Science.gov

Sample records for flat-plate solar array

  1. Flat-plate solar array project. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Callaghan, W.; Mcdonald, R.

    1986-01-01

    In 1975, the U.S. Government contracted the Jet Propulsion Lab. to develop, by 1985, in conjunction with industry, the photovoltaics (PV) module and array technology required for widespread use of photovoltaics as a significant terrestrial energy source. As a result, a project that eventually became known as the Flat Plate Solar Array (FSA) Project was formed to manage an industry, university, and Government team to perform the necessary research and development. The original goals were to achieve widespread commercial use of PV modules and arrays through the development of technology that would allow them to be profitably sold for $1.07/peak watts (1985 dollars). A 10% module conversion efficiency and a 20 year lifetime were also goals. It is intended that the executive summary provide the means by which one can gain a perspective on 11 years of terrestrial photovoltaic research and development conducted by the FSA Project.

  2. Flat-plate solar array project. Volume 7: Module encapsulation

    NASA Technical Reports Server (NTRS)

    Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.

    1986-01-01

    The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.

  3. Flat-plate solar array project. Volume 5: Process development

    NASA Astrophysics Data System (ADS)

    Gallagher, B.; Alexander, P.; Burger, D.

    1986-10-01

    The goal of the Process Development Area, as part of the Flat-Plate Solar Array (FSA) Project, was to develop and demonstrate solar cell fabrication and module assembly process technologies required to meet the cost, lifetime, production capacity, and performance goals of the FSA Project. R&D efforts expended by Government, Industry, and Universities in developing processes capable of meeting the projects goals during volume production conditions are summarized. The cost goals allocated for processing were demonstrated by small volume quantities that were extrapolated by cost analysis to large volume production. To provide proper focus and coverage of the process development effort, four separate technology sections are discussed: surface preparation, junction formation, metallization, and module assembly.

  4. Flat-plate solar array project. Volume 5: Process development

    NASA Technical Reports Server (NTRS)

    Gallagher, B.; Alexander, P.; Burger, D.

    1986-01-01

    The goal of the Process Development Area, as part of the Flat-Plate Solar Array (FSA) Project, was to develop and demonstrate solar cell fabrication and module assembly process technologies required to meet the cost, lifetime, production capacity, and performance goals of the FSA Project. R&D efforts expended by Government, Industry, and Universities in developing processes capable of meeting the projects goals during volume production conditions are summarized. The cost goals allocated for processing were demonstrated by small volume quantities that were extrapolated by cost analysis to large volume production. To provide proper focus and coverage of the process development effort, four separate technology sections are discussed: surface preparation, junction formation, metallization, and module assembly.

  5. Flat-plate solar array project. Volume 2: Silicon material

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1986-01-01

    The goal of the Silicon Material Task, a part of the Flat Plate Solar Array (FSA) Project, was to develop and demonstate the technology for the low cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. Summarized are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and Government researchers. The silane production section of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. The other process developments are described to varying extents. Studies are reported on the effects of impurities in silicon on both silicon-material properties and on solar cell performance. These studies on the effects of impurities yielded extensive information and models for relating specific elemental concentrations to levels of deleterious effects.

  6. Flat-plate solar array progress and plans

    NASA Astrophysics Data System (ADS)

    Callaghan, W. T.; Henry, P. K.

    The Flat-Plate Solar Array Project (FSA), sponsored by the U.S. Department of Energy (DOE) and managed by the Jet Propulsion Laboratory (JPL), has achieved progress in a broad range of technical activities since that reported at the Fourth European Communities Conference. A particularly important analysis has been completed recently which confirms the adoption into practice by the U.S. Photovoltaic (PV Industry, of all the low-cost module technology elements proposed at the 16th Project Integration Meeting for a $2.80/Wp (1980 U.S. Dollars) design approach in the fall of 1980. This work presents along with a projection, using the same techniques, for what is believed to be a very credible ribbon-based module design for less that $0.55/Wp (1980 U.S. Dollars). Other areas to be reported upon include low-cost Si feedstock refinement; ribbon growth; process sequence development for cells; environmental isolation; engineering science investigations; and module testing progress.

  7. Flat-plate solar array progress and plans

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.; Henry, P. K.

    1984-01-01

    The Flat-Plate Solar Array Project (FSA), sponsored by the U.S. Department of Energy (DOE) and managed by the Jet Propulsion Laboratory (JPL), has achieved progress in a broad range of technical activities since that reported at the Fourth European Communities Conference. A particularly important analysis has been completed recently which confirms the adoption into practice by the U.S. Photovoltaic (PV Industry, of all the low-cost module technology elements proposed at the 16th Project Integration Meeting for a $2.80/Wp (1980 U.S. Dollars) design approach in the fall of 1980. This work presents along with a projection, using the same techniques, for what is believed to be a very credible ribbon-based module design for less that $0.55/Wp (1980 U.S. Dollars). Other areas to be reported upon include low-cost Si feedstock refinement; ribbon growth; process sequence development for cells; environmental isolation; engineering science investigations; and module testing progress.

  8. Flat plate solar oven

    SciTech Connect

    Parikh, M.

    1981-01-01

    The construction of an Indian Rs. 186 (US $20.33) flat-plate solar oven is described. Detailed drawings are provided and relevant information on cooking times and temperature for different foods is given.

  9. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  10. Flat Plate Solar Array Project: Proceedings of the 20th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1982-01-01

    Progress made by the Flat-Plate Solar Array Project during the period November 1981 to April 1982 is reported. Project analysis and integration, technology research in silicon material, large-area silicon sheet and environmental isolation, cell and module formation, engineering sciences, and module performance and failure analysis are covered.

  11. Proceedings of the Flat-Plate Solar Array Project Research Forum on Photovoltaic Metallization Systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A photovoltaic Metallization Research forum, under the sponsorship of the Flat-Plate Solar Array Project consisted of five sessions, covering: (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques, and (5) future metallization challenges.

  12. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    SciTech Connect

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  13. Proceedings of the Flat-Plate Solar Array Project Research Forum on the design of flat-plate photovoltaic arrays for central stations

    SciTech Connect

    1983-01-01

    The Flat-Plate Solar Array Project, managed by the Jet Propulsion Laboratory for the US Department of Energy, has focused on advancing technologies relevant to the design and construction of megawatt-level central-station systems. Photovoltaic modules and arrays for flat-plate central-station or other large-scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost-effective configurations. The Central Station Research Forum addressed design, qualification and maintenance issues related to central-station arrays derived from the engineering and operating experiences of early applications and parallel laboratory research activities. Technical issues were examined from the viewpoint of the utility engineer, architect-engineer and laboratory researcher. The forum included presentations on optimum source-circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements and array operation and maintenance. The Research Forum focused on current capabilities as well as design difficulties requiring additional technological thrusts and/or continued research emphasis. Session topic summaries highlighting major points during group discussions, identifying promising technical approaches or areas of future research, are presented.

  14. Flat-plate solar array project: Government and industry responding to national needs

    NASA Technical Reports Server (NTRS)

    Adcock, J. Patrick; Knecht, Robert D.

    1988-01-01

    This document recounts the accomplishments of the 11-year Flat-Plate Solar Array Project, which is recognized as one of the most successful and comprehensive technology-transfer efforts ever achieved through government-sponsored research and development. Few Federal research projects can claim the degree of industry involvement that was a fundamental aspect of the FSA Project. This philosophy in turn led to an extraordinary transfer of technology to the private sector, and assured that a maximum amount of the taxpayers' dollars were devoted to research of primary importance to the technology's commercialization.

  15. Flat-plate solar array project. Volume 4: High-efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Leipold, M.; Cheng, L.; Daud, T.; Mokashi, A.; Burger, D.; Christensen, E. (Editor); Murry, J. (Editor); Bengelsdorf, I. (Editor)

    1986-01-01

    The High Efficiency Solar Cell Task was assigned the objective of understanding and developing high efficiency solar cell devices that would meet the cost and performance goals of the Flat Plate Solar Array (FSA) Project. The need for research dealing with high efficiency devices was considered important because of the role efficiency plays in reducing price per watt of generated energy. The R&D efforts conducted during the 1982 to 1986 period are summarized to provide understanding and control of energy conversion losses associated with crystalline silicon solar cells. New levels of conversion efficiency were demonstrated. Major contributions were made both to the understanding and reduction of bulk and surface losses in solar cells. For example, oxides, nitrides, and polysilicon were all shown to be potentially useful surface passivants. Improvements in measurement techniques were made and Auger coefficients and spectral absorption data were obtained for unique types of silicon sheets. New modelling software was developed including a program to optimize a device design based on input characteristics of a cell.

  16. Flat-plate solar array project. Volume 3: Silicon sheet: Wafers and ribbons

    NASA Technical Reports Server (NTRS)

    Briglio, A.; Dumas, K.; Leipold, M.; Morrison, A.

    1986-01-01

    The primary objective of the Silicon Sheet Task of the Flat-Plate Solar Array (FSA) Project was the development of one or more low cost technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers to high purity crystalline silicon of size and thickness for fabrication into solar cells. Areas covered in the project were ingot growth and casting, wafering, ribbon growth, and other sheet technologies. The task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the task cost goals were not achieved.

  17. PV Reliability Development Lessons from JPL's Flat Plate Solar Array Project

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G., Jr.

    2013-01-01

    Key reliability and engineering lessons learned from the 20-year history of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and thin film module reliability research activities are presented and analyzed. Particular emphasis is placed on lessons applicable to evolving new module technologies and the organizations involved with these technologies. The user-specific demand for reliability is a strong function of the application, its location, and its expected duration. Lessons relative to effective means of specifying reliability are described, and commonly used test requirements are assessed from the standpoint of which are the most troublesome to pass, and which correlate best with field experience. Module design lessons are also summarized, including the significance of the most frequently encountered failure mechanisms and the role of encapsulate and cell reliability in determining module reliability. Lessons pertaining to research, design, and test approaches include the historical role and usefulness of qualification tests and field tests.

  18. Flat-plate solar array project. Volume 6: Engineering sciences and reliability

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Smokler, M. I.

    1986-01-01

    The Flat-Plate Solar Array (FSA) Project activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety, and reliability requirements of large scale terrestrial photovoltaic systems applications are reported. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis of define design shortfalls and, thus, areas requiring additional research and development. A summary of the approach and technical outcome of these activities are provided along with a complete bibliography of the published documentation covering the detailed accomplishments and technologies developed.

  19. Flat-plate solar array project. Volume 8: Project analysis and integration

    NASA Technical Reports Server (NTRS)

    Mcguire, P.; Henry, P.

    1986-01-01

    Project Analysis and Integration (PA&I) performed planning and integration activities to support management of the various Flat-Plate Solar Array (FSA) Project R&D activities. Technical and economic goals were established by PA&I for each R&D task within the project to coordinate the thrust toward the National Photovoltaic Program goals. A sophisticated computer modeling capability was developed to assess technical progress toward meeting the economic goals. These models included a manufacturing facility simulation, a photovoltaic power station simulation and a decision aid model incorporating uncertainty. This family of analysis tools was used to track the progress of the technology and to explore the effects of alternative technical paths. Numerous studies conducted by PA&I signaled the achievement of milestones or were the foundation of major FSA project and national program decisions. The most important PA&I activities during the project history are summarized. The PA&I planning function is discussed and how it relates to project direction and important analytical models developed by PA&I for its analytical and assessment activities are reviewed.

  20. Flat-plate solar array project of the US Department of Energy's National Photovoltaics Program: Ten years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The Flat-Plate Solar Array (FSA) Project, a Government-sponsored photovoltaics project, was initiated in January 1975 (previously named the Low-Cost Silicon Solar Array Project) to stimulate the development of PV systems for widespread use. Its goal then was to develop PV modules with 10% efficiency, a 20-year lifetime, and a selling price of $0.50 per peak watt of generating capacity (1975 dollars). It was recognized that cost reduction of PV solar-cell and module manufacturing was the key achievement needed if PV power systems were to be economically competitive for large-scale terrestrial use.

  1. A Module Experimental Process System Development Unit (MEPSDU). [flat plate solar arrays

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of a cost effective process sequence that has the potential for the production of flat plate photovoltaic modules which meet the price goal in 1986 of 70 cents or less per Watt peak is described. The major accomplishments include (1) an improved AR coating technique; (2) the use of sand blast back clean-up to reduce clean up costs and to allow much of the Al paste to serve as a back conductor; and (3) the development of wave soldering for use with solar cells. Cells were processed to evaluate different process steps, a cell and minimodule test plan was prepared and data were collected for preliminary Samics cost analysis.

  2. Proceedings of the Flat-Plate Solar Array Project Workshop on Crystal Gowth for High-Efficiency Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Dumas, K. A. (Editor)

    1985-01-01

    A Workshop on Crystal Growth for High-Efficiency Silicon Solar Cells was held December 3 and 4, 1984, in San Diego, California. The Workshop offered a day and a half of technical presentations and discussions and an afternoon session that involved a panel discussion and general discussion of areas of research that are necessary to the development of materials for high-efficiency solar cells. Topics included the theoretical and experimental aspects of growing high-quality silicon crystals, the effects of growth-process-related defects on photovoltaic devices, and the suitability of various growth technologies as cost-effective processes. Fifteen invited papers were presented, with a discussion period following each presentation. The meeting was organized by the Flat-Plate Solar Array Project of the Jet Propulsion Laboratory. These Proceedings are a record of the presentations and discussions, edited for clarity and continuity.

  3. Summary of flat-plate solar array project documentation: Abstracts of published documents, 1975-1986, revision 1

    NASA Technical Reports Server (NTRS)

    Phillips, M. J.

    1986-01-01

    Abstracts of final reports, or the latest quarterly or annual, of the Flat-Plate Solar Array (FSA) Project Contractor of Jet Propulsion Laboratory (JPL) in-house activities are presented. Also presented is a list of proceedings and publications, by author, of work connected with the project. The aim of the program has been to stimulate the development of technology that will enable the private sector to manufacture and widely use photovoltaic systems for the generation of electricity in residential, commercial, industrial, and Government applications at a cost per watt that is competitive with utility generated power. FSA Project activities have included the sponsoring of research and development efforts in silicon refinement processes, advanced silicon sheet growth techniques, higher efficiency solar cells, solar cell/module fabrication processes, encapsulation, module/array engineering and reliability, and economic analyses.

  4. Effects of design on cost of flat-plate solar photovoltaic arrays for terrestrial central station power applications

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Stolte, W.

    1978-01-01

    The paper examines the impact of module and array designs on the balance-of-plant costs for flat-plate terrestrial central station power applications. Consideration is given to the following types of arrays: horizontal, tandem, augmented, tilt adjusted, and E-W tracking. The life-cycle cost of a 20-year plant life serves as the costing criteria for making design and cost tradeoffs. A tailored code of accounts is developed for determining consistent photovoltaic power plant costs and providing credible photovoltaic system cost baselines for flat-plate module and array designs by costing several varying array design approaches.

  5. A summary report on the Flat-Plate Solar Array Project Workshop on Transparent Conducting Polymers

    NASA Technical Reports Server (NTRS)

    Kachare, R.; Moacanin, J.

    1985-01-01

    The proceedings and technical discussions of a workshop on Transparent Conducting Polymers (TCP) for solar cell applications are reported. This is in support of the Device Research Task of the Flat-Flate Solar Array Project. The workshop took place on January 11 and 12, 1985, in Santa Barbara, California. Participants included university and industry researchers. The discussions focused on the electronic and optical properties of TCP, and on experimental issues and problems that should be addressed for high-efficiency solar cell application.

  6. Overview - Flat-plate technology. [review of Low Cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1981-01-01

    Progress and continuing plans for the joint NASA/DoE program at the JPL to develop the technologies and industrial processes necessary for mass production of low-cost solar arrays (LSA) which produce electricity from solar cells at a cost of less than $0.70/W are reviewed. Attention is given to plans for a demonstration Si refinement plant capable of yielding 1000 MT/yr, and to a CVD process with chlorosilane, which will yield material at a cost of $21/kg. Ingot and shaped-sheet technologies, using either Czochralski growth and film fed growth methods have yielded AM1 15% efficient cells in an automated process. Encapsulation procedures have been lowered to $14/sq m, and robotics have permitted assembled cell production at a rate of 10 sec/cell. Standards are being defined for module safety features. It is noted that construction of a pilot Si purification plant is essential to achieving the 1986 $0.70/W cost goals.

  7. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  8. Module performance and failure analysis area: Flat-plate solar array project

    NASA Technical Reports Server (NTRS)

    Tornstrom, E.

    1984-01-01

    A redesign of the initial (Group I) Mobile Solar Block V module was done and documented. Manufacturing experience and accelerated test data from Group I formed the basis for the redesign. Ten Block V Group II modules were submitted for evaluation and the results are presented.

  9. Intermediate load modules for test and evaluation: Flat-Plate Solar Array Project

    NASA Technical Reports Server (NTRS)

    Bower, M. J.

    1985-01-01

    Two versions of a 36 stainless steel solar module were built. The first version was built as a commercial module for marine applications and was purchased for evaluation by JPL. Design deficiencies were identified as a result of the evaluation. The second version was built and the improvements that resulted from design changes are described. Assembly problems, electrical performance, and qualification test results are provided.

  10. Process Research On Polycrystalline Silicon Material (PROPSM). [flat plate solar array project

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1983-01-01

    The performance-limiting mechanisms in large-grain (greater than 1 to 2 mm in diameter) polycrystalline silicon solar cells were investigated by fabricating a matrix of 4 sq cm solar cells of various thickness from 10 cm x 10 cm polycrystalline silicon wafers of several bulk resistivities. Analysis of the illuminated I-V characteristics of these cells suggests that bulk recombination is the dominant factor limiting the short-circuit current. The average open-circuit voltage of the polycrystalline solar cells is 30 to 70 mV lower than that of co-processed single-crystal cells; the fill-factor is comparable. Both open-circuit voltage and fill-factor of the polycrystalline cells have substantial scatter that is not related to either thickness or resistivity. This implies that these characteristics are sensitive to an additional mechanism that is probably spatial in nature. A damage-gettering heat-treatment improved the minority-carrier diffusion length in low lifetime polycrystalline silicon, however, extended high temperature heat-treatment degraded the lifetime.

  11. Bi-coolant flat plate solar collector

    NASA Astrophysics Data System (ADS)

    Chon, W. Y.; Green, L. L.

    The feasibility study of a flat plate solar collector which heats air and water concurrently or separately was carried out. Air flows above the collector absorber plate, while water flows in tubes soldered or brazed beneath the plate. The collector efficiencies computed for the flow of both air and water are compared with those for the flow of a single coolant. The results show that the bi-coolant collector efficiency computed for the entire year in Buffalo, New York is higher than the single-coolant collector efficiency, although the efficiency of the water collector is higher during the warmer months.

  12. Summary of flat-plate solar array project documentation. Abstracts of published documents, 1975 to June 1982

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Technologies that will enable the private sector to manufacture and widely use photovoltaic systems for the generation of electricity in residential, commercial, industrial, and government applications at a cost per watt that is competitive with other means is investigated. Silicon refinement processes, advanced silicon sheet growth techniques, solar cell development, encapsulation, automated fabrication process technology, advanced module/array design, and module/array test and evaluation techniques are developed.

  13. Proceedings of the Flat-plate Solar Array Project Research Forum on High-efficiency Crystalline Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Kachare, R.

    1985-01-01

    The high-efficiency crystalline silicon solar cells research forum addressed high-efficiency concepts, surface-interface effects, bulk effects, modeling and device processing. The topics were arranged into six interactive sessions, which focused on the state-of-the-art of device structures, identification of barriers to achieve high-efficiency cells and potential ways to overcome these barriers.

  14. Flat-plate photovoltaic array design optimization

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1980-01-01

    An analysis is presented which integrates the results of specific studies in the areas of photovoltaic structural design optimization, optimization of array series/parallel circuit design, thermal design optimization, and optimization of environmental protection features. The analysis is based on minimizing the total photovoltaic system life-cycle energy cost including repair and replacement of failed cells and modules. This approach is shown to be a useful technique for array optimization, particularly when time-dependent parameters such as array degradation and maintenance are involved.

  15. Flat-plate solar array project process development area process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Three sets of samples were laser processed and then cell processed. The laser processing was carried out on P-type and N-type web at laser power levels from 0.5 joule/sq cm to 2.5 joule/sq cm. Six different liquid dopants were tested (3 phosphorus dopants, 2 boron dopants, 1 aluminum dopant). The laser processed web strips were fabricated into solar cells immediately after laser processing and after various annealing cycles. Spreading resistance measurements made on a number of these samples indicate that the N(+)P (phosphorus doped) junction is approx. 0.2 micrometers deep and suitable for solar cells. However, the P(+)N (or P(+)P) junction is very shallow ( 0.1 micrometers) with a low surface concentration and resulting high resistance. Due to this effect, the fabricated cells are of low efficiency. The maximum efficiency attained was 9.6% on P-type web after a 700 C anneal. The main reason for the low efficiency was a high series resistance in the cell due to a high resistance back contact.

  16. Flat-plate solar array project process development area: Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1986-01-01

    Several different techniques to simultaneously diffuse the front and back junctions in dendritic web silicon were investigated. A successful simultaneous diffusion reduces the cost of the solar cell by reducing the number of processing steps, the amount of capital equipment, and the labor cost. The three techniques studied were: (1) simultaneous diffusion at standard temperatures and times using a tube type diffusion furnace or a belt furnace; (2) diffusion using excimer laser drive-in; and (3) simultaneous diffusion at high temperature and short times using a pulse of high intensity light as the heat source. The use of an excimer laser and high temperature short time diffusion experiment were both more successful than the diffusion at standard temperature and times. The three techniques are described in detail and a cost analysis of the more successful techniques is provided.

  17. Advanced solar box and flat plate collector cookers

    SciTech Connect

    Grupp, M.; Bergler, H.

    1992-12-31

    Several new solar cooker systems have been developed at Synopsis during the last years: advanced box type cookers, featuring an optimized heat transfer from the absorber into the cooking vessel; flat plate cookers, based on a particular two-way collector with air as transfer fluid; flat plate cookers with heat-pipe transfer; specialized cookers for the baking of bread and flat bread. The working principle of these cookers is described, the structure of a thermal simulation model and results of thermal tests are presented. The results of the first year of local production and use of advanced boxes in India are reported.

  18. Flat-plate solar array project process development area, process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1984-01-01

    The program is designed to investigate the fabrication of solar cells on N-type base material by a simultaneous diffusion of N-type and P-type dopants to form an P(+)NN(+) structure. The results of simultaneous diffusion experiments are being compared to cells fabricated using sequential diffusion of dopants into N-base material in the same resistivity range. The process used for the fabrication of the simultaneously diffused P(+)NN(+) cells follows the standard Westinghouse baseline sequence for P-base material except that the two diffusion processes (boron and phosphorus) are replaced by a single diffusion step. All experiments are carried out on N-type dendritic web grown in the Westinghouse pre-pilot facility. The resistivities vary from 0.5 (UC OMEGA)cm to 5 (UC OMEGA)cm. The dopant sources used for both the simultaneous and sequential diffusion experiments are commercial metallorganic solutions with phosphorus or boron components. After these liquids are applied to the web surface, they are baked to form a hard glass which acts as a diffusion source at elevated temperatures. In experiments performed thus far, cells produced in sequential diffusion tests have properties essentially equal to the baseline N(+)PP(+) cells. However, the simultaneous diffusions have produced cells with much lower IV characteristics mainly due to cross-doping of the sources at the diffusion temperature. This cross-doping is due to the high vapor pressure phosphorus (applied as a metallorganic to the back surface) diffusion through the SiO2 mask and then acting as a diffusant source for the front surface.

  19. Wind loads on flat plate photovoltaic array fields (nonsteady winds)

    NASA Technical Reports Server (NTRS)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    Techniques to predict the dynamic response and the structural dynamic loads of flat plate photovoltaic arrays due to wind turbulence were analyzed. Guidelines for use in predicting the turbulent portion of the wind loading on future similar arrays are presented. The dynamic response and the loads dynamic magnification factor of the two array configurations are similar. The magnification factors at a mid chord and outer chord location on the array illustrated and at four points on the chord are shown. The wind tunnel test experimental rms pressure coefficient on which magnification factors are based is shown. It is found that the largest response and dynamic magnification factor occur at a mid chord location on an array and near the trailing edge. A technique employing these magnification factors and the wind tunnel test rms fluctuating pressure coefficients to calculate design pressure loads due to wind turbulence is presented.

  20. Wind loads on flat plate photovoltaic array fields

    NASA Technical Reports Server (NTRS)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.

  1. Low-cost solar flat-plate-collector development

    NASA Astrophysics Data System (ADS)

    Wilhelm, W. G.

    Cost goals were developed for the collector which led to the rejection of conventional approaches and to the exploration of thin film technology. A thin film solar absorber suited for high speed continous-roll manufacture at low cost was designed. The absorber comprises two sheets of aluminum-foil/polmeric-material laminate bonded together at intervals to form channels with water as the heat transfer fluid. Several flat-plate panels were fabricated and tested.

  2. Wind Loads on Flat Plate Photovoltaic Array Fields

    NASA Technical Reports Server (NTRS)

    Miller, R.; Zimmerman, D.

    1979-01-01

    The aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays were investigated. Local pressure distributions and total aerodynamic forces on the arrays are shown. Design loads are presented to cover the conditions of array angles relative to the ground from 20 deg to 60 deg, variable array spacings, a ground clearance gap up to 1.2 m (4 ft) and array slant heights of 2.4 m (8 ft) and 4.8 m (16 ft). Several means of alleviating the wind loads on the arrays are detailed. The expected reduction of the steady state wind velocity with the use of fences as a load alleviation device are indicated to be in excess of a factor of three for some conditions. This yields steady state wind load reductions as much as a factor of ten compared to the load incurred if no fence is used to protect the arrays. This steady state wind load reduction is offset by the increase in turbulence due to the fence but still an overall load reduction of 2.5 can be realized. Other load alleviation devices suggested are the installation of air gaps in the arrays, blocking the flow under the arrays and rounding the edges of the array. A wind tunnel test plan to supplement the theoretical study and to evaluate the load alleviation devices is outlined.

  3. Development of flat-plate solar plate collector: Evaporator

    NASA Astrophysics Data System (ADS)

    Abramzon, B.; Yaron, I.

    1981-11-01

    In the present study the thermal performance of a flat plate solar collector is analyzed theoretically for the case in which the working fluid may undergo a phase change within the tubes of the collector. In addition to the common domestic applications, such a collector - evaporator may be used as a generator of vapors for the production of mechanical or electrical energy, e.g., solar water pumps, solar power stations, etc., as well as for solar - powered absorption refrigeration machines, distillation installations, etc.

  4. Environmental testing of flat plate solar cell modules

    NASA Technical Reports Server (NTRS)

    Griffith, J.; Dumas, L.; Hoffman, A.

    1978-01-01

    Commercially available flat-plate solar cell modules have been subjected to a variety of environmental tests designed to simulate service conditions. Among the tests are those simulating heat and rain, wind-driven rains, humidity and freezing, humidity and heat, humidity with a voltage bias, salt fog, hail impact, and fungus infestation. Tests for optical surface soiling and the combined effects of temperature, humidity and UV irradiation are under development. A correlation has been demonstrated between degradation caused by the qualification tests and such observed field effects as power loss.

  5. Proceedings of the Flat-plate Solar Array Project Research Forum on the High-speed Growth and Characterization of Crystals for Solar Cells

    NASA Technical Reports Server (NTRS)

    Dumas, K. A. (Editor)

    1984-01-01

    Theoretical and experimental phenomena, applications, and characterization including stress/strain and other problem areas that limit the rate of growth of crystals suitable for processing into efficient, cost-effective solar cells are discussed. Melt spinning, ribbon growth, rapid solidification, laser recrystallization, and ignot growth of silicon and metals are also discussed.

  6. Cost estimates for flat plate and concentrator collector arrays

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1982-01-01

    The current module and installation costs for the U.S. National Photovoltaic Program's grid-connected systems are significantly higher than required for economic viability of this alternative. Attention is accordingly given to the prospects for installed module cost reductions in flat plate, linear focus Fresnel concentrator, and point focus Fresnel concentrator candidate systems. Cost projections indicate that all three systems would meet near-term and midterm goals, provided that module costs of $2.80/W(p) and $0.70/W(p), respectively, are met. The point focus Fresnel system emerges as the most viable for the near term.

  7. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  8. Certification and verification for Calmac flat plate solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information used in the certification and verification of the Calmac Flat Plate Collector is presented. Contained are such items as test procedures and results, information on materials used, installation, operation, and maintenance manuals, and other information pertaining to the verification and certification.

  9. A Didactic Experiment and Model of a Flat-Plate Solar Collector

    ERIC Educational Resources Information Center

    Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2011-01-01

    We report on an experiment performed with a home-made flat-plate solar collector, carried out together with high-school students. To explain the experimental results, we propose a model that describes the heating process of the solar collector. The model accounts quantitatively for the experimental data. We suggest that solar-energy topics should…

  10. Standardized solar simulator tests of flat plate solar collectors. 1: Soltex collector with two transparent covers

    NASA Technical Reports Server (NTRS)

    Simon, F.

    1975-01-01

    A Soltex flat plate solar collector was tested with a solar simulator for inlet temperatures of 77 to 201 F, flux levels of 240 and 350 Btu/hr-sq ft, a collant flow rate of 10.5 lb/hr sq ft, and incident angles of 0 deg, 41.5 deg, and 65.2 deg. Collector performance is correlated in terms of inlet temperature, flux level, and incident angle.

  11. Experimental study on flat plate air solar collector using a thin sand layer

    NASA Astrophysics Data System (ADS)

    Lati, Moukhtar; Boughali, Slimane; Bouguettaia, Hamza; Mennouche, Djamel; Bechki, Djamel

    2016-07-01

    A flat plate air solar collector was constructed in the laboratory of New and Renewable Energy in Arid Zones LENREZA, Ouargla University-South East Algeria. The absorber of the flat plate air solar collector was laminated with a thin layer of local sand. This acted as a thermal storage system (packed bed) with a collecting area of 2.15 m2 (0.86 m × 2.5 m). It was noticed that the solar heater integrated with the thermal storage material delivered comparatively higher temperatures; thus, giving a better efficiency than the air heater without the thermal storage system.

  12. Hot-air flat-plate solar collector-design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report contains design data, performance specifications, and drawings for hot-air flat-plate solar-energy collector. Evaluation consists of tests on thermal performance time constance, and incidence angle modifier test. Results are presented in table and graph form and are analyzed in detail.

  13. Design and installation package for the Sunmat Flat Plate solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The information used in evaluating the design of a liquid flat plate solar collector is reported. Included in this package are subsystem performance specification, installation, operation and maintenance manuals, collector sizing guides, and detailed drawings of the single-glazed collector.

  14. Recommendations for the performance rating of flat plate terrestrial photovoltaic solar panels

    NASA Technical Reports Server (NTRS)

    Treble, F. C.

    1976-01-01

    A review of recommendations for standardizing the performance rating of flat plate terrestrial solar panels is given to develop an international standard code of practice for performance rating. Required data to characterize the performance of a solar panel are listed. Other items discussed are: (1) basic measurement procedures; (2) performance measurement in natural sunlight and simulated sunlight; (3) standard solar cells; (4) the normal incidence method; (5) global method and (6) definition of peak power.

  15. Wind loads on flat plate photovoltaic array fields. Phase III, final report

    SciTech Connect

    Miller, R.D.; Zimmerman, D.K.

    1981-04-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads.

  16. Development of flat-plate solar collectors for the heating and cooling of buildings: Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An efficient, low cost, flat-plate solar collector was developed. Computer aided mathematical models of the heat process in the collector were used in defining absorber panel configuration; determining insulation thickness; and in selecting the number, spacing, and material of the covers. Prototypes were built and performance tested. Data from simulated operation of the collector are compared with predicted loads from a number of locations to determine the degree of solar utilization.

  17. Atmospheric corrosion of batten and enclosure materials for flat-plate solar collectors

    SciTech Connect

    Not Available

    1980-09-01

    As part of the Solar Reliability and Materials Program at Argonne National Laboratory, the atmospheric-corrosion-monitoring project is to assess the materials used for battens and enclosures for flat-plate solar collectors. Sensors at nine test sites have provided atmospheric data. Other data have been obtained by analyzing corrosion samples that were exposed for varying periods of time. This interim report summarizes the results of the first test period.

  18. Solar radiation data manual for flat-plate and concentrating collectors

    NASA Astrophysics Data System (ADS)

    Dunlap, M. A.

    For designers and engineers of solar energy-related systems, the Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors gives the solar resource available for various types of collectors for the US and its territories. The data in the manual were modeled using hourly values of direct beam and diffuse horizontal solar radiation from the National Solar Radiation Data Base (NSRDB). The NSRDB contains modeled (93%) and measured (7%) global horizontal, diffuse horizontal, and direct beam solar radiation for 1961-1990.

  19. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    NASA Technical Reports Server (NTRS)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  20. Flat-plate collector performance evaluation. The case for a solar simulation approach

    NASA Technical Reports Server (NTRS)

    Simon, F. F.; Harlamert, P.

    1973-01-01

    A method is proposed for determining the performance of flat-plate solar collector using a simulated sun. Collector test variables that will help establish the basis for the indoor test facility at the Lewis Research Center are discussed. The use of the indoor testing should permit a standard test for the convenient and accurate determination of collector performance. Preliminary test results are reported as an example of the type of collector performance data to be expected from the simulation approach.

  1. Modular array field designs for tracking flat-plate photovoltaic systems, volume 1

    NASA Astrophysics Data System (ADS)

    Castle, J. A.

    1987-06-01

    This report addresses the optimization of utility-sized, tracking flat-plate photovoltaic power systems. Structures optimized were one single-axis and one dual-axis tracking system using currently available system designs as baseline engineering reference points. Passive thermal-hydraulic tracking drive systems were evaluated and Freon-hydraulic units were found to be cost-effective in single-axis tracking. Building block configurations ranging in size from 35 kW to 5 MW were established using the optimized single- and dual-axis tracking structures, and their reliability and availability were analyzed. A 1-MW single-axis building block design was selected to develop engineering plans for a 100-MW PV power plant designed to operate unattended. Eleven-percent efficient PV panels at $220/sq m were used in the study, and single-axis, flat-plate tracking systems were found to be significantly more cost-effective than dual-axis systems. A prototype tracking array was built and tested at Sandia, where cost and performance data supported lower economic projections for large PV tracking arrays.

  2. A new solar radiation data manual for flat-plate and concentrating collectors

    NASA Astrophysics Data System (ADS)

    Marion, W.; Wilcox, S.

    1994-06-01

    A new solar radiation data manual is nearing completion by the National Renewable Energy Laboratory's (NREL's) Analytic Studies Division under the Solar Radiation Resource Assessment Project and the Photovoltaic Solar Radiation Research Task. These tasks are funded and monitored by the Photovoltaics Branch of the Department of Energy's Office of Energy Efficiency and Renewable Energy. The new manual is entitled Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors. For designers and engineers of solar energy related systems, it gives the solar resource available for various types of collectors for 239 stations in the United States and its territories. The data in the manual are modeled using diffuse horizontal and direct beam solar radiation values from the National Solar Radiation Data Base (NSRDB). The NSRDB contains modeled (93%) and measured (7%) global horizontal, diffuse horizontal, and direct beam solar radiation for 1961-1990. This paper describes what is contained in the new data manual and how it was developed.

  3. Flat-plate solar-collector performance data base and user's manual

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, D. L.; Kolar, W. A.

    1983-07-01

    The reader is provided with a thorough understanding on the type of collector thermal performance information which is required in active system design and analysis. Thermal performance test data on 109 commercially available solar collectors which were evaluated in a single, uniform test program, the Interim Solar Collector Test (ISCT) Program are given. In addition to recounting the ISCT program and its results, the an introduction is given on the engineering and physics of a flat-plate solar collector operation. A step-by-step analysis of heat gains and losses is provided to help the reader understand both the source and applicability of the parameters used to describe collector thermal performance. A brief description of the engineering basis for the ASHRAE Standard 93-77 test procedure and the method are included. To demonstrate the sensitivity to variations of collector performance parameters of the annual output of representative solar heating systems, three sets of F-Chart (4.0) system performance predictions are given. Finally, a sensitivity analysis study is presented which considers the heat loss and optical gain parameters of flat-plate collectors, in terms of how they affect the overall solar heating system solar fraction.

  4. Potential of size reduction of flat-plate solar collectors when applying MWCNT nanofluid

    NASA Astrophysics Data System (ADS)

    Faizal, M.; Saidur, R.; Mekhilef, S.

    2013-06-01

    Flat-plate solar collector is the most popular type of collector for hot water system to replace gas or electric heater. Solar thermal energy source is clean and infinite to replace fossil fuel source that is declining and harmful to the environment. However, current solar technology is still expensive, low in efficiency and takes up a lot of space. One effective way to increase the efficiency is by applying high conductivity fluid as nanofluid. This paper analyzes the potential of size reduction of solar collector when MWCNT nanofluid is used as absorbing medium. The analysis is based on different mass flow rate, nanoparticles mass fraction, and presence of surfactant in the fluid. For the same output temperature, it can be observed that the collector's size can be reduced up to 37% of its original size when applying MWCNT nanofluid as the working fluid and thus can reduce the overall cost of the system.

  5. Development of flat-plate solar collectors for the heating and cooling of buildings

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.

    1975-01-01

    The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.

  6. A detailed numerical model for flat-plate solar thermal devices

    SciTech Connect

    Cadafalch, J.

    2009-12-15

    A one-dimensional transient numerical model for flat-plate solar thermal devices is here presented. The model permits the analysis of different configurations and components such as multiple-glazing, transparent insulation, air-gaps, surface coatings, opaque insulation and energy accumulation in water or PCM internal stores. In order to obtain information of practical interest, the solar thermal devices are modelled following virtual testing procedures in accordance to the experimental test methods described by European and International standards. This paper describes the basis of the model and shows some comparison of numerical and experimental data as an example of the validation process that has been carried out in order to assess the credibility of the numerical model. For simplicity, the explanation is restricted to standard multiple-glazed flat-plate collectors. The use of the model in other more complicated configurations as in transparently insulated covers or integrated collector storage devices with phase change materials will be presented in other separate papers. (author)

  7. Thermal performance predictions of flat-plate solar collector air heaters

    NASA Astrophysics Data System (ADS)

    Oneill, T. C.

    1980-03-01

    A computer program was written that models heat exchanges occurring within flat plate solar air collectors and which computes the incoming solar flux and heat losses to the environment. Internal collector temperatures and thermal efficiencies are predicted for either steady state or transient cases from finite difference solutions to a set of energy balance equations. These relations are written for thermal modes that are generated and linked together by the internal deck logic. The program was utilized in a study of three types of air collectors. The first two configurations employed crossflow impingement along the backside of their absorbers to augment heat transfer coefficients developed at those surfaces, while the third used a rock matrix absorber to expand its surface area for heat transfer. In addition, the first collector replaced the conventional stationary plate absorber of the second design by a traveling belt.

  8. Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector.

    PubMed

    Mayer, Alexandre; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier

    2014-10-20

    We present a multi-objective genetic algorithm we developed for the optimization of a flat-plate solar thermal collector. This collector consists of a waffle-shaped Al substrate with NiCrOx cermet and SnO(2) anti-reflection conformal coatings. Optimal geometrical parameters are determined in order to (i) maximize the solar absorptance α and (ii) minimize the thermal emittance ε. The multi-objective genetic algorithm eventually provides a whole set of Pareto-optimal solutions for the optimization of α and ε, which turn out to be competitive with record values found in the literature. In particular, a solution that enables α = 97.8% and ε = 4.8% was found. PMID:25607321

  9. Exergy efficiency analysis of a flat plate solar collector using graphene based nanofluid

    NASA Astrophysics Data System (ADS)

    Said, Z.; Alim, M. A.; Janajreh, Isam

    2015-10-01

    The thermal efficiency of a flat plate solar thermal collector is largely affected by the thermal conductivity of the fluid used. In this paper, we theoretically analyzed the heat transfer performance, the entropy generation rate, and the exergy efficiency of the two different graphene based nanofluids (graphene/Acetone and graphene/water). From the analyses, it is revealed that by inserting a small amount of graphene nanoparticles in water, exergy efficiency could be enhanced by 21%, comparing to conventional fluids and entropy generation is decreased by 4%. However, the graphene/water nanofluid shows a lower entropy generation. This characteristic suggests that graphene/water nanofluid is a better candidate for flat solar thermal application.

  10. Conceptual design study of concentrator enhanced solar arrays for space applications. Performance evaluation of 5 KW and 20 KW systems in Si and GaAs at 1 AU employing a flat plate trough concentrator

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A simple, efficient and very lightweight preliminary design for a 5 KW and 20 KW BOL output concentrated array evolved and is described by drawings. The relative effectiveness of this design, as compared to an unconcentrated planar array of equal power output, was measured by comparing power to mass performance of and the solar cell area required by each. Improvements in power to mass performance as high as 42% together with array area size reduction of 57% are possible in GaAs systems. By contrast, when the same concentrator design is applied to silicon systems, no improvement in power to mass can be obtained although array area reductions as high as 35% are obtainable.

  11. Standardized performance tests of collectors of solar thermal energy - A flat-plate copper collector with parallel mylar striping

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.

    1976-01-01

    Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  12. Relative potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications

    NASA Technical Reports Server (NTRS)

    Borden, C. S.; Schwartz, D. L.

    1984-01-01

    The purpose of this study is to assess the relative economic potentials of concenrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R&D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options.

  13. Mathematical modelling of heat transfer in liquid flat-plate solar collector tubes

    NASA Astrophysics Data System (ADS)

    Zima, Wiesław; Dziewa, Piotr

    2010-07-01

    The paper presents a one-dimensional mathematical model for simulating the transient processes which occur in the liquid flat-plate solar collector tubes. The proposed method considers the model of collector tube as one with distributed parameters. In the suggested method one tube of the collector is taken into consideration. In this model the boundary conditions can be time-dependent. The proposed model is based on solving the equation describing the energy conservation on the fluid side. The temperature of the collector tube wall is determined from the equation of transient heat conduction. The derived differential equations are solved using the implicit finite difference method of iterative character. All thermo-physical properties of the operating fluid and the material of the tube wall can be computed in real time. The time-spatial heat transfer coefficient at the working fluid side can be also computed on-line. The proposed model is suitable for collectors working in a parallel or serpentine tube arrangement. As an illustration of accuracy and effectiveness of the suggested method the computational verification was carried out. It consists in comparing the results found using the presented method with results of available analytic solutions for transient operating conditions. Two numerical analyses were performed: for the tube with temperature step function of the fluid at the inlet and for the tube with heat flux step function on the outer surface. In both cases the conformity of results was very good. It should be noted, that in real conditions such rapid changes of the fluid temperature and the heat flux of solar radiation, as it was assumed in the presented computational verification, do not occur. The paper presents the first part of the study, which aim is to develop a mathematical model for simulating the transient processes which occur in liquid flat-plate solar collectors. The experimental verification of the method is a second part of the study and

  14. Design optimization of sinusoidal glass honeycomb for flat plate solar collectors

    NASA Technical Reports Server (NTRS)

    Mcmurrin, J. C.; Buchberg, H.

    1980-01-01

    The design of honeycomb made of sinusoidally corrugated glass strips was optimized for use in water-cooled, single-glazed flat plate solar collectors with non-selective black absorbers. Cell diameter (d), cell height (L), and pitch/diameter ratio (P/d) maximizing solar collector performance and cost effectiveness for given cell wall thickness (t sub w) and optical properties of glass were determined from radiative and convective honeycomb characteristics and collector performance all calculated with experimentally validated algorithms. Relative lifetime values were estimated from present materials costs and postulated production methods for corrugated glass honeycomb cover assemblies. A honeycomb with P/d = 1.05, d = 17.4 mm, L = 146 mm and t sub w = 0.15 mm would provide near-optimal performance over the range delta T sub C greater than or equal to 0 C and less than or equal to 80 C and be superior in performance and cost effectiveness to a non-honeycomb collector with a 0.92/0.12 selective black absorber.

  15. Need for and evaluation of hail protection devices for solar flat plate collectors. Final report, June 1978-March 1980

    SciTech Connect

    Armstrong, P R; Cox, M; de Winter, F

    1980-03-01

    A brief summary of the hail risk work previously done under this contract is given, and a summary evaluation of hail impact resistance standards currently being developed is presented. Simulated hail impact test data, field data, and the impact resistance of commercially available glazings are discussed. The use of screens for protection against hail and the threat of vandalism to solar flat plate collectors are discussed. (WHK)

  16. Preliminary design review package on air flat plate collector for solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Guidelines to be used in the development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet (10-4 ft x 8 ft panels) of collector area are presented. Topics discussed include: (1) verification plan; (2) thermal analysis; (3) safety hazard analysis; (4) drawing list; (5) special handling, installation and maintenance tools; (6) structural analysis; and (7) selected drawings.

  17. Evaluation of the flat-plate solar collector system for electric power generation

    NASA Technical Reports Server (NTRS)

    Athey, R. E.

    1976-01-01

    This evaluation of the flat-plate collector system was designed to determine the number of flat-plate collectors required to generate a given amount of electricity with optimum efficiency. Variable parameters are the temperature of the heat-transport fluid, both to and from the collector field. In the analysis, the efficiency of the flat-plate collectors was coupled to the efficiency of the thermal cycle to calculate optimal overall system efficiencies. Overall system efficiencies for the system are on the order of 3.5 per cent or less. Over two million 4 ft-by-4 ft collectors would be required to produce 100,000 kW(e). Based on the results, it can be shown that the limiting factor in the use of the flat-plate collector system for electric power generation is the efficiency of the collectors. An increase in the overall system efficiency can occur only if the collector efficiency can be increased at higher surface temperatures.

  18. Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions

    SciTech Connect

    Zambolin, E.; Del Col, D.

    2010-08-15

    New comparative tests on two different types of solar collectors are presented in this paper. A standard glazed flat plate collector and an evacuated tube collector are installed in parallel and tested at the same working conditions; the evacuated collector is a direct flow through type with external compound parabolic concentrator (CPC) reflectors. Efficiency in steady-state and quasi-dynamic conditions is measured following the standard and it is compared with the input/output curves measured for the whole day. The first purpose of the present work is the comparison of results in steady-state and quasi-dynamic test methods both for flat plate and evacuated tube collectors. Besides this, the objective is to characterize and to compare the daily energy performance of these two types of collectors. An effective mean for describing and analyzing the daily performance is the so called input/output diagram, in which the collected solar energy is plotted against the daily incident solar radiation. Test runs have been performed in several conditions to reproduce different conventional uses (hot water, space heating, solar cooling). Results are also presented in terms of daily efficiency versus daily average reduced temperature difference: this allows to represent the comparative characteristics of the two collectors when operating under variable conditions, especially with wide range of incidence angles. (author)

  19. Standardized performance tests of collectors of solar thermal energy-a flat-plate collector with a single-tube serpentine flow distribution

    NASA Technical Reports Server (NTRS)

    Johnson, S.

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.

  20. Dual polarization flat plate antenna

    NASA Astrophysics Data System (ADS)

    Kelly, Kenneth C.

    Rectangular waveguides with radiating slots are used in groups to form planar array microwave antennas with large apertures and small depth. Such flat plate antennas are widely used on spacecraft and aircraft. Typically, flat plate antennas provide fixed linear polarization. The present paper describes a new flat plate antenna which produces two coincident beams that are distinguished by their orthogonal linear polarizations. The antenna has two ports, one for each of the coicident beams. Completely external to the antenna, connecting a simple network to those terminal ports enables the antenna to provide right circular polarization from one port and left from the other. A different external network enables the antenna to have arbitrarily adjustable polarizations.

  1. Design of a photovoltaic central power station: flat-plate array

    SciTech Connect

    Not Available

    1984-02-01

    A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  2. Comparison of the effects of Al2O3 and CuO nanoparticles on the performance of a solar flat-plate collector

    NASA Astrophysics Data System (ADS)

    Munuswamy, Dinesh Babu; Madhavan, Venkata Ramanan; Mohan, Mukunthan

    2015-12-01

    To improve the efficiency of solar flat-plate collectors further, a study had been carried out wherein the conventional working fluid was replaced by nanofluids. A 25-L/day solar flat-plate water heater with collector area of 0.5 {m}^2 has been designed and fabricated. The thermosyphon system of the solar water heater was monitored at 15 locations using T-type thermocouples. Alumina and CuO nanoparticles were synthesized and characterized using Brunauer-Emmett-Teller and X-ray diffraction techniques and dispersed using ultrasonic mechanism. To stabilize the system at an optimum level, the collector is operated with volume fractions of 0.2% and 0.4% of synthesized Al2O3 and CuO nanoparticles mixed with distilled water and used in the solar flat-plate collector. The temperature profile was compared with different volume fractions of the nanoparticles in the flowing medium. Enhanced heat transfer was observed in the solar flat-plate collector using nanoparticles, and hence, it is inferred that addition of nanoparticles improves the efficiency of the solar water heaters. This paper details the temperature profile observed in the collectors, variation of insolation over the day, and change in efficiency both on the primary side (collector) and on the secondary side (storage tank) of the solar water heater.

  3. The economic payoff for a state-of-the-art high-efficiency flat-plate crystalline silicon solar cell technology

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.; Callaghan, W. T.

    1987-01-01

    In 1986 during the flat-plate solar array project, silicon solar cells 4.0 sq cm in area were fabricated at the Jet Propulsion Laboratory (JPL) with a conversion efficiency of 20.1 percent (AM1.5-global). Sixteen cells were processed with efficiencies measuring 19.5 percent (AM1.5 global) or better. These cells were produced using refined versions of conventional processing methods, aside from certain advanced techniques that bring about a significant reduction in a major mechanism (surface recombination) that limits cell efficiency. Wacker Siltronic p-type float-zone 0.18-ohm-cm wafers were used. Conversion efficiencies in this range have previously been reported by other researchers, but generally on much smaller (0.5 vs. 4.0 cm) devices which have undergone sophisticated and costly processing steps. An economic analysis is presented of the potential payoffs for this approach, using the Solar Array Manufacturing Industry Costing Standards (SAMICS) methodology. The process sequence used and the assumptions made for capturing the economies of scale are presented.

  4. Ink jet assisted metallization for low cost flat plate solar cells

    NASA Technical Reports Server (NTRS)

    Teng, K. F.; Vest, R. W.

    1987-01-01

    Computer-controlled ink-jet-assisted metallization of the front surface of solar cells with metalorganic silver inks offers a maskless alternative method to conventional photolithography and screen printing. This method can provide low cost, fine resolution, reduced process complexity, avoidance of degradation of the p-n junction by firing at lower temperature, and uniform line film on rough surface of solar cells. The metallization process involves belt furnace firing and thermal spiking. With multilayer ink jet printing and firing, solar cells of about 5-6 percent efficiency without antireflection (AR) coating can be produced. With a titanium thin-film underlayer as an adhesion promoter, solar cells of average efficiency 8.08 percent without AR coating can be obtained. This efficiency value is approximately equal to that of thin-film solar cells of the same lot. Problems with regard to lower inorganic content of the inks and contact resistance are noted.

  5. Comparative performance of twenty-three types of flat plate solar energy collectors

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    Report compares efficiencies of 23 solar collectors for four different purposes: operating a Rankine-cycle engine, heating or absorption air conditioning, heating hot water, and heating a swimming pool.

  6. Atmospheric corrosion of batten and enclosure materials for flat-plate solar collectors. Final report

    SciTech Connect

    Cheng, C.F.

    1983-04-01

    As part of the Solar Reliability and Materials Program at Argonne National Laboratory, the atmospheric corrosion of candidate batten and enclosure materials were tested on outdoor racks parallel to the tilted solar-collected panels at nine National Solar Data Network (NSDN) sites, loceated in mild marine, mild industrial, and rural environments. The candidate materials evaluated include galvanized steel (G-90), aluminized steel (Type 2), aluminum (6061), and white polyester painted steel. Data analyses predicted that all the first three materials will last more than 20 years in the nine sites tested. However, repainting of the painted steel is probably needed within five years in a mild marine environment and five to ten years in a mild industrial or rural environment.

  7. Development of 400 F sealants for flat plate solar collector construction and installation

    NASA Astrophysics Data System (ADS)

    Morris, L.; Schubert, R. J.

    1980-03-01

    Twenty candidate sealants representing ten different polymer types were evaluated as potential solar collector sealants. Polymer types tested included epichlorohydrin rubber, EPDM rubber, silicone, polysulfide, acrylate rubber, and a fluoroelastomer. Initial screening of sealants consisted of measuring high temperature stability and adhesion retention. Several sealant compositions exhibited satisfactory performance in these tests and were selected for further evaluation. These materials were based on an EPDM rubber, a Viton fluoroelastomer, and silicone polymers. Further testing of these candidate materials included determination of adhesion retention under uv/water/heat conditions, fogging temperature, low temperature flexibility, and physical properties. Four silicone-based materials appeared to be suitable candidates for sealing solar collectors.

  8. Evaluation of flat-plate collector efficiency under controlled conditions in a solar simulator

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.; Simon, F. F.

    1976-01-01

    The measured thermal efficiencies of 35 collectors tested with a solar simulator, along with the correlation equations used to generalize the data, are presented. The single correlation used is shown to apply to all the different types of collectors tested, including one with black paint and one cover, one with a selective surface coating and two covers, and an evacuated-tube collector. The test and correlation technique is also modified by using a shield so that collectors larger than the simulator test area can also be tested. This technique was verified experimentally for a shielded collector for which the collector shielded area was 31% of the solar simulator radiation area. A table lists all the collectors tested, the collector areas, and the experimental constants used to correlate the data for each collector.

  9. Comparison under a simulated sun of two black-nickel-coated flat-plate solar collectors with a nonselective black-paint-coated collector

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    A performance evaluation was made of two, black nickel coated, flat plate solar collectors. Collector performance was determined under a simulated sun for a wide range of inlet temperatures, including the temperature required for solar powered absorption air conditioning. For a basis of comparison a performance test was made on a traditional, two glass, nonselective, black paint coated, flat plate collector. Performance curves and performance parameters are presented to point out the importance of the design variables which determine an efficient collector. A black nickel coated collector was found to be a good performer at the conditions expected for solar powered absorption air conditioning. This collector attained a thermal efficiency of 50 percent at an inlet temperature of 366 K (200 F) and an incident flux of 946 watts/sq m (300 Btu/hr-sq ft).

  10. The effect of contact spacing on the efficiency of flat plate solar collector plates

    NASA Astrophysics Data System (ADS)

    Schneider, G. E.; Crha, S.

    1984-01-01

    Rather than use a continuous weld or solder for thermal contact in the attachment of an extended surface to an energy removal tube, attention is given to the use of discontinuous attachment through the uniform distribution of finite regions of contact. This scheme is applied to a solar energy collection system in which it was thought capable of yielding fabrication and reliability improvements. A nondimensional formulation and numerical solution of FEM modeling yields the sensitivity of collector thermal performance to weld-solder joint dimensions. The discontinuous weld is found to significantly degrade system performance in proportion to the fin surface Biot modulus, with the controlling parameter (with respect to weld dimensions) being the perimeter length at the weld location of contact.

  11. Collation of quarterly reports on air flat plate collectors

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The solar 2 air flat plate collectors are described. The development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet of collector area are described. Three instrumented panels were completely assembled with glazing and insulation. Manufacture of the last seven prototype collectors was completed in October 1977.

  12. Standardized performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 5 5/8 inches

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  13. Standard performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 3-7/8 inches

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Basic test results are given of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes, and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  14. Liquid flat plate collector and pump for solar heating and cooling systems: A collection of quarterly reports

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress in the development, fabrication, and delivery of solar subsystems consisting of a solar operated pump, and solar collectors which can be used in solar heating and cooling, or hot water, for single family, multifamily, or commercial applications is reported.

  15. Proceedings of the Flat-Plate Solar Array Workshop on the Science of Silicon Material Preparation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Several areas of silicon material preparation were addressed including silicon production and purity, thermodynamics, kinetics, mechanisms, particle formation and growth, deposition in fluidized bed reactors, and chemical vapor deposition. Twenty-two papers were presented.

  16. Low-cost solar array progress and plans

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1982-01-01

    It is pointed out that significant redirection has occurred in the U.S. Department of Energy (DOE) Photovoltaics Program, and thus in the Flat-Plate Solar Array Project (FSA), since the 3rd European Communities Conference. The Silicon Materials Task has now the objective to sponsor theoretical and experimental research on silicon material refinement technology suitable for photovoltaic flat-plate solar arrays. With respect to the hydrochlorination reaction, a process proof of concept was completed through definition of reaction kinetics, catalyst, and reaction characteristics. In connection with the dichlorosilane chemical vapor desposition process, a preliminary design was completed of an experimental process system development unit with a capacity of 100 to 200 MT/yr of Si.Attention is also given to the silicon-sheet formation research area, environmental isolation research, the cell and module formation task, the engineering sciences area, and the module performance and failure analysis area.

  17. Flat-Plate Solar-Collector Performance Evaluation with a Solar Simulator as a Basis for Collector Selection and Performance Prediction

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    The use of a solar simulator for performance determination permits collector testing under standard conditions of wind, ambient temperature, flow rate and sun. The performance results determined with the simulator have been found to be in good agreement with outdoor performance results. The measured thermal efficiency and evaluation of 23 collectors are reported which differ according to absorber material (copper, aluminum, steel), absorber coating (nonselective black paint, selective copper oxide, selective black nickel, selective black chrome), type of glazing material (glass, Tedlar, Lexan, antireflection glass), the use of honeycomb material and the use of vacuum to prevent thermal convection losses. The collectors were given performance rankings based on noon-hour solar conditions and all-day solar conditions. The determination with the simulator of an all-day collector performance was made possible by tests at different incident angles. The solar performance rankings were made based on whether the collector is to be used for pool heating, hot water, absorption air conditioning, heating, or for a solar Rankine machine.

  18. Solar array drive system

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Sturman, J. C.; Stanhouse, R. W.

    1976-01-01

    A solar array drive system consisting of a solar array drive mechanism and the corresponding solar array drive electronics is being developed. The principal feature of the solar array drive mechanism is its bidirectional capability which enables its use in mechanical redundancy. The solar array drive system is of a widely applicable design. This configuration will be tested to determine its acceptability for generic mission sets. Foremost of the testing to be performed is the testing for extended duration.

  19. Development of 400/sup 0/F sealants for flat plate solar collector construction and installation. Final report, 1 October 1978-30 September 1979

    SciTech Connect

    Morris, L.; Schubert, R.J.

    1980-03-01

    Twenty candidate sealants representing ten different polymer types were evaluated as potential solar collector sealants. Polymer types tested included epichlorohydrin rubber, EPDM rubber, silicone, polysulfide, acrylate rubber, and a fluoroelastomer. Initial screening of sealants consisted of measuring high temperature stability and adhesion retention. Several sealant compositions exhibited satisfactory performance in these tests and were selected for further evaluation. These materials were based on an EPDM rubber, a Viton fluoroelastomer, and silicone polymers. Further testing of these candidate materials included determination of adhesion retention under uv/water/heat conditions, fogging temperature, low temperature flexibility, and physical properties. Four silicone-based materials appeared to be suitable candidates for sealing solar collectors. These include Dow Corning 90-006-02 and 3120, General Electric 1200, and PR-1939 from Products Research and Chemical Corporation.

  20. Flat-plate magnifier for magnifying the view of a distant object

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masataka; Kodaira, Takehiro; Yamaguchi, Hiroshi; Takei, Tsuneo

    2014-09-01

    An optically magnifying device for viewing a distant object is proposed. Since this device can be made in the form of a thin plate and can also have a large viewing area, a flat-plate magnifier is realized. The flat-plate magnifier mounted onto an eyeglass frame as a substitute for each lens provides a light-weight, hands-free magnifier. The flat-plate magnifier is made as a 3 to 4-mm-thick plastic plate and can be made up to 30 to 40 mm in diameter. The flat-plate magnifier is a two-dimensional array of magnifying modules and each magnifying module consists of a micromagnifier and a ray angle adjuster. The micromagnifier comprises a concave mirror and a convex mirror and magnifies the view. The ray angle adjuster is a transparent wedge and expands the viewing area. The flat-plate magnifier is designed so that the achromatic condition is satisfied by cancelling the angular dispersion produced by the micromagnifier with that of the ray angle adjuster. A prototype of the flat-plate magnifier with a diameter of 9 mm and a magnification power of 3 was demonstrated.

  1. A study of microwave leakage through perforated flat plates.

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.

    1972-01-01

    A simple formula useful for predicting leakage through a circular hole array in a metallic flat plate is presented. A correction is given for plate thickness. The formula is applicable to arrays having either a 60-deg (staggered) or 90-deg (square) hole pattern, but is restricted to the case of (1) an obliquely incident plane wave with the E field polarized normal to the plane of incidence, and (2) large transmission loss. When theoretical values were compared to experimental data obtained on test samples having transmission losses greater than 20 dB, the agreement between theory and experiment was typically better than 1 dB at S band and 2 dB at X band.

  2. Glory Solar Array Deployment

    NASA Video Gallery

    The Glory spacecraft uses Orbital Sciences Corporation Space Systems Group's LEOStar-1 bus design, with deployable, four-panel solar arrays. This conceptual animation reveals Glory's unique solar a...

  3. Environmental requirements for flat plate photovoltaic modules for terrestrial applications

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Ross, R. G., Jr.

    1979-01-01

    The environmental test requirements that have been developed for flat plate modules purchased through Department of Energy funding are described. Concurrent with the selection of the initial qualification tests from space program experience - temperature cycling and humidity - surveys of existing photovoltaic systems in the field revealed that arrays were experiencing the following failure modes: interconnect breakage, delamination, and electrical termination corrosion. These coupled with application-dependent considerations led to the development of additional qualification tests, such as cyclic pressure loading, warped mounting surface, and hail. Rationale for the selection of tests, their levels and durations is described. Comparisons between field-observed degradation and test-induced degradation show a positive correlation with some of the observed field effects. Also, the tests are proving useful for detecting design, process, and workmanship deficiencies. The status of study efforts for the development of environmental requirements for field-related problems is reviewed.

  4. Solar collector array

    SciTech Connect

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  5. Solar maximum: Solar array degradation

    NASA Technical Reports Server (NTRS)

    Miller, T.

    1985-01-01

    The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.

  6. Handbook of Structural Stability Part I: Buckling of Flat Plates

    NASA Technical Reports Server (NTRS)

    Gerard, George; Becker, Herbert

    1957-01-01

    The various factors governing buckling of flat plates are critically reviewed and the results are summarized in a comprehensive series of charts and tables. Numerical values are presented for buckling coefficients of flat plates with various boundary conditions and applied loadings. The effects of plasticity are incorporated in non dimensional buckling charts utilizing the three-parameter description of stress-strain curves.

  7. ISS Solar Array Management

    NASA Technical Reports Server (NTRS)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  8. Solar-Array Simulator

    NASA Technical Reports Server (NTRS)

    Wright, M. C.

    1982-01-01

    A convenient solar-array simulator has been built for testing systems powered by solar cells. Built for evaluating power extension package in Space Shuttle, the circuit produces the V/I curves of photocell sources; even duplicating transient behavior under partial illumination associated with morning and evening penumbra.

  9. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  10. Electrostatically clean solar array

    NASA Technical Reports Server (NTRS)

    Stern, Theodore Garry (Inventor); Krumweide, Duane Eric (Inventor)

    2004-01-01

    Provided are methods of manufacturing an electrostatically clean solar array panel and the products resulting from the practice of these methods. The preferred method uses an array of solar cells, each with a coverglass where the method includes machining apertures into a flat, electrically conductive sheet so that each aperture is aligned with and undersized with respect to its matched coverglass sheet and thereby fashion a front side shield with apertures (FSA). The undersized portion about each aperture of the bottom side of the FSA shield is bonded to the topside portions nearest the edges of each aperture's matched coverglass. Edge clips are attached to the front side aperture shield edges with the edge clips electrically and mechanically connecting the tops of the coverglasses to the solar panel substrate. The FSA shield, edge clips and substrate edges are bonded so as to produce a conductively grounded electrostatically clean solar array panel.

  11. Solar array automation limitations

    NASA Technical Reports Server (NTRS)

    Trumble, Terry M.

    1990-01-01

    Significant progress in the automation of the spacecraft electrical power systems has been made within the past few years. This is especially important with the development of the space station and the increasing demand on the electrical power systems for future satellites. The key element of the spacecraft power system, the solar arrays which supply the power, will have to grow to supply many tens of kilowatts of power within the next twenty years. This growth will be accompanied by the problems associated with large distributed power systems. The growth of the arrays, the on-array management problems and potential solutions to array degradation or failure are discussed. Multilowatt arrays for unmanned spacecraft with comments on the implications of array degradation for manned spacecraft are discussed.

  12. Flat plate puncture test convergence study.

    SciTech Connect

    Snow, Spencer; Ammerman, Douglas James; Molitoris, David; Tso, Chi-Fung; Yaksh, Mike

    2010-10-01

    The ASME Task Group on Computational Mechanics for Explicit Dynamics is investigating the types of finite element models needed to accurately solve various problems that occur frequently in cask design. One type of problem is the 1-meter impact onto a puncture spike. The work described in this paper considers this impact for a relatively thin-walled shell, represented as a flat plate. The effects of mesh refinement, friction coefficient, material models, and finite element code will be discussed. The actual punch, as defined in the transport regulations, is 15 cm in diameter with a corner radius of no more than 6 mm. The punch used in the initial part of this study has the same diameter, but has a corner radius of 25 mm. This more rounded punch was used to allow convergence of the solution with a coarser mesh. A future task will be to investigate the effect of having a punch with a smaller corner radius. The 25-cm thick type 304 stainless steel plate that represents the cask wall is 1 meter in diameter and has added mass on the edge to represent the remainder of the cask. The amount of added mass to use was calculated using Nelm's equation, an empirically derived relationship between weight, wall thickness, and ultimate strength that prevents punch through. The outer edge of the plate is restrained so that it can only move in the direction parallel to the axis of the punch. Results that are compared include the deflection at the edge of the plate, the deflection at the center of the plate, the plastic strains at radius r=50 cm and r=100 cm , and qualitatively, the distribution of plastic strains. The strains of interest are those on the surface of the plate, not the integration point strains. Because cask designers are using analyses of this type to determine if shell will puncture, a failure theory, including the effect of the tri-axial nature of the stress state, is also discussed. The results of this study will help to determine what constitutes an adequate

  13. Ultralightweight solar array technology

    SciTech Connect

    Goldsmith, P.; Kurland, R.

    1982-06-01

    Flat fold array technology is described, and performance for a range of missions and power levels is predicted. The array employs large area flat panel flexible substrates. The solar cells are adhesively bonded to a thin Kapton substrate to form individual panel assemblies. Any number of these panel assemblies may be joined together to make a blanket assembly. A container assembly protects each blanket assembly when stowed, and a tension guide wire assembly controls the flexible blanket shape when fully extended. Blanket extension and retraction are achieved through a motor powered lightweight trilongeron coilable lattice mast assembly. Ground and zero gravity flight tests on prototype array assemblies are successful.

  14. Thermal equivalency study for steel propulsion shafting and flat plate

    SciTech Connect

    Dikshit, V.A.; Atteridge, D.G.

    1994-12-31

    The electroslag strip surfacing (ESS) process despite its advantage of high deposition rates, low base metal dilutions, and uniform penetrations, over unknown in the United States and has only recently started to gain acceptance as a feasible process for surfacing on large components, e.g., propulsion shafting. Electroslag strip surfacing was made on service scale shaft and on various flat plates using the same surfacing materials and parameters. Thermal history measurements were made by chromel-alumel thermocouples mounted on the shaft and the flat plates. The data were collected by a computer-controlled data acquisition system and subsequently postprocessed using commercial spreadsheet/graphics software programs. The t{sub 8-5} cooling times for the shaft and the flat plates showed a strong dependence on the interpass preheat temperature, but was independent of the maximum temperature. The t{sub 8-5} cooling times for the shaft and flat plate of the same thickness, and for the 76 and 127 mm thick flat plates were found to match very closely. This led to the conclusion that the thermal history results for 127 mm thick shaft and 127 to 67 mm thick flat plates made from similar steels show thermal equivalence for ESS and provide the justification for using 67 to 127 mm thick plates instead of 127 mm thick service scale shafting for process characterization.

  15. TRMM Solar Array Panels

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This final report presents conclusions/recommendations concerning the TRMM Solar Array; deliverable list and schedule summary; waivers and deviations; as-shipped performance data, including flight panel verification matrix, panel output detail, shadow test summary, humidity test summary, reverse bias test panel; and finally, quality assurance summary.

  16. A graphical approach to the efficiency of flat-plate collectors

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1978-01-01

    A nomogram is described which can be used to determine the thermal performance of flat plate solar collectors, resulting in two performance factors: the net absorptance and the net heat loss coefficient. The nomogram takes into account angle of incidence, collector slope, absorber plate design, insulating materials, thicknesses, optical properties of absorbing surfaces and glazing materials, and flow factors. A case example is given to illustrate the use of the nomogram.

  17. Proceedings of the Flat-Plate Solar Array Project Workshop on Low-Cost Polysilicon for Terrestrial Photovoltaic Solar-Cell Applications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Sessions conducted included: polysilicon material requirements; economics; process development in the U.S.; international process development; and polysilicon market and forecasts. Twenty-one papers were presented and discussed.

  18. Proceedings of the flat-plate solar array project workshop on low-cost polysilicon for terrestrial photovoltaic solar-cell applications

    SciTech Connect

    Not Available

    1986-02-01

    Separate abstracts were prepared for 21 papers in this workshop proceedings. Topics covered include: polysilicon material requirements; economics; process developments in the USA and internationally; and the polysilicon market and forecasts. (LEW)

  19. Solar array subsystems study

    NASA Technical Reports Server (NTRS)

    Richardson, P. W.; Miller, F. Q.; Badgley, M. B.

    1980-01-01

    The effects on life cycle costs of a number of technology areas are examined for a LEO, 500 kW solar array. A baseline system conceptual design is developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies are then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance and hence life cycle cost.

  20. Installation package for air flat plate collector

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Solar 2 dimensions are four feet by eight feet by two and one half inches. The collector weighs 130 pounds and has an effective solar collection area of over 29.5 square feet. This area represents 95 percent of the total surface of the collector. The installation, operation and maintenance manual, safety hazard analysis, special handling instructions, materials list, installation concept drawings, warranty and certification statement are included in the installation package.

  1. Operational demonstration of a field of high performance flat plate collectors with isothermal heat transport

    NASA Astrophysics Data System (ADS)

    Merges, V.; Klippel, E.

    1983-12-01

    A solar plant with 21 sq m of highly efficient flat plate collectors and which requires no electricity is described. Heat transport is provided by saturated steam that condenses in a four cubic meter storage tank. The operation temperature is set by the buffer gas pressure between 100 and 140 C, and an absorption chiller is simulated as a heat consumer. The solar collectors were observed to exhibit high performance. Heat transport and temperature control offered high reliability and the thermal stratification in the tank was satisfactory. The positive result permits the design and construction of larger solar plants following the same technical principles.

  2. Mir Cooperative Solar Array

    NASA Technical Reports Server (NTRS)

    Skor, Mike; Hoffman, Dave J.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA), produced jointly by the United States and Russia, was deployed on the Mir Russian space station on May 25, 1996. The MCSA is a photovoltaic electrical power system that can generate up to 6 kW. The power from the MCSA is needed to extend Mir's lifetime and to support experiments conducted there by visiting U.S. astronauts. The MCSA was brought to Mir via the Space Shuttle Atlantis on the STS-74 mission, launched November 12, 1995. This cooperative venture combined the best technology of both countries: the United States provided high-efficiency, lightweight photovoltaic panel modules, whereas Russia provided the array structure and deployment mechanism. Technology developed in the Space Station Freedom Program, and now being used in the International Space Station, was used to develop MCSA's photovoltaic panel. Performance data obtained from MCSA operation on Mir will help engineers better understand the performance of the photovoltaic panel modules in orbit. This information will be used to more accurately predict the performance of the International Space Station solar arrays. Managed by the NASA Lewis Research Center for NASA's International Space Station Program Office in Houston, Texas, the MCSA Project was completed on time and under budget despite a very aggressive schedule.

  3. Solar array construction

    DOEpatents

    Crouthamel, Marvin S.; Coyle, Peter J.

    1982-01-01

    An interconnect tab on each cell of a first set of circular solar cells connects that cell in series with an adjacent cell in the set. This set of cells is arranged in alternate columns and rows of an array and a second set of similar cells is arranged in the remaining alternate columns and rows of the array. Three interconnect tabs on each solar cell of the said second set are employed to connect the cells of the second set to one another, in series and to connect the cells of the second set to those of the first set in parallel. Some tabs (making parallel connections) connect the same surface regions of adjacent cells to one another and others (making series connections) connect a surface region of one cell to the opposite surface region of an adjacent cell; however, the tabs are so positioned that the array may be easily assembled by depositing the cells in a certain sequence and in proper orientation.

  4. High Voltage Space Solar Arrays

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Hillard, G. B.; Vayner, B. V.; Galofaro, J. T.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Recent tests performed at the NASA Glenn Research Center and elsewhere have shown promise in the design and construction of high voltage (300-1000 V) solar arrays for space applications. Preliminary results and implications for solar array design will be discussed, with application to direct-drive electric propulsion and space solar power.

  5. Electromagnetically Clean Solar Arrays

    NASA Technical Reports Server (NTRS)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  6. Incipient transition phenomena in compressible flows over a flat plate

    NASA Technical Reports Server (NTRS)

    Erlebacher, G.; Hussaini, M. Y.

    1986-01-01

    The full three-dimensional time-dependent compressible Navier-Stokes equations are solved by a Fourier-Chebyshev method to study the stability of compressible flows over a flat plate. After the code is validated in the linear regime, it is applied to study the existence of the secondary instability mechanism in the supersonic regime.

  7. Concentrator-Enhanced Solar Array

    NASA Technical Reports Server (NTRS)

    Morse, B. J.

    1984-01-01

    Deployable solar array for satellites uses slanted low-mass planar mirrors as walls of trough to triple light falling on GaAs solar cells forming bottom of trough. Power-to-mass ratio of new design 42 percent higher than planar array of same power output.

  8. Flat-plate solar-array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The engineering design, fabrication, assembly, operation, economic analysis, and process support R and D for an Experimental Process System Development Unit (EPSDU) are reported. About 95% of purchased equipment is received and will be reshipped to the West Coast location. The Data Collection System is completed. In the area of melting/consolidation, to the system using silicon powder transfer, melting and shotting on a pseudocontinuous basis is demonstrated. It is proposed to continue the very promising fluid bed work.

  9. Flat-plate solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The engineering design, fabrication, assembly, operation, economic analysis, and process support research and development for an Experimental Process System Development Unit for producing semiconductor-grade silicon using the slane-to-silicon process are reported. The design activity was completed. About 95% of purchased equipment was received. The draft of the operations manual was about 50% complete and the design of the free-space system continued. The system using silicon power transfer, melting, and shotting on a psuedocontinuous basis was demonstrated.

  10. Flat-plate solar array project. Task 1: Silicon material: Investigation of the hydrochlorination of SiC1sub4

    NASA Technical Reports Server (NTRS)

    Mui, J. Y. P.

    1981-01-01

    A two inch-diameter stainless steel reactor was designed to operate at pressure up to 500 psig and at temperature up to 600 C in order to study the hydrochlorination of silicon tetrachloride and metallurgical grade (m.g.) silicon metal to trichlorosilane. The hydrochlorination apparatus is described and operation safety and pollution control are discussed.

  11. Flat-plate solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The process technology for the manufacture of semiconductor-grade silicon in a large commercial plant by 1986, at a price less than $14 per kilogram of silicon based on 1975 dollars is discussed. The engineering design, installation, checkout, and operation of an Experimental Process System Development unit was discussed. Quality control of scaling-up the process and an economic analysis of product and production costs are discussed.

  12. Low cost Czochralski crystal growing technology. Near implementation of the flat plate photovoltaic cost reduction of the low cost solar array project

    NASA Technical Reports Server (NTRS)

    Roberts, E. G.

    1980-01-01

    Equipment developed for the manufacture of over 100 kg of silicon ingot from one crucible by rechanging from another crucible is described. Attempts were made to eliminate the cost of raising the furnace temperature to 250 C above the melting point of silicon by using an RF coil to melt polycrystalline silicon rod as a means of rechanging the crucible. Microprocessor control of the straight growth process was developed and domonstrated for both 4 inch and 6 inch diameter. Both meltdown and melt stabilization processes were achieved using operator prompting through the microprocessor. The use of the RF work coil in poly rod melting as a heat sink in the accelerated growth process was unsuccessful. The total design concept for fabrication and interfacing of the total cold crucible system was completed.

  13. Flat-plate solar-array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The engineering design, fabrication, assembly, operation, economic analysis, and process support R and D for an Experimental Process System Development Unit (EPSDU) are reported. About 95% of purchased equipment is received and will be reshipped to the West Coast location. The Data Collection System is completed. In the area of melting/consolidation, to the system using silicon powder transfer, melting and shotting on a pseudocontinuous basis is demonstrated. It is proposed to continue the very promising fluid bed work.

  14. Evaluation of All-Day-Efficiency for selected flat plate and evacuated tube collectors

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An evaluation of all day efficiency for selected flat plate and evacuated tube collectors is presented. Computations are based on a modified version of the NBSIR 78-1305A procedure for all day efficiency. The ASHMET and NOAA data bases for solar insolation are discussed. Details of the algorithm used to convert total (global) horizontal radiation to the collector tilt plane of the selected sites are given along with tables and graphs which show the results of the tests performed during this evaluation.

  15. Solar array stepping to minimize array excitation

    NASA Technical Reports Server (NTRS)

    Bhat, Mahabaleshwar K. P. (Inventor); Liu, Tung Y. (Inventor); Plescia, Carl T. (Inventor)

    1989-01-01

    Mechanical oscillations of a mechanism containing a stepper motor, such as a solar-array powered spacecraft, are reduced and minimized by the execution of step movements in pairs of steps, the period between steps being equal to one-half of the period of torsional oscillation of the mechanism. Each pair of steps is repeated at needed intervals to maintain desired continuous movement of the portion of elements to be moved, such as the solar array of a spacecraft. In order to account for uncertainty as well as slow change in the period of torsional oscillation, a command unit may be provided for varying the interval between steps in a pair.

  16. Turbulent thermal boundary layer on a permeable flat plate

    SciTech Connect

    Vigdorovich, I. I.

    2007-06-15

    Scaling laws are established for the profiles of temperature, turbulent heat flux, rms temperature fluctuation, and wall heat transfer in the turbulent boundary layer on a flat plate with transpiration. In the case of blowing, the temperature distribution represented in scaling variables outside the viscous sublayer has a universal form known from experimental data for flows over impermeable flat plates. In the case of suction, the temperature distribution is described by a one-parameter family of curves. A universal law of heat transfer having the form of a generalized Reynolds analogy provides a basis for representation of the heat flux distributions corresponding to different Reynolds numbers and transpiration velocities in terms of a function of one variable. The results are obtained without invoking any special closure hypotheses.

  17. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer

    NASA Astrophysics Data System (ADS)

    Kegerise, Michael A.; Rufer, Shann J.

    2016-08-01

    In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  18. Solar Array Tracking Control

    Energy Science and Technology Software Center (ESTSC)

    1995-06-22

    SolarTrak used in conjunction with various versions of 68HC11-based SolarTrack hardware boards provides control system for one or two axis solar tracking arrays. Sun position is computed from stored position data and time from an on-board clock/calendar chip. Position feedback can be by one or two offset motor turn counter square wave signals per axis, or by a position potentiometer. A limit of 256 counts resolution is imposed by the on-board analog to digital (A/D)more » convertor. Control is provided for one or two motors. Numerous options are provided to customize the controller for specific applications. Some options are imposed at compile time, some are setable during operation. Software and hardware board designs are provided for Control Board and separate User Interface Board that accesses and displays variables from Control Board. Controller can be used with range of sensor options ranging from a single turn count sensor per motor to systems using dual turn-count sensors, limit sensors, and a zero reference sensor. Dual axis trackers oriented azimuth elevation, east west, north south, or polar declination can be controlled. Misalignments from these orientations can also be accommodated. The software performs a coordinate transformation using six parameters to compute sun position in misaligned coordinates of the tracker. Parameters account for tilt of tracker in two directions, rotation about each axis, and gear ration errors in each axis. The software can even measure and compute these prameters during an initial setup period if current from a sun position sensor or output from photovoltaic array is available as an anlog voltage to the control board''s A/D port. Wind or emergency stow to aj present position is available triggered by digital or analog signals. Night stow is also available. Tracking dead band is adjustable from narrow to wide. Numerous features of the hardware and software conserve energy for use with battery powered systems.« less

  19. Qualification testing of flat-plate photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Griffith, J. S.; Ross, R. G., Jr.

    1982-01-01

    The placement of photovoltaic modules in various applications, in climates and locations throughout the world, results in different degrees and combinations of environmental and electrical stress. Early detection of module reliability deficiencies via laboratory testing is necessary for achieving long, satisfactory field service. This overview paper describes qualification testing techniques being used in the US Department of Energy's flat-plate terrestrial photovoltaic development program in terms of their significance, rationale for specified levels and durations, and test results.

  20. Hubble Space Telescope Solar Array

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This is a view of a solar cell blanket deployed on a water table during the Solar Array deployment test. The Hubble Space Telescope (HST) Solar Arrays provide power to the spacecraft. The arrays are mounted on opposite sides of the HST, on the forward shell of the Support Systems Module. Each array stands on a 4-foot mast that supports a retractable wing of solar panels 40-feet (12.1-meters) long and 8.2-feet (2.5-meters) wide, in full extension. The arrays rotate so that the solar cells face the Sun as much as possible to harness the Sun's energy. The Space Telescope Operations Control Center at the Goddard Space Center operates the array, extending the panels and maneuvering the spacecraft to focus maximum sunlight on the arrays. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST Solar Array was designed by the European Space Agency and built by British Aerospace. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST.

  1. TRMM Solar Array

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Basic requirement of 978.59 watts per Panel output @ 58.9 volts B.O.L. was met on an average basis per agreement with NASA. Lower grade Cells were used on the shadowed Panel (Boom shadow) to maximize available power to the Spacecraft. The average output @ 58.9 volts was 991 watts. The outputs of the four t4) Panels ranged from 960 to 1,022 watts. The Panels successfully passed environmental testing at TRW to the contract specification and subsequent testing at NASA which involved output measurements at elevated temperatures. As this type of Array had never previously been built by TRW (aluminum Substrate with 4 cm x 4.4 cm GaAs Cells), the TRMM Program was a development effort combined with a Qual and Flight production effort. The most significant technical problem was Cell cracking during Qual thermal cycling. The cracking problem was determined to be generic within our Solar Array factory in the application of GaAs Cells to our designs. As a result, a TRW funded manufacturing process verification panel (known as the Manufacturing Verification Panel) was built to demonstrate our ability to properly apply GaAs Cells. The original Qual Panel comprised three (3) design variations with respect to Coverglass-to-Cell and Cell-to-Substrate adhesives. The intent was to qualify multiple designs in case one or more failed. When two of the three combinations failed due to excessive Cell breakage during thermal cycling, NASA was reluctant to allow Flight production based on the one remaining good Qual Panel Quadrant. This issue was pivotal for continuing the contract. Facts and recommendations are as follows: (1) The cause of the excessive cracking was never determined. and (2) The areas where the excessive cracking occurred utilized DC93-500 glassing adhesive which was NASA approved, and had been widely used by TRW on a multitude of projects.

  2. Low-cost solar array structure development

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.

    1981-01-01

    Early studies of flat-plate arrays have projected costs on the order of $50/square meter for installed array support structures. This report describes an optimized low-cost frame-truss structure that is estimated to cost below $25/square meter, including all markups, shipping an installation. The structure utilizes a planar frame made of members formed from light-gauge galvanized steel sheet and is supposed in the field by treated-wood trusses that are partially buried in trenches. The buried trusses use the overburden soil to carry uplift wind loads and thus to obviate reinforced-concrete foundations. Details of the concept, including design rationale, fabrication and assembly experience, structural testing and fabrication drawings are included.

  3. Flexible solar-array mechanism

    NASA Technical Reports Server (NTRS)

    Olson, M. C.

    1972-01-01

    One of the key elements of the flexible rolled-up solar array system is a mechanism to deploy, retract, and store the flexible solar-cell arrays. The selection of components, the design of the mechanism assembly, and the tests that were performed are discussed. During 6 months in orbit, all mission objectives were satisfied, and inflight performance has shown good correlation with preflight analyses and tests.

  4. Advanced photovoltaic solar array development

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul

    1989-01-01

    Phase 2 of the Advanced Photovoltaic Solar Array (APSA) program, started in mid-1987, is currently in progress to fabricate prototype wing hardware that will lead to wing integration and testing in 1989. The design configuration and key details are reviewed. A status of prototype hardware fabricated to date is provided. Results from key component-level tests are discussed. Revised estimates of array-level performance as a function of solar cell device technology for geosynchronous missions are given.

  5. Interim qualification tests and procedures for terrestrial photovoltaic thin-film flat-plate modules

    NASA Astrophysics Data System (ADS)

    Deblasio, R.; Mrig, L.; Waddington, D.

    1990-01-01

    This document provides recommended procedures and specifications for qualification tests that are structured to evaluate terrestrial thin-film flat-plate photovoltaic nonconcentrating modules intended for power generation applications. The qualification tests provided in this document are designed to evaluate flat-plate thin-film photovoltaic (PV) module design performance and susceptibility to known failure mechanisms. Emphasis is placed on testing and evaluating module performance characteristics and design features that will affect possible degradation of module performance and physical properties resulting from solar exposure, environmental weathering, mechanical loading, corrosion, and module shadowing. Because of limited thin-film module field operation experience and the evolutionary nature of new thin-film module material technologies and designs, these tests should not be considered definitive or complete, nor do they provide a basis to predict 30-year field life. Current understanding of failure and degradation mechanisms and the relationship between accelerated tests and field reliability is not sufficient to allow accurate estimation of life-expectancy, nor are the cycling tests given in this document considered to be equivalent to a full 30-year field exposure. However, the test and evaluation procedures given in this document provide a common approach for conducting qualification tests. Acceptable results from these tests should provide reasonable assurance that the modules that pass these tests will perform reliably in the field but for an unspecified period of time.

  6. Experimental testing of various heat transfer structures in a flat plate thermal energy storage unit

    NASA Astrophysics Data System (ADS)

    Johnson, Maike; Fiß, Michael; Klemm, Torsten

    2016-05-01

    For solar process heat applications with steam as the working fluid and varying application parameters, a novel latent heat storage concept has been developed using an adaptation of a flat plate heat exchanger as the storage concept. Since the pressure level in these applications usually does not exceed 30 bar, an adaptation with storage material chambers arranged between heat transfer medium chambers is possible. Phase change materials are used as the storage medium, so that the isothermal evaporation of steam during discharging of the storage is paired with the isothermal solidification of the storage material. Heat transfer structures can be inserted into the chambers to adjust the power level for a given application. By combining the required number of flat plate heat exchanger compartments and inserting the appropriate heat transfer structure, the design can easily be adjusted for the required power level and capacity for a specific application. Within this work, the technical feasibility of this concept is proven. The dependence of the operating characteristics on the geometry of the heat exchanger is identified. A focus is on varying the power density by integrating conductive heat structures in the PCM.

  7. Interim qualification tests and procedures for terrestrial photovoltaic thin-film flat-plate modules

    SciTech Connect

    DeBlasio, R.; Mrig, L.; Waddington, D.

    1990-01-01

    This document provides recommended procedures and specifications for qualification tests that are structured to evaluate terrestrial thin-film flat-plate photovoltaic nonconcentrating modules intended for power generation applications. The qualification tests provided in this document are designed to evaluate flat-plate thin-film photovoltaic (PV) module design performance and susceptibility to known failure mechanisms. Emphasis is placed on testing and evaluating module performance characteristics and design features that will affect possible degradation of module performance and physical properties resulting from solar exposure, environmental weathering, mechanical loading, corrosion, and module shadowing. Because of limited thin-film module field operation experience and the evolutionary nature of new thin-film module material technologies and designs, these tests should not be considered definitive or complete, nor do they provide a basis to predict 30-year field life. Current understanding of failure and degradation mechanisms and the relationship between accelerated tests and field reliability is not sufficient to allow accurate estimation of life-expectancy, nor are the cycling tests given in this document considered to be equivalent to a full 30-year field exposure. However, the test and evaluation procedures given in this document provide a common approach for conducting qualification tests. Acceptable results from these tests should provide reasonable assurance that the modules that pass these tests will perform reliably in the field but for an unspecified period of time. 8 refs., 6 figs.

  8. Pure and aerated water entry of a flat plate

    NASA Astrophysics Data System (ADS)

    Ma, Z. H.; Causon, D. M.; Qian, L.; Mingham, C. G.; Mai, T.; Greaves, D.; Raby, A.

    2016-01-01

    This paper presents an experimental and numerical investigation of the entry of a rigid square flat plate into pure and aerated water. Attention is focused on the measurement and calculation of the slamming loads on the plate. The experimental study was carried out in the ocean basin at Plymouth University's COAST laboratory. The present numerical approach extends a two-dimensional hydro-code to compute three-dimensional hydrodynamic impact problems. The impact loads on the structure computed by the numerical model compare well with laboratory measurements. It is revealed that the impact loading consists of distinctive features including (1) shock loading with a high pressure peak, (2) fluid expansion loading associated with very low sub-atmospheric pressure close to the saturated vapour pressure, and (3) less severe secondary reloading with super-atmospheric pressure. It is also disclosed that aeration introduced into water can effectively reduce local pressures and total forces on the flat plate. The peak impact loading on the plate can be reduced by half or even more with 1.6% aeration in water. At the same time, the lifespan of shock loading is prolonged by aeration, and the variation of impulse is less sensitive to the change of aeration than the peak loading.

  9. Unsteady Aerodynamics on a Pitching Plunging Flat Plate

    NASA Astrophysics Data System (ADS)

    Hart, Adam; Ukeiley, Lawrence

    2010-11-01

    Biology has shown that natural fliers utilize unsteady flow mechanisms to enhance their lift characteristics in low Reynolds number flight regimes. This study will investigate the interaction between the leading edge vortices (LEVs) and tip vortices over a low aspect ratio flat plate being subjected to a pitch-plunge kinematic motion. Previous studies have shown the creation of stable vortices off the leading edge at the three quarter span location between times 0.25 and 0.50 in the kinematic motion. This study furthers previous knowledge by mapping the flow field around these vortex cores. This will allow for an understanding into the interaction of the LEV with tip vortices and how the LEVs convect downstream. Specifically we look to validate the interactions between these vortex systems leading to enhanced lift as has been demonstrated in very low Reynolds number numerical simulations. A combination of two dimensional and stereo Particle Image Velocimetery (PIV) is used to measure the flow field around the flat plate at various spanwise and chordwise locations. The PIV measurements are triggered by the dynamic motion rig allowing for phase averaging at key locations throughout the motion cycle.

  10. Feasibility Study of Solar Dome Encapsulation of Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The technical and economic advantages of using air-supported plastic enclosures to protect flat plate photovoltaic arrays are described. Conceptual designs for a fixed, latitude-tilt array and a fully tracking array were defined. Detailed wind loads and strength analyses were performed for the fixed array. Detailed thermal and power output analyses provided array performance for typical seasonal and extreme temperature conditions. Costs of each design as used in a 200 MWe central power station were defined from manufacturing and material cost estimates. The capital cost and cost of energy for the enclosed fixed-tilt array were lower than for the enclosed tracking array. The enclosed fixed-tilt array capital investment was 38% less, and the levelized bus bar energy cost was 26% less than costs for a conventional, glass-encapsulated array design. The predicted energy cost for the enclosed fixed array was 79 mills/kW-h for direct current delivered to the power conditioning units.

  11. Thin, Flexible IMM Solar Array

    NASA Technical Reports Server (NTRS)

    Walmsley, Nicholas

    2015-01-01

    NASA needs solar arrays that are thin, flexible, and highly efficient; package compactly for launch; and deploy into large, structurally stable high-power generators. Inverted metamorphic multijunction (IMM) solar cells can enable these arrays, but integration of this thin crystalline cell technology presents certain challenges. The Thin Hybrid Interconnected Solar Array (THINS) technology allows robust and reliable integration of IMM cells into a flexible blanket comprising standardized modules engineered for easy production. The modules support the IMM cell by using multifunctional materials for structural stability, shielding, coefficient of thermal expansion (CTE) stress relief, and integrated thermal and electrical functions. The design approach includes total encapsulation, which benefits high voltage as well as electrostatic performance.

  12. High voltage solar array experiments

    NASA Technical Reports Server (NTRS)

    Kennerud, K. L.

    1974-01-01

    The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.

  13. Solar cell array interconnects

    DOEpatents

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  14. Solar cell array interconnects

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  15. The Stardust solar array

    NASA Technical Reports Server (NTRS)

    Gasner, S.; Sharmit, K.; Stella, P. M.; Craig, C.; Mumaw, S.

    2003-01-01

    The Stardust program, part of NASA's Discovery Missions was launched on February 7. 1999. It's seven-year mission is to gather interstellar dust and material from the comet Wild-2 and return the material to earth in January 2006. In order to accomplish this mission, the satellite will orbit the sun a total of three times, traversing distances from a little under 1 AU to 2.7 AU. On April 18 2002 , the Stardust spacecraft reached its furthest distance and broke the record for being the farthest spacecraft from the sun powered by solar energy, The Stardust solar panels were built with standard off the shelf 10 Ohm-cm high efficiency silicon solar cells. These solar cells are relatively inexpensive and have shown excellent characteristics under LILT conditions. In order to accommodate the varying temperature and intensity conditions on the electrical power subsystem, an electronic switch box was designed to reconfigure the string length and number of swings depending on the mission phase. This box allowed the use of an inexpensive direct energy transfer system for the electrical power system architecture. The solar panels and electrical power system have met all requirements. Telemetry data from the solar panels at 2.7 AU are in excellent agreement with flight predictions.

  16. Small satellite solar array substrate

    NASA Technical Reports Server (NTRS)

    Fiore, John N.; Rosanova, Giulio

    1994-01-01

    The SMall EXplorer (SMEX) Fast Auroral SnapshoT (FAST) spacecraft was developed to investigate plasma physics of auroral phenomena at high orbital altitude. The FAST satellite comprises a variety of deployable booms with sensors on the ends, and instruments that protrude from the main body of the spacecraft to obtain the plasma and electromagnetic fields data. This required the plasma disturbance around the satellite to be kept to a minimum. A non deployable, body mounted solar array was implemented. This led to the design of a light weight solar array substrate with a high degree of structural integrity.

  17. Soldered solar arrays

    NASA Astrophysics Data System (ADS)

    Allen, H. C.

    1982-06-01

    The ability of soldered interconnects to withstand a combination of long life and severe environmental conditions was investigated. Improvements in joint life from the use of solder mixes appropriate to low temperature conditons were studied. Solder samples were placed in a 150 C oven for 5 weeks (= 12 yr at 80 C, or 24 at 70 C according to Arrhenius's rule). Conventional and high solder melting point array samples underwent 1000 thermal cycles between -186 and 100 C. Results show that conventional and lead rich soldered arrays can survive 10 yr geostationary orbit missions.

  18. Energy distribution of proton microbeam transmitted through two flat plates

    NASA Astrophysics Data System (ADS)

    Nagy, G. U. L.; Rajta, I.; Bereczky, R. J.; Tőkési, K.

    2015-07-01

    The transmission of 1 MeV proton microbeam passing between two parallel flat plates was investigated. Three different materials were used in our experiments. As insulators we used Polytetrafluoroethylene and borosilicate glass plates and glass with gold layer on the surface as conductor. The surface of the plates was parallel to the beam axis and one of the plates was moved towards the beam. The energy distribution and the deflection of the transmitted beam were measured as the function of the sample distance relative to the beam. We found systematic differences between the behaviour of the metallic and insulator samples. The proton microbeam suffered significant deflection towards the sample surface due to the image acceleration when using conductor material. In case of the glass and Polytetrafluoroethylene plates the beam was deflected into the opposite direction, and the incident protons did not suffer significant energy loss, which is the consequence of the guiding effect.

  19. Flat-plate /vapor-chamber/ heat pipes

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Marcus, B. D.; Mcintosh, R.; Ollendorf, S.

    1975-01-01

    This paper discusses the design, fabrication and testing of heat pipes constructed in the form of flat-plate panels. The test panels were constructed of copper with methyl alcohol as the working fluid. Capillary grooves etched on the internal surfaces provided evaporation and condensation heat-transfer coefficients on the order of 1600 Btu/hr-sq ft-deg F. Two panels were launched on board a sounding rocket; the payload reached an altitude of 140 miles, and zero gravity was achieved for almost six minutes. The panel with working fluid inside demonstrated a heat input flux of 2.5 watts/sq cm, with only a 3 to 5 C temperature difference throughout the entire panel.

  20. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    SciTech Connect

    Freeman, J.; Whitmore, J.; Kaffine, L.; Blair, N.; Dobos, A. P.

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  1. A lightweight inflatable solar array

    SciTech Connect

    Malone, P.K.; Williams, G.T.

    1995-12-31

    L`Garde and Phillips Laboratory have developed a light weight deployable solar array wing in the 200-1000 watt range, on the Inflatable Torus Solar Array Technology Demonstration (ITSAT Demo) Project. The power density of a flight unit could be as high as 93 W/kg for a 200 Watt-class wing, including structure and deployment mechanisms. In Phase 1, a proof of concept torus and array was constructed and deployed in the laboratory. During Phase 2, a revised torus and array were constructed and tested at L`Garde and the Naval Research Lab. The qualification tests included random vibration, deployment in a thermal vacuum chamber, natural frequency determination, and thermal cycling. The flight design uses 2 mil thick crystalline Si cells on an AO protected flexible Kapton film substrate folded accordion style for stowage. The support structure is a rectangular frame comprised of two inflated then rigidized cylinders, the array stowage box and its cover. The cylinders, flattened, folded and stored for launch, are deployed by inflating with N{sub 2} and rigidized by straining the cylinder laminate material controllably beyond the elastic limit. The engineering protoflight array was designed for optimum power density but, due to availability, some of the components came from excess production runs. Because of this, the actual power density of the test article was 59 W/kg, or 36% less than the baseline flight array. However, using components as designed, the projected 93 w/kg can be achieved. Due to simple deployment mechanism, the cost of an ITSAT-type solar array is about one-half that of competing systems.

  2. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, R. W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  3. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  4. Retrieval of Mir Solar Array

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; deGroh, Kim K.

    1999-01-01

    A Russian solar array panel removed in November 1997 from the non-articulating photovoltaic array on the Mir core module was returned to Earth on STS-89 in January 1998. The panel had been exposed to low Earth orbit (LEO) for 10 years prior to retrieval. The retrieval provided a unique opportunity to study the effects of the LEO environment on a functional solar array. To take advantage of this opportunity, a team composed of members from RSC-Energia (Russia), the Boeing Company, and the following NASA Centers--Johnson Space Center, Kennedy Space Center, Langley Research Center, Marshall Space Flight Center, and Lewis Research Center--was put together to analyze the array. After post-retrieval inspections at the Spacehab Facility at Kennedy in Florida, the array was shipped to Lewis in Cleveland for electrical performance tests, closeup photodocumentation, and removal of selected solar cells and blanket material. With approval from RSC-Energia, five cell pairs and their accompanying blanket and mesh material, and samples of painted handrail materials were selected for removal on the basis of their ability to provide degradation information. Sites were selected that provided different sizes and shapes of micrometeoroid impacts and different levels of surface contamination. These materials were then distributed among the team for round robin testing.

  5. Photoelectric solar cell array

    SciTech Connect

    Lidorenko, N.S.; Afian, V.V.; Martirosian, R.G.; Ryabikov, S.V.; Strebkov, D.S.; Vartanian, A.V.

    1983-11-29

    A photoelectric solar cell device comprises a dispersing element exposed to the sun's radiation and followed in the optical path by photocells having different spectral sensitivities. Each photocell has its working surface so oriented that the light beam with the wavelength corresponding to the maximum spectral sensitivity of that photocell impinges on its working surface. The dispersing element is a hologram representing light sources with different wavelengths. The photocells are positioned in the image planes of the light sources producing the light beams of the corresponding wavelengths.

  6. Space solar arrays and concentrators

    NASA Astrophysics Data System (ADS)

    Habraken, Serge; Defise, Jean-Marc; Collette, Jean-Paul; Rochus, Pierre; D'Odemont, Pierre-Alexis; Hogge, Michel

    2001-03-01

    This paper presents some research activities conducted at the Centre Spatial de Liege (CSL) in the field of space solar arrays and concentration. With the new generation of high efficiency solar cells, solar concentration brings new insights for future high power spacecrafts. A trade-off study is presented in this paper. Two different trough concentrators, and a linear Fresnel lens concentrator are compared to rigid arrays. Thermal and optical behaviors are included in the analysis. Several technical aspects are discussed: Off-pointing with concentrators induces collection loss and illumination non uniformity, reducing the PV efficiency. Concentrator deployment increases the mission risk. Reflective trough concentrators are attractive and already proven. Coating is made of VDA (Aluminum). A comprehensive analysis of PV conversion increase with protected silver is presented. Solar concentration increases the heat load on solar cells, while the conversion efficiency is significantly decreasing at warm temperatures. To conclude, this paper will point out the new trends and the key factors to be addressed for the next generation of solar generators.

  7. International ultraviolet explorer solar array power degradation

    NASA Technical Reports Server (NTRS)

    Day, J. H., Jr.

    1983-01-01

    The characteristic electrical performance of each International Ultraviolet Explorer (IUE) solar array panel is evaluated as a function of several prevailing variables (namely, solar illumination, array temperature and solar cell radiation damage). Based on degradation in the current-voltage characteristics of the array due to solar cell damage accumulated over time by space charged particle radiations, the available IUE solar array power is determined for life goals up to 10 years. Best and worst case calculations are normalized to actual IUE flight data (available solar array power versus observatory position) to accurately predict the future IUE solar array output. It is shown that the IUE solar array can continue to produce more power than is required at most observatory positions for at least 5 more years.

  8. Urea separation in flat-plate microchannel hemodialyzer; experiment and modeling.

    PubMed

    Tuhy, Alana R; Anderson, Eric K; Jovanovic, Goran N

    2012-06-01

    Two flat-plate microchannel hemodialyzers were constructed consisting of two identical laminae separated by a 20[μm] thick ultrafiltration membrane (Gambro AN69). Each lamina contains a parallel array of microchannels 100[μm] deep, 200[μm] wide, and 5.6[cm] or 9.9[cm] in length respectively. Urea was removed from the aqueous stream containing 1.0[g] urea per liter de-ionized water in the blood side, by countercurrent contact with pure de-ionized water in the dialysate side of the flat-plate hemodialyzer. In all cases volumetric flow rate of water in the dialysate side was equal or less than the volumetric flow rate in the blood side, which is in large contrast to commercial applications of hollow-fiber hemodialyzers where dialysate flow is severalfold larger than blood flow rate. A three-dimensional finite volume mass transport model, built entirely from the first principles with no adjustable parameters, was written in FORTRAN. The results of the mathematical model excellently predict experimental results. The fractional removals of urea predicted by the model are within 2.7%-11% of experimentally obtained values for different blood and dialysate velocities/flow rates in microchannels, and for different transmembrane pressures. The overall mass transfer coefficient was calculated using the urea outlet concentrations obtained at various average velocities (1.0-5.0[cm/s]) in the blood and dialysate, and two nominal transmembrane pressures (∆P(tm) = 0 and 10,000.[Pa]). Overall mass transfer coefficients obtained experimentally ranged from 0.068 to 0.14 [cm/min]. The numerical model predicted an average overall mass transfer coefficient of 0.08 [cm/min]. This value is 60% higher than those found in commercial dialyzers (~0.05[cm/min]). PMID:22374475

  9. 46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Sighting ports, tubular gauge glasses, and flat plate type gauge glasses. 154.1320 Section 154.1320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary...

  10. 46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Sighting ports, tubular gauge glasses, and flat plate type gauge glasses. 154.1320 Section 154.1320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary...

  11. 46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Sighting ports, tubular gauge glasses, and flat plate type gauge glasses. 154.1320 Section 154.1320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary...

  12. 46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sighting ports, tubular gauge glasses, and flat plate type gauge glasses. 154.1320 Section 154.1320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary...

  13. 46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Sighting ports, tubular gauge glasses, and flat plate type gauge glasses. 154.1320 Section 154.1320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary...

  14. Elastic Buckling Under Combined Stresses of Flat Plates with Integral Waffle-like Stiffening

    NASA Technical Reports Server (NTRS)

    Dow, Norris F; Levin, L Ross; Troutman, John L

    1954-01-01

    Theory and experiment were compared and found in good agreement for the elastic buckling under combined stresses of long flat plates with integral waffle-like stiffening in a variety of configurations. For such flat plates, 45 degree waffle stiffening was found to be the most effective of the configurations for the proportions considered over the widest range of combinations of compression and shear.

  15. Elastic Buckling under Combined Stresses of Flat Plates with Integral Waffle-Like Stiffening

    NASA Technical Reports Server (NTRS)

    Dow, Norris F.; Levin, L. Ross; Troutman, John L.

    1953-01-01

    Theory and experiment were compared and found in good agreement for the elastic Buckling under combined stresses of long flat plates with integral waffle-like stiffening in a variety of configurations. For such flat plates, 45deg waffle stiffening was found to be the most effective of the configurations for the proportions considered over the widest range of combinations of compression and shear.

  16. Drag measurements of blunt stores tangentially mounted on a flat plate at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.

    1987-01-01

    An investigation has been conducted in the Langley Unitary Plan Wind Tunnel to measure the drag of blunt stores (hemispherical noses and afterbodies) tangentially mounted in various arrays on a flat plate at nominal Mach numbers of 1.60, 1.90, 2.16,and 2.86 and at a nominal Reynolds number of 2X10 to the 6th power per foot. The arrays consisted of two and three stores mounted in lateral, tandem, or staggered arrangements. The relative position of the stores in the arrays was varied while the drag of only one store was measured to determine the effect of spacing on the store drag. Store-on-store interference was determined by comparing the drag of a single store with the drag of the store in an array. The results indicate virtually all arrangements and spacings which were tested had favorable store-on-store interference (drag reduction) across the Mach number range. Tabulated data, schlieren photographs, and shadowgraphs are included.

  17. Characteristics of transition in a flat-plate boundary layer

    NASA Astrophysics Data System (ADS)

    Choi, Myung-Ryul; Choi, Haecheon; Kang, Shin-Hyoung

    1998-11-01

    A direct numerical simulation of the spatially evolving transition in a flat-plate boundary layer is performed in the region of ( 115000<= Re_x<= 340000 ) with ( 1537× 99× 128 ) grid points. Inflow disturbances, similar to the two dimensional T-S wave combined with three dimensional waves, are generated on the upstream wall through time-dependent localized blowing and suction. A ( Λ ) vortex, consisting of two legs, is identified at a downstream location of blowing and suction. Soon a hairpin vortex, consisting of a head and two legs, is formed from the ( Λ ) vortex through the self induction mechanism. At a later time new hairpin vortices are successively produced behind the first hairpin vortex. At the final stage six hairpin vortices are observed. As the vortices move downstream in time, the legs of the ( Λ ) vortex get stronger and become quasi-streamwise vortices, while the head of the hairpin vortex changes into an ( Ω ) shape. Near the end of the computational domain the hairpin vortices and quasi-streamwise vortices are entangled with each other and convect downstream together; these phenomena are compared with the characteristics of a turbulent spot. It is shown that the spikes and saw-tooth like jumps in the streamwise velocity signals, observed in experiments, are associated with the heads and legs of the hairpin vortices, respectively.

  18. Reconfiguration of a flexible flat plate under snow loading

    NASA Astrophysics Data System (ADS)

    Gosselin, Frédérick; de Langre, Emmanuel

    2015-11-01

    Snow and wind constitute two of the main sources of mechanical loading on terrestrial plants. Plants bend and twist with large amplitude to bear these loads. For the past ten years, various authors have sought to decompose the problem of plant reconfiguration under fluid flow into its fundamental mechanical ingredients by studying the reconfiguration of simple flexible structures such as beams, plates, rods and strips. Here, we adopt a similar approach to these studies and consider the snow interception of a flexible flat plate. We performed two sets of experiments on thin flexible rectangular plates supported at their center: in the first one, a plate was subjected to real snowing events; in the second one, a plate was loaded with glass beads acting as a granular media similar to snow. Moreover, a theoretical model coupling the Elastica formulation to a loading with a set angle of repose is developed. The model is found to be in good agreement with the experiments on glass beads. Asymptotic scaling laws can be found similarly to the Vogel exponents of reconfiguring structures. For the real snow loading, it is found that the cohesive force in snow which is highly dependent on the snow temperature complicate things greatly.

  19. Rarefied flow past a flat plate at incidence

    NASA Technical Reports Server (NTRS)

    Dogra, Virendra K.; Moss, James N.; Price, Joseph M.

    1988-01-01

    Results of a numerical study using the direct simulation Monte Carlo (DSMC) method are presented for the transitional flow about a flat plate at 40 deg incidence. The plate has zero thickness and a length of 1.0 m. The flow conditions simulated are those experienced by the Shuttle Orbiter during reentry at 7.5 km/s. The range of freestream conditions are such that the freestream Knudsen number values are between 0.02 and 8.4, i.e., conditions that encompass most of the transitional flow regime. The DSMC simulations show that transitional effects are evident when compared with free molecule results for all cases considered. The calculated results demonstrate clearly the necessity of having a means of identifying the effects of transitional flow when making aerodynamic flight measurements as are currently being made with the Space Shuttle Orbiter vehicles. Previous flight data analyses have relied exclusively on adjustments in the gas-surface interaction models without accounting for the transitional effect which can be comparable in magnitude. The present calculations show that the transitional effect at 175 km would increase the Space Shuttle Orbiter lift-drag ratio by 90 percent over the free molecule value.

  20. PEP solar array definition study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The power extension package (PEP) is a solar array system that will be used on the space transportation system to augment the power of the Orbiter vehicle and to extend the time the vehicle may stay in orbit. The baseline configuration of the PEP is reviewed. The programmatic aspects of the design covering the development plan, the manufacturing facility plan and the estimated costs and risks are presented.

  1. Flat-plate module efficiency versus cost tradeoffs

    NASA Technical Reports Server (NTRS)

    Aster, R. W.

    1984-01-01

    The Five Year Research Plan energy cost methodology and in depth analyses based on the extensive data that are relevant to PV systems are used to facilitate the accomplishment of the $0.15/kWh energy cost goal. An equation is given for the five year energy cost methodology. The allocation guidelines are designed to be consistent with flat solar array (FSA) milestones for module cost, module efficiency, and the programmatic goal for energy cost. They are research targets that appear to be achievable, given prior accomplishments and planned activities in the areas of low cost silicon purification, low cost sheet material, high efficiency cell processing, low cost, long life encapsulants, and automated fabrication method. Extensive sensitivity analysis work has been performed that shows that these guidelines represent an efficient way to meet the intent of the DOE program.

  2. Flow past a normal flat plate undergoing inline oscillations

    NASA Astrophysics Data System (ADS)

    Khaledi, Hatef A.; Andersson, Helge I.; Barri, Mustafa; Pettersen, Bjørnar

    2012-09-01

    The flow past an inline oscillating normal flat plate has been considered with the view to explore the variety of wake phenomena which arise even at the low Reynolds number (Re) equal to 100 based on the free stream velocity and the width of the plate. The three-dimensional Navier-Stokes equations were integrated in time over a wide range of excitation frequencies and amplitudes. A wake flow regime map was produced on the basis of the 24 computer simulations. For a certain excitation amplitude, the wake vortex shedding is first antisymmetric at low excitation frequencies fe. When fe is increased the wake first becomes chaotic and thereafter turns into a symmetric shedding mode, for instance the S-II mode with a binary vortex pair on each side of the wake. If fe is increased even further, more complex symmetric wake patterns may occur before the wake ultimately turns into chaos. Symmetric wakes are thus only observed in a band of intermediate excitation frequencies and then with the dominating flow frequency locked-on to fe. In one particular case, the S-II mode in the very near wake turned into what might be considered as a new S-IV mode which comprised four different vortex pairs per shedding cycle. In spite of the low Re considered, several cases exhibited distinct three-dimensionalities whereas some other cases remained strictly 2D. In some of the cases, at least, the transition from 2D to 3D wake flow was ascribed to a "mode competition." Finally, for one of the two-dimensional cases the Reynolds number was first increased to 300 and then to 500 and a complex three-dimensional wake flow was observed. However, even at Re = 100, two-dimensional computer simulations are unable to reproduce the three-dimensional wake flow characteristics reported from the present study.

  3. Advanced Rainbow Solar Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick; Shields, Virgil

    2003-01-01

    Photovoltaic arrays of the rainbow type, equipped with light-concentrator and spectral-beam-splitter optics, have been investigated in a continuing effort to develop lightweight, high-efficiency solar electric power sources. This investigation has contributed to a revival of the concept of the rainbow photovoltaic array, which originated in the 1950s but proved unrealistic at that time because the selection of solar photovoltaic cells was too limited. Advances in the art of photovoltaic cells since that time have rendered the concept more realistic, thereby prompting the present development effort. A rainbow photovoltaic array comprises side-by-side strings of series-connected photovoltaic cells. The cells in each string have the same bandgap, which differs from the bandgaps of the other strings. Hence, each string operates most efficiently in a unique wavelength band determined by its bandgap. To obtain maximum energy-conversion efficiency and to minimize the size and weight of the array for a given sunlight input aperture, the sunlight incident on the aperture is concentrated, then spectrally dispersed onto the photovoltaic array plane, whereon each string of cells is positioned to intercept the light in its wavelength band of most efficient operation. The number of cells in each string is chosen so that the output potentials of all the strings are the same; this makes it possible to connect the strings together in parallel to maximize the output current of the array. According to the original rainbow photovoltaic concept, the concentrated sunlight was to be split into multiple beams by use of an array of dichroic filters designed so that each beam would contain light in one of the desired wavelength bands. The concept has since been modified to provide for dispersion of the spectrum by use of adjacent prisms. A proposal for an advanced version calls for a unitary concentrator/ spectral-beam-splitter optic in the form of a parabolic curved Fresnel-like prism

  4. On the instability of hypersonic flow past a flat plate

    NASA Technical Reports Server (NTRS)

    Blackaby, Nicholas; Cowley, Stephen; Hall, Philip

    1990-01-01

    The instability of hypersonic boundary-layer flows over flat plates is considered. The viscosity of the fluid is taken to be governed by Sutherland's law, which gives a much more accurate representation of the temperature dependence of fluid viscosity at hypersonic speeds than Chapman's approximate linear law; although at lower speeds the temperature variation of the mean state is less pronounced so that the Chapman law can be used with some confidence. Attention is focussed on the so-called (vorticity) mode of instability of the viscous hypersonic boundary layer. This is thought to be the fastest growing inviscid disturbance at hypersonic speeds; it is also believed to have an asymptotically larger growth rate than any viscous or centrifugal instability. As a starting point the instability of the hypersonic boundary layer which exists far downstream from the leading edge of the plate is investigated. In this regime the shock that is attached to the leading edge of the plate plays no role, so that the basic boundary layer is non-interactive. It is shown that the vorticity mode of instability of this flow operates on a significantly different lengthscale than that obtained if a Chapman viscosity law is assumed. In particular, it is found that the growth rate predicted by a linear viscosity law overestimates the size of the growth rate by O(M(exp 2). Next, the development of the vorticity mode as the wavenumber decreases is described, and it is shown that acoustic modes emerge when the wavenumber has decreased from it's O(1) initial value to O(M (exp -3/2). Finally, the inviscid instability of the boundary layer near the leading edge in the interaction zone is discussed and particular attention is focussed on the strong interaction region which occurs sufficiently close to the leading edge. It is found that the vorticity mode in this regime is again unstable, and that it is concentrated in the transition layer at the edge of the boundary layer where the temperature

  5. Forced Convection and Sedimentation Past a Flat Plate

    NASA Technical Reports Server (NTRS)

    Pelekasis, Nikolaos A.; Acrivos, Andreas

    1995-01-01

    The steady laminar flow of a well-mixed suspension of monodisperse solid spheres, convected steadily past a horizontal flat plate and sedimenting under the action of gravity, is examined. It is shown that, in the limit as Re approaches infinity and epsilon approaches 0, where Re is the bulk Reynolds number and epsilon is the ratio of the particle radius a to the characteristic length scale L, the analysis for determining the particle concentration profile has several aspects in common with that of obtaining the temperature profile in forced-convection heat transfer from a wall to a fluid stream moving at high Reynolds and Prandtl numbers. Specifically, it is found that the particle concentration remains uniform throughout the O(Re(exp -1/2)) thick Blasius boundary layer except for two O(epsilon(exp 2/3)) thin regions on either side of the plate, where the concentration profile becomes non-uniform owing to the presence of shear-induced particle diffusion which balances the particle flux due to convection and sedimentation. The system of equations within this concentration boundary layer admits a similarity solution near the leading edge of the plate, according to which the particle concentration along the top surface of the plate increases from its value in the free stream by an amount proportional to X(exp 5/6), with X measuring the distance along the plate, and decreases in a similar fashion along the underside. But, unlike the case of gravity settling on an inclined plate in the absence of a bulk flow at infinity considered earlier, here the concentration profile remains continuous everywhere. For values of X beyond the region near the leading edge, the particle concentration profile is obtained through the numerical solution of the relevant equations. It is found that, as predicted from the similarity solution, there exists a value of X at which the particle concentration along the top side of the plate attains its maximum value phi(sub m) and that, beyond this

  6. Analytical predictions of liquid and air photovoltaic/thermal flat-plate collector performance

    SciTech Connect

    Raghuraman, P.; Hendrie, S.D.

    1980-01-01

    Two separate one-dimensional analyses have been developed for the prediction of the thermal and electrical performance of both liquid and air flat-plate photovoltaic/thermal (PV/T) collectors. The analyses account for the temperature difference between the primary insolation absorber (the photovoltaic cells) and the secondary absorber (a thermal absorber flat plate). The results of the analyses are compared with test measurements, and therefrom, design recommendations are made to maximize the total energy extracted from the collectors.

  7. Use of Radiometrically Calibrated Flat-Plate Calibrators in Calibration of Radiation Thermometers

    NASA Astrophysics Data System (ADS)

    Cárdenas-García, D.; Méndez-Lango, E.

    2015-08-01

    Most commonly used, low-temperature, infrared thermometers have large fields of view sizes that make them difficult to be calibrated with narrow aperture blackbodies. Flat-plate calibrators with large emitting surfaces have been proposed for calibrating these infrared thermometers. Because the emissivity of the flat plate is not unity, its radiance temperature is wavelength dependent. For calibration, the wavelength pass band of the device under test should match that of the reference infrared thermometer. If the device under test and reference radiometer have different pass bands, then it is possible to calculate the corresponding correction if the emissivity of the flat plate is known. For example, a correction of at is required when calibrating a infrared thermometer with a "" radiometrically calibrated flat-plate calibrator. A method is described for using a radiometrically calibrated flat-plate calibrator that covers both cases of match and mismatch working wavelength ranges of a reference infrared thermometer and infrared thermometers to be calibrated with the flat-plate calibrator. Also, an application example is included in this paper.

  8. Evaluation of space station solar array technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The research concerning lightweight solar array assemblies since 1970 is reported. A bibliography of abstracts of documents used for reference during this period is included along with an evaluation of available solar array technology. A list of recommended technology programs is presented.

  9. High-power, ultralow-mass solar arrays: FY-77 solar arrays technology readiness assessment report, volume 2

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.

    1978-01-01

    Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.

  10. A simplified solar cell array modelling program

    NASA Technical Reports Server (NTRS)

    Hughes, R. D.

    1982-01-01

    As part of the energy conversion/self sufficiency efforts of DSN engineering, it was necessary to have a simplified computer model of a solar photovoltaic (PV) system. This article describes the analysis and simplifications employed in the development of a PV cell array computer model. The analysis of the incident solar radiation, steady state cell temperature and the current-voltage characteristics of a cell array are discussed. A sample cell array was modelled and the results are presented.

  11. Fluctuating pressures measured beneath a high-temperature, turbulent boundary layer on a flat plate at Mach number of 5

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Albertson, Cindy W.

    1989-01-01

    Fluctuating pressures were measured beneath a Mach 5, turbulent boundary layer on a flat plate with an array of piezoresistive sensors. The data were obtained with a digital signal acquisition system during a test run of 4 seconds. Data sampling rate was such that frequency analysis up to 62.5 kHz could be performed. To assess in situ frequency response of the sensors, a specially designed waveguide calibration system was employed to measure transfer functions of all sensors and related instrumentation. Pressure time histories were approximated well by a Gaussian prohibiting distribution. Pressure spectra were very repeatable over the array span of 76 mm. Total rms pressures ranged from 0.0017 to 0.0046 of the freestream dynamic pressure. Streamwise, space-time correlations exhibited expected decaying behavior of a turbulence generated pressure field. Average convection speed was 0.87 of freestream velocity. The trendless behavior with sensor separation indicated possible systematic errors.

  12. Photovoltaic array performance model.

    SciTech Connect

    Kratochvil, Jay A.; Boyson, William Earl; King, David L.

    2004-08-01

    This document summarizes the equations and applications associated with the photovoltaic array performance model developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, 'translation' of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.

  13. SEPS solar array design and technology evaluation

    NASA Technical Reports Server (NTRS)

    Elms, R. V., Jr.; Young, L. E.

    1975-01-01

    The technology developments required and a preliminary design of a lightweight 25 kW solar array for the solar electric propulsion stage (SEPS) have been defined. The requirements for a 65 W/Kg SEPS solar array system requires significant component weight reductions over present state-of-the-art flexible solar arrays in both electrical and structural-mechanical designs. A requirement for operation from 0.3 au to 6.0 au presents a wide range of temperature environments as well as severe combined thermal/vacuum/UV radiation environments. Additional requirements are capability for partial array retraction operation, and capability for full retraction and automatic preloading for survival of the Shuttle reentry environment. An assessment of current lightweight flexible solar array technology is made against the SEPS solar array requirements and new technology requirements are defined. A preliminary design and the operating characteristics of a flat-fold solar array system meeting the SEPS requirements is presented. A full-width, 10-ft-tall functional array model, including representative welded electrical modules and a model astromast, was fabricated and tested.

  14. Flow over a traveling wavy foil with a passively flapping flat plate

    NASA Astrophysics Data System (ADS)

    Liu, Nansheng; Peng, Yan; Liang, Youwen; Lu, Xiyun

    2012-05-01

    Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The study reveals that the passively oscillating flat plate contributes half of the propulsive force. The flexibility, represented by the nondimensional natural frequency F, plays a very important role in the movement and propulsive force generation of the whole body. When the plate is too flexible, the drag force is observed. As the flat plate becomes more rigid, the propulsive force that is generated when the undulation is confined to last part of the wavy foil becomes larger. The steady movement occurs at F=5. These results are consistent with the observations of some swimming animals in nature.

  15. Deployment simulation for 3rd generation solar array GSR3

    NASA Astrophysics Data System (ADS)

    Verne, C.; Rouchon, M.

    1989-01-01

    Deployment tests for different solar arrays are described. The Spacebus solar array deployment is tested in two dimensions. The Spot 4 array deployment is tested in three dimensions. A mock-up deployment test on an air cushion is compared to results obtained using simulation software. The third generation solar array concept equipped with Adele hinges is compared to previous solar array models. The need for greater accuracy and reliability in the deployment analysis of these third generation solar arrays is stressed.

  16. Friction factor data for flat plate tests of smooth and honeycomb surfaces. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ha, Tae Woong

    1989-01-01

    Friction factors for honeycomb surfaces were measured with a flat plate tester. The flat plate test apparatus was described and a method was discussed for determining the friction factor experimentally. The friction factor model was developed for the flat plate test based on the Fanno Line Flow. The comparisons of the friction factor were plotted for smooth surfaces and six-honeycomb surfaces with three-clearances, 6.9 bar to 17.9 bar range of inlet pressures, and 5,000 to 100,000 range of the Reynolds number. The optimum geometries for the maximum friction factor were found as a function of cell width to cell depth and cell width to clearance ratios.

  17. Friction-factor data for flat-plate tests of smooth and honeycomb surfaces

    NASA Technical Reports Server (NTRS)

    Ha, T. W.; Childs, Dara W.

    1992-01-01

    Friction factors for honeycomb surfaces were measured with a flat plate tester. The flat plate test apparatus was described and a method was discussed for determining the friction factor experimentally. The friction factor model was developed for the flat plate test based on the Fanno Line Flow. The comparisons of the friction factor were plotted for smooth surfaces and six-honeycomb surfaces with three-clearances, 6.9 bar to 17.9 bar range of inlet pressures, and 5,000 to 100,000 range of the Reynolds number. The optimum geometries for the maximum friction factor were found as a function of cell width to cell depth and cell width to clearance ratios.

  18. Interference effects on the hypersonic, rarefied flow about a flat plate

    NASA Technical Reports Server (NTRS)

    Wilmoth, Richard G.

    1988-01-01

    The Direct Simulation Monte Carlo method is used to study the hypersonic, rarified flow interference effects on a flat plate caused by nearby surfaces. Calculations focus on shock-boundary-layer and shock-lip interactions in hypersonic inlets. Results are presented for geometries consisting of a flat plate with different leading-edge shapes over a flat lower wall and a blunt-edge flat plate over a 5-degree wedge. The problems simulated correspond to a typical entry flight condition of 7.5 km/s at altitudes of 75 to 90 km. The results show increases in predicted local heating rates for shock-boundary-layer and shock-lip interactions that are quantitatively similar to those observed experimentally at much higher densities.

  19. Space Station Freedom Solar Array design development

    SciTech Connect

    Winslow, C. )

    1993-01-01

    The design of Space Station Freedom's Solar Array (SSFSA) is reviewed highlighting the key design performance goals, challenges, design description, and development testing objectives, results and plans. Study results are discussed which illustrate many of the more important design decision.

  20. Stand-alone flat-plate photovoltaic power systems: System sizing and life-cycle costing methodology for Federal agencies

    NASA Technical Reports Server (NTRS)

    Borden, C. S.; Volkmer, K.; Cochrane, E. H.; Lawson, A. C.

    1984-01-01

    A simple methodology to estimate photovoltaic system size and life-cycle costs in stand-alone applications is presented. It is designed to assist engineers at Government agencies in determining the feasibility of using small stand-alone photovoltaic systems to supply ac or dc power to the load. Photovoltaic system design considerations are presented as well as the equations for sizing the flat-plate array and the battery storage to meet the required load. Cost effectiveness of a candidate photovoltaic system is based on comparison with the life-cycle cost of alternative systems. Examples of alternative systems addressed are batteries, diesel generators, the utility grid, and other renewable energy systems.

  1. Computation of Tone Noise From Supersonic Jet Impinging on Flat Plates

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Blech, Richard A. (Technical Monitor)

    2005-01-01

    A supersonic jet impinging normally on a flat plate has both practical importance and theoretical interests. The physical phenomenon is not fully understood yet. Research concentrates either on the hydrodynamics (e.g., lift loss for STOVL) or on the aeroacoustic loading. In this paper, a finite volume scheme - the space-time conservation element and solution element (CE/SE) method - is employed to numerically study the near-field noise of an underexpanded supersonic jet from a converging nozzle impinging normally on a flat plate. The numerical approach is of the MILES type (monotonically integrated large eddy simulation). The computed results compare favorably with the experimental findings.

  2. SEP solar array shuttle flight experiment

    SciTech Connect

    Elms, R.V. Jr.; Young, L.E.; Hill, H.C.

    1981-01-01

    The design, fabrication, and ground verification testing project is underway at LMSC to support a SEP solar array shuttle flight experiment. A full-scale developmental SEP solar array wing is being refurbished for flight in an Orbiter scheduled for launch in early 1983. The experiment hardware design and the on-orbit test operations that are planned to meet the experiment objective are described. 1 ref.

  3. NASA Solar Array Demonstrates Commercial Potential

    NASA Technical Reports Server (NTRS)

    Creech, Gray

    2006-01-01

    A state-of-the-art solar-panel array demonstration site at NASA's Dryden Flight Research Center provides a unique opportunity for studying the latest in high-efficiency solar photovoltaic cells. This five-kilowatt solar-array site (see Figure 1) is a technology-transfer and commercialization success for NASA. Among the solar cells at this site are cells of a type that was developed in Dryden Flight Research Center s Environmental Research Aircraft and Sensor Technology (ERAST) program for use in NASA s Helios solar-powered airplane. This cell type, now denoted as A-300, has since been transferred to SunPower Corporation of Sunnyvale, California, enabling mass production of the cells for the commercial market. High efficiency separates these advanced cells from typical previously commercially available solar cells: Whereas typical previously commercially available cells are 12 to 15 percent efficient at converting sunlight to electricity, these advanced cells exhibit efficiencies approaching 23 percent. The increase in efficiency is due largely to the routing of electrical connections behind the cells (see Figure 2). This approach to increasing efficiency originated as a solution to the problem of maximizing the degree of utilization of the limited space available atop the wing of the Helios airplane. In retrospect, the solar cells in use at this site could be used on Helios, but the best cells otherwise commercially available could not be so used, because of their lower efficiencies. Historically, solar cells have been fabricated by use of methods that are common in the semiconductor industry. One of these methods includes the use of photolithography to define the rear electrical-contact features - diffusions, contact openings, and fingers. SunPower uses these methods to produce the advanced cells. To reduce fabrication costs, SunPower continues to explore new methods to define the rear electrical-contact features. The equipment at the demonstration site includes

  4. Solar electric propulsion thruster interactions with solar arrays

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1977-01-01

    The effect of interactions of spacecraft-generated and naturally occurring plasmas with high voltage solar array components on an advanced solar electric propulsion system proposed for the Halley's Comet rendezvous mission was investigated. The spacecraft-generated plasma consists of mercury ions and neutralizing electrons resulting from the operation of ion thrusters (the charge-exchange plasma) and associated hollow cathode neutralizers. Quantitative results are given for the parasitic currents and power coupled into solar arrays with voltage fixed as a function of position on the array.

  5. Parametric analysis of ATM solar array.

    NASA Technical Reports Server (NTRS)

    Singh, B. K.; Adkisson, W. B.

    1973-01-01

    The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.

  6. Landsat 7 Solar Array Testing Experiences

    NASA Technical Reports Server (NTRS)

    Helfrich, Daniel

    2000-01-01

    This paper covers the extensive Landsat 7 solar array flight qualification testing effort. Details of the mechanical design of the solar array and its retention/release system are presented. A testing chronology is provided beginning with the onset of problems encountered at the subsystem level and carrying through the third and final powered-spacecraft ground deployment test. Design fixes and other changes are explained in the same order as they became necessary to flight-qualify the array. Some interesting lessons learned are included along with key references.

  7. LSA Low-cost Solar Array project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Silicon Solar Array Project during the period October through December, 1977 are reported. The LSSA Project is assigned responsibility for advancing silicon solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  8. Anti-static coat for solar arrays

    NASA Astrophysics Data System (ADS)

    Fellas, C. N.

    1982-06-01

    A Kapton based composite material, suitable as a substrate for flexible solar arrays, was designed, constructed and tested under electron energies ranging from 5 to 30 keV. The rear of the array under adverse eclipse conditions (-197 C) produced voltages well below the discharge threshold. An antistatic coat suitable as a front cover for solar arrays is also described. The thermal and optical transmission characteristics were tested and are satisfactory, but the UV and particle degradation of the Tedlar material needs to be evaluated.

  9. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Solar Array Project are described for the period April through June 1978. The Project is assigned responsibility for advancing solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  10. Average properties of compressible laminar boundary layer on flat plate with unsteady flight velocity

    NASA Technical Reports Server (NTRS)

    Moore, Franklin K; Ostrach, Simon

    1957-01-01

    The time-average characteristics of boundary layers over a flat plate in nearly quasi-steady flow are determined. The plate may be either insulated or isothermal. The time averages are found without specifying the plate velocity explicitly except that it is positive and has an average value.

  11. Fundamental and subharmonic transition to turbulence in zero-pressure-gradient flat-plate boundary layers

    NASA Astrophysics Data System (ADS)

    Sayadi, Taraneh; Hamman, Curtis W.; Moin, Parviz

    2012-09-01

    In this fluid dynamics video, recent simulations of transition to turbulence in compressible (M = 0.2), zero-pressure-gradient flat-plate boundary layers triggered by fundamental (Klebanoff K-type) and subharmonic (Herbert H-type) secondary instabilities of Tollmien-Schlichting waves are highlighted.

  12. An investigation of the turbulence scale tensor in a flat-plate boundary layer

    NASA Technical Reports Server (NTRS)

    Sullivan, R. D.; Donaldson, C. D.; Sandri, G.

    1979-01-01

    A differential equation for the scale tensor in turbulent flow is developed from basic considerations and applied to the flow of a constant-density fluid in the boundary layer on a flat plate. Results from preliminary runs of a computer implementation are discussed.

  13. Safety review package for University of Central Florida flat-plate heat pipe experiment

    NASA Technical Reports Server (NTRS)

    Chow, Louis C.

    1998-01-01

    A flat-plate heat pipe (FPHP) experiment has been set up for micro-gravity tests on a NASA supplied aircraft. This report presents an analysis on various components of the experimental setup to certify that it will satisfy the flight safety and operation requirements.

  14. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    SciTech Connect

    Dechant, Lawrence; Smith, Justin

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  15. Mass properties survey of solar array technologies

    NASA Technical Reports Server (NTRS)

    Kraus, Robert

    1991-01-01

    An overview of the technologies, electrical performance, and mass characteristics of many of the presently available and the more advanced developmental space solar array technologies is presented. Qualitative trends and quantitative mass estimates as total array output power is increased from 1 kW to 5 kW at End of Life (EOL) from a single wing are shown. The array technologies are part of a database supporting an ongoing solar power subsystem model development for top level subsystem and technology analyses. The model is used to estimate the overall electrical and thermal performance of the complete subsystem, and then calculate the mass and volume of the array, batteries, power management, and thermal control elements as an initial sizing. The array types considered here include planar rigid panel designs, flexible and rigid fold-out planar arrays, and two concentrator designs, one with one critical axis and the other with two critical axes. Solar cell technologies of Si, GaAs, and InP were included in the analyses. Comparisons were made at the array level; hinges, booms, harnesses, support structures, power transfer, and launch retention mountings were included. It is important to note that the results presented are approximations, and in some cases revised or modified performance and mass estimates of specific designs.

  16. The ADM-AEOLUS Solar Array

    NASA Astrophysics Data System (ADS)

    Riva, S.; Ferrando, E.; Contini, R.; Blok, R.; Heijden, R. vd; Caon, A.; Labruyere, G.; Strobl, G.; Koestler, W.; Zimmermann, W.

    2008-09-01

    ADM Aeolus is an Earth Explorer Core Mission of the European Space Agency (ESA). The satellite is provided with a deployable solar array fully equipped with European state of the art Triple Junction (TJ) GaAs solar cells.The structural part and mechanisms of the ADM Aeolus Solar Array (SA) is a derivate of the Dutch Space FRED solar array concept. This FRED type solar array has already been used on Jules Verne (Automated Transfer Vehicle) and Giove-A. Both satellites has been successfully launched and the Solar Arrays are working nominally.The ADM Aeolus spacecraft (S/C) is powered by two deployable wings. Each of them composed by three panels and with a panel size of 1.1×2.2 m2, so that the total area is about 14.5 m2;. European TJ solar cells (27% efficiency class) embodying an integral protection diode were selected to meet the power budget, necessary for the installed payload. The principal one is an Atmospheric LAser Doppler INstrument (ALADIN), a novel system whose development is a strategic goal for ESA.This SA program is a challenging development in terms of solar cell qualification because of the extensive characterisation and qualification campaign performed for the cell and the integral diode components. Especially for protection diode a long duration high temperature test was performed in order to simulate and cover all lifetime stresses.Main drivers for PVA design are the power requirement at the end of life and the requested protection against atomic oxygen erosion.This paper describes : The results achieved during the qualification phase, from bare cell level to the coupon level, The design activity, mainly focused on the prediction of EOL performances, The acceptance phase at panel levels, which has verified the suitability of the design assumption and manufacturing workmanship.

  17. Concentrator enhanced solar arrays design study

    NASA Technical Reports Server (NTRS)

    Lott, D. R.

    1978-01-01

    The analysis and preliminary design of a 25 kW concentrator enhanced lightweight flexible solar array are presented. The study was organized into five major tasks: (1) assessment and specification of design requirements; (2) mechanical design; (3) electric design; (4) concentrator design; and (5) cost projection. The tasks were conducted in an iterative manner so as to best derive a baseline design selection. The objectives of the study are discussed and comparative configurations and mass data on the SEP (Solar Electric Propulsion) array design, concentrator design options and configuration/mass data on the selected concentrator enhanced solar array baseline design are presented. Design requirements supporting design analysis and detailed baseline design data are discussed. The results of the cost projection analysis and new technology are also discussed.

  18. Low cost silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Ravi, K. V.; Serreze, H. B.; Bates, H. E.; Morrison, A. D.; Jewett, D. N.; Ho, J. C. T.; Schwuttke, G. H.; Ciszek, T. F.; Kran, A.

    1975-01-01

    Continuous growth methodology for silicon solar cell ribbons deals with capillary effects, die effects, thermal effects and crystal shape effects. Emphasis centers on the shape of the meniscus at the ribbon edge as a factor contributing to ribbon quality with respect to defect densities. Structural and electrical characteristics of edge defined, film-fed grown silicon ribbons are elaborated. Ribbon crystal solar cells produce AMO efficiencies of 6 to 10%.

  19. Integral Glass Encapsulation for Solar Arrays

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Progress in the development of permanent, integral glass encapsulation of terrestrial solar photovoltaic arrays by electrostatic bonding is reported. Two basic types of electrostatically bonded modules were demonstrated and their reliability proven in accelerated environmental testing. Economic analyses indicate that electrostatic bonding can be a cost effective, practical, and automatable process for large-scale production of arrays with lifetimes of more than 20 years.

  20. Solar array experiments on the Sphinx satellite

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1973-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations; the edge illuminated-multijunction cells, the Teflon encased cells and the violet cells.

  1. Demonstration of transparent solar array module design

    NASA Technical Reports Server (NTRS)

    Pack, G. J.

    1984-01-01

    This report discusses the design, development, fabrication and testing of IR transparent solar array modules. Three modules, consisting of a baseline design using back surface reflector cells, and two modules using gridded back contact, IR transparent cells, were subjected to vacuum thermal balance testing to verify analytical predictions of lower operating emperature and increased efficiency. As a result of this test program, LMSC has verified that a significant degree of IR transparency can be designed into a flexible solar array. Test data correlates with both steady state and transient thermal analysis.

  2. GPM Solar Array Gravity Negated Deployment Testing

    NASA Technical Reports Server (NTRS)

    Penn, Jonathan; Johnson, Chris; Lewis, Jesse; Dear, Trevin; Stewart, Alphonso

    2014-01-01

    NASA Goddard Space Flight Center (GSFC) successfully developed a g-negation support system for use on the solar arrays of the Global Precipitation Measurement (GPM) Satellite. This system provides full deployment capability at the subsystem and observatory levels. In addition, the system provides capability for deployed configuration first mode frequency verification testing. The system consists of air pads, a support structure, an air supply, and support tables. The g-negation support system was used to support all deployment activities for flight solar array deployment testing.

  3. Accuracy of the Kirchoff formula in determining acoustic shielding with the use of a flat plate

    NASA Technical Reports Server (NTRS)

    Gabrielsen, R. E.; Davis, J. E.

    1977-01-01

    It has been suggested that if jet engines of aircraft were placed at above the wing instead of below it, the wing would provide a partial shielding of the noise generated by the engines relative to observers on the ground. The shielding effects of an idealized three-dimensional barrier in the presence of an idealized engine noise source was predicted by the Kirchoff formula. Based on the good agreement between experimental measurements and the numerical results of the current study, it was concluded that the Kirchoff approximation provides a good qualitative estimate of the acoustic shielding of a point source by a rectangular flat plate for measurements taken in the far field of the flat plate at frequencies ranging from 1 kHz to 20 kHz. At frequencies greater than 4 kHz the Kirchoff approximation provides accurate quantitative predictions of acoustic shielding.

  4. On the nonlinear stability of viscous modes within the Rayleigh problem on an infinite flat plate

    NASA Technical Reports Server (NTRS)

    Webb, J. C.; Otto, S. R.; Lilley, G. M.

    1994-01-01

    The stability has been investigated of the unsteady flow past an infinite flat plate when it is moved impulsively from rest, in its own plane. For small times the instantaneous stability of the flow depends on the linearized equations of motion which reduce in this problem to the Orr-Sommerfeld equation. It is known that the flow for certain values of Reynolds number, frequency and wave number is unstable to Tollmien-Schlichting waves, as in the case of the Blasius boundary layer flow past a flat plate. With increase in time, the unstable waves only undergo growth for a finite time interval, and this growth rate is itself a function of time. The influence of finite amplitude effects is studied by solving the full Navier-Stokes equations. It is found that the stability characteristics are markedly changed both by the consideration of the time evolution of the flow, and by the introduction of finite amplitude effects.

  5. Accurate stratospheric particle size distributions from a flat plate collection surface

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Mackinnon, I. D. R.

    1985-01-01

    Flat plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere. It is found that the ratio of terrestrial to extraterrestrial material and the nature of the material collected may vary significantly over short time scales. These fluctuations may be related to massive injections of volcanic ash, emissions from solid fuel rockets, or variations in the micrometeoroid flux. The variations in particle number density can be of great importance to the earth's atmospheric radiation balance, and, therefore, its climate. With the objective to assess the number density of solid particles in the stratosphere, an examination has been conducted of all particles exceeding 1 micron in average diameter for a representative suite of particles obtained from a single flat plate collection surface. Attention is given to solid particle size distributions in the stratosphere, and the origin of important stratospheric particle types.

  6. Large amplitude flexural vibration of thin elastic flat plates and shells

    NASA Technical Reports Server (NTRS)

    Pandalia, K. A. V.

    1972-01-01

    The general equations governing the large amplitude flexural vibration of any thin elastic shell using curvilinear orthogonal coordinates are derived and consist of two coupled, nonlinear, partial differential equations in the normal displacement w and the stress function F. From these equations, the governing equations for the case of shells of revolution or flat plates can be readily obtained as special cases. The material of the shell or plate is isotropic and homogeneous and Hooke's law for the two-dimensional case is valid. It is suggested that the difference between the hardening type of nonlinearity in the case of flat plates and straight beams and the softening type of nonlinearity in the case of shells and rings can, in general, be traced to the amount of curvature present in the underformed median surface of the structure concerned.

  7. Integral glass encapsulation for solar arrays

    NASA Technical Reports Server (NTRS)

    Young, P. R.

    1977-01-01

    Electrostatic bonding has been used to join silicon solar cells to borosilicate glass without the aid of any organic binders or adhesives. The results of this investigation have been to demonstrate, without question, the feasibility of this process as an encapsulation technique. The potential of ESB for terrestrial solar arrays was clearly shown. The process is fast, reproducible, and produces a permanent bond between glass and silicon that is stronger than the silicon itself. Since this process is a glass sealing technique requiring no organics it makes moisture tight sealing of solar cells possible.

  8. Flat Plate Wake Velocity Statistics Obtained With Circular And Elliptic Trailing Edges

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2016-01-01

    The near wake of a flat plate with circular and elliptic trailing edges is investigated with data from direct numerical simulations. The plate length and thickness are the same in both cases. The separating boundary layers are turbulent and statistically identical. Therefore the wake is symmetric in the two cases. The emphasis in this study is on a comparison of the wake-distributions of velocity components, normal intensity and fluctuating shear stress obtained in the two cases.

  9. Simulations of the transient flow generated from a started flat plate

    NASA Astrophysics Data System (ADS)

    Wang, Leqin; Ma, Xudan; Li, Zhifeng; Wu, Peng; Wu, Dazhuan

    2012-11-01

    Transient operations are commonly founded in fluid machineries such as the starting, stopping, and variations of rotor speeds, etc. Flow generated from a started flat plate is of fundamental importance. Experiments have been done to observe the flow evolution in current researches. And in order to explore the flow in more detailed scale, some vortex methods with high resolution and other numerical methods were developed to solve various related problems by some researchers. But the promotion of vortex method to engineering application is rare due to its complexity and difficulty in specifying the boundary conditions. In order to build up a method of numerical study for such problems, a simplified model is built up with a flat plate. The development of two-dimensional viscous incompressible flow generated from an impulsively started and uniformly accelerated infinitesimally thin flat plate is simulated numerically. A dynamic mesh(DM) method based on the spring analogue and local remeshing is applied to realize the mesh motion caused by the started plate. Researches show that the mesh quality will decline under large grid shear force during the updating process. To conquer this problem, a region near the plate is separated to guarantee the mesh quality at location of interest which is the innovation of the present paper. All computations at least cover a period during which the plate translates 6 times its length. The simulated instantaneous velocity profiles, flow structures and drag coefficients under several Reynolds numbers (20⩽ Re⩽126) and accelerations (20 m/s2⩽ a⩽152 m/s2) are presented and compared with existing results in literatures. Comparisons are found to be satisfactory, confirming the validity of the current proposed method(region separated DM). The proposed DM method is firstly used to study the transient flow generated from a started flat plate and can be used in further study of transient characteristics during transient operations of turbo

  10. Application of wave mechanics theory to fluid dynamics problems: Flat plate flow

    NASA Technical Reports Server (NTRS)

    Krzywoblocki, M. Z. V.

    1974-01-01

    The characteristics of the flow in the laminar boundary layer along an infinitely long flat plate are discussed. The flow may be disturbed or not, depending on the situation. The physical, natural aspects of the flow, either a laminar flow free from disturbances or a flow which originally is a laminar one with disturbances superimposed upon it. Oscillograms of turbulence in wind tunnel tests and in the wake of a cylinder are presented.

  11. Maximum lift/drag ratio of flat plates with bluntness and skin friction at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Tauber, M. E.

    1986-01-01

    Newtonian theory is used to derive a simple expression for the maximum lift/drag ratio of flat plates with bluntness and skin friction at hypersonic speeds. The bluntness drag is assumed to be independent of angle of attack. Because the effect of skin friction is of second order over the angle of attack range for maximum lift/drag ratio, it was assumed constant. As an example, the expression is applied to the Space Shuttle.

  12. Design and performance of tubular flat-plate solid oxide fuel cell

    SciTech Connect

    Matsushima, T.; Ikeda, D.; Kanagawa, H.

    1996-12-31

    With the growing interest in conserving the environmental conditions, much attention is being paid to Solid Oxide Fuel Cell (SOFC), which has high energy-conversion efficiency. Many organizations have conducted studies on tubular and flat type SOFCs. Nippon Telegraph and Telephone Corporation (NTT) has studied a combined tubular flat-plate SOFC, and already presented the I-V characteristics of a single cell. Here, we report the construction of a stack of this SOFC cell and successful generation tests results.

  13. Visualization of leading edge vortices on a series of flat plate delta wings

    NASA Technical Reports Server (NTRS)

    Payne, Francis M.; Ng, T. Terry; Nelson, Robert C.

    1991-01-01

    A summary of flow visualization data obtained as part of NASA Grant NAG2-258 is presented. During the course of this study, many still and high speed motion pictures were taken of the leading edge vortices on a series of flat plate delta wings at varying angles of attack. The purpose is to present a systematic collection of photographs showing the state of vortices as a function of the angle of attack for the four models tested.

  14. Time dependent shear stress and temperature distribution over an insulated flat plate moving at hypersonic speed.

    NASA Technical Reports Server (NTRS)

    Rodkiewicz, C. M.; Gupta, R. N.

    1971-01-01

    The laminar two-dimensional flow over a stepwise accelerated flat plate moving with hypersonic speed at zero angle of attack is analysed. The governing equations in the self-similar form are linearized and solved numerically for small times. The solutions obtained are the deviations of the velocity and the temperature profiles from those of steady state. The presented results may be used to find the first order boundary layer induced pressure on the plate.

  15. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress made by the Low-Cost Silicon Solar Array Project during the period January through March 1978 is reported. It includes task reports on silicon material processing, large-area silicon sheet development, encapsulation materials testing and development, project engineering and operations, and manufacturing techniques, plus the steps taken to integrate these efforts.

  16. Low cost silicon solar cell array

    NASA Technical Reports Server (NTRS)

    Bartels, F. T. C.

    1974-01-01

    The technological options available for producing low cost silicon solar cell arrays were examined. A project value of approximately $250/sq m and $2/watt is projected, based on mass production capacity demand. Recommendations are included for the most promising cost reduction options.

  17. Efficient structures for geosynchronous spacecraft solar arrays

    NASA Technical Reports Server (NTRS)

    Adams, L. R.

    1983-01-01

    A prototype deployer for the STACBEAM (Stacking Triangular Articulated Compact Beam) is being developed. The STACBEAM is an accordian-folded solar array blanket. The prototype was constructed as a point design for support of a 23.9-kW blanket and is described.

  18. Heat Lamps Solder Solar Array Quickly

    NASA Technical Reports Server (NTRS)

    Coyle, P. J.; Crouthamel, M. S.

    1982-01-01

    Interconnection tabs in a nine-solar-cell array have been soldered simultaneously with radiant heat. Cells and tabs are held in position for soldering by sandwiching them between compliant silicone-rubber vacuum platen and transparent polyimide sealing membrane. Heat lamps warm cells, producing smooth, flat solder joints of high quality.

  19. In-Flight Boundary-Layer Transition of a Large Flat Plate at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Frederick, M. A.; Tracy, R. R.; Matisheck, J. R.; Vanecek, N. D.

    2012-01-01

    A flight experiment was conducted to investigate the pressure distribution, local-flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.00. The tests used a NASA testbed aircraft with a bottom centerline mounted test fixture. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating. Boundary-layer transition was captured in both analog and digital formats using an onboard infrared imaging system. Surface pressures were measured on the surface of the flat plate. Flow field measurements near the leading edge of the test fixture revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration.

  20. Measurement of transitional boundary layer on a flat plate using a computational Preston tube method

    NASA Astrophysics Data System (ADS)

    Jeon, W. P.; Kang, S. H.

    1995-11-01

    The development of the transitional boundary layers on a flat plate in uniform and non-uniform incoming flows was experimentally investigated. The mean velocity profiles and the wall shear stresses on a flat plate were measured in the wakes which were generated by circular cylinders and a flat plate ahead of the test plate. A computational Preston tube method (CPM) originally proposed by Nitsche et al. (1983) was adopted and refined to measure the skin friction coefficients in the transitional boundary layer. The CPM was verified as a useful tool to measure the skin-friction over the transitional boundary layer with reasonable accuracy. As the turbulence level in the wakes increased, the starting and ending points of the transition moved progressively upstream. For the same turbulence intensities, the transition was delayed with increase of the length scale. The skin-friction coefficients at the downstream stations in the wake flow were considerably and consistently smaller than the values in the equilibrium turbulent boundary layer of the uniform flow. The transition length for the cases of the plate-wake were shorter than those for the cases of the cylinder-wake as well as the uniform flow.

  1. Numerical modeling of the transitional boundary layer over a flat plate

    NASA Astrophysics Data System (ADS)

    Ivanov, Dimitry; Chorny, Andrei

    2015-11-01

    Our example is connected with fundamental research on understanding how an initially laminar boundary layer becomes turbulent. We have chosen the flow over a flat plate as a prototype for boundary-layer flows around bodies. Special attention was paid to the near-wall region in order to capture all levels of the boundary layer. In this study, the numerical software package OpenFOAM has been used in order to solve the flow field. The results were used in a comparative study with data obtained from Large Eddy Simulation (LES). The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. Presently this model is extended to the LES of the zero-pressure gradient, flat-plate turbulent boundary layer. In current study the time discretization is based on a second order Crank-Nicolson/Adams-Bashforth method. LES solver using Smagorinsky and the one-equation LES turbulence models. The transition models significantly improve the prediction of the onset location compared to the fully turbulent models.LES methods appear to be the most promising new tool for the design and analysis of flow devices including transition regions of the turbulent flow.

  2. LDEF transverse flat plate heat pipe experiment /S1005/. [Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Robinson, G. A., Jr.

    1979-01-01

    The paper describes the Transverse Flat Plate Heat Pipe Experiment. A transverse flat plate heat pipe is a thermal control device that serves the dual function of temperature control and mounting base for electronic equipment. In its ultimate application, the pipe would be a lightweight structure member that could be configured in a platform or enclosure and provide temperature control for large space structures, flight experiments, equipment, etc. The objective of the LDEF flight experiment is to evaluate the zero-g performance of a number of transverse flat plate heat pipe modules. Performance will include: (1) the pipes transport capability, (2) temperature drop, and (3) ability to maintain temperature over varying duty cycles and environments. Performance degradation, if any, will be monitored over the length of the LDEF mission. This information is necessary if heat pipes are to be considered for system designs where they offer benefits not available with other thermal control techniques, such as minimum weight penalty, long-life heat pipe/structural members.

  3. Modeling of frost crystal growth over a flat plate using artificial neural networks and fractal geometries

    NASA Astrophysics Data System (ADS)

    Tahavvor, Ali Reza

    2016-06-01

    In the present study artificial neural network and fractal geometry are used to predict frost thickness and density on a cold flat plate having constant surface temperature under forced convection for different ambient conditions. These methods are very applicable in this area because phase changes such as melting and solidification are simulated by conventional methods but frost formation is a most complicated phase change phenomenon consists of coupled heat and mass transfer. Therefore conventional mathematical techniques cannot capture the effects of all parameters on its growth and development because this process influenced by many factors and it is a time dependent process. Therefore, in this work soft computing method such as artificial neural network and fractal geometry are used to do this manner. The databases for modeling are generated from the experimental measurements. First, multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg-Marquardt learning rule is the best choice to estimate frost growth properties due to accurate and faster training procedure. Second, fractal geometry based on the Von-Koch curve is used to model frost growth procedure especially in frost thickness and density. Comparison is performed between experimental measurements and soft computing methods. Results show that soft computing methods can be used more efficiently to determine frost properties over a flat plate. Based on the developed models, wide range of frost formation over flat plates can be determined for various conditions.

  4. Solar array synthesis computer program

    NASA Technical Reports Server (NTRS)

    Faith, T. J.

    1973-01-01

    Photovoltaic characteristics have been measured on solar cells irradiated by 1 MeV electrons to fluences ranging from 1 x 10 to the 13th power e/sq cm to 1 x 10 to the 16th power e/sq cm, for cell temperatures ranging from 123 K to 473 K and for illumination intensities ranging from 5m W/sq cm to 1830m W/sq cm. Empirical equations have been derived from these measurements to describe the behavior of light generated current, open circuit voltage and I-V curve shape over various portions of these temperature/illumination ranges. Both 10 ohms/cm and 17 ohms/cm n-p silicon solar cells were tested, and similar analytical expressions were formulated for easy comparison between the two resistivities.

  5. (abstract) Scaling Nominal Solar Cell Impedances for Array Design

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L; Wallace, Matthew T.; Iles, Peter

    1994-01-01

    This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.

  6. Si Wire-Array Solar Cells

    NASA Astrophysics Data System (ADS)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  7. Investigation of test methods, material properties and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.; Baum, B.

    1983-01-01

    Low cost encapsulation materials for the Flat Plate Solar Array Program (FSA) are investigated. The goal of the program is to identify, test, evaluate and recommend encapsulation materials and processes for the fabrication of cost effective and long life solar modules. Accelerated aging techniques for module component lifetime studies, investigation of candidate outer cover films and continued evaluation of soil repellant coatings are also included.

  8. Low cost solar cell arrays

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Mclennan, H.

    1975-01-01

    Limitations in both space and terrestial markets for solar cells are described. Based on knowledge of the state-of-the-art, six cell options are discussed; as a result of this discussion, the three most promising options (involving high, medium and low efficiency cells respectively) were selected and analyzed for their probable costs. The results showed that all three cell options gave promise of costs below $10 per watt in the near future. Before further cost reductions can be achieved, more R and D work is required; suggestions for suitable programs are given.

  9. Gallium arsenide solar array subsystem study

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.

    1982-01-01

    The effects on life cycle costs of a number of technology areas are examined for a gallium arsenide space solar array. Four specific configurations were addressed: (1) a 250 KWe LEO mission - planer array; (2) a 250 KWe LEO mission - with concentration; (3) a 50 KWe GEO mission planer array; (4) a 50 KWe GEO mission - with concentration. For each configuration, a baseline system conceptual design was developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies were then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance, and hence life cycle costs.

  10. Solar Array Verification Analysis Tool (SAVANT) Developed

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Long, KIenwyn J.; Curtis, Henry B.; Gardner, Barbara; Davis, Victoria; Messenger, Scott; Walters, Robert

    1999-01-01

    Modeling solar cell performance for a specific radiation environment to obtain the end-of-life photovoltaic array performance has become both increasingly important and, with the rapid advent of new types of cell technology, more difficult. For large constellations of satellites, a few percent difference in the lifetime prediction can have an enormous economic impact. The tool described here automates the assessment of solar array on-orbit end-of-life performance and assists in the development and design of ground test protocols for different solar cell designs. Once established, these protocols can be used to calculate on-orbit end-of-life performance from ground test results. The Solar Array Verification Analysis Tool (SAVANT) utilizes the radiation environment from the Environment Work Bench (EWB) model developed by the NASA Lewis Research Center s Photovoltaic and Space Environmental Effects Branch in conjunction with Maxwell Technologies. It then modifies and combines this information with the displacement damage model proposed by Summers et al. (ref. 1) of the Naval Research Laboratory to determine solar cell performance during the course of a given mission. The resulting predictions can then be compared with flight data. The Environment WorkBench (ref. 2) uses the NASA AE8 (electron) and AP8 (proton) models of the radiation belts to calculate the trapped radiation flux. These fluxes are integrated over the defined spacecraft orbit for the duration of the mission to obtain the total omnidirectional fluence spectra. Components such as the solar cell coverglass, adhesive, and antireflective coatings can slow and attenuate the particle fluence reaching the solar cell. In SAVANT, a continuous slowing down approximation is used to model this effect.

  11. Photovoltaic array: Power conditioner interface characteristics

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  12. Method of fabricating a solar cell array

    DOEpatents

    Lazzery, Angelo G.; Crouthamel, Marvin S.; Coyle, Peter J.

    1982-01-01

    A first set of pre-tabbed solar cells are assembled in a predetermined array with at least part of each tab facing upward, each tab being fixed to a bonding pad on one cell and abutting a bonding pad on an adjacent cell. The cells are held in place with a first vacuum support. The array is then inverted onto a second vacuum support which holds the tabs firmly against the cell pads they abut. The cells are exposed to radiation to melt and reflow the solder pads for bonding the tab portions not already fixed to bonding pads to these pads.

  13. Terrestrial solar arrays with integral glass construction

    NASA Technical Reports Server (NTRS)

    Younger, P. R.; Kreisman, W. S.; Landis, G. A.; Kirkpatrick, A. R.; Holtze, R. F.

    1978-01-01

    An excellent encapsulation system for a terrestrial solar array can be formed using two sheets of glass. Superior technical character, very low cost and simple assembly can result if the active components and the glass sheets are integrally bonded together such that the array is hermetically sealed without employing organic encapsulation materials. Such an approach is being developed using electrostatic bonding. Status of this development is described. Functioning integral glass test modules have been fabricated and subjected to environmental testing. Results have been excellent.

  14. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Souce for System-Level Testing of Optical Sensors

    NASA Technical Reports Server (NTRS)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2015-01-01

    This work describes the development of an improved vacuum compatible flat plate radiometric source used for characterizing and calibrating remote optical sensors, in situ, throughout their testing period. The original flat plate radiometric source was developed for use by the VIIRS instrument during the NPOESS Preparatory Project (NPP). Following this effort, the FPI has had significant upgrades in order to improve both the radiometric throughput and uniformity. Results of the VIIRS testing with the reconfigured FPI are reported and discussed.

  15. Experimental investigation of effects of jet decay rate on jet-induced pressures on a flat plate: Tabulated data

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.; Ousterhout, D. S.; Warcup, R. W.

    1978-01-01

    Tabular data are presented for an experimental study of the effects of jet decay rate on the jet-induced pressure distribution on a flat plate for a single jet issuing at right angle to the flat plate into a uniform crossflow. The data are presented in four sections: (1) presents the static nozzle calibration data; (2) lists the plate surface static pressure data and integrated loads; (3) lists the jet centerline trajectory data; and (4) lists the centerline dynamic pressure data.

  16. Multi-Spectral Solar Telescope Array

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C., Jr.; Lindblom, Joakim F.; O'Neal, Ray H.; Allen, Maxwell J.; Barbee, Troy W., Jr.; Hoover, Richard B.

    1990-01-01

    This paper descibes the design and the characteristics of the Multispectral Solar Telescope Array (MSSTA), a new rocket spectroheliograph to be launched in August 1990. The MSSTA includes five multilayer Ritchey-Chretien telescopes covering the spectral range 150-300 A and eight multilayer Herschelian telescopes covering the spectral range 40-1550 A, making it possible to obtain spectrohelipgrams over the soft X-ray/extreme UV/FUV spectral range. The MSSTA is expected to obtain information regarding the structure and dynamics of the solar atmosphere in the temperature range 10 to the 4th-10 to the 7th K.

  17. Integral glass encapsulation for solar arrays

    NASA Technical Reports Server (NTRS)

    Landis, G. A.

    1981-01-01

    Electrostatic bonding technology, an encapsulation technique for terrestrial solar array was developed. The process produces full integral, hermetic bonds with no adhesives or pottants. Panels of six solar cells on a simple glass superstrate were produced. Electrostatic bonding for making the cell front contact was also developed. A metal mesh is trapped into contact with the cell front during the bonding process. Six cell panels using the bonded mesh as the only cell front contact were produced. The possibility of using lower cost glass, with a higher thermal expansion mismatch to silicon, by making lower temperature bonds is developed. However, this requires a planar surface cell.

  18. Solar panels offer array of hope.

    PubMed

    Baillie, Jonathan

    2009-01-01

    The installation of what is believed to be the largest array of solar thermal panels currently in use at a UK NHS hospital has taken place at an ideal time for the facility in question, Harlow's Princess Alexandra Hospital, with the hospital's gas bill alone having risen by 153% over the past nine months thanks to soaring energy prices, and the estates department keen to mitigate the effects in any way possible. Jonathan Baillie reports. PMID:19192602

  19. Solar Array Module Plasma Interaction Experiment (SAMPIE)

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1992-01-01

    The objective of the Solar Array Module Plasma Interaction Experiment (SAMPIE) is to investigate, by means of a shuttle-based flight experiment and relevant ground-based testing, the arcing and current collection behavior of materials and geometries likely to be exposed to the LEO plasma on high-voltage space power systems, in order to minimize adverse environmental interactions. An overview of the SAMPIE program is presented in outline and graphical form.

  20. Gallium arsenide (GaAs) solar cell modeling studies

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.

    1980-01-01

    Various models were constructed which will allow for the variation of system components. Computer studies were then performed using the models constructed in order to study the effects of various system changes. In particular, GaAs and Si flat plate solar power arrays were studied and compared. Series and shunt resistance models were constructed. Models for the chemical kinetics of the annealing process were prepared. For all models constructed, various parametric studies were performed.

  1. Fault Analysis in Solar Photovoltaic Arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  2. In-Flight Boundary-Layer Transition on a Large Flat Plate at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Fredericks, Michael Alan; Tracy, Richard R.; Matisheck, Jason R.; Vanecek, Neal D.

    2012-01-01

    A flight experiment was conducted to investigate the pressure distribution, local flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.0. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. The tests used a F-15B testbed aircraft with a bottom centerline mounted test fixture. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating for future laminar flow flight tests employing infrared thermography. Boundary-layer transition was captured using an onboard infrared imaging system. The infrared imagery was captured in both analog and digital formats. Surface pressures were measured with electronically scanned pressure modules connected to 60 surface-mounted pressure orifices. The local flow field was measured with five 5-hole conical probes mounted near the leading edge of the test fixture. Flow field measurements revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration. The infrared imaging system was able to capture shock wave impingement on the surface of the flat plate in addition to indicating laminar-to-turbulent boundary-layer transition.

  3. Drag measurements of an axisymmetric nacelle mounted on a flat plate at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Wilcox, Floyd J., Jr.

    1995-01-01

    An experimental investigation was conducted to determine the effect of diverter wedge half-angle and nacelle lip height on the drag characteristics of an assembly consisting of a nacelle fore cowl from a typical high-speed civil transport (HSCT) and a diverter mounted on a flat plate. Data were obtained for diverter wedge half-angles of 4.0 deg, 6.0 deg, and 8.0 deg and ratios of the nacelle lip height above a flat plate to the boundary-layer thickness (h(sub n)/delta) of approximately 0.87 to 2.45. Limited drag data were also obtained on a complete nacelle/diverter configuration that included fore and aft cowls. Although the nacelle/diverter drag data were not corrected for base pressures or internal flow drag, the data are useful for comparing the relative drag of the configuration tested. The tests were conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.50, 1.80, 2.10, and 2.40 and Reynolds numbers ranging from 2.00 x 10(exp 6) to 5.00 x 10(exp 6) per foot. The results of this investigation showed that the nacelle/diverter drag essentially increased linearly with increasing h(sub n)/delta except near 1.0 where the data showed a nonlinear behavior. This nonlinear behavior was probably caused by the interaction of the shock waves from the nacelle/diverter configuration with the flat-plate boundary layer. At the lowest h(sub n)/delta tested, the diverter wedge half-angle had virtually no effect on the nacelle/diverter drag. However, as h(sub n)/delta increased, the nacelle/diverter drag increased as diverter wedge half-angle increased.

  4. Effects of an upstream tetrahedron on the circular cylinder-flat plate juncture flow

    NASA Astrophysics Data System (ADS)

    Huang, R. F.; Hsu, C. M.; Chen, C.

    2015-07-01

    A technique of installing a tetrahedron at the upstream corner of the circular cylinder-flat plate juncture is developed to control the characteristic horseshoe vortices appearing in the natural juncture flow. The Reynolds numbers based on the cylinder diameter are within the range of 500-2900. The flow patterns and time-averaged velocity fields in the vertical symmetry plane and a horizontal plane near the flat plate of the natural and tetrahedron-controlled juncture flows are examined by using the laser-assisted particle flow visualization method and particle image velocimetry in a towing water tank. The flow approaching the circular cylinder-flat plate juncture can induce a characteristic horseshoe vortical flow consisting of a single vortex, dual vortex, or triple vortex. These horseshoe vortices appearing in the natural case may be changed to a characteristic mode of vortical flow, reverse flow, or forward flow when a tetrahedron is installed at the upstream corner of the juncture. The appearance of the vortical flow, reverse flow, or forward flow mode depends on the geometric parameters of normalized axial length, expansion angle, and tilt angle as well as the flow parameter of the Reynolds number. The vortical flow mode appears at small axial length of tetrahedron. The forward flow mode appears at the large axial length of tetrahedron. When the forward flow mode appears, the boundary-layer upstream of the circular cylinder does not separate. Therefore, the horseshoe vortices induced in the natural juncture flow disappear. The data bank consists of the design parameters of axial length, tilt angle, and expansion angle of the tetrahedron, which is provided as a figure.

  5. Flow field analysis studies downstream of a cooling hole on a flat plate

    NASA Astrophysics Data System (ADS)

    Ranakoti, Ganesh; Marathe, Parag

    2014-10-01

    Flow field analysis is carried out computationally on a flat plate with 35° stream-wise coolant injection through a cylindrical film cooling hole. ANSYS Fluent 13.0 is used to perform computations using k-ɛrealizable turbulence model with enhanced wall functions. The Reynolds number ReD based on free stream velocity and diameter of hole is 15885 with blowing ratio M=0.5 and density ratio D.R=1.2. Streamlines are studied downstream of the film cooling hole in the present study.

  6. Design of high-Reynolds-number flat-plate experiments in the NTF

    NASA Technical Reports Server (NTRS)

    Saric, William S.

    1988-01-01

    The design of an experiment to measure skin friction and turbulent boundary layer characteristics at Reynolds numbers exceeding 1 x 10 to the 9th is described. The experiment will be conducted in a zero-pressure-gradient flow on a flat plate in the National Transonic Facility (NTF). The development of computational codes to analyze the aerodynamic loads and the blockage is documented. Novel instrumentation techniques and models, designed to operate in cryogenic environments, are presented. Special problems associated with aerodynamic loads, surface finish, and hot-wire anemometers are discussed.

  7. Heat transfer from impinging jets to a flat plate with conical and ring protuberances

    NASA Astrophysics Data System (ADS)

    Hrycak, P.

    1984-11-01

    An experimental investigation of heat transfer from round jets, impinging normally on a flat plate with exchangeable, heat transfer enhancing protuberances, has been carried out, and the pertinent literature surveyed, for Reynolds numbers ranging from 14,000 to 67,000, and nozzle diameters from 3.18 to 9.52 mm. The experimental data at the stagnation point indicated laminar flow, and a significant enhancement of heat transfer there, due to the introduction of the spike protuberance; the ring protuberance reduced the local heat flux somewhat. Data have also been correlated by means of dimensional analysis and compared with the conical flow theory.

  8. Design of high-Reynolds-number flat-plate experiments in the NTF

    NASA Technical Reports Server (NTRS)

    Saric, W. S.; Peterson, J. B., Jr.

    1984-01-01

    The design of an experiment to measure skin friction and turbulent boundary-layer characteristics at Reynolds numbers exceeding one billion is described. The experiment will be conducted in a zero-pressure-gradient flow on a flat plate in the National Transonic Facility. The development of computational codes to analyze the aerodynamic loads and the blockage is documented. Novel instrumentationn techniques and models, designed to operate in cryogenic environments, are presented. Special problems associated with aerodynamic loads, surface finish, and hot-wire anemometers are discussed.

  9. Velocity and temperature profiles in near-critical nitrogen flowing past a horizontal flat plate

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1977-01-01

    Boundary layer velocity and temperature profiles were measured for nitrogen near its thermodynamic critical point flowing past a horizontal flat plate. The results were compared measurements made for vertically upward flow. The boundary layer temperatures ranged from below to above the thermodynamic critical temperature. For wall temperatures below the thermodynamic critical temperature there was little variation between the velocity and temperature profiles in three orientations. In all three orientations the point of crossing into the critical temperature region is marked by a significant flattening of the velocity and temperature profiles and also a decrease in heat transfer coefficient.

  10. Separation over a flat plate-wedge configuration at oceanic Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Campbell, D. R.

    1973-01-01

    An experimental study of flow over a two-dimensional flat plate-wedge configuration is presented. The investigation encompasses a range of Reynolds numbers characteristics of conditions encountered by deep submersible oceanic vehicles. Flow separation, similar to that found on high speed aircraft control surfaces, is reported and discussed in light of the laminar or transitional nature of the separated shear layer. As discovered in previous high Mach number studies of plate-wedge or ramp configurations, the dependency of the size of the separated region on free stream Reynolds number is reversed for laminar and transitional types of flow separation.

  11. A study of optimal average lift production by a flapping flat plate

    NASA Astrophysics Data System (ADS)

    Milano, Michele; Ringuette, Matthew; Gharib, Mory

    2004-11-01

    Flapping wings generate vortices, which are believed to be among the primary means used by insects to fly. The exact mechanism producing enough lift force to hover, however, remains a puzzle that researchers have tackled in various ways; here we shed additional light on the problem, using an evolutionary algorithm to maximize the lift produced by the flapping motion of a flat plate. We analyze the optimal result using force measurements combined with DPIV of the resulting flow, to relate the vorticity dynamics of the optmized system to high lift production. Our results highlight the dominant role of the tip vortex in unsteady lift production.

  12. Development of a Flat-plate Cryogenic Oscillating Heat Pipe for Improving HTS Magnet Cooling

    NASA Astrophysics Data System (ADS)

    Natsume, K.; Mito, T.; Yanagi, N.; Tamura, H.

    A new method of including cryogenic oscillating heat pipes (OHPs) in the HTS coil windings as a thermal transport device has been studied. In this work, two type of OHPs are tested in low temperature. Employed working fluids are H2, Ne, N2. We have attained high performance thermal property using a bent-pipe cryogenic OHP as a prototype. Obtained effective conductivities have reached to 46000 W/m K. Then a flat-plate cryogenic OHP has been developed, that is suitable for imbedding in magnet windings. Preliminary experiments have been conducted and the result has been promising.

  13. Investigation of the Interaction of External Disturbances with Roughened Flat Plate Boundary Layer

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.; Dietz, A. J.

    1996-01-01

    The interaction of an external disturbance with a laminar boundary layer over a flat plate with distributed roughness is investigated using combined experimental and numerical methods. The experiment is modeled with an unsteady boundary layer code using second order backward differencing. The simulation includes the second order scattering from roughness elements at and near the first streamwise station of predicted boundary layer instability. A comparison of experimental measurements of the boundary layer perturbation due to the wake from a vibrating ribbon with the computed first order forced boundary layer perturbation showed excellent agreement. Second order roughness induced eigenfunctions from boundary layer theory are examined and compared with other forms of excitation

  14. PLIF Temperature and Velocity Distributions in Laminar Hypersonic Flat-plate Flow

    NASA Technical Reports Server (NTRS)

    OByrne, S.; Danehy, P. M.; Houwing, A. F. P.

    2003-01-01

    Rotational temperature and velocity distributions have been measured across a hypersonic laminar flat-plate boundary layer, using planar laser-induced fluorescence. The measurements are compared to a finite-volume computation and a first-order boundary layer computation, assuming local similarity. Both computations produced similar temperature distributions and nearly identical velocity distributions. The disagreement between calculations is ascribed to the similarity solution not accounting for leading-edge displacement effects. The velocity measurements agreed to within the measurement uncertainty of 2 % with both calculated distributions. The peak measured temperature was 200 K lower than the computed values. This discrepancy is tentatively ascribed to vibrational relaxation in the boundary layer.

  15. Series-parallel method of direct solar array regulation

    NASA Technical Reports Server (NTRS)

    Gooder, S. T.

    1976-01-01

    A 40 watt experimental solar array was directly regulated by shorting out appropriate combinations of series and parallel segments of a solar array. Regulation switches were employed to control the array at various set-point voltages between 25 and 40 volts. Regulation to within + or - 0.5 volt was obtained over a range of solar array temperatures and illumination levels as an active load was varied from open circuit to maximum available power. A fourfold reduction in regulation switch power dissipation was achieved with series-parallel regulation as compared to the usual series-only switching for direct solar array regulation.

  16. The Jet Propulsion Laboratory low-cost solar array project, 1974-1986

    NASA Technical Reports Server (NTRS)

    Maycock, P. D.

    1986-01-01

    The overall objective of the photovoltaic program is to ensure that photovoltaic conversion systems play a significant role in the nation's energy supply by stimulating an industry capable of providing approximately 50 GWe of installed electricity generating capacity by the year 2000. In order to achieve this overall objective, several time-phased program goals have been defined. Near-term goals are to achieve photovoltaic flat-plate module or concentrator array prices of $2 per peak watt (1975 dollars) at an annual production rate of 20 peak megawatts in 1982. At this price level, energy costs should range from 100 to 200 mills/kwh. Mid-term goals are to achieve photovoltaic flat-plate module or concentrator array prices of $0.50 per peak watt (in 1975 dollars), and an annual production rate of 500 peak megawatts in 1986. Studies project that photovoltaic systems will begin to compete for both distributed and larger load-center utility-type applications and thereby open up significant markets for large-scale photovoltaic systems. Far term goals are to achieve the photovoltaic flat-plate module or concentrator array price goal of $0.10 to $0.30 per peak watt in 1990 (in 1975 dollars), and an annual production rate of 10 to 20 peak gigawatts in 2000. At this price range, energy cost should be in the range of 40 to 60 mills. kwh and be cost effective for utility applications. Achievement of these goals can make photovoltaic systems economically competitive with other energy sources for dispersed on-site applications as well as for central power generation.

  17. Price allocation guidelines January 1980: Low-cost solar array project

    SciTech Connect

    Aster, R.W.

    1980-01-15

    The price allocation guidelines (PAG) are an integrated set of specific cost targets for several task areas within the Low-cost Solar Array (LSA) Project. PAG is a working tool of LSA Project management designed to provide consistent and meaningful guidelines for costs of polycrystalline silicon material, sheet, cells, encapsulants, and module manufacturing. It is expected that advanced photovoltaic concepts derived from industry and the research community can be developed so that it will be possible by the end of 1982 to demonstrate production processes, all process steps, and prototype equipment required to manufacture flat-plate photovoltaic modules. This demonstration would incorporate production rates and product quality consistent with a specific market price determined by the program. This stage of development has been referred to as Technical Readiness. A goal of $0.70 per peak watt (1980 dollars) has been established for the cost of electricity generated by photovoltaic modules. The processes for producing modules demonstrated to be technically ready must be amenable to scale-up so that this price goal can eventually be achieved in the marketplace. The guidelines described in this document allocate portions of that goal to each module component. Sheet materials derived from the following five technologies are considered: Czochralski, heat exchanger method (HEM), edge-defined film growth (EFG), dendritic web, and silicon on ceramic (SOC). Each type of material provides a unique combination of projected silicon yield, cell efficiency, and module packing efficiency. Also included are tables describing actual inflation rates from 1975 to 1979, and projected inflation rate to mid-1980. Project goals are now expressed in 1980 dollars rather than 1975 dollars, and these tables enable conversion of dollar amounts from prior years (1974 to 1980) to their 1980 or 1975 equivalents.

  18. Preliminary Measurements From A New Flat Plate Facility For Aerodynamic Research

    SciTech Connect

    D. M. McEligot; D. W. Nigg; E. J. Walsh; D. Hernon; M.R.D. Davies

    2005-03-01

    This paper details the design and preliminary measurements used in the characterisation of a new flat plate research facility. The facility is designed specifically to aid in the understanding of entropy generation throughout the boundary layer with special attention given to non-equilibrium flows. Hot-wire measurements were obtained downstream of two turbulence generating grids. The turbulence intensity, integral and dissipation length scale ranges measured are 1.6%-7%, 5mm-17mm and 0.7mm-7mm, respectively. These values compared well to existing correlations. The flow downstream of both grids was found to be homogenous and isotropic. Flow visualisation is employed to determine aerodynamic parameters such as flow 2-dimensionality and the effect of the flap angle on preventing separation at the leading edge. The flow was found to be 2-dimensional over all measurement planes. The non-dimensional pressure distribution of a modern turbine blade suction surface is simulated on the flat plate through the use of a variable upper wall. The Reynolds number range based on wetted plate length and inlet velocity is 70,000-4,000,000.

  19. Modification of parabolic dish antenna pattern using two symmetrically placed circular flat plates

    NASA Astrophysics Data System (ADS)

    Thorpe, Glen C.

    1987-12-01

    This study aims to formulate a method of predicting the far field pattern of a parabolic dish antenna with two moveable flat plates mounted symmetrically on either side of the feed horn. The approach taken has been to first analyze the radiation pattern of the antenna with the disks at certain heights out from the surface of the dish. To do this the near-field radiation in amplitude and phase was measured over a plane surface in the near-field and the values were then transformed into the far field using a Fast Fourier Transform. Far field pattern values of the antenna were directly measured for each setting of the plates. The results obtained from the Fast Fourier Transform of the near field data were in good agreement with the values obtained by measurement. Finally, an approximate model of the antenna was developed and implemented as a computer program. This model, while relatively unsophisticated, provided some insights into the changes in the near field phase distribution caused by the moveable circular flat plates.

  20. Relaminarization of the boundary layer over a flat plate in shock tube experiments

    NASA Astrophysics Data System (ADS)

    Hinckel, J. N.; Nagamatsu, H. T.

    1986-06-01

    The relaminarization of the boundary layer over a flat plate in the shock tube was investigated by using the partially reflected shock wave technique. The flow Mach number was approximately 0.14, which corresponds to the inleft flow Mach number for the first row of vanes in a gas turbine. The thin film platinum heat gauges were used to measure the heat transfer rate and the Stanton number was calculated from the oscilloscope voltage traces. The Reynolds number was varied by changing the operation pressure of the shock tube and the values varied from 2.3 x 10 to the 4th to 5.3 x 10 to the 5th. For a Reynolds number range of 7 x 10 to the 4th to 3.5 x 10 to the 5th, the relaminarization of the boundary layer was observed. This phenomenon is due to the decay of the turbulence level in the flow as the reflected shock wave moves upstream from the flat plate. As the Reynolds number increased, the relaminarization was delayed and the delay was related to the turbulence generated by the reflected shock wave.

  1. An experimental study of flow separation over a flat plate with 2D transverse grooves

    NASA Astrophysics Data System (ADS)

    Jones, Emily Michelle

    Nature has long been an inspiration for research in engineering. In particular, the biological surfaces of aquatic swimmers have been studied for their potential as drag reducing surfaces. The hydrodynamic benefit of riblets, or grooves embedded parallel to the flow, which appear on many aquatic biological surfaces, have been well documented and implemented in practical engineering applications. However the skin of dolphins is embedded with grooves that run perpendicular to the flow of water over their bodies. It is theorized that the transverse grooves present on dolphin skin trap vortices between them, creating a partial slip condition over the surface and inducing turbulence augmentation in the boundary layer, thus controlling boundary layer separation over the dolphin's skin. Similarly, sharks are covered with scales that are flexible at the base and capable of bristling, forming grooves running transverse to the flow. It is theorized that the scales bristle when encountering a reversing flow, thereby trapping vortices between the scales and, similarly, delaying boundary layer separation. In an attempt to test this hypothesis and study these affects, a spinning cylinder was used in a water tunnel to induce separation over a flat plate with 2 mm, rectangular transverse grooves and sinusoidal grooves of similar scaling. The results were compared to tripped, turbulent boundary layer separation occurring over a flat plate without grooves using time-resolved particle image velocimetry. The strength of the adverse pressure gradient was varied, and the observed delay in flow separation and other affects upon the boundary layer are discussed.

  2. Flat-plate boiloff calorimeters for testing of thermal insulation systems

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Johnson, W. L.; Kelly, A. O.; Meneghelli, B. J.; Swanger, A. M.

    2015-12-01

    Cryostats have been developed and standardized for laboratory testing of thermal insulation systems in a flat-plate configuration. Boiloff calorimetry is the measurement principle for determining the effective thermal conductivity (ke) and heat flux (q) of test specimens under a wide range of actual conditions. Cryostat-500 is thermally guarded to measure absolute thermal performance when calibrated with a known reference via an adjustable-edge guard ring. With liquid nitrogen as the energy meter, the cold boundary temperature can be adjusted to any temperature between 77 K and approximately 300 K by the interposition of a thermal resistance layer between the cold mass and the specimen. A low thermal conductivity suspension system has compliance rods that adjust for specimen thickness and compression force. Material type, thickness, density, flatness, compliance, outgassing, and temperature sensor placement are important test considerations, and edge effects and calibration techniques for the apparatus are crucial. Over the full vacuum pressure range, the thermal performance capability is nearly four orders of magnitude. The horizontal configuration provides key advantages over the vertical cylindrical cryostats for testing at ambient pressure conditions. Cryostat-500’s design and test methods, other flat-plate boiloff calorimeters, and results for select thermal insulation materials (composites, foams, aerogels) are discussed.

  3. Fundamental Study of Local Heat Transfer in Forced Convective Boiling of Ammonia on Vertical Flat Plate

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hun; Arima, Hirofumi; Ikegami, Yasuyuki

    In the present study, the fundamental experiments that investigate characteristics of local heat transfer in forced convective boiling on vertical flat plate with 2-mm channel height are taken to realize plate type compact evaporator for OTEC or STEC. The experiments are performed with ammonia as the working fluid. The experiments are also carried out with the following test conditions; saturated pressure = 0.7, 0.8, 0.9 MPa, mass flux = 7.5, 10, 15 kg/(m2•s), heat flux = 15, 20, 25 kW/m2 and inlet quality = 0.1 ~ 0.4 [-]. The result shows that the wall superheated temperature of forced convective boiling is lower than that of pool boiling. And the heat transfer coefficient increases with an increase in quality and the decrease in the local heat flux and saturated pressure for prescribed experimental conditions. However, local heat transfer coefficients are not affected by mass fluxes in the prescribed experimental conditions. An empirical correlation that can predict the local heat transfer coefficient on vertical flat plate within experimental conditions is also proposed.

  4. Investigation of heat transfer with film cooling to a flat plate in a shock tube

    NASA Astrophysics Data System (ADS)

    Jurgelewicz, Scott A.

    1989-12-01

    The heat transfer occurring through turbulent boundary layers in modern gas turbines is not well understood. The heat transferred to a flat plate though a turbulent boundary layer presents many similarities without the complex flow patterns. The gas used in this study was air. The flow behind a passing shock wave in a shock tube was used to simulate the high temperature ratio flows found in gas turbines. Highly responsive heat flux gages were used to measure the temperature history of a flat plate exposed to the flow. High speed digital recorders were used to sample and store the information. Heat transfer rates were determined from temperature history using a computer program and a quadrature method. The temperature history was numerically averaged to filter out noise effects before it was used to calculate the heat flux. It was found that low shock Mach numbers produced measured heat flux rates that were predictable by theory. At higher Mach numbers the rounded leading edge of the plate produced reflections that increased the measured heat flux as the Mach number increased; but theory, dependent on incident shock Mach number, underpredicted these actual values. Film cooling flows were then studied under the same flow conditions. Ratios of heat transfer coefficients with blowing ratios of approximately two to three produced the best agreement with correlations. The effects of free stream turbulence on the heat flux with film cooling were also briefly studied.

  5. Vortex formation and drag on low aspect ratio, normal flat plates

    NASA Astrophysics Data System (ADS)

    Ringuette, Matthew James

    Experiments were done to investigate the role of vortex formation in the drag force generation of low aspect ratio, normal flat plates starting from rest. This very simplified case is a first, fundamental step toward understanding the more complicated flow of hovering flight, which relies primarily on drag for propulsion. The relative importance of the plate's free end, or tip, with varying aspect ratio was also studied. Identifying the relationship among aspect ratio, vortex formation, and drag force can provide insight into the wing aspect ratios and kinematics found nature, with the eventual goal of designing man-made flapping wing micro air vehicles. The experiments were carried out using flat plate models in a towing tank at a moderate Reynolds number of 3000. Two aspect ratios, 6 and 2, were considered, the latter in order to have a highly tip-dominated case. A force balance measured the time-varying drag, and multiple, perpendicular sections of the flow velocity were measured quantitatively using digital particle image velocimetry. Vorticity fields were calculated from the velocity data, and features in the drag force for different aspect ratios were related to the vortex dynamics. Finally, since the flow is highly three-dimensional, dye flow visualization was done to characterize its structure and to augment the two-dimensional digital particle image velocimetry data.

  6. Frequency-domain prediction of broadband trailing edge noise from a blunt flat plate

    NASA Astrophysics Data System (ADS)

    Lee, Gwang-Se; Cheong, Cheolung

    2013-10-01

    The aim of this study is to develop an efficient methodology for frequency-domain prediction of broadband trailing edge noise from a blunt flat plate where non-zero pressure gradient may exist in its boundary layer. This is achieved in two ways: (i) by developing new models for point pressure spectra within the boundary layer over a flat plate, and (ii) by deriving a simple formula to approximate the effect of convective velocity on the radiated noise spectrum. Firstly, two types of point pressure spectra-required as input data to predict the trailing edge noise in the frequency domain-are used. One is determined using the semi-analytic (S-A) models based on the boundary-layer theory combined with existing empirical models. It is shown that the prediction using these models show good agreements with the measurements where zero-pressure gradient assumption is valid. However, the prediction show poor agreement with that obtained from large eddy simulation results where negative (favorable) pressure gradient is observed with the boundary layer. Based on boundary layer characteristics predicted using the large eddy simulations, new model for point wall pressure spectra is proposed to account for the effect of favorable pressure gradient over the blunt flat plate on the wall pressure spectra. Sound spectra that were predicted using these models are compared with measurements to validate the proposed prediction scheme. The advantage of the semi-analytic model is that it can be applied to problems at Reynolds numbers for which the empirical model is not available. In addition, it is expected that the current models can be applied to the cases where favorable pressure gradient exists in the boundary layer over a blunt flat plate. Secondly, in order to quantitatively analyze contributions of the pressure field within the turbulent boundary layer on the flat plate to trailing edge noise, total pressure over the surface of airfoil is decomposed into its two constituents

  7. Torsional Buckling Tests of a Simulated Solar Array

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1996-01-01

    Spacecraft solar arrays are typically large structures supported by long, thin deployable booms. As such, they may be particularly susceptible to abnormal structural behavior induced by mechanical and thermal loading. One example is the Hubble Space Telescope solar arrays which consist of two split tubes fit one inside the other called BiSTEMs. The original solar arrays on the Hubble Space Telescope were found to be severely twisted following deployment and later telemetry data showed the arrays were vibrating during daylight to night and night to daylight transition. The solar array twist however can force the BiSTEM booms to change in cross-section and cause tile solar arrays to react unpredictably to future loading. The solar arrays were redesigned to correct for tile vibration, however, upon redeployment they again twisted. To assess the influence of boom cross-sectional configuration, experiments were conducted on two types of booms, (1)booms with closed cross-sections, and (2) booms with open cross-sections. Both models were subjected to compressive loading and imposed tip deflections. An existing analytical model by Chung and Thornton was used to define the individual load ranges for each model solar array configuration. The load range for the model solar array using closed cross-section booms was 0-120 Newtons and 0-160 Newtons for the model solar array using open cross-section booms. The results indicate the model solar array with closed cross-section booms buckled only in flexure. However, the results of the experiment with open cross-section booms indicate the model solar array buckled only in torsion and with imposed tip deflections the cross section can degrade by rotation of the inner relative to the outer STEM. For tile Hubble Space Telescope solar arrays the results of these experiments indicate the twisting resulted from the initial mechanical loading of the open cross-section booms.

  8. Lightweight Reusable Solar Array For Balloons

    NASA Astrophysics Data System (ADS)

    Aaron, K.; Tensor, P.; Nock, K.; Wyszkowski, C.

    We will discuss a new lightweight reusable solar array system, dubbed HighPower, which is being developed for the Ultra-Long Duration Balloon (ULDB) program using NASA/SBIR funding, but which is also applicable to other balloon systems. The system uses a vertically deployed stack of panels suspended from their corners by cables. The stack act likes a two-dimensional Venetian blind. By raising and lowering opposite corners, the array of parallel panels can be pointed over most of the upper hemisphere. This allows the panels to remain normal to the sun despite the slow rotation of the gondola and without requiring rotation of the system (no slip rings) or heavy cantilevered rotation joints. The system is sized to generate 2000 W using six 2m x 2m panels. The modularity of the system allows panels to be added or removed to tailored the power to the needs of the mission. Prior to cut -down of the balloon, the panels can be retracted and stowed compactly in the lower part of the gondola. This will protect the array during landing, allowing the array to be reused on subsequent flights.

  9. SEPS solar array design and technology evaluation. [Solar Electric Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Elms, R. V., Jr.; Young, L. E.

    1975-01-01

    The solar array system considered is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, and an array electrical harness. A technology evaluation is performed to assess the applicable solar array state-of-the-art and to define the supporting effort necessary to achieve technology readiness for meeting the Solar Electric Propulsion Stage (SEPS) solar array design requirements. Details of mechanical design are discussed along with questions of electrical design, operational reliability advantages, and array assembly advantages.

  10. Activities for Teaching Solar Energy.

    ERIC Educational Resources Information Center

    Mason, Jack Lee; Cantrell, Joseph S.

    1980-01-01

    Plans and activities are suggested for teaching elementary children about solar energy. Directions are included for constructing a flat plate collector and a solar oven. Activities for a solar field day are given. (SA)

  11. Goddard Space Flight Center solar array missions, requirements and directions

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward; Day, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) develops and operates a wide variety of spacecraft for conducting NASA's communications, space science, and earth science missions. Some are 'in house' spacecraft for which the GSFC builds the spacecraft and performs all solar array design, analysis, integration, and test. Others are 'out of house' spacecraft for which an aerospace contractor builds the spacecraft and develops the solar array under direction from GSFC. The experience of developing flight solar arrays for numerous GSFC 'in house' and 'out of house' spacecraft has resulted in an understanding of solar array requirements for many different applications. This presentation will review those solar array requirements that are common to most GSFC spacecraft. Solar array technologies will be discussed that are currently under development and that could be useful to future GSFC spacecraft.

  12. Flashover Current And Solar Array Electrical Architecure

    NASA Astrophysics Data System (ADS)

    Boulanger, Bernard; Zugaj, Herve; Malorn, Frederic

    2011-10-01

    The detrimental effects of electrical stress are well known for multijunction GaAs cells, particularly when the cells are not protected by the dedicated bypass diode, in case of reverse current in the cell. This electrical stress may occur due to coverglass electrostatic discharge and associated flashover (FO) current, with detrimental effect if the flashover current value and duration exceed the limits. Motivated by these concerns, THALES ALENIA SPACE has performed a solar array electrical architecture trade-off in order to reduce this risk. The first issue of this analysis [10] have been presented during the 11th SCTC. This 9th ESPC TAS paper includes : The second issue of this analysis , completed by using Emags3 results and new data from 11th SCTC, Proposal of complementary flashover characterisation tests versus solar cell network parameters.

  13. Space Station Solar Array Joint Repair

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart; Allmon, Curtis; Reznik, Carter; McFatter, Justin; Davis, Robert E.

    2015-01-01

    In Oct 2007 the International Space Station (ISS) crew noticed a vibrating camera in the vicinity of Starboard Solar Alpha Rotary Joint (SARJ). It had less than 5 months of run time when the anomaly was observed. This approximately 3.2 meter diameter bearing joint supports solar arrays that power the station critical to its operation. The crew performed an EVA to identify what was causing the vibration. It was discovered that one of the 3 bearing tracks of this unconventional bearing had significant spalling damage. This paper discusses the SARJ's unique bearing design and the vulnerability in its design leading to the observed anomaly. The design of a SARJ vacuum test rig is also described along with the results of a life test that validated the proposed repair should extend the life of the SARJ a minimum of 18 years on-orbit.

  14. Heat transfer investigation in the junction region of circular cylinder normal to a flat plate at 90 deg location

    NASA Astrophysics Data System (ADS)

    Nagamatsu, H. T.; Hinckel, J. N.

    1984-12-01

    External heat-transfer rates were measured on a flat plate in the junction region of a circular cylinder mounted normal to the plate at a location 90 deg from the stagnation point. This configuration simulates the junction of the shroud with gas-turbine vanes. Heat-transfer results are presented for laminar, transition, and turbulent boundary layers for a Mach number of 0.14 with gas temperatures of approximately 750 deg R over a flat plate at room temperature. The measurements were made in air for a unit Reynolds number, Re/cm, range of 11,000 to 58,000. Heat-transfer measurements were conducted in the 70-ft long, 4-in. diameter shock tube. A shock-wave reflection technique was used to produce a flow Mach number of 0.14. Thin-film platinum heat gages were mounted on the flat plate and along the line of the stagnation point of the cylinder to measure the local heat flux in the junction region. The experimental heat-transfer data were correlated with the laminar and turbulent boundary-layer theories for the flat plate. With the cylinder the heat fluxes on the flat plate were greatly increased in the junction region compared to the heat flux for the plate alone.

  15. Preliminary space station solar array structural design study

    NASA Technical Reports Server (NTRS)

    Dorsey, J. T.; Bush, H. G.; Mikulas, M. M., Jr.

    1984-01-01

    Structurally efficient ways to support the large solar arrays (3,716 square meters which are currently considered for space station use) are examined. An erectable truss concept is presented for the on orbit construction of winged solar arrays. The means for future growth, maintenance, and repair are integrally designed into this concept. Results from parametric studies, which highlight the physical and structural differences between various configuration options are presented. Consideration is given to both solar blanket and hard panel arrays.

  16. Design and development of a solar array drive. [a direct drive solar array pointing mechanism

    NASA Technical Reports Server (NTRS)

    Rees, T.; Standing, J. M.

    1977-01-01

    The design and development of a dry lubricated direct drive solar array pointing mechanism is discussed for use on the Orbital Test Satellite (OTS), MAROTS, European Communication Satellite (ECS), and others. Results of life testing the original prototype and the OTS mechanism are presented together with an appraisal of expected future development.

  17. Low-cost silicon solar array project environmental hail model for assessing risk to solar collectors

    NASA Technical Reports Server (NTRS)

    Gonzalez, C.

    1977-01-01

    The probability of solar arrays being struck by hailstones of various sizes as a function of geographic location and service life was assessed. The study complements parallel studies of solar array sensitivity to hail damage, the final objective being an estimate of the most cost effective level for solar array hail protection.

  18. Test report SEPS solar array root section model

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The fabrication and test of a solar array functional root section model to verify preliminary array design concepts is presented. The root section model is full scale width and contains a model array blanket. The blanket contains 1/8 live electrical modules and the remainder contains solar cell mass simulators. A storable Astromast is used for array blanket extension and retraction. The model component and system assembly hardware, tests, and test results are described.

  19. Annular Arrays Of Solar Cells For Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Spilker, Thomas R.

    1995-01-01

    Report proposes annular arrays of solar photovoltaic cells installed on spin-stabilized spacecraft. Annular array faces Sun. Typical array consists of two stacked annuli of solar cells: one annulus fixed about spin axis, while other divided into deployable sectors mounted on dual swing arms and stowed by folding them atop fixed annulus. Once released, deployable sectors swing outward under spring or centrifugal force and expose fixed array so it generates additional power.

  20. GEO Satellite Solar Array Abnormality's Analysis and Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Junyan; Yang, Yujie; Zhu, Weibo; Liu, Jingyong; Xu, Hui

    Solar array, converting sunlight into electricity, is one of the most important components in satellite energy subsystem. It is significant for in-orbit satellite safety that solar array and its subsidiaries work normally. An abnormal phenomenon that the output current of one solar array suddenly decreased happened in a GEO satellite. Combined with the structure of the solar array system and the trends of relevant parameters during the abnormality, the paper analyzed the possible reasons, and detected the root cause, and finally provided an emergency treatment for this kind of abnormality.

  1. MILSTAR's flexible substrate solar array: Lessons learned, addendum

    NASA Technical Reports Server (NTRS)

    Gibb, John

    1990-01-01

    MILSTAR's Flexible Substrate Solar Array (FSSA) is an evolutionary development of the lightweight, flexible substrate design pioneered at Lockheed during the seventies. Many of the features of the design are related to the Solar Array Flight Experiment (SAFE), flown on STS-41D in 1984. FSSA development has created a substantial technology base for future flexible substrate solar arrays such as the array for the Space Station Freedom. Lessons learned during the development of the FSSA can and should be applied to the Freedom array and other future flexible substrate designs.

  2. Leaf wetness duration measurement: comparison of cylindrical and flat plate sensors under different field conditons

    NASA Astrophysics Data System (ADS)

    Sentelhas, Paulo C.; Gillespie, Terry J.; Santos, Eduardo A.

    2007-03-01

    In general, leaf wetness duration (LWD) is a key parameter influencing plant disease epidemiology, since it provides the free water required by pathogens to infect foliar tissue. LWD is used as an input in many disease warning systems, which help growers to decide the best time to spray their crops against diseases. Since there is no observation standard either for sensor or exposure, LWD measurement is often problematic. To assess the performance of electronic sensors, LWD measurements obtained with painted cylindrical and flat plate sensors were compared under different field conditions in Elora, Ontario, Canada, and in Piracicaba, São Paulo, Brazil. The sensors were tested in four different crop environments—mowed turfgrass, maize, soybean, and tomatoes—during the summer of 2003 and 2004 in Elora and during the winter of 2005 in Piracicaba. Flat plate sensors were deployed facing north and at 45° to horizontal, and cylindrical sensors were deployed horizontally. At the turfgrass site, both sensors were installed 30 cm above the ground, while at the crop fields, the sensors were installed at the top and inside the canopy (except for maize, with a sensor only at the top). Considering the flat plate sensor as a reference (Sentelhas et al. Operational exposure of leaf wetness sensors. Agric For Meteorol 126:59-72, 2004a), the results in the more humid climate at Elora showed that the cylindrical sensor overestimated LWD by 1.1-4.2 h, depending on the crop and canopy position. The main cause of the overestimation was the accumulation of big water drops along the bottom of the cylindrical sensors, which required much more energy and, consequently, time to evaporate. The overall difference between sensors when evaporating wetness formed during the night was around 1.6 h. Cylindrical sensors also detected wetness earlier than did flat plates—around 0.6 h. Agreement between plate and cylinder sensors was much better in the drier climate at Piracicaba. These

  3. Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.

  4. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Source For System-Level Testing Of Optical Sensors

    NASA Technical Reports Server (NTRS)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-01-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.

  5. Photovoltaic solar arrays - Unlimited power for our space vehicles

    SciTech Connect

    Chidester, L.G.

    1981-01-01

    Solar cell technology is reviewed with reference to the high-efficiency cells, ultra-thin cells, GaAs cells and wrap-around cells. Performance characteristics are presented noting the advantages of GaAs cells over silicon cells. A number of solar array configurations are illustrated including large flexible arrays and curved graphite panels. Attention is given to the NASA Solar Electric Propulsion Stage program which would use ion engines to propel spacecraft in interplanetary missions. Applications of solar cell technology to the Space Shuttle program are discussed, including the Power Extension Package, lightweight arrays and solar energy concentrators.

  6. A solar array is moved in the SSPF for testing

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in the Space Station Processing Facility watch closely as Solar Array Wing-3, a component of the International Space Station, is moved toward the Integrated Electronic Assembly where it will be installed for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station.

  7. A solar array is moved in the SSPF for testing

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in the Space Station Processing Facility watch closely as Solar Array Wing-3, a component of the International Space Station, is lowered toward the Integrated Electronic Assembly where it will be installed for testing. The solar array is scheduled to be launched on STS-97 in late November along with the P6 truss. The Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station.

  8. Static and Dynamic Analysis of Stretched Membrane Lenses for Lightweight Space Solar Arrays

    NASA Astrophysics Data System (ADS)

    Mockensturm, Eric M.

    2002-12-01

    NASA and ENTECH, Inc. have been developing space photovoltaic arrays using refractive concentrator technology since 1986. These refractive concentrators use Fresnel lenses in a unique arch shape to minimize the effects of shape errors. In 1994, silicone Fresnel lenses where used in the SCARLET(Registered Trademark) solar array developed by ENTECH and AEC-ABLE. In this array the 200-micron-thick lenses were laminated to 75-micron-thick, thermally shaped, ceria-doped glass arches. These glass arches forced the flexible lenses into the optimal arch shape. The arrays constructed using these lenses achieved over 200 W/sq m areal power and 45 W/kg specific power and are currently powering both the spacecraft and the ion engine on the NASA/JPL Deep Space One probe. To further reduce weight and increase areal and specific power, the next generation of solar concentrator arrays will eliminate the glass arch and lens frame. The flexible lenses will be stretched as membranes between optimally shaped, supporting end arches. This patented stretched lens array will also use redesigned composite radiator sheets to reduce the weight of the SCARLET panels by a factor of four. In addition, by eliminating optical losses caused by the glass arches and lens frames, the SLA performance is higher than SCARLET. The SLA is the first solar array panel of any kind to simultaneously achieve over 300 W/sq m areal power and 300 W/kg specific power. While the optical properties of the stretched lenses are excellent, they must be analyzed structurally to ensure that they perform at their optimal levels. Lens parameters such as backing thickness, lens tension, and effective length can be altered to change the structural response of the lens without affecting the optical performance. In particular, the lenses must be designed to maintain the arch shape specified by the end support along the entire length. Because the lenses are flat in their natural state, they resist being bent into the desired

  9. Solar array development for the surface of Mars

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Dawson, S.; Rapp, D.; Sharps, Paul; Aiken, D.; Spence, B. R.; White, S. F.; King, R. P.; Edmonson, K.

    2003-01-01

    JPL's missions to Mars have revealed factors that have an adverse impact on the performance of Mars Surface Solar Arrays. These factors included a spectrum shift toward the red wavelengths, atmospheric scattering and absorption and an accumulation of Mars surface dust on the arrays. All of these factors will reduce the power generated from state of the art triple junction solar cells used by earth orbiting satellites. This paper will report the results of JPL supported work conducted by US solar array manufacturers to increase the performance of solar arrays for future Mars surface missions. JPL awarded four vendors contracts to evaluate methods of improving power generation on the surface of Mars. These four contracts cover the redesign of the existing triple junction solar cell, modifying solar simulator output to match the Mars surface spectrum and techniques to control or remove dust from the surface of the arrays. The methodology and results of this evaluation will be presented in this paper.

  10. Weak incident shock interactions with Mach 8 laminar boundary layers. [of flat plate

    NASA Technical Reports Server (NTRS)

    Kaufman, L. G., II; Johnson, C. B.

    1974-01-01

    Weak shock-wave interactions with boundary layers on a flat plate were investigated experimentally in Mach 8 variable-density tunnel for plate-length Reynolds numbers. The undisturbed boundary layers were laminar over the entire plate length. Pressure and heat-transfer distributions were obtained for wedge-generated incident shock waves that resulted in pressure rises ranging from 1.36 to 4.46 (both nonseparated and separated boundary-layer flows). The resulting heat-transfer amplifications ranged from 1.45 to 14. The distributions followed established trends for nonseparated flows, for incipient separation, and for laminar free-interaction pressure rises. The experimental results corroborated established trends for the extent of the pressure rise and for certain peak heat-transfer correlations.

  11. Flat-plate techniques for measuring reflectance of macro-algae (Ulva curvata)

    USGS Publications Warehouse

    Ramsey, Elijah W., III; Rangoonwala, Amina; Thomsen, Mads Solgaard; Schwarzschild, Arthur

    2012-01-01

    We tested the consistency and accuracy of flat-plate spectral measurements (400–1000 nm) of the marine macrophyte Ulva curvata. With sequential addition of Ulva thallus layers, the reflectance progressively increased from 6% to 9% with six thalli in the visible (VIS) and from 5% to 19% with ten thalli in the near infrared (NIR). This progressive increase was simulated by a mathematical calculation based on an Ulva thallus diffuse reflectance weighted by a transmittance power series. Experimental and simulated reflectance differences that were particularly high in the NIR most likely resulted from residual water and layering structure unevenness in the experimental progression. High spectral overlap existed between fouled and non-fouled Ulva mats and the coexistent lagoon mud in the VIS, whereas in the NIR, spectral contrast was retained but substantially dampened by fouling.

  12. Skin friction and Reynolds stress measurements for a turbulent boundary layer following manipulation using flat plates

    NASA Technical Reports Server (NTRS)

    Westphal, R. V.

    1986-01-01

    Research has been undertaken to experimentally study the alterations in turbulent boundary-layer properties due to turbulence manipulation using thin flat plates. Plate geometry and placement within the boundary layer were selected to coincide with recent studies. Direct, local measurements of skin friction and Reynolds stresses were made within the boundary layer downstream of the manipulator devices for cases with an approach momentum thickness Reynolds number of 3700. A strong tendency for recovery of the Reynolds stresses was observed, accompanied by local skin-friction reductions of up to 15 percent. The mean velocity profile in the manipulated flow displayed the same similarity shape in the logarithmic region as a natural boundary layer, but had an enhanced wake component. The results indicate that the plate wake plays an important role in the boundary layer response to this sort of manipulation.

  13. A preliminary investigation of boundary-layer transition along a flat plate with adverse pressure gradient

    NASA Technical Reports Server (NTRS)

    Von Doenhoff, Albert E

    1938-01-01

    Boundary-layer surveys were made throughout the transition region along a smooth flat plate placed in an airstream of practically zero turbulence and with an adverse pressure gradient. The boundary-layer Reynolds number at the laminar separation point was varied from 1,800 to 2,600. The test data, when considered in the light of certain theoretical deductions, indicated that transition probably began with separation of the laminar boundary layer. The extent of the transition region, defined as the distance from a calculated laminar separation point to the position of the first fully developed turbulent boundary-layer profile, could be expressed as a constant Reynolds number run of approximately 70,000. Some speculations are presented concerning the application of the foregoing concepts, after certain assumptions have been made, to the problem of the connection between transition on the upper surface of an airfoil at high angles of attack and the maximum lift.

  14. Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds

    NASA Astrophysics Data System (ADS)

    Egorov, I. V.; Novikov, A. V.

    2016-06-01

    A method for direct numerical simulation of a laminar-turbulent flow around bodies at hypersonic flow speeds is proposed. The simulation is performed by solving the full three-dimensional unsteady Navier-Stokes equations. The method of calculation is oriented to application of supercomputers and is based on implicit monotonic approximation schemes and a modified Newton-Raphson method for solving nonlinear difference equations. By this method, the development of three-dimensional perturbations in the boundary layer over a flat plate and in a near-wall flow in a compression corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation characteristic, distributions of the mean coefficients of the viscous flow in the transient section of the streamlined surface are obtained, which enables one to determine the beginning of the laminar-turbulent transition and estimate the characteristics of the turbulent flow in the boundary layer.

  15. LOVEL: a low-velocity aerodynamic heating code for flat-plates, wedges, and cones

    SciTech Connect

    Thornton, A.L.

    1981-12-01

    The LOVEL computer program calculates the boundary-layer edge conditions for subsonic and supersonic flow over flat-plate, wedge, and cone geometries for freestream Mach conditions (M/sub infinity/ < 3. Cold-wall heat-transfer calculations use reference temperature correlations based on boundary-layer edge Mach number to compute fluid properties. The first part of this report describes the theory used in the computation of the cold-wall heat-transfer rates; the second part describes in detail the input/output format for the LOVEL computer program. Outputs include freestream conditions, boundary-layer edge conditions, cold-wall heat-transfer rates, plots of heating rates, and punched-card output for use in ablation and in-depth transient heat-conduction computer codes.

  16. Viscous flow past a nacelle isolated and in proximity of a flat plate

    NASA Technical Reports Server (NTRS)

    Fouladi, Kamran

    1992-01-01

    Linearized-theory design procedures have proven to be useful in preliminary design stages of supersonic aircraft configurations. These procedures are impaired, however, by their inability to account for certain nonlinear effects inherent in complicated flows. The present computations are aimed at providing necessary information for correction and improvement of a particular linearized design method. Three-dimensional, viscous, supersonic flows past nacelle and nacelle-flat plate configurations are investigated. The thin-layer Navier-Stokes equations are solved using an implicit, upwind-biased, finite-volume method. A hybrid domain decomposition technique is utilized to ease the grid generation task. Computations were made for an unit Reynolds number of 2.0 million per foot and Freestream Mach numbers of 1.6, 2.0, and 2.3.

  17. Laminar-Boundary-Layer Oscillations and Transition on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Schubauer, G B; Skramstad, H K

    1948-01-01

    This is an account of an investigation in which oscillations were discovered in the laminar boundary layer along a flat plate. These oscillations were found during the course of an experiment in which transition from laminar to turbulent flow was being studied on the plate as the turbulence in the wind stream was being reduced to unusually low values by means of damping screens. The first part of the paper deals with experimental methods and apparatus, measurements of turbulence and sound, and studies of transition. A description is then given of the manner in which oscillations were discovered and how they were found to be related to transition, and then how controlled oscillations were produced and studied in detail.

  18. Resonant Interaction of a Rectangular Jet with a Flat-Plate

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Fagan, A. F.; Clem, M. M.; Brown, C. A.

    2014-01-01

    A resonant interaction between a large aspect ratio rectangular jet and a flat-plate is addressed in this experimental study. The plate is placed parallel to but away from the direct path of the jet. At high subsonic conditions and for certain relative locations of the plate, the resonance accompanied by an audible tone is encountered. The trends of the tone frequency variation exhibit some similarities to, but also marked differences from, corresponding trends of the well-known edge-tone phenomenon. Under the resonant condition flow visualization indicates a periodic flapping motion of the jet column. Phase-averaged Mach number data obtained near the plate's trailing edge illustrate that the jet cross-section goes through large contortions within the period of the tone. Farther downstream a clear 'axis switching' takes place. These results suggest that the assumption of two-dimensionality should be viewed with caution in any analysis of the flow.

  19. A model for correlating flat plate film cooling effectiveness for rows of round holes

    NASA Astrophysics Data System (ADS)

    Lecuyer, M. R.; Soechting, F. O.

    1985-09-01

    An effective method of cooling, that has found widespread application in aircraft gas turbines, is the injection of a film of cooling air through holes into the hot mainstream gas to provide a buffer layer between the hot gas and the airfoil surface. Film cooling has been extensively investigated and the results have been reported in the literature. However, there is no generalized method reported in the literature to predict the film cooling performance as influenced by the major variables. A generalized film cooling correlation has been developed, utilizing data reported in the literature, for constant velocity and flat plate boundary layer development. This work provides a basic understanding of the complex interaction of the major variables effecting film cooling performance.

  20. Calculation of oblique-shock-wave laminar-boundary-layer interaction on a flat plate

    NASA Technical Reports Server (NTRS)

    Goldberg, U.; Reshotko, E.

    1980-01-01

    A finite difference solution to the problem of the interaction between an impinging oblique shock wave and the laminar boundary layer on a flat plate is presented. The boundary layer equations coupled with the Prandtl-Meyer relation for the external flow are used to calculate the flow field. A method for the calculation of the separated flow region is presented and discussed. Comparisons between this theory and the experimental results of other investigators show fairly good agreement. Results are presented for the case of a cooled wall with an oncoming flow at Mach number 2.0 without and with suction. The results show that a small amount of suction greatly reduces the extent of the separated region in the vicinity of the shock impingement location.

  1. OVERFLOW Validation for Predicting Plume Impingement of Underexpanded Axisymmetric Jets onto Angled Flat Plates

    NASA Technical Reports Server (NTRS)

    Lee, Henry C.; Klopfer, Goetz

    2011-01-01

    This report documents how OVERFLOW, a computational fluid dynamics code, predicts plume impingement of underexpanded axisymmetric jets onto both perpendicular and inclined flat plates. The effects of the plume impinging on a range of plate inclinations varying from 90deg to 30deg are investigated and compared to the experimental results in Reference 1 and 2. The flow fields are extremely complex due to the interaction between the shock waves from the free jet and those deflected by the plate. Additionally, complex mixing effects create very intricate structures in the flow. The experimental data is very limited, so these validation studies will focus only on cold plume impingement on flat and inclined plates. This validation study will help quantify the error in the OVERFLOW simulation when applied to stage separation scenarios.

  2. Characterizing a burst leading-edge vortex on a rotating flat plate wing

    NASA Astrophysics Data System (ADS)

    Jones, Anya R.; Medina, Albert; Spooner, Hannah; Mulleners, Karen

    2016-04-01

    Identifying, characterizing, and tracking incoherent vortices in highly separated flows is of interest for the development of new low-order models for unsteady lift prediction. The current work examines several methods to identify vortex burst and characterize a burst leading-edge vortex. Time-resolved stereoscopic PIV was performed on a rotating flat plate wing at Re = 2500. The burst process was found to occur at mid-span and is characterized by axial flow reversal, the entrainment of opposite-sign vorticity, and a rapid expansion of vortex size. A POD analysis revealed that variations in certain mode coefficients are indicative of the flow state changes characteristics of burst. During burst, the leading-edge vortex evolves to a region of inhomogeneous vorticity distributed over a large area. Several methods of defining the vortex size and circulation are evaluated and a combination of these can be used to characterize the leading-edge vortex both pre- and post-burst.

  3. Comparison of DAC and MONACO DSMC Codes with Flat Plate Simulation

    NASA Technical Reports Server (NTRS)

    Padilla, Jose F.

    2010-01-01

    Various implementations of the direct simulation Monte Carlo (DSMC) method exist in academia, government and industry. By comparing implementations, deficiencies and merits of each can be discovered. This document reports comparisons between DSMC Analysis Code (DAC) and MONACO. DAC is NASA's standard DSMC production code and MONACO is a research DSMC code developed in academia. These codes have various differences; in particular, they employ distinct computational grid definitions. In this study, DAC and MONACO are compared by having each simulate a blunted flat plate wind tunnel test, using an identical volume mesh. Simulation expense and DSMC metrics are compared. In addition, flow results are compared with available laboratory data. Overall, this study revealed that both codes, excluding grid adaptation, performed similarly. For parallel processing, DAC was generally more efficient. As expected, code accuracy was mainly dependent on physical models employed.

  4. Three-dimensional transition characteristics in the wake of an inclined flat plate

    NASA Astrophysics Data System (ADS)

    Yang, D.; Pettersen, B.; Andersson, H. I.; Narasimhamurthy, V. D.

    2011-12-01

    The transition phenomena in the wake of an inclined flat plate at angle of attack 25 degrees are investigated numerically. The Reynolds number, based on the free-stream velocity, plate width and kinematic viscosity, between 275 and 800 has been considered. The Strouhal number versus Reynolds number curves were plotted and compared with two-dimensional simulation data. In the present three-dimensional simulation results, for Reynolds number above 350, the Strouhal numbers converge to a constant value and multiple basic frequencies are detected at certain Reynolds numbers. The spanwise wavelength of secondary structure is estimated by using the autocorrelation method. In the range of Reynolds numbers investigated the spanwise wavelengths, non-dimensionalized by the plate projected width, have a constant value which is consistent with the second instability wavelength detected in the case with the plate normal to the flow.

  5. Floquet stability analysis of the wake of an inclined flat plate

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Pettersen, Bjørnar; Andersson, Helge I.; Narasimhamurthy, Vagesh D.

    2013-09-01

    The route from a time-periodic two-dimensional wake flow to a three-dimensional flow has been investigated by means of linear Floquet stability analysis. The critical Reynolds number for the onset of three-dimensional instabilities in the wake behind a flat plate with an angle of attack α in the range from 20° to 30° with respect to the free stream was determined. For all three angles considered, in the lower wavelength range, the two-dimensional base flow first became unstable with respect to the sub-harmonic mode C. Although the critical Reynolds number decreased with increasing angle of attack, the spanwise wavelength remained close to two times the projected plate width. Qualitatively different transition scenarios were obtained for the three angles of attack with a particularly simple scenario for α = 30°.

  6. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  7. Time domain numerical calculations of unsteady vortical flows about a flat plate airfoil

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Yu, Ping; Scott, J. R.

    1989-01-01

    A time domain numerical scheme is developed to solve for the unsteady flow about a flat plate airfoil due to imposed upstream, small amplitude, transverse velocity perturbations. The governing equation for the resulting unsteady potential is a homogeneous, constant coefficient, convective wave equation. Accurate solution of the problem requires the development of approximate boundary conditions which correctly model the physics of the unsteady flow in the far field. A uniformly valid far field boundary condition is developed, and numerical results are presented using this condition. The stability of the scheme is discussed, and the stability restriction for the scheme is established as a function of the Mach number. Finally, comparisons are made with the frequency domain calculation by Scott and Atassi, and the relative strengths and weaknesses of each approach are assessed.

  8. Experimental study of boundary layer transition on a heated flat plate

    NASA Technical Reports Server (NTRS)

    Sohn, K. H.; Reshotko, E.; Zaman, K. B. M. Q.

    1991-01-01

    A detailed investigation to the document momentum and thermal development of boundary layers undergoing natural transition on a heated flat plate was performed. Experimental results of both overall and conditionally sampled characteristics of laminar, transitional, and low Reynolds number turbulent boundary layers are presented. Measurements were done in a low-speed, closed-loop wind tunnel with a freestream velocity of 100 ft/s and zero pressure gradient over a range of freestream turbulence intensities from 0.4 to 6 percent. The distributions of skin friction, heat transfer rate, and Reynolds shear stress were all consistent with previously published data. Reynolds analogy factors for momentum thickness Reynolds number, Re(sub theta) less than 2300 were found to be well predicted by laminar and turbulent correlations which accounted for an unheated starting length and uniform heat flux. A small dependence of turbulence results on the freestream turbulence intensity was observed.

  9. Experiments on the stability of the flat-plate boundary layer with suction

    NASA Technical Reports Server (NTRS)

    Reynolds, G. A.; Saric, W. S.

    1982-01-01

    Experiments have been conducted in the VPI and SU Stability Wind Tunnel on a flat-plate wind-tunnel model equipped with porous suction panels. Detailed hot-wire measurements were conducted in the laminar boundary layer to investigate the stabilizing effects of suction on growing Tollmien-Schlichting waves, which were introduced into the boundary layer using a vibrating ribbon. Special care was taken to minimize external disturbances and to avoid extraneous experimental bias. The measurements, which included mean-flow and disturbance-amplitude profiles across the boundary layer, showed that suction applied through discrete porous strips can be as effective as suction applied continuously over a much longer streamwise length. The measurements also showed that suction is more effective when placed forward, nearer to the region of neutral stability, than when placed in the region of maximum growth rate. These results also provided meaningful comparison with recent theory.

  10. Investigating wake patterns and propulsive frequencies of a flat plate under pitching motion

    NASA Astrophysics Data System (ADS)

    Moubogha Moubogha, Joseph; Astolfi, Jacques Andre

    Fundamental mechanisms of swimming are explored using a simple geometry device - flat plate - in pure-pitching motion in a hydrodynamic tunnel. The experiments are carried out at different Reynolds numbers based on the plate length c. Pitching motion is generated for reduced frequencies k between 0 and 2 and for an angular amplitude of 10 deg. Velocity fields are obtained in the wake of the plate using Particle Image Velocimetry and measurements of drag coefficients are estimated from mean velocity profiles. This study confirms the occurrence of a threshold oscillation frequency beyond which the plate enters a propulsive regime and the wake features organized structures. In this case an inversion of the typical Karman vortex street is observed. The evolution of mean transverse velocity profiles in the wake of the plate shows that the usual wake profile with velocity deficit - plate with drag - can be transformed into a jet - plate with thrust - above a certain reduced frequency. Phd Student Mechanical Engineering Departement.

  11. Development of Electrostatically Clean Solar Array Panels

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.

    2000-01-01

    Certain missions require Electrostatically Clean Solar Array (ECSA) panels to establish a favorable environment for the operation of sensitive scientific instruments. The objective of this program was to demonstrate the feasibility of an ECSA panel that minimizes panel surface potential below 100mV in LEO and GEO charged particle environments, prevents exposure of solar cell voltage and panel insulating surfaces to the ambient environment, and provides an equipotential, grounded structure surrounding the entire panel. An ECSA panel design was developed that uses a Front Side Aperture-Shield (FSA) that covers all inter-cell areas with a single graphite composite laminate, composite edge clips for connecting the FSA to the panel substrate, and built-in tabs that interconnect the FSA to conductive coated coverglasses using a conductive adhesive. Analysis indicated the ability of the design to meet the ECSA requirements. Qualification coupons and a 0.5m x 0.5m prototype panel were fabricated and tested for photovoltaic performance and electrical grounding before and after exposure to acoustic and thermal cycling environments. The results show the feasibility of achieving electrostatic cleanliness with a small penalty in mass, photovoltaic performance and cost, with a design is structurally robust and compatible with a wide range of current solar panel technologies.

  12. Interaction of a synthetic jet with a flat plate boundary layer

    NASA Astrophysics Data System (ADS)

    Rampunggoon, Prakit

    The interaction of a 2-dimensional modeled synthetic jet with a flat plate boundary layer is investigated numerically using an incompressible Navier-Stokes solver. A simple, two-dimensional synthetic jet configuration along with a flat plate, laminar Blasius boundary layer was used in the current study. The oscillating diaphragm of the actuator is modeled in a realistic manner as a moving boundary in an effort to accurately compute the flow inside the jet cavity. The primary focus of the current study is on describing the dynamics of the synthetic jet in the presence of external crossflow. However, in addition, simulations of the jet with quiescent external flow have also been performed. A systematic framework was put forth for characterizing the jet that consists of computing the various moments of the velocity profile along with an integral measure of the profile skewness. A comprehensive parametric study has been carried out where the diaphragm amplitude, external flow Reynolds number, boundary layer thickness, and slot dimensions are varied; and the scaling of the jet characteristics with parameters is examined. The simulations also allow us to extract some interesting flow physics associated with the vortex dynamics of the jet and to elucidate the effect of external cross flow on jet development. In addition, a low-dimensional model for jet velocity profile is proposed and tested. Finally, the so-called "virtual aero-shaping" effect of synthetic jets is examined and the current simulations indicate a simple scaling of this effect with the dynamical characteristics of the jet and external crossflow.

  13. Reinforced Carbon-Carbon Subcomponent Flat Plate Impact Testing for Space Shuttle Orbiter Return to Flight

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Brand, Jeremy H.; Pereira, J. Michael; Revilock, Duane M.

    2007-01-01

    Following the tragedy of the Space Shuttle Columbia on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the Space Shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize Reinforced Carbon-Carbon (RCC) and various debris materials which could potentially shed on ascent and impact the Orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS DYNA to predict damage by potential and actual impact events on the Orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: fundamental tests to obtain independent static and dynamic material model properties of materials of interest, sub-component impact tests to provide highly controlled impact test data for the correlation and validation of the models, and full-scale impact tests to establish the final level of confidence for the analysis methodology. This paper discusses the second level subcomponent test program in detail and its application to the LS DYNA model validation process. The level two testing consisted of over one hundred impact tests in the NASA Glenn Research Center Ballistic Impact Lab on 6 by 6 in. and 6 by 12 in. flat plates of RCC and evaluated three types of debris projectiles: BX 265 External Tank foam, ice, and PDL 1034 External Tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile. The information obtained from this testing validated the LS DYNA damage prediction models and provided a certain level of confidence to begin performing analysis for full-size RCC test articles for returning NASA to flight with STS 114 and beyond.

  14. Solar Array in Simulated LEO Plasma Environment

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale

    2003-01-01

    Six different types of solar arrays have been tested in large vacuum chambers. The low earth orbit plasma environment was simulated in plasma vacuum chambers, where the parameters could be controlled precisely. Diagnostic equipment included spherical Langmuir probes, mass spectrometer, low-noise CCD camera with optical spectrometer, video camera, very sensitive current probe to measure arc current, and a voltage probe to register variations in a conductor potential. All data (except video) were obtained in digital form that allowed us to study the correlation between external parameters (plasma density, additional capacitance, bias voltage, etc) and arc characteristics (arc rate, arc current pulse width and amplitude, gas species partial pressures, and intensities of spectral lines). Arc inception voltages, arc rates, and current selections are measured for samples with different coverglass materials and thickness, interconnect designs, and cell sizes. It is shown that the array with wrapthrough interconnects have the highest arc threshold and the lowest current collection. Coverglass design with overhang results in decrease of current collection and increase of arc threshold. Doubling coverglass thickness cases the increase in arc inception voltage. Both arc inception voltage and current collection increase significantly with increasing a sample temperature to 80 C. Sustained discharges are initiated between adjacent cells with potential differences of 40 V for the sample with 300 micron coverglass thickness and 60 V for the sample with 150 micron coverglass thickness. Installation of cryogenic pump in large vacuum chamber provided the possibility of considerable outgassing of array surfaces which resulted in significant decrease of arc rate. Arc sites were determined by employing a video-camera, and it is shown that the most probable sites for arc inception are triple-junctions, even though some arcs were initiated in gaps between cells. It is also shown that the

  15. Solar Array in Simulated LEO Plasma Environment

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale

    2004-01-01

    Six different types of solar arrays have been tested in large vacuum chambers. The low Earth orbit plasma environment was simulated in plasma vacuum chambers, where the parameters could be controlled precisely. Diagnostic equipment included spherical Langmuir probes, mass spectrometer, low-noise CCD camera with optical spectrometer, video camera, very sensitive current probe to measure arc current, and a voltage probe to register variations in a conductor potential. All data (except video) were obtained in digital form that allowed us to study the correlation between external parameters (plasma density, additional capacitance, bias voltage, etc) and arc characteristics (arc rate, arc current pulse width and amplitude, gas species partial pressures, and intensities of spectral lines). Arc inception voltages, arc rates, and current collections are measured for samples with different coverglass materials and thickness, interconnect designs, and cell sizes. It is shown that the array with wrapthrough interconnects have the highest arc threshold and the lowest current collection. Coverglass design with overhang results in decrease of current collection and increase of arc threshold. Doubling coverglass thickness causes the increase in arc inception voltage. Both arc inception voltage and current collection increase significantly with increasing a sample temperature to 80 C. Sustained discharges are initiated between adjacent cells with potential differences of 40 V for the sample with 300 m coverglass thickness and 60 V for the sample with 150 m coverglass thickness. Installation of cryogenic pump in large vacuum chamber provided the possibility of considerable outgassing of array surfaces which resulted in significant decrease of arc rate. Arc sites were determined by employing a video-camera, and it is shown that the most probable sites for arc inception are triple-junctions, even though some arcs were initiated in gaps between cells. It is also shown that the arc

  16. A review of the solar array manufacturing industry costing standards

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The solar array manufacturing industry costing standards model is designed to compare the cost of producing solar arrays using alternative manufacturing processes. Constructive criticism of the methodology used is intended to enhance its implementation as a practical design tool. Three main elements of the procedure include workbook format and presentation, theoretical model validity and standard financial parameters.

  17. LSSA (Low-cost Silicon Solar Array) project

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Photovoltaic Conversion Program was established to find methods of economically generating enough electrical power to meet future requirements. Activities and progress in the following areas are discussed: silicon-refinement processes; silicon-sheet-growth techniques; encapsulants; manufacturing of off-the-shelf solar arrays; and procurement of semistandardized solar arrays.

  18. A 928 sq m (10000 sq ft) solar array

    NASA Technical Reports Server (NTRS)

    Lindberg, D. E.

    1972-01-01

    As the power requirements for space vehicles increases, the area of solar arrays that convert solar energy to usable electrical power increases. The requirements for a 928 sq m (10,000 sq ft) array, its design, and a full-scale demonstration of one quadrant (232 sq m (2500 sq ft)) deployed in a one-g field are described.

  19. Atmospheric corrosion model and monitor for low cost solar arrays

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.; Mansfeld, F. B.; Jeanjaquet, S. L.; Kendig, M.

    1981-01-01

    An atmospheric corrosion model and corrosion monitoring system has been developed for low cost solar arrays (LSA). The corrosion model predicts that corrosion rate is the product of the surface condensation probability of water vapor and the diffusion controlled corrosion current. This corrosion model is verified by simultaneous monitoring of weather conditions and corrosion rates at the solar array test site at Mead, Nebraska.

  20. In-orbit performance of the Intelsat VI solar arrays

    NASA Astrophysics Data System (ADS)

    Fodor, Jay S.; Gelb, Steven W.; Goldhammer, Leland J.; Dunnet, Andrew; Cooper, Dennis

    Hughes Aircraft Company has completed construction of five Intelsat VI satellites. The spin-stabilized Intelsat VI satellites feature 3.6-m-diameter solar arrays providing approximately 2000 W power at the end of the planned 10-yr life of the satellites. The solar array consists of two cylindrical solar panels. During transfer orbit, the deployable solar panel is stowed over the fixed solar panel. On station in synchronous orbit, the deployable solar panel telescopes to its extended position, allowing power to be applied to the spacecraft from both solar panels. To date, two Intelsat VI satellites are on station in geosynchronous orbit. Telemetry from these satellites yields data on solar array current, voltage, and temperature. This information has been used to make a comparison with the expected performance provided by computer predictions. The data gathered to date indicate good agreement between the telemetry data and the Hughes prediction model.

  1. Active Vibration Damping of Solar Arrays

    NASA Astrophysics Data System (ADS)

    Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas

    2012-07-01

    Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.

  2. Genesis Solar Wind Array Collector Cataloging Status

    NASA Technical Reports Server (NTRS)

    Burkett, P.J.; Rodriguez, M.C.; Calaway, M.C.; Allton, J.H.

    2009-01-01

    Genesis solar wind array collectors were fractured upon landing hard in Utah in 2004. The fragments were retrieved from the damaged canister, imaged, repackaged and shipped to the Johnson Space Center curatorial facility [1]. As of January 2009, the collection consists of 3460 samples. Of these, 442 are comprised into "multiple" sample groupings, either affixed to adhesive paper (177) or collected in jars (17), culture trays (87), or sets of polystyrene vials (161). A focused characterization task was initiated in May 2008 to document the largest samples in the collection. The task consisted of two goals: to document sapphire based fragments greater than 2 cm in one dimension, and to document silicon based fragments greater than 1 cm in one direction.

  3. Alignment method for solar collector arrays

    DOEpatents

    Driver, Jr., Richard B

    2012-10-23

    The present invention is directed to an improved method for establishing camera fixture location for aligning mirrors on a solar collector array (SCA) comprising multiple mirror modules. The method aligns the mirrors on a module by comparing the location of the receiver image in photographs with the predicted theoretical receiver image location. To accurately align an entire SCA, a common reference is used for all of the individual module images within the SCA. The improved method can use relative pixel location information in digital photographs along with alignment fixture inclinometer data to calculate relative locations of the fixture between modules. The absolute locations are determined by minimizing alignment asymmetry for the SCA. The method inherently aligns all of the mirrors in an SCA to the receiver, even with receiver position and module-to-module alignment errors.

  4. Historical Evidence of Importance to the Industrialization of Flat-plate Silicon Photovoltaic Systems, Volume 2

    NASA Technical Reports Server (NTRS)

    Smith, J. L.; Gates, W. R.; Lee, T.

    1978-01-01

    Problems which may arise as the low cost silicon solar array (LSSA) project attempts to industrialize the production technologies are defined. The charge to insure an annual production capability of 500 MW peak for the photovoltaic supply industry by 1986 was critically examined, and focused on one of the motivations behind this goal-concern over the timely development of industrial capacity to supply anticipated demand. Conclusions from the analysis are utilized in a discussion of LSSA's industrialization plans, particularly the plans for pilot, demonstration and commercial scale production plants. Specific recommendations for the implementation of an industrialization task and the disposition of the project quantity goal were derived.

  5. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays. PMID:26698807

  6. The Submillimeter Wave Astronomy Satellite (SWAS) solar array system

    NASA Technical Reports Server (NTRS)

    Sneiderman, Gary

    1993-01-01

    The SWAS (Submillimeter Wave Astronomy Satellite) solar array system is described. It is an innovative approach to meet the missions requirements. The SWAS satellite provides a three axis stabilized platform to survey a variety of galactic cloud structures. This system includes highly reliable, lightweight launch latch, deployment, and lock mechanisms, and solar array panels that provide the maximum solar cell area. The design of the solar arrays are the result of system trades that included instrument and spacecraft thermal constraints, attitude control system maneuvering rates and pointing accuracies, the power system, and the spacecraft structure.

  7. Phoenix Mars Lander with Solar Arrays Open

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's next Mars-bound spacecraft, the Phoenix Mars Lander, was partway through assembly and testing at Lockheed Martin Space Systems, Denver, in September 2006, progressing toward an August 2007 launch from Florida. In this photograph, spacecraft specialists work on the lander after its fan-like circular solar arrays have been spread open for testing. The arrays will be in this configuration when the spacecraft is active on the surface of Mars.

    Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. It will dig into the surface, test scooped-up samples for carbon-bearing compounds and serve as NASA's first exploration of a potential modern habitat on Mars.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  8. Space Plasma Shown to Make Satellite Solar Arrays Fail

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1999-01-01

    In 1997, scientists and engineers of the Photovoltaic and Space Environments Branch of the NASA Lewis Research Center, Maxwell Technologies, and Space Systems/Loral discovered a new failure mechanism for solar arrays on communications satellites in orbit. Sustained electrical arcs, initiated by the space plasma and powered by the solar arrays themselves, were found to have destroyed solar array substrates on some Space Systems/Loral satellites, leading to array failure. The mechanism was tested at Lewis, and mitigation strategies were developed to prevent such disastrous occurrences on-orbit in the future. Deep Space 1 is a solar-electric-powered space mission to a comet, launched on October 24, 1998. Early in 1998, scientists at Lewis and Ballistic Missile Defense Organization (BMDO) realized that some aspects of the Deep Space 1 solar arrays were nearly identical to those that had led to the failure of solar arrays on Space Systems/Loral satellites. They decided to modify the Deep Space 1 arrays to prevent catastrophic failure in space. The arrays were suitably modified and are now performing optimally in outer space. Finally, the Earth Observing System (EOS) AM1, scheduled for launch in mid-1999, is a NASA mission managed by the Goddard Space Flight Center. Realizing the importance of Lewis testing on the Loral arrays, EOS-AM1 management asked Lewis scientists to test their solar arrays to show that they would not fail in the same way. The first phase of plasma testing showed that sustained arcing would occur on the unmodified EOS-AM1 arrays, so the arrays were removed from the spacecraft and fixed. Now, Lewis scientists have finished plasma testing of the modified array configuration to ensure that EOS-AM1 will have no sustained arcing problems on-orbit.

  9. Alphabus Solar Array- Versatile and Powerful Solar Arrays for Tomorrow's Commercial Telecom Satellites

    NASA Astrophysics Data System (ADS)

    Pfefferkorn, T.; Oxynos, C.; Greff, P.; Gerlach, L.

    2008-09-01

    After the successful series of Eurostar 3000 and Spacebus 4000 satellites and due to the demand of satellite operators for even larger and more powerful satellites, ESA decided to co-fund the development of a new satellite platform which covers the market segment beyond the upper limits of both satellite families.The new satellite bus family Alphabus is developed in the frame of ARTES 8 project by a joint project team of ASTRIUM and TAS, whereas the solar array is developed by ASTRIUM GmbH.The main approaches in this design phase for the Alphabus solar array were to find a standardized and scaleable design to production and to use qualification heritage from former projects, especially Eurostar 3000, as far as possible. The main challenges for the solar array design and test philosophy were the usage of lateral deployment and related sequential deployment and the bus voltage of 102,5V and related ESD precautions.This paper provides an overview of the different configurations, their main design features and performance parameters. In addition it summarizes the development and verification approach and shows the actual qualification status.

  10. Low-speed longitudinal aerodynamic characteristics of a flat-plate planform model of an advanced fighter configuration

    NASA Technical Reports Server (NTRS)

    Mcgrath, Brian E.; Neuhart, Dan H.; Gatlin, Gregory M.; Oneil, Pat

    1994-01-01

    A flat-plate wind tunnel model of an advanced fighter configuration was tested in the NASA LaRC Subsonic Basic Research Tunnel and the 16- by 24-inch Water Tunnel. The test objectives were to obtain and evaluate the low-speed longitudinal aerodynamic characteristics of a candidate configuration for the integration of several new innovative wing designs. The flat plate test allowed for the initial evaluation of the candidate planform and was designated as the baseline planform for the innovative wing design study. Low-speed longitudinal aerodynamic data were obtained over a range of freestream dynamic pressures from 7.5 psf to 30 psf (M = 0.07 to M = 0.14) and angles-of-attack from 0 to 40 deg. The aerodynamic data are presented in coefficient form for the lift, induced drag, and pitching moment. Flow-visualization results obtained were photographs of the flow pattern over the flat plate model in the water tunnel for angles-of-attack from 10 to 40 deg. The force and moment coefficients and the flow-visualization photographs showed the linear and nonlinear aerodynamic characteristics due to attached flow and vortical flow over the flat plate model. Comparison between experiment and linear theory showed good agreement for the lift and induced drag; however, the agreement was poor for the pitching moment.

  11. Conceptual design study of concentrator enhanced solar arrays for space applications. 2kW Si and GaAs systems at 1 AU

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The effect of concentration level on the specific power for a deployable, thin, gallium arsenide cell array in geosynchronous orbit for 10 years in conjunction with a two dimensional flat plate trough concentrator (V trough) and also with a multiple flat plate concentrator was investigated as well as the effects for a conventional silicon cell array on a rigid substrate. For application to a thin GaAs array at 1 AU for 10 years, the V trough produces a 19% benefit in specific power and a dramatic reduction in array area, while the multiple flat plate collector design is not only of no benefit, but is a considerable detriment. The benefit it achieves by reducing array area is duplicated by the 2D design. For the silicon array on a rigid substrate, improvement in performance due to a concentrator with ordinary mirror coating is quite small: 9% increase in specific power, and 13% reduction in array area. When the concentrator mirrors are coated with an improved cold mirror coating, somewhat more significant results are obtained: 31% specific power improvement; and 27% area reduction. In both cases, a 10 year exposure reduces BOL output by 23%.

  12. Spraylon fluorocarbon encapsulation for silicon solar cell arrays

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A development program was performed for evaluating, modifying, and optimizing the Lockheed formulated liquid transparent filmforming Spraylon fluorocarbon protective coating for silicon solar cells and modules. The program objectives were designed to meet the requirements of the low-cost automated solar cell array fabrication process. As part of the study, a computer program was used to establish the limits of the safe working stress in the coated silicon solar cell array system under severe thermal shock.

  13. Simple Experiments on the Use of Solar Energy

    ERIC Educational Resources Information Center

    Vella, G. J.; Goldsmid, H. J.

    1976-01-01

    Describes 5 solar energy experiments that can be used in secondary school: flat-plate collector, solar thermoelectric generator, simple concentrators, solar cell, and natural storage of solar energy. (MLH)

  14. 7.5 kW solar array simulator

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1975-01-01

    A high power solar array simulator capable of providing the input power to simultaneously operate two 30 cm diameter ion thruster power processors was designed, fabricated, and tested. The maximum power point may be set to between 150 and 7500 watts. This represents an open circuit voltage from 50 to 300 volts and a short circuit current from 4 to 36 amps. Illuminated solar cells are used as the control element. The illuminated solar cells provide a true solar cell characteristic and permit the option of simulating changes in this characteristic due to variations in solar intensity and/or temperature of the solar array. This is accomplished by changing the illumination and/or temperature of the control cells. The response of the output to a step change in load closely approximates that of an actual solar array.

  15. Array Automated Assembly Task Low Cost Silicon Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Rhee, S. S.; Jones, G. T.; Allison, K. L.

    1978-01-01

    Progress in the development of solar cells and module process steps for low-cost solar arrays is reported. Specific topics covered include: (1) a system to automatically measure solar cell electrical performance parameters; (2) automation of wafer surface preparation, printing, and plating; (3) laser inspection of mechanical defects of solar cells; and (4) a silicon antireflection coating system. Two solar cell process steps, laser trimming and holing automation and spray-on dopant junction formation, are described.

  16. Design of a Deformed Flat Plate to Compensate the Gain Loss Due to the Gravity-Induced Surface Distortion of Large Reflector Antennas

    NASA Technical Reports Server (NTRS)

    Imbriale, W.; Rengarajan, S.; Cramer, P., Jr.

    1998-01-01

    This paper presents a novel design of a deformed flat plate, wherein known amounts of distortion are introduced in a compensating flat plate, to recover the gain-loss due to the gravity-induced surface deformations of a large reflector antenna.

  17. Operational considerations of the Advanced Photovoltaic Solar Array

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1992-01-01

    Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.

  18. Efficiency and design analysis of a solar thermal powered flat plate dryer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Specialty crop fruit and vegetable pomaces are a common byproduct of the food processing and juicing industries. These pomaces can have high nutritional value, but are currently underutilized or treated as waste. Drum drying is one method that could be adopted to dry and stabilize fruit and vegetabl...

  19. Atmospheric corrosion of batten and enclosure materials for flat plate solar collectors

    NASA Astrophysics Data System (ADS)

    1980-09-01

    Sensors at nine test sites provided atmospheric data. Other data were obtained by analyzing corrosion samples that were exposed for varying periods of time. The results of the first test period are summarized.

  20. General thermal analysis of serpentine-flow flat-plate solar collector absorbers

    SciTech Connect

    Lund, K.O. )

    1989-01-01

    A thermal analysis is performed on an absorber which has general applicability to the serpentine-flow configuration. The heat conduction equation is rendered in nondimensional form for a typical panel-segment of the absorber, and shape factors are introduced for general application to various detailed flow-duct geometries. An analytical solution is obtained for the typical panel in terms of an Effectiveness-NTU relationship for that panel; the series combination of these relationships yields the overall E-NTU relationship for the entire absorber plate, for any number of panels, or serpentine-flow reversals. The results of the present analysis indicate the expected, axially varying, asymmetry of the temperature profile between the flow passes. Performance results are stated in terms of a serpentine relative performance factor, which permits direct comparison to the parallel configuration. The results indicate superior thermal performance of the serpentine-flow absorber, relative to the parallel-flow absorber, for the same number of transfer units.

  1. Improved solar array power point model with SPICE realization

    SciTech Connect

    Glass, M.C.

    1996-12-31

    An improved and simplified formulation is given for a solar array current-voltage model. This model curve matches a specified maximum power point (i,v) specification, in addition to the open-circuit and short-circuit specifications. The improved model has a simplified numerical solution, which is practical for SPICE simulation of orbital-scale electrical power systems. This paper presents the mathematical development of the solar array model solution, and the form of the necessary Newton/Raphson equations. The iterative nonlinear solution is then realized in a SPICE model of the solar array, which is then demonstrated in an orbital-time-scale satellite power system simulation.

  2. Research on Mitigation Method against Secondary Arcing on Solar Array

    NASA Astrophysics Data System (ADS)

    Wada, Tomohiro; Masui, Hirokazu; Toyoda, Kazuhiro; Cho, Mengu

    The recent trend of satellite manufacturing is to increase its communication capacity, multi-purpose mission payload, electric power and lifetime. A short-circuit due to discharge on the solar array of the satellite hampers its target by causing serious problems, such as, lowering of power generation that ultimately halts the operation of solar array. In this paper, we have investigated possible mitigation methods against short-circuit due to discharge on solar array by applying coating and by changing the shape of Room Temperature Vulcanization: Silicon adhesive (RTV). The electrostatic discharge is mitigated by obtaining the event of secondary arc generated on each condition.

  3. A solar array module fabrication process for HALE solar electric UAVs

    SciTech Connect

    Carey, P.G.; Aceves, R.C.; Colella, N.J.; Thompson, J.B.; Williams, K.A.

    1993-12-01

    We describe a fabrication process to manufacture high power to weight ratio flexible solar array modules for use on high altitude long endurance (HALE) solar electric unmanned air vehicles (UAVs). A span-loaded flying wing vehicle, known as the RAPTOR Pathfinder, is being employed as a flying test bed to expand the envelope of solar powered flight to high altitudes. It requires multiple light weight flexible solar array modules able to endure adverse environmental conditions. At high altitudes the solar UV flux is significantly enhanced relative to sea level, and extreme thermal variations occur. Our process involves first electrically interconnecting solar cells into an array followed by laminating them between top and bottom laminated layers into a solar array module. After careful evaluation of candidate polymers, fluoropolymer materials have been selected as the array laminate layers because of their inherent abilities to withstand the hostile conditions imposed by the environment.

  4. Heat transfer enhancement downstream of vortex generators on a flat plate

    SciTech Connect

    Turk, A.Y.

    1984-01-01

    This investigation was conducted in order to better understand the augmentation of forced convective heat transfer when a single row of counter-rotating vortex blades is attached to a flat surface. The major emphasis of the work is to study the way in which vortex generators augment the heat transfer coefficient of an initially-laminar boundary layer over a flat, constant heat flux surface exposed to favorable free stream pressure gradients. Particular emphasis is placed on the relationship between the geometry of vortex generators and the augmentation of local and overall heat transfer coefficients. The behavior of the boundary layer downstream of vortex generators is partially explored. This dissertation includes results of an experimental investigation that indicates the amount of heat transfer enhancement depends on the vortex blade height and arrangement on the plate surface. The local enhancement of the heat transfer coefficient was increased up to 300% over that for a plain flat plate mainly because of high turbulence produced over the region adjacent to the plate surface, resulting in increased mixing of the slower fluid near the plate surface with the free stream. A set of guidelines for the design of more efficient surface with vortex generators was proposed.

  5. Changes in Flat Plate Wake Characteristics Obtained With Decreasing Plate Thickness

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2016-01-01

    The near and very near wake of a flat plate with a circular trailing edge is investigated with data from direct numerical simulations. Computations were performed for four different Reynolds numbers based on plate thickness (D) and at constant plate length. The value of ?/D varies by a factor of approximately 20 in the computations (? being the boundary layer momentum thickness at the trailing edge). The separating boundary layers are turbulent in all the cases. One objective of the study is to understand the changes in wake characteristics as the plate thickness is reduced (increasing ?/D). Vortex shedding is vigorous in the low ?/D cases with a substantial decrease in shedding intensity in the largest ?/D case (for all practical purposes shedding becomes almost intermittent). Other characteristics that are significantly altered with increasing ?/D are the roll-up of the detached shear layers and the magnitude of fluctuations in shedding period. These effects are explored in depth. The effects of changing ?/D on the distributions of the time-averaged, near-wake velocity statistics are discussed.

  6. Large-eddy simulation of separation-reattachment of a flat-plate turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Cheng, Wan; Pullin, Dale; Samtaney, Ravi

    2014-11-01

    We describe large-eddy simulations (LES) of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of three-dimensional flow separation. The stretched-vortex subgrid-scale model is used in the bulk of the flow domain combined with a wall-model that is a two-dimensional extension of that described by Chung and Pullin [J. Fluid Mech. 631, 281 (2009)]. Wall-normal averaging of the wall-parallel, stream-wise momentum equations combined with local inner scaling for the resolved-scale velocity gives an ordinary differential equation describing the wall shear-stress vector at each wall point. Together with a specification of a slip velocity at a raised, wall-parallel plane, this provides a boundary condition for the outer LES that allows local backflow. The present LES is motivated by experiments on flows exhibiting separation induced by the response of a turbulent boundary layer to an adverse-favorable pressure-gradient profile. Detailed discussion of detachment and reattachment of the separation bubble will be presented.

  7. A formal derivation for the Blasius similarity solution for flat-plate boundary layer

    NASA Astrophysics Data System (ADS)

    Lin, Hao

    2015-11-01

    The Blasius solution is a classical solution for a laminar boundary layer attached to a semi-infinite flat plate. The key of the solution strategy is to reduce the boundary layer equations, which are PDEs, to a set of ODEs, using a similarity variable transform. Conceptually, the similarity suggests that the velocity profile in each transverse cross-section appears ``self-similar''. In many classical text books and typical classroom lectures on fluid mechanics, the existence of the similarity solution is argued heuristically. The similarity variable is defined a priori so as to collapse the PDEs. It appears somewhat mystical that the PDEs can be perfectly reduced via such an approach. Here we present a rigorous derivation for the existence of a similarity solution, which naturally arises from the fact that there is no apparent streamwise length scale for a semi-infinite plate. Conversely, a similarity solution cannot exist if the plate size is finite. This derivation can be useful in fluids education, in topics including similarity, scaling arguments, and boundary layer theory.

  8. Direct Numerical Simulations of the flow over a dimpled flat plate

    NASA Astrophysics Data System (ADS)

    Beratlis, Nikolaos; Squires, Kyle; Balaras, Elias

    2011-11-01

    Golf balls use dimples to reduce the drag by as much as 50 percent when compared to a smooth sphere in the subcritical regime. Recent experiments and computations indicate that dimples introduce perturbations that drive high momentum fluid towards the wall, thus delaying separation and reducing drag. The nature of these perturbations and how they are affected by the Reynolds number, boundary layer thickness, and dimple shape is not well understood. In the present study we will report a series of DNS of the flow past a dimpled flat plate. A stability map with the important parameters that control the onset of the perturbations (Reynolds number, ratio of dimple depth to boundary layer thickness, etc) will be presented. We will show that dimples induce perturbations that lead to turbulent-like boundary layers at relatively low Reynolds numbers, where the flow would otherwise remain laminar. The origin of these perturbations is a thin shear layer forming over a dimple, which becomes unstable and generates vortices. These undergo complex three-dimensional instabilities transforming themselves into structures that resemble hairpin-like vortices typically found in turbulent wall bounded flows. They are very effective in mixing the flow and already within one dimple diameter downstream of the dimple the flow attains characteristics of low Reynolds number turbulence.

  9. Combined polymer and microbubble drag reduction on a large flat plate

    NASA Astrophysics Data System (ADS)

    Deutsch, Steven; Fontaine, Arnold A.; Moeny, Michael J.; Petrie, Howard L.

    2006-06-01

    Drag-reduction experiments with combined injection of high-molecular-weight long-chained polymers and microbubbles were conducted on a 3.1 m long flat plate model in the 1.22 m diameter water tunnel at the Applied Research Laboratory of the Pennsylvania State University. Combined gas injection upstream of polymer injection produced, over a wide range of test conditions, higher levels of drag reduction than those obtained from the independent injection of polymer or microbubbles alone. These increased levels of drag reduction with combined injection were often greater than the product of the drag reductions obtained by the independent constituents, defined as synergy. We speculate that the synergy is a result of the gas-layer-induced extension of the polymer-alone initial diffusion zone in combination with the increased drag reduction by microbubbles. This increased length of the initial zone layer, consistent with high drag reduction, can significantly increase the persistence of the drag reduction and may improve the outlook for practical application.

  10. Design of 3-D Nacelle near Flat-Plate Wing Using Multiblock Sensitivity Analysis (ADOS)

    NASA Technical Reports Server (NTRS)

    Eleshaky, Mohamed E.; Baysal, Oktay

    1994-01-01

    One of the major design tasks involved in reducing aircraft drag is the integration of the engine nacelles and airframe. With this impetus, nacelle shapes with and without the presence of a flat-plate wing nearby were optimized. This also served as a demonstration of the 3-D version of the recently developed aerodynamic design optimization methodology using sensitivity analysis, ADOS. The required flow analyses were obtained by solving the three-dimensional, compressible, thin-layer Navier-Stokes equations using an implicit, upwind-biased, finite volume scheme. The sensitivity analyses were performed using the preconditioned version of the SADD scheme (sensitivity analysis on domain decomposition). In addition to demonstrating the present method's capability for automatic optimization, the results offered some insight into two important issues related to optimizing the shapes of multicomponent configurations in close proximity. First, inclusion of the mutual interference between the components resulted in a different shape as opposed to shaping an isolated component. Secondly, exclusion of the viscous effects compromised not only the flow physics but also the optimized shapes even for isolated components.

  11. A method for measuring skin friction drag on a flat plate in contaminated gas flows

    NASA Technical Reports Server (NTRS)

    Oetting, R. B.; Patterson, G. K.

    1984-01-01

    A technique for measuring friction drag in turbulent gas and gas/particle flows over flat plates is presented, and preliminary results are reported. A 0.25-in.-thick 72 x 6-in. Al plate is suspended by six horizontal support air bearings and four vertical alignment air bearings between fixed dummy plates and leading-edge and trailing-edge fairings in the 32-in.-high 48-in.-wide 11-ft-long test section of a closed-circuit atmospheric wind tunnel operating at 50-150 ft/sec. Particles of Fe and Al oxides of diameter 20-150 microns and density up to 0.3 lb particles per lb air are injected via a 6 x 0.167-in. nozzle; turbulence is induced by a roughened section of the leading-edge fairing; and friction drag is measured using a load-cell pressure transducer. Sample results are shown in a graph, demonstrating good agreement with theoretical drag calculations.

  12. Direct simulation of flat-plate boundary layer with mild free-stream turbulence

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz

    2014-11-01

    Spatially evolving direct numerical simulation of the flat-plate boundary layer has been performed. The momentum thickness Reynolds number develops from 80 to 3000 with a free-stream turbulence intensity decaying from 3 percent to 0.8 percent. Predicted skin-friction is in agreement with the Blasius solution prior to breakdown, follows the well-known T3A bypass transition data during transition, and agrees with the Erm and Joubert Melbourne wind-tunnel data after the completion of transition. We introduce the concept of bypass transition in the narrow sense. Streaks, although present, do not appear to be dynamically important during the present bypass transition as they occur downstream of infant turbulent spots. For the turbulent boundary layer, viscous scaling collapses the rate of dissipation profiles in the logarithmic region at different Reynolds numbers. The ratio of Taylor microscale and the Kolmogorov length scale is nearly constant over a large portion of the outer layer. The ratio of large-eddy characteristic length and the boundary layer thickness scales very well with Reynolds number. The turbulent boundary layer is also statistically analyzed using frequency spectra, conditional-sampling, and two-point correlations. Near momentum thickness Reynolds number of 2900, three layers of coherent vortices are observed: the upper and lower layers are distinct hairpin forests of large and small sizes respectively; the middle layer consists of mostly fragmented hairpin elements.

  13. Spray Formation during the Impact of a Flat Plate on Water Surface

    NASA Astrophysics Data System (ADS)

    Wang, An; Duncan, James H.

    2015-11-01

    Spray formation during the impact of a flat plate on a water surface is studied experimentally. The plate is mounted on a two-axis carriage that can slam the plate vertically into the water surface as the carriage moves horizontally along a towing tank. The plate is 122 cm by 38 cm and oriented with adjustable pitch and roll angle. The port (lower) edge of the plate is positioned with a 3-mm gap from one of the tank walls. A laser sheet is created in a plane oriented perpendicular to the axis of the horizontal motion of the carriage. The temporal evolution of the spray within the light sheet is measured with a cinematic laser induced fluorescence technique at a frame rate of 800 Hz. Experiments are performed with a fixed plate trajectory in a vertical plane, undertaken at various speeds. Two types of spray are found when the plate has nonzero pitch and roll angles. The first type is composed of a cloud of high-speed droplets and ligaments generated as the port edge of the plate hits the water surface during the initial impact. The second type is a thin sheet of water that grows from the starboard edge of the plate as it moves below the local water level. The geometrical features of the spray are found to be dramatically affected by the impact velocity. The support of the Office of Naval Research under grant N000141310587 is gratefully acknowledged.

  14. Flow Phenomena in the Very Near Wake of a Flat Plate with a Circular Trailing Edge

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2014-01-01

    The very near wake of a flat plate with a circular trailing edge, exhibiting pronounced shedding of wake vortices, is investigated with data from a direct numerical simulation. The separating boundary layers are turbulent and statistically identical thus resulting in a wake that is symmetric in the mean. The focus here is on the instability of the detached shear layers, the evolution of rib-vortex induced localized regions of reverse flow that detach from the main body of reverse flow in the trailing edge region and convect downstream, and phaseaveraged velocity statistics in the very near wake. The detached shear layers are found to exhibit unstable behavior intermittently, including the development of shear layer vortices as in earlier cylinder flow investigations with laminar separating boundary layers. Only a small fraction of the separated turbulent boundary layers undergo this instability, and form the initial shed vortices. Pressure spectra within the shear layers show a broadband peak at a multiple of shedding frequency. Phase-averaged intensity and shear stress distributions of the randomly fluctuating component of velocity are compared with those obtained in the near wake. The distributions of the production terms in the transport equations for the turbulent stresses are also provided.

  15. Two-dimensional scanner apparatus. [flaw detector in small flat plates

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.; Bankston, B. F. (Inventor)

    1984-01-01

    An X-Y scanner utilizes an eddy current or ultrasonic current test probe to detect surface defects in small flat plates and the like. The apparatus includes a scanner which travels on a pair of slide tubes in the X-direction. The scanner, carried on a carriage which slides in the Y-direction, is driven by a helix shaft with a closed-loop helix groove in which a follower pin carried by scanner rides. The carriage is moved incrementally in the Y-direction upon the completion of travel of the scanner back and forth in the X-direction by means of an indexing actuator and an indexing gear. The actuator is in the form of a ratchet which engages ratchet gear upon return of the scanner to the indexing position. The indexing gear is rotated a predetermined increment along a crack gear to move carriage incrementally in the Y-direction. Thus, simplified highly responsive mechanical motion may be had in a small lightweight portable unit for accurate scanning of small area.

  16. Leading-edge vortex burst on a low-aspect-ratio rotating flat plate

    NASA Astrophysics Data System (ADS)

    Medina, Albert; Jones, Anya R.

    2016-08-01

    This study experimentally investigates the phenomenon of leading-edge-vortex burst on rotating flat plate wings. An aspect-ratio-2 wing was driven in pure rotation at a Reynolds number of Re=2500 . Of primary interest is the evolution of the leading-edge vortex along the wing span over a single-revolution wing stroke. Direct force measurements of the lift produced by the wing revealed a single global lift maximum relatively early in the wing stroke. Stereoscopic particle image velocimetry was applied to several chordwise planes to quantify the structure and strength of the leading-edge vortex and its effect on lift production. This analysis revealed opposite-sign vorticity entrainment into the core of the leading-edge vortex, originating from a layer of secondary vorticity along the wing surface. Coincident with the lift peak, there emerged both a concentration of opposite vorticity in the leading-edge-vortex core, as well as axial flow stagnation within the leading-edge-vortex core. Planar control volume analysis was performed at the midspan to quantify the contributions of vorticity transport mechanisms to the leading-edge-vortex circulation. The rate of circulation annihilation by opposite-signed vorticity entrainment was found to be minimal during peak lift production, where convection balanced the flux of vorticity resulting in stagnation and eventually reversal of axial flow. Finally, vortex burst was found to be correlated with swirl number, where bursting occurs at a swirl threshold of Sw<0.6 .

  17. Aerothermodynamics of compressible flow past a flat plate in the slip-flow regime

    NASA Astrophysics Data System (ADS)

    Cheng, Chi-Yang; Dai, Yi; Li, Genong; Hu, Yitao; Lai, Ming-Chia

    2015-11-01

    Compressible flow past a flat plate in the slip-flow regime features a very simple geometry and flow field, but it retains the most relevant and interesting physics in high-speed rarefied gas dynamics. In the slip-flow regime, the aerothermodynamic issues, especially the recovery factors and the convection heat transfer correlation, are the focus of this presentation. We first present the detailed similarity equations, especially the transformed Maxwell's slip and jump boundary conditions, and the equations for the Chapman-Rubesin parameter as well as how we incorporate the variable gas properties and the constitutive scaling model for the Knudsen layer in the similarity equations. The similarity solutions are compared with results published by E. R. van Driest [NACA Technical Note 2597, 1952]. We point out that van Driest's solutions were computed by using no-slip and no-jump boundary conditions. The recovery factor and Nusselt number of the plate are shown as functions of the Reynolds number and the Mach number. Finally, the similarity solutions are also compared with simulations of a two-dimensional computational fluid dynamics model solving the full Navier-Stokes-Fourier equations with slip and jump boundary conditions.

  18. Interaction of a Rectangular Jet with a Flat-Plate Placed Parallel to the Flow

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Brown, C. A.; Bridges, J. A.

    2013-01-01

    An experimental study is carried out addressing the flowfield and radiated noise from the interaction of a large aspect ratio rectangular jet with a flat plate placed parallel to but away from the direct path of the jet. Sound pressure level spectra exhibit an increase in the noise levels for both the 'reflected' and 'shielded' sides of the plate relative to the free-jet case. Detailed cross-sectional distributions of flowfield properties obtained by hot-wire anemometry are documented for a low subsonic condition. Corresponding mean Mach number distributions obtained by Pitot-probe surveys are presented for high subsonic conditions. In the latter flow regime and for certain relative locations of the plate, a flow resonance accompanied by audible tones is encountered. Under the resonant condition the jet cross-section experiences an 'axis-switching' and flow visualization indicates the presence of an organized 'vortex street'. The trends of the resonant frequency variation with flow parameters exhibit some similarities to, but also marked differences with, corresponding trends of the well-known edgetone phenomenon.

  19. Measurements of Conversion Efficiency for a Flat Plate Thermophotovoltaic System Using a Photonic Cavity Test System

    SciTech Connect

    E.J. Brown; C.T. Ballinger; S.R. Burger; G.W. Charache; L.R. Danielson; D.M. DePoy; T.J. Donovan; M. LoCascio

    2000-05-30

    The performance of a 1 cm{sup 2} thermophotovoltaic (TPV) module was recently measured in a photonic cavity test system. A conversion efficiency of 11.7% was measured at a radiator temperature of 1076 C and a module temperature of 29.9 C. This experiment achieved the highest direct measurement of efficiency for an integrated TPV system. Efficiency was calculated from the ratio of the peak (load matched) electrical power output and the heat absorption rate. Measurements of these two parameters were made simultaneously to assure the validity of the measured efficiency value. This test was conducted in a photonic cavity which mimicked a typical flat-plate TPV system. The radiator was a large, flat graphite surface. The module was affixed to the top of a copper pedestal for heat absorption measurements. The heat absorption rate was proportional to the axial temperature gradient in the pedestal under steady-state conditions. The test was run in a vacuum to eliminate conductive and convective heat transfer mechanisms. The photonic cavity provides the optimal test environment for TPV efficiency measurements because it incorporates all important physical phenomena found in an integrated TPV system: high radiator emissivity and blackbody spectral shape, photon recycling, Lambertian distribution of incident radiation and complex geometric effects. Furthermore, the large aspect ratio between radiating surface area and radiator/module spacing produces a view factor approaching unity with minimal photon leakage.

  20. Vortex Formation, Shedding and Energy Harvesting from a Cyber-Physical Pitching Flat Plate

    NASA Astrophysics Data System (ADS)

    Onoue, Kyohei; Breuer, Kenneth

    2014-11-01

    We examine the dynamics and energy harvesting capabilities of an elastically mounted flat plate undergoing large amplitude limit cycle oscillations in a uniform flow. All experiments are performed using a cyber-physical system, wherein the structural inertia, stiffness and damping are numerically simulated using a position-following feedback algorithm. The cyber-physical system also allows for implementation of nonlinear spring and damping coefficients, which control the plate dynamics and subsequent energy harvesting characteristics. Analysis of the plate kinematics and the fluid flow over the plate and in the wake (measured using PIV) are used to understand the interplay between structural motion and vortex formation at the sharp leading and trailing edges of the plate. By varying the structural properties of the system we systematically analyze the formation, strength, stability and separation of the leading edge vortex, as well as the dependence on kinematic parameters and Reynolds number. Connections to previous results on vortex formation time and bluff body aerodynamics are discussed. This research is funded by the Air Force Office of Scientific Research (AFOSR).

  1. Vortex shedding in flow past an inclined flat plate at high incidencea)

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Pettersen, Bjørnar; Andersson, Helge I.; Narasimhamurthy, Vagesh D.

    2012-08-01

    The properties of asymmetric wake patterns behind a flat plate inclined at angles of attack 20°, 25°, and 30° are investigated. The Reynolds number based on the inflow velocity and the plate width is 1000. Both two-dimensional and three-dimensional calculations are performed by direct numerical simulations. Compared to the three-dimensional simulations, the two-dimensional calculations predict a significantly lower pressure on the rear surface of the plate, which consequently leads to very high drag and lift forces on the plate. The asymmetric mean wake flow, turbulence properties, and coherent patterns in the three-dimensional simulations are analysed by time- and phase-averaged techniques. Unlike the symmetric wake flow, the vortices shed from the leading and trailing edges of an inclined plate possess unequal strength with the trailing edge vortex having higher strength. It is observed that the present three-dimensional simulations predict results which compare well with the experimental data. In addition, wake instabilities in the form of oblique modes and vortex dislocations are observed in the 20° angle of attack case. It is found that this intrinsic instability is most likely due to the low incidence angle rather than the prevailing low Reynolds numbers.

  2. Investigation into the causes of browning in EVA encapsulated flat plate PV modules

    SciTech Connect

    Holley, W.H. Jr.; Agro, S.C.; Galica, J.P.; Thoma, L.A.; Yorgensen, R.S.; Ezrin, M.; Klemchuk, P.; Lavigne, G.; Thomas, H.

    1994-12-31

    The problem of browning in a number of EVA encapsulated flat plate photovoltaic modules has led to the questioning of EVA as a suitable material for such applications. By isolating the variables that could possibly lead to EVA browning, such as module construction, types of glass superstrates, additives, and processing conditions, the authors have been able to determine those significant specific variables that seem to have the most influence on discoloration.When standard-cure EVA-based laminates were exposed to accelerated UV aging, measurable yellowing of those laminates was evident after only one to two weeks exposure, and visual discoloration was observed after four to six weeks. Some samples yellowed quickly and some not at all, and there were significant differences in the rates of discoloration between standard-cure and fast-cure EVA. This paper looks at the results of these studies, especially focusing on the effect of additives in the EVA on the rate of yellowing, and discusses how preliminary results can be used to reformulate EVA encapsulants.

  3. Heat Transfer on a Flat Plate with Uniform and Step Temperature Distributions

    NASA Technical Reports Server (NTRS)

    Bahrami, Parviz A.

    2005-01-01

    Heat transfer associated with turbulent flow on a step-heated or cooled section of a flat plate at zero angle of attack with an insulated starting section was computationally modeled using the GASP Navier-Stokes code. The algebraic eddy viscosity model of Baldwin-Lomax and the turbulent two-equation models, the K- model and the Shear Stress Turbulent model (SST), were employed. The variations from uniformity of the imposed experimental temperature profile were incorporated in the computations. The computations yielded satisfactory agreement with the experimental results for all three models. The Baldwin- Lomax model showed the closest agreement in heat transfer, whereas the SST model was higher and the K-omega model was yet higher than the experiments. In addition to the step temperature distribution case, computations were also carried out for a uniformly heated or cooled plate. The SST model showed the closest agreement with the Von Karman analogy, whereas the K-omega model was higher and the Baldwin-Lomax was lower.

  4. Numerical flow Simulation around a flat plate during heavy rainfall using Lagrangian Eulerian approach

    NASA Astrophysics Data System (ADS)

    Dhir, Gaurav; Suman, Sawan

    2015-11-01

    Experimental evidence shows that aircrafts operating under heavy rainfall conditions face deterioration of lift and increase in drag. This scenario can be a critical design challenge especially for slow moving vehicles such as airships. Effective roughening of airfoil surface caused by an uneven water film, loss of flow momentum and the loss of vehicle momentum due to its collision with the raindrops are the primary reasons causing the drag to increase. Our work focuses primarily on the numerical quantification of boundary layer momentum loss caused due to raindrops. The collision of raindrops with a solid surface leads to formation of an ejecta fog of splashed back droplets with their sizes being of the order of micrometers and their acceleration leads to boundary layer momentum loss. We model the airflow within a flat plate boundary layer using a Lagrangian-Eulerian approach with the raindrops being considered as non-deformable, non-spinning and non-interacting droplets. We employ an inter-phase coupling term to account for the interaction between the boundary layer flow and the droplets. Our presentation will focus on several comparisons (velocity field, lift and drag at various angles of attack) with the results of the standard (rain-free) Prandtl boundary layer flow. Indian Institute of Technology, Delhi.

  5. Computational Analysis of Vortex Formation Over a Plunge Oscillating Flat Plate with Various Slip Conditions

    NASA Astrophysics Data System (ADS)

    Palmore, John; Sharif, Muhammad; Lang, Amy

    2010-11-01

    A thorough understanding of small scale aerodynamics is important for the design of micro air vehicles. Since they fly in the same Re regime as that of insects, these animals can provide biologically inspired designs. This study looks at how an alteration to the surface slip condition affects the aerodynamic flow over a wing at low Re. Butterflies have small scales (on the order of 100 microns in length) that line the surface of their wings, and it is hypothesized that these scales can affect the slip condition over their wings altering vortex formation and possibly leading to improved flight characteristics. As an initial test to this hypothesis, the flow over an infinitely thin, two-dimensional flat plate was studied using the CFD software FLUENT. The no-slip condition was modified by directly altering the shear stress distribution over the plate. In addition, the action of flapping was simulated by varying the angle of attack as a function of time between -60 and 60 degrees. Multiple shear stress distributions, varying from shear free to no-slip, and multiple flapping frequencies were tested to discern the effects on vortex formation; lift and drag were also analyzed.

  6. Momentum transport in the wake of a finite-length thin flat plate

    NASA Astrophysics Data System (ADS)

    Hemmati, Arman; Wood, David H.; Martinuzzi, Robert J.

    2015-11-01

    A comparison of the wakes of thin flat plates with aspect ratios (AR) 1.0, 1.6, 2.0 and 3.2, normal to a uniform stream, are conducted based on Direct Numerical Simulations (DNS) at Re=1200. Typical anti-symmetric Karman shedding of high AR plates, AR>2.0, is initiated by detachments at the plate corners. Shear layer detachment on the longer edges triggers shedding from the shorter edges. Thus, there is only a single shedding frequency detected in the wake. At lower AR, however, an interaction between adjacent shear layers occurs prior to detachment, which elongates the base vortex, i.e. from 1.56H for AR=3.2 to 2.69H for AR=1.6. This change of shedding mechanism has significant impact on wake structures and instantaneous pressure loads. The dominant shear layers on the longer sides appear to maintain the Karman shedding at higher AR. Karman shedding is intermittently interrupted for lower AR plates due to shear layer interactions, which increases the turbulence kinetic energy, production and dissipation rates and Reynolds stresses. To better understand dependence of the wake topology on AR, mean and fluctuating flow variables are evaluated at various locations along the chord. Moreover, comparisons to wakes of finite-height cylinders and circular plates are considered. This work is supported by AITF and NSERC fellowship grants.

  7. Analysis of electromagnetic scattering from irregularly shaped, thin, metallic flat plates

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Cockrell, C. R.; Beck, Fred B.; Vedeler, Erik; Koch, Melissa B.

    1993-01-01

    This report describes an application of the method of moments to calculate the electromagnetic scattering from irregularly shaped, thin, metallic flat plates in free space. In the present technique, an irregularly shaped plate is enclosed by a rectangle on which the surface-current density is then expressed in terms of subdomain functions by dividing the rectangle into subsections. A shape function is introduced to ensure zero current outside the patch. The surface-current density is determined using the electric field integral equation (EFIE) approach in conjunction with the method of moments, and from a knowledge of the surface-current density, the electromagnetic scattering from a plate is calculated. Using this technique, the electromagnetic scattering from a hexagonal plate; an equilateral triangular plate; an equilateral triangular plate with a concentric, equilateral triangular hole and an inverted, equilateral triangular hole; and a diamond-shaped plate is computed and compared with the numerical results obtained by using the Electromagnetic Surface Patch (ESP) code developed by Ohio State University. The numerical results compare favorably with the measurements performed on these shapes in the Langley Experimental Test Range facility.

  8. Experimental investigation of a large aspect ratio flat plate encountering a steam-wise gust

    NASA Astrophysics Data System (ADS)

    Mulleners, Karen; Mancini, Peter; Jones, Anya

    2015-11-01

    While humans are capable of mimicking, and even outperform, the kinematic capabilities of natural flyers, birds and insects are still way ahead of us when it comes to anticipating and dealing with turbulent and gusty flow conditions. To tailor and improve flight control capabilities of low Reynolds number flyers in real weather, we need to bridge this gap of knowledge. As a first step, we experimentally studied the aerodynamic influence of a simplified stream-wise gust on a large aspect ratio flat plate. The experiments were conduction in the 7 × 1 . 5 × 1 m3 towing tank at UMD which was equipped with a 4-axis computer-controlled motion system. The effect of a stream-wise gust was simulated by accelerating or decelerating the wing to a new constant velocity after an initial constant surge. A high-speed camera and light sheet optics were attached to the tow carriage allowing for time-resolved particle image velocimetry along the entire motion in addition to direct force measurements. A proper orthogonal decomposition of the flow field was carried out to study the time scales related to changes induced by the sudden acceleration or deceleration in addition to analyzing the size, position and trajectory of prominent vortices and associated forces during the gust encounter.

  9. Experimental study on the start up performance of flat plate pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Hu, Chaofa; Jia, Li

    2011-06-01

    An experimental system of flat plate pulsating heat pipe was established and experimental research was carried out in this system to know the mechanism of heat transfer, start-up and operating characteristics. The factors, such as filling rate, heating power, heating method etc, which have great influence on the thermal performance of the plate pulsating heat pipe were discussed. The results indicate that heating power and filling rate are the important factors for the start-up of the plate pulsating heat pipe. The different start-up power is needed with different filling rate, and the start-up of the heat pipe in case of bottom heated is much easier than that of top heated. Increasing the heating power and enlarging the heating area can make the start-up easier. Heating power can also affect the start-up time of heat pipe under the condition of bottom heated, while it does not have some influence to the heat pipe of top heated. The thermal resistance of plate pulsating heat pipe is related with the heating power, and the higher the heating power is, the smaller the thermal resistance is. But the best filling rate which the heat pipe needs is different with different heating methods, and the performance of the heat pipe in the case of bottom heated is better than the others.

  10. Detached Eddy Simulation of Film Cooling over a GE Flat Plate

    NASA Technical Reports Server (NTRS)

    Roy, Subrata

    2005-01-01

    The detached eddy simulation of film cooling has been utilized for a proprietary GE plate-pipe configuration. The blowing ratio was 2.02, the velocity ratio was 1.26, and the temperature ratio was 1.61. Results indicate that the mixing processes downstream of the hole are highly anisotropic. DES solution shows its ability to depict the dynamic nature of the flow and capture the asymmetry present in temperature and velocity distributions. Further, comparison between experimental and DES time-averaged effectiveness is satisfactory. Numerical values of span-averaged effectiveness show better prediction of the experimental values at downstream locations than a steady state Glenn HT solution. While the DES method shows obvious promise, there are several issues that need further investigation. Despite an accurate prediction in the hole vicinity, the simulation still falls short in the region x = 10d to 100d. This should be investigated. Also the model used flat plate. Actual turbine blade should be modeled in the future if additional finding is available.

  11. Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor.

    PubMed

    Sun, Yahui; Huang, Yun; Liao, Qiang; Fu, Qian; Zhu, Xun

    2016-05-01

    To offset the adverse effects of light attenuation on microalgae growth, hollow polymethyl methacrylate (PMMA) tubes were embedded into a flat-plate photobioreactor (PBR) as light guides. In this way, a fraction of incident light could be transmitted and emitted to the interior of the PBR, providing a secondary light source for cells in light-deficient regions. The average light intensity of interior regions 3-6cm from surfaces with 70μmolm(-2)s(-1) incident light was enhanced 2-6.5 times after 3.5days cultivation, resulting in a 23.42% increase in biomass production to that cultivated in PBR without PMMA tubes. The photosynthetic efficiency of microalgae in the proposed PBR was increased to 12.52%. Moreover, the installation of hollow PMMA tubes induced turbulent flow in the microalgae suspension, promoting microalgae suspension mixing. However, the enhanced biomass production was mainly attributed to the optimized light distribution in the PBR. PMID:26868153

  12. Flowfield measurements in a separated and reattached flat plate turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Patrick, William P.

    1987-01-01

    The separation and reattachment of a large-scale, two-dimensional turbulent boundary layer at low subsonic speed on a flat plate has been studied experimentally. The separation bubble was 55 cm long and had a maximum bubble thickness, measured to the height of the mean dividing streamline, of 17 cm, which was twice the thickness of the inlet boundary layer. A combination of laser velocimetry, hot-wire anemometry, pneumatic probing techniques, and flow visualization were used as diagnostics. Principal findings were that an outer inviscid rotational flow was defined which essentially convected over the blockage associated with the inner, viscously dominated bubble recirculation region. A strong backflow region in which the flow moved upstream 100 percent of the time was measured near the test surface over the central 35 percent of the bubble. A laminar backflow boundary layer having pseudo-turbulent characteristics including a log-linear velocity profile was generated under the highly turbulent backflow. Velocity profile shapes in the reversed flow region matched a previously developed universal backflow profile at the upstream edge of the separation region but not in the steady backflow region downstream. A smoke flow visualization movie and hot-film measurements revealed low frequency nonperiodic flapping at reattachment. However, forward flow fraction data at reattachment and mean velocity profiles in the redeveloping boundary layer downstream of reattachment correlated with backward-facing step data when the axial dimension was scaled by the distance from the maximum bubble thickness to reattachment.

  13. Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux

    NASA Astrophysics Data System (ADS)

    Khan, W. A.; Khan, Z. H.; Haq, R. U.

    2015-04-01

    The present work is dedicated to analyze the flow and heat transport of ferrofluids along a flat plate subjected to uniform heat flux and slip velocity. A magnetic field is applied in the transverse direction to the plate. Moreover, three different kinds of magnetic nanoparticles (Fe3O4, CoFe2O4, Mn-ZnFe2O4 are incorporated within the base fluid. We have considered two different kinds of base fluids (kerosene and water) having poor thermal conductivity as compared to solid magnetic nanoparticles. Self-similar solutions are obtained and are compared with the available data for special cases. A simulation is performed for each ferrofluid mixture by considering the dominant effects of slip and uniform heat flux. It is found that the present results are in an excellent agreement with the existing literature. The variation of skin friction and heat transfer is also performed at the surface of the plate and then the better heat transfer and of each mixture is analyzed. Kerosene-based magnetite Fe3O4 provides the higher heat transfer rate at the wall as compared to the kerosene-based cobalt ferrite and Mn-Zn ferrite. It is also concluded that the primary effect of the magnetic field is to accelerate the dimensionless velocity and to reduce the dimensionless surface temperature as compared to the hydrodynamic case, thereby increasing the skin friction and the heat transfer rate of ferrofluids.

  14. Raman scattering measurements within a flat plate boundary layer in an inductively coupled plasma wind tunnel

    SciTech Connect

    Studer, Damien; Vervisch, Pierre

    2007-08-01

    High temperature air chemistry is a crucial issue concerning next reusable space vehicle thermal protection system. The aim of this paper is to measure N{sub 2} and O{sub 2} densities and characteristic temperatures thanks to spontaneous Raman scattering within the boundary layer of a stainless steel flat plate cooled down at 300 K. This shear-flow test configuration is considered as a nonequilibrium air plasma test case. Vibrational and rotational temperatures are determined by comparing experimental spectra with computed ones. The density calculation is performed using the ratio of first vibrational transition intensities for both cases with and without plasma at 38 hPa. Several sections were investigated between 15 and 40 mm from the leading edge. All these sections exhibit a classical boundary layer pattern. The rotational temperature is completely in equilibrium with the plate and reaches 2500 K at the outer edge of the boundary layer. On the contrary, the vibrational temperature drops to 1500 K near of the plate and is about 5000 K in the freestream. Molecular densities are smaller than expected at equilibrium, about 60% of the equilibrium value in the freestream for N{sub 2}.

  15. Jet-induced ground effects on a parametric flat-plate model in hover

    NASA Technical Reports Server (NTRS)

    Wardwell, Douglas A.; Hange, Craig E.; Kuhn, Richard E.; Stewart, Vearl R.

    1993-01-01

    The jet-induced forces generated on short takeoff and vertical landing (STOVL) aircraft when in close proximity to the ground can have a significant effect on aircraft performance. Therefore, accurate predictions of these aerodynamic characteristics are highly desirable. Empirical procedures for estimating jet-induced forces during the vertical/short takeoff and landing (V/STOL) portions of the flight envelope are currently limited in accuracy. The jet-induced force data presented significantly add to the current STOVL configurations data base. Further development of empirical prediction methods for jet-induced forces, to provide more configuration diversity and improved overall accuracy, depends on the viability of this STOVL data base. The data base may also be used to validate computational fluid dynamics (CFD) analysis codes. The hover data obtained at the NASA Ames Jet Calibration and Hover Test (JCAHT) facility for a parametric flat-plate model is presented. The model tested was designed to allow variations in the planform aspect ratio, number of jets, nozzle shape, and jet location. There were 31 different planform/nozzle configurations tested. Each configuration had numerous pressure taps installed to measure the pressures on the undersurface of the model. All pressure data along with the balance jet-induced lift and pitching-moment increments are tabulated. For selected runs, pressure data are presented in the form of contour plots that show lines of constant pressure coefficient on the model undersurface. Nozzle-thrust calibrations and jet flow-pressure survey information are also provided.

  16. Investigation of the flow field inside flat-plate collector tube using PIV technique

    SciTech Connect

    Sookdeo, Steven; Siddiqui, Kamran

    2010-06-15

    The thermofluid process inside the tube of flat-plate collectors is complex because the non-uniform heating of the tube results in the formation of stably and unstably stratified layers of fluid that interact with each other. The measurement and investigation of the flow behaviour inside the collector tube is very challenging. We report on a novel application of the particle image velocimetry (PIV) technique to remotely measure the velocity field inside the collector tube. The two-dimensional velocity fields were measured in the midplane of a collector tube for the Reynolds number range of 150-900 at unheated and four different heating conditions. We have presented and discussed in detail the technique implementation and the associated challenges. The results have shown that the collector heating significantly alters the structure and magnitude of the mean velocity field and influences the heat transfer to the fluid. It is observed that the collector heating causes a significant asymmetry in the mean velocity profiles over the given range of Reynolds numbers and heating conditions. (author)

  17. The 7.5 kW solar array simulator

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1975-01-01

    A high power solar array simulator capable of providing the input power to simultaneously operate two 30 cm diameter ion thruster power processors was designed, fabricated, and tested. The maximum power point is set to between 150 and 7500 watts representing an open circuit voltage from 50 to 300 volts and a short circuit current from 4 to 36 amps. Illuminated solar cells are used as the control element to provide a true solar cell characteristic and permit the option of simulating changes in this characteristic due to variations in solar intensity and/or temperature of the solar array. This is accomplished by changing the illumination and/or temperature of the control cells. The response of the output to a step change in load closely approximates that of an actual solar array.

  18. Dynamic characteristics of a space-station solar wing array

    SciTech Connect

    Dorsey, J.T.; Bush, H.G.

    1984-06-01

    Describes a solar-wing-array concept which meets space-station requirements for minimum fundamental frequency, component modularity, and growth potential. The basic wing-array design parameters are varied, and the resulting effects on the array vibration frequencies and mode shapes are assessed. The transient response of a free-free space station (incorporating a solar-wing-array point design) to a load applied at the space-station center is studied. The use of the transient response studies in identifying critically loaded structural members is briefly discussed.

  19. Optical Design of Segmented Hexagon Array Solar Mirror

    NASA Technical Reports Server (NTRS)

    Huegele, Vince

    2000-01-01

    A segmented array of mirrors was designed for a solar concentrator test stand at MSFC for firing solar thermal propulsion engines. The 144 mirrors each have a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The mirror segments are aluminum hexagons that had the surface diamond turned and quartz coated. The array focuses sunlight reflected from a heliostat to a 4 inch diameter spot containing 10 kw of power at the 15-foot focal point. The derivation of the surface figure for the respective mirror elements is shown. The alignment process of the array is discussed and test results of the system's performance is given.

  20. Optical design of SHASM: segmented hexagon array solar mirror

    NASA Astrophysics Data System (ADS)

    Huegele, Vinson B.

    2000-10-01

    A segmented array of mirrors was designed for a solar concentrator test stand at MSFC for firing solar thermal propulsion engines. The 144 mirrors each have s spherical surface to approximate a parabolic concentrator when combined into the entire 17-foot diameter array. The mirror segments are aluminum hexagons that had the surface diamond turned and quartz coated. The array focuses sunlight reflected from a heliostat to a 4 inch diameter spot containing 8 kilowatts of power at the 15 foot focal point. The derivation of the surface figure for the respective mirror elements is shown. The alignment process of the array is discussed and test results of the system's performance are given.

  1. Radial pn Junction, Wire Array Solar Cells

    NASA Astrophysics Data System (ADS)

    Kayes, Brendan Melville

    Radial pn junctions are potentially of interest in photovoltaics as a way to decouple light absorption from minority carrier collection. In a traditional planar design these occur in the same dimension, and this sets a lower limit on absorber material quality, as cells must both be thick enough to effectively absorb the solar spectrum while also having minority-carrier diffusion lengths long enough to allow for efficient collection of the photo-generated carriers. Therefore, highly efficient photovoltaic devices currently require highly pure materials and expensive processing techniques, while low cost devices generally operate at relatively low efficiency. The radial pn junction design sets the direction of light absorption perpendicular to the direction of minority-carrier transport, allowing the cell to be thick enough for effective light absorption, while also providing a short pathway for carrier collection. This is achieved by increasing the junction area, in order to decrease the path length any photogenerated minority carrier must travel, to be less than its minority carrier diffusion length. Realizing this geometry in an array of semiconducting wires, by for example depositing a single-crystalline inorganic semiconducting absorber layer at high deposition rates from the gas phase by the vapor-liquid-solid (VLS) mechanism, allows for a "bottom up" approach to device fabrication, which can in principle dramatically reduce the materials costs associated with a cell.

  2. Gravity Probe B Completed With Solar Arrays

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is completed during the solar array installation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  3. Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2003-01-01

    The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.

  4. Passive solar array orientation devices for terrestrial application.

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.; Morse, F. H.

    1972-01-01

    A passive solar array orientation device, called a thermal heliotrope, is described, and several terrestrial applications are illustrated. The thermal heliotrope consists of a bimetallic helical coil that serves as the motor element, producing torque and angular displacement. A control mechanism in the form of one or more shades completes the basic device. In comparison with electromechanical tracking systems, the thermal heliotrope is electrically passive, has relatively few parts, and is low cost. After describing the principle of operation and several models built for space applications, the design considerations for several terrestrial thermal heliotrope units are presented. It is suggested that the use of the thermal heliotrope for solar array orientation could significantly reduce array cost, thereby increasing the competitive economic posture of solar arrays for terrestrial applications. The thermal heliotrope modified for terrestrial use is readily adaptable to orient solar energy concentrators, such as furnaces and stills.

  5. Proceedings of the Low-Cost Solar Array Wafering Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.

    1982-01-01

    The technology and economics of silicon ingot wafering for low cost solar arrays were discussed. Fixed and free abrasive sawing wire, ID, and multiblade sawing, materials, mechanisms, characterization, and innovative concepts were considered.

  6. Locking Corners Speed Solar-Array Frame Assembly

    NASA Technical Reports Server (NTRS)

    Olah, S.; Sampson, W. J.

    1984-01-01

    Mitered corners of solar-array frames joined together by single angle brace and two springs. Locking corner braces and mating frame members pushed together by hand or assembled automatically. Fastening system used to assemble window screens and picture frames.

  7. Recently Deployed Solar Arrays on International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This video still depicts the recently deployed starboard and port solar arrays towering over the International Space Station (ISS). The video was recorded on STS-97's 65th orbit. Delivery, assembly, and activation of the solar arrays was the main mission objective of STS-97. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics, and will provide the power necessary for the first ISS crews to live and work in the U.S. segment. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  8. Contaminated Solar Array Handrail Samples Retrieved From Mir Analyzed

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; McCue, Terry R.

    2000-01-01

    In January 1998 during the shuttle STS 89 mission, an eight-section Russian solar array panel was retrieved after more than 10 years of exposure to the orbital space environment on Mir. The array was deployed June 16, 1987, and removed on November 3, 1997. It had been actively used as a source of electrical power for 8 years. This operational array had been located on the Mir core module, located directly above the Kvant-2 module. Its retrieval provided a unique opportunity to study the effects of the low-Earth-orbit environment on a functional solar array. The intact solar array underwent scientific inspections and preliminary tests by a joint team of U.S. and Russian investigators to evaluate the effects of long-term space exposure. Upon initial examination, significant contamination was observed over most components of the array. One panel, panel 8, was provided to the U.S. scientists for further evaluation. As part of the U.S. investigations, two solar array handrail samples from panel 8 were evaluated for contamination at the NASA Glenn Research Center at Lewis Field. One is a section of a rigid handrail, and the other is a section of woven fabric tape that was overwrapped around a flexible handhold. Both the flexible handhold woven fabric and the rigid handrail were significantly darkened after 10 years of space exposure. They were evaluated with optical microscopy, field emission scanning electron microscopy (FESEM), and energy-dispersive spectroscopy. Solar absorptance and room-temperature emittance values also were obtained. The returned contaminated solar array segment is very similar in design to the solar arrays being supplied by the Russians for the International Space Station. Therefore, it was desirable to determine what the contaminants on various surfaces are and what the sources of the contamination were.

  9. SAMIS - A simulation of the solar array manufacturing industry

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1976-01-01

    SAMIS is a continuing activity of the Project Analysis and Integration Task of the Low-cost Silicon Solar Array Project (LSSA). It provides a standardized procedure for producing reliable estimates of the cost of manufacturing solar arrays or their components. These estimates are based on descriptions of the manufacturing processes which are being studied and developed by LSSA subcontractors and will be used to assess the commercial viability of those processes and to set research priorities.

  10. Space Station Freedom Solar Array tension mechanism development

    NASA Technical Reports Server (NTRS)

    Allmon, Curtis; Haugen, Bert

    1994-01-01

    A tension mechanism is used to apply a tension force to the Space Station Freedom Solar Array Blanket. This tension is necessary to meet the deployed frequency requirement of the array as well as maintain the flatness of the flexible substrate solar cell blanket. The mechanism underwent a series of design iterations before arriving at the final design. This paper discusses the design and testing of the mechanism.

  11. LSSA (Low-cost Silicon Solar Array) project

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Methods are explored for economically generating electrical power to meet future requirements. The Low-Cost Silicon Solar Array Project (LSSA) was established to reduce the price of solar arrays by improving manufacturing technology, adapting mass production techniques, and promoting user acceptance. The new manufacturing technology includes the consideration of new silicon refinement processes, silicon sheet growth techniques, encapsulants, and automated assembly production being developed under contract by industries and universities.

  12. Effects of plasma sheath on solar power satellite array

    NASA Technical Reports Server (NTRS)

    Parker, L. W.

    1979-01-01

    The structure of the plasma sheath and equilibrium voltage distribution of a high-power solar array governs various kinds of plasma-interaction phenomena and array losses. Sheath effects of a linearly-connected array are investigated for GEO. Although the array may be large, the thin-sheath-limit analysis may be invalid, necessitating numerical methods. Three-dimensional computer calculations show that potential barriers and over-lapping sheaths can occur, i.e., structures not predictable under the thin-sheath-limit analysis, but nevertheless controlling the distribution of plasma currents impacting on the array.

  13. Evaluation of solar cells and arrays for potential solar power satellite applications

    NASA Technical Reports Server (NTRS)

    Almgren, D. W.; Csigi, K.; Gaudet, A. D.

    1978-01-01

    Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.

  14. Thin-Film Solar Array Earth Orbit Mission Applicability Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Raffaelle, Ryne P.

    2002-01-01

    This is a preliminary assessment of the applicability and spacecraft-level impact of using very lightweight thin-film solar arrays with relatively large deployed areas for representative Earth orbiting missions. The most and least attractive features of thin-film solar arrays are briefly discussed. A simple calculation is then presented illustrating that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a proper spacecraft-level systems assessment must take into account the additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to benefit from using thin-film arrays. NASA Glenn's low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is also briefly discussed to provide a perspective on one approach to achieving this enabling technology. The paper concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that with their unique characteristics, very lightweight arrays using efficient, thin-film cells on flexible substrates may become the best array option for a subset of Earth orbiting missions.

  15. Experimental studies on the tripping behavior of narrow T-stiffened flat plates subjected to hydrostatic pressure and underwater shock

    NASA Technical Reports Server (NTRS)

    Budweg, H. L.; Shin, Y. S.

    1987-01-01

    An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior.

  16. Rapid Fabrication of Flat Plate Cavity Phosphor Thermography Test Models for Shuttle Return-to-Flight Aero-Heating

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.; Powers, Michael A.; Nevins, Stephen C.; Griffith, Mark S.; Wainwright, Gary A.

    2006-01-01

    Methods, materials and equipment are documented for fabricating flat plate test models at NASA Langley Research Center for Shuttle return-to-flight aeroheating experiments simulating open and closed cavity interactions in Langley s hypersonic 20-Inch Mach 6 air wind tunnel. Approximately 96 silica ceramic flat plate cavity phosphor thermography test models have been fabricated using these methods. On one model, an additional slot is machined through the back of the plate and into the cavity and vented into an evacuated plenum chamber to simulate a further opening in the cavity. After sintering ceramic to 2150 F, and mounting support hardware, a ceramic-based two-color thermographic phosphor coating is applied for global temperature and heat transfer measurements, with fiducial markings for image registration.

  17. Optimized Feedback Control of Vortex Shedding on an Inclined Flat Plate

    NASA Astrophysics Data System (ADS)

    Joe, Won Tae

    This thesis examines flow control and the potentially favorable effects of feedback, associated with unsteady actuation in separated flows over airfoils. The objective of the flow control is to enhance lift at post-stall angles of attack by changing the dynamics of the wake vortices. We present results from a numerical study of unsteady actuation on a two-dimensional flat plate at post-stall angles of attack at Reynolds number (Re) of 300 and 3000. At Re=300, the control waveform is optimized and a feedback strategy is developed to optimize the phase of the control relative to the lift with either a sinusoidal or the optimized waveform, resulting in a high-lift limit cycle of vortex shedding. Also at Re=3000, we show that certain frequencies and actuator waveforms lead to stable (high-lift) limit cycles, in which the flow is phase locked to the actuation. First, a two-dimensional flat plate model at a high angle of attack at a Re of 300 is considered. We design the feedback to slightly adjust the frequency and/or phase of actuation to lock it to a particular phase of the lift, thus achieving a phase-locked flow with the maximal period-averaged lift over every cycle of acutation. With the sinusoidal forcing and feedback, we show that it is possible to optimize the phase of the control relative to the lift in order to achieve the highest possible period-averaged lift in a consistent fashion. However, continuous sinusoidal forcing could be adding circulation when it is unnecessary, or undesirable. Thus we employ an adjoint-based optimization in order to find the waveform (time history of the jet velocty) that maximizes the lift for a given actuation amplitude. The adjoint of the linearized perturbed equations is solved backwards in time to obtain the gradient of the lift to changes in actuation (the jet velocity), and this information is used to iteratively improve the controls. Optimal control provides a periodic control waveform, resulting in high lift shedding

  18. Numerical Simulations of Vortex Generator Vanes and Jets on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Yao, Chung-Sheng; Lin, John C.

    2002-01-01

    Numerical simulations of a single low-profile vortex generator vane, which is only a small fraction of the boundary-layer thickness, and a vortex generating jet have been performed for flows over a flat plate. The numerical simulations were computed by solving the steady-state solution to the Reynolds-averaged Navier-Stokes equations. The vortex generating vane results were evaluated by comparing the strength and trajectory of the streamwise vortex to experimental particle image velocimetry measurements. From the numerical simulations of the vane case, it was observed that the Shear-Stress Transport (SST) turbulence model resulted in a better prediction of the streamwise peak vorticity and trajectory when compared to the Spalart-Allmaras (SA) turbulence model. It is shown in this investigation that the estimation of the turbulent eddy viscosity near the vortex core, for both the vane and jet simulations, was higher for the SA model when compared to the SST model. Even though the numerical simulations of the vortex generating vane were able to predict the trajectory of the stream-wise vortex, the initial magnitude and decay of the peak streamwise vorticity were significantly under predicted. A comparison of the positive circulation associated with the streamwise vortex showed that while the numerical simulations produced a more diffused vortex, the vortex strength compared very well to the experimental observations. A grid resolution study for the vortex generating vane was also performed showing that the diffusion of the vortex was not a result of insufficient grid resolution. Comparisons were also made between a fully modeled trapezoidal vane with finite thickness to a simply modeled rectangular thin vane. The comparisons showed that the simply modeled rectangular vane produced a streamwise vortex which had a strength and trajectory very similar to the fully modeled trapezoidal vane.

  19. Field-based evaluations of horizontal flat-plate fish screens

    USGS Publications Warehouse

    Rose, B.P.; Mesa, M.G.; Barbin-Zydlewski, G.

    2008-01-01

    Diversions from streams are often screened to prevent the loss of or injury to fish. Hydraulic criteria meant to protect fish that encounter screens have been developed, but primarily for screens that are vertical to the water flow rather than horizontal. For this reason, we measured selected hydraulic variables and released wild rainbow trout Oncorhynchus mykiss over two types of horizontal flat-plate fish screens in the field. Our goal was to assess the efficacy of these screens under a variety of conditions in the field and provide information that could be used to develop criteria for safe fish passage. We evaluated three different invertedweir screens over a range of stream (0.24-1.77 m3/s) and diversion flows (0.10-0.31 m3/s). Approach velocities (AVs) ranged from 3 to 8 cm/s and sweeping velocities (SVs) from 69 to 143 cm/s. We also evaluated a simple backwatered screen over stream flows of 0.23-0.79 m3/s and diversion flows of 0.08-0.32 m3/s. The mean SVs for this screen ranged from 15 to 66 cm/s and the mean AVs from 1 to 5 cm/s. The survival rates of fish held for 24 h after passage over these screens exceeded 98%. Overall, the number of fish-screen contacts was low and the injuries related to passage were infrequent and consisted primarily of minor fin injuries. Our results indicate that screens of this type have great potential as safe and effective fish screens for small diversions. Care must be taken, however, to avoid operating conditions that produce shallow or no water over the screen surface, situations of high AVs and low SVs at backwatered screens, and situations producing a localized high AV with spiraling flow. ?? Copyright by the American Fisheries Society 2008.

  20. Three-dimensional flow structures and unsteady forces on pitching and surging revolving flat plates

    NASA Astrophysics Data System (ADS)

    Percin, M.; van Oudheusden, B. W.

    2015-02-01

    Tomographic particle image velocimetry was used to explore the evolution of three-dimensional flow structures of revolving low-aspect-ratio flat plates in combination with force measurements at a Reynolds number of 10,000. Two motion kinematics are compared that result in the same terminal condition (revolution with constant angular velocity and angle of attack) but differ in the motion during the buildup phase: pitching while revolving at a constant angular velocity; or surging with a constant acceleration at a fixed angle of attack. Comparison of force histories shows that the pitching wing generates considerably higher forces during the buildup phase which is also predicted by a quasi-steady model quite accurately. The difference in the buildup phases affects the force histories until six chords of travel after the end of buildup phase. In both cases, a vortex system that is comprised of a leading-edge vortex (LEV), a tip vortex and a trailing edge vortex is formed during the initial period of the motion. The LEV lifts off, forms an arch-shaped structure and bursts into substructures, which occur at slightly different phases of the motions, such that the revolving-surging wing flow evolution precedes that of the revolving-pitching wing. The delay is shown to be in accordance with the behavior of the spanwise flow which is affected by the interaction between the tip vortex and revolving dynamics. Further analysis shows that the enhanced force generation of the revolving-pitching wing during the pitch-up phase originates from: (1) increased magnitude and growth rate of the LEV circulation; (2) relatively favorable position and trajectory of the LEV and the starting vortex; and (3) generation of bound circulation during the pitching motion, whereas that of the revolving-surging wing is negligible in the acceleration phase.

  1. A bubble column evaporator with basic flat-plate condenser for brackish and seawater desalination.

    PubMed

    Schmack, Mario; Ho, Goen; Anda, Martin

    2016-01-01

    This paper describes the development and experimental evaluation of a novel bubble column-based humidification-dehumidification system, for small-scale desalination of saline groundwater or seawater in remote regions. A bubble evaporator prototype was built and matched with a simple flat-plate type condenser for concept assessment. Consistent bubble evaporation rates of between 80 and 88 ml per hour were demonstrated. Particular focus was on the performance of the simple condenser prototype, manufactured from rectangular polyvinylchlorid plastic pipe and copper sheet, a material with a high thermal conductivity that quickly allows for conduction of the heat energy. Under laboratory conditions, a long narrow condenser model of 1500 mm length and 100 mm width achieved condensate recovery rates of around 73%, without the need for external cooling. The condenser prototype was assessed under a range of different physical conditions, that is, external water cooling, partial insulation and aspects of air circulation, via implementing an internal honeycomb screen structure. Estimated by extrapolation, an up-scaled bubble desalination system with a 1 m2 condenser may produce around 19 l of distilled water per day. Sodium chloride salt removal was found to be highly effective with condensate salt concentrations between 70 and 135 µS. Based on findings and with the intent to reduce material cost of the system, a shorter condenser length of 750 mm for the non-cooled (passive) condenser and of 500 mm for the water-cooled condenser was considered to be equally efficient as the experimentally evaluated prototype of 1500 mm length. PMID:26086612

  2. Experimental study of boundary layer transition with elevated freestream turbulence on a heated flat plate

    NASA Technical Reports Server (NTRS)

    Sohn, Ki-Hyeon; Reshotko, Eli

    1991-01-01

    A detailed investigation to document momentum and thermal development of boundary layers undergoing natural transition on a heated flat plate was performed. Experimental results of both overall and conditionally sampled characteristics of laminar, transitional, and low Reynolds number turbulent boundary layers are presented. Measurements were acquired in a low-speed, closed-loop wind tunnel with a freestream velocity of 100 ft/s and zero pressure gradient over a range of freestream turbulence intensities (TI) from 0.4 to 6 percent. The distributions of skin friction, heat transfer rate and Reynolds shear stress were all consistent with previously published data. Reynolds analogy factors for R(sub theta) is less than 2300 were found to be well predicted by laminar and turbulent correlations which accounted for an unheated starting length. The measured laminar value of Reynolds analogy factor was as much as 53 percent higher than the Pr(sup -2/3). A small dependence of turbulent results on TI was observed. Conditional sampling performed in the transitional boundary layer indicated the existence of a near-wall drop in intermittency, pronounced at certain low intermittencies, which is consistent with the cross-sectional shape of turbulent spots observed by others. Non-turbulent intervals were observed to possess large magnitudes of near-wall unsteadiness and turbulent intervals had peak values as much as 50 percent higher than were measured at fully turbulent stations. Non-turbulent and turbulent profiles in transitional boundary layers cannot be simply treated as Blasius and fully turbulent profiles, respectively. The boundary layer spectra indicate predicted selective amplification of T-S waves for TI is approximately 0.4 percent. However, for TI is approximately 0.8 and 1.1 percent, T-S waves are localized very near the wall and do not play a dominant role in transition process.

  3. Arrays of ultrathin silicon solar microcells

    DOEpatents

    Rogers, John A; Rockett, Angus A; Nuzzo, Ralph; Yoon, Jongseung; Baca, Alfred

    2014-03-25

    Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 .mu.m and, for example, is made from low grade Si.

  4. Arrays of ultrathin silicon solar microcells

    SciTech Connect

    Rogers, John A.; Rockett, Angus A.; Nuzzo, Ralph; Yoon, Jongseung; Baca, Alfred

    2015-08-11

    Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 .mu.m and, for example, is made from low grade Si.

  5. Verification of the proteus two-dimensional Navier-Stokes code for flat plate and pipe flows

    NASA Technical Reports Server (NTRS)

    Conley, Julianne M.; Zeman, Patrick L.

    1991-01-01

    The Proteus Navier-Stokes Code is evaluated for 2-D/axisymmetric, viscous, incompressible, internal, and external flows. The particular cases to be discussed are laminar and turbulent flows over a flat plate, laminar and turbulent developing pipe flows, and turbulent pipe flow with swirl. Results are compared with exact solutions, empirical correlations, and experimental data. A detailed description of the code set-up, including boundary conditions, initial conditions, grid size, and grid packing is given for each case.

  6. Verification of the Proteus two-dimensional Navier-Stokes code for flat plate and pipe flows

    NASA Technical Reports Server (NTRS)

    Conley, Julianne M.; Zeman, Patrick L.

    1991-01-01

    The Proteus Navier-Stokes Code is evaluated for two-dimensional/axisymmetric, viscous, incompressible, internal and external flows. The particular cases to be discussed are laminar and turbulent flows over a flat plate, laminar and turbulent dveloping pipe flows and turbulent pipe flow with swirl. Results are compared with exact solutions, empirical correlations and experimental data. A detailed description of the code set-up, including boundary conditions, intitial conditions, grid size and grid packing is given for each case.

  7. The addition of red lead to flat plate and tubular valve regulated miners cap lamp lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ferg, E. E.; Loyson, P.; Poorun, A.

    The study looked at the use of red lead in the manufacturing of valve regulated lead acid (VRLA) miners cap lamp (MCL) batteries that were made with either flat plate or tubular positive electrodes. A problem with using only grey oxide in the manufacture of thick flat plate or tubular electrodes is the poor conversion of the active material to the desired lead dioxide. The addition of red lead to the initial starting material improves the formation efficiency but is considerably more expensive thereby increasing the cost of manufacturing. The study showed that by carefully controlling the formation conditions in terms of the voltage and temperature of a battery, good capacity performance can be achieved for cells made with flat plate electrodes that contain up to 25% red lead. The small amount of red lead in the active cured material reduces the effect of electrode surface sulphate formation and allows the battery to achieve its rated capacity within the first few cycles. Batteries made with flat plate positive electrodes that contained more that 50% red lead showed good initial capacity but had poor structural active material bonding. The study showed that MCL batteries made with tubular positive electrodes that contained less than 75% red lead resulted in a poorly formed electrode with limited capacity utilization. Pickling and soaking times of the tubular electrodes should be kept at a minimum thereby allowing higher active material utilization during subsequent capacity cycling. The study further showed that it is beneficial to use higher formation rates in order to reduce manufacturing time and to improve the active material characteristics.

  8. On the aeroacoustic and flow structures developed on a flat plate with a serrated sawtooth trailing edge

    NASA Astrophysics Data System (ADS)

    Chong, Tze Pei; Vathylakis, Alexandros

    2015-10-01

    Results of an experimental study on turbulent flow over a flat plate with a serrated sawtooth trailing edge are presented in this paper. After tripping the boundary layer to become turbulent, the broadband noise sources at the sawtooth serrated trailing edge is studied by several experimental techniques. Broadband noise reduction by the serrated sawtooth trailing edge can be realistically achieved in the flat plate configuration. The variations of wall pressure power spectral density and the spanwise coherence (which relates to the spanwise correlation length) in a sawtooth trailing edge play a minor role in the mechanisms underpinning the reduction of self noise radiation. Conditional-averaging technique was applied in the boundary layer data where a pair of pressure-driven oblique vortical structures near the sawtooth side edges is identified. In the current flat plate configuration, the interaction between the vortical structures and the local turbulent boundary layer results in a redistribution of the momentum transport and turbulent shear stress near the sawtooth side edges as well as the sawtooth tip, thus affecting the efficiency of self noise radiation.

  9. Development of second mode instability in a Mach 6 flat-plate boundarylayer with two-dimensional roughness

    NASA Astrophysics Data System (ADS)

    Tang, Qing; Zhang, Chuanhong; Lee, Cunbiao

    2014-11-01

    The PCB pressure sensors and particle image velocimetry (PIV) are used to study the development of the second mode instability in a Mach 6 flow over a flat plate with two-dimensional roughness. A two-dimensional transverse wall blowing is used to enhance the second mode instability in the boundary layer and seeding tracer particles for PIV measurement. Three roughness elements with different heights are mounted at 125mm downstream the leading edge of the flat plate. It is proved that two-dimensional roughness could enhance the second mode fluctuation upstream the roughness. The second mode instability waves in flat-plate boundary layer are clearly shown by PIV and the boundary layer separation zone upstream the roughness is carefully measured. The boundary layer then reattaches the wall and the second mode instability waves are found damping downstream the roughness. It is also proved that the amplification and damping effect of the second mode instability waves depend on the height of the roughness.

  10. Renewable energy technologies for federal facilities: Solar water heating

    SciTech Connect

    1996-05-01

    This sheet presents information on solar water heaters (passive and active), solar collectors (flat plate, evacuated tube, parabolic trough), lists opportunities for use of solar water heating, and describes what is required and the costs. Important terms are defined.

  11. Laboratory 15 kV high voltage solar array facility

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Gooder, S. T.

    1976-01-01

    The laboratory high voltage solar array facility is a photoelectric power generating system. Consisting of nine modules with over 23,000 solar cells, the facility is capable of delivering more than a kilowatt of power. The physical and electrical characteristics of the facility are described.

  12. Space Station Freedom solar array panels plasma interaction test facility

    NASA Technical Reports Server (NTRS)

    Martin, Donald F.; Mellott, Kenneth D.

    1989-01-01

    The Space Station Freedom Power System will make extensive use of photovoltaic (PV) power generation. The phase 1 power system consists of two PV power modules each capable of delivering 37.5 KW of conditioned power to the user. Each PV module consists of two solar arrays. Each solar array is made up of two solar blankets. Each solar blanket contains 82 PV panels. The PV power modules provide a 160 V nominal operating voltage. Previous research has shown that there are electrical interactions between a plasma environment and a photovoltaic power source. The interactions take two forms: parasitic current loss (occurs when the currect produced by the PV panel leaves at a high potential point and travels through the plasma to a lower potential point, effectively shorting that portion of the PV panel); and arcing (occurs when the PV panel electrically discharges into the plasma). The PV solar array panel plasma interaction test was conceived to evaluate the effects of these interactions on the Space Station Freedom type PV panels as well as to conduct further research. The test article consists of two active solar array panels in series. Each panel consists of two hundred 8 cm x 8 cm silicon solar cells. The test requirements dictated specifications in the following areas: plasma environment/plasma sheath; outgassing; thermal requirements; solar simulation; and data collection requirements.

  13. Photovoltaics and solar thermal conversion to electricity - Status and prospects

    NASA Technical Reports Server (NTRS)

    Alper, M. E.

    1979-01-01

    Photovoltaic power system technology development includes flat-plate silicon solar arrays and concentrating solar cell systems, which use silicon and other cell materials such as gallium arsenide. System designs and applications include small remote power systems ranging in size from tens of watts to tens of kilowatts, intermediate load-center applications ranging in size from tens to hundreds of kilowatts, and large central plant installations, as well as grid-connected rooftop applications. The thermal conversion program is concerned with large central power systems and small power applications.

  14. Low-Concentration-Ratio Solar-Cell Arrays

    NASA Technical Reports Server (NTRS)

    Biss, M. S.; Reed, David A., Jr.

    1986-01-01

    Paper presents design concept for mass-producible arrays of solar electric batteries and concentrators tailored to individual requirements. Arrays intended primarily for space stations needing about 100 kW of power. However, modular, lightweight, compact, and relatively low-cost design also fulfill requirements of some terrestrial applications. Arrays built with currently available materials. Pultrusions, injectionmolded parts, and composite materials used extensively to keep weight low. For added flexibility in design and construction, silicon and gallium arsenide solar-cell panels interchangeable.

  15. Integrally regulated solar array demonstration using an Intel 8080 microprocessor

    NASA Technical Reports Server (NTRS)

    Petrik, E. J.

    1977-01-01

    A concept for regulating the voltage of a solar array by using a microprocessor to effect discrete voltage changes was demonstrated. Eight shorting switches were employed to regulate a simulated array at set-point voltages between 10,000 and 15,000 volts. The demonstration showed that the microprocessor easily regulated the solar array output voltage independently of whether or not the switched cell groups were binary sized in voltage. In addition, the microprocessor provided logic memory capability to perform additional tasks such as locating and insolating a faulty switch.

  16. PRELIMINARY ENVIRONMENTAL ASSESSMENT OF SOLAR ENERGY SYSTEMS

    EPA Science Inventory

    This report addresses the environmental consequences of three kinds of solar energy utilization: photovoltaic, concentrator (steam electric) and flat plate. The application of solar energy toward central power generating stations is emphasized. Discussions of combined modes and o...

  17. Solar Array and Auroral Charging Studies of DMSP Spacecraft

    NASA Technical Reports Server (NTRS)

    Matias, Kelwin

    2013-01-01

    The SSJ electrostatic analyzers and the SSIES plasma instruments on the DMSP spacecraft in low Earth polar orbit can be used to conduct case studies of auroral and solar array charging. We will use a program written in the Interactive Data Language (IDL) to evaluate questionable charging events in the SSJ records by comparing charging signatures in SSJ and SSIES data. In addition, we will assemble a number of case studies of solar array charging showing the signatures from the SSJ data and compare to the SSIES charging signatures. In addition we will use Satellite Tool Kit (STK) to propagate orbits, obtain solar intensity, and use to verify onset of charging with sunrise.

  18. Integrated Solar-Panel Antenna Array for CubeSats

    NASA Technical Reports Server (NTRS)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  19. Photographic films for the Multi-Spectral Solar Telescope Array

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Allen, Maxwell J.; Lindblom, Joakim F.; Gilliam, Lou; November, Larry; Brown, Todd; Dewan, Clyde A.

    1992-01-01

    The rocketborne Multi-Spectral Solar Telescope Array (MSSTA) uses an array of Ritchey-Chretien, Cassegrain, and Herschelian telescopes to produce ultrahigh-resolution full-disk images of the sun within the soft X-ray, EUV, and FUV ranges. Such imaging of the solar disk and corona out to several solar radii placed great demands on the MSSTA's data storage capabilities; in addition, its photographic films required very low outgassing rates. Results are presented from calibration tests conducted on the MSSTA's emulsions, based on measurements at NIST's synchrotron facility.

  20. Quality assessment of solar UV irradiance measured with array spectroradiometers

    NASA Astrophysics Data System (ADS)

    Egli, L.; Gröbner, J.; Hülsen, G.; Bachmann, L.; Blumthaler, M.; Dubard, J.; Khazova, M.; Kift, R.; Hoogendijk, K.; Serrano, A.; Smedley, A. R. D.; Vilaplana, J.-M.

    2015-12-01

    The reliable quantification of ultraviolet (UV) radiation at the Earth's surface requires accurate measurements of spectral global solar UV irradiance in order to determine the UV exposure to human skin and to understand long-term trends in this parameter. Array spectroradiometers are small, light, robust and cost effective instruments and are increasingly used for spectral irradiance measurements. Within the European EMRP-ENV03 project "Solar UV", new devices, guidelines, and characterization methods have been developed to improve solar UV measurements with array spectroradiometers and support to the end-user community has been provided. In order to assess the quality of 14 end-user array spectroradiometers, a solar UV intercomparison was held on the measurement platform of the World Radiation Center (PMOD/WRC) in Davos, Switzerland, from 10 to 17 July 2014. The results of the intercomparison revealed that array spectroradiometers, currently used for solar UV measurements, show a large variation in the quality of their solar UV measurements. Most of the instruments overestimate the erythema weighted UV index - in particular at low solar zenith angles - due to stray light contribution in the UV-B range. The spectral analysis of global solar UV irradiance further supported the finding that the uncertainties in the UV-B range are very large due to stray light contribution in this wavelength range. In summary, the UV index may be detected by some commercially available array spectroradiometer within 5 % compared to the world reference spectroradiometer, if well characterized and calibrated, but only for a limited range or solar zenith angle. Generally, the tested instruments are not yet suitable for solar UV measurements for the entire range between 290 to 400 nm under all atmospheric conditions.

  1. Space Station Freedom solar array containment box mechanisms

    NASA Technical Reports Server (NTRS)

    Johnson, Mark E.; Haugen, Bert; Anderson, Grant

    1994-01-01

    Space Station Freedom will feature six large solar arrays, called solar array wings, built by Lockheed Missiles & Space Company under contract to Rockwell International, Rocketdyne Division. Solar cells are mounted on flexible substrate panels which are hinged together to form a 'blanket.' Each wing is comprised of two blankets supported by a central mast, producing approximately 32 kW of power at beginning-of-life. During launch, the blankets are fan-folded and compressed to 1.5 percent of their deployed length into containment boxes. This paper describes the main containment box mechanisms designed to protect, deploy, and retract the solar array blankets: the latch, blanket restraint, tension, and guidewire mechanisms.

  2. Interconnnect and bonding technologies for large flexible solar arrays

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Thermocompression bonding and conductive adhesive bonding are developed and evaluated as alternate methods of joining solar cells to their interconnect assemblies. Bonding materials and process controls applicable to fabrication of large, flexible substrate solar cell arrays are studied. The primary potential use of the techniques developed is on the solar array developed by NASA/MSFC and LMSC for solar electric propulsion (SEP) and shuttle payload applications. This array is made up of flexible panels approximately 0.7 by 3.4 meters. It is required to operate in space between 0.3 and 6 AU for 5 years with limited degradation. Materials selected must be capable of enduring this space environment, including outgassing and radiation.

  3. Planetary and deep space requirements for photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Bennett, R. B.; Stella, P. M.

    1995-01-01

    In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, the majority of missions now being planned will use photovoltaic solar arrays. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. The paper will discuss representative requirements for a range of planetary missions now in the planning stages. Insofar as inner planets are concerned, a Mercury orbiter is being studied with many special requirements. Solar arrays would be exposed to high temperatures and a potentially high radiation environment, and will need to be increasingly pointed off sun as the vehicle approaches Mercury. Identification and development of cell materials and arrays at high incidence angles will be critical to the design. Missions to the outer solar system that have been studied include a Galilean orbiter and a flight to the Kuiper belt. While onboard power requirements would be small (as low as 10 watts), the solar intensity will require relatively large array areas. As a result, such missions will demand extremely compact packaging and low mass structures to conform to launch vehicle constraints. In turn, the large are, low mass designs will impact allowable spacecraft loads. Inflatable array structures, with and without concentration, and multiband gap cells will be considered if available. In general, the highest efficiency cell technologies operable under low intensity, low temperature conditions are needed. Solar arrays will power missions requiring as little as approximately 100

  4. Investigation of test methods, material properties, and processes for solar cell encapsulants. Encapsulation task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    1977-01-01

    During this quarter, flat-plate solar collector systems were considered and six basic construction elements were identified: outer coatings, superstrates, pottants, substrates, undercoats, and adhesives. Materials surveys were then initiated to discover either generic classes or/and specific products to function as each construction element. Cost data included in the surveys permit ready evaluation of each material. Silicones, fluorocarbons, glass, and acrylic polymers have the highest inherent weatherability of materials studied to date. Only acrylics, however, combine low costs, environmental resistance, and potential processability. This class will receive particular emphasis.

  5. Solar radiation on Mars: Stationary photovoltaic array

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.; Sherman, I.; Landis, G. A.

    1993-01-01

    Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.

  6. Multi-hundred kW solar arrays for space

    NASA Technical Reports Server (NTRS)

    Woodcock, W. G., III; Mann, J. A.

    1980-01-01

    A system-level approach has been applied in designing a cost-effective 300-1000 kW solar array for Low Earth Orbit (LEO) application with a mission time frame of mid-1980's. Technology investigations and performance and cost prognoses in the area of solar cells and reflector material form a key influence on array design and performance. Major tradeoffs were conducted between planar and concentrator concepts and between silicon and GaAs solar cells. Three baseline design concepts emerged: planar, low-CR concentrator (CR = 5), and high-CR concentrator (CR = 125). Combinations of these concepts with silicon and GaAs solar cells were analyzed in terms of electrical performance, thermal behavior, structural configuration, weight, stowed and deployed volume, and installation/deployment method. To identify the most cost-effective designs, a cost analysis of the candidate arrays was performed. The low-CR/GaAs array and the planar/silicon array demonstrate the greatest cost-effectiveness of the candidate arrays in terms of dollars/watt and energy life-cycle cost. Due to the high uncertainty of GaAs cell-cost prognoses, the sensitivity of the results to the GaAs cell cost is discussed.

  7. Thermal Cycling of Mir Cooperative Solar Array (MCSA) Test Panels

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint US/Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA is currently being used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station (ISS), which will use arrays based on the same solar cells used in the MCSA. The US supplied the photovoltaic power modules (PPMs) and provided technical and programmatic oversight while Russia provided the array support structures and deployment mechanism and built and tested the array. In order to ensure that there would be no problems with the interface between US and Russian hardware, an accelerated thermal life cycle test was performed at NASA Lewis Research Center on two representative samples of the MCSA. Over an eight-month period (August 1994 - March 1995), two 15-cell MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles (+80 C to -100 C), equivalent to four years on-orbit. The test objectives, facility, procedure and results are described in this paper. Post-test inspection and evaluation revealed no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early as an artifact of the test and removed from consideration. The interesting nature of the performance degradation caused by this one cell, which only occurred at elevated temperatures, is discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the US solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit).

  8. Planetary and deep space requirements for photovoltaic solar arrays

    SciTech Connect

    Bankston, C.P.; Bennett, R.B.; Stella, P.M.

    1995-10-01

    In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, the majority of missions now being planned will use photovoltaic solar arrays. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. The paper will discuss representative requirements for a range of planetary missions now in the planning stages. Insofar as inner planets are concerned, a Mercury orbiter is being studied with many special requirements. Solar arrays would be exposed to high temperatures and a potentially high radiation environment, and will need to be increasingly pointed off sun as the vehicle approaches Mercury. Identification and development of cell materials and arrays at high incidence angles will be critical to the design. Missions to the outer solar system that have been studied include a Galilean orbiter and a flight to the Kuiper belt. While onboard power requirements would be small (as low as 10 watts), the solar intensity will require relatively large array areas. As a result, such missions will demand extremely compact packaging and low mass structures to conform to launch vehicle constraints. In turn, the large area, low mass designs will impact allowable spacecraft loads. Inflatable array structures, with and without concentration, and multiband gap cells will be considered if available. In general, the highest efficiency cell technologies operable under low intensity, low temperature conditions are needed.

  9. Tucson Public Building Solar Arrays Final Report

    SciTech Connect

    Bruce Plenk

    2002-12-17

    The City of Tucson installed photovoltaic panels on parking structures at a library/police substation and developed a county-wide solar education program based in the public library system, including numerous new solar resources for the libraries and training for library staff.

  10. Solar Array Structures for 300 kW-Class Spacecraft

    NASA Technical Reports Server (NTRS)

    Pappa, Richard; Rose, Geoff; Mann, Troy O.; Warren, Jerry E.; Mikulas, Martin M., Jr.; Kerslake, Tom; Kraft, Tom; Banik, Jeremy

    2013-01-01

    State-of-the-art solar arrays for spacecraft provide on the order of 20 kW of electrical power, and they usually consist of 3J solar cells bonded to hinged rigid panels about 1 inch in thickness. This structural construction allows specific mass and packaging volumes of up to approximately 70 W/kg and 15 kW/m3 to be achieved. Significant advances in solar array structures are required for future very-high-power spacecraft (300+ kW), such as those proposed for pre-positioning heavy cargo on or near the Moon, Mars, or asteroids using solar electric propulsion. These applications will require considerable increases in both W/kg and kW/m3, and will undoubtedly require the use of flexible-substrate designs. This presentation summarizes work sponsored by NASA's Game Changing Development Program since Oct. 2011 to address the challenge of developing 300+ kW solar arrays. The work is primarily being done at NASA Langley, NASA Glenn, and two contractor teams (ATK and DSS), with technical collaboration from AFRL/Kirtland. The near-tem objective of the project is design, analysis, and testing of 30-50 kW solar array designs that are extensible to the far-term objective of 300+ kW. The work is currently focused on three designs: the MegaFlex concept by ATK, the Mega-ROSA concept by DSS, and an in-house 300-kW Government Reference Array concept. Each of these designs will be described in the presentation. Results obtained to date by the team, as well as future work plans, for the design, analysis, and testing of these large solar array structures will be summarized.

  11. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  12. The performance of bridge-linked solar cell arrays

    NASA Astrophysics Data System (ADS)

    Brandstetter, A.; Hinds, A.; Inall, E. K.

    Bridge-linked solar cell arrays (BLA) consist of a repeating mesh of four cells connected as is in a bridge rectifier. Calculations and measurements were made to compare the performance of these and series-parallel arrays (SPA). The arraying power loss for typical cells was 1 percent in a BLA and 2 percent in SPA. A shadow one cell wide and 12 long diagonally across the array halved the output of the SPA but dropped the BLA by only 7 percent, and with the array short-circuited the reverse voltages across the shaded cells in the BLA were a third of those for the SPA. A shadow right across any loaded array will cut the output and cause high reverse voltages. Diodes across blocks must be used, even with a BLA, to protect the cells under these conditions.

  13. Progress in developing high performance solar blankets and arrays

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.

    1982-01-01

    The development of high efficiency, ultrathin silicon solar cells offers both opportunity and challenge. It is possible to consider 400 W/kg blanket designs by using this cell in conjuction with flexible substrates, ultrathin covers and welded interconnects. By designing array structure which is mechanically and dynamically compatible with very low mass blankets, solar arrays with a specific power approaching 200 W/kg are achievable. Further improvements in blanket performance (higher power and lower mass per unit area), which could come from the implementation of higher efficiency cells operating at lower temperatures (silicon or GaAs), and the use of encapsulants, would result in the development of 300 W/kg solar arrays.

  14. Solar array flight experiment/dynamic augmentation experiment

    NASA Technical Reports Server (NTRS)

    Young, Leighton E.; Pack, Homer C., Jr.

    1987-01-01

    This report presents the objectives, design, testing, and data analyses of the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE) that was tested aboard Shuttle in September 1984. The SAFE was a lightweight, flat-fold array that employed a thin polyimide film (Kapton) as a substrate for the solar cells. Extension/retraction, dynamics, electrical and thermal tests, were performed. Of particular interest is the dynamic behavior of such a large lightweight structure in space. Three techniques for measuring and analyzing this behavior were employed. The methodology for performing these tests, gathering data, and data analyses are presented. The report shows that the SAFE solar array technology is ready for application and that new methods are available to assess the dynamics of large structures in space.

  15. Micrometeorite Impact Test of Flex Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.; Gardiner, G.

    2016-01-01

    Spacecraft with solar arrays operate throughout the near earth environment and are planned for outer planet missions. An often overlooked test condition for solar arrays that is applicable to these missions is micrometeoroid impacts and possibly electrostatic discharge (ESD) events resulting from these impacts. NASA Marshall Space Flight Center (MSFC) is partnering with Space Systems/Loral, LLC (SSL) to examine the results of simulated micrometeoroid impacts on the electrical performance of an advanced, lightweight flexible solar array design. The test is performed at MSFC's Micro Light Gas Gun Facility with SSL-provided coupons. Multiple impacts were induced at various locations on a powered test coupon under different string voltage (0V-150V) and string current (1.1A - 1.65A) conditions. The setup, checkout, and results from the impact testing are discussed.

  16. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    NASA Astrophysics Data System (ADS)

    Spurgeon, Joshua Michael

    Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array

  17. Voltage-current-power meter for photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G. (Inventor)

    1979-01-01

    A meter is disclosed for measuring the voltage, current, and power (VIP) parameters of a photovoltaic solar array, or array module, under sunlight operating conditions utilizing a variable load connected across the array and controlled by a voltage regulator which responds to the difference between the output voltage of the array and a programmed test voltage from a source which generates a single ramp voltage for measuring and recording current as a function of voltage, repeated ramp voltages at a high rate for peak output measurements or a DC voltage for VIP measurements at selected points on the I-V characteristic curve of the array. The voltage signal from a current sensing element, such as a shunt resistor in series with the variable load, is compared with the output current of a reference solar cell to provide a normalizing signal to be added to the signal from the current-sensing element in order to provide a record of array current as a function of array voltage, i.e., for all load conditions from short circuit to open circuit. As the normalized current is thus measured, an analog multiplier multiplies the array voltage and normalized current to provide a measurement of power. Switches are provided to selectively connect the power, P, current, I, or voltage, V, to a meter, directly or through a peak detector. At the same time any one of the parameters V, I and P may be recorded as a function of any other parameter.

  18. Solar array electrical performance assessment for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Brisco, Holly

    1993-01-01

    Electrical power for Space Station Freedom will be generated by large photovoltaic arrays with a beginning of life power requirement of 30.8 kW per array. The solar arrays will operate in a Low Earth Orbit (LEO) over a design life of fifteen years. This paper provides an analysis of the predicted solar array electrical performance over the design life and presents a summary of supporting analysis and test data for the assigned model parameters and performance loss factors. Each model parameter and loss factor is assessed based upon program requirements, component analysis and test data to date. A description of the LMSC performance model future test plans and predicted performance ranges are also given.

  19. Solar cell array design handbook, volume 1

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1976-01-01

    Twelve chapters discuss the following: historical developments, the environment and its effects, solar cells, solar cell filters and covers, solar cell and other electrical interconnections, blocking and shunt diodes, substrates and deployment mechanisms, material properties, design synthesis and optimization, design analysis, procurement, production and cost aspects, evaluation and test, orbital performance, and illustrative design examples. A comprehensive index permits rapid locating of desired topics. The handbook consists of two volumes: Volume 1 is of an expository nature while Volume 2 contains detailed design data in an appendix-like fashion. Volume 2 includes solar cell performance data, applicable unit conversion factors and physical constants, and mechanical, electrical, thermal optical, magnetic, and outgassing material properties. Extensive references are provided.

  20. Experimental Study of Arcing on High-voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale

    2005-01-01

    The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism [1-4] suggests that such modifications can be done in the following directions: i) to insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); ii) to change a coverglass geometry (overhang); iii) to increase a coverglass thickness; iiii) to outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that simulates the LEO operational temperature. The experimental setup is described below.

  1. Multi-Spectral Solar Telescope Array. V - Temperature diagnostic response to the optically thin solar plasma

    NASA Technical Reports Server (NTRS)

    Deforest, Craig E.; Kankelborg, Charles C.; Allen, Max J.; Paris, Elizabeth S.; Willis, Tom D.; Lindblom, Joakim F.; O'Neal, Ray H.; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.; Hoover, Richard B.

    1991-01-01

    The compact soft X-ray/EUV/FUV multilayer coated telescopes developed for solar chromosphere, corona, and corona/solar-wind interface studies permit the use of conventional (Cassegrain, Herschelian, etc.) configurations. The multilayer coatings also allow a narrow-wavelength band to be selected for imaging. NASA's Multi-Spectral Solar Telescope Array is composed of 17 of these compact telescopes; attention is given to their ability to obtain temperature-diagnostic information concerning the solar plasma.

  2. Solar Array Arcing in LEO How Much Charge is Discharged?

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Vayner, B. V.; Galofaro, J. T.

    2004-01-01

    It is often said that only the solar array or spacecraft surface that can be reached by an arc plume are discharged in a solar array arc in LEO (Low Earth Orbit). We present definitive results from ground test experiments done in the National Plasma Interactions (N-PI) facility at the NASA Glenn Research Center that this idea is mistaken. All structure surfaces in contact with the surrounding plasma and connected to spacecraft ground are discharged, whether the arc plasma can reach them or not. Implications from the strength and damaging effects of areas on LEO spacecraft are discussed, and mitigation techniques are proposed.

  3. Active Control of Solar Array Dynamics During Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Ross, Brant A.; Woo, Nelson; Kraft, Thomas G.; Blandino, Joseph R.

    2016-01-01

    Recent NASA mission plans require spacecraft to undergo potentially significant maneuvers (or dynamic loading events) with large solar arrays deployed. Therefore there is an increased need to understand and possibly control the nonlinear dynamics in the spacecraft system during such maneuvers. The development of a nonlinear controller is described. The utility of using a nonlinear controller to reduce forces and motion in a solar array wing during a loading event is demonstrated. The result is dramatic reductions in system forces and motion during a 10 second loading event. A motion curve derived from the simulation with the closed loop controller is used to obtain similar benefits with a simpler motion control approach.

  4. Efficiency of plasma actuator ionization in shock wave modification in a rarefied supersonic flow over a flat plate

    NASA Astrophysics Data System (ADS)

    Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis

    2014-12-01

    This paper describes experimental and numerical investigations focused on the shock wave modification, induced by a dc glow discharge, of a Mach 2 flow under rarefied regime. The model under investigation is a flat plate equipped with a plasma actuator composed of two electrodes. The glow discharge is generated by applying a negative potential to the upstream electrode, enabling the creation of a weakly ionized plasma. The natural flow (i.e. without the plasma) exhibits a thick laminar boundary layer and a shock wave with a hyperbolic shape. Images of the flow obtained with an ICCD camera revealed that the plasma discharge induces an increase in the shock wave angle. Thermal effects (volumetric, and at the surface) and plasma effects (ionization, and thermal non-equilibrium) are the most relevant processes explaining the observed modifications. The effect induced by the heating of the flat plate surface is studied experimentally by replacing the upstream electrode by a heating element, and numerically by modifying the thermal boundary condition of the model surface. The results show that for a similar temperature distribution over the plate surface, modifications induced by the heating element are lower than those produced by the plasma. This difference shows that other effects than purely thermal effects are involved with the plasma actuator. Measurements of the electron density with a Langmuir probe highlight the fact that the ionization degree plays an important role into the modification of the flow. The gas properties, especially the isentropic exponent, are indeed modified by the plasma above the actuator and upstream the flat plate. This leads to a local modification of the flow conditions, inducing an increase in the shock wave angle.

  5. Efficiency of plasma actuator ionization in shock wave modification in a rarefied supersonic flow over a flat plate

    SciTech Connect

    Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis

    2014-12-09

    This paper describes experimental and numerical investigations focused on the shock wave modification, induced by a dc glow discharge, of a Mach 2 flow under rarefied regime. The model under investigation is a flat plate equipped with a plasma actuator composed of two electrodes. The glow discharge is generated by applying a negative potential to the upstream electrode, enabling the creation of a weakly ionized plasma. The natural flow (i.e. without the plasma) exhibits a thick laminar boundary layer and a shock wave with a hyperbolic shape. Images of the flow obtained with an ICCD camera revealed that the plasma discharge induces an increase in the shock wave angle. Thermal effects (volumetric, and at the surface) and plasma effects (ionization, and thermal non-equilibrium) are the most relevant processes explaining the observed modifications. The effect induced by the heating of the flat plate surface is studied experimentally by replacing the upstream electrode by a heating element, and numerically by modifying the thermal boundary condition of the model surface. The results show that for a similar temperature distribution over the plate surface, modifications induced by the heating element are lower than those produced by the plasma. This difference shows that other effects than purely thermal effects are involved with the plasma actuator. Measurements of the electron density with a Langmuir probe highlight the fact that the ionization degree plays an important role into the modification of the flow. The gas properties, especially the isentropic exponent, are indeed modified by the plasma above the actuator and upstream the flat plate. This leads to a local modification of the flow conditions, inducing an increase in the shock wave angle.

  6. Development of an Electrostatically Clean Solar Array Panel

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.; Krumweide, Duane; Gaddy, Edward; Katz, Ira

    2000-01-01

    The results of design, analysis, and qualification of an Electrostatically Clean Solar Array (ECSA) panel are described. The objective of the ECSA design is to provide an electrostatic environment that does not interfere with sensitive instruments on scientific spacecraft. The ECSA design uses large, ITO-coated coverglasses that cover multiple solar cells, an aperture grid that covers the intercell areas, stress-relieved interconnects for connecting the aperture grid to the coverglasses, and edge clips to provides an electromagnetically shielded enclosure for the solar array active circuitry. Qualification coupons were fabricated and tested for photovoltaic response, conductivity, and survivability to launch acoustic and thermal cycling environments simulating LEO and GEO missions. The benefits of reducing solar panel interaction with the space environment are also discussed.

  7. Thin-Film Photovoltaic Solar Array Parametric Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Jacobs, Mark K.; Ponnusamy, Deva

    2000-01-01

    This paper summarizes a study that had the objective to develop a model and parametrically determine the circumstances for which lightweight thin-film photovoltaic solar arrays would be more beneficial, in terms of mass and cost, than arrays using high-efficiency crystalline solar cells. Previous studies considering arrays with near-term thin-film technology for Earth orbiting applications are briefly reviewed. The present study uses a parametric approach that evaluated the performance of lightweight thin-film arrays with cell efficiencies ranging from 5 to 20 percent. The model developed for this study is described in some detail. Similar mass and cost trends for each array option were found across eight missions of various power levels in locations ranging from Venus to Jupiter. The results for one specific mission, a main belt asteroid tour, indicate that only moderate thin-film cell efficiency (approx. 12 percent) is necessary to match the mass of arrays using crystalline cells with much greater efficiency (35 percent multi-junction GaAs based and 20 percent thin-silicon). Regarding cost, a 12 percent efficient thin-film array is projected to cost about half is much as a 4-junction GaAs array. While efficiency improvements beyond 12 percent did not significantly further improve the mass and cost benefits for thin-film arrays, higher efficiency will be needed to mitigate the spacecraft-level impacts associated with large deployed array areas. A low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is briefly described. The paper concludes with the observation that with the characteristics assumed for this study, ultra-lightweight arrays using efficient, thin-film cells on flexible substrates may become a leading alternative for a wide variety of space missions.

  8. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  9. On the flow generated by rotating flat plates of low aspect ratio

    NASA Astrophysics Data System (ADS)

    DeVoria, Adam C.

    Low-aspect-ratio propulsors typically allow for high maneuverability at low-to-moderate speeds. This has made them the subject of much recent research aimed at employing such appendages on autonomous vehicles which are required to navigate tumultuous environments. This experimental investigation focuses on the fluid dynamic aspects associated with overly-simplified versions of such biologically-inspired propulsors. In doing so, fundamental contributions are made to the research area. The unsteady, three-dimensional flow of a low-aspect-ratio, trapezoidal flat plate undergoing rotation from rest at a 90° angle of attack and Reynolds numbers of O(103) is investigated experimentally. The objectives are to develop a straightforward protocol for vortex saturation, and to understand the effects of the root-to-tip flow for different velocity programs. The experiments are conducted in a glass-walled tank, and digital particle image velocimetry is used to obtain planar velocity measurements. A formation-parameter definition is investigated and is found to reasonably predict the state corresponding to the pinch-off of the initial tip vortex across the velocity programs tested. The flow in the region near the tip is relatively insensitive to Reynolds number over the range studied. The component normal to the plate is unaffected by total rotational amplitude while the tangential component has dependence on this angle. Also, an estimate of the first tip-vortex pinch-off time is obtained from the near-tip velocity data and agrees very well with values estimated using circulation. The angle of incidence of the bulk root-to-tip flow relative to the plate normal becomes more oblique with increasing rotational amplitude. Accordingly, the peak magnitude of the tangential velocity is also increased and as a result advects fluid momentum away from the plate at a higher rate. The more oblique impingement of the root-to-tip flow for increasing rotational amplitude is shown to have a

  10. Soret and Dufour effects on MHD viscoelastic fluid flow through a vertical flat plate with constant suction

    NASA Astrophysics Data System (ADS)

    Hossain, Sheikh Imamul; Alam, Md. Mahmud

    2016-07-01

    An attempt is made to represent the numerical solution of magnetohydrodynamics (MHD) viscoelastic fluid flow through an infinite vertical flat plate with constant suction in the presence of Soret and Dufour effects. The expressions of non-dimensional, coupled partial momentum, energy and concentration differential equations are obtained with the help of the usual non-dimensional variables. Implicit finite difference method is imposed to obtain the non-dimensional equations. Also the stability conditions and convergence criteria are analyzed. The effects of the various parameters entering into the problem on shear stress, Nusselt number, and Sherwood number are demonstrated graphically with physical interpretation.

  11. Analysis of Turbulent Flow and Heat Transfer on a Flat Plate at High Mach Numbers with Variable Fluid Properties

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.; Loeffler, A. L., Jr.

    1959-01-01

    A previous analysis of turbulent heat transfer and flow with variable fluid properties in smooth passages is extended to flow over a flat plate at high Mach numbers, and the results are compared with experimental data. Velocity and temperature distributions are calculated for a boundary layer with appreciative effects of frictional heating and external heat transfer. Viscosity and thermal conductivity are assumed to vary as a power or the temperature, while Prandtl number and specific heat are taken as constant. Skin-friction and heat-transfer coefficients are calculated and compared with the incompressible values. The rate of boundary-layer growth is obtained for various Mach numbers.

  12. Critical combinations of shear and transverse direct stress for an infinitely long flat plate with edges elastically restrained against rotation

    NASA Technical Reports Server (NTRS)

    Batdorf, S B; Houbolt, John C

    1946-01-01

    An exact solution and a closely concurring approximate energy solution are given for the buckling of an infinitely long flat plate under combined shear and transverse direct stress with edges elastically restrained against rotation. It was found that an appreciable fraction of the critical stress in pure shear may be applied to the plate without any reduction in the transverse compressive stress necessary to produce buckling. An interaction formula in general use was shown to be decidedly conservative for the range in which it is supposed to apply.

  13. Application of He's homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate

    NASA Astrophysics Data System (ADS)

    Esmaeilpour, M.; Ganji, D. D.

    2007-12-01

    In this Letter, the problem of forced convection over a horizontal flat plate is presented and the homotopy perturbation method (HPM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the homotopy perturbation method in comparison with the previous ones in solving heat transfer problems. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear conclusion can be drawn from the numerical results that the HPM provides highly accurate numerical solutions for nonlinear differential equations.

  14. Method of construction of a multi-cell solar array

    NASA Technical Reports Server (NTRS)

    Routh, D. E.; Hollis, B. R., Jr.; Feltner, W. R. (Inventor)

    1979-01-01

    The method of constructing a high voltage, low power, multicell solar array is described. A solar cell base region is formed in a substrate such as but not limited to silicon or sapphire. A protective coating is applied on the base and a patterned etching of the coating and base forms discrete base regions. A semiconductive junction and upper active region are formed in each base region, and defined by photolithography. Thus, discrete cells which are interconnected by metallic electrodes are formed.

  15. Elastomer Encapsulant for Solar-Cell Arrays

    NASA Technical Reports Server (NTRS)

    Baum, B.; Willis, P. B.

    1985-01-01

    Butyl acrylate syrups useful potting compounds for encapsulating photovoltaic cells in modular arrays. Material pourable liquid pumped into module, then cured to rubbery consistency. Cured material is thermoset elastomer highly transparent, low cost, flexible and with good low-temperature properties.

  16. Large active retrodirective arrays for solar power satellites

    NASA Technical Reports Server (NTRS)

    Chernoff, R.

    1978-01-01

    An active retrodirective array (ARA) transmits a beam toward the apparent source of an illuminating signal called the pilot. The array produces the RF power. Retrodirectivity is achieved by retransmitting from each element of the array a signal whose phase is the 'conjugate' of that received by the element. Application of the ARA to the solar power satellite concept has been proposed. A method of providing a reference phase is described, called 'central phasing', which eliminates the need for a rigid structure ordinarily needed in order to realize accurate retrodirectivity.

  17. Electrical research on solar cells and photovoltaic materials

    NASA Technical Reports Server (NTRS)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.

  18. Solar Radiation on Mars: Tracking Photovoltaic Array

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos

    1994-01-01

    A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.

  19. Hermetic encapsulation technique for solar arrays

    NASA Technical Reports Server (NTRS)

    Deminet, C.; Horne, W. E.

    1980-01-01

    A concept is presented for encapsulating solar cells between two layers of glass either individually, in panels, or in a continuous process. The concept yields an integral unit that is hermetically sealed and that is tolerant to high temperature thermal cycling and to particulate radiation. Data are presented on both high temperature solar cells and special glasses that soften at low temperatures for use with the concept. The results of encapsulating experiments are presented which show the successful application of the concept to the special high temperature cells. The mechanical feasibility of encapsulating 2 mil cells between two layers of 2 mil glass is also demonstrated.

  20. Plasma Interaction with International Space Station High Voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Heard, John W.

    2002-01-01

    The International Space Station (ISS) is presently being assembled in low-earth orbit (LEO) operating high voltage solar arrays (-160 V max, -140 V typical with respect to the ambient atmosphere). At the station's present altitude, there exists substantial ambient plasma that can interact with the solar arrays. The biasing of an object to an electric potential immersed in plasma creates a plasma "sheath" or non-equilibrium plasma around the object to mask out the electric fields. A positively biased object can collect electrons from the plasma sheath and the sheath will draw a current from the surrounding plasma. This parasitic current can enter the solar cells and effectively "short out" the potential across the cells, reducing the power that can be generated by the panels. Predictions of collected current based on previous high voltage experiments (SAMPIE (Solar Array Module Plasma Interactions Experiment), PASP+ (Photovoltaic Array Space Power) were on the order of amperes of current. However, present measurements of parasitic current are on the order of several milliamperes, and the current collection mainly occurs during an "eclipse exit" event, i.e., when the space station comes out of darkness. This collection also has a time scale, t approx. 1000 s, that is much slower than any known plasma interaction time scales. The reason for the discrepancy between predictions and present electron collection is not understood and is under investigation by the PCU (Plasma Contactor Unit) "Tiger" team. This paper will examine the potential structure within and around the solar arrays, and the possible causes and reasons for the electron collection of the array.

  1. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1983-01-01

    A study of potentially useful low cost encapsulation materials for the Flat-Plate Solar Array project is discussed. The goal is to identify, evaluate, test and recommend encapsulant materials and processes for the production of cost-effective, long life solar cell modules. Technical investigations included studies of aging and degradation of candidate encapsulation materials, continued identification of primers for durable bonding of module interfaces, continued evaluation of soil resistant treatments for the sunlit surface of the module and testing of corrosion protective coatings for use low cost mild steel substrates.

  2. A Unique test for Hubble's new Solar Arrays

    NASA Astrophysics Data System (ADS)

    2000-10-01

    In mid-October, a team from the European Space Agency (ESA) and NASA will perform a difficult, never-before-done test on one of the Hubble Space Telescope's new solar array panels. Two of these panels, or arrays, will be installed by astronauts in November 2001, when the Space Shuttle Columbia visits Hubble on a routine service mission. The test will ensure that the new arrays are solid and vibration free before they are installed on orbit. The test will be conducted at ESA's European Space Research and Technology Center (ESTEC) in Noordwijk, The Netherlands. Because of the array's size, the facility's special features, and ESA's longstanding experience with Hubble's solar arrays, ESTEC is the only place in the world the test can be performed. This test is the latest chapter in a longstanding partnership between ESA and NASA on the Hubble Space Telescope. The Large Space Simulator at ESTEC, ESA's world-class test facility, features a huge vacuum chamber containing a bank of extremely bright lights that simulate the Sun's intensity - including sunrise and sunset. By exposing the solar wing to the light and temperature extremes of Hubble's orbit, engineers can verify how the new set of arrays will act in space. Hubble orbits the Earth once every 90 minutes. During each orbit, the telescope experiences 45 minutes of searing sunlight and 45 minutes of frigid darkness. This test will detect any tiny vibrations, or jitters, caused by these dramatic, repeated changes. Even a small amount of jitter can affect Hubble's sensitive instruments and interfere with observations. Hubble's first set of solar arrays experienced mild jitter and was replaced in 1993 with a much more stable pair. Since that time, advances in solar cell technology have led to the development of even more efficient arrays. In 2001, NASA will take advantage of these improvements, by fitting Hubble with a third-generation set of arrays. Though smaller, this new set generates more power than the previous

  3. Advances in Radiation-Tolerant Solar Arrays for SEP Missions

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Eskenazi, Michael I.; Ferguson, Dale C.

    2007-01-01

    As the power levels of commercial communications satellites reach the 20 kWe and higher, new options begin to emerge for transferring the satellite from LEO to GEO. In the past electric propulsion has been demonstrated successfully for this mission - albeit under unfortunate circumstances when the kick motor failed. The unexpected use of propellant for the electric propulsion (EP) system compromised the life of that vehicle, but did demonstrate the viability of such an approach. Replacing the kick motor on a satellite and replacing that mass by additional propellant for the EP system as well as mass for additional revenue-producing transponders should lead to major benefits for the provider. Of course this approach requires that the loss in solar array power during transit of the Van Allen radiation belts is not excessive and still enables the 15 to 20 year mission life. In addition, SEP missions to Jupiter, with its exceptional radiation belts, would mandate a radiation-resistant solar array to compete with a radioisotope alternative. Several critical issues emerge as potential barriers to this approach: reducing solar array radiation damage, operating the array at high voltage (>300 V) for extended times for Hall or ion thrusters, designing an array that will be resistant to micrometeoroid impacts and the differing environmental conditions as the vehicle travels from LEO to GEO (or at Jupiter), producing an array that is light weight to preserve payload mass fraction - and to do this at a cost that is lower than today's arrays. This paper will describe progress made to date on achieving an array that meets all these requirements and is also useful for deep space electric propulsion missions.

  4. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  5. Installation package for a solar-heating system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Package consists of installation, operation and maintenance manuals for four commercial solar energy subsystems, including flat plate solar collector pebble bed thermal-storage. Manual gives design information, sizing data, specification drawings, and other material for subsystem.

  6. Design package for a solar-heating system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report contains sufficient information to assemble complete tested residential flat-plate solar heating system. Descriptive material provides design, performance, and hardware specifications for utilization by architectural engineers, and contractors in procurement, installation, operation, and maintenance of similar solar applications.

  7. Integrated Solar Array and Reflectarray Antenna for High Bandwidth Cubesats

    NASA Technical Reports Server (NTRS)

    Lewis, Dorothy; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Integrated Solar Array and Reflectarray Antenna (ISARA) mission will demonstrate a reflectarray antenna that increases downlink data rates for Cube- Sats from the existing baseline rate of 9.6 kilobits per second (kbps) to more than 100 megabits per second (Mbps). The ISARA spacecraft is slated for launch no earlier than Dec. 1, 2015.

  8. Supporting Structures for Flat Solar-Cell Arrays

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.

    1986-01-01

    Strong supporting structures for flat solar photovoltaic arrays built with such commonly available materials as wood and galvanized steel sheet. Structures resist expected static loads from snow and ice as well as dynamic loads from winds and even Earthquake vibrations. Supporting structure uses inexpensive materials. Parts prefabricated to minimize assembly work in field.

  9. Astronaut Story Musgrave deploys HST solar array panel

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut F. Story Musgrave, anchored to a foot restraint on the Space Shuttle Endeavour's Remote Manipulator System (RMS) arm, aids the deployment of one of the solar array panels on the Hubble Space Telescope (HST). The action came during the final of five STS-61 space walks.

  10. The course of solar array welding technology development

    NASA Technical Reports Server (NTRS)

    Stella, P. M.

    1982-01-01

    Solar array welding technology is examined from its beginnings in the late 1960's to the present. The U.S. and European efforts are compared, and significant similarities are highlighted. The utilization of welding technology for space use is shown to have been influenced by a number of subtle, secondary factors.

  11. Array of titanium dioxide nanostructures for solar energy utilization

    DOEpatents

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  12. Transparent, Conductive Coatings Developed for Arc-Proof Solar Arrays

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Transparent, conductive thin-film coatings have many potential applications where a surface must be able to dissipate electrical charges without sacrificing its optical properties. Such applications include automotive and aircraft windows, heat mirrors, optoelectronic devices, gas sensors, and solar cell array surfaces for space applications. Many spacecraft missions require that solar cell array surfaces dissipate charges in order to avoid damage such as electronic upsets, formation of pinholes in the protective coatings on solar array blankets, and contamination due to deposition of sputtered products. In tests at the NASA Lewis Research Center, mixed thin-films of sputter-deposited indium tin oxide (ITO) and magnesium fluoride (MgF2) that could be tailored to the desired sheet resistivity, showed transmittance values of greater than 90 percent. The samples evaluated were composed of mixed, thin-film ITO/MgF2 coatings, with a nominal thickness of 650 angstroms, deposited onto glass substrates. Preliminary results indicated that these coatings were durable to vacuum ultraviolet radiation and atomic oxygen. These coatings show promise for use on solar array surfaces in polar low-Earth-orbit environments, where a sheet resistivity of less than 10(exp 8)/square is required, and in geosynchronous orbit environments, where a resistivity of less than 10(exp 9)/square is required.

  13. Better Thermal Insulation in Solar-Array Laminators

    NASA Technical Reports Server (NTRS)

    Burger, D. R.; Knox, J. F.

    1984-01-01

    Glass marbles improve temperature control. Modified vacuum laminator for photovoltaic solar arrays includes thermal insulation made of conventional glass marbles. Marbles serve as insulation for temperature control of lamination process at cure temperatures as high as 350 degrees F. Used to replace original insulation made of asbestos cement.

  14. Early Observations with the Expanded Owens Valley Solar Array

    NASA Astrophysics Data System (ADS)

    Gary, Dale E.

    2016-05-01

    The Expanded Owens Valley Solar Array (EOVSA) is a newly expanded and upgraded, solar-dedicated radio array consisting of 13 antennas of 2.1 m diameter equipped with receivers designed to cover the 1-18 GHz frequency range. Two large (27-m diameter) dishes are being outfitted with He-cooled receivers for use in calibration of the small dishes. During 2015, the array obtained observations from dozens of flares in total power mode on 8 antennas. Since February 2016, it has begun taking solar data on all 13 small antennas with full interferometric correlations, as well as calibration observations with the first of the two large antennas equipped with its He-cooled receiver. The second He-cooled receiver is nearly complete, and will be available around the time of the meeting. We briefly review the commissioning activities leading up to full operations, including polarization and gain measurements and calibration methods, and resulting measures of array performance. We then present some early imaging observations with the array, emphasizing the remarkable temporal and spectral resolution of the instrument, together with joint RHESSI hard X-ray and SDO EUV observations.

  15. Vortex dynamics and wall shear stress behaviour associated with an elliptic jet impinging upon a flat plate

    NASA Astrophysics Data System (ADS)

    Long, J.; New, T. H.

    2016-07-01

    Vortical structures and dynamics of a Re h = 2100 elliptic jet impinging upon a flat plate were studied at H/ d h = 1, 2 and 4 jet-to-plate separation distances. Flow investigations were conducted along both its major and minor planes using laser-induced fluorescence and digital particle image velocimetry techniques. Results show that the impingement process along the major plane largely consists of primary jet ring-vortex and wall-separated secondary vortex formations, where they subsequently separate from the flat plate at smaller H/ d h = 1 and 2 separation distances. Key vortex formation locations occur closer to the impingement point as the separation distance increases. Interestingly, braid vortices and rib structures begin to take part in the impingement process at H/ d h = 4 and wave instabilities dominate the flow field. In contrast, significantly more coherent primary and secondary vortices with physically larger vortex core sizes and higher vortex strengths are observed along the minor plane, with no signs of braid vortices and rib structures. Lastly, influences of these different flow dynamics on the major and minor plane instantaneous and mean skin friction coefficient levels are investigated to shed light on the effects of separation distance on the wall shear stress distributions.

  16. Flat-plate, gas-to-gas heat exchanger recovers 1. 5 million Btu/hr from perlite production

    SciTech Connect

    Hench, R.; Hodel, A.E.; Regan, J.T.

    1986-08-01

    Calshake, a mineral shake shingle manufacturer in Irwindale, CA started having problems with a carbon steel, gas-to-gas process heat exchanger when the plant changed their perlite popping process from a three shift to a two shift operation. The first evidence of trouble was a loss of air volume throughput. Then the heat transfer efficiency of the stationary flatplate heat exchanger was reduced. The economy of the operation continued to diminish as fans drawing gases through the exchanger had to work harder. Finally the plant was forced to shut down the processing line. Calshake replaced the single, 20' long carbon steel, flat-plate heat exchanger with two, 10' long, modular, stainless steel units from the same manufacturer. The new exchangers were installed vertically in series to provide basically the same 20' long heat transfer surface. The flow path on the hot side was made continuous. The flow path on the cold side was interrupted by a duct joining the top and bottom units. Counterflow conditions were maintained just as they were in the original unit. The flat-plate, gas-to-gas heat exchanger recovers 1.5 million Btu/hr from perlite production. The new exchanger gives nearly twice the recovery of the system it replaced. Since installation in August 1985 it has required only minor maintenance (total downtime of 9 hours) and has performed above expectations.

  17. The Effect of Leading-Edge Sweep and Surface Inclination on the Hypersonic Flow Field Over a Blunt Flat Plate

    NASA Technical Reports Server (NTRS)

    Creager, Marcus O.

    1959-01-01

    An investigation of the effects of variation of leading-edge sweep and surface inclination on the flow over blunt flat plates was conducted at Mach numbers of 4 and 5.7 at free-stream Reynolds numbers per inch of 6,600 and 20,000, respectively. Surface pressures were measured on a flat plate blunted by a semicylindrical leading edge over a range of sweep angles from 0 deg to 60 deg and a range of surface inclinations from -10 deg to +10 deg. The surface pressures were predicted within an average error of +/- 8 percent by a combination of blast-wave and boundary-layer theory extended herein to include effects of sweep and surface inclination. This combination applied equally well to similar data of other investigations. The local Reynolds number per inch was found to be lower than the free-stream Reynolds number per inch. The reduction in local Reynolds number was mitigated by increasing the sweep of the leading edge. Boundary-layer thickness and shock-wave shape were changed little by the sweep of the leading edge.

  18. Experimental and Numerical Investigations of Effects of Flow Control Devices Upon Flat-Plate Film Cooling Performance.

    PubMed

    Kawabata, Hirokazu; Funazaki, Ken-Ichi; Nakata, Ryota; Takahashi, Daichi

    2014-06-01

    This study deals with the experimental and numerical studies of the effect of flow control devices (FCDs) on the film cooling performance of a circular cooling hole on a flat plate. Two types of FCDs with different heights are examined in this study, where each of them is mounted to the flat plate upstream of the cooling hole by changing its lateral position with respect to the hole centerline. In order to measure the film effectiveness as well as heat transfer downstream of the cooling hole with upstream FCD, a transient method using a high-resolution infrared camera is adopted. The velocity field downstream of the cooling hole is captured by 3D laser Doppler velocimeter (LDV). Furthermore, the aerodynamic loss associated with the cooling hole with/without FCD is measured by a total pressure probe rake. The experiments are carried out at blowing ratios ranging from 0.5 to 1.0. In addition, numerical simulations are also made to have a better understanding of the flow field. LES approach is employed to solve the flow field and visualize the vortex structure around the cooling hole with FCD. When a taller FCD is mounted to the plate, the film effectiveness tends to increase due to the vortex structure generated by the FCD. As FCD is laterally shifted from the centerline, the film effectiveness increases, while the lift-off of cooling air is also promoted when FCD is put on the center line. PMID:25278646

  19. Impact of Solar Array Designs on High Voltage Operations

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Ferguson, Dale; Piszczor, Mike; ONeill, Mark

    2006-01-01

    As power levels of advanced spacecraft climb above 25 kW, higher solar array operating voltages become attractive. Even in today s satellites, operating spacecraft buses at 100 V and above has led to arcing in GEO communications satellites, so the issue of spacecraft charging and solar array arcing remains a design problem. In addition, micrometeoroid impacts on all of these arrays can also lead to arcing if the spacecraft is at an elevated potential. For example, tests on space station hardware disclosed arcing at 75V on anodized A1 structures that were struck with hypervelocity particles in Low Earth Orbit (LEO) plasmas. Thus an understanding of these effects is necessary to design reliable high voltage solar arrays of the future, especially in light of the Vision for Space Exploration of NASA. In the future, large GEO communication satellites, lunar bases, solar electric propulsion missions, high power communication systems around Mars can lead to power levels well above 100 kW. As noted above, it will be essential to increase operating voltages of the solar arrays well above 80 V to keep the mass of cabling needed to carry the high currents to an acceptable level. Thus, the purpose of this paper is to discuss various solar array approaches, to discuss the results of testing them at high voltages, in the presence of simulated space plasma and under hypervelocity impact. Three different types of arrays will be considered. One will be a planar array using thin film cells, the second will use planar single or multijunction cells and the last will use the Stretched Lens Array (SLA - 8-fold concentration). Each of these has different approaches for protection from the space environment. The thin film cell based arrays have minimal covering due to their inherent radiation tolerance, conventional GaAs and multijunction cells have the traditional cerium-doped microsheet glasses (of appropriate thickness) that are usually attached with Dow Corning DC 93-500 silicone

  20. Review of Consensus Standard Spectra for Flat Plate and Concentrating Photovoltaic Performance

    SciTech Connect

    Myers, D.

    2011-09-01

    Consensus standard reference terrestrial solar spectra are used to establish nameplate ratings for photovoltaic device performance at standard reporting conditions. This report describes reference solar spectra developed in the United States and international consensus standards community which are widely accepted as of this writing (June 2011).