KPa (10 inches of water or 0. 36 psi). Such a pressure wave could rupture the tank ventilation system inlet and outlet HEPA filters leading to a potential release of contaminants to the environment

  2. Steady State Flammable Gas Release Rate Calculation and Lower Flammability Level Evaluation for Hanford Tank Waste

    SciTech Connect

    HU, T.A.

    2000-04-27

    This work is to assess the steady-state flammability level at normal and off-normal ventilation conditions in the tank dome space for 177 double-shell and single-shell tanks at Hanford. Hydrogen generation rate was calculated for 177 tanks using rate equation model developed recently.

  3. Results of gas monitoring of double-shell flammable gas watch list tanks

    SciTech Connect

    Wilkins, N.E.

    1995-01-19

    Tanks 103-SY; 101-AW; 103-, 104-, and 105-AN are on the Flammable Gas Watch List. Recently, standard hydrogen monitoring system (SHMS) cabinets have been installed in the vent header of each of these tanks. Grab samples have been taken once per week, and a gas chromatograph was installed on tank 104-AN as a field test. The data that have been collected since gas monitoring began on these tanks are summarized in this document.

  4. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable... portable safety container approved by a recognized testing laboratory for the contents carried. (b)...

  5. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable... portable safety container approved by a recognized testing laboratory for the contents carried. (b)...

  6. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable... portable safety container approved by a recognized testing laboratory for the contents carried. (b)...

  7. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable... portable safety container approved by a recognized testing laboratory for the contents carried. (b)...

  8. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable... portable safety container approved by a recognized testing laboratory for the contents carried. (b)...

  9. Experimental study of flammability limits of natural gas-air mixture.

    PubMed

    Liao, S Y; Cheng, Q; Jiang, D M; Gao, J

    2005-03-17

    Flammability limits data are essential for a quantitative risk assessment of explosion hazard associated with the use of combustible gas. The present work is to obtain the fundamental flammability data for prevention of the hazards in the practical applications. Experiments have been conducted in a constant volume combustion bomb, and the fuel considered here is natural gas (NG). The pressure histories in the combustion bomb are recorded and a criterion of 7% pressure rise has been used to judge a flammable mixture. The effects of ethane on NG-air flammability limits have been investigated. By adding diluent (carbon dioxide, nitrogen or their mixture) into NG-air mixture, the dilution effects on the flammability limits have been explored as well, and the results are plotted as functions of diluent ratio. PMID:15752851

  10. Design review report for the RMCS exhauster modifications for flammable gas tanks

    SciTech Connect

    Corbett, J.E., Westinghouse Hanford

    1996-08-27

    This report documents the completion of the formal design review for the Rotary Mode Core Sampling (RMCS) Exhauster modifications for flammable gas tanks. The RMCS Exhauster modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to approve Engineering Change Orders and new drawings, at the 100% design completion state. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward fabrication and delivery.

  11. TRU waste transportation -- The flammable gas generation problem

    SciTech Connect

    Connolly, M.J.; Kosiewicz, S.T.

    1997-11-01

    The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site`s inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons.

  12. Flammable gas tank safety program: Data requirements for core sample analysis developed through the Data Quality Objectives (DQO) process. Revision 1

    SciTech Connect

    McDuffie, N.G.; LeClair, M.D.

    1995-04-28

    This document represents the application of the Data Quality Objectives (DQO) process to the Flammable Gas Tank Safety Issue at the Hanford Site. The product of this effort is a list of data required from tank core sample analysis to support resolution of this issue.

  13. Novel industrial application: flammable and toxic gas monitoring in the printing industry

    NASA Astrophysics Data System (ADS)

    Jacobson, Esther; Spector, Yechiel

    1999-12-01

    The present paper describes an Open Path Electro-Optical Gas Monitoring System specifically designed for in-situ on-line monitoring of flammable and toxic atmospheres in the Printing Industry in general, and for air-duct applications in particular. The printing industry posies unique fire hazards due to the variety of toxic and flammable chemical employed in the various printing process. Flammable material such as paper, ink, solvents, thinners, metal powders, cornstarch powders, cloth, synthetic materials are frequently used in the printing industry in several processes such as letter-pressing, lithography, screen printing etc.

  14. Evaluation of high-level nuclear waste tanks having a potential flammable gas hazard

    SciTech Connect

    Johnson, G.D.; Barton, W.B.; Hill, R.C.; et al, Fluor Daniel Hanford

    1997-02-14

    In 1990 the U.S. Department of Energy declared an unreviewed safety question as a result of the behavior of tank 241-SY-101. This tank exhibited episodic releases of flammable gases that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years a considerable amount of knowledge has been gained about the chemical and physical processes that govern the behavior of tank 241-SY-101 and the other tanks associated with a potential flammable gas hazard. This paper presents an overview of the current understanding of gas generation, retention, and release and covers the results of direct sampling of the tanks to determine the gas composition and the amount of stored gas.

  15. Summary of flammable gas hazard and potential consequences in tank waste remediation system facility at the Hanford site

    SciTech Connect

    Van Vleet, R.J., Westinghouse Hanford

    1996-12-11

    This document provides a summary of the flammable gas program since 1992. It provides the best understanding of generation, retention, release of flammable gases. It gives a composition for each of the flammable gas tanks, calculates postulated concentrations in the event of a release, calculates the pressure obtained during a burn, and provides radiological and toxicological consequences. Controls from the analysis are found in WHC-SD-WM-SAR-067.

  16. 49 CFR 193.2059 - Flammable vapor-gas dispersion protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Flammable vapor-gas dispersion protection. 193.2059 Section 193.2059 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES:...

  17. 49 CFR 193.2059 - Flammable vapor-gas dispersion protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Flammable vapor-gas dispersion protection. 193.2059 Section 193.2059 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES:...

  18. Engineering task plan for flammable gas atmosphere mobile color video camera systems

    SciTech Connect

    Kohlman, E.H.

    1995-01-25

    This Engineering Task Plan (ETP) describes the design, fabrication, assembly, and testing of the mobile video camera systems. The color video camera systems will be used to observe and record the activities within the vapor space of a tank on a limited exposure basis. The units will be fully mobile and designed for operation in the single-shell flammable gas producing tanks. The objective of this tank is to provide two mobile camera systems for use in flammable gas producing single-shell tanks (SSTs) for the Flammable Gas Tank Safety Program. The camera systems will provide observation, video recording, and monitoring of the activities that occur in the vapor space of applied tanks. The camera systems will be designed to be totally mobile, capable of deployment up to 6.1 meters into a 4 inch (minimum) riser.

  19. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    SciTech Connect

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.

  20. Methods of Off-Gas Flammability Control for DWPF Melter Off-Gas System at Savannah River Site

    SciTech Connect

    Choi, A.S.; Iverson, D.C.

    1996-05-02

    Several key operating variables affecting off-gas flammability in a slurry-fed radioactive waste glass melter are discussed, and the methods used to prevent potential off-gas flammability are presented. Two models have played a central role in developing such methods. The first model attempts to describe the chemical events occurring during the calcining and melting steps using a multistage thermodynamic equilibrium approach, and it calculates the compositions of glass and calcine gases. Volatile feed components and calcine gases are fed to the second model which then predicts the process dynamics of the entire melter off-gas system including off-gas flammability under both steady state and various transient operating conditions. Results of recent simulation runs are also compared with available data

  1. Flammable gas safety program. Analytical methods development: FY 1994 progress report

    SciTech Connect

    Campbell, J.A.; Clauss, S.; Grant, K.; Hoopes, V.; Lerner, B.; Lucke, R.; Mong, G.; Rau, J.; Wahl, K.; Steele, R.

    1994-09-01

    This report describes the status of developing analytical methods to account for the organic components in Hanford waste tanks, with particular focus on tanks assigned to the Flammable Gas Watch List. The methods that have been developed are illustrated by their application to samples obtained from Tank 241-SY-101 (Tank 101-SY).

  2. 49 CFR 176.230 - Stowage of Division 2.1 (flammable gas) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Stowage of Division 2.1 (flammable gas) materials. 176.230 Section 176.230 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed Requirements...

  3. 49 CFR 176.230 - Stowage of Division 2.1 (flammable gas) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Stowage of Division 2.1 (flammable gas) materials. 176.230 Section 176.230 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed Requirements...

  4. An approximate-reasoning-based method for screening flammable gas tanks

    SciTech Connect

    Eisenhawer, S.W.; Bott, T.F.; Smith, R.E.

    1998-03-01

    High-level waste (HLW) produces flammable gases as a result of radiolysis and thermal decomposition of organics. Under certain conditions, these gases can accumulate within the waste for extended periods and then be released quickly into the dome space of the storage tank. As part of the effort to reduce the safety concerns associated with flammable gas in HLW tanks at Hanford, a flammable gas watch list (FGWL) has been established. Inclusion on the FGWL is based on criteria intended to measure the risk associated with the presence of flammable gas. It is important that all high-risk tanks be identified with high confidence so that they may be controlled. Conversely, to minimize operational complexity, the number of tanks on the watchlist should be reduced as near to the true number of flammable risk tanks as the current state of knowledge will support. This report presents an alternative to existing approaches for FGWL screening based on the theory of approximate reasoning (AR) (Zadeh 1976). The AR-based model emulates the inference process used by an expert when asked to make an evaluation. The FGWL model described here was exercised by performing two evaluations. (1) A complete tank evaluation where the entire algorithm is used. This was done for two tanks, U-106 and AW-104. U-106 is a single shell tank with large sludge and saltcake layers. AW-104 is a double shell tank with over one million gallons of supernate. Both of these tanks had failed the screening performed by Hodgson et al. (2) Partial evaluations using a submodule for the predictor likelihood for all of the tanks on the FGWL that had been flagged previously by Whitney (1995).

  5. Flammable Gas Refined Safety Analysis Tool Software Verification and Validation Report for Resolve Version 2.5

    SciTech Connect

    BRATZEL, D.R.

    2000-09-28

    The purpose of this report is to document all software verification and validation activities, results, and findings related to the development of Resolve Version 2.5 for the analysis of flammable gas accidents in Hanford Site waste tanks.

  6. Control Decisions for Flammable Gas Hazards in Double Contained Receiver Tanks (DCRTs)

    SciTech Connect

    KRIPPS, L.J.

    2000-06-28

    This report describes the control decisions for flammable gas hazards in double-contained receiver tanks (DCRTs) made at control decision meetings on November 16, 17, and 18, 1999, on April 19,2000, and on May 10,2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996) for DCRTs. Following the contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the U.S. Department of Energy (DOE), Office of River Protection (ORP) for review and approval.

  7. On The Impact of Borescope Camera Air Purge on DWPF Melter Off-Gas Flammability

    SciTech Connect

    CHOI, ALEXANDER

    2004-07-22

    DWPF Engineering personnel requested that a new minimum backup film cooler air flow rate, which will meet the off-gas safety basis limits for both normal and seismic sludge-only operations, be calculated when the air purge to the borescope cameras is isolated from the melter. Specifically, it was requested that the latest calculations which were used to set the off-gas flammability safety bases for the sludge batch 2 and 3 feeds be revised, while maintaining all other process variables affecting off-gas flammability such as total organic carbon (TOC), feed rate, melter air purges, and vapor space temperature at their current respective maximum or minimum limits. Before attempting to calculate the new minimum backup film cooler air flow, some of the key elements of the combustion model were reviewed, and it was determined that the current minimum backup film cooler air flow of 233 lb/hr is adequate to satisfy the off-gas flammability safety bases for both normal and seismic operations i n the absence of any borescope camera air purge. It is, therefore, concluded that there is no need to revise the reference E-7 calculations. This conclusion is in essence based on the fact that the current minimum backup film cooler air flow was set to satisfy the minimum combustion air requirement under the worst-case operating scenario involving a design basis earthquake during which all the air purges not only to the borescope cameras but to the seal pot are presumed to be lost due to pipe ruptures. The minimum combustion air purge is currently set at 150 per cent of the stoichiometric air flow required to combust 3 times the normal flow of flammable gases. The DWPF control strategy has been that 100 per cent of the required minimum combustion air is to be provided by the controlled air purge through the backup film cooler alone.

  8. Equipment design guidance document for flammable gas waste storage tank new equipment

    SciTech Connect

    Smet, D.B.

    1996-04-11

    This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas.

  9. Explosion hazard analysis for an enclosure partially filled with a flammable gas

    SciTech Connect

    Ogle, R.A.

    1999-11-01

    The constant volume explosion of a flammable gas is one of the more common accidental explosions. The explosion pressure at the stoichiometric condition is approximately 50 times greater than the failure pressure of most industrial structures. Observations from accident scenes suggest that some explosions are caused by a quantity of fuel significantly less than the stoichiometric amount required to fill an enclosure. This paper presents a method for analyzing the explosion hazard in an enclosure which is only partially filled with a flammable gas. The method, called the adiabatic mixing model, is based on thermodynamics and can be used to calculate the minimum fuel quantity which will yield a specified explosion pressure. Results are presented for a set of representative fuels and are compared with alternative explosion models. The results demonstrate that catastrophic structural damage can be achieved with a volume of flammable gas which is less than one percent of the enclosure volume. The method can be a useful tool for both hazard analysis and accident investigations.

  10. Evaluation of flammable gas monitoring options for waste tank intrusive activities

    SciTech Connect

    Shultz, M.V.

    1996-09-03

    This calc note documents an evaluation of three options for monitoring hydrogen during waste tank intrusive activities. The three options are (1) one Combustible Gas Monitor with an operator monitoring the readout, (2) two CGMs with separate operators monitoring each gas monitor, and (3) one CGM with audible alarm, no dedicated operator monitoring readout. A comparison of the failure probabilities of the three options is provided. This Calculation Note supports the Flammable Gas Analysis for TWRS FSAR and BIO. This document is not to be used as the sole basis to authorize activities or to change authorization, safety or design bases.

  11. Results of vapor space monitoring of flammable gas Watch List tanks

    SciTech Connect

    Wilkins, N.E.

    1997-09-18

    This report documents the measurement of headspace gas concentrations and monitoring results from the Hanford tanks that have continuous flammable gas monitoring. The systems used to monitor the tanks are Standard Hydrogen Monitoring Systems. Further characterization of the tank off-gases was done with Gas Characterization Systems and vapor grab samples. The background concentrations of all tanks are below the action level of 6250 ppm. Other information which can be derived from the measurements (such as generation rate, release rate, and ventilation rate) is also discussed.

  12. Results of Vapor Space Monitoring of Flammable Gas Watch List Tanks

    SciTech Connect

    MCCAIN, D.J.

    2000-09-27

    This report documents the measurement of headspace gas concentrations and monitoring results from the Hanford tanks that have continuous flammable gas monitoring. The systems used to monitor the tanks are Standard Hydrogen Monitoring Systems. Further characterization of the tank off-gases was done with Gas Characterization systems and vapor grab samples. The background concentrations of all tanks are below the action level of 6250 ppm. Other information which can be derived from the measurements (such as generation rate, released rate, and ventilation rate) is also discussed.

  13. Flammable Gas Safety Program: actual waste organic analysis FY 1996 progress report; Flammable Gas Safety Program: actual waste organic analysis FY 1996 progress report

    SciTech Connect

    Clauss, S.A.; Grant, K.E.; Hoopes, V.; Mong, G.M.; Rau, J.; Steele, R.; Wahl, K.H.

    1996-09-01

    This report describes the status of optimizing analytical methods to account for the organic components in Hanford waste tanks, with emphasis on tanks assigned to the Flammable Gas Watch List. The methods developed are illustrated by their application to samples from Tanks 241-SY-103 and 241-S-102. Capability to account for organic carbon in Tank SY-101 was improved significantly by improving techniques for isolating organic constituents relatively free from radioactive contamination and by improving derivatization methodology. The methodology was extended to samples from Tank SY-103 and results documented in this report. Results from analyzing heated and irradiated SY-103 samples (Gas Generation Task) and evaluating methods for analyzing tank waste directly for chelators and chelator fragments are also discussed.

  14. Potential Flammable Gas Explosion in the TRU Vent and Purge Machine

    SciTech Connect

    Vincent, A

    2006-04-05

    The objective of the analysis was to determine the failure of the Vent and Purge (V&P) Machine due to potential explosion in the Transuranic (TRU) drum during its venting and/or subsequent explosion in the V&P machine from the flammable gases (e.g., hydrogen and Volatile Organic Compounds [VOCs]) vented into the V&P machine from the TRU drum. The analysis considers: (a) increase in the pressure in the V&P cabinet from the original deflagration in the TRU drum including lid ejection, (b) pressure wave impact from TRU drum failure, and (c) secondary burns or deflagrations resulting from excess, unburned gases in the cabinet area. A variety of cases were considered that maximized the pressure produced in the V&P cabinet. Also, cases were analyzed that maximized the shock wave pressure in the cabinet from TRU drum failure. The calculations were performed for various initial drum pressures (e.g., 1.5 and 6 psig) for 55 gallon TRU drum. The calculated peak cabinet pressures ranged from 16 psig to 50 psig for various flammable gas compositions. The blast on top of cabinet and in outlet duct ranged from 50 psig to 63 psig and 12 psig to 16 psig, respectively, for various flammable gas compositions. The failure pressures of the cabinet and the ducts calculated by structural analysis were higher than the pressure calculated from potential flammable gas deflagrations, thus, assuring that V&P cabinet would not fail during this event. National Fire Protection Association (NFPA) 68 calculations showed that for a failure pressure of 20 psig, the available vent area in the V&P cabinet is 1.7 to 2.6 times the required vent area depending on whether hydrogen or VOCs burn in the V&P cabinet. This analysis methodology could be used to design the process equipment needed for venting TRU waste containers at other sites across the Department of Energy (DOE) Complex.

  15. Methodology for Predicting Flammable Gas Mixtures in Double Contained Receiver Tanks [SEC 1 THRU SEC 3

    SciTech Connect

    HEDENGREN, D.C.

    2000-01-31

    This methodology document provides an estimate of the maximum concentrations of flammable gases (ammonia, hydrogen, and methane) which could exist in the vapor space of a double-contained receiver tank (DCRT) from the simultaneous saltwell pumping of one or more single-shell tanks (SSTs). This document expands Calculation Note 118 (Hedengren et a1 1997) and removes some of the conservatism from it, especially in vapor phase ammonia predictions. The methodologies of Calculation Note 118 (Hedengren et a1 1997) are essentially identical for predicting flammable gas mixtures in DCRTs from saltwell pumping for low DCRT ventilation rates, 1e, < 1 cfm. The hydrogen generation model has also been updated in the methodology of this document.

  16. MELTER OFF-GAS FLAMMABILITY ASSESSMENT FOR DWPF ALTERNATE REDUCTANT FLOWSHEET OPTIONS

    SciTech Connect

    Choi, A.

    2011-07-08

    Glycolic acid and sugar are being considered as potential candidates to substitute for much of the formic acid currently being added to the Defense Waste Processing Facility (DWPF) melter feed as a reductant. A series of small-scale melter tests were conducted at the Vitreous State Laboratory (VSL) in January 2011 to collect necessary data for the assessment of the impact of these alternate reductants on the melter off-gas flammability. The DM10 melter with a 0.021 m{sup 2} melt surface area was run with three different feeds which were prepared at SRNL based on; (1) the baseline formic/nitric acid flowsheet, (2) glycolic/formic/nitric acid flowsheet, and (3) sugar/formic/nitric acid flowsheet - these feeds will be called the baseline, glycolic, and sugar flowsheet feeds, respectively, hereafter. The actual addition of sugar to the sugar flowsheet feed was made at VSL before it was fed to the melter. For each feed, the DM10 was run under both bubbled (with argon) and non-bubbled conditions at varying melter vapor space temperatures. The goal was to lower its vapor space temperature from nominal 500 C to less than 300 C at 50 C increments and maintain steady state at each temperature at least for one hour, preferentially for two hours, while collecting off-gas data including CO, CO{sub 2}, and H{sub 2} concentrations. Just a few hours into the first test with the baseline feed, it was discovered that the DM10 vapor space temperature would not readily fall below 350 C simply by ramping up the feed rate as the test plan called for. To overcome this, ambient air was introduced directly into the vapor space through a dilution air damper in addition to the natural air inleakage occurring at the operating melter pressure of -1 inch H{sub 2}O. A detailed description of the DM10 run along with all the data taken is given in the report issued by VSL. The SRNL personnel have analyzed the DM10 data and identified 25 steady state periods lasting from 32 to 92 minutes for all

  17. Data Observations on Double Shell Tank (DST) Flammable Gas Watch List Tank Behavior

    SciTech Connect

    HEDENGREN, D.C.

    2000-09-28

    This report provides the data from the retained gas sampler, void fraction instrument, ball rheometer, standard hydrogen monitoring system, and other tank data pertinent to gas retention and release behavior in the waste stored in double-shelled Flammable Gas Watch List tanks at Hanford. These include tanks 241-AN-103,241-AN-104, 241-AN-105, 241-AW-101, 241-SY-101, and 241-SY-103. The tanks and the waste they contain are described in terms of fill history and chemistry. The results of mixer pump operation and recent waste transfers and back-dilution in SY-101 are also described. In-situ measurement and monitoring systems are described and the data are summarized under the categories of thermal behavior, waste configuration and properties, gas generation and composition, gas retention and historical gas release behavior.

  18. Modeling of non-thermal plasma in flammable gas mixtures

    NASA Astrophysics Data System (ADS)

    Napartovich, A. P.; Kochetov, I. V.; Leonov, S. B.

    2008-07-01

    An idea of using plasma-assisted methods of fuel ignition is based on non-equilibrium generation of chemically active species that speed up the combustion process. It is believed that gain in energy consumed for combustion acceleration by plasmas is due to the non-equilibrium nature of discharge plasma, which allows radicals to be produced in an above-equilibrium amount. Evidently, the size of the effect is strongly dependent on the initial temperature, pressure, and composition of the mixture. Of particular interest is comparison between thermal ignition of a fuel-air mixture and non-thermal plasma initiation of the combustion. Mechanisms of thermal ignition in various fuel-air mixtures have been studied for years, and a number of different mechanisms are known providing an agreement with experiments at various conditions. The problem is -- how to conform thermal chemistry approach to essentially non-equilibrium plasma description. The electric discharge produces much above-equilibrium amounts of chemically active species: atoms, radicals and ions. The point is that despite excess concentrations of a number of species, total concentration of these species is far below concentrations of the initial gas mixture. Therefore, rate coefficients for reactions of these discharge produced species with other gas mixture components are well known quantities controlled by the translational temperature, which can be calculated from the energy balance equation taking into account numerous processes initiated by plasma. A numerical model was developed combining traditional approach of thermal combustion chemistry with advanced description of the plasma kinetics based on solution of electron Boltzmann equation. This approach allows us to describe self-consistently strongly non-equilibrium electric discharge in chemically unstable (ignited) gas. Equations of pseudo-one-dimensional gas dynamics were solved in parallel with a system of thermal chemistry equations, kinetic equations

  19. Assessment of alternative mitigation concepts for Hanford flammable gas tanks

    SciTech Connect

    Stewart, C.W.; Schienbein, L.A.; Hudson, J.D.; Eschbach, E.J.; Lessor, D.L.

    1994-09-01

    This report provides a review and assessment of four selected mitigation concepts: pump jet mixing, sonic vibration, dilution, and heating. Though the relative levels of development of these concepts are quite different, some definite conclusions are made on their comparative feasibility. Key findings of this report are as follows. A mixer pump has proven to be a safe and effective active mitigation method in Tank 241-SY-101, and the authors are confident that mixer pumps will effectively mitigate other tanks with comparable waste configurations and properties. Low-frequency sonic vibration is also predicted to be effective for mitigation. Existing data cannot prove that dilution can mitigate gas release event (GRE) behavior. However, dilution is the only concept of the four that potentially offers passive mitigation. Like dilution, heating the waste cannot be proven with available information to mitigate GRE behavior. The designs, analyses, and data from which these conclusions are derived are presented along with recommendations.

  20. Resolve! Version 2.5: Flammable Gas Accident Analysis Tool Acceptance Test Plan and Test Results

    SciTech Connect

    LAVENDER, J.C.

    2000-10-17

    RESOLVE! Version 2 .5 is designed to quantify the risk and uncertainty of combustion accidents in double-shell tanks (DSTs) and single-shell tanks (SSTs). The purpose of the acceptance testing is to ensure that all of the options and features of the computer code run; to verify that the calculated results are consistent with each other; and to evaluate the effects of the changes to the parameter values on the frequency and consequence trends associated with flammable gas deflagrations or detonations.

  1. Assessment of the impact of TOA partitioning on DWPF off-gas flammability

    SciTech Connect

    Daniel, W. E.

    2013-06-01

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar L in the effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.

  2. Operability test report for core sample truck {number_sign}1 flammable gas modifications

    SciTech Connect

    Akers, J.C.

    1997-09-15

    This report primarily consists of the original test procedure used for the Operability Testing of the flammable gas modifications to Core Sample Truck No. One. Included are exceptions, resolutions, comments, and test results. This report consists of the original, completed, test procedure used for the Operability Testing of the flammable gas modifications to the Push Mode Core Sample Truck No. 1. Prior to the Acceptance/Operability test the truck No. 1 operations procedure (TO-080-503) was revised to be more consistent with the other core sample truck procedures and to include operational steps/instructions for the SR weather cover pressurization system. A draft copy of the operations procedure was used to perform the Operability Test Procedure (OTP). A Document Acceptance Review Form is included with this report (last page) indicating the draft status of the operations procedure during the OTP. During the OTP 11 test exceptions were encountered. Of these exceptions four were determined to affect Acceptance Criteria as listed in the OTP, Section 4.7 ACCEPTANCE CRITERIA.

  3. Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability

    SciTech Connect

    Daniel, W. E.

    2013-02-13

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPF to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.

  4. Flammable gas safety program. Analytical methods development: FY 1993 progress report

    SciTech Connect

    Campbell, J.A.; Clauss, S.; Grant, K.; Hoopes, V.; Lerner, B.; Lucke, R.; Mong, G.; Rau, J.; Steele, R.

    1994-01-01

    This report describes the status of developing analytical methods to account for the organic constituents in Hanford waste tanks, with particular emphasis on those tanks that have been assigned to the Flammable Gas Watch List. Six samples of core segments from Tank 101-SY, obtained during the window E core sampling, have been analyzed for organic constituents. Four of the samples were from the upper region, or convective layer, of the tank and two were from the lower, nonconvective layer. The samples were analyzed for chelators, chelator fragments, and several carboxylic acids by derivatization gas chromatography/mass spectrometry (GC/MS). The major components detected were ethylenediaminetetraacetic acid (EDTA), nitroso-iminodiacetic acid (NIDA), nitrilotriacetic acid (NTA), citric acid (CA), succinic acid (SA), and ethylenediaminetriacetic acid (ED3A). The chelator of highest concentration was EDTA in all six samples analyzed. Liquid chromatography (LC) was used to quantitate low molecular weight acids (LMWA) including oxalic, formic, glycolic, and acetic acids, which are present in the waste as acid salts. From 23 to 61% of the total organic carbon (TOC) in the samples analyzed was accounted for by these acids. Oxalate constituted approximately 40% of the TOC in the nonconvective layer samples. Oxalate was found to be approximately 3 to 4 times higher in concentration in the nonconvective layer than in the convective layer. During FY 1993, LC methods for analyzing LWMA, and two chelators N-(2-hydroxyethyl) ethylenediaminetriacetic acid and EDTA, were transferred to personnel in the Analytical Chemistry Laboratory and the 222-S laboratory.

  5. Mitigation/remediation concepts for Hanford Site flammable gas generating waste tanks

    SciTech Connect

    Babad, H.; Deichman, J.L.; Johnson, B.M.; Lemon, D.K.; Strachan, D.M.

    1992-04-01

    This report presents a preliminary assessment of concepts for the mitigation and/or remediation of the hydrogen gas generation, storage, and periodic release in Tank 241-SY-101 (101-SY) and 22 other tanks. The 22 other tanks exhibit much less hydrogen generation (volume and concentration of released flammable gases) than Tank 101-SY and have not had the focus nor attention that has been given to Tank 101-SY. These tanks have been listed as potential hydrogen gas-generating tanks from analysis of tank performance and data from flowsheets and Track Radioactive Constituents Reports (TRAC). These lesser hydrogen-generating tanks will also need to be revisited and revalidated. Of the 23 hydrogen class tanks, 5 are double-shell tanks (DST) and 18 are single-shell tanks (SST). Options for mitigation or remediation are different for the two types of tanks because of age, configuration, and waste form. While this document principally focuses on Tank 101-SY, the information presented has been useful to address other tanks containing hydrogen-generating waste.

  6. An analysis of tank and pump pit flammable gas data in support of saltwater pumping safety basis simplification

    SciTech Connect

    MCCAIN, D.J.

    2000-07-26

    Hanford Site high-level waste tanks are interim stabilized by pumping supernatant and interstitial waste liquids to double-shell tanks (DSTs) through a saltwell pump (SWP). The motor to this SWP is located atop the tank, inside a pump pit. A pumping line extends down from the pump motor into the well area, located in the salt/sludge solids in the tank below. Pumping of these wastes is complicated by the fact that some of the wastes generate and retain potentially hazardous amounts of hydrogen, nitrous oxide, and ammonia. Monitoring of flammable gas concentrations during saltwell pumping activities has shown that one effect of pumping is acceleration in the release of accumulated hydrogen. A second effect is that of a temporarily increased hydrogen concentration in both the dome space and pump pit. There is a safety concern that the hydrogen concentration during saltwell pumping activities might approach the lower flammability limit (LFL) in either the tank dome space or the pump pit. The current Final Safety Analysis Report (FSAR) (CHG 2000) for saltwell pumping requires continuous flammable gas monitoring in both the pump pit and the tank vapor space during saltwell pumping. The FSAR also requires that portable exhauster fans be available by most of the passively ventilated tanks to be saltwell pumped in the event that additional air flow is required to dilute the headspace concentration of flammable gases to acceptable levels. The first objective of this analysis is to review the need for an auxiliary exhauster. Since the purpose of the exhauster is to diffuse unacceptably high flammable gas concentrations, discovery of an alternate method of accomplishing the same task may provide cost savings. The method reviewed is that of temporarily stopping the saltwell pumps. This analysis also examines the typical hydrogen concentration peaks and the rates of increase in hydrogen levels already witnessed in tanks during saltwell pumping activities. The historical data

  7. Independent design review report for truck {number_sign}1 modifications for flammable gas tanks

    SciTech Connect

    Wilson, G.W.

    1997-05-09

    The East and West Tank Farm Standing Order 97-01 requires that the PMST be modified to include purging of the enclosed space underneath the shielded receiver weather cover per National Fire Protection Association (NFPA) 496, Purged and Pressurized Enclosures for Electrical Equipment. The Standing Order also requires that the PMST be modified by replacing the existing electrical remote latch (RLU) unit with a mechanical remote latch unit. As the mechanical remote latch unit was exactly like the RLU installed on the Rotary Mode Core Sampler Trucks (RMCST) and the design for the RMCST went through formal design review, replacing the RLU was done utilizing informal design verification and was completed per work package ES-97-0028. As the weather cover purge was similar to the design for the RMCSTS, this design was reviewed using the independent review method with multiple independent reviewers. A function design criteria (WHC-SD-WM-FDC-048, Functional Design Criteria for Core Sampling in Flammable Gas Watch List Tanks) provided the criteria for the modifications. The review consisted of distributing the design review package to the reviewers and collecting and dispositioning the RCR comments. The review package included the ECNs for review, the Design Compliance Matrix, copies of all drawings affected, and copies of outstanding ECNs against these drawings. A final meeting was held to ensure that all reviewers were aware of the changes to ECNs from incorporation of RCR comments.

  8. DEVELOPMENT OF AN ANTIFOAM TRACKING SYSTEM AS AN OPTION TO SUPPORT THE MELTER OFF-GAS FLAMMABILITY CONTROL STRATEGY AT THE DWPF

    SciTech Connect

    Edwards, T.; Lambert, D.

    2014-08-27

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of an additional strategy for confidently satisfying the flammability controls for DWPF’s melter operation. An initial strategy for implementing the operational constraints associated with flammability control in DWPF was based upon an analytically determined carbon concentration from antifoam. Due to the conservative error structure associated with the analytical approach, its implementation has significantly reduced the operating window for processing and has led to recurrent Slurry Mix Evaporator (SME) and Melter Feed Tank (MFT) remediation. To address the adverse operating impact of the current implementation strategy, SRR issued a Technical Task Request (TTR) to SRNL requesting the development and documentation of an alternate strategy for evaluating the carbon contribution from antifoam. The proposed strategy presented in this report was developed under the guidance of a Task Technical and Quality Assurance Plan (TTQAP) and involves calculating the carbon concentration from antifoam based upon the actual mass of antifoam added to the process assuming 100% retention. The mass of antifoam in the Additive Mix Feed Tank (AMFT), in the Sludge Receipt and Adjustment Tank (SRAT), and in the SME is tracked by mass balance as part of this strategy. As these quantities are monitored, the random and bias uncertainties affecting their values are also maintained and accounted for. This report documents: 1) the development of an alternate implementation strategy and associated equations describing the carbon concentration from antifoam in each SME batch derived from the actual amount of antifoam introduced into the AMFT, SRAT, and SME during the processing of the batch. 2) the equations and error structure for incorporating the proposed strategy into melter off-gas flammability assessments

  9. Challenges and methodology for safety analysis of a high-level waste tank with large periodic releases of flammable gas

    SciTech Connect

    Edwards, J.N.; Pasamehmetoglu, K.O.; White, J.R.; Stewart, C.W.

    1994-07-01

    Tank 241-SY-101, located at the Department of Energy Hanford Site, has periodically released up to 10,000 ft{sup 3} of flammable gas. This release has been one of the highest-priority DOE operational safety problems. The gases include hydrogen and ammonia (fuels) and nitrous oxide (oxidizer). There have been many opinions regarding the controlling mechanisms for these releases, but demonstrating an adequate understanding of the problem, selecting a mitigation methodology, and preparing the safety analysis have presented numerous new challenges. The mitigation method selected for the tank was to install a pump that would mix the tank contents and eliminate the sludge layer believed to be responsible for the gas retention and periodic releases. This report will describe the principal analysis methodologies used to prepare the safety assessment for the installation and operation of the pump, and because this activity has been completed, it will describe the results of pump operation.

  10. Evaluation of mitigation strategies in Facility Group 1 double-shell flammable-gas tanks at the Hanford Site

    SciTech Connect

    Unal, C.; Sadasivan, P.; Kubic, W.L.; White, J.R.

    1997-11-01

    Radioactive nuclear waste at the Hanford Site is stored in underground waste storage tanks at the site. The tanks fall into two main categories: single-shell tanks (SSTs) and double-shell tanks (DSTs). There are a total of 149 SSTs and 28 DSTs. The wastes stored in the tanks are chemically complex. They basically involve various sodium salts (mainly nitrite, nitrate, carbonates, aluminates, and hydroxides), organic compounds, heavy metals, and various radionuclides, including cesium, strontium, plutonium, and uranium. The waste is known to generate flammable gas (FG) [hydrogen, ammonia, nitrous oxide, hydrocarbons] by complex chemical reactions. The process of gas generation, retention, and release is transient. Some tanks reach a quasi-steady stage where gas generation is balanced by the release rate. Other tanks show continuous cycles of retention followed by episodic release. There currently are 25 tanks on the Flammable Gas Watch List (FGWL). The objective of this report is to evaluate possible mitigation strategies to eliminate the FG hazard. The evaluation is an engineering study of mitigation concepts for FG generation, retention, and release behavior in Tanks SY-101, AN-103, AN 104, An-105, and Aw-101. Where possible, limited quantification of the effects of mitigation strategies on the FG hazard also is considered. The results obtained from quantification efforts discussed in this report should be considered as best-estimate values. Results and conclusions of this work are intended to help in establishing methodologies in the contractor`s controls selection analysis to develop necessary safety controls for closing the FG unreviewed safety question. The general performance requirements of any mitigation scheme are discussed first.

  11. Flammable gas/slurry growth unreviewed safety question:justification for continued operation for the tank farms at the Hanford site

    SciTech Connect

    Leach, C.E., Westinghouse Hanford

    1996-07-31

    This Justification for Continued Operation (JCO) provides a basis for continued operation in 176 high level waste tanks, double contained receiver tanks (DCRTs), catch tanks, 244-AR Vault, 242-S and 242-T Evaporators and inactive miscellaneous underground storage tanks (IMUSTs) relative to flammable gas hazards. Required controls are specified.

  12. A safety assessment of rotary mode core sampling in flammable gas single shell tanks: Hanford Site, Richland, Washington

    SciTech Connect

    Raymond, R.E.

    1996-04-15

    This safety assessment (SA) addresses each of the required elements associated with the installation, operation, and removal of a rotary-mode core sampling (RMCS) device in flammable-gas single-shell tanks (SSTs). The RMCS operations are needed in order to retrieve waste samples from SSTs with hard layers of waste for which push-mode sampling is not adequate for sampling. In this SA, potential hazards associated with the proposed action were identified and evaluated systematically. Several potential accident cases that could result in radiological or toxicological gas releases were identified and analyzed and their consequences assessed. Administrative controls, procedures and design changes required to eliminate or reduce the potential of hazards were identified. The accidents were analyzed under nine categories, four of which were burn scenarios. In SSTS, burn accidents result in unacceptable consequences because of a potential dome collapse. The accidents in which an aboveground burn propagates into the dome space were shown to be in the ``beyond extremely unlikely`` frequency category. Given the unknown nature of the gas-release behavior in the SSTS, a number of design changes and administrative controls were implemented to achieve these low frequencies. Likewise, drill string fires and dome space fires were shown to be very low frequency accidents by taking credit for the design changes, controls, and available experimental and analytical data. However, a number of Bureau of Mines (BOM) tests must be completed before some of the burn accidents can be dismissed with high confidence. Under the category of waste fires, the possibility of igniting the entrapped gases and the waste itself were analyzed. Experiments are being conducted at the BOM to demonstrate that the drill bit is not capable of igniting the trapped gas in the waste. Laboratory testing and thermal analysis demonstrated that, under normal operating conditions, the drill bit will not create high

  13. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship...

  14. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship...

  15. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship...

  16. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship...

  17. 46 CFR 153.465 - Flammable vapor detector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.465 Flammable vapor detector. (a) A tankship...

  18. Hot gas filtration technical issues

    SciTech Connect

    Pontius, D.H.

    1995-11-01

    The primary objective of this research has been to provide an understanding of factors pertinent to the development of an effective filtration system for removing particles from high-temperature, high-pressure gas streams in advanced power generation systems under development by the Department of Energy. Information used to define the filtration system issues was compiled from the Morgantown Energy Technology Center (METC) Contractors Conferences, specific tasks assigned to Southern Research Institute, meetings with METC personnel and contractors, and other conferences and workshops organized by METC. Initial research and pilot scale installations have shown that there are some potential problem areas. Thick ash deposits have formed, bridging from passive surfaces to the filter material and between filter candles. A great number of ceramic filters have broken in various experimental and demonstration devices, especially during long-term testing. This paper reviews particulate characteristics (effects on filtration processes, conventional fly ash, gasifier char, PFBC ash, and detailed studies of PFBC ash) and ceramic filter materials (general issues, thermal stress, clay-bonded SiC filter materials, and monolithic ceramic materials).

  19. Total flammable mass and volume within a vapor cloud produced by a continuous fuel-gas or volatile liquid-fuel release.

    PubMed

    Epstein, Michael; Fauske, Hans K

    2007-08-25

    The top-hat jet/plume model has recently been employed to obtain simple closed-form expressions for the mass of fuel in the flammable region of a vapor "cloud" produced by an axisymmetric (round) continuous-turbulent jet having positive or negative buoyancy [1]. The fuel release may be a gas or a volatile liquid. In this paper, the top-hat analysis is extended to obtain closed-form approximate expressions for the total mass (fuel+entrained air) and volume of the flammable region of a release cloud produced by either a round or a plane (two-dimensional) buoyant jet. These expressions lead to predicted average fuel concentrations in the flammable regions of the release clouds which, when compared with the stoichiometric concentration, serve as indicators of the potential severity of release cloud explosions. For a fixed release mass, the combustion overpressure following ignition of a hydrogen/air cloud is anticipated to be significantly lower than that due to ignition of a hydrocarbon/air cloud. The predicted average hydrogen concentration within the flammable region of the release cloud is below the lower detonability limit. The facility with which the expressions can be used for predictions of combustion overpressures is illustrated for propane releases and deflagrations in a closed compartment. PMID:17363152

  20. Gas gathering and transportation issues in Texas

    SciTech Connect

    Pitner, S.L.

    1997-12-31

    The Texas Railroad Commission was established in 1891 to prevent waste of the states oil and gas. The Commission regulates both oil and gas from the time the well permit is granted until it is used. In 1995 the Commission was reorganized with increased emphasis on natural gas issues. The Gas Services Division was formed to address the growing importance of natural gas to the state. The significant aspects of this new division are discussed.

  1. Natural gas 1998: Issues and trends

    SciTech Connect

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs.

  2. Flammable Gas Safety Program: Mechanisms of gas generation from simulated SY Tank Farm wastes. Progress report, FY 1994

    SciTech Connect

    Barefield, E.K.; Boadtright, D.; Deshpande, A.; Doctorovich, F.; Liotta, C.L.; Neumann, H.M.; Seymore, S.

    1995-09-01

    This is the final report for work done at Georgia Tech during Fiscal Year 1994. The objectives of this work were to develop a better understanding of the mechanism of formation of flammable gases in the thermal decomposition of metal complexants, such as HEDTA and sodium glycolate, in simulated SY waste mixtures. This project is a continuation of work begun under earlier contracts with Westinghouse Hanford Co. Three major areas are discussed: development of a reliable analysis for dissolved ammonia, the initiation of long term studies of HEDTA decomposition in stainless steel vessels and product analyses through 3800 h, and further consideration of product analyses and kinetic data reported in FY 1993 for decomposition of HEDTA and sodium glycolate in Teflon-lined glass vessels. A brief exploration was also made of the speciation of aluminum(l1l) in the presence of HEDTA as a function of pH using {sup 27}Al NMR.

  3. Compressed natural gas measurement issues

    SciTech Connect

    Blazek, C.F.; Kinast, J.A.; Freeman, P.M.

    1993-12-31

    The Natural Gas Vehicle Coalition`s Measurement and Metering Task Group (MMTG) was established on July 1st, 1992 to develop suggested revisions to National Institute of Standards & Technology (NIST) Handbook 44-1992 (Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices) and NIST Handbook 130-1991 (Uniform Laws & Regulations). Specifically, the suggested revisions will address the sale and measurement of compressed natural gas when sold as a motor vehicle fuel. This paper briefly discusses the activities of the MMTG and its interaction with NIST. The paper also discusses the Institute of Gas Technology`s (IGT) support of the MMTG in the area of natural gas composition, their impact on metering technology applicable to high pressure fueling stations as well as conversion factors for the establishment of ``gallon gasoline equivalent`` of natural gas. The final portion of this paper discusses IGT`s meter research activities and its meter test facility.

  4. Initial parametric study of the flammability of plume releases in Hanford waste tanks

    SciTech Connect

    Antoniak, Z.I.; Recknagle, K.P.

    1997-08-01

    This study comprised systematic analyses of waste tank headspace flammability following a plume-type of gas release from the waste. First, critical parameters affecting plume flammability were selected, evaluated, and refined. As part of the evaluation the effect of ventilation (breathing) air inflow on the convective flow field inside the tank headspace was assessed, and the magnitude of the so-called {open_quotes}numerical diffusion{close_quotes} on numerical simulation accuracy was investigated. Both issues were concluded to be negligible influences on predicted flammable gas concentrations in the tank headspace. Previous validation of the TEMPEST code against experimental data is also discussed, with calculated results in good agreements with experimental data. Twelve plume release simulations were then run, using release volumes and flow rates that were thought to cover the range of actual release volumes and rates. The results indicate that most plume-type releases remain flammable only during the actual release ends. Only for very large releases representing a significant fraction of the volume necessary to make the entire mixed headspace flammable (many thousands of cubic feet) can flammable concentrations persist for several hours after the release ends. However, as in the smaller plumes, only a fraction of the total release volume is flammable at any one time. The transient evolution of several plume sizes is illustrated in a number of color contour plots that provide insight into plume mixing behavior.

  5. Natural gas 1995: Issues and trends

    SciTech Connect

    1995-11-01

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  6. Report on the handling of safety information concerning flammable gases and ferrocyanide at the Hanford waste tanks

    SciTech Connect

    Not Available

    1990-07-01

    This report discusses concerns safety issues, and management at Hanford Tank Farm. Concerns center on the issue of flammable gas generation which could ignite, and on possible exothermic reactions of ferrocyanide compounds which were added to single shell tanks in the 1950's. It is believed that information concerning these issues has been mis-handled and the problems poorly managed. (CBS)

  7. THE FLAMMABILITY ANALYSIS AND TIME TO REACH LOWER FLAMMABILITY LIMIT CALCULATIONS ON THE WASTE EVAPORATION AT 242-A EVAPORATOR

    SciTech Connect

    HU TA

    2007-10-31

    This document describes the analysis of the waste evaporation process on the flammability behavior. The evaluation calculates the gas generation rate, time to reach 25% and 100% of the lower flammability limit (LFL), and minimum ventilation rates for the 242-A Evaporator facility during the normal evaporation process and when vacuum is lost. This analysis performs flammability calculations on the waste currently within all 28 double-shell tanks (DST) under various evaporation process conditions to provide a wide spectrum of possible flammable gas behavior. The results of this analysis are used to support flammable gas control decisions and support and upgrade to Documented Safety Analysis for the 242-A Evaporator.

  8. Natural gas 1994: Issues and trends

    SciTech Connect

    Not Available

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

  9. Tank 241-C-103 headspace flammability

    SciTech Connect

    Huckaby, J.L.

    1994-01-01

    Information regarding flammable vapors, gases, and aerosols is presented for the purpose of resolving the tank 241-C-103 headspace flammability issue. Analyses of recent vapor and liquid samples, as well as visual inspections of the tank headspace, are discussed in the context of tank dynamics. This document is restricted to issues regarding the flammability of gases, vapors, and an aerosol that may exist in the headspace of tank 241-C-103. While discussing certain information about the organic liquid present in tank 241-C-103, this document addresses neither the potential for, nor consequences of, a pool fire involving this organic liquid; they will be discussed in a separate report.

  10. Natural gas 1992: Issues and trends

    SciTech Connect

    Not Available

    1993-03-01

    This report provides an overview of the natural gas industry in 1991 and 1992, focusing on trends in production, consumption, and pricing of natural gas and how they reflect the regulatory and legislative changes of the past decade (Chapter 1). Also presented are details of FERC Order 636 and the Energy Policy Act of 1992, as well as pertinent provisions of the Clean Air Act Amendments of 1990 (Chapter 2). In addition, the report highlights a range of issues affecting the industry, including: Trends in wellhead prices and natural gas supply activities (Chapter 3); Recent rate design changes for interstate pipeline companies (Chapter 4); Benefits to consumers from the more competitive marketplace (Chapter 5); Pipeline capacity expansions during the past 2 years (Chapter 6); Increasing role of the natural gas futures market (Chapter 7).

  11. Corrosion Issues for Ceramics in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan; Opila, Elizabeth; Nickel, Klaus G.

    2004-01-01

    The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Over the past forty years, a wealth of information on the behavior of ceramic materials in heat engine environments has been obtained. In the first part of the talk we summarize the behavior of monolithic SiC and Si3N4. These materials show excellent baseline behavior in clean, oxygen environments. However the aggressive components in a heat engine environment such as water vapor and salt deposits can be quite degrading. In the second part of the talk we discuss SiC-based composites. The critical issue with these materials is oxidation of the fiber coating. We conclude with a brief discussion of future directions in ceramic corrosion research.

  12. Flammability: A Review and Analysis

    NASA Technical Reports Server (NTRS)

    Wilson, D. Bruce; Steinberg, Theodore A.; Stoltzfus, Joel M.; Fries, Joseph (Technical Monitor)

    2000-01-01

    With its founding in 1975, Committee G-4 of the American Society for Testing and Materials (ASTM) embarked on the process of defining the flammability of metallic materials in oxygen-enriched atmospheres. In this process, they are joined by the National Aeronautics and Space Administration (NASA), the National Fire Protection Association (NFPA), and the Compressed Gas Association (CGA). Although none of these organizations has explicitly defined flammability, the following definitions and statements provide a composite understanding of the concept: 1. "This Standard Guide (ASTM G94-92) is concerned primarily with the properties of a material associated with its relative susceptibility to ignition and propagation of combustion." 2. "A material is considered flammable at the maximum use pressure if at least one sample burns more than 6 in. (15.2 cm). At least, five samples must be tested." NASA 3. "Flammable: Capable, when ignited of maintaining combustion under the specified environmental conditions." NFPA 53. 4. "Combustion: A complex sequence of chemical reactions between a fuel and an oxidant accompanied by the evolution of heat, and usually, the emission of light." NFPA 53. and 5. "A safe oxygen-piping transmission or distribution system is one that is designed and installed in accordance with all applicable codes and regulations for the service conditions and locations involved and further meets the special requirements for oxygen services." CGA-G4 Flammability thus equates, after ignition, to propagation of combustion, synonymous with steady state burning, under specified environmental conditions. Properties for which quantitative values are given in ASTM G94-92 and which are used to describe metals flammability consistent with the concept of steady state burning are either system independent properties, such as, enthalpies of reaction, burn ratios, flame temperatures, thermal conductivity, and heat release; or system dependent properties, such as, oxygen

  13. 46 CFR 153.15 - Conditions under which the Coast Guard issues a Certificate of Inspection or Certificate of...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.15 Conditions under which the Coast Guard...) Subchapter D of this chapter if the hazardous material or NLS is flammable or combustible; or (ii) Either...-flammable or non-combustible. (b) The Coast Guard issues the endorsed Certificate of Compliance...

  14. 46 CFR 153.15 - Conditions under which the Coast Guard issues a Certificate of Inspection or Certificate of...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS General § 153.15 Conditions under which the Coast Guard...) Subchapter D of this chapter if the hazardous material or NLS is flammable or combustible; or (ii) Either...-flammable or non-combustible. (b) The Coast Guard issues the endorsed Certificate of Compliance...

  15. Gas purchasing -- Business, legal, and contracting issues

    SciTech Connect

    Krathwohl, E.J.

    1998-07-01

    While the daily newspapers and radio are full of articles and advertisements concerning the impending opening up of the electric industry to customer choice of supplier, little attention is being given to choice in the natural gas markets. The fact is, however, that except for California and some scattered pilot programs, retail electric markets are not yet open and even the imminent deadlines for retail access may prove to be illusory. For example, Rhode Island retail electric markets, by law, were open to competition July 1, 1997 but a month later less than a handful of customers had chosen alternative suppliers. In contrast, customers everywhere are already able to choose their own gas supplier, other than the local gas utility that had supplied all customers for so many years. With this new freedom of choice comes not only a number of benefits, but also risks. This article seeks to provide customers some guidance in obtaining such benefits and avoiding the risks. Ultimately, that is accomplished through a careful selection process, best done by means of an RFP with expert assistance, and through a negotiated gas contract. Before addressing specific contracting issues one must understand the legal and regulatory framework which governs the transportation of the natural gas.

  16. Particulate Hot Gas Stream Cleanup Technical Issues

    SciTech Connect

    Dorchak, T.P.; Pontiu, D.H.; Snyder, T.R.

    1996-12-31

    The nature of the collected ash has been identified as an issue creating barriers to the commercialization of advanced particle control technologies. Since most of the emphasis and extended operation of Hot Gas Stream Cleanup (HGCU) facilities have been with ceramic candle filters, problems with ash characteristics can be understood in terms of their effects on these control devices. This project is designed to identify the ways ash characteristics affect advanced particle control technologies, to construct and maintain a data base of HGCU ashes and their measured characteristics, and to relate these characteristics to the operation and performance of these facilities. The key characteristics of the collected ash are the morphology of the overall ash aggregate (porosity, geometry of the pores, specific surface area, etc.), and the cohesivity of the aggregate. Our data base currently comprises 242 ash samples from 12 combustion and gasification (HGCU) sources.

  17. Corrosion Issues for Ceramics in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Opila, Elizabeth J.; Tortorelli, Peter F.; More, Karren L.; Nickel, Klaus G.; Hirata, Takehiko; Yoshida, Makoto; Yuri, Isao

    2000-01-01

    The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Figure 26.1 illustrates the requirements for components of an aircraft engine and critical issues [1]. Currently, heat engines are constructed of metal alloys, which meet these requirements within strict temperature limits. In order to extend these temperature limits, ceramic materials have been considered as potential engine materials, due to their high melting points and stability at high temperatures. These materials include oxides, carbides, borides, and nitrides. Interest in using these materials in engines appears to have begun in the 1940s with BeO-based porcelains [2]. During the 1950s, the efforts shifted to cermets. These were carbide-based materials intended to exploit the best properties of metals and ceramics. During the 1960s and 1970s, the silicon-based ceramics silicon carbide (SiC) and silicon nitride (Si3N4) were extensively developed. Although the desirable high-temperature properties of SiC and Si3N4 had long been known, consolidation of powders into component-sized bodies required the development of a series of specialized processing routes [3]. For SiC, the major consolidation routes are reaction bonding, hot-pressing, and sintering. The use of boron and carbon as additives which enable sintering was a particularly noteworthy advance [4]. For Si3N4 the major consolidation routes are reaction bonding and hot pressing [5]. Reaction-bonding involves nitridation of silicon powder. Hot pressing involves addition of various refractory oxides, such as magnesia (MgO), alumina (Al2O3), and yttria (y2O3). Variations on these processes include a number of routes including Hot Isostatic Pressing (HIP), gas-pressure sintering

  18. Natural gas gathering and transportation issues, 1998 Texas perspective

    SciTech Connect

    Kitchens, R.L.

    1998-12-31

    In 1996 and 1997, the natural gas industry was intensely focused on the debate surrounding proposed new rules governing the gathering and transportation of natural gas in Texas by the Railroad Commission. This paper reviews that debate and several other regulatory issues that could impact the natural gas and gas processing industries over the next few years. In addition to the review of the Code of Conduct, this paper focuses on results of the informal complaint process, implementation of new legislation requiring the approval of construction of sour gas pipelines and several other natural gas related issues.

  19. Flammability Assessment Methodology Program Phase I: Final Report

    SciTech Connect

    C. A. Loehr; S. M. Djordjevic; K. J. Liekhus; M. J. Connolly

    1997-09-01

    The Flammability Assessment Methodology Program (FAMP) was established to investigate the flammability of gas mixtures found in transuranic (TRU) waste containers. The FAMP results provide a basis for increasing the permissible concentrations of flammable volatile organic compounds (VOCs) in TRU waste containers. The FAMP results will be used to modify the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (TRUPACT-II SARP) upon acceptance of the methodology by the Nuclear Regulatory Commission. Implementation of the methodology would substantially increase the number of drums that can be shipped to the Waste Isolation Pilot Plant (WIPP) without repackaging or treatment. Central to the program was experimental testing and modeling to predict the gas mixture lower explosive limit (MLEL) of gases observed in TRU waste containers. The experimental data supported selection of an MLEL model that was used in constructing screening limits for flammable VOC and flammable gas concentrations. The MLEL values predicted by the model for individual drums will be utilized to assess flammability for drums that do not meet the screening criteria. Finally, the predicted MLEL values will be used to derive acceptable gas generation rates, decay heat limits, and aspiration time requirements for drums that do not pass the screening limits. The results of the program demonstrate that an increased number of waste containers can be shipped to WIPP within the flammability safety envelope established in the TRUPACT-II SARP.

  20. Fiscal year 1992 program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    SciTech Connect

    Johnson, G.D.

    1992-06-01

    The Waste Tank Flammable Gas Stabilization Program was established in 1990 to provide for resolution of a major safety issue identified for 23 of the high-level waste tanks at the Hanford Site. This safety issue involves flammable gas mixtures, consisting mainly of hydrogen, nitrous oxide, and that are generated and periodically released in concentrations that nitrogen, exceed the lower flamability limit. Initial activities of the program have been directed at tank 241-SY-101 because it exhibits the largest risk. Activities conducted in fiscal year (FY) 1991 included waste sampling, waste sample analysis, development of tank models, conducting laboratory tests with synthetic wastes, upgrading of tank instrumentation and ventilation systems, evaluation of new methods for characterizing waste, and development of remedial actions. In addition to the work being conducted to resolve the flammable gas issue, programs have been established (Gasper and Reep 1992) to develop corrective actions for high priority safety issues associated with potential explosive mixtures of ferrocyanides in tanks, potential organic-nitrate reactions in tanks, and for the continued cooling for heat generation in tank 106{degrees}C. The purpose of this document is to provide a brief description of the FY 1992 priorities, logic, work breakdown structure (WBS), and task descriptions for the Waste Tank Flammable Gas Stabilization Program.

  1. Fiscal year 1992 program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks. Revision 1

    SciTech Connect

    Johnson, G.D.

    1992-06-01

    The Waste Tank Flammable Gas Stabilization Program was established in 1990 to provide for resolution of a major safety issue identified for 23 of the high-level waste tanks at the Hanford Site. This safety issue involves flammable gas mixtures, consisting mainly of hydrogen, nitrous oxide, and that are generated and periodically released in concentrations that nitrogen, exceed the lower flamability limit. Initial activities of the program have been directed at tank 241-SY-101 because it exhibits the largest risk. Activities conducted in fiscal year (FY) 1991 included waste sampling, waste sample analysis, development of tank models, conducting laboratory tests with synthetic wastes, upgrading of tank instrumentation and ventilation systems, evaluation of new methods for characterizing waste, and development of remedial actions. In addition to the work being conducted to resolve the flammable gas issue, programs have been established (Gasper and Reep 1992) to develop corrective actions for high priority safety issues associated with potential explosive mixtures of ferrocyanides in tanks, potential organic-nitrate reactions in tanks, and for the continued cooling for heat generation in tank 106{degrees}C. The purpose of this document is to provide a brief description of the FY 1992 priorities, logic, work breakdown structure (WBS), and task descriptions for the Waste Tank Flammable Gas Stabilization Program.

  2. Natural gas 1996 - issues and trends

    SciTech Connect

    1996-12-01

    This publication presents a summary of the latest data and information relating to the U.S. natural gas industry, including prices, production, transmission, consumption, and financial aspects of the industry.

  3. Module flammability research

    NASA Astrophysics Data System (ADS)

    Sugimura, R. S.; Otth, D. H.; Arnett, J. C.; Lewis, K.

    1984-03-01

    The technology base required to construct fire-ratable modules is explored. New materials of construction and module configurations to achieve increased fire resistance are investigated. The fire-resistance capability of current PV module designs is assessed. Parametric tests are performed to characterize flammability.

  4. Particulate hot gas stream cleanup technical issues

    SciTech Connect

    Pontius, D.H.; Snyder, T.R.

    1999-09-30

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  5. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    SciTech Connect

    LA Mahoney; JL Huckaby; SA Bryan; GD Johnson

    2000-07-21

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, the flammability and detonability limits of the gas constituents, and the availability of ignition sources. The intrinsic flammability (or nonflammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, volume of the release, and the tank ventilation rate, which are not covered in this report.

  6. Unmanned Vehicle Material Flammability Test

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier; Toth, Balazs; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Cowlard, Adam J.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Rouvreau, Sebastien; Jomaas, Grunde

    2012-01-01

    Microgravity fire behaviour remains poorly understood and a significant risk for spaceflight An experiment is under development that will provide the first real opportunity to examine this issue focussing on two objectives: a) Flame Spread. b) Material Flammability. This experiment has been shown to be feasible on both ESA's ATV and Orbital Science's Cygnus vehicles with the Cygnus as the current base-line carrier. An international topical team has been formed to develop concepts for that experiment and support its implementation: a) Pressure Rise prediction. b) Sample Material Selection. This experiment would be a landmark for spacecraft fire safety with the data and subsequent analysis providing much needed verification of spacecraft fire safety protocols for the crews of future exploration vehicles and habitats.

  7. Particulate Hot Gas Stream Cleanup Technical Issues

    SciTech Connect

    Potius, D.; Snyder, T.

    1997-07-01

    The characteristics of entrained particles generated by advanced coal conversion technologies and the harsh flue gas environments from which these particles must be removed challenge current ceramic barrier filtration systems. Measurements have shown that the size distribution, morphology, and chemical composition of particles generated by pressurized fluidized-bed combustion (PFBC) and gasification processes differ significantly from the corresponding characteristics of conventional pulverized-coal ash particles. The entrained particulate matter from these advanced conversion technologies often comprise fine size distributions, irregular particle morphologies, high specific surface areas, and significant proportions of added sorbent material. These characteristics can create high ash cohesivity and high pressure losses through the filter cakes. In addition, the distributions of chemical constituents among the collected particles provide local, highly concentrated chemical species that promote reactions between adjacent particles that ultimately cause strong, nodular deposits to form in the filter vessel. These deposits can lead directly to bridging and filter element failure. This project is designed to address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic filter elements. The activities conducted under Task 1, Assessment of Ash Characteristics, are discussed in this paper. Activities conducted under Task 2, Testing and Failure Analysis of Ceramic Filters, are discussed in a separate paper included in the proceedings of the Advanced Coal-Based Power and Environmental Systems `97 Conference. The specific objectives of Task I include the generation of a data base of the key characteristics of Hot Gas Stream Cleanup (HGCU) ashes collected from operating advanced particle filters (APFS) and the identification of relationships between HGCU ash properties and the operation and

  8. Particulate hot gas stream cleanup technical issues

    SciTech Connect

    1998-09-01

    This is the tenth in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic bed filter elements. Task I is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task I during the past quarter, analyses were performed on a particulate sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center. Analyses are in progress on ash samples from the Advanced Particulate Filter (APF) at the Pressurized Fluidized-Bed Combustor (PFBC) that was in operation at Tidd and ash samples from the Pressurized Circulating Fluid Bed (PCFB) system located at Karhula, Finland. A site visit was made to the Power Systems Development Facility (PSDF) to collect ash samples from the filter vessel and to document the condition of the filter vessel with still photographs and videotape. Particulate samples obtained during this visit are currently being analyzed for entry into the Hot Gas Cleanup (HGCU) data base. Preparations are being made for a review meeting on ash bridging to be held at Department of Energy Federal Energy Technology Center - Morgantown (DOE/FETC-MGN) in the near future. Most work on Task 2 was on hold pending receipt of additional funds; however, creep testing of Schumacher FT20 continued. The creep tests on Schumacher FT20 specimens just recently ended and data analysis and comparisons to other data are ongoing. A summary and analysis of these creep results will be sent out shortly. Creep

  9. PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES

    SciTech Connect

    1999-05-05

    This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97 ® . Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy / Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

  10. PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES

    SciTech Connect

    1998-11-30

    This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97 ® . Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy / Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

  11. PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES

    SciTech Connect

    1999-05-05

    This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97{reg_sign}. Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy/Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

  12. Particulate hot gas stream cleanup technical issues

    SciTech Connect

    1998-09-01

    This is the thirteenth quarterly report describing the activities performed under Contract No. DE-AC21-94MC31160. The analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters and their components. APF operations have also been limited by the strength and durability of the ceramic materials that have served as barrier filters for the capture of entrained HGCU ashes. Task 2 concerns testing and failure analyses of ceramic filter elements currently used in operating APFs and the characterization and evaluation of new ceramic materials. Task I research activities during the past quarter included characterizations of additional ash samples from Pressurized Fluidized-Bed Combustion (PFBC) facilities to the HGCU data base. Task I plans for the next quarter include characterization of samples collected during a site visit on January 20 to the Department of Energy / Southern Company Services Power Systems Development Facility (PSDF). Further work on the HGCU data base is also planned. Task 2 work during the past quarter included creep testing of a Coors P- I OOA- I specimen machined from Candle FC- 007 after 1166 hours in-service at the Karhula Pressurized Circulating Fluid Bed (PCFB) facility. Samples are currently in preparation for microstructural evaluations of Coors P-IOOA-I.Sixteen cordierite rings manufactured by Specific Surfaces were received for testing. Three of the specimens were exposed to the PFBC environment at the PSDF. These specimens are currently being machined for testing.

  13. Particulate Hot Gas Stream Cleanup Technical Issues

    SciTech Connect

    None, None

    1998-08-31

    This is the fifteenth quarterly report describing the activities performed under Contract No. DE-AC21-94MC31160. The analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. Task 1 is designed to generate a data bank of the key characteristics of ashes collected from operating advanced particle filters (APFs) and to relate these ash properties to the operation and performance of these filters and their components. APF operations have also been limited by the strength and durability of the ceramic materials that have served as barrier filters for the capture of entrained HGCU ashes. Task 2 concerns testing and failure analyses of ceramic filter elements currently used in operating APFs and the characterization and evaluation of new ceramic materials. Task 1 research activities during the past quarter included characterizations of samples collected during a site visit on May 18 to the Department of Energy / Southern Company Services Power Systems Development Facility (PSDF) and a particulate sample collected in the Westinghouse filter at Sierra Pacific Power Company's Piñon Pine Power Project. Analysis of this Piñon Pine sample is ongoing: however, this report contains the results of analyses completed to date. Significant accomplishments were achieved on the HGCU data bank during this reporting quarter. The data bank was prepared for presentation at the Advanced Coal-Based Power and Environmental Systems 98 Conference scheduled for July, 1998. Task 2 work during the past quarter consisted of testing two Dupont PRD-66C candle filters, one McDermott ceramic composite candle filter, one Blasch 4-270 candle filter, and one Specific Surface cordierite candle filter. Tensile and thermal expansion testing is complete and the rest of the testing is in progress. Also, some 20-inch long Dupont

  14. Particulate hot gas stream cleanup technical issues

    SciTech Connect

    1998-09-01

    This is the eleventh in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic bed filter elements. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task 1 during the past quarter, analyses were completed on samples obtained during a site visit to the Power Systems Development Facility (PSDF). Analyses are in progress on ash samples from the Advanced Particulate Filter (APF) at the Pressurized Fluidized-Bed Combustor (PFBC) that was in operation at Tidd and ash samples from the Pressurized Circulating Fluid Bed (PCFB) system located at Karhula, Finland. An additional analysis was performed on a particulate sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center. A manuscript and poster were prepared for presentation at the Advanced Coal-Based Power and Environmental Systems `97 Conference scheduled for July 22 - 24, 1997. A summary of recent project work covering the mechanisms responsible for ash deposit consolidation and ash bridging in APF`s collecting PFB ash was prepared and presented at FETC-MGN in early July. The material presented at that meeting is included in the manuscript prepared for the Contractor`s Conference and also in this report. Task 2 work during the past quarter included mechanical testing and microstructural examination of Schumacher FT20 and Pall 326 as- manufactured, after 540 hr in service at Karhula, and after 1166 hr in service at

  15. Gas sensor arrays for olfactory analysis: Issues and opportunities

    SciTech Connect

    Hoffheins, B.S.; Lauf, R.J.

    1988-01-01

    There have been many approaches to the development of gas sensor arrays for use in gas detection instruments and devices. Various techniques have been proposed to handle the signal processing and pattern recognition required to convert the outputs of these arrays into useful information such as the identities and concentrations of particular chemical species. In general, the pattern recognition techniques have not been developed as fully as have the sensor arrays. Materials issues, like sensor aging and drift, power requirements, and packaging are also problems that must be solved before gas sensor arrays can be incorporated into instruments for industrial and consumer markets. This paper describes significant thrusts in the areas of metal-oxide gas sensor array design and construction, related signature analysis and deconvolution, and materials issues. Recommendations are offered for future developments.

  16. Control of Materials Flammability Hazards

    NASA Technical Reports Server (NTRS)

    Griffin, Dennis E.

    2003-01-01

    This viewgraph presentation provides information on selecting, using, and configuring spacecraft materials in such a way as to minimize the ability of fire to spread onboard a spacecraft. The presentation gives an overview of the flammability requirements of NASA-STD-6001, listing specific tests and evaluation criteria it requires. The presentation then gives flammability reduction methods for specific spacecraft items and materials.

  17. Effects of Globally Waste Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    SciTech Connect

    Stewart, Charles W.; Fountain, Matthew S.; Huckaby, James L.; Mahoney, Lenna A.; Meyer, Perry A.; Wells, Beric E.

    2005-08-02

    Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

  18. 16 CFR 1611.4 - Flammability test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Flammability test. 1611.4 Section 1611.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.4 Flammability test. (a) Apparatus and materials....

  19. 16 CFR 1611.4 - Flammability test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Flammability test. 1611.4 Section 1611.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.4 Flammability test. (a) Apparatus and materials....

  20. 16 CFR 1611.4 - Flammability test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Flammability test. 1611.4 Section 1611.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.4 Flammability test. (a) Apparatus and materials....

  1. Effects of Globally Waste-Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    SciTech Connect

    Stewart, Charles W.; Huckaby, James L.; Meyer, Perry A.

    2003-07-30

    Various operations are authorized in Hanford tanks that disturb all or much of the waste. The globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given. This revision (Rev. 2)incorporates additional comments from Office of River Protection reviewers. An appendix presents the checklist for technical peer review of Revision 1 of this report.

  2. Effects of Globally Waste-Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    SciTech Connect

    Stewart, Charles W.; Huckaby, James L.; Meyer, Perry A.

    2002-12-18

    Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

  3. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... fluid or gas, flammable means susceptible to igniting readily or to exploding (14 CFR Part 1, Definitions). A non-flammable ullage is one where the fuel-air vapor is too lean or too rich to burn or is... personnel, passengers or flight crew to the risk of death, incapacitation, impairment of ability to...

  4. An assessment of the NASA flammability screening test and related aspects of material flammability

    NASA Astrophysics Data System (ADS)

    Ohlemiller, Thomas J.

    1992-08-01

    The results of an assessment of the NASA flammability screening test (8060.1B) for materials to be used in manned spacecraft interiors are summarized. A set of materials was examined using the standard NASA test, a modified version of this test which incorporated external radiation and National Institute of Standards and Technology (NIST) tests which measure ignitability, rate of heat release, and opposed flow flame spread behavior. Materials passing the standard NASA screening test showed widely varying degrees of flammability enhancement when subjected to external radiation (modified NASA test, NIST tests). Since such radiation is implicit in many normal fire scenarios, materials passing the standard NASA screening test should not be treated as non-flammable. The quantitative role of self-feedback of radiation remains to be fully clarified; an apparatus to examine this issue was built but no tests could be completed in the allotted time. The rate of heat release from the two-sided burning of thermally-thin materials was quantitatively compared to that for one-sided burning; this issue was believed to be at the heart of certain anomalies in the earlier stages of this study. A synergistic enhancement of heat release rate was indeed found for two-sided burning of three materials; two simplified models account for the origin of this effect. On the basis of this study, it is recommended that NASA supplement their existing flammability screening test with one that incorporates external radiation. It is further recommended that this supplemental test in normal gravity be correlated experimentally with a similar test in micro-gravity.

  5. Pipeline issues shape southern FSU oil, gas development

    SciTech Connect

    1995-05-22

    To future production from southern republics of the former Soviet Union (FSU), construction and revitalization of pipelines are as important as the supply of capital. Export capacity will limit production and slow development activity in the region until new pipelines are in place. Plenty of pipeline proposals have come forward. The problem is politics, which for every proposal so far complicates routing or financing or both. Russia has made clear its intention to use pipeline route decisions to retain influence in the region. As a source of external pressure, it is not alone. Iran and Turkey also have made strong bids for the southern FSU`s oil and gas transport business. Diplomacy thus will say as much as commerce does about how transportation issues are settled and how quickly the southern republics move toward their potentials to produce oil and gas. The paper discusses possible routes and the problems with them, the most likely proposal, and future oil flows.

  6. Antimisting kerosene atomization and flammability

    NASA Technical Reports Server (NTRS)

    Fleeter, R.; Petersen, R. A.; Toaz, R. D.; Jakub, A.; Sarohia, V.

    1982-01-01

    Various parameters found to affect the flammability of antimisting kerosene (Jet A + polymer additive) are investigated. Digital image processing was integrated into a technique for measurement of fuel spray characteristics. This technique was developed to avoid many of the error sources inherent to other spray assessment techniques and was applied to the study of engine fuel nozzle atomization performance with Jet A and antimisting fuel. Aircraft accident fuel spill and ignition dynamics were modeled in a steady state simulator allowing flammability to be measured as a function of airspeed, fuel flow rate, fuel jet Reynolds number and polymer concentration. The digital imaging technique was employed to measure spray characteristics in this simulation and these results were related to flammability test results. Scaling relationships were investigated through correlation of experimental results with characteristic dimensions spanning more than two orders of magnitude.

  7. Flammability screening tests of resins

    NASA Technical Reports Server (NTRS)

    Arhart, R. W.; Farrar, D. G.; Hughes, B. M.

    1979-01-01

    Selected flammability characteristics of glass cloth laminates of thermosetting resins are evaluated. A protocol for the evaluation of the flammability hazards presented by glass cloth laminates of thermosetting resins and the usefulness of that protocol with two laminates are presented. The glass laminates of an epoxy resin, M-751 are evaluated for: (1) determination of smoke generation from the laminates; (2) analysis of products of oxidative degradation of the laminates; (3) determination of minimum oxygen necessary to maintain flaming oxidation; (4) evaluation of toxicological hazards.

  8. 14 CFR 29.1185 - Flammable fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluids. 29.1185 Section 29.1185... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 29.1185 Flammable fluids. (a) No tank or reservoir that is part of a system containing flammable fluids or gases may be in...

  9. 14 CFR 27.1185 - Flammable fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluids. 27.1185 Section 27.1185... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 27.1185 Flammable fluids. (a..., other than a fuel tank, that is part of a system containing flammable fluids or gases must be...

  10. 14 CFR 29.1185 - Flammable fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluids. 29.1185 Section 29.1185... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 29.1185 Flammable fluids. (a) No tank or reservoir that is part of a system containing flammable fluids or gases may be in...

  11. 14 CFR 121.255 - Flammable fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flammable fluids. 121.255 Section 121.255..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.255 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located...

  12. 14 CFR 25.1185 - Flammable fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluids. 25.1185 Section 25.1185... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1185 Flammable fluids. (a... system containing flammable fluids or gases may be in a designated fire zone unless the fluid...

  13. 14 CFR 27.1185 - Flammable fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluids. 27.1185 Section 27.1185... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 27.1185 Flammable fluids. (a..., other than a fuel tank, that is part of a system containing flammable fluids or gases must be...

  14. 14 CFR 121.255 - Flammable fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flammable fluids. 121.255 Section 121.255..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.255 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located...

  15. 14 CFR 27.1185 - Flammable fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluids. 27.1185 Section 27.1185... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 27.1185 Flammable fluids. (a..., other than a fuel tank, that is part of a system containing flammable fluids or gases must be...

  16. 14 CFR 121.255 - Flammable fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flammable fluids. 121.255 Section 121.255..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.255 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located...

  17. 14 CFR 121.255 - Flammable fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flammable fluids. 121.255 Section 121.255..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.255 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located...

  18. 14 CFR 25.1185 - Flammable fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluids. 25.1185 Section 25.1185... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1185 Flammable fluids. (a... system containing flammable fluids or gases may be in a designated fire zone unless the fluid...

  19. 14 CFR 125.153 - Flammable fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flammable fluids. 125.153 Section 125.153....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in designated fire zones, except where the fluid contained, the design...

  20. 14 CFR 27.1185 - Flammable fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluids. 27.1185 Section 27.1185... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 27.1185 Flammable fluids. (a..., other than a fuel tank, that is part of a system containing flammable fluids or gases must be...

  1. 14 CFR 125.153 - Flammable fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flammable fluids. 125.153 Section 125.153....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in designated fire zones, except where the fluid contained, the design...

  2. 14 CFR 125.153 - Flammable fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flammable fluids. 125.153 Section 125.153....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in designated fire zones, except where the fluid contained, the design...

  3. 14 CFR 25.1185 - Flammable fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluids. 25.1185 Section 25.1185... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1185 Flammable fluids. (a... system containing flammable fluids or gases may be in a designated fire zone unless the fluid...

  4. 14 CFR 25.1185 - Flammable fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluids. 25.1185 Section 25.1185... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1185 Flammable fluids. (a... system containing flammable fluids or gases may be in a designated fire zone unless the fluid...

  5. 14 CFR 27.1185 - Flammable fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluids. 27.1185 Section 27.1185... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 27.1185 Flammable fluids. (a..., other than a fuel tank, that is part of a system containing flammable fluids or gases must be...

  6. 14 CFR 25.1185 - Flammable fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluids. 25.1185 Section 25.1185... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1185 Flammable fluids. (a... system containing flammable fluids or gases may be in a designated fire zone unless the fluid...

  7. 14 CFR 29.1185 - Flammable fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluids. 29.1185 Section 29.1185... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 29.1185 Flammable fluids. (a) No tank or reservoir that is part of a system containing flammable fluids or gases may be in...

  8. 14 CFR 29.1185 - Flammable fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluids. 29.1185 Section 29.1185... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 29.1185 Flammable fluids. (a) No tank or reservoir that is part of a system containing flammable fluids or gases may be in...

  9. 14 CFR 125.153 - Flammable fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flammable fluids. 125.153 Section 125.153....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in designated fire zones, except where the fluid contained, the design...

  10. 14 CFR 121.255 - Flammable fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flammable fluids. 121.255 Section 121.255..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.255 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located...

  11. 14 CFR 29.1185 - Flammable fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluids. 29.1185 Section 29.1185... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 29.1185 Flammable fluids. (a) No tank or reservoir that is part of a system containing flammable fluids or gases may be in...

  12. 14 CFR 125.153 - Flammable fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flammable fluids. 125.153 Section 125.153....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in designated fire zones, except where the fluid contained, the design...

  13. Nitrogen dilution effect on the flammability limits for hydrocarbons.

    PubMed

    Chen, Chan-Cheng; Wang, Tzu-Chi; Liaw, Horng-Jang; Chen, Hui-Chu

    2009-07-30

    Theoretical models to predict the upper/lower flammability limits of hydrocarbons diluted with inert nitrogen gas are proposed in this study. It is found that there are linear relations between the reciprocal of the upper/lower flammability limits and the reciprocal of the molar fraction of hydrocarbon in the hydrocarbon/inert nitrogen mixture. Such linearity is examined by experimental data reported in the literature, which include the cases of methane, propane, ethylene and propylene. The R-squared values (R(2)) of the regression lines of the cases explored are all greater than 0.989 for upper flammability limit (UFL). The theoretical slope of the predictive line for lower flammability limit (LFL) is found to be very close to zero for all explored cases; and this result successfully explains the experimental fact that adding inert nitrogen to a flammable material has very limited effect on LFL. Because limit oxygen concentration (LOC) could be taken as the intersectional point of the UFL curve and LFL curve, a LOC-based method is proposed to predict the slope of the UFL curve when experimental data of UFL are not available. This LOC-based method predicts the UFL with average error ranging from 2.17% to 5.84% and maximum error ranging from 8.58% to 12.18% for the cases explored. The predictive models for inert gas of nitrogen are also extended to the case of inert gas other than nitrogen. Through the extended models, it was found that the inert ability of an inert gas depends on its mean molar heat capacity at the adiabatic flame temperature. Theoretical calculation shows that the inert abilities of carbon dioxide, steam, nitrogen and helium are in the following order: carbon dioxide>steam>nitrogen>helium; and this sequence conforms to the existing experimental data reported in the literature. PMID:19144467

  14. Two critical issues in Langevin simulation of gas flows

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Fan, Jing

    2014-12-01

    A stochastic algorithm based on the Langevin equation has been recently proposed to simulate rarefied gas flows. Compared with the direct simulation Monte Carlo (DSMC) method, the Langevin method is more efficient in simulating small Knudsen number flows. While it is well-known that the cell sizes and time steps should be smaller than the mean free path and the mean collision time, respectively, in DSMC simulations, the Langevin equation uses a drift term and a diffusion term to describe molecule movements, so no direct molecular collisions have to be modeled. This enables the Langevin simulation to proceed with a much larger time step than that in the DSMC method. Two critical issues in Langevin simulation are addressed in this paper. The first issue is how to reproduce the transport properties as that described by kinetic theory. Transport coefficients predicted by Langevin equation are obtained by using Green-Kubo formulae. The second issue is numerical scheme with boundary conditions. We present two schemes corresponding to small time step and large time step, respectively. For small time step, the scheme is similar to DSMC method as the update of positions and velocities are uncoupled; for large time step, we present an analytical solution of the hitting time, which is the crucial factor for accurate simulation. Velocity-Couette flow, thermal-Couette flow, Rayleigh-Bénard flow and wall-confined problem are simulated by using these two schemes. Our study shows that Langevin simulation is a promising tool to investigate small Knudsen number flows.

  15. Two critical issues in Langevin simulation of gas flows

    SciTech Connect

    Zhang, Jun; Fan, Jing

    2014-12-09

    A stochastic algorithm based on the Langevin equation has been recently proposed to simulate rarefied gas flows. Compared with the direct simulation Monte Carlo (DSMC) method, the Langevin method is more efficient in simulating small Knudsen number flows. While it is well-known that the cell sizes and time steps should be smaller than the mean free path and the mean collision time, respectively, in DSMC simulations, the Langevin equation uses a drift term and a diffusion term to describe molecule movements, so no direct molecular collisions have to be modeled. This enables the Langevin simulation to proceed with a much larger time step than that in the DSMC method. Two critical issues in Langevin simulation are addressed in this paper. The first issue is how to reproduce the transport properties as that described by kinetic theory. Transport coefficients predicted by Langevin equation are obtained by using Green-Kubo formulae. The second issue is numerical scheme with boundary conditions. We present two schemes corresponding to small time step and large time step, respectively. For small time step, the scheme is similar to DSMC method as the update of positions and velocities are uncoupled; for large time step, we present an analytical solution of the hitting time, which is the crucial factor for accurate simulation. Velocity-Couette flow, thermal-Couette flow, Rayleigh-Bénard flow and wall-confined problem are simulated by using these two schemes. Our study shows that Langevin simulation is a promising tool to investigate small Knudsen number flows.

  16. Flow Effects on the Flammability Diagrams of Solid Fuels

    NASA Technical Reports Server (NTRS)

    Cordova, J. L.; Ceamanos, J.; Fernandez-Pello, A. C.; Long, R. T.; Torero, J. L.; Quintiere, J. G.

    1997-01-01

    A research program is currently underway with the final objective of developing a fundamental understanding of the controlling mechanisms underlying the flammability diagrams of solid combustible materials and their derived fire properties. Given that there is a high possibility of an accidental fire occurring in a space-based facility, understanding the fire properties of materials that will be used in such facilities is of critical importance. With this purpose, the flammability diagrams of the materials, as those produced by the Lateral Ignition and Flame Spread Test (LIFT) apparatus and by a new forced flow device, the Forced Flow Ignition and Flame Spread Test (FIST) apparatus, will be obtained. The specific objective of the program is to apply the new flammability apparatus, which will more accurately reflect the potential ambient conditions of space-based environments, to the characterization of the materials for space applications. This paper presents a parametric study of oxidizer flow effects on the ignition curve of the flammability diagrams of PMMA. The dependence of the ignition delay time on the external radiant flux and either the sample width (LIFT) or the flow velocity (FIST) has been studied. Although preliminary, the results indicate that natural and forced convection flow changes, affect the characteristics of the ignition curves of the flammability diagrams. The major effect on the ignition time appears to be due to convective transfer variations at the fuel surface. At high radiant fluxes or high flow velocities, however, it appears that gas phase processes become increasingly important, affecting the overall ignition delay time. A numerical analysis of the solid fuel heating and pyrolysis has also been developed. The theoretical predictions approximate the experiments well for conditions in which the gas phase induction time is negligible.

  17. Antimisting fuel breakup and flammability

    NASA Technical Reports Server (NTRS)

    Parikh, P.; Fleeter, R.; Sarohia, V.

    1983-01-01

    The breakup behavior and flammability of antimisting turbine fuels subjected to aerodynamic shear are investigated. Fuels tested were Jet A containing 0.3% FM-9 polymer at various levels of degradation ranging from virgin AMK to neat Jet A. The misting behavior of the fuels was quantified by droplet size distribution measurements. A technique based on high resolution laser photography and digital image processing of photographic records for rapid determination of droplet size distribution was developed. The flammability of flowing droplet-air mixtures was quantified by direct measurements of temperature rise in a flame established in the wake of a continuous ignition source. The temperature rise measurements were correlated with droplet size measurements. The flame anchoring phenomenon associated with the breakup of a liquid fuel in the wake of bluff body was shown to be important in the context of a survivable crash scenario. A pass/fail criterion for flammability testing of antimisting fuels, based on this flame-anchoring phenomenon, was proposed. The role of various ignition sources and their intensity in ignition and post-ignition behavior of antimisting fuels was also investigated.

  18. Critical issues in trace gas biogeochemistry and global change.

    PubMed

    Beerling, David J; Nicholas Hewitt, C; Pyle, John A; Raven, John A

    2007-07-15

    The atmospheric composition of trace gases and aerosols is determined by the emission of compounds from the marine and terrestrial biospheres, anthropogenic sources and their chemistry and deposition processes. Biogenic emissions depend upon physiological processes and climate, and the atmospheric chemistry is governed by climate and feedbacks involving greenhouse gases themselves. Understanding and predicting the biogeochemistry of trace gases in past, present and future climates therefore demands an interdisciplinary approach integrating across physiology, atmospheric chemistry, physics and meteorology. Here, we highlight critical issues raised by recent findings in all of these key areas to provide a framework for better understanding the past and possible future evolution of the atmosphere. Incorporating recent experimental and observational findings, especially the influence of CO2 on trace gas emissions from marine algae and terrestrial plants, into earth system models remains a major research priority. As we move towards this goal, archives of the concentration and isotopes of N2O and CH4 from polar ice cores extending back over 650,000 years will provide a valuable benchmark for evaluating such models. In the Pre-Quaternary, synthesis of theoretical modelling with geochemical and palaeontological evidence is also uncovering the roles played by trace gases in episodes of abrupt climatic warming and ozone depletion. Finally, observations and palaeorecords across a range of timescales allow assessment of the Earth's climate sensitivity, a metric influencing our ability to decide what constitutes 'dangerous' climate change. PMID:17513267

  19. 16 CFR 1500.44 - Method for determining extremely flammable and flammable solids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and flammable solids. 1500.44 Section 1500.44 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ENFORCEMENT REGULATIONS § 1500.44 Method for determining extremely flammable and flammable solids. (a... with inner dimensions 6 inches long × 1 inch wide × one-fourth inch deep. (2) Rigid and pliable...

  20. 16 CFR 1500.44 - Method for determining extremely flammable and flammable solids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and flammable solids. 1500.44 Section 1500.44 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ENFORCEMENT REGULATIONS § 1500.44 Method for determining extremely flammable and flammable solids. (a... with inner dimensions 6 inches long × 1 inch wide × one-fourth inch deep. (2) Rigid and pliable...

  1. 16 CFR 1500.44 - Method for determining extremely flammable and flammable solids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and flammable solids. 1500.44 Section 1500.44 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ENFORCEMENT REGULATIONS § 1500.44 Method for determining extremely flammable and flammable solids. (a... with inner dimensions 6 inches long × 1 inch wide × one-fourth inch deep. (2) Rigid and pliable...

  2. 16 CFR 1500.44 - Method for determining extremely flammable and flammable solids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and flammable solids. 1500.44 Section 1500.44 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ENFORCEMENT REGULATIONS § 1500.44 Method for determining extremely flammable and flammable solids. (a... with inner dimensions 6 inches long × 1 inch wide × one-fourth inch deep. (2) Rigid and pliable...

  3. Summary report on the design of the retained gas sampler system (retained gas sampler, extruder and extractor)

    SciTech Connect

    Wootan, D.W.; Bolden, R.C.; Bridges, A.E.; Cannon, N.S.; Chastain, S.A.; Hey, B.E.; Knight, R.C.; Linschooten, C.G.; Pitner, A.L.; Webb, B.J.

    1994-09-29

    This document summarizes work performs in Fiscal Year 1994 to develop the three main components of Retained Gas Sampler System (RGSS). These primary components are the Retained Gas Sampler (RGS), the Retained Gas Extruder (RGE), and the Retained Gas Extractor (RGEx). The RGS is based on the Westinghouse Hanford Company (WHC) Universal Sampler design, and includes modifications to reduce gas leakage. The primary data priorities for the RGSS are to measure the void fraction and the flammable gas concentration in the waste sample. Significant progress has been made in developing the RGSS. The RGSS is being developed by WHC to extract a representative waste sample from a Flammable Gas Watch List Tanks and to measure both the amount and composition of free and {open_quotes}bound{close_quotes} gases. Sudden releases of flammable gas mixtures are a safety concern for normal waste storage operations and eventual waste retrieval. Flow visualization testing was used to identify important fluid dynamic issues related to the sampling process. The primary data priorities for the RGSS are to measure the void fraction and the flammable gas concentration in the waste sample. The safety analysis for the RGSS is being performed by Los Alamos National Laboratory and is more than sixty percent (60%) complete.

  4. 29 CFR 1910.106 - Flammable liquids.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Flammable liquids. 1910.106 Section 1910.106 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.106 Flammable liquids. (a) Definitions. As used in this section: (1)...

  5. 29 CFR 1910.106 - Flammable liquids.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Flammable liquids. 1910.106 Section 1910.106 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.106 Flammable liquids. (a) Definitions. As used in this section: (1)...

  6. 29 CFR 1910.106 - Flammable liquids.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Flammable liquids. 1910.106 Section 1910.106 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Hazardous Materials § 1910.106 Flammable liquids. (a) Definitions. As used in this section: (1)...

  7. 29 CFR 1915.36 - Flammable liquids.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Flammable liquids. 1915.36 Section 1915.36 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Preservation § 1915.36 Flammable liquids. (a) In all cases when liquid solvents, paint and...

  8. 29 CFR 1915.36 - Flammable liquids.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Flammable liquids. 1915.36 Section 1915.36 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Preservation § 1915.36 Flammable liquids. (a) In all cases when liquid solvents, paint and...

  9. 29 CFR 1915.36 - Flammable liquids.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Flammable liquids. 1915.36 Section 1915.36 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Preservation § 1915.36 Flammable liquids. (a) In all cases when liquid solvents, paint and...

  10. 29 CFR 1915.36 - Flammable liquids.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Flammable liquids. 1915.36 Section 1915.36 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Preservation § 1915.36 Flammable liquids. (a) In all cases when liquid solvents, paint and...

  11. Natural Gas Transportation - Infrastructure Issues and Operational Trends

    EIA Publications

    2001-01-01

    This report examines how well the current national natural gas pipeline network has been able to handle today's market demand for natural gas. In addition, it identifies those areas of the country where pipeline utilization is continuing to grow rapidly and where new pipeline capacity is needed or is planned over the next several years.

  12. Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues

    EIA Publications

    2014-01-01

    Over the past five years, rapid growth in U.S. onshore natural gas and oil production has led to increased volumes of natural gas plant liquids (NGPL) and liquefied refinery gases (LRG). The increasing economic importance of these volumes, as a result of their significant growth in production, has revealed the need for better data accuracy and transparency to improve the quality of historical data and projections for supply, demand, and prices of these liquids, co-products, and competing products. To reduce confusion in terminology and improve its presentation of data, EIA has worked with industry and federal and state governments to clarify gas liquid terminology and has developed the term Hydrocarbon Gas Liquids, or HGL.

  13. Plasma physics issues in gas discharge laser development

    SciTech Connect

    Garscadden, A. ); Kushner, M.J.; Eden, J.G. . Dept. of Electrical and Computer Engineering)

    1991-12-01

    In this paper an account is given of the interplay between partially ionized plasma physics and the development of gas discharge lasers. Gas discharge excitation has provided a wide array of laser devices extending from the soft X-ray region to the far infrared. The scaling of gas discharge lasers in power and energy also covers many orders of magnitude. The particular features of three regimes are discussed: short wavelength lasers (deep UV to soft X-ray); visible and near UV lasers; and infrared molecular gas lasers. The current status (Fall 1990) of these areas is reviewed, and an assessment is made of future research topics that are perceived to be important.

  14. THE EFFECT OF THE PRESENCE OF OZONE ON THE LOWER FLAMMABILITY LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    SciTech Connect

    Sherburne, C.

    2012-01-12

    The Enhanced Chemical Cleaning (ECC) process uses ozone to effect the oxidation of metal oxalates produced during the dissolution of sludge in the Savannah River Site (SRS) waste tanks. The ozone reacts with the metal oxalates to form metal oxide and hydroxide precipitants, and the CO{sub 2}, O{sub 2}, H{sub 2}O and any unreacted O{sub 3} gases are discharged into the vapor space. In addition to the non-radioactive metals in the waste, however, the SRS radioactive waste also contains a variety of radionuclides, hence, hydrogen gas is also present in the vapor space of the ECC system. Because hydrogen is flammable, the impact of this resultant gas stream on the Lower Flammability Limit (LFL) of hydrogen must be understood for all possible operating scenarios of both normal and off-normal situations, with particular emphasis at the elevated temperatures and pressures of the typical ECC operating conditions. Oxygen is a known accelerant in combustion reactions, but while there are data associated with the behavior of hydrogen/oxygen environments, recent, relevant studies addressing the effect of ozone on the flammability limit of hydrogen proved scarce. Further, discussions with industry experts verified the absence of data in this area and indicated that laboratory testing, specific to defined operating parameters, was needed to comprehensively address the issue. Testing was thus designed and commissioned to provide the data necessary to support safety related considerations for the ECC process. A test matrix was developed to envelope the bounding conditions considered credible during ECC processing. Each test consists of combining a gas stream of high purity hydrogen with a gas stream comprised of a specified mixture of ozone and oxygen in a temperature and pressure regulated chamber such that the relative compositions of the two streams are controlled. The gases are then stirred to obtain a homogeneous mixture and ignition attempted by applying 10J of energy to a

  15. Plant traits determine forest flammability

    NASA Astrophysics Data System (ADS)

    Zylstra, Philip; Bradstock, Ross

    2016-04-01

    Carbon and nutrient cycles in forest ecosystems are influenced by their inherent flammability - a property determined by the traits of the component plant species that form the fuel and influence the micro climate of a fire. In the absence of a model capable of explaining the complexity of such a system however, flammability is frequently represented by simple metrics such as surface fuel load. The implications of modelling fire - flammability feedbacks using surface fuel load were examined and compared to a biophysical, mechanistic model (Forest Flammability Model) that incorporates the influence of structural plant traits (e.g. crown shape and spacing) and leaf traits (e.g. thickness, dimensions and moisture). Fuels burn with values of combustibility modelled from leaf traits, transferring convective heat along vectors defined by flame angle and with plume temperatures that decrease with distance from the flame. Flames are re-calculated in one-second time-steps, with new leaves within the plant, neighbouring plants or higher strata ignited when the modelled time to ignition is reached, and other leaves extinguishing when their modelled flame duration is exceeded. The relative influence of surface fuels, vegetation structure and plant leaf traits were examined by comparing flame heights modelled using three treatments that successively added these components within the FFM. Validation was performed across a diverse range of eucalypt forests burnt under widely varying conditions during a forest fire in the Brindabella Ranges west of Canberra (ACT) in 2003. Flame heights ranged from 10 cm to more than 20 m, with an average of 4 m. When modelled from surface fuels alone, flame heights were on average 1.5m smaller than observed values, and were predicted within the error range 28% of the time. The addition of plant structure produced predicted flame heights that were on average 1.5m larger than observed, but were correct 53% of the time. The over-prediction in this

  16. Selected Parametric Effects on Materials Flammability Limits

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Juarez, Alfredo; Peyton, Gary J.; Harper, Susana A.; Olson, Sandra L.

    2011-01-01

    NASA-STD-(I)-6001B Test 1 is currently used to evaluate the flammability of materials intended for use in habitable environments of U.S. spacecraft. The method is a pass/fail upward flame propagation test conducted in the worst case configuration, which is defined as a combination of a material s thickness, test pressure, oxygen concentration, and temperature that make the material most flammable. Although simple parametric effects may be intuitive (such as increasing oxygen concentrations resulting in increased flammability), combinations of multi-parameter effects could be more complex. In addition, there are a variety of material configurations used in spacecraft. Such configurations could include, for example, exposed free edges where fire propagation may be different when compared to configurations commonly employed in standard testing. Studies involving combined oxygen concentration, pressure, and temperature on flammability limits have been conducted and are summarized in this paper. Additional effects on flammability limits of a material s thickness, mode of ignition, burn-length criteria, and exposed edges are presented. The information obtained will allow proper selection of ground flammability test conditions, support further studies comparing flammability in 1-g with microgravity and reduced gravity environments, and contribute to persuasive scientific cases for rigorous space system fire risk assessments.

  17. Gas core reactor concepts and technology - Issues and baseline strategy

    NASA Technical Reports Server (NTRS)

    Diaz, Nils J.; Dugan, Edward T.; Kahook, Samer; Maya, Isaac

    1991-01-01

    Results of a research program including phenomenological studies, conceptual design, and systems analysis of a series of gaseous/vapor fissile fuel driven engines for space power platforms and for thermal and electric propulsion are reviewed. It is noted that gas and vapor phase reactors provide the path for minimum mass in orbit and trip times, with a specific impulse from 1020 sec at the lowest technololgical risk to 5200 sec at the highest technological risk. The discussion covers various configurations of gas core reactors and critical technologies and the nuclear vapor thermal rocket engine.

  18. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in accordance with standards of the National Fire Protection Association. Small quantities of flammable...

  19. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small...

  20. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in accordance with standards of the National Fire Protection Association. Small quantities of flammable...

  1. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in accordance with standards of the National Fire Protection Association. Small quantities of flammable...

  2. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small...

  3. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small...

  4. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small...

  5. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in accordance with standards of the National Fire Protection Association. Small quantities of flammable...

  6. 30 CFR 57.4460 - Storage of flammable liquids underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage of flammable liquids underground. 57... Fire Prevention and Control Flammable and Combustible Liquids and Gases § 57.4460 Storage of flammable liquids underground. (a) Flammable liquids shall not be stored underground, except— (1) Small...

  7. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flammable liquids; storage. 77.1103 Section 77... Fire Protection § 77.1103 Flammable liquids; storage. (a) Flammable liquids shall be stored in accordance with standards of the National Fire Protection Association. Small quantities of flammable...

  8. 49 CFR 172.420 - FLAMMABLE SOLID label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false FLAMMABLE SOLID label. 172.420 Section 172.420... SECURITY PLANS Labeling § 172.420 FLAMMABLE SOLID label. (a) Except for size and color, the FLAMMABLE SOLID... the FLAMMABLE SOLID label must be white with vertical red stripes equally spaced on each side of a...

  9. 49 CFR 172.420 - FLAMMABLE SOLID label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false FLAMMABLE SOLID label. 172.420 Section 172.420... SECURITY PLANS Labeling § 172.420 FLAMMABLE SOLID label. (a) Except for size and color, the FLAMMABLE SOLID... the FLAMMABLE SOLID label must be white with vertical red stripes equally spaced on each side of a...

  10. 49 CFR 172.420 - FLAMMABLE SOLID label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false FLAMMABLE SOLID label. 172.420 Section 172.420... SECURITY PLANS Labeling § 172.420 FLAMMABLE SOLID label. (a) Except for size and color, the FLAMMABLE SOLID... the FLAMMABLE SOLID label must be white with vertical red stripes equally spaced on each side of a...

  11. 49 CFR 172.420 - FLAMMABLE SOLID label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE SOLID label. 172.420 Section 172.420... SECURITY PLANS Labeling § 172.420 FLAMMABLE SOLID label. (a) Except for size and color, the FLAMMABLE SOLID... the FLAMMABLE SOLID label must be white with vertical red stripes equally spaced on each side of a...

  12. 49 CFR 172.420 - FLAMMABLE SOLID label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE SOLID label. 172.420 Section 172.420... SECURITY PLANS Labeling § 172.420 FLAMMABLE SOLID label. (a) Except for size and color, the FLAMMABLE SOLID... the FLAMMABLE SOLID label must be white with vertical red stripes equally spaced on each side of a...

  13. 14 CFR 25.1727 - Flammable fluid shutoff means: EWIS.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid shutoff means: EWIS. 25... Systems (EWIS) § 25.1727 Flammable fluid shutoff means: EWIS. EWIS associated with each flammable fluid... zone will not affect operation of the flammable fluid shutoff means, in accordance with...

  14. 14 CFR 25.1727 - Flammable fluid shutoff means: EWIS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid shutoff means: EWIS. 25... Systems (EWIS) § 25.1727 Flammable fluid shutoff means: EWIS. EWIS associated with each flammable fluid... zone will not affect operation of the flammable fluid shutoff means, in accordance with...

  15. 14 CFR 25.1727 - Flammable fluid shutoff means: EWIS.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid shutoff means: EWIS. 25... Systems (EWIS) § 25.1727 Flammable fluid shutoff means: EWIS. EWIS associated with each flammable fluid... zone will not affect operation of the flammable fluid shutoff means, in accordance with...

  16. 14 CFR 25.1727 - Flammable fluid shutoff means: EWIS.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid shutoff means: EWIS. 25... Systems (EWIS) § 25.1727 Flammable fluid shutoff means: EWIS. EWIS associated with each flammable fluid... zone will not affect operation of the flammable fluid shutoff means, in accordance with...

  17. 14 CFR 25.1727 - Flammable fluid shutoff means: EWIS.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid shutoff means: EWIS. 25... Systems (EWIS) § 25.1727 Flammable fluid shutoff means: EWIS. EWIS associated with each flammable fluid... zone will not affect operation of the flammable fluid shutoff means, in accordance with...

  18. FLAMMABILITY AND CONSEQUENCE ANALYSIS FOR MCU WASTE TANKS

    SciTech Connect

    Knight, J; Mukesh Gupta, M

    2007-02-13

    The Savannah River Site of Department of Energy will use the new Modular Caustic Side Solvent Extraction Unit (MCU) to process the waste stream by removing/reducing Cs-137 using Caustic Side Solvent Extraction (CSSX) technology. The CSSX technology utilizes multicomponent organic solvent and annular centrifugal contactors to extract Cs-137 from waste salt solution. Due to the radiolysis of the aqueous nuclear wastes, hydrogen generation is expected in the MCU holding tanks. The hydrogen from radiolysis and the vapor from the organic component of the solvent, Isopar-L, may form a composite flammable gas mixture, resulting in a shorter time to flammability than that of a pure hydrogen environment. It has been found that the time-to-Lower Flammability Limit (LFL) and stoichiometric concentration (SC) vary greatly from tank to tank, and could be decreased significantly by the presence of the Isopar-L. However, neither the deflagration nor the detonation event would challenge the Evaluation Guideline for any of the tanks at any liquid level.

  19. Mechanisms of gas retention and release: Experimental results for Hanford waste tanks 241-AW-101 and 241-AN-103

    SciTech Connect

    Rassat, S.D.; Gauglitz, P.A.; Bredt, P.R.; Mahoney, L.A.; Forbes, S.V.; Tingey, S.M.

    1997-09-01

    The 177 storage tanks at Hanford contain a vast array of radioactive waste forms resulting, primarily, from nuclear materials processing. Through radiolytic, thermal, and other decomposition reactions of waste components, gaseous species including hydrogen, ammonia, and the oxidizer nitrous oxide are generated within the waste tanks. Many of these tanks are known to retain and periodically release quantities of these flammable gas mixtures. The primary focus of the Flammable Gas Project is the safe storage of Hanford tank wastes. To this end, we strive to develop an understanding of the mechanisms of flammable gas retention and release in Hanford tanks through laboratory investigations on actual tank wastes. These results support the closure of the Flammable Gas Unreviewed Safety Question (USQ) on the safe storage of waste tanks known to retain flammable gases and support resolution of the broader Flammable Gas Safety Issue. The overall purpose of this ongoing study is to develop a comprehensive and thorough understanding of the mechanisms of flammable gas retention and release. The first objective of the current study was to classify bubble retention and release mechanisms in two previously untested waste materials from Tanks 241-AN-103 (AN-103) and 241-AW-101 (AW-101). Results were obtained for retention mechanisms, release characteristics, and the maximum gas retention. In addition, unique behavior was also documented and compared with previously studied waste samples. The second objective was to lengthen the duration of the experiments to evaluate the role of slowing bubble growth on the retention and release behavior. Results were obtained for experiments lasting from a few hours to a few days.

  20. Review on flammability of biofibres and biocomposites.

    PubMed

    Mngomezulu, Mfiso E; John, Maya J; Jacobs, Valencia; Luyt, Adriaan S

    2014-10-13

    The subject on flammability properties of natural fibre-reinforced biopolymer composites has not been broadly researched. This is not only evidenced by the minimal use of biopolymer composites and/or blends in different engineering areas where fire risk and hazard to both human and structures is of critical concern, but also the limited amount of published scientific work on the subject. Therefore, it is necessary to expand knowledge on the flammability properties of biopolymers and add value in widening the range of their application. This paper reviews the literature on the recent developments on flammability studies of bio-fibres, biopolymers and natural fibre-reinforced biocomposites. It also covers the different types of flame retardants (FRs) used and their mechanisms, and discusses the principles and methodology of various flammability testing techniques. PMID:25037340

  1. 29 CFR 1915.36 - Flammable liquids.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flammable atmosphere under the conditions of use, the following precautions shall be taken: (1) Smoking... atmospheres, or approved as permissible by the Mine Safety and Health Administration or the U.S. Coast...

  2. Workshop in environmental issues associated with western hemisphere oil and gas production

    SciTech Connect

    1994-12-31

    Representatives from several U.S. and Latin American oil and gas companies, and government representatives, met in Montevideo, Uruguay, on May 4-6, 1994, to discuss regulation, cooperation, and management of environmental issues associated with oil and gas production. This report presents a brief summary of the topics discussed at the meeting.

  3. Issues related to setting exemption levels for oil and gas NORM

    SciTech Connect

    Blunt, D. L.; Gooden, D. S.; Smith, K. P.

    1999-11-12

    In the absence of any federal regulations that specifically address the handling and disposal of wastes containing naturally occurring radioactive material (NORM), individual states have taken responsibility for developing their own regulatory programs for NORM. A key issue in developing NORM rules is defining exemption levels--specific levels or concentrations that determine which waste materials are subject to controlled management. In general, states have drawn upon existing standards and guidelines for similar waste types in establishing exemption levels for NORM. Simply adopting these standards may not be appropriate for oil and gas NORM for several reasons. The Interstate Oil and Gas Compact Commission's NORM Subcommittee has summarized the issues involved in setting exemption levels in a report titled ``Naturally Occurring Radioactive Materials (NORM): Issues from the Oil and Gas Point of View''. The committee has also recommended a set of exemption levels for controlled practices and for remediation activities on the basis of the issues discussed.

  4. One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues

    PubMed Central

    Choi, Kyoung Jin; Jang, Ho Won

    2010-01-01

    In this article, we review gas sensor application of one-dimensional (1D) metal-oxide nanostructures with major emphases on the types of device structure and issues for realizing practical sensors. One of the most important steps in fabricating 1D-nanostructure devices is manipulation and making electrical contacts of the nanostructures. Gas sensors based on individual 1D nanostructure, which were usually fabricated using electron-beam lithography, have been a platform technology for fundamental research. Recently, gas sensors with practical applicability were proposed, which were fabricated with an array of 1D nanostructures using scalable micro-fabrication tools. In the second part of the paper, some critical issues are pointed out including long-term stability, gas selectivity, and room-temperature operation of 1D-nanostructure-based metal-oxide gas sensors. PMID:22319343

  5. Unmanned Vehicle Material Flammability Test

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Fernandez-Pello, A. Carlos; T’ien, James S.; Torero, Jose L.; Cowlard, Adam; Rouvreau, Sebastian; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grande

    2013-01-01

    Microgravity combustion phenomena have been an active area of research for the past 3 decades however, there have been very few experiments directly studying spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample and environment sizes typical of those expected in a spacecraft fire. All previous experiments have been limited to samples of the order of 10 cm in length and width or smaller. Terrestrial fire safety standards for all other habitable volumes on earth, e.g. mines, buildings, airplanes, ships, etc., are based upon testing conducted with full-scale fires. Given the large differences between fire behavior in normal and reduced gravity, this lack of an experimental data base at relevant length scales forces spacecraft designers to base their designs using 1-g understanding. To address this question a large scale spacecraft fire experiment has been proposed by an international team of investigators. This poster presents the objectives, status and concept of this collaborative international project to examine spacecraft material flammability at realistic scales. The concept behind this project is to utilize an unmanned spacecraft such as Orbital Cygnus vehicle after it has completed its delivery of cargo to the ISS and it has begun its return journey to earth. This experiment will consist of a flame spread test involving a meter scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This will be

  6. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... fluid or gas, flammable means susceptible to igniting readily or to exploding (14 CFR Part 1... droptemperature °F Mean Temp 12.0 1 std dev 6.0 (d) Number of Simulated Flights Required in Analysis. In order for... Reliability Analysis N Appendix N TO Part 25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION,...

  7. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... fluid or gas, flammable means susceptible to igniting readily or to exploding (14 CFR Part 1... droptemperature °F Mean Temp 12.0 1 std dev 6.0 (d) Number of Simulated Flights Required in Analysis. In order for... Reliability Analysis N Appendix N TO Part 25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION,...

  8. Sampling and Analysis Plan for Flammable Gases in Inactive Miscellaneous Underground Storage Tanks

    SciTech Connect

    NGUYEN, D.M.

    2000-02-01

    This sampling and analysis plan (SAP) identifies the field measurements for a screening of flammable gases in the vapor space of the inactive miscellaneous underground storage tanks (IMUSTs) currently assigned to the River Protection Project (RPP). If a measurement exceeds 25% of the lower flammability limit (LFL), vapor grab samples will be collected for laboratory analysis. This SAP also specifies the sample collection, laboratory analysis, quality assurance/quality control (QA/QC), and reporting objectives for grab sampling. Technical bases for the sampling objectives are provided in the Tank Safety Screening Data Quality Objectives (Dukelow et al 1995). The screening data will be used to determine if additional data are needed to support closure of a flammable gas unreviewed safety question for these facilities.

  9. Flammability of Heterogeneously Combusting Metals

    NASA Technical Reports Server (NTRS)

    Jones, Peter D.

    1998-01-01

    Most engineering materials, including some metals, most notably aluminum, burn in homogeneous combustion. 'Homogeneous' refers to both the fuel and the oxidizer being in the same phase, which is usually gaseous. The fuel and oxidizer are well mixed in the combustion reaction zone, and heat is released according to some relation like q(sub c) = delta H(sub c)c[((rho/rho(sub 0))]exp a)(exp -E(sub c)/RT), Eq. (1) where the pressure exponent a is usually close to unity. As long as there is enough heat released, combustion is sustained. It is useful to conceive of a threshold pressure beyond which there is sufficient heat to keep the temperature high enough to sustain combustion, and beneath which the heat is so low that temperature drains away and the combustion is extinguished. Some materials burn in heterogeneous combustion, in which the fuel and oxidizer are in different phases. These include iron and nickel based alloys, which burn in the liquid phase with gaseous oxygen. Heterogeneous combustion takes place on the surface of the material (fuel). Products of combustion may appear as a solid slag (oxide) which progressively covers the fuel. Propagation of the combustion melts and exposes fresh fuel. Heterogeneous combustion heat release also follows the general form of Eq.(1), except that the pressure exponent a tends to be much less than 1. Therefore, the increase in heat release with increasing pressure is not as dramatic as it is in homogeneous combustion. Although the concept of a threshold pressure still holds in heterogeneous combustion, the threshold is more difficult to identify experimentally, and pressure itself becomes less important relative to the heat transfer paths extant in any specific application. However, the constants C, a, and E(sub c) may still be identified by suitable data reduction from heterogeneous combustion experiments, and may be applied in a heat transfer model to judge the flammability of a material in any particular actual

  10. State policies affecting natural gas consumption (Notice of inquiry issued on August 14, 1992)

    SciTech Connect

    Lemon, R.; Kamphuis-Zatopa, W.

    1993-03-25

    On August 14, 1992, the United States Department of Energy issued a Request for Comments Concerning State Policies Affecting Natural Gas Consumption. This Notice of (NOI) noted the increasing significance of the role played by states and sought to gain better understanding of how state policies impact the gas industry. The general trend toward a. more competitive marketplace for natural gas, as well as recent regulatory and legislative changes at the Federal level, are driving State regulatory agencies to reevaluate how they regulate natural gas. State action is having a significant impact on the use of natural gas for generating electricity, as well as affecting the cost-effective trade-off between conservation expenditures and gas use. Additionally, fuel choice has an impact upon the environment and national energy security. In light of these dimensions, the Department of Energy initiated this study of State regulation. The goals of this NOI are: (1) help DOE better understand the impact of State policies on the efficient use of gas; (2) increase the awareness of the natural gas industry and Federal and State officials to the important role of State policies and regulations; (3) create an improved forum for dialogue on State and Federal natural gas issues; and, (4) develop a consensus on an analytical agenda that would be most helpful in addressing the regulatory challenges faced by the States. Ninety-seven parties filed comments, and of these ninety-seven, fifteen parties filed reply comments. Appendix One lists these parties. This report briefly syntheses the comments received. The goal is to assist parties to judging the extent of consensus on the problems posed and the remedies suggested, aid in identifying future analytical analyses, and assist parties in assessing differences in strategies and regulatory philosophies which shape these issues and their resolution.

  11. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    SciTech Connect

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  12. Correlating Flammability of Materials with FTIR Analysis Test Results

    NASA Technical Reports Server (NTRS)

    Moore, Robin; Whitfield, Steve

    2003-01-01

    The purpose of this experiment was to correlate flammability data with FTIR test results. Kydex 100 is a blend of chlorinated polyvinyl chloride and polymethylmethacrylate, with some filler materials. Samples supplied were 0.125 in. thick. 10 samples were taken from a sheet of Kydex and analyzed for flammability and by FTIR spectroscopy. This material was utilized as a round robin sample for flammability testing. The flammability test results were found to vary across the same sheet.

  13. Editorial and Introduction of the Special Issue for the Ninth International Conference on Greenhouse Gas Control Technologies in the International Journal of Greenhouse Gas Control

    SciTech Connect

    Dooley, James J.; Benson, Sally M.; Karimjee, Anhar; Rubin, Edward S.

    2010-03-01

    Short one page editorial to introduce the +30 peer reviewed papers contained within the Special Issue for the Ninth International Conference on Greenhouse Gas Control Technologies in the International Journal of Greenhouse Gas Control

  14. 75 FR 49379 - Correction to Internal Citation of “Extremely Flammable Solid” and “Flammable Solid”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... flammable,'' ``flammable,'' and ``combustible'' hazardous substances contained in 16 CFR 1500.3(c)(6), 51 FR... mixture of drycleaning solvents, are exempt from the labeling requirements of section 2(p)(1) of the...

  15. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Definition of Terms Used in This Part § 105.10-15 Flammable liquid. (a) The term flammable liquid...

  16. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Flammable liquid. 105.10-15 Section 105.10-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Definition of Terms Used in This Part § 105.10-15 Flammable liquid. (a) The term flammable liquid...

  17. 16 CFR Figure 2 to Part 1610 - Flammability Apparatus Views

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Flammability Apparatus Views 2 Figure 2 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 2 Figure 2 to Part...

  18. 16 CFR Figure 2 to Part 1610 - Flammability Apparatus Views

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Flammability Apparatus Views 2 Figure 2 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 2 Figure 2 to Part...

  19. 16 CFR Figure 2 to Part 1610 - Flammability Apparatus Views

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Flammability Apparatus Views 2 Figure 2 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 2 Figure 2 to Part...

  20. 16 CFR Figure 2 to Part 1610 - Flammability Apparatus Views

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Flammability Apparatus Views 2 Figure 2 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 2 Figure 2 to Part...

  1. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general...

  2. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general...

  3. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general...

  4. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general...

  5. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... regulation (sec. 16 CFR part 1302), paragraphs (a), (b), (c) and (d) of this section are revoked as to the... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Extremely flammable contact adhesives... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable...

  6. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... regulation (sec. 16 CFR part 1302), paragraphs (a), (b), (c) and (d) of this section are revoked as to the... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Extremely flammable contact adhesives... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable...

  7. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... regulation (sec. 16 CFR part 1302), paragraphs (a), (b), (c) and (d) of this section are revoked as to the... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Extremely flammable contact adhesives... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable...

  8. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR... 46 Shipping 4 2013-10-01 2013-10-01 false Flammable anesthetics. 111.105-37 Section...

  9. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR... 46 Shipping 4 2011-10-01 2011-10-01 false Flammable anesthetics. 111.105-37 Section...

  10. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR... 46 Shipping 4 2012-10-01 2012-10-01 false Flammable anesthetics. 111.105-37 Section...

  11. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR... 46 Shipping 4 2010-10-01 2010-10-01 false Flammable anesthetics. 111.105-37 Section...

  12. 46 CFR 111.105-37 - Flammable anesthetics.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-37 Flammable anesthetics. Each electric installation where a flammable anesthetic is used or stored must meet NFPA 99 (incorporated by reference, see 46 CFR... 46 Shipping 4 2014-10-01 2014-10-01 false Flammable anesthetics. 111.105-37 Section...

  13. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE LIQUID label must be as follows: EC02MR91.023 (b) In addition to complying with § 172.407, the...

  14. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE LIQUID label must be as follows: EC02MR91.023 (b) In addition to complying with § 172.407, the...

  15. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE LIQUID label must be as follows: EC02MR91.023 (b) In addition to complying with § 172.407, the...

  16. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE LIQUID label must be as follows: EC02MR91.023 (b) In addition to complying with § 172.407, the...

  17. 49 CFR 172.419 - FLAMMABLE LIQUID label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false FLAMMABLE LIQUID label. 172.419 Section 172.419... SECURITY PLANS Labeling § 172.419 FLAMMABLE LIQUID label. (a) Except for size and color the FLAMMABLE LIQUID label must be as follows: EC02MR91.023 (b) In addition to complying with § 172.407, the...

  18. 49 CFR 172.546 - FLAMMABLE SOLID placard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false FLAMMABLE SOLID placard. 172.546 Section 172.546... SECURITY PLANS Placarding § 172.546 FLAMMABLE SOLID placard. (a) Except for size and color, the FLAMMABLE SOLID placard must be as follows: EC02MR91.051 (b) In addition to complying with § 172.519,...

  19. 49 CFR 172.546 - FLAMMABLE SOLID placard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false FLAMMABLE SOLID placard. 172.546 Section 172.546... SECURITY PLANS Placarding § 172.546 FLAMMABLE SOLID placard. (a) Except for size and color, the FLAMMABLE SOLID placard must be as follows: EC02MR91.051 (b) In addition to complying with § 172.519,...

  20. 49 CFR 172.546 - FLAMMABLE SOLID placard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false FLAMMABLE SOLID placard. 172.546 Section 172.546... SECURITY PLANS Placarding § 172.546 FLAMMABLE SOLID placard. (a) Except for size and color, the FLAMMABLE SOLID placard must be as follows: EC02MR91.051 (b) In addition to complying with § 172.519,...

  1. 16 CFR 1611.3 - Flammability-general requirement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Flammability-general requirement. 1611.3 Section 1611.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general...

  2. 14 CFR 129.117 - Flammability reduction means.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flammability reduction means. 129.117... Continued Airworthiness and Safety Improvements § 129.117 Flammability reduction means. (a) Applicability... 27, 2010 unless an Ignition Mitigation Means (IMM) or Flammability Reduction Means (FRM) meeting...

  3. An Approach to the Flammability Testing of Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2012-01-01

    Presentation reviews: (1) Current approach to evaluation of spacecraft materials flammability (2) The need for and the approach to alternative routes (3) Examples of applications of the approach recommended a) Crew Module splash down b) Crew Module depressurization c) Applicability of NASA's flammability test data to other sample configurations d) Applicability of NASA's ground flammability test data to spacecraft environments

  4. 16 CFR Figure 2 to Part 1610 - Flammability Apparatus Views

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flammability Apparatus Views 2 Figure 2 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 2 Figure 2 to Part...

  5. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... regulation (sec. 16 CFR part 1302), paragraphs (a), (b), (c) and (d) of this section are revoked as to the... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Extremely flammable contact adhesives... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable...

  6. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... regulation (sec. 16 CFR part 1302), paragraphs (a), (b), (c) and (d) of this section are revoked as to the... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Extremely flammable contact adhesives... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable...

  7. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of...

  8. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids...

  9. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids...

  10. 14 CFR 25.1723 - Flammable fluid fire protection: EWIS.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection: EWIS. 25... Systems (EWIS) § 25.1723 Flammable fluid fire protection: EWIS. EWIS components located in each area where flammable fluid or vapors might escape by leakage of a fluid system must be considered a potential...

  11. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the...

  12. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids...

  13. 14 CFR 25.1723 - Flammable fluid fire protection: EWIS.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection: EWIS. 25... Systems (EWIS) § 25.1723 Flammable fluid fire protection: EWIS. EWIS components located in each area where flammable fluid or vapors might escape by leakage of a fluid system must be considered a potential...

  14. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the...

  15. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the...

  16. 14 CFR 25.1723 - Flammable fluid fire protection: EWIS.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection: EWIS. 25... Systems (EWIS) § 25.1723 Flammable fluid fire protection: EWIS. EWIS components located in each area where flammable fluid or vapors might escape by leakage of a fluid system must be considered a potential...

  17. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of...

  18. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids...

  19. 14 CFR 25.1723 - Flammable fluid fire protection: EWIS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection: EWIS. 25... Systems (EWIS) § 25.1723 Flammable fluid fire protection: EWIS. EWIS components located in each area where flammable fluid or vapors might escape by leakage of a fluid system must be considered a potential...

  20. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the...

  1. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of...

  2. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids...

  3. 14 CFR 25.1183 - Flammable fluid-carrying components.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid-carrying components. 25... Protection § 25.1183 Flammable fluid-carrying components. (a) Except as provided in paragraph (b) of this section, each line, fitting, and other component carrying flammable fluid in any area subject to...

  4. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids...

  5. 14 CFR 25.1183 - Flammable fluid-carrying components.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid-carrying components. 25... Protection § 25.1183 Flammable fluid-carrying components. (a) Except as provided in paragraph (b) of this section, each line, fitting, and other component carrying flammable fluid in any area subject to...

  6. 14 CFR 25.1183 - Flammable fluid-carrying components.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid-carrying components. 25... Protection § 25.1183 Flammable fluid-carrying components. (a) Except as provided in paragraph (b) of this section, each line, fitting, and other component carrying flammable fluid in any area subject to...

  7. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of...

  8. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids...

  9. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids...

  10. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the...

  11. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of...

  12. 14 CFR 25.1723 - Flammable fluid fire protection: EWIS.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection: EWIS. 25... Systems (EWIS) § 25.1723 Flammable fluid fire protection: EWIS. EWIS components located in each area where flammable fluid or vapors might escape by leakage of a fluid system must be considered a potential...

  13. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids...

  14. 14 CFR 25.1183 - Flammable fluid-carrying components.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid-carrying components. 25... Protection § 25.1183 Flammable fluid-carrying components. (a) Except as provided in paragraph (b) of this section, each line, fitting, and other component carrying flammable fluid in any area subject to...

  15. 14 CFR 25.1183 - Flammable fluid-carrying components.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid-carrying components. 25... Protection § 25.1183 Flammable fluid-carrying components. (a) Except as provided in paragraph (b) of this section, each line, fitting, and other component carrying flammable fluid in any area subject to...

  16. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids...

  17. Key U. S. gas policy issues await action by FERC during 1991

    SciTech Connect

    Crow, P.

    1991-04-08

    The Federal Energy Regulatory Commission expects to decide several key U.S. natural gas policy issues this year, absent much of the controversy over its actions in recent years designed to inject competition into gas markets. Chairman Martin Alday the his goal is to allow competitive forces to work through the marketplace to maintain the appropriate balance between supply and demand in the pipeline and producer program. He the that this will be accomplished through continued implementation of policies related to construction certificate requirements, rate design, and restructuring pipeline service obligations, and phased deregulation of wellhead prices. FERC is grapping with the issues of pipeline rate design, comparability of service, and pipeline permitting changes while continuing to administer rules governing marketing affiliates and gas inventory charges.

  18. Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials

    SciTech Connect

    Luke, Dale Elden; Rogers, Adam Zachary; Hamp, S.

    2001-03-01

    Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing materials. Transportation regulations prohibit shipment of explosives and radioactive materials together. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials (NM), and spent nuclear fuels (SNF) programs within DOE’s Environmental Management (EM) organization to address gas generation concerns. This paper presents a "program level" roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This "program level" roadmapping involves linking technology development (and deployment) efforts to the programs’ needs and requirements for dispositioning the material/waste that generates combustible gas through radiolysis and chemical decomposition. The roadmapping effort focused on needed technical & programmatic support to the baselines (and to alternatives to the baselines) where the probability of success is low (i.e., high uncertainty) and the consequences of failure are relatively high (i.e., high programmatic risk). A second purpose for roadmapping was to provide the basis for coordinating sharing of "lessons learned" from research and development (R&D) efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues.

  19. Evaluation of flammability for cable-like polymers

    NASA Technical Reports Server (NTRS)

    Mikado, Tuneo; Akita, Kazuo

    1988-01-01

    A new test method is developed for the flammability of insulated electric cables as well as polymers formed in the cables. The rate of downward flame spread along the polymer surface is measured by a technique in which the flame is stopped at a particular position by winding up the cable at the same speed as the flame spreading rate, with external preheating by an electric furnace having oxidative gas flow. The polymer burns continuously without change of flame condition and the rate is obtained from the winding speed of the cable. A flame spread equation relates the flame spreading rate (V) of the cable-like polymer to O concentration (Yo) and the atmosphere, the preheating temperature, and the pyrolysis temperature for polymer burning. Plotting log V vs. log Yo for experimental results allows evaluation of the flammability of polymers, with discrimination between the effects of O concentration, heating temperature, and specimen shape. Results with various types of PVC electrical cable indicated the validity of the method. Application of the method to the cables in groups showed a flame retardation behavior different from the case of a single cable, in a atmosphere of high O concentration.

  20. Effect of vessel size and shape on experimental flammability limits of gases.

    PubMed

    Takahashi, Akifumi; Urano, Youkichi; Tokuhashi, Kazuaki; Kondo, Shigeo

    2003-12-12

    The flammability limits of methane and propane have been measured using cylindrical vessels of various sizes and one spherical vessel. An ac discharge ignition method has been employed. For a cylindrical vessel of small diameter with a large height, the flammability limits are primarily determined by the quenching effect of the wall. For cylindrical vessels of smaller heights, the experimental flammability limits are affected by hot gas accumulation at the vessel ceiling, unburned gas heating, self heating of the incipient flame by the reflection both from walls and ceiling, and the quenching effect of the walls. If the vessel size is large enough so that all these effects become negligible, the experimental values of flammability limits may approach to the values that would be obtained in free space. In order to approach this condition for a cylindrical vessel, it is desirable to use a container at least 30 cm in diameter and 60 cm in height. For comparison purpose, the measurement has also been done using ASHRAE type 12l spherical flask. PMID:14623418

  1. Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits

    USGS Publications Warehouse

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswel, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.B.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.A.

    2011-01-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas-hydrate (GH) petroleum system; to discuss advances, requirements, and suggested practices in GH prospecting and GH deposit characterization; and to review the associated technical, economic, and environmental challenges and uncertainties, which include the following: accurate assessment of producible fractions of the GH resource; development of methods for identifying suitable production targets; sampling of hydrate-bearing sediments (HBS) and sample analysis; analysis and interpretation of geophysical surveys of GH reservoirs; well-testing methods; interpretation of well-testing results; geomechanical and reservoir/well stability concerns; well design, operation, and installation; field operations and extending production beyond sand-dominated GH reservoirs; monitoring production and geomechanical stability; laboratory investigations; fundamental knowledge of hydrate behavior; the economics of commercial gas production from hydrates; and associated environmental concerns. ?? 2011 Society of Petroleum Engineers.

  2. Lean flammability limit as a fundamental refrigerant property: Phase 2. Interim technical report, 1 April 1995--30 March 1996

    SciTech Connect

    Womeldorf, C.; Grosshandler, W.

    1996-04-30

    The flammability of alternative, non-ozone depleting refrigerants is an issue of growing importance to the air-conditioning and refrigeration industry. Test methods developed decades ago are being stretched to their limits when measuring the combustion behavior of weakly flammable refrigerants. This work is Phase 2 of a three part project to determine the feasibility, accuracy, and applicability of a premixed opposed-flow burner as an alternative means of measuring lean flammability limits. In this work, the Phase 2 burner demonstrates the precision available to the opposed-flow technique for evaluating the lean flammability limit of weak fuels. Using opposed, converging nozzles, two jets support a premixed twin flame at different global strain rates and permit evaluation of the corresponding fuel concentration at the extinction point. Comparisons with published data support that the LFL{sub 0}, a lean flammability limit value defined by the extrapolation of the extinction conditions to zero global strain, yields a consistent value. Using a computer simulation to analyze the uncertainty, the lean flammability limit of refrigerants in dry air is found. Concurrent computational modeling of the combustion of refrigerants in air, individually and in mixtures has been performed with the chemical kinetics code CHEMKIN. Estimates of the impact of the initial conditions (equivalence ratio, fuel composition, temperature, and relative humidity) on the magnitude of the laminar flame speed of a zero strain flame are made.

  3. THE IMPACT OF OZONE ON THE LOWER FLAMMABLE LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    SciTech Connect

    Sherburne, Carol; Osterberg, Paul; Johnson, Tom; Frawely, Thomas

    2013-01-23

    The Savannah River Site, in conjunction with AREVA Federal services, has designed a process to treat dissolved radioactive waste solids with ozone. It is known that in this radioactive waste process, radionuclides radiolytically break down water into gaseous hydrogen and oxygen, which presents a well defined flammability hazard. Flammability limits have been established for both ozone and hydrogen separately; however, there is little information on mixtures of hydrogen and ozone. Therefore, testing was designed to provide critical flammability information necessary to support safety related considerations for the development of ozone treatment and potential scale-up to the commercial level. Since information was lacking on flammability issues at low levels of hydrogen and ozone, a testing program was developed to focus on filling this portion of the information gap. A 2-L vessel was used to conduct flammability tests at atmospheric pressure and temperature using a fuse wire ignition source at 1 percent ozone intervals spanning from no ozone to the Lower Flammable Limit (LFL) of ozone in the vessel, determined as 8.4%(v/v) ozone. An ozone generator and ozone detector were used to generate and measure the ozone concentration within the vessel in situ, since ozone decomposes rapidly on standing. The lower flammability limit of hydrogen in an ozone-oxygen mixture was found to decrease from the LFL of hydrogen in air, determined as 4.2 % (v/v) in this vessel. From the results of this testing, Savannah River was able to develop safety procedures and operating parameters to effectively minimize the formation of a flammable atmosphere.

  4. Issues Involving The OSI Concept of Operation For Noble Gas Radionuclide Detection

    SciTech Connect

    Carrigan, C R; Sun, Y

    2011-01-21

    The development of a technically sound protocol for detecting the subsurface release of noble gas radionuclides is critical to the successful operation of an on site inspection (OSI) under the CTBT and has broad ramifications for all aspects of the OSI regime including the setting of specifications for both sampling and analysis equipment used during an OSI. With NA-24 support, we are investigating a variety of issues and concerns that have significant bearing on policy development and technical guidance regarding the detection of noble gases and the creation of a technically justifiable OSI concept of operation. The work at LLNL focuses on optimizing the ability to capture radioactive noble gases subject to the constraints of possible OSI scenarios. This focus results from recognizing the difficulty of detecting gas releases in geologic environments - a lesson we learned previously from the LLNL Non-Proliferation Experiment (NPE). Evaluation of a number of important noble gas detection issues, potentially affecting OSI policy, has awaited the US re-engagement with the OSI technical community. Thus, there have been numerous issues to address during the past 18 months. Most of our evaluations of a sampling or transport issue necessarily involve computer simulations. This is partly due to the lack of OSI-relevant field data, such as that provided by the NPE, and partly a result of the ability of LLNL computer-based models to test a range of geologic and atmospheric scenarios far beyond what could ever be studied in the field making this approach very highly cost effective. We review some highlights of the transport and sampling issues we have investigated during the past year. We complete the discussion of these issues with a description of a preliminary design for subsurface sampling that is intended to be a practical solution to most if not all the challenges addressed here.

  5. The Effect of the Presence of Ozone on the Lower Flammability Limit (LFL) of Hydrogen in Vessels Containing Savannah River Site High Level Waste - 12387

    SciTech Connect

    Sherburne, Carol; Osterberg, Paul

    2012-07-01

    The Enhanced Chemical Cleaning (ECC) process uses ozone to effect the oxidation of metal oxalates produced during the dissolution of sludge in the Savannah River Site (SRS) waste tanks. The ozone reacts with the metal oxalates to form metal oxide and hydroxide precipitants, and the CO{sub 2}, O{sub 2}, H{sub 2}O and any unreacted O{sub 3} gases are discharged into the vapor space. In addition to the non-radioactive metals in the waste, however, the SRS radioactive waste also contains a variety of radionuclides, hence, hydrogen gas is also present in the vapor space of the ECC system. Because hydrogen is flammable, the impact of this resultant gas stream on the Lower Flammability Limit (LFL) of hydrogen must be understood for all possible operating scenarios of both normal and off-normal situations, with particular emphasis at the elevated temperatures and pressures of the typical ECC operating conditions. Oxygen is a known accelerant in combustion reactions, but while there are data associated with the behavior of hydrogen/oxygen environments, recent, relevant studies addressing the effect of ozone on the flammability limit of hydrogen proved scarce. Further, discussions with industry experts verified the absence of data in this area and indicated that laboratory testing, specific to defined operating parameters, was needed to comprehensively address the issue. Testing was thus designed and commissioned to provide the data necessary to support safety related considerations for the ECC process. A test matrix was developed to envelope the bounding conditions considered credible during ECC processing. Each test consists of combining a gas stream of high purity hydrogen with a gas stream comprised of a specified mixture of ozone and oxygen in a temperature and pressure regulated chamber such that the relative compositions of the two streams are controlled. The gases are then stirred to obtain a homogeneous mixture and ignition attempted by applying 10J of energy to a

  6. Flow Effects on the Flammability Diagrams of Solid Fuels: Microgravity Influence on Ignition Delay

    NASA Technical Reports Server (NTRS)

    Cordova, J. L.; Walther, D. C.; Fernandez-Pello, A. C.; Steinhaus, T.; Torero, J. L.; Quintere, J. G.; Ross, H. D.

    1999-01-01

    The possibility of an accidental fire in space-based facilities is a primary concern of space exploration programs. Spacecraft environments generally present low velocity air currents produced by ventilation and heating systems (of the order of 0.1 m/s), and fluctuating oxygen concentrations around that of air due to CO2 removal systems. Recent experiments of flame spread in microgravity show the spread rate to be faster and the limiting oxygen concentration lower than in normal-gravity. To date, there is not a material flammability-testing protocol that specifically addresses issues related to microgravity conditions. The present project (FIST) aims to establish a testing methodology that is suitable for the specific conditions of reduced gravity. The concepts underlying the operation of the LIFT apparatus, ASTM-E 1321-93, have been used to develop the Forced-flow Ignition and flame-Spread Test (FIST). As in the LIFT, the FIST is used to obtain the flammability diagrams of the material, i.e., graphs of ignition delay time and flame spread rate as a function of the externally applied radiant flux, but under forced flow rather than natural convection conditions, and for different oxygen concentrations. Although the flammability diagrams are similar, the flammability properties obtained with the FIST are found to depend on the flow characteristics. A research program is currently underway with the purpose of implementing the FIST as a protocol to characterize the flammability performance of solid materials to be used in microgravity facilities. To this point, tests have been performed with the FIST apparatus in both normal-gravity and microgravity conditions to determine the effects of oxidizer flow characteristics on the flammability diagrams of polymethylmethacrylate (PMMA) fuel samples. The experiments are conducted at reduced gravity in a KC- 135 aircraft following a parabolic flight trajectory that provides up to 25 seconds of low gravity. The objective of the

  7. Flammability Configuration Analysis for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2014-01-01

    Fire is one of the many potentially catastrophic hazards associated with the operation of crewed spacecraft. A major lesson learned by NASA from the Apollo 204 fire in 1966 was that ignition sources in an electrically powered vehicle should and can be minimized, but can never be eliminated completely. For this reason, spacecraft fire control is based on minimizing potential ignition sources and eliminating materials that can propagate fire. Fire extinguishers are always provided on crewed spacecraft, but are not considered as part of the fire control process. "Eliminating materials that can propagate fire" does not mean eliminating all flammable materials - the cost of designing and building spacecraft using only nonflammable materials is extraordinary and unnecessary. It means controlling the quantity and configuration of such materials to eliminate potential fire propagation paths and thus ensure that any fire would be small, localized, and isolated, and would self-extinguish without harm to the crew. Over the years, NASA has developed many solutions for controlling the configuration of flammable materials (and potentially flammable materials in commercial "off-the-shelf" hardware) so that they can be used safely in air and oxygen-enriched environments in crewed spacecraft. This document describes and explains these design solutions so payload customers and other organizations can use them in designing safe and cost-effective flight hardware. Proper application of these guidelines will produce acceptable flammability configurations for hardware located in any compartment of the International Space Station or other program crewed vehicles and habitats. However, use of these guidelines does not exempt hardware organizations of the responsibility for safety of the hardware under their control.

  8. Study of the dispersion of natural gas issuing from compressor stations through silencers with upper cover.

    PubMed

    García, J; Migoya, E; Lana, J A; Crespo, A

    2008-04-15

    The aim of the present study is the simulation of the dispersion of natural gas issuing from the silencer of compressor stations during vent operations. The objective is to analyze the dispersion of the gas emitted under different conditions of mass flow rate at the exit and ambient cross-flow velocity. We have considered a silencer with an upper cover to protect it from the rain and the fall of objects. The influence of the upper cover of the silencer on the dispersion of natural gas has also been studied, and non-dimensional approaches of the model have been proposed to simplify the problem. Seven different cases have been solved, using two models: a 3D model based on the commercial code FLUENT, and a simplified quasi-one-dimensional model. The results obtained in both cases have been compared, and the range of validity of the one-dimensional model in non-dimensional form has been discussed. PMID:17875364

  9. Flammability test for sunglasses: developing a system

    NASA Astrophysics Data System (ADS)

    Magri, Renan; Ventura, Liliane

    2014-02-01

    Recent investigations show the need for certificating sunglasses to ensure the safety and health to population. The Brazilian Standard ABNT NBR 15111 regulates features to sunglasses, however, there is not a sunglasses certification office in Brazil, therefore, our lab has been developing several equipment for sunglasses testing. This work refers to one of them: the flammability test system for sunglasses in compliance with the NBR 15111. The standard provides requirements for the flammability test procedure which requires that the equipment must operate at a temperature of 650 °C +/- 20 °C the end of a steel rod of 300 mm length and 6 mm diameter should be heated and pressed over the surface of the lenses for five seconds; the flammability is checked by visual inspection. The furnace is made of ceramic. We used a power electronic circuit to control the power in the furnace using ON/OFF mode and for measuring the temperature, we used a K-type thermocouple. A stepper motor with pulley lifts the steel rod. The system reaches the working temperature in 15 minutes for a step input of 61 V in open loop system. The electronics control are under development in order to shorten the time necessary to reach the working temperature and maintain the temperature variation in the furnace within the limits imposed by the standard as next steps.

  10. MESERAN Test Results for Elimination of Flammable Solvents in Wipe Applications at Pantex

    SciTech Connect

    M. G. Benkovich

    2005-03-30

    In recent years, efforts have been made within the nuclear weapons complex (National Nuclear Security Administration) of the Department of Energy (DOE) to replace Resource Conservation and Recovery Act (RCRA) regulated solvents (i.e., flammable, toxic, corrosive, and reactive) and ozone-depleting chemicals (ODC) with more benign alternatives. Within the National Nuclear Security Administration (NNSA) and the Department of Defense (DoD) sectors, these solvents are used for cleaning hardware during routine maintenance operations. A primary goal of this study is to replace flammable solvents for wiping applications. Two cleaners, including a hydrofluoroether (HFE) and an azeotrope of the HFE and isopropyl alcohol (IPA), have been studied as potential replacements for flammable solvents. Cleaning efficacy, short-term and longterm materials compatibility, corrosion, drying times, flammability, environment, safety and health (ES&H) issues and accelerated aging studies are among the tests that are being conducted and that are used to screen candidate solvents by the interagency team performing this work. The results are compared to the traditionally used isopropyl alcohol, which serves as the baseline cleaner. This report details the results of MESERAN (Measurement and Evaluation of Surfaces by Evaporative Rate ANalysis) testing performed at the Kansas City Plant (KCP) to quantify the cleaning efficacy on samples contaminated with the various contaminants and cleaned by wiping with the various solvents being evaluated.

  11. Resource planning for gas utilities: Using a model to analyze pivotal issues

    SciTech Connect

    Busch, J.F.; Comnes, G.A.

    1995-11-01

    With the advent of wellhead price decontrols that began in the late 1970s and the development of open access pipelines in the 1980s and 90s, gas local distribution companies (LDCs) now have increased responsibility for their gas supplies and face an increasingly complex array of supply and capacity choices. Heretofore this responsibility had been share with the interstate pipelines that provide bundled firm gas supplies. Moreover, gas supply an deliverability (capacity) options have multiplied as the pipeline network becomes increasing interconnected and as new storage projects are developed. There is now a fully-functioning financial market for commodity price hedging instruments and, on interstate Pipelines, secondary market (called capacity release) now exists. As a result of these changes in the natural gas industry, interest in resource planning and computer modeling tools for LDCs is increasing. Although in some ways the planning time horizon has become shorter for the gas LDC, the responsibility conferred to the LDC and complexity of the planning problem has increased. We examine current gas resource planning issues in the wake of the Federal Energy Regulatory Commission`s (FERC) Order 636. Our goal is twofold: (1) to illustrate the types of resource planning methods and models used in the industry and (2) to illustrate some of the key tradeoffs among types of resources, reliability, and system costs. To assist us, we utilize a commercially-available dispatch and resource planning model and examine four types of resource planning problems: the evaluation of new storage resources, the evaluation of buyback contracts, the computation of avoided costs, and the optimal tradeoff between reliability and system costs. To make the illustration of methods meaningful yet tractable, we developed a prototype LDC and used it for the majority of our analysis.

  12. TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS

    SciTech Connect

    DOUGLAS, J.G.

    2006-07-06

    This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desires a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected calibrating

  13. Estimation of Flammability Limits of Selected Fluorocarbons with F(sub 2) and CIF(sub3)

    SciTech Connect

    Trowbridge, L.D.

    1999-09-01

    During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F(sub 2) and CIF(sub 3). Replacement of CFC-114 with non-ozone-depleting substitutes such as c-C(sub 4)F(sub 8) and C(sub 4)F(sub 10) is planned. Consequently, in the future, these too must be considered potential ''fuels'' in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should ignite? Experimental data on these systems are limited. To assist in answering these questions, a literature search for relevant data was conducted, and mathematical models were developed to serve as tools for predicting potential detonation pressures and estimating (based on empirical correlations between gas mixture thermodynamics and flammability for known systems) the composition limits of flammability for these systems. The models described and documented in this report are enhanced versions of similar models developed in 1992.

  14. Issues surrounding continuation of the noncompetitive oil and gas lottery system

    SciTech Connect

    Not Available

    1985-04-04

    The Bureau of Land Management is responsible for the leasing of oil and gas mineral rights on over 300 million acres of public lands. Under the Mineral Leasing Act of 1920, lands with known oil and gas deposits are leased competitively. However, much more federal land is leased through a noncompetitive lottery system, which generates substantial receipts for the federal Treasury - about $250 million in filing fees for the 5-year period 1980-1984. The lottery system has been criticized since its 1959 inception for encouraging fraud, misleading the public, and generating insufficient revenues. On October 12, 1983, the program was suspended for 10 months because of recognized weaknesses in the system. This report highlights major issues surrounding the lottery program.

  15. Thermal and flammability characterization of graphite composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1986-01-01

    Thermal, mechanical, and flammability properties of graphite composites fabricated with XU71775/H795, a bismaleimide/vinyl-polystyrylpyridine formulation; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyrylpyridine and two types of graphite reinforcement were evaluated and compared with a composite made with an epoxy resin as a matrix. The measured properties included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. It was found that the combination of XU71775/H795 with the graphite tape was the optimum design giving the lowest heat release rate.

  16. Aircraft seat cushion materials tests. [flammability

    NASA Technical Reports Server (NTRS)

    Bricker, R. W.

    1975-01-01

    Five component level flammability tests were conducted in a 400 cubic foot chamber to determine the products of combustion and relative destruction of coated (with fire-retardants) and uncoated polyurethane foams during exposure of the foams to a large flaming ignition source for five minutes. The test results indicate that the improved state-of-the-art polyurethane foams without the added fire retardant and coating treatments were not significantly better than untreated older less fire-resistant polyurethane foams. however, by treating and coating the state-of-the-art foams, the production of toxic gases was delayed and the destruction of the foam limited.

  17. Shale-Gas Experience as an Analog for Potential Wellbore Integrity Issues in CO2 Sequestration

    SciTech Connect

    Carey, James W.; Simpson, Wendy S.; Ziock, Hans-Joachim

    2011-01-01

    previous (legacy) oil and gas operations. The great majority of the leakage issues in Pennsylvania are due to improperly abandoned wells, however in the media there is no clear distinction between past and present problems. In any case, significant analytical work is required to attribute differing sources of methane (or CO{sub 2} in the case of sequestration). In Pennsylvania, a relatively lax regulatory environment appears to have contributed to the problem with inadequate oversight of well design and testing to ensure well integrity. New rules were adopted at the end of 2010, and it will be interesting to observe whether methane leakage problems are significantly reduced.

  18. 43 CFR 423.31 - Fires and flammable material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Fires and flammable material. 423.31... of Conduct § 423.31 Fires and flammable material. (a) You must not leave a fire unattended, and it... designed for that purpose. (e) You must comply with all applicable Federal, State, and local fire...

  19. 43 CFR 423.31 - Fires and flammable material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Fires and flammable material. 423.31 Section 423.31 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR PUBLIC CONDUCT ON BUREAU OF RECLAMATION FACILITIES, LANDS, AND WATERBODIES Rules of Conduct § 423.31 Fires and flammable...

  20. 43 CFR 423.31 - Fires and flammable material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Fires and flammable material. 423.31... of Conduct § 423.31 Fires and flammable material. (a) You must not leave a fire unattended, and it... smoking materials, including cigarettes, cigars, pipes, matches, or other burning material. (c) You...

  1. 43 CFR 423.31 - Fires and flammable material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Fires and flammable material. 423.31... of Conduct § 423.31 Fires and flammable material. (a) You must not leave a fire unattended, and it... smoking materials, including cigarettes, cigars, pipes, matches, or other burning material. (c) You...

  2. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... stowed in accordance with subparts 98.30 and 98.33 of this chapter and the provisions of 49 CFR parts 171... 46 Shipping 4 2012-10-01 2012-10-01 false Flammable and combustible liquids: Carriage. 109.557... DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The...

  3. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... authorized for Class 3 (flammable) liquids or combustible liquids under 49 CFR 173.201, 173.202, or 173.203, as referenced for the specific liquid in column 8B of the Hazardous Materials Table of 49 CFR 172.101... 46 Shipping 5 2011-10-01 2011-10-01 false Flammable and combustible liquids. 147.45 Section...

  4. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... authorized for Class 3 (flammable) liquids or combustible liquids under 49 CFR 173.201, 173.202, or 173.203, as referenced for the specific liquid in column 8B of the Hazardous Materials Table of 49 CFR 172.101... 46 Shipping 5 2012-10-01 2012-10-01 false Flammable and combustible liquids. 147.45 Section...

  5. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any liquid whose flashpoint, as determined by an open cup tester, is 80 °F. or below....

  6. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... stowed in accordance with subparts 98.30 and 98.33 of this chapter and the provisions of 49 CFR parts 171... 46 Shipping 4 2011-10-01 2011-10-01 false Flammable and combustible liquids: Carriage. 109.557... DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The...

  7. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... stowed in accordance with subparts 98.30 and 98.33 of this chapter and the provisions of 49 CFR parts 171... 46 Shipping 4 2010-10-01 2010-10-01 false Flammable and combustible liquids: Carriage. 109.557... DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The...

  8. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any liquid whose flashpoint, as determined by an open cup tester, is 80 °F. or below....

  9. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any liquid whose flashpoint, as determined by an open cup tester, is 80 °F. or below....

  10. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... authorized for Class 3 (flammable) liquids or combustible liquids under 49 CFR 173.201, 173.202, or 173.203, as referenced for the specific liquid in column 8B of the Hazardous Materials Table of 49 CFR 172.101... 46 Shipping 5 2010-10-01 2010-10-01 false Flammable and combustible liquids. 147.45 Section...

  11. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... authorized for Class 3 (flammable) liquids or combustible liquids under 49 CFR 173.201, 173.202, or 173.203, as referenced for the specific liquid in column 8B of the Hazardous Materials Table of 49 CFR 172.101... 46 Shipping 5 2014-10-01 2014-10-01 false Flammable and combustible liquids. 147.45 Section...

  12. 46 CFR 147.45 - Flammable and combustible liquids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... authorized for Class 3 (flammable) liquids or combustible liquids under 49 CFR 173.201, 173.202, or 173.203, as referenced for the specific liquid in column 8B of the Hazardous Materials Table of 49 CFR 172.101... 46 Shipping 5 2013-10-01 2013-10-01 false Flammable and combustible liquids. 147.45 Section...

  13. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stowed in accordance with subparts 98.30 and 98.33 of this chapter and the provisions of 49 CFR parts 171... 46 Shipping 4 2014-10-01 2014-10-01 false Flammable and combustible liquids: Carriage. 109.557... DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The...

  14. 46 CFR 109.557 - Flammable and combustible liquids: Carriage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stowed in accordance with subparts 98.30 and 98.33 of this chapter and the provisions of 49 CFR parts 171... 46 Shipping 4 2013-10-01 2013-10-01 false Flammable and combustible liquids: Carriage. 109.557... DRILLING UNITS OPERATIONS Miscellaneous § 109.557 Flammable and combustible liquids: Carriage. The...

  15. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any liquid whose flashpoint, as determined by an open cup tester, is 80 °F. or below....

  16. 46 CFR 188.10-27 - Flammable liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Flammable liquid. 188.10-27 Section 188.10-27 Shipping... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-27 Flammable liquid. This term includes any liquid whose flashpoint, as determined by an open cup tester, is 80 °F. or below....

  17. 49 CFR 173.223 - Packagings for certain flammable solids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Packagings for certain flammable solids. 173.223 Section 173.223 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.223 Packagings for certain flammable solids. (a) Packagings for “Musk...

  18. 14 CFR 121.1117 - Flammability reduction means.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flammability reduction means. 121.1117....1117 Flammability reduction means. (a) Applicability. Except as provided in paragraph (o) of this... airworthiness approval after December 27, 2010 unless an Ignition Mitigation Means (IMM) or...

  19. 14 CFR 121.1117 - Flammability reduction means.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flammability reduction means. 121.1117....1117 Flammability reduction means. (a) Applicability. Except as provided in paragraph (o) of this... airworthiness approval after December 27, 2010 unless an Ignition Mitigation Means (IMM) or...

  20. 14 CFR 125.509 - Flammability reduction means.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flammability reduction means. 125.509... Airworthiness and Safety Improvements § 125.509 Flammability reduction means. (a) Applicability. Except as... airworthiness or export airworthiness approval after December 27, 2010 unless an Ignition Mitigation Means...

  1. 49 CFR 173.223 - Packagings for certain flammable solids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Packagings for certain flammable solids. 173.223...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.223 Packagings for certain flammable solids. (a) Packagings for “Musk...

  2. 43 CFR 423.31 - Fires and flammable material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Fires and flammable material. 423.31... of Conduct § 423.31 Fires and flammable material. (a) You must not leave a fire unattended, and it... not burn materials that produce toxic fumes, including, but not limited to, tires, plastic,...

  3. Mechanisms of gas retention and release: Experimental results for Hanford single-shell waste tanks 241-A-101, 241-S-106, and 241-U-103

    SciTech Connect

    Rassat, S.D.; Caley, S.M.; Bredt, P.R.; Gauglitz, P.A.; Rinehart, D.E.; Forbes, S.V.

    1998-09-01

    The 177 underground waste storage tanks at the Hanford Site contain millions of gallons of radioactive waste resulting from the purification of nuclear materials and related processes. Through various mechanisms, flammable gas mixtures of hydrogen, ammonia, methane, and nitrous oxide are generated and retained in significant quantities within the waste in many ({approximately}25) of these tanks. The potential for large releases of retained gas from these wastes creates a flammability hazard. It is a critical component of the effort to understand the flammability hazard and a primary goal of this laboratory investigation to establish an understanding of the mechanisms of gas retention and release in these wastes. The results of bubble retention experimental studies using waste samples from several waste tanks and a variety of waste types support resolution of the Flammable Gas Safety Issue. Gas bubble retention information gained in the pursuit of safe storage will, in turn, benefit future waste operations including salt-well pumping, waste transfers, and sluicing/retrieval.

  4. Flammability limits of dusts: Minimum inerting concentrations

    SciTech Connect

    Dastidar, A.G.; Amyotte, P.R.; Going, J.; Chatrathi, K.

    1999-05-01

    A new flammability limit parameter has been defined as the Minimum Inerting Concentration (MIC). This is the concentration of inertant required to prevent a dust explosion regardless of fuel concentration. Previous experimental work at Fike in a 1-m{sup 3} spherical chamber has shown this flammability limit to exist for pulverized coal dust and cornstarch. In the current work, inerting experiments with aluminum, anthraquinone and polyethylene dusts as fuels were performed, using monoammonium phosphate and sodium bicarbonate as inertants. The results show that an MIC exists only for anthraquinone inerted with sodium bicarbonate. The other combustible dust and inertant mixtures did not show a definitive MIC, although they did show a strong dependence between inerting level and suspended fuel concentration. As the fuel concentration increased, the amount of inertant required to prevent an explosion decreased. Even though a definitive MIC was not found for most of the dusts an effective MIC can be estimated from the data. The use of MIC data can aid in the design of explosion suppression schemes.

  5. The Evaluation of Flammability Properties Regarding Testing Methods

    NASA Astrophysics Data System (ADS)

    Osvaldová, Linda Makovická; Gašpercová, Stanislava

    2015-12-01

    In this paper, we address the historical comparison methods with current methods for the assessment of flammability characteristics for materials an especially for wood, wood components and wooden buildings. Nowadays in European Union brings harmonization in evaluated of standards into each European country and try to make one concept of evaluated the flammability properties. In each European country to the one standard level which will be used by evaluation of materials regarding flammability. In our article we focused mainly on improving the evaluation methods in terms of flammability characteristics of using materials at building industry. In the article we present examples of different assessment methods at their own test methods in terms of fire prevention. On the base of old compared of materials by STN, BS and DIN methods for testing materials on fire and new methods of evaluating the flammability properties regarding EU standards before and after starting the flash over.

  6. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    SciTech Connect

    Shropshire, D.E.; Herring, J.S.

    2004-10-03

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  7. Laboratory flammability studies of mixtures of hydrogen, nitrous oxide, and air

    SciTech Connect

    Cashdollar, K L; Hertzberg, M; Zlochower, I A; Lucci, C E; Green, G M; Thomas, R A

    1992-06-26

    At the request of the Department of Energy and the Westinghouse Hanford Company, the Bureau of Mines has investigated the flammability of mixtures of hydrogen, nitrous oxide, and air. This work is relevant to the possible hazards of flammable gas generation from nuclear waste tanks at Hanford, WA. The tests were performed in a 120-L spherical chamber under both quiescent and turbulent conditions using both electric spark and pyrotechnic ignition sources. The data reported here for binary mixtures of hydrogen in air generally confirm the data of previous investigators, but they are more comprehensive than those reported previously. The results clarify to a greater extent the complications associated with buoyancy, turbulence, and selective diffusion. The data reported here for ternary mixtures of hydrogen and nitrous oxide in air indicate that small additions of nitrous oxide (relative to the amount of air) have little effect, but that higher concentrations of nitrous oxide (relative to air) significantly increase the explosion hazard.

  8. 16 CFR 1500.45 - Method for determining extremely flammable and flammable contents of self-pressurized containers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Method for determining extremely flammable... ARTICLES; ADMINISTRATION AND ENFORCEMENT REGULATIONS § 1500.45 Method for determining extremely flammable... distance of 6 inches from the flame source. Spray for periods of 15 seconds to 20 seconds (one...

  9. 16 CFR 1500.45 - Method for determining extremely flammable and flammable contents of self-pressurized containers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Method for determining extremely flammable... ARTICLES; ADMINISTRATION AND ENFORCEMENT REGULATIONS § 1500.45 Method for determining extremely flammable... distance of 6 inches from the flame source. Spray for periods of 15 seconds to 20 seconds (one...

  10. 16 CFR 1500.45 - Method for determining extremely flammable and flammable contents of self-pressurized containers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Method for determining extremely flammable... ARTICLES; ADMINISTRATION AND ENFORCEMENT REGULATIONS § 1500.45 Method for determining extremely flammable... distance of 6 inches from the flame source. Spray for periods of 15 seconds to 20 seconds (one...

  11. 16 CFR 1500.45 - Method for determining extremely flammable and flammable contents of self-pressurized containers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Method for determining extremely flammable... ARTICLES; ADMINISTRATION AND ENFORCEMENT REGULATIONS § 1500.45 Method for determining extremely flammable... distance of 6 inches from the flame source. Spray for periods of 15 seconds to 20 seconds (one...

  12. A preliminary study of a propeller powered by gas jets issuing from the blade tips

    NASA Technical Reports Server (NTRS)

    Sanders, J C; Sanders, N D

    1946-01-01

    Computations are made of the performance of a propeller designed to develop 56 thrust horsepower at 100 miles per hour. The fuel consumption of the jet-operated propeller would be considerably higher than that of a reciprocating engine and a propeller. The lighter weight of the jet-operated propeller will result in a lighter weight of engine plus fuel for short-range flights. A theoretical analysis is made of a propeller powered by gas jets issuing from the blade tips. In the propeller considered, the air is drawn through the hub and passes through the hollow propeller blades to the tips, where propellers heat the air and expel it through the nozzles in the blade tips. The reaction of the tips rotates the propeller. For long range flights, the weight of the jet-operated propeller with its fuel would be greater than the weight of a reciprocating engine with its propeller and fuel.

  13. Upward Flammability Testing: A Probabilistic Measurement

    NASA Technical Reports Server (NTRS)

    Davis, Samuel E.; Engel, Carl D.; Richardson, Erin R.

    2003-01-01

    Examination of NASA-STD-6001 Test 1 data suggests burn length outcome for a given environment has a large statistical variation from run to run. Large data sets show that burn length data form cumulative probability distribution curves, which describe a material's characteristic to burn in a specific environment, suggesting that the current practice of testing three samples at specific conditions is inadequate. Sufficient testing can establish material characteristics probability curves to provide the probability that a material will sustain a burn length of at least 15.24 cm (6.0 in.) or will sustain burning until all material is consumed. A simple pasdfail criterion may not be possible or practical. Future application of flammability data for some material classes may require the engineer to assess risk based on the probability of an occurrence and the probable outcome with different materials as characterized with cumulative burn length distributions for specific use conditions.

  14. Pressure Flammability Thresholds of Selected Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Williams, James H.; Harper, Susana A.; Beeson, Harold D.; Ruff, Gary A.; Pedley, Michael D.

    2010-01-01

    A test program was performed to determine the highest pressure in oxygen where materials used in the planned NASA Constellation Program Orion Crew Exploration Vehicle (CEV) Crew Module (CM) would not propagate a flame if an ignition source was present. The test methodology used was similar to that previously used to determine the maximum oxygen concentration (MOC) at which self-extinguishment occurs under constant total pressure conditions. An upward limiting pressure index (ULPI) was determined, where approximately 50 percent of the materials self-extinguish in a given environment. Following this, the maximum total pressure (MTP) was identified; where all samples tested (at least five) self-extinguished following the NASA-STD-6001.A Test 1 burn length criteria. The results obtained on seven materials indicate that the non-metallic materials become flammable in oxygen between 0.4 and 0.9 psia.

  15. Flammability measurements of difluoromethane in air at 100 C

    SciTech Connect

    Grosshandler, W.L.; Donnelly, M.K.; Womeldorf, C.

    1999-07-01

    Difluoromethane (CH{sub 2}F{sub 2}, or R-32) is a candidate to replace currently used ozone-depleting chlorofluorocarbon refrigerants. Because CH{sub 2}F{sub 2} is flammable, it is necessary to assess the hazard posed by a leak in a refrigeration machine. The currently accepted method for determining flammability, ASTM E 681, has difficulty discerning the flammability boundary for weak fuels such as CH{sub 2}F{sub 2}. This paper describes an alternative approach to identify the limits of flammability, using a twin, premixed counter-flow flame. By using the extinction of an already established flame, the point dividing flammable from non-flammable becomes unambiguous. The limiting extinction mixture changes with stretch rate, so it is convenient to report the flammability limit as the value extrapolated to a zero stretch condition. In the burner, contoured nozzles with outlet diameters of 12 mm are aligned counter to each other and spaced 12 mm apart. The lean flammability limit of CH{sub 2}F{sub 2} in dry air at room temperature was previously reported by the authors to be a mole fraction of 0.14, using the twin counter-flow flame method. In the current study, relative humidity was not found to affect the lean limit. Increasing the temperature of the premixed fuel and air to 100 C is shown to extend the flammability limit in the lean direction to 0.13. The rich limit of CH{sub 2}F{sub 2} found using the counter-flow method is around 0.27. The uncertainties of the measurements are presented and the results compared to data in the literature.

  16. Thermal barrier coatings issues in advanced land-based gas turbines

    NASA Astrophysics Data System (ADS)

    Parks, W. P.; Hoffman, E. E.; Lee, W. Y.; Wright, I. G.

    1997-06-01

    The Department of Energy’s Advanced Turbine Systems (ATS) program is aimed at fostering the devel-opment of a new generation of land-based gas turbine systems with overall efficiencies significantly be-yond those of current state-of-the-art machines, as well as greatly increased times between inspection and refurbishment, improved environmental impact, and decreased cost. The proposed duty cycle of ATS ma-chines will emphasize different criteria in the selection of materials for the critical components. In par-ticular, thermal barrier coatings (TBCs) will be an essential feature of the hot gas path components in these machines. The goals of the ATS will require significant improvements in TBC technology, since these turbines will be totally reliant on TBCs, which will be required to function on critical components such as the first-stage vanes and blades for times considerably longer than those experienced in current applications. Important issues include the mechanical and chemical stability of the ceramic layer and the metallic bond coat, the thermal expansion characteristics and compliance of the ceramic layer, and the thermal conductivity across the thickness of the ceramic layer.

  17. Flammable Gas Safety Program: analysis of gas sampling probe locations in the SX-farm flammable gas watchlist tanks

    SciTech Connect

    McLaren, J.M.; Claybrook, S.W.

    1995-09-01

    An analysis was performed to determine the optimum ventilation line up for the AN Tank Farm. The analysis used the postulated maximum historical GRE in tanks AN-103, -104, and -105. Tank AN-104 was found to be limiting. The results of the analysis show that an airflow of 250 cfm through tanks 241-AN-103, -104, and -105 with an airflow of 100 cfm through tanks 241-AN-101, -102, -106, and -107 would be the optimum ventilation lineup.

  18. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... flammable liquid having a Reid 1 vapor pressure of 14 pounds or more. 1 American Society for Testing... 46 Shipping 1 2011-10-01 2011-10-01 false Flammable liquid-TB/ALL. 30.10-22 Section 30.10-22...-22 Flammable liquid—TB/ALL. The term flammable liquid means any liquid which gives off...

  19. Spacecraft and Navy Materials Flammability: Review of Some Concepts and Test Methods

    NASA Technical Reports Server (NTRS)

    Hirsch, David

    2004-01-01

    The agenda covered by this viewgraph presentation includes: 1) Concepts of Spacecraft Fire Safety; 2) Spacecraft materials flammability test methods; 3) Evaluation of flight hardware flammability; 4) Review of flammability data in conditions of interest to the Navy; 5) Overview of some flammability test methods recommended for the Navy.

  20. One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams.

    PubMed

    Davis, Rick; Li, Yu-Chin; Gervasio, Michelle; Luu, Jason; Kim, Yeon Seok

    2015-03-25

    In this manuscript, natural materials were combined into a single "pot" to produce flexible, highly fire resistant, and bioinspired coatings on flexible polyurethane foam (PUF). In one step, PUF was coated with a fire protective layer constructed of a polysaccharide binder (starch or agar), a boron fire retardant (boric acid or derivative), and a dirt char former (montmorillonite clay). Nearly all coatings produced a 63% reduction in a critical flammability value, the peak heat release rate (PHRR). One formulation produced a 75% reduction in PHRR. This technology was validated in full-scale furniture fire tests, where a 75% reduction in PHRR was measured. At these PHRR values, this technology could reduce the fire threat of furniture from significant fire damage in and beyond the room of fire origin to being contained to the burning furniture. This flammability reduction was caused by three mechanisms-the gas-phase and condensed-phase processes of the boron fire retardant and the condensed-phase process of the clay. We describe the one-pot coating process and the impact of the coating composition on flammability. PMID:25723711

  1. A Discussion of SY-101 Crust Gas Retention and Release Mechanisms

    SciTech Connect

    SD Rassat; PA Gauglitz; SM Caley; LA Mahoney; DP Mendoza

    1999-02-23

    The flammable gas hazard in Hanford waste tanks was made an issue by the behavior of double-shell Tank (DST) 241-SY-101 (SY-101). Shortly after SY-101 was filled in 1980, the waste level began rising periodically, due to the generation and retention of gases within the slurry, and then suddenly dropping as the gases were released. An intensive study of the tank's behavior revealed that these episodic releases posed a safety hazard because the released gas was flammable, and, in some cases, the volume of gas released was sufficient to exceed the lower flammability limit (LFL) in the tank headspace (Allemann et al. 1993). A mixer pump was installed in SY-101 in late 1993 to prevent gases from building up in the settled solids layer, and the large episodic gas releases have since ceased (Allemann et al. 1994; Stewart et al. 1994; Brewster et al. 1995). However, the surface level of SY-101 has been increasing since at least 1995, and in recent months the level growth has shown significant and unexpected acceleration. Based on a number of observations and measurements, including data from the void fraction instrument (VFI), we have concluded that the level growth is caused largely by increased gas retention in the floating crust. In September 1998, the crust contained between about 21 and 43% void based on VFI measurements (Stewart et al. 1998). Accordingly, it is important to understand the dominant mechanisms of gas retention, why the gas retention is increasing, and whether the accelerating level increase will continue, diminish or even reverse. It is expected that the retained gas in the crust is flammable, with hydrogen as a major constituent. This gas inventory would pose a flammable gas hazard if it were to release suddenly. In May 1997, the mechanisms of bubble retention and release from crust material were the subject of a workshop. The evaluation of the crust and potential hazards assumed a more typical void of roughly 15% gas. It could be similar to percolati

  2. Cleaning and materials compatibility test results for elimination of flammable solvents in wipe applications.

    SciTech Connect

    Lopez, Edwin Paul

    2005-06-01

    In recent years, efforts have been made within the nuclear weapons complex (National Nuclear Security Administration) of the Department of Energy (DOE) to replace Resource Conservation and Recovery Act (RCRA) regulated solvents (i.e., flammable, toxic, corrosive, and reactive) and ozone-depleting chemicals (ODC) with more benign alternatives. Within the National Nuclear Security Administration (NNSA) and the Department of Defense (DoD) sectors, these solvents are used for cleaning hardware during routine maintenance operations. A primary goal of this study is to replace flammable solvents used in wiping applications. Two cleaners, including a hydrofluoroether (HFE) and an azeotrope of the HFE and isopropyl alcohol (IPA), have been studied as potential replacements for flammable solvents. Cleaning efficacy, short-term and long-term materials compatibility, corrosion, drying times, flammability, environment, safety and health (ES&H) and accelerated aging issues were among the experiments used to screen candidate solvents by the interagency team performing this work. This report presents cleaning efficacy results as determined by the contact angle Goniometer as well as materials compatibility results of various metal alloys and polymers. The results indicate that IPA (baseline cleaner) and the HFE/IPA azeotrope are roughly equivalent in their ability to remove fluorinated grease, silicone grease, and a simulated finger print contaminant from various metal alloys. All of the ASTM sandwich and immersion corrosion tests with IPA, HFE or the HFE/IPA azeotrope on metal alloys showed no signs of corrosion. Furthermore, no deleterious effects were noted for polymeric materials immersed in IPA, HFE, or the HFE/IPA azeotrope.

  3. TWRS hydrogen mitigation gas characterization system design and fabrication engineering task plan

    SciTech Connect

    Straalsund, E.K.

    1995-01-01

    The flammable gas watch-list (FGWL) tanks, which have demonstrated a gas release event (GRE) exceeding 0.625% hydrogen by volume will require additional characterization. The purpose of this additional characterization is to accurately measure the flammable and hazardous gas compositions and resulting lower flammability limit (LFL) of the tank vapor space during baseline and GRE emissions. Data from this characterization will help determine methods to resolve the unreviewed safety questions for the FGWL tanks. This document details organization responsibilities and engineering requirements for the design and fabrication of two gas characterization systems used to monitor flammable gas watch-list tanks.

  4. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Tight Western Sands

    SciTech Connect

    Riedel, E.F.; Cowan, C.E.; McLaughlin, T.J.

    1980-02-01

    Results of a study to identify and evaluate potential public health and safety problems and the potential environmental impacts from recovery of natural gas from Tight Western Sands are reported. A brief discussion of economic and technical constraints to development of this resource is also presented to place the environmental and safety issues in perspective. A description of the resource base, recovery techniques, and possible environmental effects associated with tight gas sands is presented.

  5. Low flammability cap-sensitive flexible explosive composition

    DOEpatents

    Wagner, Martin G.

    1992-01-14

    A cap-sensitive flexible explosive composition of reduced flammability is provided by incorporating a finely divided, cap-sensitive explosive in a flame resistant polymeric binder system which contains a compatible flame retardant material.

  6. Gas characterization system software acceptance test report

    SciTech Connect

    Vo, C.V.

    1996-03-28

    This document details the results of software acceptance testing of gas characterization systems. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

  7. Gas characterization system software acceptance test procedure

    SciTech Connect

    Vo, C.V.

    1996-02-27

    This document details the Software Acceptance Testing of gas characterization systems. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

  8. State policies affecting natural gas consumption (Notice of inquiry issued on August 14, 1992). Summary of comments

    SciTech Connect

    Lemon, R.; Kamphuis-Zatopa, W.

    1993-03-25

    On August 14, 1992, the United States Department of Energy issued a Request for Comments Concerning State Policies Affecting Natural Gas Consumption. This Notice of (NOI) noted the increasing significance of the role played by states and sought to gain better understanding of how state policies impact the gas industry. The general trend toward a. more competitive marketplace for natural gas, as well as recent regulatory and legislative changes at the Federal level, are driving State regulatory agencies to reevaluate how they regulate natural gas. State action is having a significant impact on the use of natural gas for generating electricity, as well as affecting the cost-effective trade-off between conservation expenditures and gas use. Additionally, fuel choice has an impact upon the environment and national energy security. In light of these dimensions, the Department of Energy initiated this study of State regulation. The goals of this NOI are: (1) help DOE better understand the impact of State policies on the efficient use of gas; (2) increase the awareness of the natural gas industry and Federal and State officials to the important role of State policies and regulations; (3) create an improved forum for dialogue on State and Federal natural gas issues; and, (4) develop a consensus on an analytical agenda that would be most helpful in addressing the regulatory challenges faced by the States. Ninety-seven parties filed comments, and of these ninety-seven, fifteen parties filed reply comments. Appendix One lists these parties. This report briefly syntheses the comments received. The goal is to assist parties to judging the extent of consensus on the problems posed and the remedies suggested, aid in identifying future analytical analyses, and assist parties in assessing differences in strategies and regulatory philosophies which shape these issues and their resolution.

  9. Effect of a zero g environment on flammability limits as determined using a standard flammability tube apparatus

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Reuss, D. L.

    1980-01-01

    Flammability limits in a zero gravity environment were defined. Key aspects of a possible spacelab experiment were investigated analytically, experimentally on the bench, and in drop tower facilities. A conceptual design for a spacelab experiment was developed.

  10. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    SciTech Connect

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

  11. Issues with the Application of Thermographic Phosphors to Measure High Temperatures in a Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Khalid, A. H.; Kontis, K.

    2009-01-01

    The demand for more efficient engines is increasing as concerns over greenhouse gases continue to grow. Performance can be increased if higher turbine inlet temperatures are achieved. However, this increases the chance of material failure. Therefore, the optimum temperature is prescribed by the balance between the benefits of thermal efficiency and material life. To ensure safety and reliability, uncertainty in temperature measurement forces the engine to be operated below its thermal design limit. Accurate surface measurement offers the potential to increase engine performance by allowing them to operate closer to this limit. It can allow designers to better understand flow physics, and greatly facilitate the testing and development of newer thermal protection systems and concepts. The aim of this paper is to highlight the motivations of using phosphor thermometry in gas turbine environments as an alternative to current measurement methods such as discrete thermocouple measurements and pyrometry. Phosphor thermometry offers many advantages over conventional techniques. However, the harsh, high temperature and fast rotating environment presents some unique challenges and the paper further aims to discuss the issues that would arise in such environments. There will be increasing blackbody radiation, restrictions to optical access and time available to collect emissions. There will be imposed upper and lower temperature limits and other restrictions that will greatly influence the design of the measurement system, including the choice of phosphor, bonding technique, excitation and detection methodologies. A system would have to be bespoke to suit the end measurement goal.

  12. Issues pertaining to the analysis of buprenorphine and its metabolites by gas chromatography-mass spectrometry.

    PubMed

    Wang, Yu-Shan; Lin, Dong-Liang; Yang, Shu-Ching; Wu, Meng-Yan; Liu, Ray H; Su, Lien-Wen; Cheng, Pai-Sheng; Liu, Chiareiy; Fuh, Ming-Ren

    2010-03-01

    "Substitution therapy" and the use of buprenorphine (B) as an agent for treating heroin addiction continue to gain acceptance and have recently been implemented in Taiwan. Mature and widely utilized gas chromatography-mass spectrometry (GC-MS) technology can complement the low cost and highly sensitive immunoassay (IA) approach to facilitate the implementation of analytical tasks supporting compliance monitoring and pharmacokinetic/pharmacogenetic studies. Issues critical to GC-MS analysis of B and norbuprenorphine (NB) (free and as glucuronides), including extraction, hydrolysis, derivatization, and quantitation approaches were studied, followed by comparing the resulting data against those derived from IA and two types of liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. Commercial solid-phase extraction devices, highly effective for recovering all metabolites, may not be suitable for the analysis of free B and NB; acetyl-derivatization products exhibit the most favorable chromatographic, ion intensity, and cross-contribution characteristics for GC-MS analysis. Evaluation of IA, GC-MS, and LC-MS/MS data obtained in three laboratories has proven the 2-aliquot GC-MS protocol effective for the determination of free B and NB and their glucuronides. PMID:20122691

  13. Report on issues regarding the existing New York liquefied natural gas moratorium

    SciTech Connect

    1998-11-01

    The New York Energy Planning Board has prepared this study to provide the Governor and the Legislature with information necessary to determine the need for further extension or modification of the existing State moratorium on the siting of new liquefied natural gas (LNG) facilities and intrastate transportation routes as required by Chapter 385 of the laws of 1997. The report examines existing laws and regulations that would affect new LNG facilities in New York and government initiatives in other states. It reviews existing use of LNG in New York, including safety issues and potential public concerns that may arise with lifting the moratorium. It also discusses the economic and environmental effects of increased LNG usage for New York State. The study concludes that there are economic and environmental advantages for allowing the construction of new LNG facilities as well as the intrastate transportation of LNG over new routes. Additionally, it concludes that safety concerns associated with these facilities are adequately addressed by existing Federal, State and local statutes and regulations.

  14. An issue of trust: state corruption, responsibility and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Frame, David J.; Hepburn, Cameron

    2010-01-01

    Climate change is increasingly seen to raise difficult normative issues. To date, cumulative emissions have been disproportionately from the developed world, while the consequences of climate change are anticipated to hit poorer countries hardest. For this reason, amongst others, it is suggested that more economically developed countries with high greenhouse gas emissions ought to transfer resources to less economically developed, lower emissions countries. Some proponents would justify these resource transfers by ethical or justice-based arguments, often based on some function of the emissions per capita of each country, such that rights of some sort are created and those nations which are emitting more (per capita) than some amount are to compensate those who are emitting less. In this letter we show that national emissions per capita, scaled by economic output, show a systematic negative correlation with state corruption. We discuss this result in the context of justice-based arguments for per capita climate mitigation transfers, and suggest that it would be beneficial for the climate mitigation community to consider state corruption as a relevant factor in the development of mitigation policy.

  15. Experimental Verification of Material Flammability in Space

    NASA Technical Reports Server (NTRS)

    Ivanov, A. V.; Balashov, Y. V.; Andreeva, T. V.; Melikhov, A. S.

    1999-01-01

    The flammability in microgravity of three US-furnished materials, Delrin, polymethylmethacrylate (PMMA), and high-density polyethylene, was determined using a Russian-developed combustion tunnel on Mir. Four 4.5-mm-diameter cylindrical samples of each plastic were ignited under concurrent airflow (in the direction of flame spread) with velocities from no flow to 8.5 cm/s. The test results identify a limiting air-flow velocity V(sub lim) for each material, below which combustion ceases. Nominal values are V(sub lim) < 0.3 cm/s for Delrin, 0.5 cm/s for PMMA, and 0.3 to 0.5 cm/s for polyethylene. These values are lower than those obtained in prior ground testing. Nevertheless, they demonstrate that flow shutoff is effective for extinguishment in the microgravity environment of spacecraft. Microgravity test results also show that the plastic materials maintain a stable melt ball within the spreading flame zone. In general, as the concurrent flow velocity V decreases, the flame-spread rate V(sub F) decreases, from an average (for all three materials) of V(sub F)= 0.5-0.75 mm/s at V = 8.5 cm/s to V(sub F)= 0.05-0.01 mm/s at V = 0.3-0.5 cm/s. Also, as V decreases, the flames become less visible but expand, increasing the probability of igniting an adjacent surface.

  16. Materials processing issues for non-destructive laser gas sampling (NDLGS)

    SciTech Connect

    Lienert, Thomas J

    2010-12-09

    The Non-Destructive Laser Gas Sampling (NDLGS) process essentially involves three steps: (1) laser drilling through the top of a crimped tube made of 304L stainles steel (Hammar and Svennson Cr{sub eq}/Ni{sub eq} = 1.55, produced in 1985); (2) gas sampling; and (3) laser re-welding of the crimp. All three steps are performed in a sealed chamber with a fused silica window under controlled vacuum conditions. Quality requirements for successful processing call for a hermetic re-weld with no cracks or other defects in the fusion zone or HAZ. It has been well established that austenitic stainless steels ({gamma}-SS), such as 304L, can suffer from solidification cracking if their Cr{sub eq}/Ni{sub eq} is below a critical value that causes solidification to occur as austenite (fcc structure) and their combined impurity level (%P+%S) is above {approx}0.02%. Conversely, for Cr{sub eq}/Ni{sub eq} values above the critical level, solidification occurs as ferrite (bcc structure), and cracking propensity is greatly reduced at all combined impurity levels. The consensus of results from studies of several researchers starting in the late 1970's indicates that the critical Cr{sub eq}/Ni{sub eq} value is {approx}1.5 for arc welds. However, more recent studies by the author and others show that the critical Cr{sub eq}/Ni{sub eq} value increases to {approx}1 .6 for weld processes with very rapid thermal cycles, such as the pulsed Nd:YAG laser beam welding (LBW) process used here. Initial attempts at NDLGS using pulsed LBW resulted in considerable solidification cracking, consistent with the results of work discussed above. After a brief introduction to the welding metallurgy of {gamma}-SS, this presentation will review the results of a study aimed at developing a production-ready process that eliminates cracking. The solution to the cracking issue, developed at LANL, involved locally augmenting the Cr content by applying either Cr or a Cr-rich stainless steel (ER 312) to the top of

  17. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues

    SciTech Connect

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.

  18. Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report

    SciTech Connect

    Luke, D.E.; Hamp, S.

    2002-01-04

    Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE's Environmental Management (EM) organizations to address gas generation concerns. This paper presents a ''program level'' roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

  19. Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report

    SciTech Connect

    Luke, Dale Elden; Hamp, S.

    2002-02-01

    Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen- containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE’s Environmental Management (EM) organizations to address gas generation concerns. This paper presents a "program level" roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

  20. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol

    SciTech Connect

    Gardiner, D. P.; Bardon, M. F.; Clark, W.

    2011-07-01

    This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

  1. Engineering study of the criticality issues associated with Hanford tank 241-Z-361

    SciTech Connect

    Lipke, E.J.

    1997-12-22

    Tank 241-Z-361 is associated with the Plutonium Finishing Plant (PFP). Uncertainty about the contents of the tank have led to the declaration of an Unreviewed Safety Question (USQ) and the preparation of a Justification for Continued Operation (JCO) to address flammable gas and other authorization basis issued. A Criticality Safety Team was assembled to review old data, determine its validity, and reevaluate the tank. It was concluded that the tank has a sufficient margin of safety to allow opening, sampling, and other characterizing activities. The team concluded that a criticality in Tank 241-Z-361 was extremely unlikely.

  2. Flammable gas tank exhauster interlock (FGTEI) computer software design description

    SciTech Connect

    Smith, S.0.

    1996-09-10

    Modicon Compact Programmable Logic Controller (PLC). The device configuration integrates the isolation and current-carrying capacities of mechanical relays with the logic and programming sophistication of the PLC. This document provides descriptions of components and tasks involved in the PLC system for controlling and monitoring the FGTEI. All control functions required by the PLC, and how they are implemented, are described in detail.

  3. Flammable gas tank exhauster interlock (FGTEI) computer software design description

    SciTech Connect

    Smith, S.O., Westinghouse Hanford

    1996-09-20

    Modicon Compact Programmable Logic Controller (PLC). The device configuration integrates the isolation and current- carrying capacities of mechanical relays with the logic and programming sophistication of the PLC. This revised document provides descriptions of components and tasks involved in the PLC system for controlling and monitoring the FGTEI. All control functions required by the PLC, and how they are implemented, are described in detail.

  4. 77 FR 62224 - Hanford Tank Farms Flammable Gas Safety Strategy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... anticipated in 2016. No near-term procurement or installation plans are in place for the four other DST... Defense Nuclear Facilities Safety Board (Board) believes that current operations at the Hanford Tank Farms... both normal operating and accident conditions. The current control strategy does not include...

  5. Flammable gas tank exhauster interlock (LFGTEI) computer software design description

    SciTech Connect

    Smith, S.O.; Irvitt, R.W., Fluor Daniel Hanford

    1997-02-21

    Modicon Compact Programmable Logic Controller (PLC). The device configuration integrates the isolation and current- carrying capacities of mechanical relays with the logic and programming sophistication of the PLC. This revised document provides descriptions of components and tasks involved in the PLC system for controlling and monitoring the FGTEI. All control functions required by the PLC, and how they are implemented, are described in detail.

  6. Impact Of Melter Internal Design On Off-Gas Flammability

    SciTech Connect

    Choi, A. S.; Lee, S. Y.

    2012-05-30

    The purpose of this study was to: (1) identify the more dominant design parameters that can serve as the quantitative measure of how prototypic a given melter is, (2) run the existing DWPF models to simulate the data collected using both DWPF and non-DWPF melter configurations, (3) confirm the validity of the selected design parameters by determining if the agreement between the model predictions and data is reasonably good in light of the design and operating conditions employed in each data set, and (4) run Computational Fluid Dynamics (CFD) simulations to gain new insights into how fluid mixing is affected by the configuration of melter internals and to further apply the new insights to explaining, for example, why the agreement is not good.

  7. Senate Forum on Shale Gas Development Explores Environmental and Industry Issues

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-06-01

    The U.S. Senate Committee on Energy and Natural Resources brought together industry and environmental leaders for a 23 May forum that focused on industry best practices and environmental concerns related to the current shale gas boom. The boom in shale gas development has been brought about in large part through advances in horizontal drilling and hydraulic fracturing ("fracking") to increase shale oil and gas production.

  8. Nanoparticle networks reduce the flammability of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Takashi; Du, Fangming; Douglas, Jack F.; Winey, Karen I.; Harris, Richard H.; Shields, John R.

    2005-12-01

    Synthetic polymeric materials are rapidly replacing more traditional inorganic materials, such as metals, and natural polymeric materials, such as wood. As these synthetic materials are flammable, they require modifications to decrease their flammability through the addition of flame-retardant compounds. Environmental regulation has restricted the use of some halogenated flame-retardant additives, initiating a search for alternative flame-retardant additives. Nanoparticle fillers are highly attractive for this purpose, because they can simultaneously improve both the physical and flammability properties of the polymer nanocomposite. We show that carbon nanotubes can surpass nanoclays as effective flame-retardant additives if they form a jammed network structure in the polymer matrix, such that the material as a whole behaves rheologically like a gel. We find this kind of network formation for a variety of highly extended carbon-based nanoparticles: single- and multiwalled nanotubes, as well as carbon nanofibres.

  9. The Increased Flammability of Metallic Materials in Reduced Gravity Environments

    NASA Astrophysics Data System (ADS)

    Lynn, David; Plagens, Owen; Castillo, Marin; Paulos, Todd; Steinberg, Ted

    2010-09-01

    Flammability data generated in a normal gravity environment is often used in design and risk assessment for reduced gravity applications. It has been clearly demonstrated that this is a conservative approach for non-metallic materials which have been repeatedly shown to be less flammable in a reduced gravity environment. However, recent work has demonstrated this is not true for metallic materials. This work, conducted in a newly completed drop tower observed a significant decrease in lowest burn pressure and increase in regression rate in reduced gravity. Hence the normal gravity qualification of a metallic materials’ lowest burn pressure or regression rate for reduced-gravity or space-based systems is clearly not conservative. This paper presents a summary of this work and the results obtained for several metallic materials showing an increased flammability and regression rate for a range of oxygen pressures, and discusses the implications of this work on the fire-safety of space-based systems.

  10. Credit PSR. The flammable waste materials shed appears as seen ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. The flammable waste materials shed appears as seen when looking south (186°) from South Liquid Loop Road. Note the catch basin for retaining accidentally spilled substances. Wastes are stored in drums and other safety containers until disposal by burning at the Incinerator (4249/E-50) or by other means. Note the nearby sign warning of corrosive, flammable materials, and calling attention to a fire extinguisher; a telephone is provided to call for assistance in the event of an emergency. This structure is isolated to prevent the spread of fire, and it is lightly built so damage from a fire will be inexpensive to repair - Jet Propulsion Laboratory Edwards Facility, Waste Flammable Storage Building, Edwards Air Force Base, Boron, Kern County, CA

  11. Flammability Control In A Nuclear Waste Vitrification System

    SciTech Connect

    Zamecnik, John R.; Choi, Alexander S.; Johnson, Fabienne C.; Miller, Donald H.; Lambert, Daniel P.; Stone, Michael E.; Daniel, William E. Jr.

    2013-07-25

    The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: 1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; 2) adjust feed rheology; and 3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid in pretreatment has been studied to eliminate the production of hydrogen in the pretreatment systems, which requires nuclear grade monitoring equipment. An alternative reductant, glycolic acid, has been studied as a substitute for formic acid. However, in the melter, the potential for greater formation of flammable gases exists with glycolic acid. Melter flammability is difficult to control because flammable mixtures can be formed during surges in offgases that both increase the amount of flammable species and decrease the temperature in the vapor space of the melter. A flammable surge can exceed the 60% of the LFL with no way to mitigate it. Therefore, careful control of the melter feed composition based on scaled melter surge testing is required. The results of engineering scale melter tests with the formic-nitric flowsheet and the use of these data in the melter flammability model are presented.

  12. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the entire contents of the car....

  13. Development of flammable liquid storage wooden cabinets for chemical laboratories

    SciTech Connect

    Staggs, K.J.; Hasegawa, H.K.; Doughty, S.M.; Barr, J.G.

    1993-11-01

    A fire hardened wooden cabinet was developed for the storage of flammable liquids for LLNL Bldg. 151 nuclear chemistry laboratories. The new cabinet requirements were to fit into existing cabinet spaces, match existing cabinets in appearance, and meet the National Fire Protection Association Flammable and Combustible Liquids Code. A standard test apparatus was developed to produce the required fire exposure necessary to evaluate existing cabinets and new designs. The final design was a cabinet insert that could be prefabricated and installed into the appropriate storage area of the existing cabinets.

  14. 46 CFR 30.10-22 - Flammable liquid-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Flammable liquid-TB/ALL. 30.10-22 Section 30.10-22 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-22 Flammable liquid—TB/ALL. The term flammable liquid means any liquid which gives off flammable vapors (as determined by flashpoint from an...

  15. Applicability of Aerospace Materials Ground Flammability Test Data to Spacecraft Environments Theory and Applied Technologies

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2009-01-01

    This slide presentation reviews the use of ground test data in reference to flammability to spacecraft environments. It reviews the current approach to spacecraft fire safety, the challenges to fire safety that the Constellation program poses, the current trends in the evaluation of the Constellation materials flammability, and the correlation of test data from ground flammability tests with the spacecraft environment. Included is a proposal for testing and the design of experiments to test the flammability of materials under similar spacecraft conditions.

  16. 30 CFR 260.123 - How do I measure natural gas production for a lease issued in a sale held after November 2000?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How do I measure natural gas production for a... measure natural gas production for a lease issued in a sale held after November 2000? You must measure natural gas production subject to the royalty suspension volume for your lease as follows: 5.62...

  17. 30 CFR 560.123 - How do I measure natural gas production for a lease issued in a sale held after November 2000?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false How do I measure natural gas production for a... Bidding Systems Royalty Suspension (rs) Leases § 560.123 How do I measure natural gas production for a lease issued in a sale held after November 2000? You must measure natural gas production subject to...

  18. 30 CFR 260.123 - How do I measure natural gas production for a lease issued in a sale held after November 2000?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I measure natural gas production for a... Systems Royalty Suspension (rs) Leases § 260.123 How do I measure natural gas production for a lease issued in a sale held after November 2000? You must measure natural gas production subject to the...

  19. 30 CFR 560.123 - How do I measure natural gas production for a lease issued in a sale held after November 2000?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false How do I measure natural gas production for a... Bidding Systems Royalty Suspension (rs) Leases § 560.123 How do I measure natural gas production for a lease issued in a sale held after November 2000? You must measure natural gas production subject to...

  20. 30 CFR 560.123 - How do I measure natural gas production for a lease issued in a sale held after November 2000?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How do I measure natural gas production for a... Bidding Systems Royalty Suspension (rs) Leases § 560.123 How do I measure natural gas production for a lease issued in a sale held after November 2000? You must measure natural gas production subject to...

  1. Issues in Energy Economics Led by Emerging Linkages between the Natural Gas and Power Sectors

    SciTech Connect

    Platt, Jeremy B.

    2007-09-15

    Fuel prices in 2006 continued at record levels, with uranium continuing upward unabated and coal, SO{sub 2} emission allowances, and natural gas all softening. This softening did not continue for natural gas, however, whose prices rose, fell and rose again, first following weather influences and, by the second quarter of 2007, continuing at high levels without any support from fundamentals. This article reviews these trends and describes the remarkable increases in fuel expenses for power generation. By the end of 2005, natural gas claimed 55% of annual power sector fuel expenses, even though it was used for only 19% of electric generation. Although natural gas is enormously important to the power sector, the sector also is an important driver of the natural gas market-growing to over 28% of the market even as total use has declined. The article proceeds to discuss globalization, natural gas price risk, and technology developments. Forces of globalization are poised to affect the energy markets in new ways-new in not being only about oil. Of particular interest in the growth of intermodal traffic and its a little-understood impacts on rail traffic patterns and transportation costs, and expected rapidly expanding LNG imports toward the end of the decade. Two aspects of natural gas price risk are discussed: how understanding the use of gas in the power sector helps define price ceilings and floors for natural gas, and how the recent increase in the natural gas production after years of record drilling could alter the supply-demand balance for the better. The article cautions, however, that escalation in natural gas finding and development costs is countering the more positive developments that emerged during 2006. Regarding technology, the exploitation of unconventional natural gas was one highlight. So too was the queuing up of coal-fired power plants for the post-2010 period, a phenomenon that has come under great pressure with many consequences including increased

  2. KSC Electrostatic Discharge (ESD) Issues

    NASA Technical Reports Server (NTRS)

    Buhler, Charles

    2008-01-01

    Discussion of key electrostatic issues that have arisen during the past few years at KSC that the Electrostatics Laboratory has studied. The lab has studied in depth the Space Shuttle's Thermal Control System Blankets, the International Space Station Thermal Blanket, the Pan/Tilt Camera Blankets, the Kapton Purge Barrier Curtain, the Aclar Purge Barrier Curtain, the Thrust Vector Controller Blankets, the Tyvek Reaction Control System covers, the AID-PAK and FLU-9 pyro inflatable devices, the Velostat Solid Rocket Booster mats, and the SCAPE suits. In many cases these materials are insulating meaning that they might be a source of unsafe levels of electrostatic discharge (ESD). For each, the lab provided in-depth testing of each material within its current configuration to ensure that it does not cause an ESD concern that may violate the safety of the astronauts, the workers and equipment for NASA. For example the lab provides unique solutions and testing such as Spark Incendivity Testing that checks whether a material is capable of generating a spark strong enough to ignite a flammable gas. The lab makes recommendations to changes in specifications, procedures, and material if necessary. The lab also consults with a variety of non-safety related ESD issues for the agency.

  3. 46 CFR 147A.43 - Other sources of ignition; flammable fumigants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Other sources of ignition; flammable fumigants. 147A.43 Section 147A.43 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES INTERIM REGULATIONS FOR SHIPBOARD FUMIGATION Special Requirements for Flammable Fumigants § 147A.43 Other sources of ignition; flammable...

  4. 16 CFR Figure 1 to Part 1610 - Sketch of Flammability Apparatus

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Sketch of Flammability Apparatus 1 Figure 1 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 1 Figure 1 to Part 1610—Sketch...

  5. 16 CFR Figure 1 to Part 1610 - Sketch of Flammability Apparatus

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Sketch of Flammability Apparatus 1 Figure 1 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 1 Figure 1 to Part 1610—Sketch...

  6. 16 CFR Figure 1 to Part 1610 - Sketch of Flammability Apparatus

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Sketch of Flammability Apparatus 1 Figure 1 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 1 Figure 1 to Part...

  7. 16 CFR Figure 1 to Part 1610 - Sketch of Flammability Apparatus

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Sketch of Flammability Apparatus 1 Figure 1 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 1 Figure 1 to Part...

  8. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the...

  9. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the...

  10. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the...

  11. 46 CFR 194.05-9 - Flammable liquid chemical stores-Detail requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of Subchapter N... 46 Shipping 7 2012-10-01 2012-10-01 false Flammable liquid chemical stores-Detail requirements... and Marking § 194.05-9 Flammable liquid chemical stores—Detail requirements. (a) Flammable liquids...

  12. 46 CFR 194.05-9 - Flammable liquid chemical stores-Detail requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of Subchapter N... 46 Shipping 7 2011-10-01 2011-10-01 false Flammable liquid chemical stores-Detail requirements... and Marking § 194.05-9 Flammable liquid chemical stores—Detail requirements. (a) Flammable liquids...

  13. 46 CFR 194.05-9 - Flammable liquid chemical stores-Detail requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of Subchapter N... 46 Shipping 7 2014-10-01 2014-10-01 false Flammable liquid chemical stores-Detail requirements... and Marking § 194.05-9 Flammable liquid chemical stores—Detail requirements. (a) Flammable liquids...

  14. 46 CFR 194.05-9 - Flammable liquid chemical stores-Detail requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of Subchapter N... 46 Shipping 7 2013-10-01 2013-10-01 false Flammable liquid chemical stores-Detail requirements... and Marking § 194.05-9 Flammable liquid chemical stores—Detail requirements. (a) Flammable liquids...

  15. 46 CFR 194.05-9 - Flammable liquid chemical stores-Detail requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of Subchapter N... 46 Shipping 7 2010-10-01 2010-10-01 false Flammable liquid chemical stores-Detail requirements... and Marking § 194.05-9 Flammable liquid chemical stores—Detail requirements. (a) Flammable liquids...

  16. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable...

  17. 46 CFR 30.10-21 - Flammable or inflammable-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Flammable or inflammable-TB/ALL. 30.10-21 Section 30.10-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-21 Flammable or inflammable—TB/ALL. The words flammable and inflammable are interchangeable...

  18. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel Tank System Flammability Reduction... 25—Fuel Tank System Flammability Reduction Means M25.1Fuel tank flammability exposure requirements... the fuel tanks with FRMs (including any tanks that communicate with a tank via a vent system), and...

  19. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel Tank System Flammability Reduction... 25—Fuel Tank System Flammability Reduction Means M25.1Fuel tank flammability exposure requirements... the fuel tanks with FRMs (including any tanks that communicate with a tank via a vent system), and...

  20. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel Tank System Flammability Reduction... 25—Fuel Tank System Flammability Reduction Means M25.1Fuel tank flammability exposure requirements... the fuel tanks with FRMs (including any tanks that communicate with a tank via a vent system), and...

  1. 16 CFR Figure 1 to Part 1610 - Sketch of Flammability Apparatus

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Sketch of Flammability Apparatus 1 Figure 1 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 1 Figure 1 to Part 1610—Sketch...

  2. ISO 14624 Series - Space Systems - Safety and Compatibility of Materials Flammability Assessment of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2007-01-01

    A viewgraph presentation on the flammability of spacecraft materials is shown. The topics include: 1) Spacecraft Fire Safety; 2) Materials Flammability Test; 3) Impetus for enhanced materials flammability characterization; 4) Exploration Atmosphere Working Group Recommendations; 5) Approach; and 6) Status of implementation

  3. Some common issues involved in oil and gas bankruptcies: a primer for the nonbankruptcy practitioner

    SciTech Connect

    Babcock, J.E.; Thomas, R.O.

    1986-03-01

    The oil and gas industry has experienced a number of political and economic setbacks that have drawn then into bankruptcy courts. Oil and gas lawyers are confronting, often for the first time, Title 11 of the US Code. The authors review four key concepts to help Louisiana non-bankruptcy lawyers whose clients are contemplating bankruptcy or who have engaged in business dealings with a client or entity seeking bankruptcy protection. They describe and discuss the impacts on oil and gas operations of: (1) the automatic stay provision, (2) adequate protection and cash collateral, (3) voidable transfers and the strong arm clause, and (4) executory contracts and unexpired leases.

  4. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... vapor pressure of 14 pounds or more. 1 American Society of Testing Materials Standard D 323 (incorporated by reference, see § 105.01-3) (most recent revision), Method of Test for Vapor Pressure of Petroleum Products (Reid Method). (2) Grade B. Any flammable liquid having a Reid 1 vapor pressure under...

  5. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vapor pressure of 14 pounds or more. 1 American Society of Testing Materials Standard D 323 (incorporated by reference, see § 105.01-3) (most recent revision), Method of Test for Vapor Pressure of Petroleum Products (Reid Method). (2) Grade B. Any flammable liquid having a Reid 1 vapor pressure under...

  6. 46 CFR 105.10-15 - Flammable liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vapor pressure of 14 pounds or more. 1 American Society of Testing Materials Standard D 323 (incorporated by reference, see § 105.01-3) (most recent revision), Method of Test for Vapor Pressure of Petroleum Products (Reid Method). (2) Grade B. Any flammable liquid having a Reid 1 vapor pressure under...

  7. The Safety of Small Containers for Flammable Fluids.

    ERIC Educational Resources Information Center

    Shanley, Edward S.

    1988-01-01

    Highlights aspects of safety that are unfamiliar to most laypersons and to many chemists as well. Presents findings that may lend themselves to presentation in chemistry classes. Details flammability tests, vapor space hazards, and the special case of gasoline containers. Provides experimental data relating vent area and internal pressure. (CW)

  8. 49 CFR 172.546 - FLAMMABLE SOLID placard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... background on the FLAMMABLE SOLID placard must be white with seven vertical red stripes. The stripes must be equally spaced, with one red stripe placed in the center of the label. Each red stripe and each white... at least 38.1 mm (1.5 inches) high. The symbol, text, class number and inner border must be black....

  9. 49 CFR 172.546 - FLAMMABLE SOLID placard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... background on the FLAMMABLE SOLID placard must be white with seven vertical red stripes. The stripes must be equally spaced, with one red stripe placed in the center of the label. Each red stripe and each white... at least 38.1 mm (1.5 inches) high. The symbol, text, class number and inner border must be black....

  10. Oxygen Concentration Flammability Threshold Tests for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Williams, James H.

    2007-01-01

    CEV atmosphere will likely change because craft will be used as LEO spacecraft, lunar spacecraft, orbital spacecraft. Possible O2 % increase and overall pressure decrease pressure vessel certs on spacecraft. Want 34% minimum threshold. Higher, better when atmosphere changes. WSTF suggests testing all materials/components to find flammability threshold, pressure and atmosphere.

  11. Developing a flammability test system for sunglasses: results

    NASA Astrophysics Data System (ADS)

    Magri, Renan; Ventura, Liliane

    2015-03-01

    Sunglasses popularity has increased tremendously. This fact has further led to the need of certificating sunglasses accordingly to the standard NBR 15111 to protect consumers from damages and secondary hazards caused by sunglasses use. The ongoing need comes at the expense that none certification institution in Brazil performs all tests procedures required by the NBR 15111. This manuscript presents the development of a flammability test system for sunglasses and the assessments results. The equipment for testing flammability developed is made of an electrical furnace with a thermocouple and electronic system that maintains the temperature in 650 ºC. This furnace heats a steel rod used for testing flammability. A steel cable connected to a linear actuator drives the rod. The main control system is based on an ARM Cortex M0 microcontroller and we developed a PC interface in LabView to acquire data and store it. The equipment built also has a control panel with a push button, status LEDs and temperature indicator. We performed flammability tests in 45 sunglasses: 45 lenses and 45 frames using the equipment described. None of the samples ignited or continued to glow when the test has finished, however, all polycarbonate samples were melted in the contact region with the steel rod. All samples complied with the NBR 15111. The proof argues that the polycarbonate is extremely resistant to ignition.

  12. Testing the flammability of materials exposed to arcs

    NASA Technical Reports Server (NTRS)

    Hamlett, B. J.; Krupski, A. L.

    1969-01-01

    Apparatus tests flammability and ignition characteristics of materials in close proximity to incandescent metal fragments or spalls ejected from intermittent short circuit arcs in air or oxygen rich atmospheres. It simulates a situation where an exposed live wire makes contact with a grounded member in areas containing organic matter.

  13. Wire insulation degradation and flammability in low gravity

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1994-01-01

    This view-graph presentation covers the following topics: an introduction to spacecraft fire safety, concerns in fire prevention in low gravity, shuttle wire insulation flammability experiment, drop tower risk-based fire safety experiment, and experimental results, conclusions, and proposed studies.

  14. Evaluation of lower flammability limits of fuel-air-diluent mixtures using calculated adiabatic flame temperatures.

    PubMed

    Vidal, M; Wong, W; Rogers, W J; Mannan, M S

    2006-03-17

    The lower flammability limit (LFL) of a fuel is the minimum composition in air over which a flame can propagate. Calculated adiabatic flame temperatures (CAFT) are a powerful tool to estimate the LFL of gas mixtures. Different CAFT values are used for the estimation of LFL. SuperChems is used by industry to perform flammability calculations under different initial conditions which depends on the selection of a threshold temperature. In this work, the CAFT at the LFL is suggested for mixtures of fuel-air and fuel-air-diluents. These CAFT can be used as the threshold values in SuperChems to calculate the LFL. This paper discusses an approach to evaluate the LFL in the presence of diluents such as N2 and CO2 by an algebraic method and by the application of SuperChems using CAFT as the basis of the calculations. The CAFT for different paraffinic and unsaturated hydrocarbons are presented as well as an average value per family of chemicals. PMID:16309829

  15. Integrated resource planning for local gas distribution companies: A critical review of regulatory policy issues

    SciTech Connect

    Harunuzzaman, M.; Islam, M.

    1994-08-01

    According to the report, public utility commissions (PUCs) are increasingly adopting, or considering the adoption of integrated resource planning (IRP) for local gas distribution companies (LDCs). The Energy Policy Act of 1992 (EPAct) requires PUCs to consider IRP for gas LDCs. This study has two major objectives: (1) to help PUCs develop appropriate regulatory approaches with regard to IRP for gas LDCs; and (2) to help PUCs respond to the EPAct directive. The study finds that it is appropriate for PUCs to pursue energy efficiency within the traditional regulatory framework of minimizing private costs of energy production and delivery; and PUCs should play a limited role in addressing environmental externalities. The study also finds that in promoting energy efficiency, PUCs should pursue policies that are incentive-based, procompetitive, and sensitive to rate impacts. The study evaluates a number of traditional and nontraditional ratemaking mechanisms on the basis of cost minimization, energy efficiency, competitiveness, and other criteria. The mechanisms evaluated include direct recovery of DSM expenses, lost revenue adjustments for DSM options, revenue decoupling mechanisms, sharing of DSM cost savings, performance-based rate of return for DSM, provision of DSM as a separate service, deregulation of DSM service, price caps, and deregulation of the noncore gas market. The study concludes with general recommendations for regulatory approaches and ratemaking mechanisms that PUCs may wish to consider in advancing IRP objectives.

  16. LANDFILL GAS ENERGY UTILIZATION EXPERIENCE: DISCUSSION OF TECHNICAL AND NON-TECHNICAL ISSUES, SOLUTIONS, AND TRENDS

    EPA Science Inventory

    The report discusses technical and non-technical considerations associated with the development and operation of landfill gas to energy projects. Much of the report is based on interviews and site visits with the major developers and operators of the more than 110 projects in the...

  17. 16 CFR 1609.1 - Text of the Flammable Fabrics Act of 1953, as amended in 1954.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Text of the Flammable Fabrics Act of 1953... FLAMMABLE FABRICS ACT REGULATIONS TEXT OF THE FLAMMABLE FABRICS ACT OF 1953, AS AMENDED IN 1954, PRIOR TO 1967 AMENDMENT AND REVISION § 1609.1 Text of the Flammable Fabrics Act of 1953, as amended in 1954....

  18. 16 CFR 1609.1 - Text of the Flammable Fabrics Act of 1953, as amended in 1954.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Text of the Flammable Fabrics Act of 1953... FLAMMABLE FABRICS ACT REGULATIONS TEXT OF THE FLAMMABLE FABRICS ACT OF 1953, AS AMENDED IN 1954, PRIOR TO 1967 AMENDMENT AND REVISION § 1609.1 Text of the Flammable Fabrics Act of 1953, as amended in 1954....

  19. 16 CFR 1609.1 - Text of the Flammable Fabrics Act of 1953, as amended in 1954.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Text of the Flammable Fabrics Act of 1953... FLAMMABLE FABRICS ACT REGULATIONS TEXT OF THE FLAMMABLE FABRICS ACT OF 1953, AS AMENDED IN 1954, PRIOR TO 1967 AMENDMENT AND REVISION § 1609.1 Text of the Flammable Fabrics Act of 1953, as amended in 1954....

  20. Science-based decision-making on complex issues: Marcellus shale gas hydrofracking and New York City water supply.

    PubMed

    Eaton, Timothy T

    2013-09-01

    Complex scientific and non-scientific considerations are central to the pending decisions about "hydrofracking" or high volume hydraulic fracturing (HVHF) to exploit unconventional natural gas resources worldwide. While incipient plans are being made internationally for major shale reservoirs, production and technology are most advanced in the United States, particularly in Texas and Pennsylvania, with a pending decision in New York State whether to proceed. In contrast to the narrow scientific and technical debate to date, focused on either greenhouse gas emissions or water resources, toxicology and land use in the watersheds that supply drinking water to New York City (NYC), I review the scientific and technical aspects in combination with global climate change and other critical issues in energy tradeoffs, economics and political regulation to evaluate the major liabilities and benefits. Although potential benefits of Marcellus natural gas exploitation are large for transition to a clean energy economy, at present the regulatory framework in New York State is inadequate to prevent potentially irreversible threats to the local environment and New York City water supply. Major investments in state and federal regulatory enforcement will be required to avoid these environmental consequences, and a ban on drilling within the NYC water supply watersheds is appropriate, even if more highly regulated Marcellus gas production is eventually permitted elsewhere in New York State. PMID:23722091

  1. Task 23 - background report on subsurface environmental issues relating to natural gas sweetening and dehydration operations. Topical report, February 1, 1994--February 28, 1996

    SciTech Connect

    Sorensen, J.A.

    1998-12-31

    This report describes information pertaining to environmental issues, toxicity, environmental transport, and fate of alkanolamines and glycols associated with natural gas sweetening and dehydration operations. Waste management associated with the operations is also discussed.

  2. Public policy issues. A Southern California Gas Company project SAGE report

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Hirsberg, A. S.

    1978-01-01

    The use of solar energy to stretch our supplies of fossil fuels was investigated. Project SAGE (semi-automated ground environment) addresses itself to one application of this goal, solar assistance in central water heating systems for multifamily projects. Public policy issues that affect the rate of adoption of solar energy systems were investigated and policy actions were offered to accelerate the adoption of SAGE and other solar energy systems.

  3. Water resources and shale gas/oil production in the Appalachian Basin: critical issues and evolving developments

    USGS Publications Warehouse

    Kappel, William M.; Williams, John H.; Szabo, Zoltan

    2013-01-01

    –3032 and presents new information regarding selected aspects of unconventional shale gas development in the Appalachian Basin (primarily Virginia, West Virginia, Maryland, Pennsylvania, Ohio, and New York). This document was prepared by the USGS, in cooperation with the U.S. Department of Energy, and reviews the evolving technical advances and scientific studies made in the Appalachian Basin between 2009 and the present (2013), addressing past and current issues for oil and gas development in the region.

  4. Thermal barrier coatings issues in advanced land-based gas turbines

    NASA Technical Reports Server (NTRS)

    Parks, W. P.; Lee, W. Y.; Wright, I. G.

    1995-01-01

    The Department of Energy's Advanced Turbine System (ATS) program is aimed at forecasting the development of a new generation of land-based gas turbine systems with overall efficiencies significantly beyond those of current state-of-the-art machines, as well as greatly increased times between inspection and refurbishment, improved environmental impact, and decreased cost. The proposed duty cycle of ATS turbines will require the use of different criteria in the design of the materials for the critical hot gas path components. In particular, thermal barrier coatings will be an essential feature of the hot gas path components in these machines. While such coatings are routinely used in high-performance aircraft engines and are becoming established in land-based turbines, the requirements of the ATS turbine application are sufficiently different that significant improvements in thermal barrier coating technology will be necessary. In particular, it appears that thermal barrier coatings will have to function on all airfoil sections of the first stage vanes and blades to provide the significant temperature reduction required. In contrast, such coatings applied to the blades and vances of advanced aircraft engines are intended primarily to reduce air cooling requirements and extend component lifetime; failure of those coatings can be tolerated without jeopardizing mechanical or corrosion performance. A major difference is that in ATS turbines these components will be totally reliant on thermal barrier coatings which will, therefore, need to be highly reliable even over the leading edges of first stage blades. Obviously, the ATS program provides a very challenging opportunity for TBC's, and involves some significant opportunities to extend this technology.

  5. Automated spray cleaning using flammable solvents in a glovebox

    SciTech Connect

    Garcia, P.; Meirans, L.

    1998-05-01

    The phase-out of the ozone-depleting solvents has forced industry to look to solvents such as alcohol, terpenes and other flammable solvents to perform the critical cleaning processes. These solvents are not as efficient as the ozone-depleting solvents in terms of soil loading, cleaning time and drying when used in standard cleaning processes such as manual sprays or ultrasonic baths. They also require special equipment designs to meet part cleaning specifications and operator safety requirements. This paper describes a cleaning system that incorporates the automated spraying of flammable solvents to effectively perform precision cleaning processes. Key to the project`s success was the development of software that controls the robotic system and automatically generates robotic cleaning paths from three dimensional CAD models of the items to be cleaned.

  6. Future Issues and Approaches to Health Monitoring and Failure Prevention for Oil-Free Gas Turbines

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2004-01-01

    Recent technology advances in foil air bearings, high temperature solid lubricants and computer based modeling has enabled the development of small Oil-Free gas turbines. These turbomachines are currently commercialized as small (<100 kW) microturbine generators and larger machines are being developed. Based upon these successes and the high potential payoffs offered by Oil-Free systems, NASA, industry, and other government entities are anticipating Oil-Free gas turbine propulsion systems to proliferate future markets. Since an Oil-Free engine has no oil system, traditional approaches to health monitoring and diagnostics, such as chip detection, oil analysis, and possibly vibration signature analyses (e.g., ball pass frequency) will be unavailable. As such, new approaches will need to be considered. These could include shaft orbit analyses, foil bearing temperature measurements, embedded wear sensors and start-up/coast down speed analysis. In addition, novel, as yet undeveloped techniques may emerge based upon concurrent developments in MEMS technology. This paper introduces Oil-Free technology, reviews the current state of the art and potential for future turbomachinery applications and discusses possible approaches to health monitoring, diagnostics and failure prevention.

  7. Fires in the Cenozoic: a late flowering of flammable ecosystems

    PubMed Central

    Bond, William J.

    2015-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system. PMID:25601873

  8. Fires in the Cenozoic: a late flowering of flammable ecosystems.

    PubMed

    Bond, William J

    2014-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system. PMID:25601873

  9. Flammability Limits of Gases Under Low Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.

    1985-01-01

    The purpose of this combustion science investigation is to determine the effect of zero, fractional, and super gravity on the flammability limits of a premixed methane air flame in a standard 51 mm diameter flammability tube and to determine, if possible, the fluid flow associated with flame passage under zero-g conditions and the density (and hence, temperature) profiles associated with the flame under conditions of incipient extinction. This is accomplished by constructing an appropriate apparatus for placement in NASA's Lewis Research Center Lear Jet facility and flying the prescribed g-trajectories while the experiment is being performed. Data is recorded photographically using the visible light of the flame. The data acquired is: (1) the shape and propagation velocity of the flame under various g-conditions for methane compositions that are inside the flammable limits, and (2) the effect of gravity on the limits. Real time accelerometer readings for the three orthogonal directions are displayed in full view of the cameras and the framing rate of the cameras is used to measure velocities.

  10. An overview of oil and gas exploration and production waste issues

    SciTech Connect

    Gibson, M.M.

    1995-12-31

    The petroleum exclusion of CERCLA and the drilling fluids exemption of RCRA were both created in 1980 to provide the oil and gas exploration and production industry with ample protection from excessive federal environmental regulation. Over the last 15 years, federal court decisions, EPA`s administration of these programs, and state regulatory actions have substantially reduced the scope of these two provisions. This presentation will explore the original intent of CERCLA`s petroleum exclusion and RCRA`s drilling fluids exemption, and how this original intent is at odds with subsequent EPA and judicial interpretation of these provisions. The presentation will conclude with an assessment of the current scope of the petroleum exclusion and the drilling fluids exemption, including a (cautious) prediction of the direction that federal and state policy governing exploration and production wastes is likely to take in the next few years.

  11. Particulate Hot Gas Stream Cleanup Technical Issues: Quarterly report, July 1-September 30, 1996

    SciTech Connect

    Pontius, D.H.

    1996-12-09

    This is the eighth in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic barrier filter elements. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task I during the past quarter, additional analyses were performed on ashes from the Ahlstrom 10 MWt Pressurized Fluidized Circulating Fluid Bed (PCFB) facility located at Karhula, Finland. Work continued on the HGCU data base being constructed in Microsoft Access. A variety of information has been entered into the data base, including numerical values, short or long text entries, and photographs. Detailed design of a bench top device for high temperature measurement of ash permeability has also begun. In addition to these activities, a paper was prepared and a poster was presented summarizing recent work performed under this contract at the 1996 DOE/METC Contractor`s Conference. A presentation was also given corresponding to the manuscript entitled Particle Characteristics and High-Temperature Filtration that was prepared for publication in the Proceedings of the Thirteenth Annual International Pittsburgh Coal Conference held this September in Pittsburgh, PA. Arrangements have been made to be present at the DOE/METC Modular Gas Cleanup Rig (MGCR) at the conclusion of the next run of the DOE/METC air blown Fluid Bed Gasifier (FBG). This visit will include on-site sampling to collect and characterize the filter cakes collected during FGB operation. Task 2 efforts during the past quarter focused on

  12. Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?

    NASA Technical Reports Server (NTRS)

    Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.

    2016-01-01

    NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.

  13. Particulate hot gas stream cleanup technical issues. Quarterly report, April 1 - June 30, 1996

    SciTech Connect

    1996-12-31

    This is the seventh in a series of quarterly reports describing the activities performed for this project. Our analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic barrier filter elements. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFs) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task 1 during the past quarter, we received and analyzed a hopper ash sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota`s Energy and Environmental Research Center (UNDEERC). We also received six ash samples from the Ahlstrom 10 MWt Pressurized Fluidized Circulating Fluid Bed (PCFB) facility located at Karhula, Finland. We selected one of the filter cake ashes from this batch of samples for detailed analyses. We continued our work on the HGCU data base we are constructing in Microsoft Access{reg_sign}. We have been entering a variety of information into the data base, including numerical values, short or long text entries, and photographs. Task 2 efforts during the past quarter focused on hoop tensile testing of Schumacher FT20 and Refractron candle filter elements removed from the Karhula APF after {approximately}540 hours of service.

  14. Unconventional Gas Development in the USA: Exploring the Risk Perception Issues.

    PubMed

    Graham, John D; Rupp, John A; Schenk, Olga

    2015-10-01

    Unconventional gas development (UGD) is growing rapidly in the United States. Drawing on insights from risk perception and risk governance theories and recent public opinion surveys, we find that UGD is an emerging technology that is likely to be perceived as risky, even though objective risk assessments suggest that risks are low and controllable through best risk management practices. Perceived risk varies significantly depending on the state and locality but perceptions of risk appear to be increasing as the technology is used more widely in the United States and as organized opponents of the technology intensify their efforts. Risk perceptions are attenuated somewhat because of the perceived benefits of UGD and compensation schemes for individuals and communities. The types of triggering events necessary for large-scale social amplification and stigmatization have not yet occurred but awareness of UGD is growing and organized opposition has been sufficient to cause prohibitions of UGD in some U.S. states and localities. Additional directions for social science research on public reactions to UGD are recommended. PMID:26460730

  15. Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation

    SciTech Connect

    Boyer, Brian David; Erpenbeck, Heather H; Miller, Karen A; Ianakiev, Kiril D; Reimold, Benjamin A; Ward, Steven L; Howell, John

    2010-09-13

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

  16. Particulate hot gas stream cleanup technical issues. Quarterly report, January 1--March 31, 1998

    SciTech Connect

    1998-08-01

    The analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFs) and to relate these ash properties to the operation and performance of these filters and their components. APF operations have also been limited by the strength and durability of the ceramic materials that have served as barrier filters for the capture of entrained HGCU ashes. Task 2 concerns testing and failure analyses of ceramic filter elements currently used in operating APFs and the characterization and evaluation of new ceramic materials. Task 1 research activities during the past quarter included characterizations of samples collected during a site visit on January 20 to the Department of Energy/Southern Company Services Power Systems Development Facility (PSDF). Comparisons were made between laboratory analyses of these PSDF ashes and field data obtained from facility operation. In addition, selected laboratory techniques were reviewed to assess their reproducibility and the influence of non-ideal effects and differences between laboratory and filter conditions on the quantities measured. Further work on the HGCU data base is planned for the next quarter. Two Dupont PRD-66 candle filters, one McDermott candle filter, one Blasch candle filter, and one Specific Surfaces candle filter were received at SRI for testing. A test plan and cutting plan for these candles was developed. Acquisition of two of the Dupont PRD-66 candle filters will allow candle-to-candle variability to be examined.

  17. Salt associated with oil and gas activities: Remediation and related issues

    SciTech Connect

    Deuel, L.E. Jr.

    1995-12-31

    Salt, or brine, are generic terms for the chemical compound sodium chloride. We all know it as a seasoning agent and preservative for foods. Ancient cultures and civilizations actually used salt as money for barter and trade for goods and services. Presently, salt in the oil patch can still be equated with money, but in terms of capital outlay rather than barter and trade. Hazardous wastes, heavy metals, hydrocarbons, and other substances, are perceived by the public as a greater environmental threat than salt, and thus receive greater corporate attention. However, in terms of actual damage to the environment and capital outlay necessary for remediation, all other constituents pale in comparison to salt. The primary source of salt associated with oil and gas activities is produced water, with produced solids, drilling muds, and cuttings a very distant second. Produced waters contain salt concentrations ranging from trace levels to 2.6 pounds per gallon of water. The average for production provinces in the continental United States is about 0.7 pounds per gallon. Salt wasting of land is considered complete and irreparable at a salt concentration in soil of 7,500 ppm. Salt damaged soils are classed as either saline, saline/sodic, or sodic. The only way to reclaim a saline soil is to flush it with fresh water. There is no miracle product or magic elixir that can do this job. A saline/sodic soil contains both excess salt and excess exchangeable (adsorbed) sodium. Remediation of a saline/sodic soil requires the addition of amendments to address the exchangeable sodium, prior to the addition of fresh water to flush the excess salt. Sodic soils are the most difficult to remediate because of their dispersed nature, and the innate difficulty of placing amendments in contact with the soil particles necessary for the exchange processes to occur.

  18. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Devonian shale

    SciTech Connect

    Not Available

    1981-09-01

    The purpose of this study is to identify and examine potential public health and safety issues and the potential environmental impacts from recovery of natural gas from Devonian age shale. This document will serve as background data and information for planners within the government to assist in development of our new energy technologies in a timely and environmentally sound manner. This report describes the resource and the DOE eastern gas shales project in Section 2. Section 3 describes the new and developing recovery technologies associated with Devonian shale. An assessment of the environment, health and safety impacts associated with a typical fields is presented in Section 4. The typical field for this assessment occupies ten square miles and is developed on a 40-acre spacing (that is, there is a well in each 40-acre grid). This field thus has a total of 160 wells. Finally, Section 5 presents the conclusions and recommendations. A reference list is provided to give a greater plant. Based on the estimated plant cost and the various cases of operating income, an economic analysis was performed employing a profitability index criterion of discounted cash flow to determine an interest rate of return on the plant investment.

  19. Applicability of the CompMech trout model to hydropower impact assessment. A case study of high-priority environmental issues at Pacific Gas and Electric: Final report

    SciTech Connect

    Railsback, S.F.; Yeoman, E.H.

    1994-07-01

    The primary purpose of the CompMech trout program is the improved assessment of instream flow needs, but its applicability to assessment of other important aquatic environmental issues was examined using Pacific Gas and Electric`s hydroelectric system as a case study. High-priority aquatic issues for PG&E hydrogen were identified by examining the characteristics of the hydro projects and trends in environmental regulation of hydro. The CompMech trout program is expected to develop improved assessment methods for a number of high-priority issues, although CompMech models would require adaptation to address some issues.

  20. Evaluation of the generation and release of flammable gases in tank 241-SY-101

    SciTech Connect

    Babad, H.; Johnson, G.D.; Lechelt, J.A.; Reynolds, D.A. ); Pederson, L.R.; Strachan, D.M. ); Meisel, D.; Jonah, C. ); Ashby, E.C. )

    1991-11-01

    Tank 241-SY-101 is a double shell, high-level waste tank located in the 200 West Area of the Hanford Site. This tank contains about 1 million gallons of waste that was concentrated at the 242-S Evaporator. Shortly after the waste was put in the tank, the waste began to expand because the generation of gases. In 1990 this tank was declared to have an unreviewed safety question because of the periodic release of hydrogen and nitrous oxide. A safety program was established to conduct a characterization of the waste and vented gases and to determine an effective means to prevent the accumulation of flammable gases in the tank dome space and ventilation system. Results of the expanded characterization conducted in fiscal year 1991 are presented. The use of gas chromatographs, mass spectrometers, and hydrogen-specific monitors provided a greater understanding of the vented gases. Additional instrumentation placed in the tank also helped to provide more detailed information on tank temperatures, gas pressure, and gas flow rates. An extensive laboratory study involving the Westinghouse Hanford Company, Pacific Northwest Laboratory, Argonne National Laboratory, and the Georgia Institute of Technology was initiated for the purpose of determining the mechanisms responsible for the generation of various gases. These studies evaluate both radiolytic and thermochemical processes. Results of the first series of experiments are described.