Science.gov

Sample records for flare unshearing motions

  1. Investigations of turbulent motions and particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Jakimiec, J.; Fludra, A.; Lemen, J. R.; Dennis, B. R.; Sylwester, J.

    1986-01-01

    Investigations of X-raya spectra of solar flares show that intense random (turbulent) motions are present in hot flare plasma. Here it is argued that the turbulent motions are of great importance for flare development. They can efficiently enhance flare energy release and accelerate particles to high energies.

  2. A Statistical Analysis of Loop-Top Motion in Solar Limb Flares

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Sui, Linhui; Brosius, D. G.; Dennis, Brian R.

    2005-01-01

    Previous studies of hot, thermal solar flare loops imaged with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) have identified several flares for which the loop top shrinks downward early in the impulsive phase and then expands upward later in the impulsive phase (Sui & Holman 2003; Sui, Holman & Dennis 2004; Veronig et al. 2005). This early downward motion is not predicted by flare models. We study a statistical sample of RHESSI flares to assess how common this evolution is and to better characterize it. In a sample of 88 flares near the solar lin$ that show identifiable loop structure in RHESSI images, 66% (58 flares) showed downward loop-top motion followed by upward motion. We therefore conclude that the early downward motion is a frequent characteristic of flare loops. We obtain the distribution of the timing of the change from downward to upward motion relative to flare start and peak times. We also obtain the distributions of downward and upward speeds.

  3. Turbulent and directed plasma motions in solar flares

    NASA Technical Reports Server (NTRS)

    Fludra, A.; Bentley, R. D.; Lemen, J. R.; Jakimiec, J.; Sylwester, J.

    1989-01-01

    An improved method for fitting asymmetric soft X-ray line profiles from solar flares is presented. A two-component model is used where one component represents the total emission from directed upflow plasma and the other the emission from the plasma at rest. Unlike previous methods, the width of the moving component is independent from that of the stationary component. Time variations of flare plasma characteristics (i.e., temperature, emission measure of moving and stationary plasma, upflow and turbulent velocities) are derived from the Ca XIX and Fe XXV spectra recorded by the Bent Crystal Spectrometer on the Solar Maximum Mission. The fitting technique provides a statistical estimation for the uncertainties in the fitting parameters. The relationship between the directed and turbulent motions has been studied, and a correlation of the random and directed motions has been found in some flares with intensive plasma upflows. Mean temperatures of the upflowing and stationary plasmas are compared for the first time from ratios of calcium to iron X-ray line intensities. Finally, evidence for turbulent motions and the possibility of plasma upflow late into the decay phase is presented and discussed.

  4. Electron precipitation and mass motion in the 1991 June 9 white-light flare

    NASA Technical Reports Server (NTRS)

    Dela Beaujardiere, J. -F.; Canfield, R. C.; Metcalf, T. R.; Hiei, E.; Sakurai, T.; Ichimoto, K.

    1994-01-01

    We use H alpha line profiles as a diagnostic of mass motion and nonthermal electron precipitation in the white-light flare (WLF) of 1991 June 9 01:34 UT. We find only weak downflow velocities (approximately equals 10km/s) at the site of white-light emission, and comparable velocities elsewhere. We also find that electron precipitation is strongest at the WLF site. We conclude that continuum emission in this flare was probably caused by nonthermal electrons and not by dynamical energy transport via a chromospheric condensation.

  5. SUDDEN PHOTOSPHERIC MOTION AND SUNSPOT ROTATION ASSOCIATED WITH THE X2.2 FLARE ON 2011 FEBRUARY 15

    SciTech Connect

    Wang, Shuo; Liu, Chang; Deng, Na; Wang, Haimin

    2014-02-20

    The Helioseismic and Magnetic Imager provides 45 s cadence intensity images and 720 s cadence vector magnetograms. These unprecedented high-cadence and high-resolution data give us a unique opportunity to study the change of photospheric flows and sunspot rotations associated with flares. By using the differential affine velocity estimator method and the Fourier local correlation tracking method separately, we calculate velocity and vorticity of photospheric flows in the flaring NOAA AR 11158, and investigate their temporal evolution around the X2.2 flare on 2011 February 15. It is found that the shear flow around the flaring magnetic polarity inversion line exhibits a sudden decrease, and both of the two main sunspots undergo a sudden change in rotational motion during the impulsive phase of the flare. These results are discussed in the context of the Lorentz-force change that was proposed by Hudson et al. and Fisher et al. This mechanism can explain the connections between the rapid and irreversible photospheric vector magnetic field change and the observed short-term motions associated with the flare. In particular, the torque provided by the horizontal Lorentz force change agrees with what is required for the measured angular acceleration.

  6. Motion of 3-6 keV Nonthermal Sources Along the Legs of a Flare Loop

    NASA Technical Reports Server (NTRS)

    Sui, Linhui; Holman, Gordon D.; Dennis, Brian R.

    2007-01-01

    Observations of nonthermal X-ray sources me critical to studying electron acceleration and transport in solar flares. Strong thermal emission radiated from the preheated plasma before the flare impulsive phase often makes it difficult to detect low-energy X-ray sources that are produced by relatively low-energy nonthermal electrons. Knowledge of the distribution of these low-energy nonthermal electrons is particularly important in determining the total nonthermal electron energy in solar flares. We report on an 'early impulsive flare' in which impulsive hard X-ray emission was seen early in the flare before the soft X-ray emission had risen significantly, indicating limited plasma pre-heating. Early in the flare, RHESSI < 25 keV images show coronal sources that moved first downward and then upwards along the legs of a flare loop. In particular, the 3-6 keV source appeared as a single coronal source at the start of the flare, and then it involved into two coronal sources moving down along the two legs of the loop. After nearly reaching the two footpoints at the hard X-ray peak, the two sources moved back up to the looptop again. RHESSI images and light curves all indicate that nonthermal emission dominated at energies as low as 3-6 keV. We suggest that the evolution of both the spectral index and the low-energy cutoff of the injected electron distribution could result in the accelerated electrons reaching a lower altitude along the legs of the dense flare loop and hence result in the observed downward and upward motions of the nonthermal sources.

  7. Systematic Microwave Source Motions along a Flare-Arcade Observed by Nobeyama Radioheliograph and AIA/SDO

    NASA Astrophysics Data System (ADS)

    Kim, Sujin; Masuda, Satoshi; Shibasaki, Kiyoto; Bong, Su-Chan

    2013-12-01

    We found systematic microwave source motions along a flare-arcade using Nobeyama Radioheliograph (NoRH) 17 GHz images. The motions were associated with an X-class disk flare that occurred on 2011 February 15. For this study, we also used EUV images from Atmospheric Imaging Assembly (AIA) and magnetograms from Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory, and multi-channel microwave data from Nobeyama Radio Polarimeters (NoRP) and Korean Solar Radio Burst Locator (KSRBL). We traced centroids of the microwave source observed by NoRH 17 GHz during the flare, and found two episodes of the motion based on several facts: (1) The microwave source moved systematically along the flare-arcade, which was observed by the AIA 94 Å channel, in a direction parallel to the neutral line. (2) The period of each episode was 5 min and 14 min, respectively. (3) Estimated parallel speed was 34 km s-1 for the first episode and 22 km s-1 for the second episode. The spectral slope of the microwave flux above 10 GHz obtained by NoRP and KSRBL was negative for both episodes, and for the last phase of the second episodes it was flat with a flux of 150 sfu. The negative spectrum and the flat with high flux indicate that the gyrosynchrotron emission from accelerated electrons was dominant during the source motions. The sequential images from the AIA 304 Å and 94 Å channels revealed that there were successive plasma eruptions, and each eruption was initiated just before the start time of the microwave sources motion. Based on the results, we suggest that the microwave source motion manifests the displacement of the particle acceleration site caused by plasma eruptions.

  8. Flare activity, sunspot motions, and the evolution of vector magnetic fields in Hale region 17244

    NASA Technical Reports Server (NTRS)

    Neidig, Donald F.; Hagyard, Mona J.; Machado, Marcos E.; Smith, Jesse B., Jr.

    1986-01-01

    The magnetic and dynamical circumstances leading to the 1B/M4 flare of November 5, 1980 are studied, and a strong association is found between the buildup of magnetic shear and the onset of flare activity within the active region. The development of shear, as observed directly in vector magnetograms, is consistent in detail with the dynamical history of the active region and identifies the precise location of the optical and hard-X-ray kernels of the flare emission.

  9. First evidence of non-Gaussian solar flare EUV spectral line profiles and accelerated non-thermal ion motion

    NASA Astrophysics Data System (ADS)

    Jeffrey, Natasha L. S.; Fletcher, Lyndsay; Labrosse, Nicolas

    2016-05-01

    Context. The properties of solar flare plasma can be determined from the observation of optically thin lines. The emitting ion distribution determines the shape of the spectral line profile, with an isothermal Maxwellian ion distribution producing a Gaussian profile. Non-Gaussian line profiles may indicate more complex ion distributions. Aims: We investigate the possibility of determining flare-accelerated non-thermal ion and/or plasma velocity distributions. Methods: We study EUV spectral lines produced during a flare SOL2013-05-15T01:45 using the Hinode EUV Imaging Spectrometer (EIS). The flare is located close to the eastern solar limb with an extended loop structure, allowing the different flare features: ribbons, hard X-ray (HXR) footpoints and the loop-top source to be clearly observed in UV, EUV and X-rays. EUV line spectroscopy is performed in seven different regions covering the flare. We study the line profiles of the isolated and unblended Fe XVI lines (λ262.9760 Å ) mainly formed at temperatures of ~2 to 4 MK. Suitable Fe XVI line profiles at one time close to the peak soft X-ray emission and free of directed mass motions are examined using: 1. a higher moments analysis, 2. Gaussian fitting, and 3. by fitting a kappa distribution line profile convolved with a Gaussian to account for the EIS instrumental profile. Results: Fe XVI line profiles in the flaring loop-top, HXR footpoint and ribbon regions can be confidently fitted with a kappa line profile with an extra variable κ, giving low, non-thermal κ values between 2 and 3.3. An independent higher moments analysis also finds that many of the spectral line kurtosis values are higher than the Gaussian value of 3, even with the presence of a broad Gaussian instrumental profile. Conclusions: A flare-accelerated non-thermal ion population could account for both the observed non-Gaussian line profiles, and for the Fe XVI "excess" broadening found from Gaussian fitting, if the emitting ions are interacting

  10. Understanding X-Ray Source Motions in a Solar Flare Loop

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Sui, L.; Dennis, B. R.

    2006-01-01

    RHESSI images of a solar flare on 2002 November 28 showed a 3-6 keV hard X-ray source that was initially located at the flare loop top, split and propagated to the foot points of the loop during the flare rise phase, and then propagated back up to the loop top during the declining phase of the flare (Sai, Holman, & Dennis 2006). Higher energy X-ray sources were located lower in the legs of the loop during this period of source evolution, with X-rays above 25 keV seen only at the foot points. Sui, Holman, & Dennis suggested that this spatial evolution reflected the evolution of the spectral index and low-energy cutoff to the distribution of accelerated electrons in the flare. We construct a model flare loop and electron distribution injected at the top of this loop to reproduce the source evolution of the November 28 flare. We determine the constraints on the loop model and the evolution of the accelerated electron distribution. We also study the implications of the model for energy deposition into the loop plasma, and the integrated and imaged X-ray spectra. This work is supported in part by the RHESSI Project and the NASA Guest Investigator Program.

  11. ON THE INJECTION OF HELICITY BY THE SHEARING MOTION OF FLUXES IN RELATION TO FLARES AND CORONAL MASS EJECTIONS

    SciTech Connect

    Vemareddy, P.; Ambastha, A.; Maurya, R. A.; Chae, J. E-mail: ambastha@prl.res.in E-mail: jcchae@snu.ac.kr

    2012-12-20

    An investigation of helicity injection by photospheric shear motions is carried out for two active regions (ARs), NOAA 11158 and 11166, using line-of-sight magnetic field observations obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. We derived the horizontal velocities in the ARs from the differential affine velocity estimator (DAVE) technique. Persistent strong shear motions at maximum velocities in the range of 0.6-0.9 km s{sup -1} along the magnetic polarity inversion line and outward flows from the peripheral regions of the sunspots were observed in the two ARs. The helicities injected in NOAA 11158 and 11166 during their six-day evolution period were estimated as 14.16 Multiplication-Sign 10{sup 42} Mx{sup 2} and 9.5 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The estimated injection rates decreased up to 13% by increasing the time interval between the magnetograms from 12 minutes to 36 minutes, and increased up to 9% by decreasing the DAVE window size from 21 Multiplication-Sign 18 to 9 Multiplication-Sign 6 pixel{sup 2}, resulting in 10% variation in the accumulated helicity. In both ARs, the flare-prone regions (R2) had inhomogeneous helicity flux distribution with mixed helicities of both signs and coronal mass ejection (CME) prone regions had almost homogeneous distribution of helicity flux dominated by a single sign. The temporal profiles of helicity injection showed impulsive variations during some flares/CMEs due to negative helicity injection into the dominant region of positive helicity flux. A quantitative analysis reveals a marginally significant association of helicity flux with CMEs but not flares in AR 11158, while for the AR 11166, we find a marginally significant association of helicity flux with flares but not CMEs, providing evidence of the role of helicity injection at localized sites of the events. These short-term variations of helicity flux are further discussed in view of possible

  12. Plasma motions and non-thermal line broadening in flaring twisted coronal loops

    NASA Astrophysics Data System (ADS)

    Gordovskyy, M.; Kontar, E. P.; Browning, P. K.

    2016-05-01

    Context. Observation of coronal extreme ultra-violet (EUV) spectral lines sensitive to different temperatures offers an opportunity to evaluate the thermal structure and flows in flaring atmospheres. This, in turn, can be used to estimate the partitioning between the thermal and kinetic energies released in flares. Aims: Our aim is to forward-model large-scale (50-10 000 km) velocity distributions to interpret non-thermal broadening of different spectral EUV lines observed in flares. The developed models allow us to understand the origin of the observed spectral line shifts and broadening, and link these features to particular physical phenomena in flaring atmospheres. Methods: We use ideal magnetohydrodynamics (MHD) to derive unstable twisted magnetic fluxtube configurations in a gravitationally stratified atmosphere. The evolution of these twisted fluxtubes is followed using resistive MHD with anomalous resistivity depending on the local density and temperature. The model also takes thermal conduction and radiative losses in the continuum into account. The model allows us to evaluate average velocities and velocity dispersions, which would be interpreted as non-thermal velocities in observations, at different temperatures for different parts of the models. Results: Our models show qualitative and quantitative agreement with observations. Thus, the line-of-sight (LOS) velocity dispersions demonstrate substantial correlation with the temperature, increasing from about 20-30 km s-1 around 1 MK to about 200-400 km s-1 near 10-20 MK. The average LOS velocities also correlate with velocity dispersions, although they demonstrate a very strong scattering compared to the observations. We also note that near footpoints the velocity dispersions across the magnetic field are systematically lower than those along the field. We conclude that the correlation between the flow velocities, velocity dispersions, and temperatures are likely to indicate that the same heating

  13. POSSIBLE DETECTION OF APPARENT SUPERLUMINAL INWARD MOTION IN MARKARIAN 421 AFTER THE GIANT X-RAY FLARE IN 2010 FEBRUARY

    SciTech Connect

    Niinuma, K.; Kino, M.; Oyama, T.; Nagai, H.; Isobe, N.; Gabanyi, K. E.; Hada, K.; Koyama, S.; Asada, K.; Fujisawa, K.

    2012-11-10

    We report on the very long baseline interferometry (VLBI) follow-up observations using the Japanese VLBI Network array at 22 GHz for the largest X-ray flare of TeV blazar Mrk 421 that occurred in 2010 mid-February. The total of five epochs of observations were performed at intervals of about 20 days between 2010 March 7 and May 31. No newborn component associated with the flare was seen directly in the total intensity images obtained by our multi-epoch VLBI observations. However, one jet component located at {approx}1 mas northwest from the core was able to be identified, and its proper motion can be measured as -1.66 {+-} 0.46 mas yr{sup -1}, which corresponds to an apparent velocity of -3.48 {+-} 0.97c. Here, this negative velocity indicates that the jet component was apparently moving toward the core. As the most plausible explanation, we discuss that the apparent negative velocity was possibly caused by the ejection of a new component, which could not be resolved with our observations. In this case, the obtained Doppler factor of the new component is around 10-20, which is consistent with the ones typically estimated by model fittings of spectral energy distribution for this source.

  14. Non-thermal Motions in and Above Flare Loop Tops Measured by the Extreme-ultraviolet Imaging Spectrometer (EIS) on Hinode

    NASA Astrophysics Data System (ADS)

    Doschek, George A.; McKenzie, David Eugene; Warren, Harry P

    2014-06-01

    The plasma volume above the soft X-ray emitting loop tops is of particular interest for studying the formation of flare loops. We present EIS observations of non-thermal motions (turbulence) determined from spectral line profiles of Fe XXIII and Fe XXIV ions for three well-observed flares near the solar limb. We compare the non-thermal motions at temperatures near 10 MK with the motions along the same lines-of-sight determined from lines of coronal ions such as Fe XII, Fe XIV, and Fe XV formed at 1-2 MK. The take-away is that the non-thermal motions obtained from Fe XXIII and Fe XXIV lines increase with height towards the reconnection region, up to speeds of about 50-60 km/s for the largest heights that we can observe. The implication is that considerable plasma heating occurs outside the reconnection region. In addition, we discuss the implications of results obtained for flares from earlier X-ray Yohkoh observations of line profiles of Fe XXV and Ca XIX on the current results from EIS and AIA. Fe XXV is formed at significantly higher temperatures than any strong flare EUV spectral line observed by EIS or by imaging telescopes such as AIA or TRACE. This work is supported by NASA grants.

  15. The Growth, Polarization and Motion of the Radio Afterglow from the Giant Flare from SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Taylor, G. B.; Gelfand, J. D.; Gaensler, B. M.; Granot, J.; Kouveliotou, C.; Fender, R. P.; Ramirez-Ruiz, E.; Eichler, D.; Lyubarsky, Y. E.; Garrett, M.

    2005-01-01

    The extraordinary giant flare (GF) of 2004 December 27 from the soft gamma repeater (SGR) 1806-20 was followed by a bright radio afterglow. We present an analysis of VLA observations of this radio afterglow from SGR 1806-20, consisting of previously reported 8.5 GHz data covering days 7 to 20 after the GF, plus new observations at 8.5 and 22 GHz from day 24 to 81. We find a deceleration in the expansion, from approximately 4.5 mas/day to less than 2.5 mas/day. The time of deceleration is roughly coincident with the rebrightening in the radio light curve, as expected to result when the ejecta from the GF sweeps up enough of the external medium, and transitions from a coasting phase to the Sedov-Taylor regime. The radio afterglow is elongated and maintains a 2:l axis ratio with an average position angle of -40 degrees (north through east), oriented perpendicular to the average intrinsic linear polarization angle. We also report on the discovery of motion in the flux centroid of the afterglow, at an average velocity of 0.26 plus or minus 0.03 c (assuming a distance of 15 kpc) at a position angle of -40 degrees. This motion, in combination with the growth and polarization measurements, suggests an initially asymmetric outflow, mainly from one side of the magnetar.

  16. The Growth, Polarization, and Motion of the Radio Afterglow from the Giant Flare from SGR 1806-20

    SciTech Connect

    Taylor, G

    2005-04-20

    The extraordinary giant flare (GF) of 2004 December 27 from the soft gamma repeater (SGR) 1806-20 was followed by a bright radio afterglow. We present an analysis of VLA observations of this radio afterglow from SGR1806-20, consisting of previously reported 8.5 GHz data covering days 7 to 20 after the GF, plus new observations at 8.5 and 22 GHz from day 24 to 81. For a symmetric outflow, we find a deceleration in the expansion, from {approx}4.5 mas/day to <2.5 mas/day. The time of deceleration is roughly coincident with the rebrightening in the radio light curve, as expected to result when the ejecta from the GF sweeps up enough of the external medium, and transitions from a coasting phase to the Sedov-Taylor regime. The radio afterglow is elongated and maintains a 2:1 axis ratio with an average position angle of -40{sup o} (north through east), oriented perpendicular to the average intrinsic linear polarization angle. We also report on the discovery of motion in the flux centroid of the afterglow, at an average velocity of 0.26 {+-} 0.03 c (assuming a distance of 15 kpc) at a position angle of -45{sup o}. This motion, in combination with the growth and polarization measurements, suggests an initially asymmetric outflow, mainly from one side of the magnetar.

  17. Mass motions in impulsive flarelike brightenings as observed by OSO 8. [mechanism response for solar flares

    NASA Technical Reports Server (NTRS)

    Bruner, E. C., Jr.; Lites, B. W.

    1979-01-01

    C IV 1548-A line profiles obtained with the University of Colorado spectrometer aboard OSO 8 reveal transient, redshifted brightenings in the chromosphere-corona transition region above active regions and sunspots. In these events the intensity rises by factors of up to 5 in less than the profile sampling interval of 27 sec. These events indicate that the emitting material is moving downward at velocities of up to 30 km/sec. The increase in line intensity and the amount of motion are consistent with the interpretation of these events as pressure waves propagating down magnetic flux loops.

  18. CORONAS-F detection of gamma-ray emission from the solar flare on 29 October 2003

    NASA Astrophysics Data System (ADS)

    Kurt, Victoria; Kashapova, Larisa; Yushkov, Boris; Kudela, Karel; Galkin, Vladimir

    Appreciable HXR/gamma-ray emissions in the 0.015-150 MeV energy range associated with the solar flare on 29 October 2003 (X10/3B) were observed at 20:41-20:58 with the SPR-N and SONG instruments onboard the CORONAS-F mission. Two time intervals were identified which showed major changes in the intensity of these emissions. To specify the details of the spectral changes with time, we fitted the SONG energy loss spectra with a three-component model of incident gamma-ray spectrum: (1) a power law in energy, assumed to be due to electron bremsstrahlung; (2) a broad continuum produced by nuclear de-excitation gamma-lines; and (3) a broad gamma-line generated from pion decay. We study the relationship between non-imaging observations, particularly between time of pion-decay emission onset and motions in this solar flare, using HXR foot points (FP) separation and flare shear temporal behavior presented by (Ji et al., 2008). In this work it was shown that significant FP converging and unshearing motion occurred during the first flare interval. During this interval the primary bremsstrahlung extended to tens of MeV and de-excitation gamma-lines dominated. During the second interval after 20:45 the FPs began to move apart. We found out that starting from 20:46, the gamma-emission spectrum revealed a feature attributed to pion-decay. It means that the effective acceleration of protons to energies above 300 MeV (pion-production threshold) occurred coincidently with a change of the flare magnetic structure. The maximum intensity of the pion-decay gamma emission was observed at 20:49 and proved to be 2.0•10-4 photons cm-2 s-1 MeV-1 at 100 MeV. This flare was accompanied by GLE-66. Using the data of the world neutron monitor network, we found its onset as 20:59 which corresponds to a reasonable propagation time of protons with ~ 0.5-2 GeV energy on the assumption that proton acceleration began at 20:46.

  19. Motion of the sources for type II and type IV radio bursts and flare-associated interplanetary disturbances

    NASA Technical Reports Server (NTRS)

    Sakurai, K.; Chao, J. K.

    1974-01-01

    Shock waves are indirectly observed as the source of type II radio bursts, whereas magnetic bottles are identified as the source of moving metric type IV radio bursts. The difference between the expansion speeds of these waves and bottles is examined during their generation and propagation near the flare regions. It is shown that, although generated in the explosive phase of flares, the bottles behave quite differently from the waves and that the bottles are generally much slower than the waves. It has been suggested that the waves are related to flare-associated interplanetary disturbances which produce SSC geomagnetic storms. These disturbances may, therefore, be identified as interplanetary shock waves. The relationship among magnetic bottles, shock waves near the sun, and flare-associated disturbances in interplanetary space is briefly discussed.

  20. Motion of the sources for type 2 and type 4 radio bursts and flare-associated interplanetary disturbances

    NASA Technical Reports Server (NTRS)

    Sakurai, K.; Chao, J. K.

    1973-01-01

    Shock waves are indirectly observed as the source of type 2 radio brusts, whereas magnetic bottles are identified as the source of moving metric type 4 radio bursts. The difference between the expansion speeds of these waves bottles is examined during their generation and propagation near the flare regions. It is shown that, although generated in the explosive phase of flares, the behavior of the bottles is quite different from that of the waves and that the speed of the former is generally much lower. It is shown that the transit times of disturbances between the sun and the earth give information about the deceleration of shock waves to their local speeds observed near the earth's orbit. A brief discussion is given on the relationship among magnetic bottles, shock waves near the sun, and flare-associated disturbances in interplanetary space.

  1. Fast launch speeds in radio flares, from a new determination of the intrinsic motions of SS 433's jet bolides

    NASA Astrophysics Data System (ADS)

    Jeffrey, Robert M.; Blundell, Katherine M.; Trushkin, Sergei A.; Mioduszewski, Amy J.

    2016-06-01

    We present new high-resolution, multi-epoch, VLBA radio images of the Galactic microquasar SS 433. We are able to observe plasma knots in the milliarcsecond-scale jets more than 50 days after their launch. This unprecedented baseline in time allows us to determine the bulk launch speed of the radio-emitting plasma during a radio flare, using a new method which we present here, and which is completely independent of optical spectroscopy. We also apply this method to an earlier sequence of 39 short daily VLBA observations, which cover a period in which SS 433 moved from quiescence into a flare. In both datasets we find, for the first time at radio wavebands, clear evidence that the launch speeds of the milliarcsecond-scale jets rise as high as 0.32c during flaring episodes. By comparing these images of SS 433 with photometric radio monitoring from the RATAN telescope, we explore further properties of these radio flares.

  2. Fast launch speeds in radio flares, from a new determination of the intrinsic motions of SS 433's jet bolides

    NASA Astrophysics Data System (ADS)

    Jeffrey, Robert M.; Blundell, Katherine M.; Trushkin, Sergei A.; Mioduszewski, Amy J.

    2016-09-01

    We present new high-resolution, multi-epoch, Very Long Baseline Array (VLBA) radio images of the Galactic microquasar SS 433. We are able to observe plasma knots in the milliarcsecond-scale jets more than 50 d after their launch. This unprecedented baseline in time allows us to determine the bulk launch speed of the radio-emitting plasma during a radio flare, using a new method which we present here, and which is completely independent of optical spectroscopy. We also apply this method to an earlier sequence of 39 short daily VLBA observations, which cover a period in which SS 433 moved from quiescence into a flare. In both data sets we find, for the first time at radio wavebands, clear evidence that the launch speeds of the milliarcsecond-scale jets rise as high as 0.32c during flaring episodes. By comparing these images of SS 433 with photometric radio monitoring from the RATAN-600 telescope, we explore further properties of these radio flares.

  3. Flare Hybrids

    NASA Astrophysics Data System (ADS)

    Tomczak, M.; Dubieniecki, P.

    2015-12-01

    On the basis of the Solar Maximum Mission observations, Švestka ( Solar Phys. 121, 399, 1989) introduced a new class of flares, the so-called flare hybrids. When they start, they look like typical compact flares (phase 1), but later on, they look like flares with arcades of magnetic loops (phase 2). We summarize the characteristic features of flare hybrids in soft and hard X-rays as well as in the extreme ultraviolet; these features allow us to distinguish flare hybrids from other flares. In this article, additional energy release or long plasma cooling timescales are suggested as possible causes of phase 2. We estimate the frequency of flare hybrids, and study the magnetic configurations favorable for flare hybrid occurrence. Flare hybrids appear to be quite frequent, and the difference between the lengths of magnetic loops in the two interacting loop systems seem to be a crucial parameter for determining their characteristics.

  4. Statistical aspects of solar flares

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1987-01-01

    A survey of the statistical properties of 850 H alpha solar flares during 1975 is presented. Comparison of the results found here with those reported elsewhere for different epochs is accomplished. Distributions of rise time, decay time, and duration are given, as are the mean, mode, median, and 90th percentile values. Proportions by selected groupings are also determined. For flares in general, mean values for rise time, decay time, and duration are 5.2 + or - 0.4 min, and 18.1 + or 1.1 min, respectively. Subflares, accounting for nearly 90 percent of the flares, had mean values lower than those found for flares of H alpha importance greater than 1, and the differences are statistically significant. Likewise, flares of bright and normal relative brightness have mean values of decay time and duration that are significantly longer than those computed for faint flares, and mass-motion related flares are significantly longer than non-mass-motion related flares. Seventy-three percent of the mass-motion related flares are categorized as being a two-ribbon flare and/or being accompanied by a high-speed dark filament. Slow rise time flares (rise time greater than 5 min) have a mean value for duration that is significantly longer than that computed for fast rise time flares, and long-lived duration flares (duration greater than 18 min) have a mean value for rise time that is significantly longer than that computed for short-lived duration flares, suggesting a positive linear relationship between rise time and duration for flares. Monthly occurrence rates for flares in general and by group are found to be linearly related in a positive sense to monthly sunspot number. Statistical testing reveals the association between sunspot number and numbers of flares to be significant at the 95 percent level of confidence, and the t statistic for slope is significant at greater than 99 percent level of confidence. Dependent upon the specific fit, between 58 percent and 94 percent of

  5. Solar flares

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1974-01-01

    A review of the knowledge about solar flares which has been obtained through observations from the earth and from space by various methods. High-resolution cinematography is best carried out at H-alpha wavelengths to reveal the structure, time history, and location of flares. The classification flares in H alpha according to either physical or morphological criteria is discussed. The study of flare morphology, which shows where, when, and how flares occur, is important for evaluating theories of flares. Consideration is given to studies of flares by optical spectroscopy, radio emissions, and at X-ray and XUV wavelengths. Research has shown where and possibly why flares occur, but the physics of the instability involved, of the particle acceleration, and of the heating are still not understood.

  6. Radiation hydrodynamics in solar flares

    SciTech Connect

    Fisher, G.H.

    1985-10-18

    Solar flares are rather violent and extremely complicated phenomena, and it should be made clear at the outset that a physically complete picture describing all aspects of flares does not exist. From the wealth of data which is available, it is apparent that many different types of physical processes are involved during flares: energetic particle acceleration, rapid magnetohydrodynamic motion of complex field structures, magnetic reconnection, violent mass motion along magnetic field lines, and the heating of plasma to tens of millions of degrees, to name a few. The goal of this paper is to explore just one aspect of solar flares, namely, the interaction of hydrodynamics and radiation processes in fluid being rapidly heated along closed magnetic field lines. The models discussed are therefore necessarily restrictive, and will address only a few of the observed or observable phenomena. 46 refs., 6 figs.

  7. Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2013-01-01

    Because the Earth resides in the atmosphere of our nearest stellar neighbor, events occurring on the Sun's surface directly affect us by interfering with satellite operations and communications, astronaut safety, and, in extreme circumstances, power grid stability. Solar flares, the most energetic events in our solar system, are a substantial source of hazardous space weather affecting our increasingly technology-dependent society. While flares have been observed using ground-based telescopes for over 150 years, modern space-bourne observatories have provided nearly continuous multi-wavelength flare coverage that cannot be obtained from the ground. We can now probe the origins and evolution of flares by tracking particle acceleration, changes in ionized plasma, and the reorganization of magnetic fields. I will walk through our current understanding of why flares occur and how they affect the Earth and also show several examples of these fantastic explosions.

  8. Solar Flares

    NASA Technical Reports Server (NTRS)

    Shih, Albert

    2011-01-01

    Solar flares accelerate both ions and electrons to high energies, and their X-ray and gamma-ray signatures not only probe the relationship between their respective acceleration, but also allow for the measurement of accelerated and ambient abundances. RHESSI observations have shown a striking close linear correlation of gamma-ray line fluence from accelerated ions > approx.20 MeV and bremsstrahlung emission from relativistic accelerated electrons >300 keV, when integrated over complete flares, suggesting a common acceleration mechanism. SMM/GRS observations, however, show a weaker correlation, and this discrepancy might be associated with previously observed electron-rich episodes within flares and/or temporal variability of gamma-ray line fluxes over the course of flares. We use the latest RHESSI gamma-ray analysis techniques to study the temporal behavior of the RHESSI flares, and determine what changes can be attributed to an evolving acceleration mechanism or to evolving abundances.

  9. Solar Flares

    NASA Astrophysics Data System (ADS)

    Rust, David

    1998-01-01

    The Sun is constantly changing. Not an hour goes by without a rise or fall in solar x-radiation or radio emission. Not a day goes by without a solar flare. Our active star, this inconsistent Sun, this gaseous cloud that blows in all directions, warms the air we breathe and nourishes the food we eat. From Earth, it seems the very model of stability, but in space it often creates havoc. Over the past century, solar physicists have learned how to detect even the weakest of solar outbursts or flares. We know that flares must surely trace their origins to the magnetic strands stretched and tangled by the rolling plasma of the solar interior. Although a century of astrophysical research has produced widely accepted, fundamental understanding about the Sun, we have yet to predict successfully the emergence of any magnetic fields from inside the Sun or the ignition of any flare. As in any physical experiment, the ability to predict events not only validates the scientific ideas, it also has practical value. In astrophysics, a demonstrated understanding of sunspots, flares, and ejections of plasma would allow us to approach many other mysteries, such as stellar X-ray bursters, with tested theories.

  10. Motion.

    ERIC Educational Resources Information Center

    Gerhart, James B.; Nussbaum, Rudi H.

    This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…

  11. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  12. Flare models: Chapter 9 of solar flares

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A. (Editor)

    1979-01-01

    By reviewing the properties of solar flares analyzed by each of the seven teams of the Skylab workshop, a set of primary and secondary requirements of flare models are derived. A number of flare models are described briefly and their properties compared with the primary requirements. It appears that, at this time, each flare model has some strong points and some weak points. It has not yet been demonstrated that any one flare model meets all the proposed requirements.

  13. Delta spots and great flares

    NASA Technical Reports Server (NTRS)

    Zirin, Harold; Liggett, Margaret A.

    1987-01-01

    The development of delta spots and the great flares they produce are reviewed based on 18 years of observations. Delta groups are found to develop in three ways: (1) by the eruption of a single complex active region formed below the surface; (2) by the eruption of large satellite spots near a large older spot; and (3) by the collision of spots of opposite polarity from different dipoles. It is shown that the present sample of 21 delta spots never separate once they lock together, and that the driving force for the shear is spot motion. Indicators for the prediction of the occurrence of great flares are identified.

  14. OBSERVATIONS OF CHROMOSPHERIC FLARE RE-BRIGHTENINGS

    SciTech Connect

    Miklenic, C. H.; Veronig, A. M.; Vrsnak, B.; Barta, M.

    2010-08-20

    We investigate an active region that produced three C-class flares and one M-class flare within 2.5 hr. The morphology and location of the C-flares indicate that these events constitute a set of homologous flares. Radio observations indicate the occurrence of a downward-moving plasmoid during the impulsive phase of the M flare. We use TRACE 1700 A filtergrams and SOHO Michelson Doppler Imager magnetograms to examine the character of the UV brightenings; i.e., we search for re-brightenings of former flare areas both across the series of events and within one and the same event. We find that essentially the same footpoints re-brighten in each C flare. Based on the progression of both the derived magnetic flux change rate and the observed Radio Solar Telescope Network microwave emission, we speculate about a further re-brightening during the decay phase of the M flare as a further member of the series of homologous flares. We conclude that the 'postflare' field is driven to repeated eruption by continuous, shear-increasing, horizontal, photospheric flows, as one end of the involved magnetic arcade is anchored in the penumbra of a large sunspot. The observed motion pattern of the UV kernels indicates that the arcade evolves during the series of events from a both highly sheared and heavily entangled state to a still sheared but more organized state.

  15. Solar flare nomenclature

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.

    1995-03-01

    The evolution of solar flare nomenclature is reviewed in the context of the paradigm shift, in progress, from flares to coronal mass ejections (CMEs) in solar-terrestrial physics. Emphasis is placed on: the distinction between eruptive (Class II) flares and confined (Class I) flares; and the underlying similarity of eruptive flares inside (two-ribbon flares) and outside (flare-like brightenings accompanying disappearing filaments) of active regions. A list of reserach questions/ problems raised, or brought into focus, by the new paradigm is suggested; in general, these questions bear on the inter- relationships and associations of the two classes (or phases) or flares. Terms such as 'eruptive flare' and 'eruption' (defined to encompass both the CME and its associated eruptive flare) may be useful as nominal links between opposing viewpoints in the 'flares vs CMEs' controversy.

  16. CIRCULAR RIBBON FLARES AND HOMOLOGOUS JETS

    SciTech Connect

    Wang Haimin; Liu Chang

    2012-12-01

    Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), which has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a circular ribbon have rarely been reported, although it is expected in the fan-spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence H{alpha} blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory. In all the events, a central parasitic magnetic field is encompassed by the opposite polarity, forming a circular PIL traced by filament material. Consequently, a flare kernel at the center is surrounded by a circular flare ribbon. The four homologous jet-related flares on 1991 March 17 and 18 are of particular interest, as (1) the circular ribbons brighten sequentially, with cospatial surges, rather than simultaneously, (2) the central flare kernels show an intriguing 'round-trip' motion and become elongated, and (3) remote brightenings occur at a region with the same magnetic polarity as the central parasitic field and are co-temporal with a separate phase of flare emissions. In another flare on 1991 February 25, the circular flare emission and surge activity occur successively, and the event could be associated with magnetic flux cancellation across the circular PIL. We discuss the implications of these observations combining circular flare ribbons, homologous jets, and remote brightenings for understanding the dynamics of 3D magnetic restructuring.

  17. FLARES AND THEIR UNDERLYING MAGNETIC COMPLEXITY

    SciTech Connect

    Engell, Alexander J.; Golub, Leon; Korreck, Kelly; Siarkowski, Marek; Gryciuk, Magda; Sylwester, Janusz; Sylwester, Barbara; Cirtain, Jonathan

    2011-01-01

    SphinX (Solar PHotometer IN X-rays), a full-disk-integrated spectrometer, observed 137 flare-like/transient events with active region (AR) 11024 being the only AR on disk. The Hinode X-Ray Telescope (XRT) and Solar Optical Telescope observe 67 of these events and identified their location from 12:00 UT on July 3 through 24:00 UT 2009 July 7. We find that the predominant mechanisms for flares observed by XRT are (1) flux cancellation and (2) the shearing of underlying magnetic elements. Point- and cusp-like flare morphologies seen by XRT all occur in a magnetic environment where one polarity is impeded by the opposite polarity and vice versa, forcing the flux cancellation process. The shearing is either caused by flux emergence at the center of the AR and separation of polarities along a neutral line or by individual magnetic elements having a rotational motion. Both mechanisms are observed to contribute to single- and multiple-loop flares. We observe that most loop flares occur along a large portion of a polarity inversion line. Point- and cusp-like flares become more infrequent as the AR becomes organized with separation of the positive and negative polarities. SphinX, which allows us to identify when these flares occur, provides us with a statistically significant temperature and emission scaling law for A and B class flares: EM = 6.1 x 10{sup 33} T{sup 1.9{+-}0.1}.

  18. Flares and Their Underlying Magnetic Complexity

    NASA Astrophysics Data System (ADS)

    Engell, Alexander J.; Siarkowski, Marek; Gryciuk, Magda; Sylwester, Janusz; Sylwester, Barbara; Golub, Leon; Korreck, Kelly; Cirtain, Jonathan

    2011-01-01

    SphinX (Solar PHotometer IN X-rays), a full-disk-integrated spectrometer, observed 137 flare-like/transient events with active region (AR) 11024 being the only AR on disk. The Hinode X-Ray Telescope (XRT) and Solar Optical Telescope observe 67 of these events and identified their location from 12:00 UT on July 3 through 24:00 UT 2009 July 7. We find that the predominant mechanisms for flares observed by XRT are (1) flux cancellation and (2) the shearing of underlying magnetic elements. Point- and cusp-like flare morphologies seen by XRT all occur in a magnetic environment where one polarity is impeded by the opposite polarity and vice versa, forcing the flux cancellation process. The shearing is either caused by flux emergence at the center of the AR and separation of polarities along a neutral line or by individual magnetic elements having a rotational motion. Both mechanisms are observed to contribute to single- and multiple-loop flares. We observe that most loop flares occur along a large portion of a polarity inversion line. Point- and cusp-like flares become more infrequent as the AR becomes organized with separation of the positive and negative polarities. SphinX, which allows us to identify when these flares occur, provides us with a statistically significant temperature and emission scaling law for A and B class flares: EM = 6.1 × 1033 T 1.9±0.1.

  19. COMBUSTION EFFICIENCY OF FLARES

    EPA Science Inventory

    The paper gives results of a study to provide data on industrial flare emissions. (Emissions of incompletely burned hydrocarbons from industrial flares may contribute to air pollution. Available data on flare emissions are sparse, and methods to sample operating flares are unavai...

  20. A multiwavelength study of a double impulsive flare

    NASA Technical Reports Server (NTRS)

    Strong, K. T.; Benz, A. O.; Dennis, B. R.; Poland, A. I.; Leibacher, J. W.; Mewe, R.; Schrijver, J.; Simnett, G.; Smith, J. B., Jr.; Sylwester, J.

    1984-01-01

    Solar Maximum Mission (SMM) and ground-based observations are given for two flares which occurred 3 min apart in the same section of the active region. The physical characteristics of the two flares are derived and compared, and the main difference between them is noted to be in the preflare state of the coronal plasma at the flare site. These data suggest that the plasma filling the flaring loops absorbed most of the energy released during the impulsive phase of the second flare, so that only a fraction of the energy could reach the chromosphere to produce mass motions and turbulence. Since a study of the brightest flares observed by SMM shows that at least 43 percent of them are multiple, the situation presently studied may be quite common, and the difference in initial plasma conditions could explain at least some of the large variations in observed flare parameters.

  1. Evolution of Magnetic Gradients in Flaring Magnetic Neutral Lines

    NASA Astrophysics Data System (ADS)

    Wang, Haimin

    2006-06-01

    We study the short-term evolution of magnetic fieldsassociated with five flares in delta sunspots. We concentrate on theanalysis of magnetic gradient along the flaring neutral lines. Rapidchanges of gradient obviously occurred immediately following the onset ofeach flare. Rapid gradient increase was found to be associated with threeevents, while decrease was found for the other two. The changes werepermanent, therefor, not likely due to the effect of flare emissions. Inaddition, we evaluated the overall relative motions between two magneticpolarities in the these delta regions, in the direction parallel andperpendicular to the flaring neutral lines, respectively. Using the methodof Center-of-Mass (CoM) separation calculation, we found that: (1)converging motion corresponded to gradient increase, diverging motion, thedecrease (2) for all the events, there appeared a sudden release ofmagnetic shear associated with each flare, signified by a decrease of CoMseparation between 500 and 1000 km in the direction parallel to theneutral line. Combining the findings presented here with those in previouspapers, such as penumbral decay in the outer boundaries of delta spots,increase of transverse fields at the flaring neutral lines and unbalancedfluxes changes associated with flares, we propose that these are evidencesof quadrupolar magnetic reconnection at or close to the photosphere. Wefurther propose that this is the first stage of the two-stage energyrelease for flares and CMEs.

  2. Understanding Solar Flare Statistics

    NASA Astrophysics Data System (ADS)

    Wheatland, M. S.

    2005-12-01

    A review is presented of work aimed at understanding solar flare statistics, with emphasis on the well known flare power-law size distribution. Although avalanche models are perhaps the favoured model to describe flare statistics, their physical basis is unclear, and they are divorced from developing ideas in large-scale reconnection theory. An alternative model, aimed at reconciling large-scale reconnection models with solar flare statistics, is revisited. The solar flare waiting-time distribution has also attracted recent attention. Observed waiting-time distributions are described, together with what they might tell us about the flare phenomenon. Finally, a practical application of flare statistics to flare prediction is described in detail, including the results of a year of automated (web-based) predictions from the method.

  3. The cooling and condensation of flare coronal plasma

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Sturrock, P. A.

    1981-01-01

    A model is investigated for the decay of flare heated coronal loops in which rapid radiative cooling at the loop base creates strong pressure gradients which, in turn, generate large (supersonic) downward flows. The coronal material cools and 'condenses' onto the flare chromosphere. The features which distinguish this model from previous models of flare cooling are: (1) most of the thermal energy of the coronal plasma may be lost by mass motion rather than by conduction or coronal radiation; (2) flare loops are not isobaric during their decay phase, and large downward velocities are present near the footpoints; (3) the differential emission measure q has a strong temperature dependence.

  4. The Flare-CME Connection

    NASA Astrophysics Data System (ADS)

    Raftery, Claire; Gallagher, P. T.; Lin, C.

    2009-05-01

    The connection between flares and CMEs has long been hypothesized and modelled. However, a full understanding of the processes at work remains ambiguous. A detailed study of the kinematical evolution of a CME was conducted using instruments on STEREO. Flare parameters, such as the motion of soft X-ray sources, imaged using RHESSI, and emission measure and plasma temperature measured from Mercury MESSENGER are presented in conjunction with the CME data to explain the evolution of the entire system. These results are then compared to a number of theoretical models to determine which of the many hypotheses are most probable for this event. CLR is supported by an SPD studentship and the ESA/Prodex grant administered by Enterprise Ireland.

  5. Towards Predicting Solar Flares

    NASA Astrophysics Data System (ADS)

    Winter, Lisa; Balasubramaniam, Karatholuvu S.

    2015-04-01

    We present a statistical study of solar X-ray flares observed using GOES X-ray observations of the ~50,000 fares that occurred from 1986 - mid-2014. Observed X-ray parameters are computed for each of the flares, including the 24-hour non-flare X-ray background in the 1-8 A band and the maximum ratio of the short (0.5 - 4 A) to long band (1-8 A) during flares. These parameters, which are linked to the amount of active coronal heating and maximum flare temperature, reveal a separation between the X-, M-, C-, and B- class fares. The separation was quantified and verified through machine-learning algorithms (k nearest neighbor; nearest centroid). Using the solar flare parameters learned from solar cycles 22-23, we apply the models to predict flare categories of solar cycle 24. Skill scores are then used to assess the success of our models, yielding correct predictions for ~80% of M-, C-, and B-class flares and 100% correct predictions for X-flares. We present details of the analysis along with the potential uses of our model in flare forecasting.

  6. Flare emission from Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Eckart, A.; García-Marín, M.; Vogel, S. N.; Teuben, P.; Morris, M. R.; Baganoff, F.; Dexter, J.; Schödel, R.; Witzel, G.; Valencia-S, M.; Karas, V.; Kunneriath, D.; Bremer, M.; Straubmeier, C.; Moser, L.; Sabha, N.; Buchholz, R.; Zamaninasab, M.; Mužić, K.; Moultaka, J.; Zensus, J. A.

    2012-07-01

    Based on Bremer et al. (2011) and Eckart et al. (2012) we report on simultaneous observations and modeling of the millimeter, near-infrared, and X-ray flare emission of the source Sagittarius A* (SgrA*) associated with the super-massive (4×106 Modot) black hole at the Galactic Center. We study physical processes giving rise to the variable emission of SgrA* from the radio to the X-ray domain. To explain the statistics of the observed variability of the (sub-)mm spectrum of SgrA*, we use a sample of simultaneous NIR/X-ray flare peaks and model the flares using a synchrotron and SSC mechanism. The observations reveal flaring activity in all wavelength bands that can be modeled as the signal from adiabatically expanding synchrotron self-Compton (SSC) components. The model parameters suggest that either the adiabatically expanding source components have a bulk motion larger than vexp or the expanding material contributes to a corona or disk, confined to the immediate surroundings of SgrA*. For the bulk of the synchrotron and SSC models, we find synchrotron turnover frequencies in the range 300-400 GHz. For the pure synchrotron models this results in densities of relativistic particles of the order of 106.5 cm-3 and for the SSC models, the median densities are about one order of magnitude higher. However, to obtain a realistic description of the frequency-dependent variability amplitude of SgrA*, models with higher turnover frequencies and even higher densities are required. We discuss the results in the framework of possible deviations from equilibrium between particle and magnetic field energy. We also summarize alternative models to explain the broad-band variability of SgrA*.

  7. Solar Flares: Magnetohydrodynamic Processes

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari; Magara, Tetsuya

    2011-12-01

    This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD) processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), local enhancement of electric current in the corona (formation of a current sheet), and rapid dissipation of electric current (magnetic reconnection) that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely), while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

  8. Emergency flare tip repair

    SciTech Connect

    Harrison, G.A.

    1982-07-01

    Two damaged propane storage tank flares serving a large LPG storage facility near the Arabian Gulf were given emergency service. A diagram of over-all layout and spatial relationships between tanks and piping, and tables with general information relevant to selecting an acceptable radiant heat load factor and flare line flow characteristics were presented. The general equation for predicting radiant heat flux from a point source was used. The ignition of the temporary flare was discussed.

  9. An active role for magnetic fields in solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1976-01-01

    Observations of photospheric magnetic fields are reviewed to determine whether changes in such fields can be related to flare activity, assuming that magnetic fields play an active role in providing flare energy. An intimate relation between emerging fields and bright flare knots is noted, and it is shown that the activation and eruption of an H-alpha filament is indicative of a major disruption of a magnetic field just prior to a flare. Observations of twisting motions in a filament just before a flare are discussed, erupting untwisting filaments are taken as unambiguous evidence for restructuring of the magnetic fields associated with flares, and it is argued that magnetic-field changes in the midst of most flares are obvious. It is concluded that successive brightenings in a family of loops may be evidence for the spread of a magnetic-field reconnection point from one field concentration to another and that flares may well take place in regions of field-line reconnection. This latter conclusion is illustrated using an empirical flare model that involves field-line reconnection, filament activation, and emerging magnetic flux.

  10. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  11. Flared tube attachment fitting

    NASA Technical Reports Server (NTRS)

    Alkire, I. D.; King, J. P., Jr.

    1980-01-01

    Tubes can be flared first, then attached to valves and other flow line components, with new fitting that can be disassembled and reused. Installed fitting can be disassembled so parts can be inspected. It can be salvaged and reused without damaging flared tube; tube can be coated, tempered, or otherwise treated after it has been flared, rather than before, as was previously required. Fitting consists of threaded male portion with conical seating surface, hexagonal nut with hole larger than other diameter of flared end of tube, and split ferrule.

  12. Solar flares. [plasma physics

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1979-01-01

    The present paper deals with explosions in a magnetized solar plasma, known as flares, whose effects are seen throughout the electromagnetic spectrum, from gamma-rays through the visible and to the radio band. The diverse phenomena associated with flares are discussed, along with the physical mechanisms that have been advanced to explain them. The impact of solar flare research on the development of plasma physics and magnetohydrodynamics is noted. The rapid development of solar flare research during the past 20 years, owing to the availability of high-resolution images, detailed magnetic field measurements, and improved spectral data, is illustrated.

  13. A solar tornado triggered by flares?

    NASA Astrophysics Data System (ADS)

    Panesar, N. K.; Innes, D. E.; Tiwari, S. K.; Low, B. C.

    2013-01-01

    Context. Solar tornados are dynamical, conspicuously helical magnetic structures that are mainly observed as a prominence activity. Aims: We investigate and propose a triggering mechanism for the solar tornado observed in a prominence cavity by SDO/AIA on September 25, 2011. Methods: High-cadence EUV images from the SDO/AIA and the Ahead spacecraft of STEREO/EUVI are used to correlate three flares in the neighbouring active-region (NOAA 11303) and their EUV waves with the dynamical developments of the tornado. The timings of the flares and EUV waves observed on-disk in 195 Å are analysed in relation to the tornado activities observed at the limb in 171 Å. Results: Each of the three flares and its related EUV wave occurred within ten hours of the onset of the tornado. They have an observed causal relationship with the commencement of activity in the prominence where the tornado develops. Tornado-like rotations along the side of the prominence start after the second flare. The prominence cavity expands with the accelerating tornado motion after the third flare. Conclusions: Flares in the neighbouring active region may have affected the cavity prominence system and triggered the solar tornado. A plausible mechanism is that the active-region coronal field contracted by the "Hudson effect" through the loss of magnetic energy as flares. Subsequently, the cavity expanded by its magnetic pressure to fill the surrounding low corona. We suggest that the tornado is the dynamical response of the helical prominence field to the cavity expansion. Movies are available in electronic form at http://www.aanda.org

  14. The great flare of 1982 June 6

    NASA Technical Reports Server (NTRS)

    Tanaka, K.; Zirin, H.

    1985-01-01

    The great soft X-ray (SXR) flare (X12) of the past solar maximum was observed by Hinotori and by Big Bear Solar Observatory (BBSO) on June 6, 1982. Hinotori data consist of hard X-ray (HXR) and SXR images in the rise and decay of the flare, high-resolution soft X-ray spectra throughout the flare, and HXR and gamma-ray data. The BBSO data include films of H-alpha, H-alpha blue wing, D3 and longitudinal magnetic field, as well as video tapes of continuum. Images in HXR, SXR, H-alpha, D3 and the continuum are compared and SXR spectra analyzed. The flare resulted from extended motion of a large spot shearing the magnetic field. D3 and white-light images exhibit a progression from fast flashes to two ribbons, while both HXR and SXR are centered on the optical kernels. The continuum emission shows the same temporal behavior as the HXR at 160 keV. In its early phases, the Fe XXV line was double-peaked, and a decreasing blueshifted (up to 400 km/sec) component was observed, from which the evaporation rate of chromospheric material was estimated. It is suggested that this upflow is adequate to supply the coronal cloud. Flare energetics are discussed in detail, and it is concluded that a significant amount of energy was deposited in the corona, and that nonthermal electrons are the major energy input.

  15. Flares in childhood eczema.

    PubMed

    Langan, S M

    2009-01-01

    Eczema is a major public health problem affecting children worldwide. Few studies have directly assessed triggers for disease flares. This paper presents evidence from a published systematic review and a prospective cohort study looking at flare factors in eczema. This systematic review suggested that foodstuffs in selected groups, dust exposure, unfamiliar pets, seasonal variation, stress, and irritants may be important in eczema flares. We performed a prospective cohort study that focused on environmental factors and identified associations between exposure to nylon clothing, dust, unfamiliar pets, sweating, shampoo, and eczema flares. Results from this study also demonstrated some new key findings. First, the effect of shampoo was found to increase in cold weather, and second, combinations of environmental factors were associated with disease exacerbation, supporting a multiple component disease model. This information is likely to be useful to families and may lead to the ability to reduce disease flares in the future. PMID:20054505

  16. Flare build-up study - Homologous flares group. I

    NASA Technical Reports Server (NTRS)

    Martres, M.-J.; Mein, N.; Mouradian, Z.; Rayrole, J.; Schmieder, B.; Simon, G.; Soru-Escaut, I.; Woodgate, B. E.

    1984-01-01

    Solar Maximum Mission observations have been used to study the origin and amount of energy, mechanism of storage and release, and conditions for the occurrence of solar flares, and some results of these studies as they pertain to homologous flares are briefly discussed. It was found that every set of flares produced 'rafales' of homologous flares, i.e., two, three, four, or more flares separated in time by an hour or less. No great changes in macroscopic photospheric patterns were observed during these flaring periods. A quantitative brightness parameter of the relation between homologous flares is defined. Scale changes detected in the dynamic spectrum of flare sites are in good agreement with a theoretical suggestion by Sturrock. Statistical results for different homologous flare active regions show the existence in homologous flaring areas of a 'pivot' of previous filaments interpreted as a signature of an anomaly in the solar rotation.

  17. Turbulence in the Flare Reconnection Region

    NASA Astrophysics Data System (ADS)

    Doschek, George A.; McKenzie, D. E.; Warren, H.

    2013-07-01

    The physical conditions such as temperature, density, and dynamical properties in the flare reconnection region, located above the bright soft X-ray loops, are basically not known although there have been measurements of non-thermal hard X-ray emission properties by RHESSI and earlier by HXT on Yohkoh. The advent of Hinode and the Solar Dynamics Observatory (SDO) spatially resolved observations, however, has changed this and it is now possible to measure in more detail some of the properties of the reconnection region. AIA imagery on SDO and the Extreme-ultraviolet Imaging Spectrometer (EIS) and X-ray Telescope (XRT) on Hinode allow values of non-thermal motions or turbulence in the reconnection region to be determined. Turbulence is predicted by theoretical models of magnetic reconnection in flares (e.g., see Liu et al. 2008, ApJ, 676, 704) and has long been inferred spectroscopically from non-thermal broadening of flare emission lines. Studies with Hinode/XRT and SDO/AIA demonstrate that two-dimensional investigations of flare velocity fields can be made, by imaging the plasma sheets above post-CME flare arcades. These measurements are made possible through the use of local correlation tracking (LCT), as shown by McKenzie (2013), ApJ, 766, 39, and reveal signatures of turbulence, including temporally and spatially varying vorticity. For some flares the AIA and XRT results can be combined with Doppler measurements of turbulence obtained with EIS. EIS data consist of raster scans that include the reconnection region for flares on the limb or near the limb. A set of spectral lines are observed that cover temperatures from 0.25 MK up to ~20 MK. A temperature in the reconnection region is calculated from the Fe XXIII/Fe XXIV line ratio and the thermal Doppler and instrumental widths are subtracted from the total line widths. The remainder is non-thermal motions or turbulence. We will present coordinated analyses of EIS and AIA observations of plasma sheets in post

  18. COMPTEL solar flare observations

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.; Aarts, H.; Bennett, K.; Debrunner, H.; Devries, C.; Denherder, J. W.; Eymann, G.; Forrest, D. J.; Diehl, R.; Hermsen, W.

    1992-01-01

    COMPTEL as part of a solar target of opportunity campaign observed the sun during the period of high solar activity from 7-15 Jun. 1991. Major flares were observed on 9 and 11 Jun. Although both flares were large GOES events (greater than or = X10), they were not extraordinary in terms of gamma-ray emission. Only the decay phase of the 15 Jun. flare was observed by COMPTEL. We report the preliminary analysis of data from these flares, including the first spectroscopic measurement of solar flare neutrons. The deuterium formation line at 2.223 MeV was present in both events and for at least the 9 Jun. event, was comparable to the flux in the nuclear line region of 4-8 MeV, consistent with Solar-Maximum Mission (SSM) Observations. A clear neutron signal was present in the flare of 9 Jun. with the spectrum extending up to 80 MeV and consistent in time with the emission of gamma-rays, confirming the utility of COMPTEL in measuring the solar neutron flux at low energies. The neutron flux below 100 MeV appears to be lower than that of the 3 Jun. 1982 flare by more than an order of magnitude. The neutron signal of the 11 Jun. event is under study. Severe dead time effects resulting from the intense thermal x-rays require significant corrections to the measured flux which increase the magnitude of the associated systematic uncertainties.

  19. The Flare Genesis Experiment

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    2002-01-01

    Using the Flare Genesis Experiment (FGE), a balloon-borne observatory with an 80-cm solar telescope we observed the active region NOAA 8844 on January 25, 2000 for several hours. FGE was equipped with a vector polarimeter and a tunable Fabry-Perot narrow-band filter. It recorded time series of filtergrams, vector magnetograms, and Dopplergrams at the Ca(I) 6122.2 angstrom line, and H-alpha filtergrams with a cadence between 2.5 and 7.5 minutes. At the time of the observations, NOAA 8844 was located at approximately 5 N 30 W. The region was rapidly growing during the observations; new magnetic flux was constantly emerging in three supergranules near its center. We describe in detail how the FGE data were analyzed and report on the structure and behavior of peculiar moving dipolar features (MDFs) observed in the active region. In longitudinal magnetograms, the MDFs appeared to be small dipoles in the emerging fields. The east-west orientation of their polarities was opposite that of the sunspots. The dipoles were oriented parallel to their direction of motion, which was in most cases towards the sunspots. Previously, dipolar moving magnetic features have only been observed flowing out from sunspots. Vector magnetograms show that the magnetic field of each MDF negative part was less inclined to the local horizontal than the ones of the positive part. We identify the MDFs as undulations, or stitches, where the emerging flux ropes are still tied to the photosphere. We present a U-loop model that can account for their unusual structure and behavior, and it shows how emerging flux can shed its entrained mass.

  20. Recurrent flares in active region NOAA 11283

    NASA Astrophysics Data System (ADS)

    Romano, P.; Zuccarello, F.; Guglielmino, S. L.; Berrilli, F.; Bruno, R.; Carbone, V.; Consolini, G.; de Lauretis, M.; Del Moro, D.; Elmhamdi, A.; Ermolli, I.; Fineschi, S.; Francia, P.; Kordi, A. S.; Landi Degl'Innocenti, E.; Laurenza, M.; Lepreti, F.; Marcucci, M. F.; Pallocchia, G.; Pietropaolo, E.; Romoli, M.; Vecchio, A.; Vellante, M.; Villante, U.

    2015-10-01

    Context. Flares and coronal mass ejections (CMEs) are solar phenomena that are not yet fully understood. Several investigations have been performed to single out their related physical parameters that can be used as indices of the magnetic complexity leading to their occurrence. Aims: In order to shed light on the occurrence of recurrent flares and subsequent associated CMEs, we studied the active region NOAA 11283 where recurrent M and X GOES-class flares and CMEs occurred. Methods: We use vector magnetograms taken by HMI/SDO to calculate the horizontal velocity fields of the photospheric magnetic structures, the shear and the dip angles of the magnetic field, the magnetic helicity flux distribution, and the Poynting fluxes across the photosphere due to the emergence and the shearing of the magnetic field. Results: Although we do not observe consistent emerging magnetic flux through the photosphere during the observation time interval, we detected a monotonic increase of the magnetic helicity accumulated in the corona. We found that both the shear and the dip angles have high values along the main polarity inversion line (PIL) before and after all the events. We also note that before the main flare of X2.1 GOES class, the shearing motions seem to inject a more significant energy than the energy injected by the emergence of the magnetic field. Conclusions: We conclude that the very long duration (about 4 days) of the horizontal displacement of the main photospheric magnetic structures along the PIL has a primary role in the energy release during the recurrent flares. This peculiar horizontal velocity field also contributes to the monotonic injection of magnetic helicity into the corona. This process, coupled with the high shear and dip angles along the main PIL, appears to be responsible for the consecutive events of loss of equilibrium leading to the recurrent flares and CMEs. A movie associated to Fig. 4 is available in electronic form at http://www.aanda.org

  1. Flare Activity on Stars

    NASA Astrophysics Data System (ADS)

    Oskanian, V. S.

    A review of the existing flare data analyses indicates that most probably the flare phenomenon should be considered as one of the manifestation forms of solar-type chromospheric activity on stars and therefore has to be investigated in common with other phenomena specifying this activity. In order to estimate the reliability of such an approach different types of observational data are discussed. It could be shown that most of the phenomena specifying the solar chromospheric activity (BY Dra syndrome, indicating the spottedness of the stellar surface, long-term cyclic variations of emission line intensities, variable local magnetic fields, flares, coronal phenomena, etc.) are observable on a constantly growing number of stars of almost all spectral types and luminosity classes. This fact indicates that the proposed approach could be the right way to solve the problem of the flare phenomenon.

  2. Solar flare particle radiation

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.

    1972-01-01

    The characteristics of the solar particles accelerated by solar flares and subsequently observed near the orbit of the earth are studied. Considered are solar particle intensity-time profiles, the composition and spectra of solar flare events, and the propagation of solar particles in interplanetary space. The effects of solar particles at the earth, riometer observations of polar cap cosmic noise absorption events, and the production of solar cell damage at synchronous altitudes by solar protons are also discussed.

  3. Flare ignition system

    SciTech Connect

    Sorelle, R.R.

    1984-05-22

    A flare ignition system is claimed for oil well flaring of combustible gases. It includes a central control unit, low voltage interconnect line and plural remote igniter units which include alternate first and second spark gaps coordinated in fail-safe operation. Coordination is carried out by pulse counting and validating circuitry which assures that one of the spark gaps will always be ignitable or alarm condition will exist.

  4. The solar flare myth

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1993-01-01

    Many years of research have demonstrated that large, nonrecurrent geomagnetic storms, shock wave disturbances in the solar wind, and energetic particle events in interplanetary space often occur in close association with large solar flares. This result has led to a pradigm of cause and effect - that large solar flares are the fundamental cause of these events in the near-Earth space environmemt. This paradigm, which I call 'the solar flare myth,' dominates the popular perception of the relationship between solar activity and interplanetary and geomagnetic events and has provided much of the pragmatic rationale for the study of the solar flare phenomenon. Yet there is good evidence that this paradigm is wrong and that flares do not generally play a central role in producing major transient disturbances in the near-Earth space environment. In this paper I outline a different paradigm of cause and effect that removes solar flares from their central position in the chain of events leading from the Sun to near-Earth space. Instead, this central role is given to events known as coronal mass ejections.

  5. Flares on Mira stars?

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1991-01-01

    Fourteen cases of flares reported on Mira type stars have been collected. These flares typically have an amplitude of over half a magnitude, a rise time of minutes, and a duration of tens of minutes. Nine of the 11 stars represent a normal cross section of the Mira population, while the remaining two are in symbiotic systems (CH Cyg and RX Pup). The flares were observed photographically (five cases), photometrically (three cases), visually (three cases), and with radio telescopes (two cases), while CH Cyg has had flares observed by many techniques. The evidence for the existence of flares on Miras is strong but not definitive. It is possible to hypothesize a variety of background or instrumental effects that could explain all 14 events; however, there is no evidence that suggests the data should be taken at other than face value, and there are good arguments for rejecting the possibility of artifacts. It is felt that the current data warrant systematic observational and theoretical investigation of the possibility of flares on Mira stars.

  6. Explosive evaporation in solar flares

    NASA Technical Reports Server (NTRS)

    Fisher, George H.

    1987-01-01

    This paper develops a simple analytical model for the phenomenon of 'explosive evaporation' driven by nonthermal electron heating in solar flares. The model relates the electron energy flux and spectrum, plus details of the preflare atmosphere, to the time scale for explosive evaporation to occur, the maximum pressure and temperature to be reached, rough estimates for the UV pulse emission flux and duration, and the evolution of the blueshifted component of the soft X-ray lines. An expression is given for the time scale for buildup to maximum pressures and the onset of rapid motion of the explosively evaporating plasma. This evaporation can excite a rapid response of UV line and continuum emission. The emission lines formed in the plasma approach a given emissivity-weighted blueshift speed.

  7. Solar flares, flare particles and geomagnetic disturbances

    NASA Astrophysics Data System (ADS)

    Ogawa, T.

    1986-03-01

    Geomagnetic disturbances related to solar-terrestrial events during the period June-September 1982 are described. The cause of these activities is investigated using solar phenomena and solar flare particles observed by the geostationary satellite GMS-2/SEM (Space Environment Monitor). It is noted that the geomagnetic disturbances in June were weak, two big geomagnetic storms occurred in September, and the largest storm, caused by a large flare, occurred on July 13-14. The July 13-14, 1972 storm is compared to the February 11-12, 1958 storm observed by Hakura and Nagai (1964, 1965) and the August 4-5, 1972 storm data of Hakura (1976). The July storm was characterized by a deep depression of the H-component caused by an abnormal expansion of the substorm-associated current system in the auroral zone toward the Far East and was short-lived.

  8. Slipping Magnetic Reconnections with Multiple Flare Ribbons during an X-class Solar Flare

    NASA Astrophysics Data System (ADS)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing

    2016-06-01

    With the observations of the Solar Dynamics Observatory, we present the slipping magnetic reconnections with multiple flare ribbons (FRs) during an X1.2 eruptive flare on 2014 January 7. A center negative polarity was surrounded by several positive ones, and three FRs appeared. The three FRs showed apparent slipping motions, and hook structures formed at their ends. Due to the moving footpoints of the erupting structures, one tight semi-circular hook disappeared after the slippage along its inner and outer edges, and coronal dimmings formed within the hook. The east hook also faded as a result of the magnetic reconnection between the arcades of a remote filament and a hot loop that was impulsively heated by the under flare loops. Our results are accordant with the slipping magnetic reconnection regime in three-dimensional standard model for eruptive flares. We suggest that the complex structures of the flare are likely a consequence of the more complex flux distribution in the photosphere, and the eruption involves at least two magnetic reconnections.

  9. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  10. Flares and habitability

    NASA Astrophysics Data System (ADS)

    Abrevaya, Ximena C.; Cortón, Eduardo; Mauas, Pablo J. D.

    2012-07-01

    At present, dwarf M stars are being considered as potential hosts for habitable planets. However, an important fraction of these stars are flare stars, which among other kind of radiation, emit large amounts of UV radiation during flares, and it is unknown how this events can affect life, since biological systems are particularly vulnerable to UV. In this work we evaluate a well known dMe star, EV Lacertae (GJ 873) as a potential host for the emergence and evolution of life, focusing on the effects of the UV emission associated with flare activity. Since UV-C is particularly harmful for living organisms, we studied the effect of UV-C radiation on halophile archaea cultures. The halophile archaea or haloarchaea are extremophile microorganisms, which inhabit in hypersaline environments and which show several mechanisms to cope with UV radiation since they are naturally exposed to intense solar UV radiation on Earth. To select the irradiance to be tested, we considered a moderate flare on this star. We obtained the mean value for the UV-C irradiance integrating the IUE spectrum in the impulsive phase, and considering a hypothetical planet in the center of the liquid water habitability zone. To select the irradiation times we took the most frequent duration of flares on this star which is from 9 to 27 minutes. Our results show that even after considerable UV damage, the haloarchaeal cells survive at the tested doses, showing that this kind of life could survive in a relatively hostile UV environment.

  11. Flare build-up study: Homologous flares group - Interim report

    NASA Technical Reports Server (NTRS)

    Woodgate, B. E.

    1982-01-01

    When homologous flares are broadly defined as having footpoint structures in common, it is found that a majority of flares fall into homologous sets. Filament eruptions and mass ejection in members of an homologous flare set show that maintainance of the magnetic structure is not a necessary condition for homology.

  12. Towards understanding solar flares

    NASA Technical Reports Server (NTRS)

    Acton, L. W.

    1982-01-01

    Instrumentation and spacecraft payloads developed at Lockheed for solar flare studies are reviewed, noting the significance of the observations for adding to a data base for eventual prediction of the occurrence of flares and subsequent radiation hazards to people in space. Developmental work on the two solar telescopes on board the Skylab pallet was performed at a Lockheed facility, as was the fabrication of very-large-area proportional counter for flights on the Aerobee rocket in 1967. The rocket work led to the fabrication of the Mapping X Ray Heliometer on the Orbiting Solar Observatory and the X Ray Polychromator for the Solar Maximum Mission. The Polychromator consists of a bent crystal spectrometer for high time resolution flare studies over a wide field of view, and a flat crystal spectrometer for simultaneous polychromatic imaging at 7 different X ray wavelengths.

  13. Solar flare model atmospheres

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.

    1993-01-01

    Solar flare model atmospheres computed under the assumption of energetic equilibrium in the chromosphere are presented. The models use a static, one-dimensional plane parallel geometry and are designed within a physically self-consistent coronal loop. Assumed flare heating mechanisms include collisions from a flux of non-thermal electrons and x-ray heating of the chromosphere by the corona. The heating by energetic electrons accounts explicitly for variations of the ionized fraction with depth in the atmosphere. X-ray heating of the chromosphere by the corona incorporates a flare loop geometry by approximating distant portions of the loop with a series of point sources, while treating the loop leg closest to the chromospheric footpoint in the plane-parallel approximation. Coronal flare heating leads to increased heat conduction, chromospheric evaporation and subsequent changes in coronal pressure; these effects are included self-consistently in the models. Cooling in the chromosphere is computed in detail for the important optically thick HI, CaII and MgII transitions using the non-LTE prescription in the program MULTI. Hydrogen ionization rates from x-ray photo-ionization and collisional ionization by non-thermal electrons are included explicitly in the rate equations. The models are computed in the 'impulsive' and 'equilibrium' limits, and in a set of intermediate 'evolving' states. The impulsive atmospheres have the density distribution frozen in pre-flare configuration, while the equilibrium models assume the entire atmosphere is in hydrostatic and energetic equilibrium. The evolving atmospheres represent intermediate stages where hydrostatic equilibrium has been established in the chromosphere and corona, but the corona is not yet in energetic equilibrium with the flare heating source. Thus, for example, chromospheric evaporation is still in the process of occurring.

  14. Fields, Flares, And Forecasts

    NASA Astrophysics Data System (ADS)

    Boucheron, L.; Al-Ghraibah, Amani; McAteer, J.; Cao, H.; Jackiewicz, J.; McNamara, B.; Voelz, D.; Calabro, B.; DeGrave, K.; Kirk, M.; Madadi, A.; Petsov, A.; Taylor, G.

    2011-05-01

    Solar active regions are the source of many energetic and geo-effective events such as solar flares and coronal mass ejections (CMEs). Understanding how these complex source regions evolve and produce these events is of fundamental importance, not only to solar physics, but also to the demands of space weather forecasting. We propose to investigate the physical properties of active region magnetic fields using fractal-, gradient-, neutral line-, emerging flux-, wavelet- and general image-based techniques, and to correlate them to solar activity. The combination of these projects with solarmonitor.org and the international Max Millenium Campaign presents an opportunity for accurate and timely flare predictions for the first time. Many studies have attempted to relate solar flares to their concomitant magnetic field distributions. However, a consistent, causal relationship between the magnetic field on the photosphere and the production of solar flares is unknown. Often the local properties of the active region magnetic field - critical in many theories of activity - are lost in the global definition of their diagnostics, in effect smoothing out variations that occur on small spatial scales. Mindful of this, our overall goal is to create measures that are sensitive to both the global and the small-scale nature of energy storage and release in the solar atmosphere in order to study solar flare prediction. This set of active region characteristics will be automatically explored for discriminating features through the use of feature selection methods. Such methods search a feature space while optimizing a criterion - the prediction of a flare in this case. The large size of the datasets used in this project make it well suited for an exploration of a large feature space. This work is funded through a New Mexico State University Interdisciplinary Research Grant.

  15. Valentines Day X2 Flare

    NASA Video Gallery

    Active region 1158 let loose with an X2.2 flare at 0153 UT or 8:50 pm ET on February 15, 2011, the largest flare since Dec. 2006 and the biggest flare so far in Solar Cycle 24. This video was taken...

  16. Activation of solar flares

    SciTech Connect

    Cargill, P.J.; Migliuolo, S.; Hood, A.W.

    1984-11-01

    The physics of the activation of two-ribbon solar flares via the MHD instability of coronal arcades is presented. The destabilization of a preflare magnetic field is necessary for a rapid energy release, characteristic of the impulsive phase of the flare, to occur. The stability of a number of configurations are examined, and the physical consequences and relative importance of varying pressure profiles and different sets of boundary conditions (involving field-line tying) are discussed. Instability modes, driven unstable by pressure gradients, are candidates for instability. Shearless vs. sheared equilibria are also discussed. (ESA)

  17. GAMMA-RAY BURST FLARES: ULTRAVIOLET/OPTICAL FLARING. I

    SciTech Connect

    Swenson, C. A.; Roming, P. W. A.; De Pasquale, M.; Oates, S. R.

    2013-09-01

    We present a previously unused method for the detection of flares in gamma-ray burst (GRB) light curves and use this method to detect flares in the ultraviolet/optical. The algorithm makes use of the Bayesian Information Criterion to analyze the residuals of the fitted light curve, removing all major features, and to determine the statistically best fit to the data by iteratively adding additional ''breaks'' to the light curve. These additional breaks represent the individual components of the detected flares: T{sub start}, T{sub stop}, and T{sub peak}. We present the detection of 119 unique flaring periods detected by applying this algorithm to light curves taken from the Second Swift Ultraviolet/Optical Telescope (UVOT) GRB Afterglow Catalog. We analyzed 201 UVOT GRB light curves and found episodes of flaring in 68 of the light curves. For those light curves with flares, we find an average number of {approx}2 flares per GRB. Flaring is generally restricted to the first 1000 s of the afterglow, but can be observed and detected beyond 10{sup 5} s. More than 80% of the flares detected are short in duration with {Delta}t/t of <0.5. Flares were observed with flux ratios relative to the underlying light curve of between 0.04 and 55.42. Many of the strongest flares were also seen at greater than 1000 s after the burst.

  18. Gamma-Ray Burst Flares: Ultraviolet/Optical Flaring. I.

    NASA Astrophysics Data System (ADS)

    Swenson, C. A.; Roming, P. W. A.; De Pasquale, M.; Oates, S. R.

    2013-09-01

    We present a previously unused method for the detection of flares in gamma-ray burst (GRB) light curves and use this method to detect flares in the ultraviolet/optical. The algorithm makes use of the Bayesian Information Criterion to analyze the residuals of the fitted light curve, removing all major features, and to determine the statistically best fit to the data by iteratively adding additional "breaks" to the light curve. These additional breaks represent the individual components of the detected flares: T start, T stop, and T peak. We present the detection of 119 unique flaring periods detected by applying this algorithm to light curves taken from the Second Swift Ultraviolet/Optical Telescope (UVOT) GRB Afterglow Catalog. We analyzed 201 UVOT GRB light curves and found episodes of flaring in 68 of the light curves. For those light curves with flares, we find an average number of ~2 flares per GRB. Flaring is generally restricted to the first 1000 s of the afterglow, but can be observed and detected beyond 105 s. More than 80% of the flares detected are short in duration with Δt/t of <0.5. Flares were observed with flux ratios relative to the underlying light curve of between 0.04 and 55.42. Many of the strongest flares were also seen at greater than 1000 s after the burst.

  19. Numerical modeling of the energy storage and release in solar flares

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Weng, F. S.

    1993-01-01

    This paper reports on investigation of the photospheric magnetic field-line footpoint motion (usually referred to as shear motion) and magnetic flux emerging from below the surface in relation to energy storage in a solar flare. These causality relationships are demonstrated by using numerical magnetohydrodynamic simulations. From these results, one may conclude that the energy stored in solar flares is in the form of currents. The dynamic process through which these currents reach a critical value is discussed as well as how these currents lead to energy release, such as the explosive events of solar flares.

  20. FLARE EFFICIENCY STUDY

    EPA Science Inventory

    The report gives results of a full-scale experimental study to determine the efficiencies of flare burners for disposing of hydrocarbon (HC) emissions from refinery and petrochemical processes. With primary objectives of determining the combustion efficiency and HC destruction ef...

  1. Gamma-ray burst flares: X-ray flaring. II

    SciTech Connect

    Swenson, C. A.; Roming, P. W. A.

    2014-06-10

    We present a catalog of 498 flaring periods found in gamma-ray burst (GRB) light curves taken from the online Swift X-Ray Telescope GRB Catalogue. We analyzed 680 individual light curves using a flare detection method developed and used on our UV/optical GRB Flare Catalog. This method makes use of the Bayesian Information Criterion to analyze the residuals of fitted GRB light curves and statistically determines the optimal fit to the light curve residuals in an attempt to identify any additional features. These features, which we classify as flares, are identified by iteratively adding additional 'breaks' to the light curve. We find evidence of flaring in 326 of the analyzed light curves. For those light curves with flares, we find an average number of ∼1.5 flares per GRB. As with the UV/optical, flaring in our sample is generally confined to the first 1000 s of the afterglow, but can be detected to beyond 10{sup 5} s. Only ∼50% of the detected flares follow the 'classical' definition of Δt/t ≤ 0.5, with many of the largest flares exceeding this value.

  2. An essay on sunspots and solar flares

    NASA Astrophysics Data System (ADS)

    Akasofu, S.-I.

    1984-11-01

    The author reviews some of the recent findings on large-scale magnetic fields and sunspots. Then, instead of relying on the hypothetical flux tube beneath the photosphere, he considers an amplification process of the observed large-scale fields by a dynamo process on the basis of the observed and possible photospheric shear flows. Thus, the photosphere is considered as an active medium, rather than the passive medium through which the hypothetical flux tube merely penetrates. Specifically, the author considers the dynamo process associated with vortex motions which can supply the power needed for the formation of sunspots from the observed weak field and the power needed for solar flares.

  3. Well-observed Dynamics of Flaring and Peripheral Coronal Magnetic Loops during an M-class Limb Flare

    NASA Astrophysics Data System (ADS)

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng; Wiegelmann, Thomas; Inhester, Bernd; Feng, Li

    2014-08-01

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases strongly suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.

  4. Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare

    SciTech Connect

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng; Feng, Li; Wiegelmann, Thomas; Inhester, Bernd

    2014-08-20

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases strongly suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.

  5. Magnetic reconnection and solar flare loops

    NASA Technical Reports Server (NTRS)

    Forbes, T. G.

    1987-01-01

    Reconnection models of the main phase of large solar flares are used to explain the energetics and the motions of the large flare loops that occur during this phase. Correct predictions for the density and temperature of the X-ray emitting loops are obtained by coupling magnetic reconnection with chromospheric ablation. In the reconnection models the ablation is driven by the thermal conduction of heat along magnetic field lines connecting the reconnection shocks in the corona with the flare ribbons in the chromosphere. Combining the compressible reconnection theory of Soward and Priest (1982) with the magnetohydrodynamic (MHD) subshock criteria of Coroniti (1970) shows that the Petschek-type slow-mode shocks in the vicinity of the x-line always dissociate into pairs of isothermal slow-mode subshocks and thermal conduction fronts. The rate of expansion of the loops is a function of the reconnection rate, and loops can be evolving self-similarly in time with their height increasing as sq root t and the reconnection rate decreasing as t to the minus 1.

  6. Radiative dominated cooling of the flare corona and transition region

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    1979-01-01

    Models in which radiation dominates cooling flare loops are investigated. The radiative models are found to predict a differential emission measure (Q) proportional to T to the (l+1) power, where l measures the dependence of the radiative loss coefficient on temperature, lamda (T) approximately T to the (-l) power. It is concluded that the radiative models are incapable of explaining the observed temperature dependence of Q for flare coronal and transitional plasma. The models suggest that large mass motions (velocities of the order of the sound speed) may be required.

  7. Solar Flare Physics

    NASA Technical Reports Server (NTRS)

    Schmahl, Edward J.; Kundu, Mukul R.

    2000-01-01

    During the past year we have been working with the HESSI (High Energy Solar Spectroscopic Imager) team in preparation for launch in early 2001. HESSI has as its primary scientific goal photometric imaging and spectroscopy of solar flares in hard X-rays and gamma-rays with an approx. 2 sec angular resolution, approx. keV energy resolution and approx. 2 s time resolution over the 6 keV to 15 MeV energy range. We have performed tests of the imager using a specially designed experiment which exploits the second-harmonic response of HESSI's sub-collimators to an artificial X-ray source at a distance of 1550 cm from its front grids. Figures show the response to X-rays at energies in the range where HESSI is expected to image solar flares. To prepare the team and the solar user community for imaging flares with HESSI, we have written a description of the major imaging concepts. This paper will be submitted for publication in a referred journal.

  8. RAPID SUNSPOT ROTATION ASSOCIATED WITH THE X2.2 FLARE ON 2011 FEBRUARY 15

    SciTech Connect

    Jiang Yunchun; Zheng Ruisheng; Yang Jiayan; Hong Junchao; Yi Bi; Yang Dan

    2012-01-01

    We present observations of sunspot evolution associated with the first X-class flare of the present solar cycle 24, which occurred in AR 11158 on 2011 February 15. The active region consisted of four emerging bipoles that showed complicated sunspot motion. The preceding spot of a bipole underwent the fastest movement. It not only passed through the following end of another bipole, thus causing a shearing motion, but also merged with the same-polarity spots and formed a single, larger umbra. This led to the formation of a {delta} configuration with an S-shaped neutral line, above which an extreme ultraviolet filament channel and a sigmoid formed and erupted to produce the flare. Along with the development of a clockwise (CW) spiral penumbra-filament pattern, the merged spot started rapid CW rotation around its umbral center 20 hr before the flare. The rotation persisted throughout the flare but stopped sharply about 1 hr after the flare ended, maintaining the twisted penumbra-filament pattern. The moving spot also caused continuous flux cancellation; in particular, its outer penumbra directly collided with small opposite-polarity spots only 100 minutes before the flare. When the shearing and rotational motions are main contributors to the energy buildup and helicity injection for the flare, the cancellation and collision might act as a trigger. Our observations support the idea that the rotation can be attributed to the emergence of twisted magnetic fields, as proposed in recent theories. Finally, the cause of its sudden halt is discussed.

  9. Energy release in solar flares

    NASA Technical Reports Server (NTRS)

    Brown, John C.; Correia, Emilia; Farnik, Frantisek; Garcia, Howard; Henoux, Jean-Claude; La Rosa, Ted N.; Machado, Marcos E. (Compiler); Nakajima, Hiroshi; Priest, Eric R.

    1994-01-01

    Team 2 of the Ottawa Flares 22 Workshop dealt with observational and theoretical aspects of the characteristics and processes of energy release in flares. Main results summarized in this article stress the global character of the flaring phenomenon in active regions, the importance of discontinuities in magnetic connectivity, the role of field-aligned currents in free energy storage, and the fragmentation of energy release in time and space.

  10. Evaporative cooling of flare plasma

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Sturrock, P. A.

    1978-01-01

    We investigate a one-dimensional loop model for the evaporative cooling of the coronal flare plasma. The important assumptions are that conductive losses dominate radiative cooling and that the evaporative velocities are small compared with the sound speed. We calculate the profile and evolution of the temperature and verify the accuracy of our assumptions for plasma parameters typical of flare regions. The model is in agreement with soft X-ray observations on the evolution of flare temperatures and emission measures. The effect of evaporation is to greatly reduce the conductive heat flux into the chromosphere and to enhance the EUV emission from the coronal flare plasma.

  11. A model solar flares and their homologous behavior

    SciTech Connect

    Choe, G.S.; Cheng, C.Z.

    2000-01-27

    A model describing physical processes of solar flares and their homologous behavior is presented based on resistive MHD simulations of magnetic arcade evolution subject to continuous shear-increasing footpoint motions. It is proposed in the model that the individual flaring process encompasses magnetic reconnection of arcade field lines, generation of magnetic islands in the magnetic arcade, and coalescence of magnetic islands. When a magnetic arcade is sheared, a current sheet is formed and magnetic reconnection can take place to form a magnetic island. A continuing increase of magnetic shear can trigger a new reconnection process and create another island in the underlying arcade below the magnetic island. The newborn island rises faster than the preceding island and merges with it to form one island. Before merging with the upper island is completed, the newborn island exhibits two different phases of rising motion: the first phase with a slower rising speed and the second phase wit h a faster rising speed. This is consistent with the Yohkoh observation by Ohyama and Shibata (1998) of X-ray plasma ejecta motion. The first phase, in which reconnection of line-tied field in the underlying arcade is important, can be regarded to be related with the preflare phase. In the second phase, the island coalescence takes place, which creates an elongated current sheet below and enhances the reconnection rate of the line-tied arcade field. This phase is interpreted as the impulsive phase or the flash phase of flares. The obtained reconnection electric field is large enough to accelerate electrons to an energy level higher than 10 keV, which is necessary for observed X-ray emissions. After merging of the islands is completed, magnetic reconnection continues in the current sheet under the integrated island for rather a long period, which can be considered as the main phase of flares. The sequence of all these processes is repeated with some time interval while a shear

  12. Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA

    SciTech Connect

    Dudík, J.; Del Zanna, G.; Mason, H. E.; Janvier, M.; Aulanier, G.; Schmieder, B.; Karlický, M. E-mail: mjanvier@maths.dundee.ac.uk

    2014-04-01

    We present SDO/AIA observations of an eruptive X-class flare of 2012 July 12, and compare its evolution with the predictions of a three-dimensional (3D) numerical simulation. We focus on the dynamics of flare loops that are seen to undergo slipping reconnection during the flare. In the Atmospheric Imaging Assembly (AIA) 131 Å observations, lower parts of 10 MK flare loops exhibit an apparent motion with velocities of several tens of km s{sup –1} along the developing flare ribbons. In the early stages of the flare, flare ribbons consist of compact, localized bright transition-region emission from the footpoints of the flare loops. A differential emission measure analysis shows that the flare loops have temperatures up to the formation of Fe XXIV. A series of very long, S-shaped loops erupt, leading to a coronal mass ejection observed by STEREO. The observed dynamics are compared with the evolution of magnetic structures in the 'standard solar flare model in 3D.' This model matches the observations well, reproducing the apparently slipping flare loops, S-shaped erupting loops, and the evolution of flare ribbons. All of these processes are explained via 3D reconnection mechanisms resulting from the expansion of a torus-unstable flux rope. The AIA observations and the numerical model are complemented by radio observations showing a noise storm in the metric range. Dm-drifting pulsation structures occurring during the eruption indicate plasmoid ejection and enhancement of the reconnection rate. The bursty nature of radio emission shows that the slipping reconnection is still intermittent, although it is observed to persist for more than an hour.

  13. DRAFTS: A DEEP, RAPID ARCHIVAL FLARE TRANSIENT SEARCH IN THE GALACTIC BULGE

    SciTech Connect

    Osten, Rachel A.; Sahu, Kailash; Kowalski, Adam; Hawley, Suzanne L.

    2012-07-20

    We utilize the Sagittarius Window Eclipsing Extrasolar Planet Search Hubble Space Telescope/Advanced Camera for Surveys data set for a Deep Rapid Archival Flare Transient Search to constrain the flare rate toward the older stellar population in the Galactic bulge. During seven days of monitoring 229,293 stars brighter than V = 29.5, we find evidence for flaring activity in 105 stars between V = 20 and V = 28. We divided the sample into non-variable stars and variable stars whose light curves contain large-scale variability. The flare rate on variable stars is {approx}700 times that of non-variable stars, with a significant correlation between the amount of underlying stellar variability and peak flare amplitude. The flare energy loss rates are generally higher than those of nearby well-studied single dMe flare stars. The distribution of proper motions is consistent with the flaring stars being at the distance and age of the Galactic bulge. If they are single dwarfs, then they span a range of Almost-Equal-To 1.0-0.25 M{sub Sun }. A majority of the flaring stars exhibit periodic photometric modulations with P < 3 days. If these are tidally locked magnetically active binary systems, then their fraction in the bulge is enhanced by a factor of {approx}20 compared to the local value. These stars may be useful for placing constraints on the angular momentum evolution of cool close binary stars. Our results expand the type of stars studied for flares in the optical band, and suggest that future sensitive optical time-domain studies will have to contend with a larger sample of flaring stars than the M dwarf flare stars usually considered.

  14. Observational evidence for thermal wave fronts in solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Simnett, G. M.; Smith, D. F.

    1985-01-01

    Images in 3.5-30 keV X-rays obtained during the first few minutes of seven solar flares show rapid motions. In each case X-ray emission first appeared at one end of a magnetic field structure, and then propagated along the field at a velocity between 800 and 1700 km/s. The observed X-ray structures were 45,000-230,000 km long. Simultaneous H-alpha images were available in three cases; they showed brightenings when the fast-moving fronts arrived at the chromosphere. The fast-moving fronts are interpreted as electron thermal conduction fronts since their velocities are consistent with conduction at the observed temperatures of 1-3 x 10 to the 7th K. The inferred conductive heat flux of up to 10-billion ergs/s sq cm accounts for most of the energy released in the flares, implying that the flares were primarily thermal phenomena.

  15. The flares of August 1972. [solar flare characteristics and spectra

    NASA Technical Reports Server (NTRS)

    Zirin, H.; Tanaka, K.

    1973-01-01

    Observations of the August, 1972 flares at Big Bear and Tel Aviv, involving monochromatic movies, magnetograms, and spectra, are analyzed. The region (McMath 11976) showed inverted polarity from its inception on July 11; the great activity was due to extremely high shear and gradients in the magnetic field, as well as a constant invasion of one polarity into the opposite; observations in lambda 3835 show remarkable fast flashes in the impulsive flare of 18:38 UT on Aug. 2 with lifetimes of 5 sec, which may be due to dumping of particles in the lower chromosphere. Flare loops show evolutionary increases of their tilts to the neutral line in the flares of Aug. 4 and 7. Spectroscopic observations show red asymmetry and red shift of the H alpha emission in the flash phase of the Aug. 7 flare, as well as substantial velocity shear in the photosphere during the flare, somewhat like earthquake movement along a fault. Finally the total H alpha emission of the Aug. 7 flare could be measured accurately as about 2.5 x 10 to the 30th power erg, considerably less than coarser previous estimates for great flares.

  16. Nuclear processes in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1982-01-01

    The theory of solar gamma-ray line production is reviewed and new calculations of line production yields are presented. Observations, carried out with gamma-ray spectrometers on OSO-7, HEAO-1, HEAO-3 and SMM are reviewed and compared with theory. These observations provide direct evidence for nuclear reactions in flares and furnish unique information on particle acceleration and flare mechanisms.

  17. Solar flare discovery

    NASA Technical Reports Server (NTRS)

    Hudson, Hugh S.

    1987-01-01

    This paper considers the discoveries that have appreciably changed our understanding of the physics of solar flares. A total of 42 discoveries from all disciplines, ranging from Galileo's initial observation of faculae to the recent discovery of strong limb brightening in 10-MeV gamma-radiation, are identified. The rate of discovery increased dramatically over the past four decades as new observational tools became available. The assessment of significance suggests that recent discoveries -though more numerous - are individually less significant; perhaps this is because the minor early discoveries tend to be taken for granted.

  18. Parameterization of solar flare dose

    SciTech Connect

    Lamarche, A.H.; Poston, J.W.

    1996-12-31

    A critical aspect of missions to the moon or Mars will be the safety and health of the crew. Radiation in space is a hazard for astronauts, especially high-energy radiation following certain types of solar flares. A solar flare event can be very dangerous if astronauts are not adequately shielded because flares can deliver a very high dose in a short period of time. The goal of this research was to parameterize solar flare dose as a function of time to see if it was possible to predict solar flare occurrence, thus providing a warning time. This would allow astronauts to take corrective action and avoid receiving a dose greater than the recommended limit set by the National Council on Radiation Protection and Measurements (NCRP).

  19. Fine Structure in Solar Flares.

    PubMed

    Warren

    2000-06-20

    We present observations of several large two-ribbon flares observed with both the Transition Region and Coronal Explorer (TRACE) and the soft X-ray telescope on Yohkoh. The high spatial resolution TRACE observations show that solar flare plasma is generally not confined to a single loop or even a few isolated loops but to a multitude of fine coronal structures. These observations also suggest that the high-temperature flare plasma generally appears diffuse while the cooler ( less, similar2 MK) postflare plasma is looplike. We conjecture that the diffuse appearance of the high-temperature flare emission seen with TRACE is due to a combination of the emission measure structure of these flares and the instrumental temperature response and does not reflect fundamental differences in plasma morphology at the different temperatures. PMID:10859129

  20. High-resolution X-ray spectra of solar flares. IV - General spectral properties of M type flares

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Kreplin, R. W.; Mariska, J. T.

    1980-01-01

    The spectral characteristics in selected narrow regions of the X-ray spectrum of class M solar flares are analyzed. High-resolution spectra in the ranges 1.82-1.97, 2.98-3.07, 3.14-3.24 and 8.26-8.53 A, which contain lines important for the determination of electron temperature and departure from ionization equilibrium, were recorded by spaceborne Bragg crystal spectrometers. Temperatures of up to 20,000,000 K are obtained from line ratios during flare rise phases in M as well as X flares, while in the decay phase the calcium temperature can be as low as 8,000,000 K, which is significantly lower than in X flares. Large nonthermal motions (on the order of 130 km/sec at most) are also observed in M as well as X flares, which are largest during the soft X-ray rise phase. Finally, it is shown that the method proposed by Gabriel and Phillips (1979) for detecting departures of electrons from Maxwellian velocity distributions is not sufficiently sensitive to give reliable results for the present data.

  1. High-Cadence and High-Resolution Halpha Imaging Spectroscopy of a Circular Flare's Remote Ribbon with IBIS

    NASA Astrophysics Data System (ADS)

    Deng, Na; Tritschler, A.; Jing, J.; Chen, X.; Liu, C.; Reardon, K. P.; Denker, C.; Xu, Y.; Wang, H.

    2013-07-01

    We present an unprecedented high-resolution halpha imaging spectroscopic observation of a C4.1 flare taken with IBIS on 2011 October 22. The flare consists of a main circular ribbon that occurred in a parasitic magnetic configuration and a remote ribbon that was observed by the IBIS. Such a circular-ribbon flare with a remote brightening is predicted in 3D fan-spine reconnection but so far has been rarely reported. During the flare impulsive phase, we define "core" and "halo" structures in the observed ribbon. Examining the halpha emission spectra averaged in the flare core and halo areas, we find that only those from the flare cores show typical nonthermal electron beam heating characteristics. These characteristics include: broad and centrally reversed emission spectra, excess emission in the red wing with regard to the blue wing (i.e., red asymmetry), and redshifted bisectors of the emission spectra. We also observe rather quick timescales for the heating (30 s) and cooling (14--33 s) in the flare core locations. Therefore, we suggest that the flare cores revealed by IBIS track the sites of electron beam precipitation with exceptional spatial and temporal resolution. The flare cores show two-stage motion (a parallel motion along the ribbon followed by an expansion motion perpendicular to the ribbon) during the two impulsive phases of the flare. Some cores jump quickly (30 km/s) between discrete magnetic elements implying reconnection involving different flux tubes. We observe a very high temporal correlation (>0.9) between the integrated halpha and HXR emission during the flare impulsive phase. A short time delay (4.6 s) is also found in the halpha emission spikes relative to HXR bursts. The ionization timescale of the cool chromosphere and the extra time taken for the electrons to travel to the remote ribbon site may contribute to this delay.

  2. Solar Flares Observed with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2004-01-01

    Solar flares are impressive examples of explosive energy release in unconfined, magnetized plasma. It is generally believed that the flare energy is derived from the coronal magnetic field. However, we have not been able to establish the specific energy release mechanism(s) or the relative partitioning of the released energy between heating, particle acceleration (electrons and ions), and mass motions. NASA's RHESSI Mission was designed to study the acceleration and evolution of electrons and ions in flares by observing the X-ray and gamma-ray emissions these energetic particles produce. This is accomplished through the combination of high-resolution spectroscopy and spectroscopic imaging, including the first images of flares in gamma rays. RHESSI has observed over 12,000 solar flares since its launch on February 5, 2002. I will demonstrate how we use the RHESSI spectra to deduce physical properties of accelerated electrons and hot plasma in flares. Using images to estimate volumes, w e typically find that the total energy in accelerated electrons is comparable to that in the thermal plasma. I will also present flare observations that provide strong support for the presence of magnetic reconnection in a large-scale, vertical current sheet in the solar corona. RHESSI observations such as these are allowing us to probe more deeply into the physics of solar flares.

  3. MAGNETIC RECONNECTION DURING THE TWO-PHASE EVOLUTION OF A SOLAR ERUPTIVE FLARE

    SciTech Connect

    Joshi, Bhuwan; Cho, K.-S.; Bong, S.-C.; Kim, Y.-H.; Veronig, Astrid; Moon, Y.-J.; Lee, Jeongwoo; Manoharan, P. K.

    2009-12-01

    We present a detailed multi-wavelength analysis and interpretation of the evolution of an M7.6 flare that occurred near the southeast limb on 2003 October 24. Pre-flare images at TRACE 195 A show that the bright and complex system of coronal loops already existed at the flaring site. The X-ray observations of the flare taken from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) spacecraft reveal two phases of the flare evolution. The first phase is characterized by the altitude decrease of the X-ray looptop (LT) source for approx11 minutes. Such a long duration of the descending LT source motion is reported for the first time. The EUV loops, located below the X-ray LT source, also undergo contraction with similar speed (approx15 km s{sup -1}) in this interval. During the second phase the two distinct hard X-ray footpoint (FP) sources are observed which correlate well with UV and Halpha flare ribbons. The X-ray LT source now exhibits upward motion as anticipated from the standard flare model. The RHESSI spectra during the first phase are soft and indicative of hot thermal emission from flaring loops with temperatures T > 25 MK at the early stage. On the other hand, the spectra at high energies (epsilon approx> 25 keV) follow hard power laws during the second phase (gamma = 2.6-2.8). We show that the observed motion of the LT and FP sources can be understood as a consequence of three-dimensional magnetic reconnection at a separator in the corona. During the first phase of the flare, the reconnection releases an excess of magnetic energy related to the magnetic tensions generated before a flare by the shear flows in the photosphere. The relaxation of the associated magnetic shear in the corona by the reconnection process explains the descending motion of the LT source. During the second phase, the ordinary reconnection process dominates describing the energy release in terms of the standard model of large eruptive flares with increasing FP separation

  4. Gage tests tube flares quickly and accurately

    NASA Technical Reports Server (NTRS)

    Griffin, F. D.

    1966-01-01

    Flared tube gage with a test cone that is precisely made with a tapering surface to complement the tube flare is capable of determining the accuracy of a tube flare efficiently and economically. This device should improve the speed, efficiency, and accuracy of tube flare inspections.

  5. Ultraviolet flare on Lambda Andromedae

    NASA Technical Reports Server (NTRS)

    Baliunas, S. L.; Guinan, E. F.; Dupree, A. K.

    1984-01-01

    On November 5, 6, 1982, a luminous, flarelike brightening of the ultraviolet emissions was observed with IUE from the active RS CVn type star Lambda And during the phase of rotation period corresponding to maximum area coverage of the visible hemisphere by starspots and active regions. Enhancements during the flare in the ultraviolet emission lines as large as factors of several and in the ultraviolet continuum up to 80 percent persisted for over 5 hours. The bulk of the radiative output of the flare occurred in Mg II h and k and H I Ly-alpha. Because of the long duration and extreme luminosity of the event, the energy radiated by the flare alone is in excess of 10 to the 35th ergs just in the ultraviolet region. This is the most energetic stellar flare ever recorded in the ultraviolet. In addition, it is the first ultraviolet flare observed from a giant star. In comparison to the largest solar flares, the flare on Lambda And is at least three orders of magnitude more energetic in similar emission lines.

  6. SCATTERING POLARIZATION IN SOLAR FLARES

    SciTech Connect

    Štěpán, Jiří; Heinzel, Petr

    2013-11-20

    There is ongoing debate about the origin and even the very existence of a high degree of linear polarization of some chromospheric spectral lines observed in solar flares. The standard explanation of these measurements is in terms of the impact polarization caused by non-thermal proton and/or electron beams. In this work, we study the possible role of resonance line polarization due to radiation anisotropy in the inhomogeneous medium of the flare ribbons. We consider a simple two-dimensional model of the flaring chromosphere and we self-consistently solve the non-LTE problem taking into account the role of resonant scattering polarization and of the Hanle effect. Our calculations show that the horizontal plasma inhomogeneities at the boundary of the flare ribbons can lead to a significant radiation anisotropy in the line formation region and, consequently, to a fractional linear polarization of the emergent radiation of the order of several percent. Neglecting the effects of impact polarization, our model can provide a clue for resolving some of the common observational findings, namely: (1) why a high degree of polarization appears mainly at the edges of the flare ribbons; (2) why polarization can also be observed during the gradual phase of a flare; and (3) why polarization is mostly radial or tangential. We conclude that radiation transfer in realistic multi-dimensional models of solar flares needs to be considered as an essential ingredient for understanding the observed spectral line polarization.

  7. Evaporative cooling of flare plasma

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Sturrock, P. A.

    1976-01-01

    A one-dimensional loop model for the evaporative cooling of the coronal flare plasma was investigated. Conductive losses dominated radiative cooling, and the evaporative velocities were small compared to the sound speed. The profile and evolution of the temperature were calculated. The model was in agreement with soft X-ray observations on the evolution of flare temperatures and emission measures. The effect of evaporation was to greatly reduce the conductive heat flux into the chromosphere and to enhance the EUV emission from the coronal flare plasma.

  8. Flare physics at high energies

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1990-01-01

    High-energy processes, involving a rich variety of accelerated particle phenomena, lie at the core of the solar flare problem. The most direct manifestation of these processes are high-energy radiations, gamma rays, hard X-rays and neutrons, as well as the accelerated particles themselves, which can be detected in interplanetary space. In the study of astrophysics from the moon, the understanding of these processes should have great importance. The inner solar system environment is strongly influenced by activity on the sun; the physics of solar flares is of great intrinsic interest; and much high-energy astrophysics can be learned from investigations of flare physics at high energies.

  9. Solar Flare Physics

    NASA Technical Reports Server (NTRS)

    Schmahl, Edward J.; Kundu, Mukul R.

    1998-01-01

    We have continued our previous efforts in studies of fourier imaging methods applied to hard X-ray flares. We have performed physical and theoretical analysis of rotating collimator grids submitted to GSFC(Goddard Space Flight Center) for the High Energy Solar Spectroscopic Imager (HESSI). We have produced simulation algorithms which are currently being used to test imaging software and hardware for HESSI. We have developed Maximum-Entropy, Maximum-Likelihood, and "CLEAN" methods for reconstructing HESSI images from count-rate profiles. This work is expected to continue through the launch of HESSI in July, 2000. Section 1 shows a poster presentation "Image Reconstruction from HESSI Photon Lists" at the Solar Physics Division Meeting, June 1998; Section 2 shows the text and viewgraphs prepared for "Imaging Simulations" at HESSI's Preliminary Design Review on July 30, 1998.

  10. Building Big Flares: Constraining Generating Processes of Solar Flare Distributions

    NASA Astrophysics Data System (ADS)

    Wyse Jackson, T.; Kashyap, V.; McKillop, S.

    2015-12-01

    We address mechanisms which seek to explain the observed solar flare distribution, dN/dE ~ E1.8. We have compiled a comprehensive database, from GOES, NOAA, XRT, and AIA data, of solar flares and their characteristics, covering the year 2013. These datasets allow us to probe how stored magnetic energy is released over the course of an active region's evolution. We fit power-laws to flare distributions over various attribute groupings. For instance, we compare flares that occur before and after an active region reaches its maximum area, and show that the corresponding flare distributions are indistinguishable; thus, the processes that lead to magnetic reconnection are similar in both cases. A turnover in the distribution is not detectable at the energies accessible to our study, suggesting that a self-organized critical (SOC) process is a valid mechanism. However, we find changes in the distributions that suggest that the simple picture of an SOC where flares draw energy from an inexhaustible reservoir of stored magnetic energy is incomplete. Following the evolution of the flare distribution over the lifetimes of active regions, we find that the distribution flattens with time, and for larger active regions, and that a single power-law model is insufficient. This implies that flares that occur later in the lifetime of the active region tend towards higher energies. We conclude that the SOC process must have an upper bound. Increasing the scope of the study to include data from other years and more instruments will increase the robustness of these results. This work was supported by the NSF-REU Solar Physics Program at SAO, grant number AGS 1263241, NASA Contract NAS8-03060 to the Chandra X-ray Center and by NASA Hinode/XRT contract NNM07AB07C to SAO

  11. Energetic electrons and photospheric electric currents during solar flares

    NASA Astrophysics Data System (ADS)

    Musset, Sophie; Vilmer, Nicole; Bommier, Veronique

    2016-07-01

    It is currently admitted that solar flares are powered by magnetic energy previously stored in the coronal magnetic field. During magnetic reconnection processes, this energy is transferred to particle acceleration, plasma motion and plasma heating. Magnetic energy release is likely to occur on coronal currents sheets along regions of strong gradient of magnetic connectivity. These coronal current sheets can be traced by their footprints at the surface on the Sun, i.e. by photospheric current ribbons. We aim to study the relation between these current ribbons observed at the photospheric level, tracing the coronal current sheets, and the flare energetic electrons traced by their X-ray emissions. The photospheric magnetic field and vertical current density have been calculated from SDO/HMI spectropolarimetric data with the UNNOFIT inversion and Metcalf disambiguation codes, while the X-ray images and spectra have been reconstructed from RHESSI data. In a first case, the GOES X2.2 flare of February 15, 2011, a spatial correlation is observed between the photospheric current ribbons and the coronal X-ray emissions from energetic electrons. Moreover, a conjoint evolution of both the photospheric currents and the X-ray emission is observed during the course of the flare. Both results are interpreted as consequences of the magnetic reconnection in coronal current sheets, and propagation of the reconnection sites to new structures during the flare, leading to new X-ray emission and local increase of the photospheric currents (Musset et al., 2015). We shall discuss here similar results obtained for other X-class flares.

  12. Multichannel spectrophotometry of stellar flares

    NASA Technical Reports Server (NTRS)

    Mochnacki, S. W.; Zirin, H.

    1980-01-01

    Stellar flares have been observed using the 32 channel spectrophotometer on the 5 m telescope. Net flare fluxes in the region 3200-7000 A are presented. A simple model of blackbody radiation and hydrogen recombination emission appears to fit the continuum points well. Owing to vignetting problems, only the region between 4200 and 7000 A was used for a detailed fit to the Planck function to obtain apparent temperatures and effective areas. The rise of each flare was associated with an increase of the area, while the initial steep decline of the light was associated with a similar decrease of the blackbody temperature. The maximum temperatures, coincident with maximum light, were 7500-9500 K, similar to values for solar flares. The hydrogen line emission rose simultaneously with the continuum but declined more slowly. The ratio of H sub gamma to H sub alpha was about 1.5 at the peak, declining to about 1.0 after the peak.

  13. Chandra Monitors the Flaring Crab

    NASA Video Gallery

    Scientists hoped that NASA's Chandra X-ray Observatory would locate X-ray sources correlated to the gamma-ray flares seen by Fermi and Italy's AGILE satellites. Two observations were made during th...

  14. Particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Forman, M. A.

    1987-01-01

    The most direct signatures of particle acceleration in flares are energetic particles detected in interplanetary space and in the Earth atmosphere, and gamma rays, neutrons, hard X-rays, and radio emissions produced by the energetic particles in the solar atmosphere. The stochastic and shock acceleration theories in flares are reviewed and the implications of observations on particle energy spectra, particle confinement and escape, multiple acceleration phases, particle anistropies, and solar atmospheric abundances are discussed.

  15. Simulating VIIRS Observed Gas Flare

    NASA Astrophysics Data System (ADS)

    Hsu, F. C.

    2015-12-01

    VIIRS Nightfire (VNF) had been proved being able to effectively detect gas flares at night, and characterize their temperature and source size. [1] However, limited access to generally confidential gas flare operation measurements made it difficult to verify the output. Although flared gas volume is occasionally available, it is not common to log the temperature and flames size which directly links to VNF output. To understand the mechanism of gas flare and how VIIRS perceives the event, a platform is proposed to simulate the gas flare being observed by VIIRS. The methodology can be described in three steps. (1) Use CFD simulation software ISIS-3D to simulate a simple gas flare. [2] Scalar fields of temperature and species concentration related to combustion are extracted from the simulation. The instantaneous scalar can be determined from time-averaging or guess by stochastic time and space series (TASS) from single-point statistics [3]. (2) Model spectral radiance intensity of simulated gas flare using RADCAL. [4] RADCAL developed by NIST can accurately model the spectral radiance emitted on the direction of lineof-sight given the spatial profile of temperature and concentration of species. (3) Use radiative transfer modeling to calculate the energy propagated to VIIRS. The modeled radiation will then be weighted by the MODTRAN [5] modeled transmissivity over predefined atmosphere to the satellite, with geometrical effects considered. Such platform can help understanding how exactly VNF is measuring gas flares, and thus lead to more precise characterization of combustion events. [1] C. D. Elvidge et al, Remote Sensing, 2013[2] IRSN ISIS-3D[3] M. E. Kounalakis et al, ASME J. Heat Transfer, 1991 [4] W. L. Grosshandler, NIST Technical Note 1402, 1993 [5] A. Berk et al, MODTRAN 5.2.0.0 User's Manual

  16. SIMULATING THE EFFECTS OF INITIAL PITCH-ANGLE DISTRIBUTIONS ON SOLAR FLARES

    SciTech Connect

    Winter, Henry D.; Reeves, Katharine K.; Martens, Petrus

    2011-07-10

    In this work, we model both the thermal and non-thermal components of solar flares. The model we use, HYLOOP, combines a hydrodynamic equation solver with a non-thermal particle tracking code to simulate the thermal and non-thermal dynamics and emission of solar flares. In order to test the effects of pitch-angle distribution on flare dynamics and emission, a series of flares is simulated with non-thermal electron beams injected at the loop apex. The pitch-angle distribution of each beam is described by a single parameter and allowed to vary from flare to flare. We use the results of these simulations to generate synthetic hard and soft X-ray emissions (HXR and SXR). The light curves of the flares in Hinode's X-ray Telescope passbands show a distinct signal that is highly dependent on pitch-angle distribution. The simulated HXR emission in the 3-6 keV bandpass shows the formation and evolution of emission sources that correspond well to the observations of pre-impulsive flares. This ability to test theoretical models of thermal and non-thermal flare dynamics directly with observations allows for the investigation of a wide range of physical processes governing the evolution of solar flares. We find that the initial pitch-angle distribution of non-thermal particle populations has a profound effect on loop top HXR and SXR emission and that apparent motion of HXR is a natural consequence of non-thermal particle evolution in a magnetic trap.

  17. Thermal instability in post-flare plasmas

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    1976-01-01

    The cooling of post-flare plasmas is discussed and the formation of loop prominences is explained as due to a thermal instability. A one-dimensional model was developed for active loop prominences. Only the motion and heat fluxes parallel to the existing magnetic fields are considered. The relevant size scales and time scales are such that single-fluid MHD equations are valid. The effects of gravity, the geometry of the field and conduction losses to the chromosphere are included. A computer code was constructed to solve the model equations. Basically, the system is treated as an initial value problem (with certain boundary conditions at the chromosphere-corona transition region), and a two-step time differencing scheme is used.

  18. Modeling solar flare hard X-ray images and spectra observed with RHESSI

    NASA Astrophysics Data System (ADS)

    Sui, Linhui

    2004-12-01

    predictions of the standard flare models: the downward motion of flare loops in the early impulsive phase of each flare, and an initially stationary coronal source above the loops. These features are believed to be related to the formation and development of a current sheet. In particular, the downward loop motion seems to be a common phenomenon in flares, suggesting the necessity for modifications to the existing standard flare models. Finally, thanks to the broad energy coverage of the RHESSI spectra, a low- energy cutoff of 28(+/-2) keV in the nonthermal electron distribution was determined for the April 15, 2002, flare. As a result, the energy carried by the nonthermal electrons is found to be comparable to the thermal energy of the flare, but one order of magnitude larger than the kinetic energy of the associated coronal mass ejection. The method used to deduce the electron low- energy cutoff will be useful in the analyses of similar events.

  19. Starspots on flare stars

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    Sizes of starspots on flare stars can be derived from the author's convection-cell hypothesis. The sizes are in fair agreement with those observed on YY Gem, CC Eri, and BY Dra by Bopp and Evans (1973). The hypothesis predicts that periodic brightness variations due to starspots are restricted to stars brighter than a critical absolute visual magnitude. A convective model of a starspot on YY Gem has been computed, assuming that the missing flux is in the form of Alfven waves. It is found that the surface field must exceed 10,000 G, and is probably less than about 30,000 G. With a surface field of 20,000 G, the effective temperature of the spot is in the range from 1590 to 1890 K, depending on the field gradient. These figures are to be compared with an effective temperature of 2000 K estimated from observations by Bopp and Evans. Efficient dynamo action is shown to be a possible mechanism for generating such large surface fields. There is a possibility that tidal effects may influence starspot formation.

  20. THE SOLAR FLARE IRON ABUNDANCE

    SciTech Connect

    Phillips, K. J. H.; Dennis, B. R. E-mail: Brian.R.Dennis@nasa.gov

    2012-03-20

    The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in RHESSI X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz., an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe) = 7.91 {+-} 0.10 (on a logarithmic scale, with A(H) = 12) or 2.6 {+-} 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe) has important implications for radiation loss curves, which are estimated.

  1. Largest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The largest solar flare ever recorded occurred at 4:51 p.m. EDT, on Monday, April 2, 2001. as Observed by the Solar and Heliospheric Observatory (SOHO) satellite. Solar flares, among the solar systems mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds, solar flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. The recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Second to the most severe R5 classification of radio blackout, this flare produced an R4 blackout as rated by the NOAA SEC. This classification measures the disruption in radio communications. Launched December 2, 1995 atop an ATLAS-IIAS expendable launch vehicle, the SOHO is a cooperative effort involving NASA and the European Space Agency (ESA). (Image courtesy NASA Goddard SOHO Project office)

  2. Magnetic reconnection in solar flares

    NASA Technical Reports Server (NTRS)

    Forbes, T. G.

    1991-01-01

    The magnetic energy stored in the corona is the only plausible source for the energy released during large solar flares. During the last 20 years most theoretical work has concentrated on models which store magnetic energy in the corona in the form of electrical currents, and a major goal of present day research is to understand how these currents are created, and then later dissipated during a flare. Another important goal is to find a flare model which can eject magnetic flux into interplanetary space. Although many flares do not eject magnetic flux, those which do are of special importance for solar-terrestrial relations since the ejected flux can have dramatic effects if it hits the Earth's magnetosphere. Three flare models which have been extensively investigated are the emerging-flux model, the sheared-arcade model, and the magnetic-flux-rope model. All of these models can store and release magnetic energy efficiently provided that rapid magnetic reconnection occurs. However, only the magnetic-flux-rope model appears to provide a plausible mechanism for ejecting magnetic flux into interplanetary space.

  3. A unified view of coronal loop contraction and oscillation in flares

    NASA Astrophysics Data System (ADS)

    Russell, A. J. B.; Simões, P. J. A.; Fletcher, L.

    2015-09-01

    Context. Transverse loop oscillations and loop contractions are commonly associated with solar flares, but the two types of motion have traditionally been regarded as separate phenomena. Aims: We present an observation of coronal loops that contract and oscillate following the onset of a flare. We aim to explain why both behaviours are seen together and why only some of the loops oscillate. Methods: A time sequence of SDO/AIA 171 Å images is analysed to identify the positions of coronal loops following the onset of the M6.4 flare SOL2012-03-09T03:53. We focus on five loops in particular, all of which contract during the flare, with three of them oscillating as well. A simple model is then developed for the contraction and oscillation of a coronal loop. Results: We propose that coronal loop contractions and oscillations can occur in a single response to removal of magnetic energy from the corona. Our model reproduces the various types of loop motion observed and explains why the highest loops oscillate during their contraction, while no oscillation is detected for the shortest contracting loops. The proposed framework suggests that loop motions can be used as a diagnostic for the removal of coronal magnetic energy by flares, while rapid decrease in coronal magnetic energy is a newly identified excitation mechanism for transverse loop oscillations. Appendices are available in electronic form at http://www.aanda.org Warning, no authors found for 2015A&A...581A..14.

  4. IMPLOSION OF CORONAL LOOPS DURING THE IMPULSIVE PHASE OF A SOLAR FLARE

    SciTech Connect

    Simões, P. J. A.; Fletcher, L.; Hudson, H. S.; Russell, A. J. B. E-mail: lyndsay.fletcher@glasgow.ac.uk E-mail: hhudson@ssl.berkeley.edu

    2013-11-10

    We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwise) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the coronal mass ejection and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare impulsive phase. We add to the phenomenology by noting the presence of oscillatory variations revealed by Geostationary Operational Environmental Satellite soft X-rays (SXR) and spatially integrated EUV emission at 94 and 335 Å. We identify pulsations of ≈60 s in SXR and EUV data, which we interpret as persistent, semi-regular compressions of the flaring core region which modulate the plasma temperature and emission measure. The loop oscillations, observed over a large region, also allow us to provide rough estimates of the energy temporarily stored in the eigenmodes of the active-region structure as it approaches its new equilibrium.

  5. Anvil for Flaring PCB Guide Pins

    NASA Technical Reports Server (NTRS)

    Winn, E.; Turner, R.

    1985-01-01

    Spring-loaded anvil results in fewer fractured pins. New anvil for flaring guide pins in printed-circuit boards absorbs approximately 80 percent of press force. As result fewer pins damaged, and work output of flaring press greatly increased.

  6. What's an Asthma Flare-Up?

    MedlinePlus

    ... Things to Know About Zika & Pregnancy What's an Asthma Flare-Up? KidsHealth > For Parents > What's an Asthma ... of a straw that's being pinched. Causes of Asthma Flare-Ups People with asthma have airways that ...

  7. Spectral Diagnostics and Radiative Hydrodynamics of Solar Flares

    NASA Astrophysics Data System (ADS)

    Cheng, J. X.

    2011-03-01

    Solar flares are one of the most significant active phenomena in the solar atmosphere. It is involved in very complicated physical processes, including energy release, plasma instability, acceleration and propagation of energetic particles, radiation and dynamics of the flaring atmosphere, mass motions and ejections, and so on. Enhanced radiation during flares spans virtually the entire electromagnetic spectrum originating from different layers of the solar atmosphere. High energetic particles and strong radiations that are produced during the flare eruptions play a major role in space weather. Therefore, it is very important and necessary to study the mechanisms of solar flares. In this thesis, combined with ground and space observations, the theoretical calculations are used to study the spectral features and radiation mechanisms of solar flares. In particular, our research is concentrated on the diagnostics of non-thermal processes and origin of the white-light flares. The main contents are described as follows: (1) Different chromospheric lines are used to diagnose the heating mechanisms in flares. We calculate the Hα and Ca II 8542 Å line profiles based on four different atmospheric models, including the effects of non-thermal electron beams with various energy fluxes. These two lines have different responses to the thermal and non-thermal effects, and can be used to diagnose the thermal and non-thermal heating processes. We apply our method to an X-class flare occurred on 2001 October 19 and find that the non-thermal effects at the outer edge of the flare ribbon are more notable than that at the inner edge, while the temperature at the inner edge seems higher. On the other hand, the results show that non-thermal effects increase rapidly in the rise phase and decrease quickly in the decay phase, but the atmospheric temperature can still keep relatively high for some time after getting to its maximum. For the two kernels that we analyze, the maximum energy

  8. Observations and Models of the Dynamical Evolution of Solar Flares

    NASA Astrophysics Data System (ADS)

    Grigis, Paolo C.

    2006-11-01

    -hard-soft behavior. This simple approach yields plausible best-fit model parameters for about 77% of the 141 events consisting of rise and decay phases of individual hard X-ray spikes. This success suggests that stochastic acceleration is a viable mechanism to explain the observed spectral evolution. Therefore, a recent stochastic acceleration model, the transit-time damping acceleration scenario, was chosen for further investigation. A mechanism that accounts for particle trapping in the accelerator was added in order to account for changes in the spectral hardness. The model predictions for the spectral evolution were compared with spectral observations of emph{looptop} hard X-ray sources, delivering a snapshot of the particles still residing in the accelerator. A novel parameter was used for the comparison, the emph{pivot point} (that is, a common crossing point of the accelerated particle spectra at different times). The model computations show the presence of a pivot point at an energy of 10 keV. This value can be brought in agreement with the observed value of 20 keV by enhanced trapping through an electric potential. Lastly, some puzzling observations of the motion of hard X-ray sources during an impulsive M class flare are reported. The double sources, interpreted as footpoints of magnetic loops, show continuous motion along an arcade of magnetic loops, contradicting the predictions of the translation invariant 2.5D reconnection models, where motion perpendicular to the arcade is expected. Therefore, the development of more realistic 3D models is needed to account for such behavior.

  9. Chasing White-Light Flares

    NASA Astrophysics Data System (ADS)

    Hudson, H. S.

    2016-06-01

    In this memoir I describe my life in research, mostly in the area of solar physics. The recurring theme is "white-light flares," and several sections of this paper deal with this and related phenomena; I wind up describing how I see the state of the art in this still-interesting and crucially important (as it has been since 1859) area of flare research. I also describe my participation in two long-lived satellite programs dedicated to solar observations (Yohkoh and RHESSI) and elaborate on their discoveries. These have both helped with white-light flares both directly and also with closely related X-ray and γ-ray emissions), with the result that this article leans heavily in that direction.

  10. Model of slowly evolving flare.

    NASA Astrophysics Data System (ADS)

    Chiuderi Drago, F.; Landini, M.; Monsignori Fossi, B. C.

    A gradual rise and fall flare with a duration of about one hour was observed on June 10, 1980 in the radio (Toyokawa and VLA), optical (Bing Bear) and XUV (SMM satellite) ranges of wavelengths. The flare developed as a large loop connecting two regions of opposite polarity in a pre-existing active region. A model of the differential emission measure of the loop observed at three different stages of the flare is deduced from the analysis of the XUV images in C IV (1549 Å), O VIII (18.97 Å), Ne IX (13.45 Å), Mg XI (9.17 Å) and Si XIII (6.65 Å) emission lines. The differential emission measure as a function of temperature is controlled by the conductive flux via the temperature gradient; the evaluation of the divergence of the conductive flux is used in the energy balance to have information on the power deposition function.

  11. Chasing White-Light Flares

    NASA Astrophysics Data System (ADS)

    Hudson, H. S.

    2016-05-01

    In this memoir I describe my life in research, mostly in the area of solar physics. The recurring theme is "white-light flares," and several sections of this paper deal with this and related phenomena; I wind up describing how I see the state of the art in this still-interesting and crucially important (as it has been since 1859) area of flare research. I also describe my participation in two long-lived satellite programs dedicated to solar observations ( Yohkoh and RHESSI) and elaborate on their discoveries. These have both helped with white-light flares both directly and also with closely related X-ray and γ-ray emissions), with the result that this article leans heavily in that direction.

  12. 6Li from Solar Flares.

    PubMed

    Ramaty; Tatischeff; Thibaud; Kozlovsky; Mandzhavidze

    2000-05-10

    By introducing a hitherto ignored 6Li producing process, due to accelerated 3He reactions with 4He, we show that accelerated particle interactions in solar flares produce much more 6Li than 7Li. By normalizing our calculations to gamma-ray data, we demonstrate that the 6Li produced in solar flares, combined with photospheric 7Li, can account for the recently determined solar wind lithium isotopic ratio, obtained from measurements in lunar soil, provided that the bulk of the flare-produced lithium is evacuated by the solar wind. Further research in this area could provide unique information on a variety of problems, including solar atmospheric transport and mixing, solar convection and the lithium depletion issue, and solar wind and solar particle acceleration. PMID:10813684

  13. Magnetic reconnection models of flares

    NASA Technical Reports Server (NTRS)

    Forbes, T. G.

    1988-01-01

    The most feasible energy source for solar and stellar flares is the energy stored in coronal magnetic fields. To convert a significant fraction of this energy into heat and kinetic energy in a short time requires rapid change in the topology of the magnetic fields, and hence, rapid reconnection of field lines. Recent numerical and analytical models of solar flares suggest that the magnetic energy released by reconnection drives chromospheric ablation in the flare ribbons. Simple theoretical arguments based on compressible reconnection theory predict that the temperature of the ablated plasma should be about 1.03 x 10 to the 6th B exp 0.62 K where B is the coronal magnetic field strength in Gauss.

  14. Effects of camera location on the reconstruction of 3D flare trajectory with two cameras

    NASA Astrophysics Data System (ADS)

    Özsaraç, Seçkin; Yeşilkaya, Muhammed

    2015-05-01

    Flares are used as valuable electronic warfare assets for the battle against infrared guided missiles. The trajectory of the flare is one of the most important factors that determine the effectiveness of the counter measure. Reconstruction of the three dimensional (3D) position of a point, which is seen by multiple cameras, is a common problem. Camera placement, camera calibration, corresponding pixel determination in between the images of different cameras and also the triangulation algorithm affect the performance of 3D position estimation. In this paper, we specifically investigate the effects of camera placement on the flare trajectory estimation performance by simulations. Firstly, 3D trajectory of a flare and also the aircraft, which dispenses the flare, are generated with simple motion models. Then, we place two virtual ideal pinhole camera models on different locations. Assuming the cameras are tracking the aircraft perfectly, the view vectors of the cameras are computed. Afterwards, using the view vector of each camera and also the 3D position of the flare, image plane coordinates of the flare on both cameras are computed using the field of view (FOV) values. To increase the fidelity of the simulation, we have used two sources of error. One is used to model the uncertainties in the determination of the camera view vectors, i.e. the orientations of the cameras are measured noisy. Second noise source is used to model the imperfections of the corresponding pixel determination of the flare in between the two cameras. Finally, 3D position of the flare is estimated using the corresponding pixel indices, view vector and also the FOV of the cameras by triangulation. All the processes mentioned so far are repeated for different relative camera placements so that the optimum estimation error performance is found for the given aircraft and are trajectories.

  15. FAST CONTRACTION OF CORONAL LOOPS AT THE FLARE PEAK

    SciTech Connect

    Liu Rui; Wang Haimin

    2010-05-01

    On 2005 September 8, a coronal loop overlying the active region NOAA 10808 was observed in TRACE 171 A to contract at {approx}100 km s{sup -1} at the peak of an X5.4-2B flare at 21:05 UT. Prior to the fast contraction, the loop underwent a much slower contraction at {approx}6 km s{sup -1} for about 8 minutes, initiating during the flare preheating phase. The sudden switch to fast contraction is presumably corresponding to the onset of the impulsive phase. The contraction resulted in the oscillation of a group of loops located below, with the period of about 10 minutes. Meanwhile, the contracting loop exhibited a similar oscillatory pattern superimposed on the dominant downward motion. We suggest that the fast contraction reflects a suddenly reduced magnetic pressure underneath due either to (1) the eruption of magnetic structures located at lower altitudes or to (2) the rapid conversion of magnetic free energy in the flare core region. Electrons accelerated in the shrinking trap formed by the contracting loop can theoretically contribute to a late-phase hard X-ray burst, which is associated with Type IV radio emission. To complement the X5.4 flare which was probably confined, a similar event observed in SOHO/EIT 195 A on 2004 July 20 in an eruptive, M8.6 flare is briefly described, in which the contraction was followed by the expansion of the same loop leading up to a halo coronal mass ejection. These observations further substantiate the conjecture of coronal implosion and suggest coronal implosion as a new exciter mechanism for coronal loop oscillations.

  16. Complex Dynamic Flows in Solar Flare Sheet Structures

    NASA Technical Reports Server (NTRS)

    McKenzie, David E.; Reeves, Katharine K.; Savage, Sabrina

    2012-01-01

    Observations of high-energy emission from solar flares often reveal the presence of large sheet-like structures, sometimes extending over a space comparable to the Sun's radius. Given that these structures are found between a departing coronal mass ejection and the post-eruption flare arcade, it is natural to associate the structure with a current sheet; though the relationship is unclear. Moreover, recent high-resolution observations have begun to reveal that the motions in this region are highly complex, including reconnection outflows, oscillations, and apparent wakes and eddies. We present a detailed first look at the complicated dynamics within this supra-arcade plasma, and consider implications for the interrelationship between the plasma and its embedded magnetic field.

  17. Forming tool improves quality of tubing flares

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Punch and die set improves the quality of tubing flares for use with standard flared-tube fittings in high-pressure systems. It forges a dimensionally accurate flare in the tubing and forces more tubing material into the high-stress areas to improve the strength and tightness of the tubing connection.

  18. Relativistic electrons associated with solar flares.

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    Solar flares which produce relativistic electrons generally occur within sunspot groups which are active in the emission of meter type I noise storms. It is suggested that relativistic electrons in solar flares are accelerated from the keV-energy electrons responsible for the type I noise storms. The relationship between flare developments and the ejection of keV-electrons is briefly considered.

  19. Solar flare emissions and geophysical disturbances

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1973-01-01

    Various geophysical phenomena are produced by both wave and particle emissions from solar flares. Using the observed data for these emissions, a review is given on the nature of solar flares and their development. Geophysical phenomena are discussed by referring to the results for solar flare phenomena.

  20. The smallest hard X-ray flare?

    NASA Astrophysics Data System (ADS)

    Glesener, Lindsay; Krucker, Sam; Hannah, Iain; Smith, David M.; Grefenstette, Brian; Marsh, Andrew; Hudson, Hugh S.; White, Stephen M.; Chen, Bin

    2016-05-01

    We report a NuSTAR observation of a small solar flare on 2015 September 1, estimated to be on the order of a GOES class A.05 flare in brightness. This flare is fainter than any hard X-ray (HXR) flares in the existing literature, and with a peak rate of only ∼5 counts s‑1 detector‑1 observed by RHESSI, is effectively the smallest that can just barely be detected by the current standard (indirectly imaging) solar HXR instrumentation, though we expect that smaller flares will continue to be discovered as instrumental and observational techniques progress. The flare occurred during a solar observation by the highly sensitive NuSTAR astrophysical HXR spacecraft, which used its direct focusing optics to produce detailed flare spectra and images. The flare exhibits properties commonly observed in larger flares, including a fast rise and more gradual decay, and similar spatial dimensions to the RHESSI microflares. We will discuss the presence of non-thermal (flare-accelerated) electrons during the impulsive phase. The flare is small in emission measure, temperature, and energy, though not in physical dimensions. Its presence is an indication that flares do indeed scale down to smaller energies and retain what we customarily think of as “flarelike” properties.

  1. Chromospheric Evaporation in an X1.0 Flare on 2014 March 29 Observed with IRIS and EIS

    NASA Astrophysics Data System (ADS)

    Li, Y.; Ding, M. D.; Qiu, J.; Cheng, J. X.

    2015-09-01

    Chromospheric evaporation refers to dynamic mass motions in flare loops as a result of rapid energy deposition in the chromosphere. These motions have been observed as blueshifts in X-ray and extreme-ultraviolet (EUV) spectral lines corresponding to upward motions at a few tens to a few hundreds of km s-1. Past spectroscopic observations have also revealed a dominant stationary component, in addition to the blueshifted component, in emission lines formed at high temperatures (˜10 MK). This is contradictory to evaporation models predicting predominant blueshifts in hot lines. The recently launched Interface Region Imaging Spectrograph (IRIS) provides high-resolution imaging and spectroscopic observations that focus on the chromosphere and transition region in the UV passband. Using the new IRIS observations, combined with coordinated observations from the EUV Imaging Spectrometer, we study the chromospheric evaporation process from the upper chromosphere to the corona during an X1.0 flare on 2014 March 29. We find evident evaporation signatures, characterized by Doppler shifts and line broadening, at two flare ribbons that are separating from each other, suggesting that chromospheric evaporation takes place in successively formed flaring loops throughout the flare. More importantly, we detect dominant blueshifts in the high-temperature Fe xxi line (˜10 MK), in agreement with theoretical predictions. We also find that, in this flare, gentle evaporation occurs at some locations in the rise phase of the flare, while explosive evaporation is detected at some other locations near the peak of the flare. There is a conversion from gentle to explosive evaporation as the flare evolves.

  2. FNAS/solar flare energetics

    NASA Technical Reports Server (NTRS)

    Machado, M. E.

    1992-01-01

    We have performed an extensive study of solar flare energy buildup and release, concentrating in two aspects: (1) relationship with 3D field topology and measured electric currents; and (2) flare onset characteristics as determined from combined x ray and ultraviolet observations. We extended our previous studies on the characteristic topology of flaring regions, by following the evolution of an active region over three consecutive days. From comparison with flare observations in x rays and h alpha, we found further support for the hypothesis that flares were triggered by taking place at the separators (3D generalization of and x-type neutral point). Furthermore, we found that emerging in flux at a site within the active regions where no (or little) activity was previously observed, caused the appearance of a secondary separator and thereon continuous triggering of activity at such site. Our topology arguments were then applied to a study of sympathetic activity between two regions within an active complex. Here again we found that interacting field structures along separators and separatrices, which act as pathways for recurrent flaring to spread between the regions, could be used to understand how activity spread to potentially explosive sites with the complex. We also finished our study of flare onset characteristics as determined from combined x ray and ultraviolet observations. Using a quasi-static modeling approach, we find that this phase is characterized by a relatively low level of energy release, 10 exp 26-27 erg/s, which is sufficient to produce 'gentle' evaporation, a shift in the location of the transition zone as compared to pre-flare conditions, and an increase in the temperature and density of coronal loops. All these changes have profound implications on the observed signatures of impulsive phase phenomena, which had been neglected in the past. As a follow-up of this investigation, we now plan to apply our results to the interpretation of high

  3. Characterization of total flare energy

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1986-01-01

    It is concluded that the estimates of total energy in the prime flares lie well below the Active Cavity Radiometer Irradiance Monitor upper limits. This is consistent with our knowledge of the energy distribution in solar flares. Insufficient data exist for us to be very firm about this conclusion, however, and major energetic components could exist undetected, especially in the EUV-XUV and optical bands. In addition, the radiant energy cannot quantitatively be compared at this time with non-radiant terms because of even larger uncertainties in the latter.

  4. Biggest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2002-01-01

    View an animation from the Extreme ultraviolet Imaging Telescope (EIT). At 4:51 p.m. EDT, on Monday, April 2, 2001, the sun unleashed the biggest solar flare ever recorded, as observed by the Solar and Heliospheric Observatory (SOHO) satellite. The flare was definitely more powerful than the famous solar flare on March 6, 1989, which was related to the disruption of power grids in Canada. This recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Solar flares, among the solar system's mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. Solar ejections are often associated with flares and sometimes occur shortly after the flare explosion. Coronal mass ejections are clouds of electrified, magnetic gas weighing billions of tons ejected from the Sun and hurled into space with speeds ranging from 12 to 1,250 miles per second. Depending on the orientation of the magnetic fields carried by the ejection cloud, Earth-directed coronal mass ejections cause magnetic storms by interacting with the Earth's magnetic field, distorting its shape, and accelerating electrically charged particles (electrons and atomic nuclei) trapped within. Severe solar weather is often heralded by dramatic auroral displays, northern and southern lights, and magnetic storms that occasionally affect satellites, radio communications and power systems. The flare and solar ejection has also generated a storm of high-velocity particles, and the number of particles with ten million electron-volts of energy in the space near

  5. Chaotic ion motion in magnetosonic plasma waves

    NASA Technical Reports Server (NTRS)

    Varvoglis, H.

    1984-01-01

    The motion of test ions in a magnetosonic plasma wave is considered, and the 'stochasticity threshold' of the wave's amplitude for the onset of chaotic motion is estimated. It is shown that for wave amplitudes above the stochasticity threshold, the evolution of an ion distribution can be described by a diffusion equation with a diffusion coefficient D approximately equal to 1/v. Possible applications of this process to ion acceleration in flares and ion beam thermalization are discussed.

  6. High-cadence and high-resolution Hα imaging spectroscopy of a circular flare's remote ribbon with IBIS

    SciTech Connect

    Deng, Na; Jing, Ju; Chen, Xin; Liu, Chang; Xu, Yan; Wang, Haimin; Tritschler, Alexandra; Reardon, Kevin; Denker, Carsten

    2013-06-01

    We present an unprecedented high-resolution Hα imaging spectroscopic observation of a C4.1 flare taken with the Interferometric Bidimensional Spectrometer (IBIS) in conjunction with the adaptive optics system at the 76 cm Dunn Solar Telescope on 2011 October 22 in the active region NOAA 11324. Such a two-dimensional spectroscopic observation covering the entire evolution of a flare ribbon with high spatial (0.''1 pixel{sup –1} image scale), cadence (4.8 s), and spectral (0.1 Å step size) resolution is rarely reported. The flare consists of a main circular ribbon that occurred in a parasitic magnetic configuration and a remote ribbon that was observed by the IBIS. Such a circular-ribbon flare with a remote brightening is predicted in three-dimensional fan-spine reconnection but so far has been rarely studied. During the flare impulsive phase, we define 'core' and 'halo' structures in the observed ribbon based on IBIS narrowband images in the Hα line wing and line center. Examining the Hα emission spectra averaged in the flare core and halo areas, we find that only those from the flare cores show typical nonthermal electron beam heating characteristics that have been revealed by previous theoretical simulations and observations of flaring Hα line profiles. These characteristics include broad and centrally reversed emission spectra, excess emission in the red wing with regard to the blue wing (i.e., red asymmetry), and redshifted bisectors of the emission spectra. We also observe rather quick timescales for the heating (∼30 s) and cooling (∼14-33 s) in the flare core locations. Therefore, we suggest that the flare cores revealed by IBIS track the sites of electron beam precipitation with exceptional spatial and temporal resolution. The flare cores show two-stage motion (a parallel motion along the ribbon followed by an expansion motion perpendicular to the ribbon) during the two impulsive phases of the flare. Some cores jump quickly (30 km s{sup –1

  7. High-cadence and High-resolution Hα Imaging Spectroscopy of a Circular Flare's Remote Ribbon with IBIS

    NASA Astrophysics Data System (ADS)

    Deng, Na; Tritschler, Alexandra; Jing, Ju; Chen, Xin; Liu, Chang; Reardon, Kevin; Denker, Carsten; Xu, Yan; Wang, Haimin

    2013-06-01

    We present an unprecedented high-resolution Hα imaging spectroscopic observation of a C4.1 flare taken with the Interferometric Bidimensional Spectrometer (IBIS) in conjunction with the adaptive optics system at the 76 cm Dunn Solar Telescope on 2011 October 22 in the active region NOAA 11324. Such a two-dimensional spectroscopic observation covering the entire evolution of a flare ribbon with high spatial (0.''1 pixel-1 image scale), cadence (4.8 s), and spectral (0.1 Å step size) resolution is rarely reported. The flare consists of a main circular ribbon that occurred in a parasitic magnetic configuration and a remote ribbon that was observed by the IBIS. Such a circular-ribbon flare with a remote brightening is predicted in three-dimensional fan-spine reconnection but so far has been rarely studied. During the flare impulsive phase, we define "core" and "halo" structures in the observed ribbon based on IBIS narrowband images in the Hα line wing and line center. Examining the Hα emission spectra averaged in the flare core and halo areas, we find that only those from the flare cores show typical nonthermal electron beam heating characteristics that have been revealed by previous theoretical simulations and observations of flaring Hα line profiles. These characteristics include broad and centrally reversed emission spectra, excess emission in the red wing with regard to the blue wing (i.e., red asymmetry), and redshifted bisectors of the emission spectra. We also observe rather quick timescales for the heating (~30 s) and cooling (~14-33 s) in the flare core locations. Therefore, we suggest that the flare cores revealed by IBIS track the sites of electron beam precipitation with exceptional spatial and temporal resolution. The flare cores show two-stage motion (a parallel motion along the ribbon followed by an expansion motion perpendicular to the ribbon) during the two impulsive phases of the flare. Some cores jump quickly (30 km s-1) between discrete

  8. The Magnetic Evolution of AR 6555 which led to Two Impulsive, Relatively Compact, X-Type Flares

    NASA Technical Reports Server (NTRS)

    Fontenla, J. M.; Ambastha, A.; Kalman, B.; Csepura, Gy.

    1995-01-01

    We study the evolution of the vector magnetic field and the sunspot motions observed in AR 6555 during 1991 March 23-26. This region displays two locations of large magnetic shear that were also sites of flare activity. The first location produced two large (X-class) flares during the period covered by our observations. The second location had larger magnetic shear than the first but produced only small (M- and C-class) flares during our observations. We study the evolution of the photospheric magnetic field in relation to the large flares in the first location. These flares occurred around the same included polarity and have very similar characteristics (soft X-ray light curves, energies, etc,). However, the whole active region has changed substantially in the period between them. We found several characteristics of the region that appear related to the occurrence of these flares: (1) The flares occurred near regions of large magnetic 'shear' but not at the locations of maximum shear or maximum field. (2) Potential field extrapolations of the observed field suggest that the topology changed, prior to the first of the two flares, in such a way that a null appeared in the coarse magnetic field. (3) This null was located close to both X-class flares and remained in that location for a few days while the two flares were observed. (4) The flaring region has a pattern of vector field and sunspot motions in which material is 'squeezed' along the polarity inversion line. This pattern is very different from that usually associated with shearing arcades, but it is similar to that suggested previously by Fontenia and Davis. The vertical electric currents, inferred from the transverse field, are consistent with this pattern. (5) A major reconfiguration of the longitudinal field and the vertical electric currents occurred just prior to the first of the two flares. Both changes imply substantial variations of the magnetic structure of the region. On the basis of the available

  9. The magnetic evolution of AR 6555 which lead to two impulsive, readily compact, X-type flares

    NASA Technical Reports Server (NTRS)

    Ambastha, A.; Fontenla, J. M.; Kalman, B.; Csepura, GY.

    1995-01-01

    We study the evolution of the vector magnetic field and the sunspot motions observed in AR 6555 during 23-26 Mar. 1991. This region displays two locations of large magnetic shear that were also sites of flare activity. The first location produced two large (X-class) flares during the period covered by our observations. The second location had larger magnetic shear than the first, but produced only small (M- and C-class) flares during our observations. We study the evolution of the photospheric magnetic field in relation to the large flares in the first location. These flares occurred around the same included polarity, and have very similar characteristics (soft X-ray light curves, energies, etc.). However, the whole active region has changed substantially in the period between them. We found several characteristics of the region that appear related to the occurrence of these flares. (1) The flares occurred near regions of large magnetic 'shear,' but not at the locations of maximum shear or maximum field. (2) Potential field extrapolations of the observed field suggest that the topology changed, prior to the first of the two flares, in such a way that a null appeared in the coarse magnetic field. (3) This null was located close to both X-class flares, and remained in that location for a few days while the two flares were observed. (4) The flaring region has a pattern of vector field and sunspot motions in which material is 'squeezed' along the polarity inversion line. This pattern is very different from that usually associated with shearing arcades, but it is similar to that suggested previously by Fontenla and Davis. The vertical electric currents, inferred from the transverse field, are consistent with this pattern. (5) A major reconfiguration of the longitudinal field and the vertical electric currents occurred just prior to the first of the two flares. Both changes imply substantial variations of the magnetic structure of the region. On the basis of the

  10. Slipping Magnetic Reconnection, Chromospheric Evaporation, Implosion, and Precursors in the 2014 September 10 X1.6-Class Solar Flare

    NASA Astrophysics Data System (ADS)

    Dudík, Jaroslav; Polito, Vanessa; Janvier, Miho; Mulay, Sargam M.; Karlický, Marian; Aulanier, Guillaume; Del Zanna, Giulio; Dzifčáková, Elena; Mason, Helen E.; Schmieder, Brigitte

    2016-05-01

    We investigate the occurrence of slipping magnetic reconnection, chromospheric evaporation, and coronal loop dynamics in the 2014 September 10 X-class flare. Slipping reconnection is found to be present throughout the flare from its early phase. Flare loops are seen to slip in opposite directions toward both ends of the ribbons. Velocities of 20–40 km s‑1 are found within time windows where the slipping is well resolved. The warm coronal loops exhibit expanding and contracting motions that are interpreted as displacements due to the growing flux rope that subsequently erupts. This flux rope existed and erupted before the onset of apparent coronal implosion. This indicates that the energy release proceeds by slipping reconnection and not via coronal implosion. The slipping reconnection leads to changes in the geometry of the observed structures at the Interface Region Imaging Spectrograph slit position, from flare loop top to the footpoints in the ribbons. This results in variations of the observed velocities of chromospheric evaporation in the early flare phase. Finally, it is found that the precursor signatures, including localized EUV brightenings as well as nonthermal X-ray emission, are signatures of the flare itself, progressing from the early phase toward the impulsive phase, with the tether-cutting being provided by the slipping reconnection. The dynamics of both the flare and outlying coronal loops is found to be consistent with the predictions of the standard solar flare model in three dimensions.

  11. Magnetic Reconnection in Solar Flares

    NASA Astrophysics Data System (ADS)

    Forbes, Terry G.

    2016-05-01

    Reconnection has at least three possible roles in solar flares: First, it may contribute to the build-up of magnetic energy in the solar corona prior to flare onset; second, it may directly trigger the onset of the flare; and third, it may allow the release of magnetic energy by relaxing the magnetic field configuration to a lower energy state. Although observational support for the first two roles is somewhat limited, there is now ample support for the third. Within the last few years EUV and X-ray instruments have directly observed the kind of plasma flows and heating indicative of reconnection. Continued improvements in instrumentation will greatly help to determine the detailed physics of the reconnection process in the solar atmosphere. Careful measurement of the reconnection outflows will be especially helpful in this regard. Current observations suggest that in some flares the jet outflows are accelerated within a short diffusion region that is more characteristic of Petschek-type reconnection than Sweet-Parker reconnection. Recent resistive MHD theoretical and numerical analyses predict that the length of the diffusion region should be just within the resolution range of current X-ray and EUV telescopes if the resistivity is uniform. On the other hand, if the resistivity is not uniform, the length of the diffusion region could be too short for the outflow acceleration region to be observable.

  12. Sunspot 1504 is Spitting Flares

    NASA Video Gallery

    This movie from the Solar Dynamics Observatory (SDO) shows the M class flare on June 14, 2012 from 9:15 AM to 2:00 PM EDT. The sun is shown here in teal as this is the color typically used to repre...

  13. Pulsed acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Benz, Arnold O.; Dennis, Brian R.; Kundu, Mukul R.

    1994-01-01

    We study the nonlinear dynamics of particle acceleration in solar flares by analyzing the time series of various quasi-periodic radio signatures during flares. In particular we present the radio and hard X-ray data of three flares which suppport the following tentative conclusions: (1) Particle acceleration and injection into magnetic structures occurs intrinsically in a pulsed mode (with a typical period of 1-2 s), produced by a single, spatially coherent, nonlinear system, rather than by a stochastic system with many spatially independent components ('statistical flare' produced by a fragmented primary energy release). (2) The nonlinear (quasi-periodic) mode of pulsed particle acceleration and injection into a coronal loop can be stabilized by phase locking with an MHD wave (oscillation) mode, if both periods are close to each other. (3) Pulsed injection of electron beams into a coronal loop may trigger nonlinear relaxational oscillations of wave-particle interactions. This is particularly likely when the limit cycles of both systems are similar.

  14. Collective acceleration in solar flares

    SciTech Connect

    Barletta, W.; Sessler, A.M.; Xie, M.; Gershtein, S.S.; Krishan, V.; Reiser, M.

    1993-11-01

    Solar flare data are examined with an eye to seeing if they suggest collective acceleration of ions. That, in fact, seems to be the case. The collective acceleration mechanism of Gershtein is reviewed and the possibilities of the mechanism are discussed.

  15. Solar Flare Aimed at Earth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  16. Ion Acceleration in Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.; Weir, Sue B.

    1996-01-01

    Solar flares are among the most energetic and interesting phenomena in the Solar system, releasing up to 1032 ergs of energy on timescales of several tens of seconds to several tens of minutes. Much of this energy is in the form of suprathermal electrons and ions, which remain trapped at the Sun and produce a wide variety of radiations, as well as escape into interplanetary space, where they can be directly observed. The radiation from trapped particles consists in general of (1) continuum emission; (2) narrow gamma-ray nuclear deexcitation lines; and (3) high-energy neutrons observed in space or by ground-based neutron monitors. The particles that escape into space consist of both electrons and ions, which often have compositions quite different than that of the ambient solar atmosphere. Flares thus present many diagnostics of the particle acceleration mechanism(s), the identification of which is the ultimate goal of flare research. Moreover, flares in fact offer the only opportunity in astrophysics to study the simultaneous energization of both electrons and ions. Hopefully, an understanding of flares with their wealth of diagnostic data will lead to a better understanding of particle acceleration at other sites in the Universe. It is now generally accepted that flares are roughly divided into two classes: impulsive and gradual. Gradual events are large, occur high in the corona, have long-duration soft and hard X-rays and gamma rays, are electron poor, are associated with Type II radio emission and coronal mass ejections (CMEs), and produce energetic ions with coronal abundance ratios. Impulsive events are more compact, occur lower in the corona, produce short-duration radiation, and exhibit dramatic abundance enhancements in the energetic ions. Their He-3/He-4 ratio is - 1, which is a huge increase over the coronal value of about 5 x 10(exp -4), and they also posses smaller but still significant enhancements of Ne, Mg, Si, and Fe relative to He-4, C, N, and O

  17. Observations of small solar flares with BATSE

    NASA Astrophysics Data System (ADS)

    Biesecker, D. A.; Ryan, J. M.; Fishman, G. J.

    1994-12-01

    The Burst and Transient Source Experiment on board the Compton Gamma Ray Observatory is being used to observe solar flares. The Large Area Detectors are sensitive to small solar flares. We are searching the BATSE data for solar flares with an automated algorithm that allows for independent confirmation of the event origin. With this search method, we have detected solar flares almost an order of magnitude smaller than those found in a visual search of the BASTE data. We present results that are consistent with the differential distribution of peak flare rates observed by other researchers. These results show that the rate of occurrence of the smallest flares observed by BATSE can be predicted from the rate of occurrence of larger flares.

  18. Fast electrons in small solar flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1975-01-01

    This review summarizes both the direct spacecraft observations of nonrelativistic solar electrons, and observations of the X-ray and radio emission generated by these particles at the sun and in the interplanetary medium. These observations bear on the basic astrophysical process of particle acceleration in tenuous plasmas. We find that in many small solar flares, the nearly 5-100 keV electrons accelerated during flash phase constitute the bulk of the total flare energy. Thus the basic flare mechanism in these flares essentially converts the available flare energy into fast electrons. These electrons may produce the other flare electromagnetic emissions through their interactions with the solar atmosphere. In large proton flares these electrons may provide the energy to eject material from the sun and to create a shock wave which could accelerate nuclei and electrons to much higher energies.

  19. Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Ballai, I.; Baranyi, T.

    2016-07-01

    The aim of the present investigation is to study the spatio-temporal distribution of precursor flares during the 24 h interval preceding M- and X-class major flares and the evolution of follower flares. Information on associated (precursor and follower) flares is provided by Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Flare list, while the major flares are observed by the Geostationary Operational Environmental Satellite (GOES) system satellites between 2002 and 2014. There are distinct evolutionary differences between the spatio-temporal distributions of associated flares in about one-day period depending on the type of the main flare. The spatial distribution was characterized by the normalized frequency distribution of the quantity δ (the distance between the major flare and its precursor flare normalized by the sunspot group diameter) in four 6 h time intervals before the major event. The precursors of X-class flares have a double-peaked spatial distribution for more than half a day prior to the major flare, but it changes to a lognormal-like distribution roughly 6 h prior to the event. The precursors of M-class flares show lognormal-like distribution in each 6 h subinterval. The most frequent sites of the precursors in the active region are within a distance of about 0.1 diameter of sunspot group from the site of the major flare in each case. Our investigation shows that the build-up of energy is more effective than the release of energy because of precursors.

  20. Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Ballai, I.; Baranyi, T.

    2016-04-01

    The aim of the present investigation is to study the spatio-temporal distribution of precursor flares during the 24-hour interval preceding M- and X-class major flares and the evolution of follower flares. Information on associated (precursor and follower) flares is provided by Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Flare List, while the major flares are observed by the Geostationary Operational Environmental Satellite (GOES) system satellites between 2002 and 2014. There are distinct evolutionary differences between the spatio-temporal distributions of associated flares in about one day period depending on the type of the main flare. The spatial distribution was characterised by the normalised frequency distribution of the quantity δ (the distance between the major flare and its precursor flare normalised by the sunspot group diameter) in four 6-hour time intervals before the major event. The precursors of X-class flares have a double-peaked spatial distribution for more than half a day prior to the major flare, but it changes to a lognormal-like distribution roughly 6 hours prior to the event. The precursors of M-class flares show lognormal-like distribution in each 6-hour subinterval. The most frequent sites of the precursors in the active region are within a distance of about 0.1 diameter of sunspot group from the site of the major flare in each case. Our investigation shows that the build-up of energy is more effective than the release of energy because of precursors.

  1. KEPLER FLARES. II. THE TEMPORAL MORPHOLOGY OF WHITE-LIGHT FLARES ON GJ 1243

    SciTech Connect

    Davenport, James R. A.; Hawley, Suzanne L.; Johnson, Emily C.; Peraza, Jesus; Jansen, Tiffany C.; Larsen, Daniel M.; Hebb, Leslie; Wisniewski, John P.; Malatesta, Michael; Keil, Marcus; Silverberg, Steven M.; Scheffler, Matthew S.; Berdis, Jodi R.; Kowalski, Adam F.; Hilton, Eric J.

    2014-12-20

    We present the largest sample of flares ever compiled for a single M dwarf, the active M4 star GJ 1243. Over 6100 individual flare events, with energies ranging from 10{sup 29} to 10{sup 33} erg, are found in 11 months of 1 minute cadence data from Kepler. This sample is unique for its completeness and dynamic range. We have developed automated tools for finding flares in short-cadence Kepler light curves, and performed extensive validation and classification of the sample by eye. From this pristine sample of flares we generate a median flare template. This template shows that two exponential cooling phases are present during the white-light flare decay, providing fundamental constraints for models of flare physics. The template is also used as a basis function to decompose complex multi-peaked flares, allowing us to study the energy distribution of these events. Only a small number of flare events are not well fit by our template. We find that complex, multi-peaked flares occur in over 80% of flares with a duration of 50 minutes or greater. The underlying distribution of flare durations for events 10 minutes and longer appears to follow a broken power law. Our results support the idea that sympathetic flaring may be responsible for some complex flare events.

  2. Statistical Analyses of White-Light Flares: Two Main Results about Flare Behaviour

    NASA Astrophysics Data System (ADS)

    Dal, Hasan Ali

    2012-08-01

    We present two main results, based on models and the statistical analyses of 1672 U-band flares. We also discuss the behaviour of white-light flares. In addition, the parameters of the flares detected from two years of observations on CR Dra are presented. By comparing with flare parameters obtained from other UV Ceti-type stars, we examine the behaviour of the optical flare processes along with the spectral types. Moreover, we aimed, using large white-light flare data, to analyse the flare time-scales with respect to some results obtained from X-ray observations. Using SPSS V17.0 and GraphPad Prism V5.02 software, the flares detected from CR Dra were modelled with the OPEA function, and analysed with the t-Test method to compare similar flare events in other stars. In addition, using some regression calculations in order to derive the best histograms, the time-scales of white-light flares were analysed. Firstly, CR Dra flares have revealed that white-light flares behave in a similar way as their counterparts observed in X-rays. As can be seen in X-ray observations, the electron density seems to be a dominant parameter in white-light flare process, too. Secondly, the distributions of the flare time-scales demonstrate that the number of observed flares reaches a maximum value in some particular ratios, which are 0.5, or its multiples, and especially positive integers. The thermal processes might be dominant for these white-light flares, while non-thermal processes might be dominant in the others. To obtain better results for the behaviour of the white-light flare process along with the spectral types, much more stars in a wide spectral range, from spectral type dK5e to dM6e, must be observed in white-light flare patrols.

  3. Acceleration of solar cosmic rays in a flare current sheet and their propagation in interplanetary space

    NASA Astrophysics Data System (ADS)

    Podgorny, A. I.; Podgorny, I. M.

    2015-09-01

    Analyses of GOES spacecraft data show that the prompt component of high-energy protons arrive at the Earth after a time corresponding to their generation in flares in the western part of the solar disk, while the delayed component is detected several hours later. All protons in flares are accelerated by a single mechanism. The particles of the prompt component propagate along magnetic lines of the Archimedean spiral connectng the flare with the Earth. The prompt component generated by flares in the eastern part of the solar disk is not observed at the Earth, since particles accelerated by these flares do not intersect magnetic-field lines connecting the flare with the Earth. These particles arrive at the Earth via their motion across the interplanetary magnetic field. These particles are trapped by the magnetic field and transported by the solar wind, since the interplanetary magnetic field is frozen in the wind plasma, and these particles also diffuse across the field. The duration of the delay reaches several days.

  4. Magnetic Reconnection in Solar Flares and CMEs and in Laboratory Plasma Merging Experiments

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Cheng, C.; Yang, Y.; Choe, G.

    2011-12-01

    Impulsive magnetic reconnection has been shown to be the major mechanism responsible for explosive flare non-thermal energy release and acceleration of VME motion. It has been observed that for most large solar flares non-thermal emissions in hard X-rays (HXR) and millimeter/submillimeter waves impulsively rise and decade during the soft X-ray (SXR) emission rise phase. Moreover, the filament/CME upward motion is accelerated temporally in correlation with the impulsive enhancement of flare non-thermal emission and reconnection electric field in the current sheet in both simulations and observations. The peak reconnection electric field during flare impulsive phase is on the order of a few kV/m for X-class flares. Here, we demonstrated for the first time in laboratory plasma merging experiments the correlation of the magnetic reconnection rate with the acceleration of plasmoid ejected from the current sheet using the TS-4 device of the Tokyo University. Moreover, we also have found that the electron heating occurs in the current sheet and the ion heating occurs in the down-stream outflow region. Thus, we conclude that the plasmoid/CME acceleration is a key mechanism for the impulsive enhancement of magnetic reconnection rate (electric field).

  5. Flare-antenna unit for system in which flare is remotely activated by radio

    NASA Astrophysics Data System (ADS)

    Hiltz, Frederick F.; Wilson, Charles E.

    1995-06-01

    A flare-antenna assembly has flare material enclosed in a cylindrical antenna and forms part of a marker beacon. The flare aids in the search for the marker beacon by providing means for both visual and infrared detection. The flare is actuated in response to a specific remote radio signal being received by the antenna. The received signal is decoded by the electronic system within the marker beacon. If the received signal meets the necessary criteria the electronic system generates an electrical signal that detonates a squib embedded in the flare material. The detonation of the squib activates the flare.

  6. MAGNETIC STRUCTURE PRODUCING X- AND M-CLASS SOLAR FLARES IN SOLAR ACTIVE REGION 11158

    SciTech Connect

    Inoue, S.; Magara, T.; Choe, G. S.; Hayashi, K.; Shiota, D.

    2013-06-10

    We study the three-dimensional magnetic structure of the solar active region 11158, which produced one X-class and several M-class flares on 2011 February 13-16. We focus on the magnetic twist in four flare events, M6.6, X2.2, M1.0, and M1.1. The magnetic twist is estimated from the nonlinear force-free field extrapolated from the vector fields obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory using the magnetohydrodynamic relaxation method developed by Inoue et al. We found that strongly twisted lines ranging from half-turn to one-turn twists were built up just before the M6.6 and X2.2 flares and disappeared after that. Because most of the twists remaining after these flares were less than a half-turn twist, this result suggests that the buildup of magnetic twist over the half-turn twist is a key process in the production of large flares. On the other hand, even though these strong twists were also built up just before the M1.0 and M1.1 flares, most of them remained afterward. Careful topological analysis before the M1.0 and M1.1 flares shows that the strongly twisted lines were surrounded mostly by the weakly twisted lines formed in accordance with the clockwise motion of the positive sunspot, whose footpoints are rooted in strong magnetic flux regions. These results imply that these weakly twisted lines might suppress the activity of the strongly twisted lines in the last two M-class flares.

  7. The Effects of Flare Definitions on the Statistics of Derived Flare Distrubtions

    NASA Astrophysics Data System (ADS)

    Ryan, Daniel; Dominique, Marie; Seaton, Daniel B.; Stegen, Koen; White, Arthur

    2016-05-01

    The statistical examination of solar flares is crucial to revealing their global characteristics and behaviour. However, statistical flare studies are often performed using standard but basic flare detection algorithms relying on arbitrary thresholds which may affect the derived flare distributions. We explore the effect of the arbitrary thresholds used in the GOES event list and LYRA Flare Finder algorithms. We find that there is a small but significant relationship between the power law exponent of the GOES flare peak flux frequency distribution and the algorithms’ flare start thresholds. We also find that the power law exponents of these distributions are not stable but appear to steepen with increasing peak flux. This implies that the observed flare size distribution may not be a power law at all. We show that depending on the true value of the exponent of the flare size distribution, this deviation from a power law may be due to flares missed by the flare detection algorithms. However, it is not possible determine the true exponent from GOES/XRS observations. Additionally we find that the PROBA2/LYRA flare size distributions are clearly non-power law. We show that this is consistent with an insufficient degradation correction which causes LYRA absolute irradiance values to be unreliable. This means that they should not be used for flare statistics or energetics unless degradation is adequately accounted for. However they can be used to study time variations over shorter timescales and for space weather monitoring.

  8. Flaring of tidally compressed dark-matter clumps

    NASA Astrophysics Data System (ADS)

    Ali-Haïmoud, Yacine; Kovetz, Ely D.; Silk, Joseph

    2016-02-01

    We explore the physics and observational consequences of tidal compression events (TCEs) of dark-matter clumps (DMCs) by supermassive black holes (SMBHs). Our analytic calculations show that a DMC approaching a SMBH much closer than the tidal radius undergoes significant compression along the axis perpendicular to the orbital plane, shortly after pericenter passage. For DMCs composed of self-annihilating dark-matter particles, we find that the boosted DMC density and velocity dispersion lead to a flaring of the annihilation rate, most pronounced for a velocity-dependent annihilation cross section. If the end products of the annihilation are photons, this results in a gamma-ray flare, detectable (and possibly already detected) by the Fermi telescope for a range of model parameters. If the end products of dark-matter annihilation are relativistic electrons and positrons and the local magnetic field is large enough, TCEs of DMCs can lead to flares of synchrotron radiation. Finally, TCEs of DMCs lead to a burst of gravitational waves, in addition to the ones radiated by the orbital motion alone, and with a different frequency spectrum. These transient phenomena provide interesting new avenues to explore the properties of dark matter.

  9. Modelling the influence of photospheric turbulence on solar flare statistics.

    PubMed

    Mendoza, M; Kaydul, A; de Arcangelis, L; Andrade, J S; Herrmann, H J

    2014-01-01

    Solar flares stem from the reconnection of twisted magnetic field lines in the solar photosphere. The energy and waiting time distributions of these events follow complex patterns that have been carefully considered in the past and that bear some resemblance with earthquakes and stockmarkets. Here we explore in detail the tangling motion of interacting flux tubes anchored in the plasma and the energy ejections resulting when they recombine. The mechanism for energy accumulation and release in the flow is reminiscent of self-organized criticality. From this model, we suggest the origin for two important and widely studied properties of solar flare statistics, including the time-energy correlations. We first propose that the scale-free energy distribution of solar flares is largely due to the twist exerted by the vorticity of the turbulent photosphere. Second, the long-range temporal and time-energy correlations appear to arise from the tube-tube interactions. The agreement with satellite measurements is encouraging. PMID:25247788

  10. Observations of H-alpha Polarization in Flares

    NASA Astrophysics Data System (ADS)

    Mickey, D. L.; Metcalf, T. R.; Fletcher, L.

    2000-05-01

    Max Millennium Coordinated Observing Plan #006 has as its goal the measurement of H-alpha linear polarization, a possible signature of low-energy proton beams in solar flares. Such observations have been attempted in the past, but the results were inconclusive. A campaign involving Mees Solar Observatory and Big Bear Solar Observatory, together with Yohkoh, SOHO and TRACE spacecraft, was carried out during the latter half of March 2000. We present preliminary results from the observations with the Imaging Vector Magnetograph at Mees Solar Observatory. The IVM was operated in a standard mode, except that the spectral scan was limited to one point in the core of H-alpha and one in the blue wing. This limited spectral sampling, together with a recently upgraded data acquisition system, permitted a complete measurement of Stokes vectors every 3.5 seconds. The field of view was 280 arc sec square, with one arc sec pixels. A second camera, exposed simultaneously but with a broad-band filter, provides images which allow compensation for relative image motion and stretch between exposures. Approximately two dozen flares were observed by the IVM during the campaign, including one X-class and one M-class flare. We present samples of the observations, including relevant spacecraft observations, and discuss the sensitivity of the IVM to linear polarization under these conditions. This work was supported in part by the SXT project at LMSAL (contract NAS5-38099) and by NASA grant NAG5-4941.

  11. Millimeter to X-ray flares from Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Eckart, A.; García-Marín, M.; Vogel, S. N.; Teuben, P.; Morris, M. R.; Baganoff, F.; Dexter, J.; Schödel, R.; Witzel, G.; Valencia-S., M.; Karas, V.; Kunneriath, D.; Straubmeier, C.; Moser, L.; Sabha, N.; Buchholz, R.; Zamaninasab, M.; Mužić, K.; Moultaka, J.; Zensus, J. A.

    2012-01-01

    Context. We report on new simultaneous observations and modeling of the millimeter, near-infrared, and X-ray flare emission of the source Sagittarius A* (SgrA*) associated with the super-massive (4 × 106 M⊙) black hole at the Galactic center. Aims: We study the applicability of the adiabatic synchrotron source expansion model and study physical processes giving rise to the variable emission of SgrA* from the radio to the X-ray domain. Methods: Our observations were carried out on 18 May 2009 using the NACO adaptive optics (AO) instrument at the European Southern Observatory's Very Large Telescope, the ACIS-I instrument aboard the Chandra X-ray Observatory, the LABOCA bolometer at the Atacama Pathfinder EXperiment (APEX), and the CARMA mm telescope array at Cedar Flat, California. Results: The X-ray flare had an excess 2 - 8 keV luminosity between 6 and 12 × 1033 erg s-1. The observations reveal flaring activity in all wavelength bands that can be modeled as the signal from an adiabatically expanding synchrotron self-Compton (SSC) component. Modeling of the light curves shows that the sub-mm follows the NIR emission with a delay of about three-quarters of an hour with an expansion velocity of about vexp ~ 0.009c. We find source component sizes of around one Schwarzschild radius, flux densities of a few Janskys, and spectral indices α of about +1 (S(ν) ∝ ν-α). At the start of the flare, the spectra of the two main components peak just short of 1 THz. To statistically explain the observed variability of the (sub-)mm spectrum of SgrA*, we use a sample of simultaneous NIR/X-ray flare peaks and model the flares using a synchrotron and SSC mechanism. Conclusions: These parameters suggest that either the adiabatically expanding source components have a bulk motion larger than vexp or the expanding material contributes to a corona or disk, confined to the immediate surroundings of SgrA*. For the bulk of the synchrotron and SSC models, we find synchrotron turnover

  12. Comparison Between Hot and Cool Ejections in CME/Flare Events

    NASA Astrophysics Data System (ADS)

    Nitta, N. V.

    2001-05-01

    Comparison between hot and cool ejections in CME/flare events Nariaki Nitta (LMSAL) , Sachiko Akiyama (GUAS) We have shown that high-temperature ejections during the impulsive phase of flares as seen with Yohkoh/SXT are correlated with coronal mass ejections (CMEs) as seen by SOHO/LASCO. Since then we have collected a number of examples of ejections observed with TRACE. In this presentation, we compare ejections in soft X-rays with those in H-alpha and EUV, and study the sequence of processes (reconnection, mass motion, heating, etc.) involved in CMEs so that we can put more constraints on the models.

  13. Helium (3) Rich Solar Flares

    DOE R&D Accomplishments Database

    Colgate, S. A.; Audouze, J.; Fowler, W. A.

    1977-05-03

    The extreme enrichment of {sup 3} He {sup 4} He greater than or equal to 1 in some solar flares as due to spallation and the subsequent confinement of the products in a high temperature, kT approx. = 200 keV, high density, n{sub e} approx. = 3 x 10{sup 15} cm {sup -3} plasma associated with the magnetic instability producing the flare is interpreted. The pinch or filament is a current of high energy protons that creates the spallation and maintains the temperature that produces the high energy x-ray spectrum and depletes other isotopes D, Li, Be, and B as observed. Finally the high temperature plasma is a uniquely efficient spallation target that is powered by the interaction of stellar convection and self generated magnetic field.

  14. Flare instability and driving mechanism

    NASA Astrophysics Data System (ADS)

    Raychaudhuri, Probhas

    A mechanism is described for the generation of solar flares in which a Buneman instability is produced by electrons moving faster than thermal speed. A trapped population of particles accelerates in the magnetic field of active solar regions causing a streaming of ions relative to electrons which moves and heats the electrons. The theoretical argument also concludes that instability at the inner solar core directly bears on solar activities at the outer heliosphere.

  15. Characteristics of gamma-ray line flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Dennis, B.

    1983-01-01

    Observations of solar gamma rays by the Solar Maximum Mission (SMM) demonstrate that energetic protons and ions are rapidly accelerated during the impulsive phase. To understand the acceleration mechanisms for these particles, the characteristics of the gamma ray line flares observed by SMM were studied. Some very intense hard X-ray flares without detectable gamma ray lines were also investigated. Gamma ray line flares are distinguished from other flares by: (1) intense hard X-ray and microwave emissions; (2) delay of high energy hard X-rays; (3) emission of type 2 and/or type 4 radio bursts; and (4) flat hard X-ray spectra (average power law index: 3.1). The majority of the gamma ray line flares shared all these characteristics, and the remainder shared at least three of them. Positive correlations were found between durations of spike bursts and spatial sizes of flare loops as well as between delay times and durations of spike bursts.

  16. Pre-flare dynamics of sunspot groups

    SciTech Connect

    Korsós, M. B.; Baranyi, T.; Ludmány, A. E-mail: baranyi.tunde@csfk.mta.hu

    2014-07-10

    Several papers provide evidence that the most probable sites of flare onset are the regions of high horizontal magnetic field gradients in solar active regions. Besides the localization of flare-producing areas, this work intends to reveal the characteristic temporal variations in these regions prior to flares. This study uses sunspot data instead of magnetograms and follows the behavior of a suitable defined proxy measure representing the horizontal magnetic field gradient. The source of the data is the SDD (SOHO/MDI-Debrecen Data) sunspot catalog. The most promising pre-flare signatures are the following properties of gradient variation: (1) steep increase, (2) high maximum, (3) significant fluctuation, and (4) a gradual decrease between the maximum and the flare onset that can be related to the 'pull mode' of the current layer. These properties may yield a tool for the assessment of flare probability and intensity within the following 8-10 hr.

  17. Solar flares controlled by helicity conservation

    NASA Technical Reports Server (NTRS)

    Gliner, Erast B.; Osherovich, Vladimir A.

    1995-01-01

    The energy release in a class of solar flares is studied on the assumption that during burst events in highly conducting plasma the magnetic helicity of plasma is approximately conserved. The available energy release under a solar flare controlled by the helicity conservation is shown to be defined by the magnetic structure of the associated prominence. The approach throws light on some solar flare enigmas: the role of the associated prominence. The approach throws light on some solar flare enigmas: the role of the associated prominences; the discontinuation of the reconnection of magnetic lines long before the complete reconnection of participated fields occurs; the existence of quiet prominences which, in spite of their usual optical appearance, do not initiate any flare events; the small energy release under a solar flare in comparison with the stockpile of magnetic energy in surrounding fields. The predicted scale of the energy release is in a fair agreement with observations.

  18. Observing white-light flares

    NASA Astrophysics Data System (ADS)

    Neidig, D. F.; Beckers, J. M.

    1983-03-01

    Observational techniques and instrumentation for tracking the occurrence of solar white light flares back to their origin are discussed. The rare events have been found to happen in the chromospheric and coronal regions over sunspots, and are thought to be the release of accumulated energy breaking free from the magnetic field lines and reforming into simpler structures. Use of an achromatic f/15 objective lens, together with a reimaging system for field magnification as a prelude to 35 mm photography, at the Sacramento Peak Observatory is described. A Wollaston prism is also used to split the image into two beams for detection of intensity variations due to polarization, which has thus far not been observed in the white light flares. Spectroscopic data indicate visual emission due to negatively-charged hydrogen ions in the upper photosphere, and shorter wavelength neutral hydrogen Balmer continuum features. A white light flare can be up to 300% as brilliant as the surrounding region, and involve several percent of the total spontaneous solar output.

  19. Solar flares and energetic particles.

    PubMed

    Vilmer, Nicole

    2012-07-13

    Solar flares are now observed at all wavelengths from γ-rays to decametre radio waves. They are commonly associated with efficient production of energetic particles at all energies. These particles play a major role in the active Sun because they contain a large amount of the energy released during flares. Energetic electrons and ions interact with the solar atmosphere and produce high-energy X-rays and γ-rays. Energetic particles can also escape to the corona and interplanetary medium, produce radio emissions (electrons) and may eventually reach the Earth's orbit. I shall review here the available information on energetic particles provided by X-ray/γ-ray observations, with particular emphasis on the results obtained recently by the mission Reuven Ramaty High-Energy Solar Spectroscopic Imager. I shall also illustrate how radio observations contribute to our understanding of the electron acceleration sites and to our knowledge on the origin and propagation of energetic particles in the interplanetary medium. I shall finally briefly review some recent progress in the theories of particle acceleration in solar flares and comment on the still challenging issue of connecting particle acceleration processes to the topology of the complex magnetic structures present in the corona. PMID:22665901

  20. Modeling Repeatedly Flaring δ Sunspots.

    PubMed

    Chatterjee, Piyali; Hansteen, Viggo; Carlsson, Mats

    2016-03-11

    Active regions (ARs) appearing on the surface of the Sun are classified into α, β, γ, and δ by the rules of the Mount Wilson Observatory, California on the basis of their topological complexity. Amongst these, the δ sunspots are known to be superactive and produce the most x-ray flares. Here, we present results from a simulation of the Sun by mimicking the upper layers and the corona, but starting at a more primitive stage than any earlier treatment. We find that this initial state consisting of only a thin subphotospheric magnetic sheet breaks into multiple flux tubes which evolve into a colliding-merging system of spots of opposite polarity upon surface emergence, similar to those often seen on the Sun. The simulation goes on to produce many exotic δ sunspot associated phenomena: repeated flaring in the range of typical solar flare energy release and ejective helical flux ropes with embedded cool-dense plasma filaments resembling solar coronal mass ejections. PMID:27015469

  1. Numerical simulation of flare energy build-up and release via Joule dissipation. [solar MHD model

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Bao, J. J.; Wang, J. F.

    1986-01-01

    A new numerical MHD model is developed to study the evolution of an active region due to photospheric converging motion, which leads to magnetic-energy buildup in the form of electric current. Because this new MHD model has incorporated finite conductivity, the energy conversion occurs from magnetic mode to thermal mode through Joule dissipation. In order to test the causality relationship between the occurrence of flare and photospheric motion, a multiple-pole configuration with neutral point is used. Using these results it is found that in addition to the converging motion, the initial magnetic-field configuration and the redistribution of the magnetic flux at photospheric level enhance the possibility for the development of a flare.

  2. Properties of the 15 February 2011 Flare Seismic Sources

    NASA Astrophysics Data System (ADS)

    Zharkov, S.; Green, L. M.; Matthews, S. A.; Zharkova, V. V.

    2013-06-01

    The first near-side X-class flare of Solar Cycle 24 occurred in February 2011 (SOL2011-02-05T01:55) and produced a very strong seismic response in the photosphere. One sunquake was reported by Kosovichev ( Astrophys. J. Lett. 734, L15, 2011), followed by the discovery of a second sunquake by Zharkov, Green, Matthews et al. ( Astrophys. J. Lett. 741, L35, 2011). The flare had a two-ribbon structure and was associated with a flux-rope eruption and a halo coronal mass ejection (CME) as reported in the CACTus catalogue. Following the discovery of the second sunquake and the spatial association of both sources with the locations of the feet of the erupting flux rope (Zharkov, Green, Matthews et al., Astrophys. J. Lett. 741, L35, 2011), we present here a more detailed analysis of the observed photospheric changes in and around the seismic sources. These sunquakes are quite unusual, taking place early in the impulsive stage of the flare, with the seismic sources showing little hard X-ray (HXR) emission, and strongest X-ray emission sources located in the flare ribbons. We present a directional time-distance diagram computed for the second source, which clearly shows a ridge corresponding to the travelling acoustic-wave packet and find that the sunquake at the second source happened about 45 seconds to one minute earlier than the first source. Using acoustic holography we report different frequency responses of the two sources. We find strong downflows at both seismic locations and a supersonic horizontal motion at the second site of acoustic-wave excitation.

  3. Interplanetary shock waves associated with solar flares

    NASA Technical Reports Server (NTRS)

    Chao, J. K.; Sakurai, K.

    1974-01-01

    The interaction of the earth's magnetic field with the solar wind is discussed with emphasis on the influence of solar flares. The geomagnetic storms are considerered to be the result of the arrival of shock wave generated by solar flares in interplanetary space. Basic processes in the solar atmosphere and interplanetary space, and hydromagnetic disturbances associated with the solar flares are discussed along with observational and theoretical problems of interplanetary shock waves. The origin of interplanetary shock waves is also discussed.

  4. Orbital tube flaring system produces tubing connectors with zero leakage

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1967-01-01

    An orbital tube flaring system produces tubing connectors with a zero-leak potential needed in high pressure hydraulic and pneumatic systems. The flaring system incorporates a rolling cone and rolling die to closely control flare characteristics.

  5. Coronal behavior before the large flare onset

    NASA Astrophysics Data System (ADS)

    Imada, Shinsuke; Bamba, Yumi; Kusano, Kanya

    2014-12-01

    Flares are a major explosive event in our solar system. They are often followed by a coronal mass ejection that has the potential to trigger geomagnetic storms. There are various studies aiming to predict when and where the flares are likely to occur. Most of these studies mainly discuss the photospheric and chromospheric activity before the flare onset. In this paper we study the coronal features before the famous large flare occurrence on 2006 December 13. Using the data from Hinode/Extreme ultraviolet Imaging Spectrometer (EIS), X-Ray Telescope (XRT), and Solar and Heliospheric Observatory (SOHO)/Extreme ultraviolet Imaging Telescope (EIT), we discuss the coronal features in the large scale (a few 100″) before the flare onset. Our findings are as follows. (1) The upflows in and around the active region start growing from ˜ 10 to 30 km s-1 a day before the flare. (2) The expanding coronal loops are clearly observed a few hours before the flare. (3) Soft X-ray and extreme ultraviolet intensity are gradually reduced. (4) The upflows are further enhanced after the flare. From these observed signatures, we conclude that the outer part of active region loops with low density was expanding a day before the flare onset, and the inner part with high density was expanding a few hours before the onset.

  6. Radiative backwarming in white-light flares

    NASA Technical Reports Server (NTRS)

    Machado, Marcos E.; Emslie, A. Gordon; Avrett, Eugene H.

    1989-01-01

    Consideration is given to empirical atmospheric structures that are consistent with enhanced white-light continuum emission in solar flares. Results are presented from calculations of radiative transfer in lines and continua in empirical white-light flare model atmospheres, showing that flares with strong emission in the Balmer lines and continuum must show increases at longer wavelengths due to H(-) emission from overheated photospheric levels, which the Paschen continuum contribution in the same wavelength range is neglible. Also, plausible heating mechanisms that can lead to white-light flare emission are examined.

  7. A Rayleigh Scatter-Based Ocular Flare Analysis Meter for Flare Photometry of the Anterior Chamber

    PubMed Central

    Lam, Deborah L.; Axtelle, Jim; Rath, Susan; Dyer, Andrew; Harrison, Benjamin; Rogers, Claude; Menon, Naresh; Van Gelder, Russell N.

    2015-01-01

    Purpose Existing flare photometers are based on the Tyndall effect, which requires sophisticated laser photometry. The ocular flare analysis meter (OFAM) is a nonlaser photometer that uses quantitative Rayleigh scatter and absorption from visible light to compute a flare value. This study is designed to correlate OFAM measurements with qualitative measurements of flare in vitro and in vivo. Methods Following validation of the device on artificial anterior chambers containing known protein concentrations, flare readings were obtained from 90 subjects (46 with and 44 without uveitis) in one eye. Subjects were graded by the Standardization of Uveitis Nomenclature (SUN) working group flare scoring system and received the OFAM flare measurements. Results The OFAM showed linear response in vitro to protein concentrations ranging from 0 to 0.5 mg/ml. In clinical use in subjects ranging from SUN flare scores of 0+ to 2+, OFAM showed statistically significant measurement accuracy (P = 0.0008 of flare 0 versus flare 2; P = 0.031 of flare 0 versus flare 1). Distinction of SUN scores 1 and 2 was borderline significant (P = 0.057). Conclusion The OFAM photometry correlates with the standard SUN scoring system. This method may provide an objective method to diagnosis and monitor uveitis. Further longitudinal studies are warranted. Translational Relevance Currently, ocular flare is assessed qualitatively in most clinical settings. The existing methodology uses only Tyndall effect to measure flare. The OFAM uses an alternate, nonlaser means for measurement of anterior chamber flare by measure of Raleigh scatter. This pilot clinical study suggests that the OFAM device may be useful in measurement of uveitis activity. PMID:26688778

  8. Observation of the Evolution of a Current Sheet in a Solar Flare

    NASA Astrophysics Data System (ADS)

    Zhu, Chunming; Liu, Rui; Alexander, David; McAteer, James

    2016-05-01

    We report multi-wavelength and multi-viewpoint observations of a solar eruptive event which involves loop-loop interactions. During a C2.0 flare, motions associated with inflowing and outflowing plasma provide evidence for ongoing magnetic reconnection. The flare loop top and a rising "concave-up" feature are connected by a current-sheet-like structure (CSLS). The physical properties (thickness, length, temperature, and density) of the CSLS are evaluated. In regions adjacent to the CSLS, the EUV emission (characteristic temperature at 1.6 MK) begins to increase more than ten minutes prior to the onset of the flare, and steeply decreases during the decay phase. The reduction of the emission resembles that expected from coronal dimming. The dynamics of this event imply a magnetic reconnection rate in the range 0.01--0.05.

  9. GAMMA-RAY ACTIVITY IN THE CRAB NEBULA: THE EXCEPTIONAL FLARE OF 2011 APRIL

    SciTech Connect

    Buehler, R.; Blandford, R. D.; Charles, E.; Chiang, J.; Funk, S.; Kerr, M.; Massaro, F.; Romani, R. W.; Scargle, J. D.; Baldini, L.; Baring, M. G.; Belfiore, A.; Saz Parkinson, P. M.; D'Ammando, F.; Dermer, C. D.; Grove, J. E.; Harding, A. K.; Hays, E.; Mazziotta, M. N.; Tennant, A. F. E-mail: rdb3@stanford.edu; and others

    2012-04-10

    The Large Area Telescope on board the Fermi satellite observed a gamma-ray flare in the Crab Nebula lasting for approximately nine days in April of 2011. The source, which at optical wavelengths has a size of Almost-Equal-To 11 lt-yr across, doubled its gamma-ray flux within eight hours. The peak photon flux was (186 {+-} 6) Multiplication-Sign 10{sup -7} cm{sup -2} s{sup -1} above 100 MeV, which corresponds to a 30-fold increase compared to the average value. During the flare, a new component emerged in the spectral energy distribution, which peaked at an energy of (375 {+-} 26) MeV at flare maximum. The observations imply that the emission region was likely relativistically beamed toward us and that variations in its motion are responsible for the observed spectral variability.

  10. Gamma-Ray Activity in the Crab Nebula: The Exceptional Flare of April 2011

    NASA Technical Reports Server (NTRS)

    Buehler, R.; Scargle, J. D.; Blandford, R. D.; Baldini, L; Baring, M. G.; Belfiore, A.; Charles, E.; Chiang, J.; DAmmando, F.; Dermer, C. D.; Funk, S,; Grove, J. E.; Harding, A. K.; Hays, E.; Kerr, M.; Massaro, F.; Mazziotta, M. N.; Romani, R. W.; SazParkinson, P, M.; Tennant, A. F.; Weisskopf, M. C.

    2012-01-01

    The Large Area Telescope on board the Fermi satellite observed a gamma-ray flare in the Crab nebula lasting for approximately nine days in April of 2011. The source, which at optical wavelengths has a size of approximately 11 ly across, doubled its gamma-ray flux within eight hours. The peak photon flux was (186 +/- 6) x 10(exp -7) /square cm/s above 100 MeV, which corresponds to a 30-fold increase compared to the average value. During the flare, a new component emerged in the spectral energy distribution, which peaked at an energy of (375 +/- 26) MeV at flare maximum. The observations imply that the emission region was relativistically beamed toward us and that variations in its motion are responsible for the observed spectral variability.

  11. Observation of the Evolution of a Current Sheet in a Solar Flare

    NASA Astrophysics Data System (ADS)

    Zhu, Chunming; Liu, Rui; Alexander, David; McAteer, R. T. James

    2016-04-01

    We report multi-wavelength and multi-viewpoint observations of a solar eruptive event that involves loop-loop interactions. During a C2.0 flare, motions associated with inflowing and outflowing plasma provide evidence for ongoing magnetic reconnection. The flare loop top and a rising “concave-up” feature are connected by a current-sheet-like structure (CSLS). The physical properties (thickness, length, temperature, and density) of the CSLS are evaluated. In regions adjacent to the CSLS, the EUV emission (characteristic temperature at 1.6 MK) begins to increase more than 10 minutes prior to the onset of the flare, and steeply decreases during the decay phase. The reduction of the emission resembles that expected from coronal dimming. The dynamics of this event imply a magnetic reconnection rate in the range 0.01-0.05.

  12. Model of electric energy accumulation for solar flares

    NASA Astrophysics Data System (ADS)

    Krivodubskij, Valery

    The model of accumulation of energy (in the form of electric charges) for solar flares is proposed. We called this mechanism as "model of electric conditional capacitor". The model explains a localization of flares near the neutral magnetic field lines with strong gradients of the field in the vicinity of active centres (sunspots). The inhomogeneous structure of magnetic fields in vicinity of sunspots and the turbulent motions influence on electric conductivity of solar plasma play key roles in this model. Electric currents serve as a source for accumulation of energy. These currents are excited due to the large-scale hydrodynamic (convective) plasma motions across the weak common magnetic field of the Sun. According to introduced mechanism, charges are accumulated at the boundaries of the limited region (near the neutral magnetic field lines with reduced turbulent electric conductivity) because of strong currents in the outside regions (with increased conductivity). Subsequent electric breakdown in the region conditional capacitor serves as a trigger mechanism for releasing of the accumulated energy.

  13. Exceptions to the rule: the X-flares of AR 2192 Lacking Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Thalmann, J. K.; Su, Y.; Temmer, M.; Veronig, A. M.

    2016-04-01

    NOAA Active region (AR) 2192, that was present on the Sun in October 2014, was the largest region which occurred since November 1990 (see Figure 1). The huge size accompanied by a very high activity level, was quite unexpected as it appeared during the unusually weak solar cycle 24. Nevertheless, the AR turned out to be one of the most prolific flaring ARs of cycle 24. It produced in total 6 X, 29 M, 79 C flares during its disk passage from October 18-29, 2014 (see Figure 2). Surprisingly, all flares greater than GOES class M5 and X were confined, i.e. had no coronal mass ejections (CME) associated. All the flare events had some obvious similarity in morphology, as they were located in the core of the AR and revealed only minor separation motion away from the neutral line but a large initial separation of the conjugate flare ribbons. In the paper by Thalmann et al. (2015) we describe the series of flares and give details about the confined X1.6 flare event from October 22, 2014 as well as the single eruptive M4.0 flare event from October 24, 2014. The study of the X1.6 flare revealed a large initial separation of flare ribbons together with recurrent flare brightenings, which were related to two episodes of enhanced hard X-ray emission as derived from RHESSI observations. This suggests that magnetic field structures connected to specific regions were repeatedly involved in the process of reconnection and energy release. Opposite to the central location of the sequence of confined events within the AR, a single eruptive (M4.0) event occurred on the outskirt of the AR in the vicinity of open magnetic fields. Our investigations revealed a predominantly north-south oriented magnetic system of arcade fields overlying the AR that could have preserved the magnetic arcade to erupt, and consequently kept the energy release trapped in a localized volume of magnetic field high up in the corona (as supported by the absence of a lateral motion of the flare ribbons and the

  14. HARD X-RAY AND ULTRAVIOLET EMISSION DURING THE 2011 JUNE 7 SOLAR FLARE

    SciTech Connect

    Inglis, A. R.; Gilbert, H. R.

    2013-11-01

    The relationship between X-ray and UV emission during flares, particularly in the context of quasi-periodic pulsations, remains unclear. To address this, we study the impulsive X-ray and UV emission during an eruptive flare on 2011 June 7 utilizing X-ray imaging from RHESSI and UV 1700 Å imaging from SDO/AIA. This event is associated with quasi-periodic pulsations in X-ray and possibly UV emission, as well as substantial parallel and perpendicular motion in the hard X-ray footpoints. The motion of the footpoints parallel to the flare ribbons is unusual; it reverses direction on at least two occasions. However, there is no associated short timescale motion of the UV bright regions. Over the same time interval, the footpoints also gradually move apart at v ≈ 12 km s{sup –1}, consistent with the gradual outward expansion of the UV ribbons and the standard flare model. Additionally, we find that the locations of the brightest X-ray and UV regions are different, particularly during the early portion of the flare impulsive phase, despite their integrated emission being strongly correlated in time. Correlation analysis of measured flare properties, such as the footpoint separation, flare shear, photospheric magnetic field, and coronal reconnection rate, reveals that—in the impulsive phase—the 25-50 keV hard X-ray flux is only weakly correlated with these properties, in contrast with previous studies. We characterize this event in terms of long-term behavior, where the X-ray non-thermal, thermal, and UV emission sources appear temporally and spatially consistent, and short-term behavior, where the emission sources are inconsistent and quasi-periodic pulsations are a dominant feature requiring explanation. We suggest that the short timescale behavior of hard X-ray footpoints and the nature of the observed quasi-periodic pulsations are determined by fundamental, as yet unobserved properties of the reconnection region and particle acceleration sites. This presents a

  15. Combining hydrodynamic modeling with nonthermal test particle tracking to improve flare simulations

    NASA Astrophysics Data System (ADS)

    Winter, Henry Degraffenried, III

    Solar flares remain a subject of intense study in the solar physics community. These huge releases of energy on the Sun have direct consequences for humans on Earth and in space. The processes that impart tremendous amounts of energy are not well understood. In order to test theoretical models of flare formation and evolution, state of the art, numerical codes must be created that can accurately simulate the wide range of electromagnetic radiation emitted by flares. A direct comparison of simulated radiation to increasingly detailed observations will allow scientists to test the validity of theoretical models. To accomplish this task, numerical codes were developed that can simulate both the thermal and nonthermal components of a flaring plasma, their interactions, and their emissions. The HYLOOP code combines a hydrodynamic equation solver with a nonthermal particle tracking code in order to simulate the thermal and nonthermal aspects of a flare. A solar flare was simulated using this new code with a static atmosphere and with a dynamic atmosphere, to illustrate the importance of considering hydrodynamic effects on nonthermal beam evolution. The importance of density gradients in the evolution of nonthermal electron beams was investigated by studying their effects in isolation. The importance of the initial pitch-angle cosine distribution to flare dynamics was investigated. Emission in XRT filters were calculated and analyzed to see if there were soft X-ray signatures that could give clues to the nonthermal particle distributions. Finally the HXR source motions that appeared in the simulations were compared to real observations of this phenomena.

  16. The Queen's flare - Its structure and development; precursors, pre-flare brightenings, and aftermaths

    NASA Technical Reports Server (NTRS)

    De Jager, C.; Schadee, A.; Svestka, Z.; Van Tend, W.; Machado, M. E.; Strong, K. T.; Woodgate, B. E.

    1983-01-01

    A limb flare, which started at about 20:20 UT on April 30, 1980, was observed by several of the instruments on the Solar Maximum Mission (SMM) spacecraft. This flare has been the subject of a joint analysis of the SMM instruments. The present investigation represents a continuation of research reported in part by Woodgate et al. (1981) and Gabriel et al. (1981). Several questions are explored regarding the preflare activity, the evolution of the flare, and its decay. It is concluded that the X-ray brightenings observed before the flare were indicative only of the generally high level of activity from this region. They were not connected with the build-up of energy before the flare since similar brightenings were observed in the region after the flare. At least one brightening occurred at the site of the kernel before the flare. There is also some evidence of a tongue.

  17. Perimenstrual Flare of Adult Acne

    PubMed Central

    Geller, Lauren; Rosen, Jamie; Frankel, Amylynne; Goldenberg, Gary

    2014-01-01

    Background: Acne is typically regarded as an adolescent disease. A significant body of literature suggests a post-adolescent or adult form of acne. Female patients are known to experience perimenstrual acne flares, the exact prevalence of which is unknown. Objective: To establish a pattern of perimenstrual acne flare in adult women in order to better characterize the disorder. Methods: Subjects aged 18 and over were recruited during previously scheduled visits with their dermatologist at Mount Sinai Hospital in New York. An anonymous survey was distributed to women who reported their first menses at least six months earlier and had a complaint of acne within the last 30 days. Women <18 years of age and postmenopausal women were excluded from the study population. Results: Participants included women 18- to 29-years old (67%) and women 30- to 49-years old (33%). The ethnicity of respondents was Caucasian (50%), African American (20%), Latino (19%), Asian (5%), and Other (6%). The majority of participants with perimenstrual acne reported the onset of acne between the ages of 12 and 18 years. Sixty-five percent of participants reported that their acne symptoms were worse with their menses. Of those who reported perimenstrual acne symptoms, 56 percent reported worsening symptoms in the week preceding their menses, 17 percent reported worsening symptoms during their menses, three percent reported worsening symptoms after their menses, and 24 percent reported worsening symptoms throughout their cycle. Thirty-five percent of patients with perimenstrual acne reported oral contraceptive pill use. Conclusion: A significant number of adult women have perimenstrual acne symptoms. This study has proven to be useful in characterizing perimenstrual acne flare and is one of the first qualitative documentations of the presence and degree of this disorder. PMID:25161758

  18. Sun Releases X-class Solar Flare

    NASA Video Gallery

    This movie shows the July 6, 2012 X1.1 flare in the 171 Angstrom wavelength as captured by NASA’s Solar Dynamics Observatory (SDO). AR1515 was the source for this flare. AR1515 has been active ...

  19. AR 1121 Unleases X-ray Flare

    NASA Video Gallery

    Increasingly active sunspot 1121 has unleashed one of the brightest x-ray solar flares in years, an M5.4-class eruption at 15:36 UT on Nov. 6th. This close-up video shows the detail of the flare an...

  20. Excitation of XUV radiation in solar flares

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1992-01-01

    The goal of the proposed research was to understand the means by which XUV radiation in solar flares is excited, and to use this radiation as diagnostics of the energy release and transport processes occurring in the flare. Significant progress in both of these areas, as described, was made.

  1. Mechanisms for fast flare reconnection

    NASA Technical Reports Server (NTRS)

    Vanhoven, G.; Deeds, D.; Tachi, T.

    1988-01-01

    Normal collisional-resistivity mechanisms of magnetic reconnection have the drawback that they are too slow to explain the fast rise of solar flares. Two methods are examined which are proposed for the speed-up of the magnetic tearing instability: the anomalous enhancement of resistivity by the injection of MHD turbulence and the increase of Coulomb resistivity by radiative cooling. The results are described for nonlinear numerical simulations of these processes which show that the first does not provide the claimed effects, while the second yields impressive rates of reconnection, but low saturated energy outputs.

  2. Impulsive Phase He 10830 Spectra of a Large Solar Limb Flare of 16 August 1989*

    NASA Astrophysics Data System (ADS)

    You, Jianqi; Wang, Chuanjin; Fan, Zhongyu; Li, Hui

    1998-10-01

    We obtained simultaneously Hei 10830 Å spectra, Hα filtergrams and microwave data of a large limb flare (2N/X20) in 1989. In this paper we characterize Hei 10830 spectra in relation to the impulsive phase. All the Hei 10830 spectra, except those of the surge, show blue shift or blue asymmetry. The velocities inferred from the spectra range from a few to 160kms-1, implying that the horizontal motion is very likely present in the structure of this flare at different heights. The Hei 10830 profiles of a flare are relatively broad and cannot be simulated by the Doppler broadening mechanism with a uniform flare model atmosphere. It is most likely that these characteristics are related to rapid and localized heating in the low and middle chromosphere. Comparing the SXR and microwave data with the optical data leads to the following scenario: the corona was already heated to some extent before the flare onset, and in the first 2minutes of the impulsive phase, heat conduction was the main source or, at least, a competitive source, for chromospheric heating. However, the impulsive event, associated with the unusually broadened Hei 10830 line (Deltalambdaf>20Å) and temporally correlated with a microwave burst, is probably caused by electron-beam heating.

  3. ASASSN-16ae: A Powerful White-light Flare on an Early-L Dwarf

    NASA Astrophysics Data System (ADS)

    Schmidt, Sarah J.; Shappee, Benjamin J.; Gagné, Jonathan; Stanek, K. Z.; Prieto, José L.; Holoien, Thomas W.-S.; Kochanek, C. S.; Chomiuk, Laura; Dong, Subo; Seibert, Mark; Strader, Jay

    2016-09-01

    We report the discovery and classification of SDSS J053341.43+001434.1 (SDSS0533), an early-L dwarf first discovered during a powerful ΔV < ‑11 magnitude flare observed as part of the ASAS-SN survey. Optical and infrared spectroscopy indicate a spectral type of L0 with strong Hα emission and a blue NIR spectral slope. Combining the photometric distance, proper motion, and radial velocity of SDSS0533 yields three-dimensional velocities of (U, V, W) = (14 ± 13, ‑35 ± 14, ‑94 ± 22) km s‑1, indicating that it is most likely part of the thick disk population and probably old. The three detections of SDSS0533 obtained during the flare are consistent with a total V-band flare energy of at least 4.9 × 1033 erg (corresponding to a total thermal energy of at least E tot > 3.7 × 1034 erg), placing it among the strongest detected M dwarf flares. The presence of this powerful flare on an old L0 dwarf may indicate that stellar-type magnetic activity persists down to the end of the main sequence and on older ML transition dwarfs.

  4. THE MAGNETIC SYSTEMS TRIGGERING THE M6.6 CLASS SOLAR FLARE IN NOAA ACTIVE REGION 11158

    SciTech Connect

    Toriumi, Shin; Iida, Yusuke; Bamba, Yumi; Kusano, Kanya; Imada, Shinsuke; Inoue, Satoshi

    2013-08-20

    We report a detailed event analysis of the M6.6 class flare in the active region (AR) NOAA 11158 on 2011 February 13. AR 11158, which consisted of two major emerging bipoles, showed prominent activity including one X- and several M-class flares. In order to investigate the magnetic structures related to the M6.6 event, particularly the formation process of a flare-triggering magnetic region, we analyzed multiple spacecraft observations and numerical results of a flare simulation. We observed that, in the center of this quadrupolar AR, a highly sheared polarity inversion line (PIL) was formed through proper motions of the major magnetic elements, which built a sheared coronal arcade lying over the PIL. The observations lend support to the interpretation that the target flare was triggered by a localized magnetic region that had an intrusive structure, namely, a positive polarity penetrating into a negative counterpart. The geometrical relationship between the sheared coronal arcade and the triggering region is consistent with the theoretical flare model based on the previous numerical study. We found that the formation of the trigger region was due to the continuous accumulation of small-scale magnetic patches. A few hours before the flare occurred, the series of emerged/advected patches reconnected with a pre-existing field. Finally, the abrupt flare eruption of the M6.6 event started around 17:30 UT. Our analysis suggests that in the process of triggering flare activity, all magnetic systems on multiple scales are included, not only the entire AR evolution but also the fine magnetic elements.

  5. Thermal Fronts in Solar Flares

    NASA Astrophysics Data System (ADS)

    Karlický, Marian

    2015-12-01

    We studied the formation of a thermal front during the expansion of hot plasma into colder plasma. We used a three-dimensional electromagnetic particle-in-cell model that includes inductive effects. In early phases, in the area of the expanding hot plasma, we found several thermal fronts, which are defined as a sudden decrease of the local electron kinetic energy. The fronts formed a cascade. Thermal fronts with higher temperature contrast were located near plasma density depressions, generated during the hot plasma expansion. The formation of the main thermal front was associated with the return-current process induced by hot electron expansion and electrons backscattered at the front. A part of the hot plasma was trapped by the thermal front while another part, mainly with the most energetic electrons, escaped and generated Langmuir and electromagnetic waves in front of the thermal front, as shown by the dispersion diagrams. Considering all of these processes and those described in the literature, we show that anomalous electric resistivity is produced at the location of the thermal front. Thus, the thermal front can contribute to energy dissipation in the current-carrying loops of solar flares. We estimated the values of such anomalous resistivity in the solar atmosphere together with collisional resistivity and electric fields. We propose that the slowly drifting reverse drift bursts, observed at the beginning of some solar flares, could be signatures of the thermal front.

  6. BBSO/NST Observations of the Sudden Differential Rotation of a Sunspot Caused by a Major Flare

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Xu, Yan; Deng, Na; Cao, Wenda; Lee, Jeongwoo; Hudson, Hugh S.; Gary, Dale E.; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-05-01

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere), from which the field extends high into the corona. Complex plasma motions that drag field in the photosphere can build up free energy in the corona that powers solar eruptions. It is known that solar flares and the often associated coronal ejections (CMEs) can produce various radiations in the low atmosphere. However, it was considered implausible that disturbances created in the tenuous corona would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden rotational motion of a sunspot clearly induced by a major solar flare (SOL2015-06-22T18:23 M6.6), using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory (BBSO). It is particularly striking that the rotation is not uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ~50 degree per hour) at different times corresponding to peaks of flare hard X-ray emission. The intensity and magnetic field of the sunspot also change significantly associated with the flare. Our results reveal an intrinsic relationship between the photospheric plasma bulk motions and coronal energy release, with direct consequences for our understanding of energy and momentum balance in the flare/CME phenomenon. This work is mainly supported by NASA grants NNX13AF76G and NNX13AG13G (LWS), and NNX16AF72G, and NSF grants AGS 1250818 and 1408703.

  7. Heating and Cooling of Flare Loops in a C5.7 Two-ribbon Flare

    NASA Astrophysics Data System (ADS)

    Pearce, Sarah; Qiu, Jiong

    2016-05-01

    Heating and cooling of flare plasmas can be studied using models constrained by observations. In this work, we analyze and model thermal evolution of a C5.7 two-ribbon flare that occurred on December 26, 2011. The flare was observed by AIA. Two hundred flare loops are identified, which formed sequentially during one hour. Light curves of these flare loops in multiple EUV bands are analyzed to derive the duration and timing of flare emission in each bandpass. These timescales usually reflect cooling of flare plasmas from 10~MK to successively lower temperatures. We then use a zero-dimensional enthalpy-based thermal evolution of loops (EBTEL) model to study flare heating and cooling. Several variations on the EBTEL model are assessed. The first model uses an impulsive heating function inferred from the rapid rise of the foot-point UV emission. Synthetic emission from this model evolves and decays more quickly than the observations, as many models do. Two other variations on the model are analyzed, in an attempt to counter this. In one variation the heating function is a combination of an impulsive pulse followed by an extended tail (i.e., continuous heating). The other model uses reduced thermal conduction to slow the flares evolution. These models are compared with one another and the observations, to evaluate effects of different mechanisms governing the thermal evolution of flare plasmas.

  8. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  9. High-resolution X-ray spectra of solar flares. III - General spectral properties of X1-X5 type flares

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; Feldman, U.; Kreplin, R. W.; Cohen, L.

    1980-01-01

    High-resolution X-ray spectra of six class X1-X5 solar flares are discussed. The spectra were recorded by spaceborne Bragg crystal spectrometers in the ranges 1.82-1.97, 2.98-3.07 and 3.14-3.24 A. Electron temperatures derived from dielectronic satellite line to resonance line ratios for Fe XXV and Ca XIX are found to remain fairly constant around 22,000,000 and 16,000,000 K respectively during the rise phase of the flares, then decrease by approximately 6,000,000 K during the decay phase. Nonthermal motions derived from line widths for the April 27, 1979 event are found to be greatest during the rise phase (approximately 130 km/sec) and decrease to about 60 km/sec during decay. Volume emission measures for Fe XXV, Ca XIX and Ca XX are derived from photon fluxes as a function of temperature, and examination of the intensity behavior of the Fe K alpha emission as a function of time indicates that it is a result of fluorescence. Differences between the present and previous observations of temperature variation are discussed, and it is concluded that the flare plasmas are close to ionization equilibrium for the flares investigated.

  10. Planetary Protection: X-ray Super-Flares Aid Formation of "Solar Systems"

    NASA Astrophysics Data System (ADS)

    2005-05-01

    form. Specifically, this turbulence can help prevent planets from rapidly migrating towards the young star. "Although these flares may be creating havoc in the disks, they ultimately could do more good than harm," said Feigelson. "These flares may be acting like a planetary protection program." About half of the young suns in Orion show evidence for disks, likely sites for current planet formation, including four lying at the center of proplyds (proto-planetary disks) imaged by Hubble Space Telescope. X-ray flares bombard these planet-forming disks, likely giving them an electric charge. This charge, combined with motion of the disk and the effects of magnetic fields should create turbulence in the disk. handra X-ray Image of Orion Nebula, Full-Field Chandra X-ray Image of Orion Nebula, Full-Field The numerous results from the Chandra Orion Ultradeep Project will appear in a dedicated issue of The Astrophysical Journal Supplement in October, 2005. The team contains 37 scientists from institutions across the world including the US, Italy, France, Germany, Taiwan, Japan and the Netherlands. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  11. Solar flare leaves sun quaking

    NASA Astrophysics Data System (ADS)

    1998-05-01

    Dr. Alexander G. Kosovichev, a senior research scientist from Stanford University, and Dr. Valentina V. Zharkova from Glasgow (United Kingdom) University found the tell-tale seismic signature in data on the Sun's surface collected by the Michelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO) spacecraft immediately following a moderate-sized flare on July 9, 1996. "Although the flare was a moderate one, it still released an immense amount of energy," said Dr. Craig Deforest, a researcher with the SOHO project. "The energy released is equal to completely covering the Earth's continents with a yard of dynamite and detonating it all at once." SOHO is a joint project of the European Space Agency and NASA. The finding is reported in the May 28 issue of the journal Nature, and is the subject of a press conference at the spring meeting of the American Geophysical Union in Boston, Mass., May 27. The solar quake that the science team recorded looks much like ripples spreading from a rock dropped into a pool of water. But over the course of an hour, the solar waves traveled for a distance equal to 10 Earth diameters before fading into the fiery background of the Sun's photosphere. Unlike water ripples that travel outward at a constant velocity, the solar waves accelerated from an initial speed of 22,000 miles per hour to a maximum of 250,000 miles per hour before disappearing. "People have looked for evidence of seismic waves from flares before, but they didn't have a theory so they didn't know where to look," says Kosovichev. Several years ago Kosovichev and Zharkova developed a theory that can explain how a flare, which explodes in space above the Sun's surface, can generate a major seismic wave in the Sun's interior. According to the currently accepted model of solar flares, the primary explosion creates high-energy electrons (electrically charged subatomic particles). These are funneled down into a magnetic flux tube, an invisible tube of magnetic

  12. Avalanches and the distribution of solar flares

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Hamilton, Russell J.

    1991-01-01

    The solar coronal magnetic field is proposed to be in a self-organized critical state, thus explaining the observed power-law dependence of solar-flare-occurrence rate on flare size which extends over more than five orders of magnitude in peak flux. The physical picture that arises is that solar flares are avalanches of many small reconnection events, analogous to avalanches of sand in the models published by Bak and colleagues in 1987 and 1988. Flares of all sizes are manifestations of the same physical processes, where the size of a given flare is determined by the number of elementary reconnection events. The relation between small-scale processes and the statistics of global-flare properties which follows from the self-organized magnetic-field configuration provides a way to learn about the physics of the unobservable small-scale reconnection processes. A simple lattice-reconnection model is presented which is consistent with the observed flare statistics. The implications for coronal heating are discussed and some observational tests of this picture are given.

  13. Quantifying the Complexity of Flaring Active Regions

    NASA Astrophysics Data System (ADS)

    Stark, B.; Hagyard, M. J.

    1997-05-01

    While solar physicists have a better understanding of the importance magnetic fields play in the solar heating mechanism, it is still not possible to predict whether or when an active region will flare. In recent decades, qualitative studies of the changes in active region morphology have shown that there is generally an increase in the complexity of the spatial configuration of a solar active region leading up to a flare event. In this study, we quantify the spatial structure of the region using the Differential Box-Counting Method (DBC)of fractal analysis. We analyze data from NASA/Marshall Space Flight Center's vector magnetograph from two flaring active regions: AR 6089 from June 10, 1990, which produced one M1.7 flare, and AR 6659 from June 8, 9 and 10, 1991, this data set including one C5.7 and two M(6.4 and 3.2) flares. (AR 6659 produced several other flares). Several magnetic parameters are studied, including the transverse and longitudinal magnetic field components (Bt and Bl), the total field (Bmag), and the magnetic shear, which describes the non-potentiality of the field. Results are presented for the time series of magnetograms in relation to the timing of flare events.

  14. Quantifying the Complexity of Flaring Active Regions

    NASA Technical Reports Server (NTRS)

    Stark, B.; Hagyard, M. J.

    1997-01-01

    While solar physicists have a better understanding of the importance magnetic fields play in the solar heating mechanism, it is still not possible to predict whether or when an active region will flare. In recent decades, qualitative studies of the changes in active region morphology have shown that there is generally an increase in the complexity of the spatial configuration of a solar active region leading up to a flare event. In this study, we quantify the spatial structure of the region using the differential Box-Counting Method (DBC) of fractal analysis. We analyze data from NASA/Marshall Space Flight Centr's vector magnetograph from two flaring active regions: AR 6089 from June 10, 1990, which produced one M1.7 flare, and AR 6659 from June 8, 9 and 10, 1991, this data set including one C5.7 and two M(6.4 and 3.2) flare. (AR 6659 produced several other flares). Several magnetic parameters are studied, including the transverse and longitudinal magnetic field components (Bt and B1), the total field (Bmag), and the magnetic shear, which describes the non-potentiality of the field. Results are presented for the time series of magnetograms in relation to the timing of flare events.

  15. Plasma dynamics above solar flare soft x-ray loop tops

    SciTech Connect

    Doschek, G. A.; Warren, H. P.; McKenzie, D. E.

    2014-06-10

    We measure non-thermal motions in flare loop tops and above the loop tops using profiles of highly ionized spectral lines of Fe XXIV and Fe XXIII formed at multimillion-degree temperatures. Non-thermal motions that may be due to turbulence or multiple flow regions along the line of sight are extracted from the line profiles. The non-thermal motions are measured for four flares seen at or close to the solar limb. The profile data are obtained using the Extreme-ultraviolet Imaging Spectrometer on the Hinode spacecraft. The multimillion-degree non-thermal motions are between 20 and 60 km s{sup –1} and appear to increase with height above the loop tops. Motions determined from coronal lines (i.e., lines formed at about 1.5 MK) tend to be smaller. The multimillion-degree temperatures in the loop tops and above range from about 11 MK to 15 MK and also tend to increase with height above the bright X-ray-emitting loop tops. The non-thermal motions measured along the line of sight, as well as their apparent increase with height, are supported by Solar Dynamics Observatory Atmospheric Imaging Assembly measurements of turbulent velocities in the plane of the sky.

  16. The flare kernel in the impulsive phase

    NASA Technical Reports Server (NTRS)

    Dejager, C.

    1986-01-01

    The impulsive phase of a flare is characterized by impulsive bursts of X-ray and microwave radiation, related to impulsive footpoint heating up to 50 or 60 MK, by upward gas velocities (150 to 400 km/sec) and by a gradual increase of the flare's thermal energy content. These phenomena, as well as non-thermal effects, are all related to the impulsive energy injection into the flare. The available observations are also quantitatively consistent with a model in which energy is injected into the flare by beams of energetic electrons, causing ablation of chromospheric gas, followed by convective rise of gas. Thus, a hole is burned into the chromosphere; at the end of impulsive phase of an average flare the lower part of that hole is situated about 1800 km above the photosphere. H alpha and other optical and UV line emission is radiated by a thin layer (approx. 20 km) at the bottom of the flare kernel. The upward rising and outward streaming gas cools down by conduction in about 45 s. The non-thermal effects in the initial phase are due to curtailing of the energy distribution function by escape of energetic electrons. The single flux tube model of a flare does not fit with these observations; instead we propose the spaghetti-bundle model. Microwave and gamma-ray observations suggest the occurrence of dense flare knots of approx. 800 km diameter, and of high temperature. Future observations should concentrate on locating the microwave/gamma-ray sources, and on determining the kernel's fine structure and the related multi-loop structure of the flaring area.

  17. The flare star EV Lac. II - Relations between the characteristics of the flares

    NASA Astrophysics Data System (ADS)

    Avgoloupis, S.

    1986-07-01

    Characteristics of the four types of flares observed during the 184 events that were observed on the flare star EV Lac in the period 1967-1980 are analyzed. The data include the duration and magnitude of each event, the mean rate of luminosity and apparent magnitude increases, the integrated flare intensity over the whole event, and time histograms of intensity levels of the events. The flares were distributed into 49 type IV events, 71 type III events, 38 type II events and 25 type I events. Intensities were highest in type II events, and the extremes of other distinguishing characteristics were distributed among the other events, with some having correlations exceeding the 95 percent level. The differences were sufficiently pronounced to conclude that the individual type of flare event must be considered in future analyses, rather than considering all flare events as a uniform database.

  18. Flare diagnostics from loop modeling of a stellar flare observed with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Reale, Fabio

    2006-01-01

    XMM-Newton data of an X-ray flare observed on Proxima Centauri provide detailed and challenging constraints for flare modeling. The comparison of the data with the results of time-dependent hydrodynamic loop modeling of this flare allows us to constrain not only the loop morphology, but also the details of the heating function. The results show that even a complex flare event like this can be described with a relatively few though constrained components: two loop systems, i.e., a single loop and an arcade, and two heat components, an intense pulse probably located at the loop footpoints followed by a low gradual decay distributed in the coronal part of the loop. The similarity to at least one solar event (the Bastille Day flare in 2000) indicates that this pattern may be common to solar and stellar flares.

  19. New flare diagnostics from loop modeling of a stellar flare observedwith XMM-Newton

    NASA Astrophysics Data System (ADS)

    Reale, F.

    XMM-Newton data of an X-ray flare observed on Proxima Centauri provide detailed and challenging constraints for flare modeling. The comparison of the data with the results of time-dependent hydrodynamic loop modeling of this flare allows us to constrain not only the loop morphology, but also the details of the heating function. The results show that even a complex flare event like this can be described with a relatively few - though constrained - components: two loop systems, i.e. a single loop and an arcade, and two heat components, an intense pulse probably located at the loop footpoints followed by a low gradual decay distributed in the coronal part of the loop. The similarity to at least one solar event (the Bastille Day flare in 2000) indicate that this pattern may be common to solar and stellar flares.

  20. Quasi-static evolution of sheared force-free fields and the solar flare problem

    NASA Technical Reports Server (NTRS)

    Aly, J. J.

    1985-01-01

    Some new results are given showing the possible evolution of a two-dimensional force-free field in the half-space z greater than 0 toward an open field. This evolution is driven by shearing motions applied to the feet of the field lines on the boundary z = 0. The consequences of these results for a model of the two-ribbon solar flare are discussed.

  1. Dwarf Star Erupts in Giant Flare

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie taken by NASA'S Galaxy Evolution Explorer shows one of the largest flares, or star eruptions, ever recorded at ultraviolet wavelengths. The star, called GJ 3685A, just happened to be in the Galaxy Evolution Explorer's field of view while the telescope was busy observing galaxies. As the movie demonstrates, the seemingly serene star suddenly exploded once, then even more intensely a second time, pouring out in total about one million times more energy than a typical flare from our Sun. The second blast of light constituted an increase in brightness by a factor of at least 10,000.

    Flares are huge explosions of energy stemming from a single location on a star's surface. They are caused by the brief destruction of a star's magnetic fields. Many types of stars experience them, though old, small, rapidly rotating 'red dwarfs' like GJ 3685A tend to flare more frequently and dramatically. These stars, called flare stars, can experience powerful eruptions as often as every few hours. Younger stars, in general, also erupt more often. One of the reasons astronomers study flare stars is to gain a better picture and history of flare events taking place on the Sun.

    A preliminary analysis of the GJ 3685A flare shows that the mechanisms underlying stellar eruptions may be more complex than previously believed. Evidence for the two most popular flare theories was found.

    Though this movie has been sped up (the actual flare lasted about 20 minutes), time-resolved data exist for each one-hundredth of a second. These observations were taken at 2 p.m. Pacific time, April 24, 2004. In the still image, the time sequence starts in the upper left panel, continues in the upper right, then moves to the lower left and ends in the lower right.

    The circular and linear features that appear below and to the right of GJ 3685A during the flare event are detector artifacts caused by the extreme brightness of the flare.

  2. Determining the Altitude of Iridium Flares

    NASA Technical Reports Server (NTRS)

    Foster, James; Owe, Manfred

    1999-01-01

    Iridium flares have nothing to do with the element iridium. Iridium is also the name of a telecommunications company that has been launching satellites into low orbits around the Earth. These satellites are being used for a new type of wireless phone and paging service. Flares have been observed coming from these satellites. These flares have the potential, especially when the full fleet of satellites is in orbit, to disrupt astronomical observations. The paper reviews using simple trigonometry how to calculate the altitude of one of these satellites.

  3. He-3-rich flares - A possible explanation

    NASA Technical Reports Server (NTRS)

    Fisk, L. A.

    1978-01-01

    A plasma mechanism is proposed to explain the dramatic enhancements in He-3 observed in He-3-rich flares. It is shown that a common current instability in the corona may heat ambient He-3(2+) over any other ion and thus may preferentially inject He-3 into the flare acceleration process. This mechanism operates when the abundance of He-4 and heavier elements is larger than normal in the coronal plasma. It may also preferentially heat and thus inject certain ions of iron. The mechanism thus provides a possible explanation for the observed correlation between He-3 and heavy enhancements in He-3-rich flares.

  4. Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Diamond, P. H.; Xu, X. Q.; Tynan, G. R.

    2016-05-01

    A simple model for the generation and amplification of intrinsic axial flow in a linear device, controlled shear decorrelation experiment, is proposed. This model proposes and builds upon a novel dynamical symmetry breaking mechanism, using a simple theory of drift wave turbulence in the presence of axial flow shear. This mechanism does not require complex magnetic field structure, such as shear, and thus is also applicable to intrinsic rotation generation in tokamaks at weak or zero magnetic shear, as well as to linear devices. This mechanism is essentially the self-amplification of the mean axial flow profile, i.e., a modulational instability. Hence, the flow development is a form of negative viscosity phenomenon. Unlike conventional mechanisms where the residual stress produces an intrinsic torque, in this dynamical symmetry breaking scheme, the residual stress induces a negative increment to the ambient turbulent viscosity. The axial flow shear is then amplified by this negative viscosity increment. The resulting mean axial flow profile is calculated and discussed by analogy with the problem of turbulent pipe flow. For tokamaks, the negative viscosity is not needed to generate intrinsic rotation. However, toroidal rotation profile gradient is enhanced by the negative increment in turbulent viscosity.

  5. The landing flare: An analysis and flight-test investigation

    NASA Technical Reports Server (NTRS)

    Seckel, E.

    1975-01-01

    Results are given of an extensive investigation of conventional landing flares in general aviation type airplanes. A wide range of parameters influencing flare behavior are simulated in experimental landings in a variable-stability Navion. The most important feature of the flare is found to be the airplane's deceleration in the flare. Various effects on this are correlated in terms of the average flare load factor. Piloting technique is extensively discussed. Design criteria are presented.

  6. FLARING SOLAR HALE SECTOR BOUNDARIES

    SciTech Connect

    Svalgaard, L.; Hannah, I. G.; Hudson, H. S.

    2011-05-20

    The sector structure that organizes the magnetic field of the solar wind into large-scale domains has a clear pattern in the photospheric magnetic field as well. The rotation rate, 27-28.5 days, implies an effectively rigid rotation originating deeper in the solar interior than the sunspots. The photospheric magnetic field is known to be concentrated near that portion (the Hale boundary) in each solar hemisphere, where the change in magnetic sector polarity matches that between the leading and following sunspot polarities in active regions in the respective hemispheres. We report here that flares and microflares also concentrate at the Hale boundaries, implying that flux emergence and the creation of free magnetic energy in the corona also have a direct cause in the deep interior.

  7. Development of Daily Solar Maximum Flare Flux Forecast Models for Strong Flares

    NASA Astrophysics Data System (ADS)

    Shin, Seulki; Chu, Hyoungseok

    2015-08-01

    We have developed a set of daily solar maximum flare flux forecast models for strong flares using Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) methods. We consider input parameters as solar activity data from January 1996 to December 2013 such as sunspot area, X-ray maximum flare flux and weighted total flux of the previous day, and mean flare rates of McIntosh sunspot group (Zpc) and Mount Wilson magnetic classification. For a training data set, we use the same number of 61 events for each C-, M-, and X-class from Jan. 1996 to Dec. 2004, while other previous models use all flares. For a testing data set, we use all flares from Jan. 2005 to Nov. 2013. The statistical parameters from contingency tables show that the ANN models are better for maximum flare flux forecasting than the MLR models. A comparison between our maximum flare flux models and the previous ones based on Heidke Skill Score (HSS) shows that our all models for X-class flare are much better than the other models. According to the Hitting Fraction (HF), which is defined as a fraction of events satisfying that the absolute differences of predicted and observed flare flux in logarithm scale are less than equal to 0.5, our models successfully forecast the maximum flare flux of about two-third events for strong flares. Since all input parameters for our models are easily available, the models can be operated steadily and automatically on daily basis for space weather service.

  8. Solar flare count periodicities in different X-ray flare classes

    NASA Astrophysics Data System (ADS)

    Gao, Peng-Xin; Xu, Jing-Chen

    2016-04-01

    Using the Morlet wavelet transform and the Hilbert-Huang transform (HHT), we investigate the periodic behaviours of C, M and X-class flare counts, respectively, recorded by the Geostationary Operational Environmental Satellites (GOES) from 1983 May to 2014 December, which cover the two complete solar cycles (SCs) 22 and 23 as well as the part of declining phase of SC 21 and rise and maximum phases of SC 24. Analyses show that the periodic behaviours of various class flare counts are different. (1) Not all periods of various class flare counts appear dominant during the cycle maxima. For C-class flares, during SC 23, periods appear dominant during the maximum phase, however, compared to those during SC 23, there are more periods during the declining phase of SC 22; for M-class flares, during SCs 22 and 23, periods appear dominant during the cycle maxima; for X-class flares, during SC 22, almost all periods appear during the maximum phase; however, during SC 23, there are more periods during the declining phase compared to those during SC 22. (2) For C-class flares, the appearance of periods do not follow the amplitude of C-class flare cycles; while, for M and X-class flares, the appearance of periods follows the amplitude of the investigated corresponding class flare cycles. (3) From the overall trends, the 10 yr and longer time-scale trends of the monthly numbers of M and X-class flares, we can infer that the maximum values of the monthly M and X-class flare numbers would increase during SC 25.

  9. Impulsively Fast Magnetic Reconnection in Solar Flares and Coronal Mass Ejections and in Laboratory Plasma Merging Experiments

    NASA Astrophysics Data System (ADS)

    Cheng, Chio Z.; Ono, Yasushi; Yang, Ya-Hui; Choe, Gwangson

    2012-10-01

    Impulsively fast magnetic reconnection has been shown to be the major mechanism responsible for explosive flare non-thermal energy release and acceleration of coronal mass ejection (CME) motion. It has been observed that for most large solar flares non-thermal emissions in hard X-rays (HXR) and millimeter/submillimeter waves impulsively rise and decade during the soft X-ray (SXR) emission rise phase. Moreover, the filament/CME upward motion is accelerated temporally in correlation with the impulsive enhancement of flare non-thermal emission and reconnection electric field in the current sheet in both simulations and observations. The peak reconnection electric field during flare impulsive phase is on the order of a few kV/m for X-class flares. Here, we demonstrated for the first time in laboratory plasma merging experiments the correlation of the magnetic reconnection rate with the acceleration of plasmoid ejected from the current sheet using the TS-4 device of the Tokyo University. Moreover, we have also found that the electron heating occurs in the current sheet and the ion heating occurs in the down-stream outflow region. Thus, we conclude that the plasmoid/CME acceleration is a key mechanism for the impulsive enhancement of magnetic reconnection rate (electric field).

  10. The DAWN and FLARE Surveys

    NASA Astrophysics Data System (ADS)

    Rhoads, James E.; Malhotra, Sangeeta; Zheng, Zhenya; Monson, Andrew; Persson, S. Eric; Gonzalez, Alicia; Probst, Ronald G.; Swaters, Robert A.; Tilvi, Vithal; Finkelstein, Steven L.; Jiang, Tianxing; Mobasher, Bahram; Dickinson, Mark; Dressler, Alan; Lee, Janice C.; Ammons, S. Mark; Zabludoff, Ann I.; Emig, Kimberly; Hibon, Pascale; Joshi, Bhavin; Pharo, John; Smith, Mark David; Trahan, Jacob; Veilleux, Sylvain; Wang, JunXian; Wong, Kenneth C.; Yang, Huan; Zabl, Johannes; FLARE Team, the DAWN Team

    2016-01-01

    Lyman alpha galaxy populations at redshifts 8 and 9 offer a unique probe of cosmological reionization. Resonant scattering by neutral hydrogen should obscure such galaxies if the intergalactic medium is neutral, implying a steep decline in their observed counts at redshifts prior to the central phases of reionization. We are pursuing a pair of ambitious near-infrared narrow bandpass surveys to probe these populations: The Cosmic Deep and Wide Narrowband (DAWN) survey, using the NEWFIRM camera at the National Optical Astronomy Observatory's 4m Mayall telescope, and the First Light And Reionization Experiment (FLARE), using the FourStar camera at the 6.5m Magellan Telescopes. DAWN is an NOAO survey program, covering a total of five NEWFIRM fields (one square degree in all) to a limiting sensitivity around 9e-18 erg/cm2/s for emission lines at 1.06 micron wavelength, corresponding to redshift 7.7 for Lyman alpha. FLARE uses the larger aperture of the Magellan telescope to push to still higher redshift, with a limiting line flux near 5e-18 erg/cm2/s in the COSMOS field, and with additional coverage of a half dozen strongly lensed fields where we can probe still further down the Lyman alpha luminosity function. Imaging observations are largely complete for both surveys, and we are now pursuing spectroscopic followup at both near-IR and optical wavelengths. We will summarize initial results from both surveys in this meeting. With two nights of Keck+MOSFIRE observations complete already (and more scheduled in late 2015), we have numerous emission line confirmations-- both including many H alpha and Oxygen emitters in the foreground, and at least one Lyman alpha galaxy in the epoch of reionization.

  11. Xrt And Shinx Joint Flare Study: Ar 11024

    NASA Astrophysics Data System (ADS)

    Engell, Alexander; Sylwester, J.; Siarkowski, M.

    2010-05-01

    From 12:00 UT on July 3 through July 7, 2009 SphinX (Solar Photometer IN X-rays) observes 130 flares with active region (AR) 11024 being the only AR on disk. XRT (X-Ray Telescope) is able to observe 64 of these flare events. The combination of both instruments results in a flare study revealing (1) a relationship between flux emergence and flare rate, (2) that the presence of active region loops typically results in different flare morphologies (single and multiple loop flares) then when there is a lack of an active region loop environment where more cusp and point-like flares are observed, (3) cusp and point-like flares often originate from the same location, and (4) a distribution of flare temperatures corresponding to the different flare morphologies. The differences between the observed flare morphologies may occur as the result of the heated plasma through the flaring process being confined by the proximity of loop structures as for the single and multiple loop flares, while for cusp and point-like flares they occur in an early-phase environment that lack loop presence. The continuing flux emergence of AR 11024 likely provides different magnetic interactions and may be the source responsible for all of the flares.

  12. Development of Daily Maximum Flare-Flux Forecast Models for Strong Solar Flares

    NASA Astrophysics Data System (ADS)

    Shin, Seulki; Lee, Jin-Yi; Moon, Yong-Jae; Chu, Hyoungseok; Park, Jongyeob

    2016-03-01

    We have developed a set of daily maximum flare-flux forecast models for strong flares (M- and X-class) using multiple linear regression (MLR) and artificial neural network (ANN) methods. Our input parameters are solar-activity data from January 1996 to December 2013 such as sunspot area, X-ray maximum, and weighted total flare flux of the previous day, as well as mean flare rates of McIntosh sunspot group (Zpc) and Mount Wilson magnetic classifications. For a training dataset, we used 61 events each of C-, M-, and X-class from January 1996 to December 2004. For a testing dataset, we used all events from January 2005 to November 2013. A comparison between our maximum flare-flux models and NOAA model based on true skill statistics (TSS) shows that the MLR model for X-class and the average of all flares (M{+}X-class) are much better than the NOAA model. According to the hitting fraction (HF), which is defined as a fraction of events satisfying the condition that the absolute differences of predicted and observed flare flux on a logarithm scale are smaller than or equal to 0.5, our models successfully forecast the maximum flare flux of about two-thirds of the events for strong flares. Since all input parameters for our models are easily available, the models can be operated steadily and automatically on a daily basis for space-weather services.

  13. Temporal and Spatial Relationship of Flare Signatures and the Force-free Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Thalmann, J. K.; Veronig, A.; Su, Y.

    2016-08-01

    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2011 August 2 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at the (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths in order to pin down the intersection of previously reconnected flaring loops in the lower solar atmosphere. These locations are used to calculate field lines from three-dimensional (3D) nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. Using this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet’s lower tip during an on-disk observed flare as a few kilometers per second. A comparison to post-flare loops observed later above the limb in STEREO EUVI images supports this velocity estimate. Furthermore, we provide evidence for an implosion of parts of the flaring coronal model magnetic field, and identify the corresponding coronal sub-volumes associated with the loss of magnetic energy. Finally, we spatially relate the build up of magnetic energy in the 3D models to highly sheared fields, established due to the dynamic relative motions of polarity patches within the active region.

  14. Observations of an X-shaped Ribbon Flare and Its Three-dimensional Magnetic Reconnection with IRIS and SDO

    NASA Astrophysics Data System (ADS)

    Li, Ying; Qiu, Jiong; Longcope, Dana; Ding, Mingde

    2016-05-01

    We report evolution of an atypical X-shaped flare ribbon which provides novel observational evidence of three-dimensional (3D) magnetic reconnection at a separator. The flare occurred on 2014 November 9, and high-resolution slit-jaw 1330 images from IRIS reveal four chromospheric flare ribbons that converge and form an X-shape. These four ribbons are located in a quadrupolar magnetic field. Reconstruction of magnetic topology in the active region suggests the presence of a separator connecting to the X-point outlined by the ribbons. The inward motion of flare ribbons, as well as coronal loops observed by the SDO/AIA, indicates 3D magnetic reconnection between two sets of non-coplanar loops that approach laterally, and the reconnection proceeds downward to a very low height. We also study spectra of Si IV, C II, and Mg II observed with the IRIS slit, which cuts across the flare ribbons near the X-point. We have found two distinct types of line profiles. At the flare ribbon, all the lines show evident redshifts with a velocity up to 50 km/s, and the redshifts are well correlated with the line intensity and width. These redshifts suggest chromospheric condensation caused by impulsive energy deposition from the separator reconnection. While right outside the flare ribbon, the lines exhibit unshifted, symmetric, yet broadened profiles; in particular, the Si IV line is significantly broadened at the far wing. The line broadening persists for 20 minutes till after the end of the flare. The distinct spectral features near the X-point indicate different dynamics associated with the separator reconnection.

  15. Spectroscopy of Reconnection Inflow and Outflow in Solar Flares

    NASA Astrophysics Data System (ADS)

    Hara, Hirohisa

    We report reconnection inflow and outflow structures in a type of solar flares that were observed by spectroscopic observations with the Hinode EUV Imaging Spectrometer. A dark outflow has been found by EIS raster scan observations in hot emission lines like Fe XXIII and Fe XXIV as a structure extended from a site above a bright flare loop. The outflow structure is heated to ~10 MK, and the electron density of the outflow is enhanced by about a factor of 2 from the surrounding corona. The hot emission lines in the outflow structure show a large excess width, which may imply the presence of an internal flow structure or the plasma in a turbulent state. A high-density blob structure that appears above the loop-top region where the reconnection outflow collides shows the Doppler motion toward the low-altitude direction. The reconnection rate is estimated to be 0.01-0.1 in combination with the signature of reconnection inflow from the Doppler velocity measurement.

  16. Reconnection in substorms and solar flares: analogies and differences

    SciTech Connect

    Birn, Joachim

    2008-01-01

    Magnetic reconnection is the crucial process in the release of magnetic energy associated with magnetospheric substorms and with solar flares. On the basis of three-dimensional resistive MHD simulations we investigate similarities and differences between the two scenarios. We address in particular mechanisms that lead to the onset of reconnection and on energy release, transport, and conversion mechanisms. Analogous processes might exist in the motion of field line footpoints on the sun and in magnetic flux addition to the magnetotail. In both cases such processes might lead to a loss of neighboring equilibrium, characterized by the formation of very thin embedded current sheet, which acts as trigger for reconnection. We find that Joule (or ohmic) dissipation plays only a minor role in the overall energy transfer associated with reconnection. The dominant transfer of released magnetic energy occurs to electromagnetic energy (Poynting) flux and to thermal energy transport as enthalpy flux. The former dominates in low-beta, specifically initially force-free current sheets expected for the solar corona, while the latter dominates in high-beta current sheets, such as the magnetotail. In both cases the outflow from the reconnection site becomes bursty, i.e. spatially and temporally localized, yet carrying most of the outflow energy. Hence an analogy might exist between bursty bulk flows (BBFs) in the magnetotail and pulses of Poynting flux in solar flares.

  17. Solar Eruptions: Coronal Mass Ejections and Flares

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    This lecture introduces the topic of Coronal mass ejections (CMEs) and solar flares, collectively known as solar eruptions. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. Flares can be eruptive or confined. Eruptive flares accompany CMEs, while confined flares hav only electromagnetic signature. CMEs can drive MHD shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. CMEs heading in the direction of Earth arrive in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currnts that can disrupt power grids, railroads, and underground pipelines

  18. AR1429 Releases X1 Class Flare

    NASA Video Gallery

    The Solar Dynamics Observatory captured the X1 flare, shown here in the 171 Angstrom wavelength, a wavelength typically shown in the color gold. This movie runs from 10 PM ET March 4 to 3 AM March ...

  19. 2011 Valentines Day X-Class Flare

    NASA Video Gallery

    The video clip of the large X2 flare seen by Solar Dynamics Observatory (SDO) in extreme ultraviolet light on February 15, 2011, has been enlarged and superimposed on a video of SOHO's C2 coronagra...

  20. C3-class Solar Flare Eruption

    NASA Video Gallery

    Just as sunspot 1105 was turning away from Earth on Sept. 8, the active region erupted, producing a C3-class solar flare (peak @ 2330 UT) and a fantastic prominence. This is a three color closeup o...

  1. SDO Sees Late Phase in Solar Flares

    NASA Video Gallery

    On May 5, 2010, shortly after the Solar Dynamics Observatory (SDO) began normal operation, the sun erupted with numerous coronal loops and flares. Many of these showed a previously unseen "late pha...

  2. Ion acceleration in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Steinacker, Jurgen; Jaekel, Uwe; Schlickeiser, Reinhard

    1993-01-01

    Nonrelativistic spectra of protons and ions accelerated in impulsive solar flares are derived using more realistic turbulence power spectra. The calculation is based on a particle transport equation extracted from a second step acceleration model containing stochastic acceleration. The turbulence model is generalized to waves with a small angle to the magnetic field vector and to turbulence power spectra with spectral indices s smaller than 2. Due to the occurrence of impulsive flares at low coronal heights, Coulomb losses at the dense coronal plasma and diffusive particle escape are taken into account. The ion spectra show deviations from long-duration spectra near the Coulomb barrier, where the losses become maximal. The Z-squared/A-dependence of the Coulomb losses leads to spectral variations for different ions. We present a method to estimate the turbulence parameters and injection conditions of the flare particles using ion ratios like Fe/O of impulsive flares.

  3. An Observational Overview of Solar Flares

    NASA Technical Reports Server (NTRS)

    Fletcher, Lyndsay; Battaglia, M.; Dennis, Brian R.; Liu, W.; Milligan, R. O.; Hudson, H. S.; Krucker, S.; Phillips, K.; Bone, L.; Veronig, A.; Caspi, A.; Temmer, M.

    2011-01-01

    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.

  4. Positron annihilation radiation from solar flares

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Chupp, E. L.; Forrest, D. J.; Rieger, E.

    1983-01-01

    Positron-annihilation radiation has been observed from the June 21, 1980 and June 3, 1982 flares by the gamma-ray spectrometer on the Solar Maximum Mission satellite. The observed 0.511-MeV line fluences from the flares were 14.6 + or - 3.3 gamma/sq cm and 103 + or - 8 gamma/sq cm, respectively. Measurement of the line width establishes an upper limit to the temperature in the annihilation region of 3 x 10 to the 6th K. The time dependence of the 0.511-MeV line during the 1980 flare is consistent with the calculations of Ramaty et al. (1983) for positrons created in the decay of radioactive nuclei. The time dependence of the 0.511-MeV line for the 1982 flare is more complex and requires more detailed study.

  5. The flare productivity of active regions

    NASA Astrophysics Data System (ADS)

    Kuroda, N.; Christe, S.

    2012-12-01

    Previous studies have shown that the flare frequency distribution is consistent with a power-law. Furthermore, studies have shown that regions of higher magnetic complexity produce more large flares. This may imply that the flare frequency distribution is harder for magnetically complex active regions. However, the relationship between source active regions' magnetic complexity and the flare size distribution has not been extensively studied. We present a new study of 25,000 microflares detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) from March 2002 to February 2007. For each flare, we have obtained the two classifications of magnetic complexity, the Mount Wilson Magnetic Classification and the Zurich/McIntosh Sunspot Classification, from the Solar Region Summary prepared by the National Oceanic and Atmospheric Administration (NOAA)/ Space Weather Prediction Center (SWPC), and compared them with the RHESSI flare size distribution as observed in the 12 to 25 keV energy range. We investigate the relationship between the slope of the microflare size distribution and the magnetic properties of source active regions. For each flare we obtain the relevant MDI magnetogram to determine properties such as the area of the source active region and total unsigned magnetic flux. These properties are then compared to properties of the associated microflares such as peak flux and microflare size distribution. We find that, for both the Mount Wilson Magnetic Classification and the Zurich/McIntosh Sunspot Classification, the slopes of the microflare size distribution tend to get harder as a function of magnetic complexity. For example, in Mount Wilson Magnetic Classification the slope for α regions was 1.66 and the slope for βγδ region was 1.51.This suggests that βγδ regions are 50 % more likely to produce X class flares than α regions.

  6. Observational aspects of stellar radio flares

    NASA Technical Reports Server (NTRS)

    Bookbinder, Jay A.

    1991-01-01

    The study of stellar flares in the radio regime provides a nearly unique observational perspective, as the emission generally arises from the particle acceleration region. Continuum and spectral studies of radio burst emission for several classes of stars are reviewed, and some preliminary connections with the quiescent radio emission from flare stars are made. Further, the radio observations are placed in a broader observational context provided by X-ray, UV, and optical observations.

  7. Composition of energetic particles from solar flares

    NASA Technical Reports Server (NTRS)

    Garrard, T. L.; Stone, E. C.

    1994-01-01

    We present a model for composition of heavy ions in the Solar Energetic Particles (SEP). The SEP composition in a typical large solar particle event reflects the composition of the Sun, with adjustments due to fractionation effects which depend on the First Ionization Potential (FIP) of the ion and on the ratio of ionic charge to mass (Q/M). Flare-to flare variations in composition are represented by parameters describing these fractionation effects and the distributions of these parameters are presented.

  8. Optically thick line widths in pyrotechnic flares

    NASA Technical Reports Server (NTRS)

    Douda, B. E.; Exton, R. J.

    1975-01-01

    Experimentally determined sodium line widths for pyrotechnic flares are compared with simple analytical, optically-thick-line-shape calculations. Three ambient pressure levels are considered (760, 150 and 30 torr) for three different flare compositions. The measured line widths range from 1.3 to 481 A. The analytic procedure emphasizes the Lorentz line shape as observed under optically-thick conditions. Calculated widths are in good agreement with the measured values over the entire range.

  9. New Results from the Flare Genesis Experiment

    NASA Astrophysics Data System (ADS)

    Rust, D. M.; Bernasconi, P. N.; Eaton, H. A.; Keller, C.; Murphy, G. A.; Schmieder, B.

    2000-05-01

    From January 10 to 27, 2000, the Flare Genesis solar telescope observed the Sun while suspended from a balloon in the stratosphere above Antarctica. The goal of the mission was to acquire long time series of high-resolution images and vector magnetograms of the solar photosphere and chromosphere. Images were obtained in the magnetically sensitive Ca I line at 6122 Angstroms and at H-alpha (6563 Angstroms). The FGE data were obtained in the context of Max Millennium Observing Campaign #004, the objective of which was to study the ``Genesis of Solar Flares and Active Filaments/Sigmoids." Flare Genesis obtained about 26,000 usable images on the 8 targeted active regions. A preliminary examination reveals a good sequence on an emerging flux region and data on the M1 flare on January 22, as well as a number of sequences on active filaments. We will present the results of our first analysis efforts. Flare Genesis was supported by NASA grants NAG5-4955, NAG5-5139, and NAG5-8331 and by NSF grant OPP-9615073. The Air Force Office of Scientific Research and the Ballistic Missile Defense Organization supported early development of the Flare Genesis Experiment.

  10. The energy spectra of solar flare electrons

    NASA Technical Reports Server (NTRS)

    Evenson, P. A.; Hovestadt, D.; Meyer, P.; Moses, D.

    1985-01-01

    A survey of 50 electron energy spectra from .1 to 100 MeV originating from solar flares was made by the combination of data from two spectrometers onboard the International Sun Earth Explorer-3 spacecraft. The observed spectral shapes of flare events can be divided into two classes through the criteria of fit to an acceleration model. This standard two step acceleration model, which fits the spectral shape of the first class of flares, involves an impulsive step that accelerates particles up to 100 keV and a second step that further accelerates these particles up to 100 MeV by a single shock. This fit fails for the second class of flares that can be characterized as having excessively hard spectra above 1 MeV relative to the predictions of the model. Correlations with soft X-ray and meter radio observations imply that the acceleration of the high energy particles in the second class of flares is dominated by the impulsive phase of the flares.