Science.gov

Sample records for flexible rotors supported

  1. Vibration and Control of Flexible Rotor Supported by Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Nonami, Kenzou

    1988-01-01

    Active vibration control of flexible rotors supported by magnetic bearings is discussed. Using a finite-element method for a mathematical model of the flexible rotor, the eigenvalue problem is formulated taking into account the interaction between a mechanical system of the flexible rotor and an electrical system of the magnetic bearings and the controller. However, for the sake of simplicity, gyroscopic effects are disregarded. It is possible to adapt this formulation to a general flexible rotor-magnetic bearing system. Controllability with and without collocation sensors and actuators located at the same distance along the rotor axis is discussed for the higher order flexible modes of the test rig. In conclusion, it is proposed that it is necessary to add new active control loops for the higher flexible modes even in the case of collocation. Then it is possible to stabilize for the case of uncollocation by means of this method.

  2. Digital control of magnetic bearings supporting a multimass flexible rotor

    NASA Technical Reports Server (NTRS)

    Keith, F. J.; Williams, R. D.; Allaire, P. E.; Schafer, R. M.

    1993-01-01

    The characteristics of magnetic bearings used to support a three mass flexible rotor operated at speeds up to 14,000 RPM are discussed. The magnetic components of the bearing are of a type reported in the literature previously, but the earlier analog controls were replaced by digital ones. Analog-to-digital and digital-to-analog converters and digital control software were installed in an AT&T PC. This PC-based digital controller was used to operate one of the magnetic bearings on the test rig. Basic proportional-derivative control was applied to the bearings, and the bearing stiffness and damping characteristics were evaluated. Particular attention is paid to the frequency dependent behavior of the stiffness and damping properties, and comparisons are made between the actual controllers and ideal proportional-derivative control.

  3. Steady-state unbalance response of a three-disk flexible rotor on flexible, damped supports

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1977-01-01

    Experimental data are presented for the unbalance response of a flexible, ball bearing supported rotor to speeds above the third lateral bending critical. Values of squeeze film damping coefficients obtained from measured data are compared to theoretical values obtained from short bearing approximation over a frequency range from 5000 to 31 000 cycles/min. Experimental response for an undamped rotor is compared to that of one having oil squeeze film dampers at the bearings. Unbalance applied varied from 0.62 to 15.1 gm-cm.

  4. Steady-state unbalance response of a three-disk flexible rotor on flexible, damped supports

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1977-01-01

    Experimental data are presented for the unbalance response of a flexible, ball bearing supported rotor to speeds above the third lateral bending critical. Values of squeeze film damping coefficients obtained from measured data are compared to theoretical values obtained from short bearing approximation over a frequency range from 5000 to 31,000 cycles/min. Experimental response for an undamped rotor is compared to that of one having oil squeeze film dampers at the bearings. Unbalances applied varied from 0.62 to 15.1 gm-cm.

  5. The effect of support flexibility and damping on the dynamic response of a single mass flexible rotor in elastic bearings

    NASA Technical Reports Server (NTRS)

    Kirk, R. G.; Gunter, E. J.

    1972-01-01

    The dynamic unabalance response and transient motion of the single mass Jeffcott rotor in elastic bearings mounted on damped, flexible supports are discussed. A steady state analysis of the shaft and the bearing housing motion was made by assuming synchronous precession of the system. The conditions under which the support system would act as a dynamic vibration absorber at the rotor critical speed were studied. Plots of the rotor and support amplitudes, phase angles, and forces transmitted were evaluated by the computer and the performance curves were plotted by an automatic plotter unit. Curves are presented on the optimization of the support housing characteristics of attenuate the rotor synchronous unbalance response.

  6. Development of flexible rotor balancing criteria

    NASA Technical Reports Server (NTRS)

    Walter, W. W.; Rieger, N. F.

    1979-01-01

    Several studies in which analytical procedures were used to obtain balancing criteria for flexible rotors are described. General response data for a uniform rotor in damped flexible supports were first obtained for plain cylindrical bearings, tilting pad bearings, axial groove bearings, and partial arc bearings. These data formed the basis for the flexible rotor balance criteria presented. A procedure by which a practical rotor in bearings could be reduced to an equivalent uniform rotor was developed and tested. It was found that the equivalent rotor response always exceeded to practical rotor response by more than sixty percent for the cases tested. The equivalent rotor procedure was then tested against six practical rotor configurations for which data was available. It was found that the equivalent rotor method offered a procedure by which balance criteria could be selected for practical flexible rotors, using the charts given for the uniform rotor.

  7. Flexible rotor dynamics analysis

    NASA Technical Reports Server (NTRS)

    Shen, F. A.

    1973-01-01

    A digital computer program was developed to analyze the general nonaxisymmetric and nonsynchronous transient and steady-state rotor dynamic performance of a bending- and shear-wise flexible rotor-bearing system under various operating conditions. The effects of rotor material mechanical hysteresis, rotor torsion flexibility, transverse effects of rotor axial and torsional loading and the anisotropic, in-phase and out-of-phase bearing stiffness and damping force and moment coefficients were included in the program to broaden its capability. An optimum solution method was found and incorporated in the computer program. Computer simulation of experimental data was made and qualitative agreements observed. The mathematical formulations, computer program verification, test data simulation, and user instruction was presented and discussed.

  8. Stability and stability degree of a cracked flexible rotor supported on journal bearings

    NASA Technical Reports Server (NTRS)

    Meng, Guang; Gasch, Robert

    1994-01-01

    This paper investigates the stability and the stability degree of a flexible cracked rotor supported on different kinds of journal bearings. It is found that no matter what kind of bearings is used, the unstable zones caused by rotor crack locate always within the speed ratio (2/N) (1 - Delta K(sub xi)/4) is less than Omega is less than 2/N when gravity parameter W(sub R) is greater than 1.0, and locate always within the speed ratio (2 Omega(sub alpha)/N) (1 - Delta K(sub xi)/4) is less than Omega is less than 2 Omega(sub alpha)/N when W(sub R) is less than 0.1, where Delta K(sub xi) is the crack stiffness ratio, N = 1, 2, 3, 4, 5, ..., and Omega(sub alpha) = ((1 + 2 alpha)/2 alpha)(exp 1/2). When 0.1 is less than W(sub R) is less than 1.0, there is a region where no unstable zones caused by rotor crack exist. Outside the crack ridge zones, the rotor crack has almost no influence on system's stability and stability degree; while within the crack ridge zones, the stability and stability degree depend both on the crack and system's parameters. In some cases, the system may still be stable even when the crack is very large. For small gravity parameter (W(sub R) is less than 0.1), the mass ratio alpha has large influence on the position of unstable region, but its influence on the stability degree is small. The influence of fixed Sommerfeld number S(sub 0) on the crack stability degree is small although S(sub 0) has large influence on the stability degree of uncracked rotor.

  9. Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings

    NASA Astrophysics Data System (ADS)

    Dakel, Mzaki; Baguet, Sébastien; Dufour, Régis

    2014-05-01

    The major purpose of this study is to predict the dynamic behavior of an on-board rotor mounted on hydrodynamic journal bearings in the presence of rigid support movements, the target application being turbochargers of vehicles or rotating machines subject to seismic excitation. The proposed on-board rotor model is based on Timoshenko beam finite elements. The dynamic modeling takes into account the geometric asymmetry of shaft and/or rigid disk as well as the six deterministic translations and rotations of the rotor rigid support. Depending on the type of analysis used for the bearing, the fluid film forces computed with the Reynolds equation are linear/nonlinear. Thus the application of Lagrange's equations yields the linear/nonlinear equations of motion of the rotating rotor in bending with respect to the moving rigid support which represents a non-inertial frame of reference. These equations are solved using the implicit Newmark time-step integration scheme. Due to the geometric asymmetry of the rotor and to the rotational motions of the support, the equations of motion include time-varying parametric terms which can lead to lateral dynamic instability. The influence of sinusoidal rotational or translational motions of the support, the accuracy of the linear 8-coefficient bearing model and the interest of the nonlinear model for a hydrodynamic journal bearing are examined and discussed by means of stability charts, orbits of the rotor, time history responses, fast Fourier transforms, bifurcation diagrams as well as Poincaré maps.

  10. Steady-State Dynamic Behavior of a Flexible Rotor With Auxiliary Support From a Clearance Bearing

    NASA Technical Reports Server (NTRS)

    Xie, Huajun; Flowers, George T.; Feng, Li; Lawrence, Charles T.

    1996-01-01

    This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, clearance, support stiffness and damping is studied. Bifurcation diagrams are used as a tool to examine the dynamic behavior of this system as a function of the afore mentioned parameters. The harmonic balance method is also employed for synchronous response cases. The observed dynamical responses is discussed and some insights into the behavior of such systems are presented.

  11. Non-linear dynamic analysis of a flexible rotor supported on porous oil journal bearings

    NASA Astrophysics Data System (ADS)

    Laha, S. K.; Kakoty, S. K.

    2011-03-01

    In the present paper, the non-linear dynamic analysis of a flexible rotor with a rigid disk under unbalance excitation mounted on porous oil journal bearings at the two ends is carried out. The system equation of motion is obtained by finite element formulation of Timoshenko beam and the disk. The non-linear oil-film forces are calculated from the solution of the modified Reynolds equation simultaneously with Darcy's equation. The system equation of motion is then solved by the Wilson- θ method. Bifurcation diagrams, Poincaré maps, time response, journal trajectories, FFT-spectrum, etc. are obtained to study the non-linear dynamics of the rotor-bearing system. The effect of various non-dimensional rotor-bearing parameters on the bifurcation characteristics of the system is studied. It is shown that the system undergoes Hopf bifurcation as the speed increases. Further, slenderness ratio, material properties of the rotor, ratio of disk mass to shaft mass and permeability of the porous bush are shown to have profound effect on the bifurcation characteristics of the rotor-bearing system.

  12. Effect of support flexibilty and damping on the dynamic response of a single mass flexible rotor in elastic bearings

    NASA Technical Reports Server (NTRS)

    Kirk, R. G.; Gunter, E. J.

    1972-01-01

    A steady state analysis of the shaft and the bearing housing motion was made by assuming synchronous precession of the system. The conditions under which the support system would act as a dynamic vibration absorber at the rotor critical speed were studied; plots of the rotor and support amplitudes, phase angles, and forces transmitted were evaluated by the computer, and the performance curves were automatically plotted by a CalComp plotter unit. Curves are presented on the optimization of the support housing characteristics to attenuate the rotor unbalance response over the entire rotor speed range. The complete transient motion including rotor unbalance was examined by integrating the equations of motion numerically using a modified fourth order Runge-Kutta procedure, and the resulting whirl orbits were plotted by the CalComp plotter unit. The results of the transient analysis are discussed with regards to the design optimization procedure derived from the steady-state analysis.

  13. HPOTP low-speed flexible rotor balancing, phase 1

    NASA Technical Reports Server (NTRS)

    Giordano, J.; Zorzi, E.

    1985-01-01

    A method was developed that shows promise in overcoming many balancing limitations. This method establishes one or more windows for low speed, out-of-housing balancing of flexible rotors. These windows are regions of speed and support flexibility where two conditions are simultaneously fulfilled. First, the rotor system behaves flexibly; therefore, there is separation among balance planes. Second, the response due to balance weights is large enough to reliably measure. The analytic formulation of the low-speed flexible rotor balancing method is described. The results of proof-of-principle tests conducted under the program are presented. Based on this effort, it is concluded that low speed flexible rotor balancing is a viable technology. In particular, the method can be used to balance a rotor bearing system at low speed which results in smooth operation above more than one bending critical speed. Furthermore, this balancing methodology is applicable to SSME turbopump rotors.

  14. Computer program for flexible rotor dynamics analysis

    NASA Technical Reports Server (NTRS)

    Shen, F. A.

    1974-01-01

    Program analyzes general nonaxisymmetric and nonsynchronous transient and steady-state rotor dynamic performance of bending- and shear-wise flexible rotor-bearing system under various operating conditions. Program can be used as analytical study tool for general transient spin-speed and/or non-axisymmetric rotor motion.

  15. Design of an oil squeeze film damper bearing for a multimass flexible-rotor bearing system

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.; Gunter, E. J., Jr.; Fleming, D. P.

    1975-01-01

    A single-mass flexible-rotor analysis was used to optimize the stiffness and damping of a flexible support for a symmetric five-mass rotor. The flexible, damped support attenuates the amplitudes of motions and forces transmitted to the support bearings when the rotor operates through and above its first bending critical speed. An oil squeeze film damper was designed based on short bearing lubrication theory. The damper design was verified by an unbalance response computer program. Rotor amplitudes were reduced by a factor of 16 and loads reduced by a factor of 36 compared with the same rotor with rigid bearing supports.

  16. Housing flexibility effects on rotor stability

    NASA Technical Reports Server (NTRS)

    Davis, L. B.; Wolfe, E. A.; Beatty, R. F.

    1985-01-01

    Preliminary rotordynamic evaluations are performed with a housing stiffness assumption that is typically determined only after the hardware is built. In addressing rotor stability, a rigid housing assumption was shown to predict an instability at a lower spin speed than a comparable flexible housing analysis. This rigid housing assumption therefore provides a conservative estimate of the stability threshold speed. A flexible housing appears to act as an energy absorber and dissipated some of the destabilizing force. The fact that a flexible housing is usually asymmetric and considerably heavier than the rotor was related to this apparent increase in rotor stability. Rigid housing analysis is proposed as a valuable screening criteria and may save time and money in construction of elaborate housing finite element models for linear stability analyses.

  17. Nonlinear transient analysis of multi-mass flexible rotors - theory and applications

    NASA Technical Reports Server (NTRS)

    Kirk, R. G.; Gunter, E. J.

    1973-01-01

    The equations of motion necessary to compute the transient response of multi-mass flexible rotors are formulated to include unbalance, rotor acceleration, and flexible damped nonlinear bearing stations. A method of calculating the unbalance response of flexible rotors from a modified Myklestad-Prohl technique is discussed in connection with the method of solution for the transient response. Several special cases of simplified rotor-bearing systems are presented and analyzed for steady-state response, stability, and transient behavior. These simplified rotor models produce extensive design information necessary to insure stable performance to elastic mounted rotor-bearing systems under varying levels and forms of excitation. The nonlinear journal bearing force expressions derived from the short bearing approximation are utilized in the study of the stability and transient response of the floating bush squeeze damper support system. Both rigid and flexible rotor models are studied, and results indicate that the stability of flexible rotors supported by journal bearings can be greatly improved by the use of squeeze damper supports. Results from linearized stability studies of flexible rotors indicate that a tuned support system can greatly improve the performance of the units from the standpoint of unbalanced response and impact loading. Extensive stability and design charts may be readily produced for given rotor specifications by the computer codes presented in this analysis.

  18. Research study for effects of case flexibility on bearing loads and rotor stability

    NASA Technical Reports Server (NTRS)

    Fenwick, J. R.; Tarn, R. B.

    1984-01-01

    Methods to evaluate the effect of casing flexibility on rotor stability and component loads were developed. Recent Rocketdyne turbomachinery was surveyed to determine typical properties and frequencies versus running speed. A small generic rotor was run with a flexible case with parametric variations in casing properties for comparison with a rotor attached to rigid supports. A program for the IBM personal computer for interactive evaluation of rotors and casings is developed. The Root locus method is extended for use in rotor dynamics for symmetrical systems by transforming all motion and coupling into a single plane and using a 90 degree criterion when plotting loci.

  19. Balancing techniques for high-speed flexible rotors

    NASA Technical Reports Server (NTRS)

    Smalley, A. J.

    1978-01-01

    Ideal and non-ideal conditions for multiplane balancing are addressed. Methodology and procedures for identifying optimum balancing configurations and for assessing, quantitatively, the penalties associated with non-optimum configurations were developed and demonstrated. The problems introduced when vibration sensors are supported on flexible mounts were assessed experimentally, and the effects of flexural asymmetry in the rotor on balancing were investigated. A general purpose method for predicting the threshold of instability of an asymmetric rotor was developed, and its predictions are compared with measurements under different degrees of asymmetry.

  20. Formulation of the aeroelastic stability and response problem of coupled rotor/support systems

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Friedmann, P.

    1979-01-01

    The consistent formulation of the governing nonlinear equations of motion for a coupled rotor/support system is presented. Rotor/support coupling is clearly documented by enforcing dynamic equilibrium between the rotor and the moving flexible support. The nonlinear periodic coefficient equations of motion are applicable to both coupled rotor/fuselage aeroelastic problems of helicopters in hover or forward flight and coupled rotor/tower dynamics of a large horizontal axis wind turbine (HAWT). Finally, the equations of motion are used to study the influence of flexible supports and nonlinear terms on rotor aeroelastic stability and response of a large two-bladed HAWT.

  1. Dynamics of a flexible rotor in magnetic bearings

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Humphris, R. R.; Kelm, R. D.

    1987-01-01

    Discussed is a magnetic bearing which was designed and tested in a flexible rotor both as support bearings and as a vibration controller. The design of the bearing is described and the effect of control circuit bandwidth determined. Both stiffness and damping coefficients were measured and calculated for the bearing with good agreement. The bearings were then placed in a single mass rotor as support bearings and the machine run through two critical speeds. Measurements were made of the vibration response in plain bushings and magnetic bearings. Comparisons were also made of the theoretical calculations with the measured peak unbalance response speeds. Finally, runs were made with the magnetic bearing used as a vibration controller.

  2. Laser balancing demonstration on a high-speed flexible rotor

    NASA Technical Reports Server (NTRS)

    Demuth, R. S.; Rio, R. A.; Fleming, D. P.

    1979-01-01

    This paper describes a flexible rotor system used for two-plane laser balancing and an experimental demonstration of the laser material removal method for balancing. A laboratory test rotor was modified to accept balancing corrections using a laser metal removal method while the rotor is at operating speed. The laser setup hardware required to balance the rotor using two correction planes is described. The test rig optical configuration and a neodymium glass laser were assembled and calibrated for material removal rates. Rotor amplitudes before and after balancing, trial and correction weights, rotor speed during operation of laser, and balancing time were documented. The rotor was balanced through the first bending critical speed using the laser material removal procedure to apply trial weights and correction weights without stopping the rotor.

  3. Transient dynamics of a flexible rotor with squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Buono, D. F.; Schlitzer, L. D.; Hall, R. G., III; Hibner, D. H.

    1978-01-01

    A series of simulated blade loss tests are reported on a test rotor designed to operate above its second bending critical speed. A series of analyses were performed which predicted the transient behavior of the test rig for each of the blade loss tests. The scope of the program included the investigation of transient rotor dynamics of a flexible rotor system, similar to modern flexible jet engine rotors, both with and without squeeze film dampers. The results substantiate the effectiveness of squeeze film dampers and document the ability of available analytical methods to predict their effectiveness and behavior.

  4. Forward and Backward Precession of a Vertical Anisotropically Supported Rotor

    NASA Astrophysics Data System (ADS)

    Muszynska, A.

    1996-04-01

    This paper presents the analytical and experimental study of a vertical, overhung imbalanced rotor supported by flexible, anisotropic bearings. The results show that existence of imbalance and shaft bow causes the synchronous forced precession of the rotor to be forward (below the first value of split balance resonance and above the second value of the split balance resonance) or backward (between the two values of the split resonance). This phenomenon is classical. The new result consists of exploring the existence of forward precession of the inboard and midspan rotor sections while the outboard disk is precessing backward. The sensitivity analysis shows which system parameters are mainly responsible for this apparently bizarre phenomenon.

  5. Instability thresholds for flexible rotors in hydrodynamic bearings

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Flack, R. D.

    1980-01-01

    Two types of fixed pad hydrodynamic bearings (multilobe and pressure dam) were considered. Optimum and nonoptimum geometric configurations were tested. The optimum geometric configurations were determined by using a theoretical analysis and then the bearings were constructed for a flexible rotor test rig. It was found that optimizing bearings using this technique produces a 100% or greater increase in rotor stability. It is shown that this increase in rotor stability is carried out in the absence of certain types of instability mechanisms such as aerodynamic crosscoupling. However, the increase in rotor stability should greatly improve rotating machinery performance in the presence of such forces as well.

  6. Third order LPF type compensator for flexible rotor suspension

    NASA Astrophysics Data System (ADS)

    Matsushita, Osami; Takahashi, Naohiko; Takagi, Michiyuki

    1994-05-01

    The tuning job of the compensator for levitating flexible rotors supported by active magnetic bearings (AMB) concerns providing a good damping effect to the critical speed modes while avoiding the spillover problem on the instability of higher bending modes. In this paper, an idea for design of the control law of the compensator based on utilizing a third order low pass filter (LPF) is proposed to essentially enable elimination of the spillover instability. According to the proposed design method, good damping effects for the critical speeds are obtained by the usual phase lead/lag function. Stabilization for all of higher bending modes is completed by the additional function of the 3rd order LPF due to its phase lag approaching about -270 degrees in the high frequency domain. This idea is made clear by experiments and simulations.

  7. Third order LPF type compensator for flexible rotor suspension

    NASA Technical Reports Server (NTRS)

    Matsushita, Osami; Takahashi, Naohiko; Takagi, Michiyuki

    1994-01-01

    The tuning job of the compensator for levitating flexible rotors supported by active magnetic bearings (AMB) concerns providing a good damping effect to the critical speed modes while avoiding the spillover problem on the instability of higher bending modes. In this paper, an idea for design of the control law of the compensator based on utilizing a third order low pass filter (LPF) is proposed to essentially enable elimination of the spillover instability. According to the proposed design method, good damping effects for the critical speeds are obtained by the usual phase lead/lag function. Stabilization for all of higher bending modes is completed by the additional function of the 3rd order LPF due to its phase lag approaching about -270 degrees in the high frequency domain. This idea is made clear by experiments and simulations.

  8. Active vibration control for flexible rotor by optimal direct-output feedback control

    NASA Technical Reports Server (NTRS)

    Nonami, K.; Dirusso, E.; Fleming, D. P.

    1989-01-01

    Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 microns down to approximately 25 microns (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.

  9. Active vibration control for flexible rotor by optimal direct-output feedback control

    NASA Technical Reports Server (NTRS)

    Nonami, Kenzou; Dirusso, Eliseo; Fleming, David P.

    1989-01-01

    Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 micrometers down to approximately 25 micrometers (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.

  10. An introduction to a unified approach to flexible rotor balancing

    NASA Technical Reports Server (NTRS)

    Parkinson, A. G.; Smalley, A. J.; Badgley, R. H.; Darlow, M. S.

    1979-01-01

    Two types of technique for flexible-rotor balancing are examined: the influence coefficient method, and the modal balancing method. Briefly, the influence coefficient method seeks those correction masses in a predetermined set of planes which will minimize measured vibration (readings) at a series of sensors and speeds, as predicted by influence coefficients relating vibration readings to mass additions; the influence coefficients are normally determined by a series of trial mass tests. The modal balancing method seeks to balance the rotor, one mode at a time, with a set of masses specifically selected not to disturb previously balanced lower modes, the sensitivity to this combination of masses is determined empirically by a series of trial mass tests. The two approaches are compared in supercritical-shaft balancing tests, and some common features are stressed for ultimate incorporation into a unified approach toward flexible-rotor balancing.

  11. Rotor support for the STME oxygen turbopump

    NASA Astrophysics Data System (ADS)

    Haluck, David; Bursey, Roger, Jr.; Ferlita, Frank

    1992-07-01

    The rotor support for the NLS Space Transportation Main Engine (STME) oxygen turbopump is discussed. The rotor is supported by two large angular contact split inner ring ball bearings which are cooled with liquid oxygen. Lubrication is provided by the sacrificial wear of Salox-M self-lubricating composite cage material and the subsequent transfer from the rolling element to the raceway surfaces. The bearings are designed to carry both radial and axial loads. The two-ball-bearing rotor support allows startup and shutdown related transient axial loads to be handled in either direction. The paper presents diagrams of the STME oxygen turbopump, showing ball bearings, and results of ball bearing tests.

  12. Effects of vibration and shock on the performance of gas-bearing space-power Brayton cycle turbomachinery. Part 4: Suppression of rotor-bearing system vibrations through flexible bearing support damping

    NASA Technical Reports Server (NTRS)

    Tessarzik, J. M.; Chiang, T.; Badgley, R. H.

    1974-01-01

    A bearing damper, operating on the support flexure of a pivoted pad in a tilting-pad type gas-lubricated journal bearing, has been designed, built, and tested under externally-applied random vibrations. The NASA Brayton Rotating Unit (BRU), a 36,000 rpm, 10-Kwe turbogenerator had previously been subjected in the MTI Vibration Test Laboratory to external random vibrations, and vibration response data had been recorded and analyzed for amplitude distribution and frequency content at a number of locations in the machine. Based on data from that evaluation, a piston-type damper was designed and developed for each of the two flexibly-supported journal bearing pads (one in each of the two three-pad bearings). A modified BRU, with dampers installed, has been re-tested under random vibration conditions. Root-mean-square vibration amplitudes were determined from the test data, and displacement power spectral density analyses have been performed. Results of these data reduction efforts have been compared with vibration tolerance limits. Results of the tests indicate significant reductions in vibration levels in the bearing gas-lubricant films, particularly in the rigidly-mounted pads. The utility of the gas-lubricated damper for limiting rotor-bearing system vibrations in high-speed turbomachinery has thus been demonstrated.

  13. Dynamics of High-Speed Rotors Supported in Sliding Bearings

    NASA Astrophysics Data System (ADS)

    Šimek, J.; Svoboda, R.

    The higher the operating speed, the more serious are problems with rotor stability. Three basic groups of rotors are analyzed and some methods of suppressing instability are shown. In the first group are classical elastic rotors supported in hydrodynamic bearings. Practically all high-speed rotors now run in tilting pad bearings, which are inherently stable, but in specific conditions even tiling pad bearings may not ensure rotor stability. The second group is composed of combustion engines turbocharger rotors, which are characteristic by heavy impellers at both overhung ends of elastic shaft. These rotors are in most cases supported in floating ring bearings, which bring special features to rotor behaviour. The third group of rotors with gas bearings exhibits special features.

  14. Photocatalytic reactor with flexible supports

    DOEpatents

    Jacoby, William A.; Blake, Daniel M.

    1995-01-01

    Organic pollutants and bioaerosols in a gaseous stream are oxidized by exposure to light (e.g., UV light) in the presence of semiconductor catalyst particles or coatings supported on flexible strips suspended in the gaseous stream.

  15. Photocatalytic reactor with flexible supports

    DOEpatents

    Jacoby, W.A.; Blake, D.M.

    1995-09-12

    Organic pollutants and bioaerosols in a gaseous stream are oxidized by exposure to light (e.g., UV light) in the presence of semiconductor catalyst particles or coatings supported on flexible strips suspended in the gaseous stream. 3 figs.

  16. Dynamic modelling and analysis of a magnetically suspended flexible rotor. M.S. Thesis, 1988

    NASA Technical Reports Server (NTRS)

    Mccallum, Duncan C.

    1991-01-01

    A 12-state lumped-element model is presented for a flexible rotor supported by two attractive force electromagnetic journal bearings. The rotor is modeled as a rigid disk with radial mass unbalance mounted on a flexible, massless shaft with internal damping (Jeffcott rotor). The disk is offset axially from the midspan of the shaft. Bearing dynamics in each radial direction are modeled as a parallel combination of a negative (unstable) spring and a linear current-to-force actuator. The model includes translation and rotation of the rigid mass and the first and second bending models of the flexible shaft, and it simultaneously includes internal shaft damping, gyroscopic effects, and the unstable nature of the attractive force magnetic bearings. The model is used to analyze the dependence of the system transmission zeros and open-loop poles on system parameters. The dominant open-loop poles occur in stable/unstable pairs with bandwidth dependent on the ratios of bearing (unstable) stiffnesses to rotor mass and damping dependent on the shaft spin rate. The zeros occur in complex conjugate pairs with bandwidth dependent on the ratios of shaft stiffness to rotor mass and damping dependent on the shaft spin rate. Some of the transmission zeros are non-minimum phase when the spin rate exceeds the shaft critical speed. The transmission zeros and open-loop poles impact the design of magnetic bearing control systems. The minimum loop cross-over frequency of the closed-loop system is the speed of the unstable open-loop poles. For the supercritical shaft spin rates, the presence of non-minimum phase zeros limits the distribution rejection achievable at frequencies near or above the shaft critical speed. Since non-minimum phase transmission zeros can only be changed by changing the system inputs and/or outputs, closed-loop performance is limited for supercritical spin rates unless additional force or torque actuators are added.

  17. Dynamic Response and Stability Analysis of AN Automatic Ball Balancer for a Flexible Rotor

    NASA Astrophysics Data System (ADS)

    Chung, J.; Jang, I.

    2003-01-01

    Dynamic stability and time responses are studied for an automatic ball balancer of a rotor with a flexible shaft. The Stodola-Green rotor model, of which the shaft is flexible, is selected for analysis. This rotor model is able to include the influence of rigid-body rotations due to the shaft flexibility on dynamic responses. Applying Lagrange's equation to the rotor with the ball balancer, the non-linear equations of motion are derived. Based on the linearized equations, the stability of the ball balancer around the balanced equilibrium position is analyzed. On the other hand, the time responses computed from the non-linear equations are investigated. This study shows that the automatic ball balancer can achieve the balancing of a rotor with a flexible shaft if the system parameters of the balancer satisfy the stability conditions for the balanced equilibrium position.

  18. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1995-01-01

    Progress made in the current year is listed, and the following papers are included in the appendix: Steady-State Dynamic Behavior of an Auxiliary Bearing Supported Rotor System; Dynamic Behavior of a Magnetic Bearing Supported Jet Engine Rotor with Auxiliary Bearings; Dynamic Modelling and Response Characteristics of a Magnetic Bearing Rotor System with Auxiliary Bearings; and Synchronous Dynamics of a Coupled Shaft/Bearing/Housing System with Auxiliary Support from a Clearance Bearing: Analysis and Experiment.

  19. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1995-01-01

    This semiannual status report lists specific accomplishments made on the research of the influence of backup bearings and support structure dynamics on the behavior of rotors with active supports. Papers have been presented representing work done on the T-501 engine model; an experimental/simulation study of auxiliary bearing rotordynamics; and a description of a rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects. A finite element model for a foil bearing has been developed. Additional studies of rotor/bearing/housing dynamics are currently being performed as are studies of the effects of sideloading on auxiliary bearing rotordynamics using the magnetic bearing supported rotor model.

  20. Validation of a Model for a Two-Bladed Flexible Rotor System: Progress to Date

    SciTech Connect

    Wright, A. D.; Kelley, N. D.; Osgood, R. M.

    1998-11-19

    At the National Renewable Energy Laboratory, we tested a very flexible wind turbine. This machine, the Cannon Wind Eagle turbine, exhibited an ability to significantly reduce the rotor flap-wise bending moments through a unique combination of a flexible rotor and hub design. In parallel to this testing effort, we developed analytical models of this machine using our simulation codes. The goal of this work was to validate the analytical models of this machine by comparing analytical predictions to measured results from the real machine. We first describe briefly the simulation codes used in this study. We then describe the wind turbine we analyzed. We then describe analytical model validation progress for this flexible rotor and show preliminary validation results. Finally, we make conclusions and state our plans for future studies.

  1. Identification of dynamic characteristics of flexible rotors as dynamic inverse problem

    NASA Technical Reports Server (NTRS)

    Roisman, W. P.; Vajingortin, L. D.

    1991-01-01

    The problem of dynamic and balancing of flexible rotors were considered, which were set and solved as the problem of the identification of flexible rotor systems, which is the same as the inverse problem of the oscillation theory dealing with the task of the identifying the outside influences and system parameters on the basis of the known laws of motion. This approach to the problem allows the disclosure the picture of disbalances throughout the rotor-under-test (which traditional methods of flexible rotor balancing, based on natural oscillations, could not provide), and identify dynamic characteristics of the system, which correspond to a selected mathematical model. Eventually, various methods of balancing were developed depending on the special features of the machines as to their design, technology, and operation specifications. Also, theoretical and practical methods are given for the flexible rotor balancing at far from critical rotation frequencies, which does not necessarily require the knowledge forms of oscillation, dissipation, and elasticity and inertia characteristics, and to use testing masses.

  2. Theoretical prediction of the influence coefficients on damped simple flexible rotors using the transfer matrix method

    NASA Astrophysics Data System (ADS)

    Jun, Oh-Sung; Kim, Paul Y.

    1994-02-01

    The influence coefficients for undamped flexible rotors are analytically derived and then compared and discussed for various damping coefficients. The concept of the transfer matrix method is partially adapted in the formulation. Single-disk and single cylinder rotor models are used for one- and two-plane balancing models, respectively. The gyroscopic effect of the disk or cylinder, which has been included in the formulation, is proved important through a simplified example rotor model. Taking the gyroscopic effect into account when calculating the influence coefficient is especially important near the resonant and antiresonant frequencies of the rotor. The simplified model also shows that an increase in damping reduces the sharpness of magnitude curve of influence coefficients and smoothens the change of phase at around the resonant and antiresonant frequencies.

  3. Analysis of motion stability of the flexible rotor-bearing system with two unbalanced disks

    NASA Astrophysics Data System (ADS)

    Wenhui, Xie; Yougang, Tang; Yushu, Chen

    2008-02-01

    The complicated dynamical behavior of a flexible rotor-bearing system is studied in this paper. The unsteady oil-film force model described by three functions is considered. The bifurcation and chaos behaviors were revealed by calculating the maximum Lyapunov exponent of the system. Two new phenomena were found in this system: first, the chaos with two attracting areas which cannot be distinguished from the stable period doubling motion on Poincarè section; second, for the flexible rotor system with two unbalanced disks, the response varies in a large extent when the phase angle between the eccentricities of disks is different. The experiments were also carried out. Comparison between experimental and calculated results shows that the significant use of the max Lyapunov exponent in revealing the bifurcation and chaos characteristics of the rotor-bearing system.

  4. Whirl speeds of mistuned bladed rotors supported by isotropic stator

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Taek

    2015-11-01

    As an initial step toward understanding the fully coupled dynamics of mistuned bladed disk-shaft systems, this paper investigates the frequency characteristics of natural whirl speeds associated with the in-plain vibration of a rotating mistuned bladed disk mounted on an isotropic support. Through complex multi-blade coordinate transformation and modulation, a simplistic analysis model describing the essential in-plain whirling behavior of mistuned bladed rotor is derived in a typical form of linear differential equations with time-constant coefficients. By applying ordinary eigenvalue analysis for linear time-invariant systems, the whirl speeds of mistuned bladed rotor are examined for cases of weak and strong inter-blade coupling conditions. The mistuning effect on the whirl speeds of the bladed rotor is then explained by classifying the whirling modes into three types according to their cause of manifestation and the frequency relationship: namely, original, coupled multi-blade, and conjugate whirling modes.

  5. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1994-01-01

    Progress over the past year includes the following: A simplified rotor model with a flexible shaft and backup bearings has been developed. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501. The magnetic bearing test rig is currently floating and dynamics/control tests are being conducted. A paper has been written that documents the work using the T-501 engine model. Work has continued with the simplified model. The finite element model is currently being modified to include the effects of foundation dynamics. A literature search for material on foil bearings has been conducted. A finite element model is being developed for a magnetic bearing in series with a foil backup bearing.

  6. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1994-01-01

    Substantial progress has been made toward the goals of this research effort in the past six months. A simplified rotor model with a flexible shaft and backup bearings has been developed. The model is based upon the work of Ishii and Kirk. Parameter studies of the behavior of this model are currently being conducted. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. The study consists of simulation work coupled with experimental verification. The work is documented in the attached paper. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. The dynamics of this model are currently being studied with the objective of verifying the conclusions obtained from the simpler models. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501.

  7. Tests of laser metal removal for future flexible rotor balancing in engines

    NASA Technical Reports Server (NTRS)

    Tessarzik, J. M.; Fleming, D. P.

    1975-01-01

    This paper describes recent developments in the flexible rotor balancing technology area, with particular emphasis on methods for the addition and removal of correction weights. The currently existing multiplane-multispeed balancing procedure permits one-step balancing of final shaft-bearing assemblies simultaneously in a number of planes and at a number of speeds. Temporary addition of trial weights to the rotor, and the addition or subtraction of permanent corrections, are presently performed manually in the balancing process. The addition of a computer-controlled laser device to the balancing system shows promise of eliminating direct operator contact with the rotor in the balancing process, and thus could provide a considerable increase in the precision level at a critical step in the procedure.

  8. Dynamic analysis of flexible rotor-bearing systems using a modal approach

    NASA Technical Reports Server (NTRS)

    Choy, K. C.; Gunter, E. J.; Barrett, L. E.

    1978-01-01

    The generalized dynamic equations of motion were obtained by the direct stiffness method for multimass flexible rotor-bearing systems. The direct solution of the equations of motion is illustrated on a simple 3-mass system. For complex rotor-bearing systems, the direct solution of the equations becomes very difficult. The transformation of the equations of motion into modal coordinates can greatly simplify the computation for the solution. The use of undamped and damped system mode shapes in the transformation are discussed. A set of undamped critical speed modes is used to transform the equations of motion into a set of coupled modal equations of motion. A rapid procedure for computing stability, steady state unbalance response, and transient response of the rotor-bearing system is presented. Examples of the application of this modal approach are presented. The dynamics of the system is further investigated with frequency spectrum analysis of the transient response.

  9. Modelling and control of a rotor supported by magnetic bearings

    NASA Technical Reports Server (NTRS)

    Gurumoorthy, R.; Pradeep, A. K.

    1994-01-01

    In this paper we develop a dynamical model of a rotor and the active magnetic bearings used to support the rotor. We use this model to develop a stable state feedback control of the magnetic bearing system. We present the development of a rigid body model of the rotor, utilizing both Rotation Matrices (Euler Angles) and Euler Parameters (Quaternions). In the latter half of the paper we develop a stable state feedback control of the actively controlled magnetic bearing to control the rotor position under inbalances. The control law developed takes into account the variation of the model with rotational speed. We show stability over the whole operating range of speeds for the magnetic bearing system. Simulation results are presented to demonstrate the closed loop system performance. We develop the model of the magnetic bearing, and present two schemes for the excitation of the poles of the actively controlled magnetic bearing. We also present a scheme for averaging multiple sensor measurements and splitting the actuation forces amongst redundant actuators.

  10. Influence of oil-squeeze-film damping on steady-state response of flexible rotor operating to supercritical speeds

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1977-01-01

    Experimental data were obtained for the unbalance response of a flexible rotor to speeds above the third lateral bending critical. Squeeze-film damping coefficients calculated from measured data showed good agreement with short-journal-bearing approximations over a frequency range from 5000 to 31,000 cmp. Response of a rotor to varying amounts of unbalance was investigated. A very lightly damped rotor was compared with one where oil-squeeze dampers were applied.

  11. Coupled rotor-flexible fuselage vibration reduction using open loop higher harmonic control

    NASA Technical Reports Server (NTRS)

    Papavassiliou, I.; Friedmann, P. P.; Venkatesan, C.

    1991-01-01

    A fundamental study of vibration prediction and vibration reduction in helicopters using active controls was performed. The nonlinear equations of motion for a coupled rotor/flexible fuselage system have been derived using computer algebra on a special purpose symbolic computer facility. The trim state and vibratory response of the helicopter are obtained in a single pass by applying the harmonic balance technique and simultaneously satisfying the trim and the vibratory response of the helicopter for all rotor and fuselage degrees of freedom. The influence of the fuselage flexibility on the vibratory response is studied. It is shown that the conventional single frequency higher harmonic control is capable of reducing either the hub loads or only the fuselage vibrations but not both simultaneously. It is demonstrated that for simultaneous reduction of hub shears and fuselae vibrations a new scheme called multiple higher harmonic control is required.

  12. Interaction Dynamics Between a Flexible Rotor and an Auxiliary Clearance Bearing

    NASA Technical Reports Server (NTRS)

    Lawen, James L., Jr.; Flowers, George T.

    1996-01-01

    This study investigates the application of synchronous interaction dynamics methodology to the design of auxiliary bearing systems. The technique is applied to a flexible rotor system and comparisons are made between the behavior predicted by this analysis method and the observed simulation response characteristics. Of particular interest is the influence of coupled shaft/bearing vibration modes on rotordynamical behavior. Experimental studies are also perFormed to validate the simulation results and provide insight into the expected behavior of such a system.

  13. Adding In-Plane Flexibility to the Equations of Motion of a Single Rotor Helicopter

    NASA Technical Reports Server (NTRS)

    Curtiss, H. C., Jr.

    2000-01-01

    This report describes a way to add the effects of main rotor blade flexibility in the in- plane or lead-lag direction to a large set of non-linear equations of motion for a single rotor helicopter with rigid blades(l). Differences between the frequency of the regressing lag mode predicted by the equations of (1) and that measured in flight (2) for a UH-60 helicopter indicate that some element is missing from the analytical model of (1) which assumes rigid blades. A previous study (3) noted a similar discrepancy for the CH-53 helicopter. Using a relatively simple analytical model in (3), compared to (1), it was shown that a mechanical lag damper increases significantly the coupling between the rigid lag mode and the first flexible mode. This increased coupling due to a powerful lag damper produces an increase in the lowest lag frequency when viewed in a frame rotating with the blade. Flight test measurements normally indicate the frequency of this mode in a non-rotating or fixed frame. This report presents the additions necessary to the full equations of motion, to include main rotor blade lag flexibility. Since these additions are made to a very complex nonlinear dynamic model, in order to provide physical insight, a discussion of the results obtained from a simplified set of equations of motion is included. The reduced model illustrates the physics involved in the coupling and should indicate trends in the full model.

  14. Flexible Support Liquid Argon Heat Intercept

    SciTech Connect

    Rudland, D.L.; /Fermilab

    1987-05-18

    A device in the flexible support system for the Central Calorimeter is the Liquid Argon Heat Intercept. The purpose of this apparatus is to intercept heat outside the inner vessel so that bubbles do not form inside. If bubbles did happen to form inside the vessel, they would cause an electric arc between the read-out board and the absorption plates, thus destroying the pre-amplifier. Since this heat intercept is located in the center of the flexible support, it must also support the load of the Central Caloimeter. Figure 1 shows how the intercept works. The subcooled liquid argon is driven through a 1/4-inch x 0.049-inch w tube by hydrostatic pressure. the ambient heat boils the subcooled argon. The gaseous argon flows through the tube and is condensed at the top of the vessel by a 100 kW cooling coil. This process is rpesent in all four flexible support systems.

  15. Stability and transient motion of a plain journal mounted in flexible damped supports

    NASA Technical Reports Server (NTRS)

    Kirk, R. G.; Gunter, E. J.

    1975-01-01

    Results are presented for an extensive study of the influence of damped flexible supports on the stability-threshold speed of a symmetric rotor mounted in nonlinear fluid-film bearings. A stability analysis is conducted by applying the Routh criteria and calculating the damped eigenvalues of the system. Stability maps are given in dimensionless form for a range of support stiffness, damping, and mass ratios. The effect of rotor imbalance on the stability of rotor systems is examined, and it is shown that time transient orbits of shaft and support motions clearly indicate their dynamic behavior for both stable and unstable operating speeds. Simple design criteria are proposed for choosing the support stiffness and damping on the basis of rotor weight and journal clearance to promote optimum stability. It is concluded that the use of a flexible damped support system may increase the stability threshold of a plain journal bearing and that damper supports should promote smoother and quieter machine operation by suppressing oil whirl and attenuating unbalanced rotational forces.

  16. Flexible Electronics Development Supported by NASA

    NASA Technical Reports Server (NTRS)

    Baumann, Eric

    2014-01-01

    The commercial electronics industry is leading development in most areas of electronics for NASA applications; however, working in partnership with industry and the academic community, results from NASA research could lead to better understanding and utilization of electronic materials by the flexible electronics industry. Innovative ideas explored by our partners in industry and the broader U.S. research community help NASA execute our missions and bring new American products and services to the global technology marketplace. [Mike Gazarik, associate administrator for Space Technology, NASA Headquarters, Washington DC] This presentation provides information on NASA needs in electronics looking towards the future, some of the work being supported by NASA in flexible electronics, and the capabilities of the Glenn Research Center supporting the development of flexible electronics.

  17. Stability Analysis of a Turbocharger Rotor System Supported on Floating Ring Bearings

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Shi, Z. Q.; Zhen, D.; Gu, F. S.; Ball, A. D.

    2012-05-01

    The stability of a turbocharger rotor is governed by the coupling of rotor dynamics and fluid dynamics because the high speed rotor system is supported on a pair of hydrodynamic floating ring bearings which comprise of inner and outer fluid films in series. In order to investigate the stability, this paper has developed a finite element model of the rotor system with consideration of such exciting forces as rotor imbalance, hydrodynamic fluid forces, lubricant feed pressure and dead weight. The dimensionless analytical expression of nonlinear oil film forces in floating ring bearings have been derived on the basis of short bearing theory. Based on numerical simulation, the effects of rotor imbalance, lubricant viscosity, lubricant feed pressure and bearing clearances on the stability of turbocharger rotor system have been studied. The disciplines of the stability of two films and dynamic performances of rotor system have been provided.

  18. The longitudinal equations of motion of a tilt prop/rotor aircraft including the effects of wing and prop/rotor blade flexibility

    NASA Technical Reports Server (NTRS)

    Curtiss, H. C., Jr.

    1976-01-01

    The equations of motion for the longitudinal dynamics of a tilting prop/rotor aircraft are developed. The analysis represents an extension of the equations of motion. The effects of the longitudinal degrees of freedom of the body (pitch, heave and horizontal velocity) are included. The results of body freedom can be added to the equations of motion for the flexible wing propeller combination.

  19. Flexibility within the Rotor and Stators of the Vacuolar H+-ATPase

    PubMed Central

    Song, Chun Feng; Papachristos, Kostas; Rawson, Shaun; Huss, Markus; Wieczorek, Helmut; Paci, Emanuele; Trinick, John; Harrison, Michael A.; Muench, Stephen P.

    2013-01-01

    The V-ATPase is a membrane-bound protein complex which pumps protons across the membrane to generate a large proton motive force through the coupling of an ATP-driven 3-stroke rotary motor (V1) to a multistroke proton pump (Vo). This is done with near 100% efficiency, which is achieved in part by flexibility within the central rotor axle and stator connections, allowing the system to flex to minimise the free energy loss of conformational changes during catalysis. We have used electron microscopy to reveal distinctive bending along the V-ATPase complex, leading to angular displacement of the V1 domain relative to the Vo domain to a maximum of ~30°. This has been complemented by elastic network normal mode analysis that shows both flexing and twisting with the compliance being located in the rotor axle, stator filaments, or both. This study provides direct evidence of flexibility within the V-ATPase and by implication in related rotary ATPases, a feature predicted to be important for regulation and their high energetic efficiencies. PMID:24312643

  20. Nonlinear Dynamics of a Foil Bearing Supported Rotor System: Simulation and Analysis

    NASA Technical Reports Server (NTRS)

    Li, Feng; Flowers, George T.

    1996-01-01

    Foil bearings provide noncontacting rotor support through a number of thin metal strips attached around the circumference of a stator and separated from the rotor by a fluid film. The resulting support stiffness is dominated by the characteristics of the foils and is a nonlinear function of the rotor deflection. The present study is concerned with characterizing this nonlinear effect and investigating its influence on rotordynamical behavior. A finite element model is developed for an existing bearing, the force versus deflection relation characterized, and the dynamics of a sample rotor system are studied. Some conclusions are discussed with regard to appropriate ranges of operation for such a system.

  1. A new model of water-lubricated rubber bearings for vibration analysis of flexible multistage rotor systems

    NASA Astrophysics Data System (ADS)

    Liu, Shibing; Yang, Bingen

    2015-08-01

    Flexible multistage rotating systems that are supported or guided by long water-lubricated rubber bearings (WLRBs) have a variety of engineering applications. Vibration analysis of this type of machinery for performance and duality requires accurate modeling of WLRBs and related rotor-bearing assemblies. This work presents a new model of WLRBs, with attention given to the determination of bearing dynamic coefficients. Due to its large length-to-diameter ratio, a WLRB cannot be described by conventional pointwise bearing models with good fidelity. The bearing model proposed in this paper considers spatially distributed bearing forces. For the first time in the literature, the current study addresses the issue of mixed lubrication in the operation of WLRBs, which involves interactions of shaft vibration, elastic deformation of rubber material and fluid film pressure, and validates the WLRB model in experiments. Additionally, with the new bearing model, vibration analysis of WLRB-supported flexible multistage rotating systems is performed through use of a distributed transfer function method, which delivers accurate and closed-form analytical solutions of steady-state responses without discretization.

  2. Blade loss dynamics of a magnetically supported rotor

    NASA Astrophysics Data System (ADS)

    Viggiano, F.; Schweitzer, G.

    The equations for a rigid rotor in magnetic bearings are derived and examined for their response following a sudden unbalance created by a blade loss. The investigations concentrate on the maximum transient and steady-state response after unbalance. The analytical results are compared with experiments which were performed on a magnetic bearing test stand at our laboratory. A major result is that magnetic bearings are very well suited to cope with the loss of a rotor blade.

  3. Dynamic behavior of a magnetic bearing supported jet engine rotor with auxiliary bearings

    NASA Technical Reports Server (NTRS)

    Flowers, George T.; Xie, Huajun; Sinha, S. C.

    1995-01-01

    This paper presents a study of the dynamic behavior of a rotor system supported by auxiliary bearings. The steady-state behavior of a simulation model based upon a production jet engine is explored over a wide range of operating conditions for varying rotor imbalance, support stiffness, and damping. Interesting dynamical phenomena, such as chaos, subharmonic responses, and double-valued responses, are presented and discussed.

  4. Dynamic behavior of a magnetic bearing supported jet engine rotor with auxiliary bearings

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah (Editor); Kelly, John C., Jr. (Editor); Flowers, G. T.; Xie, H.; Sinha, S. C.

    1994-01-01

    This paper presents a study of the dynamic behavior of a rotor system supported by auxiliary bearings. The steady-state behavior of a simulation model based upon a production jet engine is explored over a wide range of operating conditions for varying rotor imbalance, support stiffness and damping. Interesting dynamical phenomena, such as chaos, subharmonic responses, and double-valued responses, are presented and discussed.

  5. A magnetic damper for first mode vibration reduction in multimass flexible rotors

    NASA Technical Reports Server (NTRS)

    Kasarda, M. E. F.; Allaire, P. E.; Humphris, R. R.; Barrett, L. E.

    1989-01-01

    Many rotating machines such as compressors, turbines and pumps have long thin shafts with resulting vibration problems, and would benefit from additional damping near the center of the shaft. Magnetic dampers have the potential to be employed in these machines because they can operate in the working fluid environment unlike conventional bearings. An experimental test rig is described which was set up with a long thin shaft and several masses to represent a flexible shaft machine. An active magnetic damper was placed in three locations: near the midspan, near one end disk, and close to the bearing. With typical control parameter settings, the midspan location reduced the first mode vibration 82 percent, the disk location reduced it 75 percent and the bearing location attained a 74 percent reduction. Magnetic damper stiffness and damping values used to obtain these reductions were only a few percent of the bearing stiffness and damping values. A theoretical model of both the rotor and the damper was developed and compared to the measured results. The agreement was good.

  6. Vibration and control of a flexible rotor in magnetic bearings using hybrid method and H{sup {infinity}} control theory

    SciTech Connect

    Shiau, T.N.; Sheu, G.J.; Yang, C.D.

    1997-01-01

    The vibration and active control of a flexible rotor system with magnetic bearings are investigated using Hybrid Method (HM) and H{sup {infinity}} control theory with consideration of gyroscopic effect. The hybrid method, which combines the merits of the finite element method (FEM) and generalized polynomial expansion method (GPEM) is employed to model the flexible rotor system with small order of plant. The mixed sensitivity problem of H{sup {infinity}} control theory is applied to design the control of system vibration with spillover phenomena for the reduced order plant. The H{sub 2} control design is also employed for comparison with the H{sup {infinity}} design. The experimental simulation is used to illustrate the effects of control design. It is shown that the H{sup {infinity}} controller design can be very effective to suppress spillover phenomena. In addition, the H{sup {infinity}} control design has robustness to the variation of the model parameters. The application of the hybrid method (HM) together with H{sup {infinity}} control design is highly recommended for vibration control of flexible rotor systems with magnetic bearings.

  7. Nonlinear phenomena, bifurcations, and routes to chaos in an asymmetrically supported rotor-stator contact system

    NASA Astrophysics Data System (ADS)

    Varney, Philip; Green, Itzhak

    2015-02-01

    The efficiency of rotating machines can be improved via precisely manufactured bearings with reduced clearances; consequently, the proclivity for rotor-stator contact is increased. A common model used to investigate rotor-stator contact in previous studies is the two degree-of-freedom (DOF) rotor with symmetric support stiffness, where the contact assumes a linear elastic normal restoring force proportional to the rotor-stator interference and a tangential dry Coulomb friction force. Switching between the contacting and non-contacting states creates strong nonlinearity in the equations of motion, and the dynamic response displays a rich profile of behaviors including periodic, quasiperiodic, and chaotic responses via period-doubling, sudden transitions, quasiperiodicity, and intermittency. For the first time, this work emphasizes an asymmetric support stiffness matrix with cross-coupling between the x and y direction stiffnesses. The influence of support asymmetry on the nonlinear rotor response is shown using rotor orbits, frequency spectra, Poincaré sections, and bifurcation diagrams. It is found that the cross-coupling stiffness coefficient kxy has negligible effect on the dynamic response until its magnitude is on the same order as the direct stiffness coefficients. Direct stiffness coefficient asymmetry is shown to affect the rotor's response, where even small asymmetries can qualitatively change the response. Additionally, the importance of including gravity is investigated, and a method is provided for determining the threshold shaft speed above which gravity can be ignored. The dominant route to chaos is period-doubling for the parameters considered here, though other routes to chaos are seen such as a direct transition from periodic to chaotic motion. Finally, observations pertaining to rotor modeling, design, and fault diagnostics are discussed.

  8. Flexible rotor balancing by the influence coefficient method. Part 1: Evaluation of the exact point-speed and least squares procedures

    NASA Technical Reports Server (NTRS)

    Tessarzik, J. M.

    1972-01-01

    The practical aspects of balancing real, flexible rotors were investigated through inclusion of rotor out-of-roundness data at the measurement probe locations. The computer program was demonstrated to be fully capable of handling out-of-roundness data in the investigation. Testing was performed predominantly with a machine having a 41-inch long, 126-pound rotor. This rotor was operated over a speed range encompassing three rotor-bearing system critical speeds. Both balancing procedures were evaluated for several different conditions of initial rotor unbalance. Safe (and slow) passage through all the critical speeds was obtained after two or three balancing runs in most cases. The Least Squares procedure was found to be generally equivalent in capability to the Exact Point-Speed procedure for the configurations studies. (U)

  9. Foil bearings for axial and radial support of high speed rotors: Design, development, and determination of operating characteristics

    NASA Technical Reports Server (NTRS)

    Licht, L.

    1978-01-01

    Flexible surface thrust and journal foil bearings were fabricated, and their performance was demonstrated, both individually and jointly as a unified rotor support system. Experimental results are documented with graphs and oscilloscopic data of trajectories, waveforms, and scans of amplitude response. At speeds of 40,000 to 45,000 rpm and a mean clearance of the order of 15 to 20 micrometers (600 to 800 micrometers, the resilient, air lubricated, spiral groove thrust bearings support a load of 127 N (29 lb; 13 kgf), equivalent to 3.0 N/sq cm (4.5 lb/sq in 0.31 kgf sq cm). Journal bearings with polygonal sections provided stable and highly damped supports at speeds up to 50,000 rpm.

  10. [Moving Mirror Scanning System Based on the Flexible Hinge Support].

    PubMed

    Xie, Fei; Feng, Fei; Wang, Fu-bei; Wu, Qiong-shui; Zeng, Li-bo

    2015-08-01

    In order to improve moving mirror drive of Fourier transform infrared spectrometer, we design a dynamic scanning system based on flexible hinge support. Using the flexible hinge support way and the voice coil motor drive mode. Specifically, Using right Angle with high accuracy high stability type flexible hinge support mechanism support moving mirror, dynamic mirror can be moved forward and backward driven by voice coil motor reciprocating motion, DSP control system to control the moving mirror at a constant speed. The experimental results show that the designed of moving mirror scanning system has advantages of stability direction, speed stability, superior seismic performance. PMID:26672322

  11. Parametric instabilities of rotor-support systems with application to industrial ventilators

    NASA Technical Reports Server (NTRS)

    Parszewski, Z.; Krodkiemski, T.; Marynowski, K.

    1980-01-01

    Rotor support systems interaction with parametric excitation is considered for both unequal principal shaft stiffness (generators) and offset disc rotors (ventilators). Instability regions and types of instability are computed in the first case, and parametric resonances in the second case. Computed and experimental results are compared for laboratory machine models. A field case study of parametric vibrations in industrial ventilators is reported. Computed parametric resonances are confirmed in field measurements, and some industrial failures are explained. Also the dynamic influence and gyroscopic effect of supporting structures are shown and computed.

  12. Learning Objects: Supporting Flexible Delivery of Online Learning.

    ERIC Educational Resources Information Center

    Oliver, Ron

    There are now many educational organizations and institutions that have decided to pursue flexible delivery and online learning as strategies. While many educators value online delivery of programs for the flexibility and opportunities offered, the environment offers far more than these outcomes alone. Online delivery supports and encourages very…

  13. Turbine Engine Stability/Instability With Rub Forces Axisymmetric Rotor-Support Stiffness

    NASA Technical Reports Server (NTRS)

    Gallardo, Vicente; Lawrence, Charles

    2004-01-01

    The stability/instability condition of a turbine rotor with axisymmetric supports is determined in the presence of gyroscopic loads and rub-induced destabilizing forces. A modal representation of the turbine engine is used, with one mode in each of the vertical and horizontal planes. The use of non-spinning rotor modes permits an explicit treatment of gyroscopic effects. The two linearized modal equations of motion of a rotor with axisymmetric supports are reduced to a single equation in a complex variable. The resulting eigenvalues yield explicit expressions at the stability boundary, for the whirl frequency as well as the required damping for stability in the presence of the available rub-induced destabilization. Conversely, the allowable destabilization in the presence of the available damping is also given.

  14. Steady-state dynamic behavior of an auxiliary bearing supported rotor system

    NASA Technical Reports Server (NTRS)

    Xie, Huajun; Flowers, George T.; Lawrence, Charles

    1995-01-01

    This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, support stiffness, and damping is studied. It is found that imbalance may change the rotor responses dramatically in terms of frequency contents at certain operating speeds. Subharmonic responses of 2nd order through 10th order are all observed except the 9th order. Chaotic phenomenon is also observed. Jump phenomena (or double-valued responses) of both hard-spring type and soft-spring type are shown to occur at low operating speeds for systems with low auxiliary bearing damping or large clearance even with relatively small imbalance. The effect of friction between the shaft and the inner race of the bearing is also discussed.

  15. Dynamic behaviours of a full floating ring bearing supported turbocharger rotor with engine excitation

    NASA Astrophysics Data System (ADS)

    Tian, L.; Wang, W. J.; Peng, Z. J.

    2011-09-01

    The rotor dynamic behaviour of turbochargers (TC) has been paid significant attention because of its importance in their healthy operation. Commonly, the TC is firmly mounted on engines and they will definitely suffer from the vibrations originated from engines in operation. However, only a limited number of papers have been published with consideration of this phenomenon. In this paper, a finite element model of a TC rotor supported by nonlinear floating ring bearings has been established. The nonlinear bearing forces have been calculated by a newly proposed analytical method. An efficient numerical integration approach has been employed to conduct the investigation including the traditional unbalance and the considered engine excitation effects in question. The results show that the unbalance will place considerable influence on the rotor response at a low working speed. At high speeds, the effect will be prevented by the dominant sub-synchronous vibrations, which also prohibit the appearance of a chaotic state. The novel investigation with the proposed model considering engine excitation reveals that the engine induced vibration will greatly affect the TC rotor response at relatively lower rotor speeds as well. At higher speed range, the dominant effect of sub-synchronous vibrations is still capable of keeping the same orbit shapes as that without engine excitation from a relative viewpoint.

  16. Active magnetic bearing-supported rotor with misaligned cageless backup bearings: A dropdown event simulation model

    NASA Astrophysics Data System (ADS)

    Halminen, Oskari; Kärkkäinen, Antti; Sopanen, Jussi; Mikkola, Aki

    2015-01-01

    Active magnetic bearings (AMB) offer considerable benefits compared to regular mechanical bearings. On the other hand, they require backup bearings to avoid damage resulting from a failure in the component itself, or in the power or control system. During a rotor-bearing contact event - when the magnetic field has disappeared and the rotor drops on the backup bearings - the structure of the backup bearings has an impact on the dynamic actions of the rotor. In this paper, the dynamics of an active magnetic bearing-supported rotor during contact with backup bearings is studied with a simulation model. Modeling of the backup bearings is done using a comprehensive cageless ball bearing model. The elasticity of the rotor is described using the finite element method (FEM) and the degrees of freedom (DOF) of the system are reduced using component mode synthesis. Verification of the misaligned cageless backup bearings model is done by comparing the simulation results against the measurement results. The verified model with misaligned cageless backup bearings is found to correspond to the features of a real system.

  17. Control of resonance phenomenon in flexible structures via active support

    NASA Astrophysics Data System (ADS)

    Tavakolpour Saleh, A. R.; Mailah, M.

    2012-07-01

    This paper introduces the concept of active support to cope with the resonance phenomenon in the flexible structures. A valid computational platform for the flexible structure was first presented via a finite difference (FD) approach. Then, the active support mechanism was applied to the simulation algorithm through which the performance of the proposed methodology in suppressing the resonance phenomenon was evaluated. The flexible structure was thus excited with the external disturbance and the system response with and without the effect of the active support was investigated through a simulation study. The simulation outcomes clearly demonstrated effective resonance suppression in the flexible structure. Finally, an experimental rig was developed to investigate the validity of the proposed technique. The experimental results revealed an acceptable agreement with the simulation outcomes through which the validity of the proposed control method was affirmed.

  18. Equations of motion of a flexible rotor with axially loose disc

    NASA Astrophysics Data System (ADS)

    Riemer, Michael

    A general reduction procedure is developed starting from the exact formulations of the fundamental equations of continuum mechanics. The method uses Timoshenko beam equations with jump conditions. For pure torsional vibrations an approximation strategy based on complete algebraization is described. Results are plotted as a frequency diagram of the eigenfrequency of the rotor vs the parametric excitation frequency of the axially moving disk.

  19. Tuning the vibration of a rotor with shape memory alloy metal rubber supports

    NASA Astrophysics Data System (ADS)

    Ma, Yanhong; Zhang, Qicheng; Zhang, Dayi; Scarpa, Fabrizio; Liu, Baolong; Hong, Jie

    2015-09-01

    The paper describes a novel smart rotor support damper with variable stiffness made with a new multifunctional material - the shape memory alloy metal rubber (SMA-MR). SMA-MR gives high load bearing capability (yield limit up to 100 MPa and stiffness exceeding 1e8 N/m), high damping (loss factor between 0.15 and 0.3) and variable stiffness (variation of 2.6 times between martensite and austenite phases). The SMA-MR has been used to replace a squeeze film damper and combined with an elastic support. The mechanical performance of the smart support damper has been investigated at room and high temperatures on a rotor test rig. The vibration tuning capabilities of the SMA-MR damper have been evaluated through FEM simulations and experimental tests. The study shows the feasibility of using the SMA-MR material for potential applications of active vibration control at different temperatures in rotordynamics systems.

  20. Flexible brain network reconfiguration supporting inhibitory control.

    PubMed

    Spielberg, Jeffrey M; Miller, Gregory A; Heller, Wendy; Banich, Marie T

    2015-08-11

    The ability to inhibit distracting stimuli from interfering with goal-directed behavior is crucial for success in most spheres of life. Despite an abundance of studies examining regional brain activation, knowledge of the brain networks involved in inhibitory control remains quite limited. To address this critical gap, we applied graph theory tools to functional magnetic resonance imaging data collected while a large sample of adults (n = 101) performed a color-word Stroop task. Higher demand for inhibitory control was associated with restructuring of the global network into a configuration that was more optimized for specialized processing (functional segregation), more efficient at communicating the output of such processing across the network (functional integration), and more resilient to potential interruption (resilience). In addition, there were regional changes with right inferior frontal sulcus and right anterior insula occupying more central positions as network hubs, and dorsal anterior cingulate cortex becoming more tightly coupled with its regional subnetwork. Given the crucial role of inhibitory control in goal-directed behavior, present findings identifying functional network organization supporting inhibitory control have the potential to provide additional insights into how inhibitory control may break down in a wide variety of individuals with neurological or psychiatric difficulties. PMID:26216985

  1. Influence of Back-Up Bearings and Support Structure Dynamics on the Behavior of Rotors With Active Supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1996-01-01

    This report presents a synopsis of the research work. Specific accomplishments are itemized below: (1) Experimental facilities have been developed. This includes a magnetic bearing test rig and an auxiliary bearing test rig. In addition, components have been designed, constructed, and tested for use with a rotordynamics test rig located at NASA Lewis Research Center. (2) A study of the rotordynamics of an auxiliary bearing supported T-501 engine model was performed. (3) An experimental/simulation study of auxiliary bearing rotordynamics has been performed. (4) A rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects has been developed and simulation studies performed.(5) A finite element model for a foil bearing has been developed and studies of a rotor supported by foil bearings have been performed. (6) Two students affiliated with this project have graduated with M.S. degrees.

  2. Separators for flywheel rotors

    DOEpatents

    Bender, Donald A.; Kuklo, Thomas C.

    1998-01-01

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

  3. Separators for flywheel rotors

    DOEpatents

    Bender, D.A.; Kuklo, T.C.

    1998-07-07

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

  4. Identification of bearing supports' force coefficients from rotor responses due to imbalances and impact loads

    NASA Astrophysics Data System (ADS)

    de Santiago Duran, Oscar Cesar

    Experimental identification of fluid film bearing parameters is vital to validate predictions from often restrictive computational fluid film bearing models and is also promising for condition monitoring and troubleshooting. This dissertation presents the analytical bases of two procedures for bearing supports parameter identification with potential for in-situ implementation. Bearing support coefficients are derived from measurements of rotor responses to impact loads and due to calibrated imbalances in characteristic planes. Subsequent implementation of the procedures to measurements performed in a rigid massive rotor traversing two critical speeds provides force coefficients for a novel bearing support comprising a tilting pad bearing (TPJB ) in series with an integral squeeze film damper (SFD). At a constant rotor speed, the first method requires impacts loads exerted along two lateral planes for identification of frequency-dependent force coefficients. Simulation numerical examples show the method is reliable with a reduced sensitivity to noise as the number of impacts increases (frequency averaging). In the experiments, an ad-hoc fixture delivers impacts to the rotor middle disk at speeds of 2,000 and 4,000 rpm. The experimentally identified force coefficients are in close agreement with predicted coefficients for the series support TPJB-SFD. In particular, damping coefficients are best identified around the system first natural frequency. Bearing stiffness are correctly identified in the low frequency range, but show a marked reduction at higher frequencies apparently due to inertial effects not accounted for in the model. Measurements of rotor response to calibrated imbalances allow identification of speed-dependent force coefficients. The procedure requires a minimum of two different imbalance distributions for identification of force coefficients from the two bearing supports. The rotor responses show minimal cross-coupling effects, as also predicted by

  5. The non-linear analysis of multi-support rotor-bearing systems

    SciTech Connect

    Kicinski, J.; Drozdowski, R.

    1995-12-31

    This paper contains selected parts of the simulation research of large rotor machines (200 MW power turbine-sets). These investigations were based on a non-linear theoretical model and the NLDW computer program, and were carried out in the Institute of Fluid-Flow Machinery of PAS. A trial has been performed of the optimization of system-dynamic properties, through the suitable selection of thermally deformed bearing-bush centers line -- the so called ``hot`` line -- (due to a rotor`s geodesic line), as well as the selection of the external fixing stiffness of bearing supports. Examples are also included of the orbits of selected system nodes for two differently powered turbine-sets. On this basis, an analysis of the stability of those turbines was achieved. A significant objective of this paper is also to point out some possibilities of applying the simulation research, based on a non-linear description of the system, to the diagnostics of rotor-machinery. Non-linear analysis facilitates the possibility of easily generating vibration spectra, as well as creating simulation waterfall graphs. These properties of nonlinear analysis create convenient conditions for gaining specific diagnostic information.

  6. Passive vibration control in rotor dynamics: Optimization of composed support using viscoelastic materials

    NASA Astrophysics Data System (ADS)

    Ribeiro, Eduardo Afonso; Pereira, Jucélio Tomás; Alberto Bavastri, Carlos

    2015-09-01

    One of the major reasons for inserting damping into bearings is that rotating machines are often requested in critical functioning conditions having sometimes to function under dynamic instability or close to critical speeds. Hydrodynamic and magnetic bearings have usually been used for this purpose, but they present limitations regarding costs and operation, rendering the use of viscoelastic supports a feasible solution for vibration control in rotating machines. Most papers in the area use simple analytic or single degree of freedom models for the rotor as well as classic mechanical models of linear viscoelasticity for the support - like Maxwell, Kelvin-Voigt, Zenner, four-element, GHM models and even frequency independent models - but they lack the accuracy of fractional models in a large range of frequency and temperature regarding the same number of coefficients. Even in those works, the need to consider the addition of degrees of freedom to the support is evident. However, so far no paper has been published focusing on a methodology to determine the optimal constructive form for any viscoelastic support in which the rotor is discretized by finite elements associated to an accurate model for characterizing the viscoelastic material. In general, the support is meant to be a simple isolation system, and the fact the stiffness matrix is complex and frequency-temperature dependent - due to its viscoelastic properties - forces the traditional methods to require an extremely long computing time, thus rendering them too time consuming in an optimization environment. The present work presents a robust methodology based mainly on generalized equivalent parameters (GEP) - for an optimal design of viscoelastic supports for rotating machinery - aiming at minimizing the unbalance frequency response of the system using a hybrid optimization technique (genetic algorithms and Nelder-Mead method). The rotor is modeled based on the finite element method using Timoshenko's thick

  7. Aspects of Coulomb damping in rotors supported on hydrodynamic bearings

    NASA Technical Reports Server (NTRS)

    Morton, P. G.

    1982-01-01

    The paper is concerned with the effect of friction in drive couplings on the non-sychronous whirling of a shaft. A simplified model is used to demonstrate the effect of large coupling misalignments on the stability of the system. It is concluded that provided these misalignments are large enough, the system becomes totally stable provided the shaft is supported on bearings exhibiting a viscous damping capacity.

  8. Flexibility Principle 3: Supporting Effective Instruction and Leadership

    ERIC Educational Resources Information Center

    National Clearinghouse for English Language Acquisition & Language Instruction Educational Programs, 2012

    2012-01-01

    Within the US Department of Education's new flexibility initiative, there are three key principles, each with areas of focus. The third of these is that State Education Agencies (SEAs) must develop and implement systems of determining and supporting effective instruction and leadership within schools. This brief looks at websites, documents, and…

  9. Cognitive Flexibility Supports Preschoolers' Detection of Communicative Ambiguity

    ERIC Educational Resources Information Center

    Gillis, Randall; Nilsen, Elizabeth S.

    2014-01-01

    To become successful communicators, children must be sensitive to the clarity/ambiguity of language. Significant gains in children's ability to detect communicative ambiguity occur during the early school-age years. However, little is known about the cognitive abilities that support this development. Relations between cognitive flexibility and…

  10. On the nonlinear steady-state response of rigid rotors supported by air foil bearings-Theory and experiments

    NASA Astrophysics Data System (ADS)

    Larsen, Jon S.; Santos, Ilmar F.

    2015-06-01

    The demand for oil-free turbo compressors is increasing. Current trends are divided between active magnetic bearings and air foil bearings (AFB), the latter being important due to mechanical simplicity. AFB supported rotors are sensitive to unbalance due to low damping and nonlinear characteristics, hence accurate prediction of their response is important. This paper gives theoretical and experimental contributions by implementing and validating a new method to simulate the nonlinear steady-state response of a rotor supported by three pads segmented AFBs. The fluid film pressures, foil deflections and rotor movements are simultaneously solved, considering foil stiffness and damping coefficients estimated using a structural model, previously described and validated against experiments.

  11. A miniaturized two-DOF rotational gyro with a ball-joint supported permanent magnet rotor

    NASA Astrophysics Data System (ADS)

    Li, Hai; Liu, Xiaowei; Chen, Weiping; Zhang, Haifeng

    2016-07-01

    We proposed a miniaturized two-degrees of freedom (DOF) rotational gyro with a ball-joint supported permanent magnet rotor. The structural design and the dynamic model of the gyro are presented and analyzed in detail in this paper and testified by preliminary experiments. When the rotor tilts away from its null position, it will be constrained by a contactless magnetic equivalent elastic torque derived from the driving structure. As a rotational gyro, this structure is very simple and small, with a core size less than 6 cm3, and it needs only 0.75 W to keep the rotor spinning at a speed of 15 000 revolutions per minute (rpm) in a standard air pressure condition. Preliminary measurements show that, at 7000 rpm within a full scale of ±100 °/s, the gyro has a scale factor of 18.69 mV/(°/s), and a nonlinearity of 0.33% is also achieved through calculation. The results show that the gyro can be used to measure two DOFs' angular rates of carriers without close-loop control due to the existence of magnetic equivalent elasticity.

  12. Bifurcation and chaos analysis of nonlinear rotor system with axial-grooved gas-lubricated journal bearing support

    NASA Astrophysics Data System (ADS)

    Zhang, Yongfang; Hei, Di; Lü, Yanjun; Wang, Quandai; Müller, Norbert

    2014-03-01

    Axial-grooved gas-lubricated journal bearings have been widely applied to precision instrument due to their high accuracy, low friction, low noise and high stability. The rotor system with axial-grooved gas-lubricated journal bearing support is a typical nonlinear dynamic system. The nonlinear analysis measures have to be adopted to analyze the behaviors of the axial-grooved gas-lubricated journal bearing-rotor nonlinear system as the linear analysis measures fail. The bifurcation and chaos of nonlinear rotor system with three axial-grooved gas-lubricated journal bearing support are investigated by nonlinear dynamics theory. A time-dependent mathematical model is established to describe the pressure distribution in the axial-grooved compressible gas-lubricated journal bearing. The time-dependent compressible gas-lubricated Reynolds equation is solved by the differential transformation method. The gyroscopic effect of the rotor supported by gas-lubricated journal bearing with three axial grooves is taken into consideration in the model of the system, and the dynamic equation of motion is calculated by the modified Wilson- θ-based method. To analyze the unbalanced responses of the rotor system supported by finite length gas-lubricated journal bearings, such as bifurcation and chaos, the bifurcation diagram, the orbit diagram, the Poincaré map, the time series and the frequency spectrum are employed. The numerical results reveal that the nonlinear gas film forces have a significant influence on the stability of rotor system and there are the rich nonlinear phenomena, such as the periodic, period-doubling, quasi-periodic, period-4 and chaotic motion, and so on. The proposed models and numerical results can provide a theoretical direction to the design of axial-grooved gas-lubricated journal bearing-rotor system.

  13. Method for Providing a Jewel Bearing for Supporting a Pump Rotor Shaft

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    2001-01-01

    Methods for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  14. Stability Limits of a PD Controller for a Flywheel Supported on Rigid Rotor and Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.; Brown, Gerald V.; Jansen, Ralph H.; Dever, TImothy P.

    2006-01-01

    Active magnetic bearings are used to provide a long-life, low-loss suspension of a high-speed flywheel rotor. This paper describes a modeling effort used to understand the stability boundaries of the PD controller used to control the active magnetic bearings on a high speed test rig. Limits of stability are described in terms of allowable stiffness and damping values which result in stable levitation of the nonrotating rig. Small signal stability limits for the system is defined as a nongrowth in vibration amplitude of a small disturbance. A simple mass-force model was analyzed. The force resulting from the magnetic bearing was linearized to include negative displacement stiffness and a current stiffness. The current stiffness was then used in a PD controller. The phase lag of the control loop was modeled by a simple time delay. The stability limits and the associated vibration frequencies were measured and compared to the theoretical values. The results show a region on stiffness versus damping plot that have the same qualitative tendencies as experimental measurements. The resulting stability model was then extended to a flywheel system. The rotor dynamics of the flywheel was modeled using a rigid rotor supported on magnetic bearings. The equations of motion were written for the center of mass and a small angle linearization of the rotations about the center of mass. The stability limits and the associated vibration frequencies were found as a function of nondimensional magnetic bearing stiffness and damping and nondimensional parameters of flywheel speed and time delay.

  15. Rotor-Liquid-Fundament System's Oscillation

    NASA Astrophysics Data System (ADS)

    Kydyrbekuly, A.

    The work is devoted to research of oscillation and sustainability of stationary twirl of vertical flexible static dynamically out-of-balance rotor with cavity partly filled with liquid and set on relative frame fundament. The accounting of such factors like oscillation of fundament, liquid oscillation, influence of asymmetry of installation of a rotor on a shaft, anisotropism of shaft support and fundament, static and dynamic out-of-balance of a rotor, an external friction, an internal friction of a shaft, allows to settle an invoice more precisely kinematic and dynamic characteristics of system.

  16. Stability of a rigid rotor supported on oil-film journal bearings under dynamic load

    NASA Technical Reports Server (NTRS)

    Majumdar, B. C.; Brewe, D. E.

    1987-01-01

    Most published work relating to dynamically loaded journal bearings are directed to determining the minimum film thickness from the predicted journal trajectories. These do not give any information about the subsynchronous whirl stability of journal bearing systems since they do not consider the equations of motion. It is, however, necessary to know whether the bearing system operation is stable or not under such an operating condition. The stability characteristics of the system are analyzed. A linearized perturbation theory about the equilibrium point can predict the threshold of stability; however it does not indicate postwhirl orbit detail. The linearized method may indicate that a bearing is unstable for a given operating condition whereas the nonlinear analysis may indicate that it forms a stable limit cycle. For this reason, a nonlinear transient analysis of a rigid rotor supported on oil journal bearings under: (1) a unidirectional constant load, (2) a unidirectional periodic load, and (3) variable rotating load are performed. The hydrodynamic forces are calculated after solving the time-dependent Reynolds equation by a finite difference method with a successive overrelaxation scheme. Using these forces, equations of motion are solved by the fourth-order Runge-Kutta method to predict the transient behavior of the rotor. With the aid of a high-speed digital computer and graphics, the journal trajectories are obtained for several different operating conditions.

  17. Investigation of the effect of hub support parameters on two-bladed rotor oscillatory loads

    NASA Technical Reports Server (NTRS)

    Lee, C. D.; White, J. A.

    1974-01-01

    The results are presented of a test program and analysis to investigate the effects of inplane hub support parameters on the oscillatory chordwise loads of a two-bladed teetering rotor. The test program was conducted in two phases. The first consisted of a shake test to define the impedance of a number of test configurations as a function of frequency. The second phase was the test of these configurations in the NASA-Langley transonic dynamics tunnel. The test showed that the one-per-rev inplane bending moments could be changed by a factor of 2.0 as a function of the pylon configuration at the same aerodynamic operating condition. The higher harmonic inplane, flapwise, and torsional bending moments, and pitch link axial loads were not affected by changes in inplane hub impedance. The maximum inplane loads occurred for the pylon configuration with the minimum spring rate and maximum inertia.

  18. Parameter identification of a rotor supported in a pressurized bearing lubricated with water

    NASA Technical Reports Server (NTRS)

    Grant, John W.; Muszynska, Agnes; Bently, Donald E.

    1994-01-01

    A rig for testing an externally pressurized (hydrostatic), water-lubricated bearing was developed. Applying a nonsynchronous sweep frequency, rotating perturbation force with a constant amplitude as an input, rotor vibration response data was acquired in Bode and Dynamic Stiffness formats. Using this data, the parameters of the rotor/bearing system were identified. The rotor/bearing model was represented by the generalized (modal) parameters of the first lateral mode, with the rotational character of the fluid force taken into account.

  19. Flexibility.

    ERIC Educational Resources Information Center

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  20. Supporting Ecological Research With a Flexible Satellite Sensornet Gateway

    NASA Astrophysics Data System (ADS)

    Silva, F.; Rundel, P. W.; Graham, E. A.; Falk, A.; Ye, W.; Pradkin, Y.; Deschon, A.; Bhatt, S.; McHenry, T.

    2007-12-01

    Wireless sensor networks are a promising technology for ecological research due to their capability to make continuous and in-situ measurements. However, there are some challenges for the wide adoption of this technology by scientists, who may have various research focuses. First, the observation system needs to be rapidly and easily deployable at different remote locations. Second, the system needs to be flexible enough to meet the requirements of different applications and easily reconfigurable by scientists, who may not always be technology experts. To address these challenges, we designed and implemented a flexible satellite gateway for using sensor networks. Our first prototype is being deployed at Stunt Ranch in the Santa Monica Mountains to support biological research at UCLA. In this joint USC/ISI-UCLA deployment, scientists are interested in a long-term investigation of the influence of the 2006-07 southern California drought conditions on the water relations of important chaparral shrub and tree species that differ in their depth of rooting. Rainfall over this past hydrologic year in southern California has been less than 25% of normal, making it the driest year on record. In addition to core measurements of air temperature, relative humidity, wind speed, solar irradiance, rainfall, and soil moisture, we use constant-heating sap flow sensors to continuously monitor the flow of water through the xylem of replicated stems of four species to compare their access to soil moisture with plant water stress. Our gateway consists of a front-end data acquisition system and a back-end data storage system, connected by a long-haul satellite communication link. At the front-end, all environmental sensors are connected to a Compact RIO, a rugged data acquisition platform developed by National Instruments. Sap flow sensors are deployed in several locations that are 20 to 50 meters away from the Compact RIO. At each plant, a Hobo datalogger is used to collect sap flow

  1. Oil-Free Rotor Support Technologies for Long Life, Closed Cycle Brayton Turbines

    NASA Technical Reports Server (NTRS)

    Lucero, John M.; DellaCorte, Christopher

    2004-01-01

    The goal of this study is to provide technological support to ensure successful life and operation of a 50-300 kW dynamic power conversion system specifically with response to the rotor support system. By utilizing technical expertise in tribology, bearings, rotordynamic, solid lubricant coatings and extensive test facilities, valuable input for mission success is provided. A discussion of the history of closed cycle Brayton turboalternators (TA) will be included. This includes the 2 kW Mini-Brayton Rotating Unit (Mini-BRU), the 10kW Brayton Rotating Unit (BRU) and the 125 kW turboalternator-compressor (TAC) designed in mid 1970's. Also included is the development of air-cycle machines and terrestrial oil-free gas turbine power systems in the form of microturbines, specifically Capstone microturbines. A short discussion of the self-acting compliant surface hydrodynamic fluid film bearings, or foil bearings, will follow, including a short history of the load capacity advances, the NASA coatings advancements as well as design model advances. Successes in terrestrial based machines will be noted and NASA tribology and bearing research test facilities will be described. Finally, implementation of a four step integration process will be included in the discussion.

  2. Effects of bearing outer clearance on the dynamic behaviours of the full floating ring bearing supported turbocharger rotor

    NASA Astrophysics Data System (ADS)

    Tian, L.; Wang, W. J.; Peng, Z. J.

    2012-08-01

    As a high speed rotating device, the modern turbocharger rotor is commonly supported by floating ring bearings (FRBs). The high nonlinearity there can always lead to quite complex and interesting phenomena rarely observed in other rotating applications. Using the run-up and run-down simulation method, this paper originally and systematically discusses the effect of bearing outer clearance on the rotordynamic characteristics of a realistic turbocharger rotor over the speed range up to 3000 Hz. The rotor is discretized by the Finite Element Method and supported by analytically calculated bearing forces. The linear analysis is proved to be effective in predicting the first two nonlinear jumps but inadequate to study the rotordynamic characteristics at higher rotor speeds. The nonlinearly simulated results show the appearances of distinct and interesting phenomena within the considered range of FRB outer clearance, which can be further divided into four groups. Within the same group, the simulation results are qualitatively similar to each other but quite dissimilar from the results from different groups. Moreover, the unwelcome Critical Limit Cycle Oscillation can be avoided by increasing the outer clearance size. Additionally, in some cases, the run-down simulations reveal distinct frequency maps as compared to the corresponding run-ups. Furthermore, it is seen that ring speed ratios can be considerably affected by the nonlinear jumps. Therefore, FRB outer clearance should be thoroughly examined to achieve the best rotordynamic performance.

  3. Derivation of equations of motion for multi-blade rotors employing coupled modes and including high twist capability

    NASA Technical Reports Server (NTRS)

    Sopher, R.

    1975-01-01

    The equations of motion are derived for a multiblade rotor. A high twist capability and coupled flatwise-edgewise assumed normal modes are employed instead of uncoupled flatwise - edgewise assumed normal models. The torsion mode is uncoupled. Support system models, consisting of complete helicopters in free flight, or grounded flexible supports, arbitrary rotor-induced inflow, and arbitrary vertical gust models are also used.

  4. Boundary condition identification of tapered beam with flexible supports using static flexibility measurements

    NASA Astrophysics Data System (ADS)

    Wang, Le; Guo, Ning; Yang, Zhichun

    2016-06-01

    This paper investigates a boundary condition identification method for tapered beam with the specific flexible boundaries using static flexibility measurements. The specific flexible boundaries are modeled by two translational springs with a particular interval which are connected at one end of the tapered beam, and the purpose of this paper is just to identify the stiffnesses of the two translational springs. According to the static equilibrium equation, it is proved that the static flexibility of the beam is a function of the flexural rigidity of the beam at its constrained end and the stiffnesses of the two translational springs. Then, using three different static flexibility measurements, a set of linear equations are established to identify the stiffnesses of the two translational springs. Finally, the feasibility and effectiveness of the proposed method are demonstrated using both simulative and experimental examples.

  5. Dynamics and stability of rigid rotors levitated by passive cylinder-magnet bearings and driven/supported axially by pointwise contact clutch

    NASA Astrophysics Data System (ADS)

    Andersen, Søren B.; Enemark, Søren; Santos, Ilmar F.

    2013-12-01

    A stable rotor—supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch—loses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilibrium position as a result of small increases in angular velocity. Such an abrupt unstable behaviour and its reasons are thoroughly theoretically as well as experimentally investigated in this work. In this context, this paper gives theoretical as well as experimental contributions to the problem of two dimensional passive magnetic levitation and one dimensional pointwise contact stability dictated by mechanical-magnetic interaction. Load capacity and stiffness of passive multicylinder magnetic bearings (MCMB) are thoroughly investigated using two theoretical approaches followed by experimental validation. The contact dynamics between the clutch and the rotor supported by MCMB using several configurations of magnet distribution are described based on an accurate nonlinear model able to reliably reproduce the rotor-bearing dynamic behaviour. Such investigations lead to: (a) clear physical explanation about the reasons for the rotor's unstable behaviour, losing its contact to the clutch and (b) an accurate prediction of the threshold of stability based on the nonlinear rotor-bearing model, i.e. maximum angular velocity before the rotor misses its contact to the clutch as a function of rotor, bearing and clutch design parameters. passive cylinder-magnet bearings, imbalance ring with a screw, passive rotating cylinder-magnets, rotor, Pointwise contact clutch, and DC-motor. The rotor (4) is levitated in the two horseshoe-shaped bearing houses (1) which contain several cylinder-magnets arranged in a circular pattern. These permanent magnets form a magnetic field around the rotor which repels similar cylinder-magnets (3) embedded in the rotor, thereby counteracting the gravity forces. As the shape of the magnetic field generated by the

  6. Stability of a rigid rotor supported on flexible oil journal bearings

    NASA Technical Reports Server (NTRS)

    Majumdar, Bankim C.; Brewe, David E.; Khonsari, Michael M.

    1987-01-01

    This investigation deals with the stability characteristics of oil journal bearings, including the effect of elastic distortions in the bearing liner. Graphical results are presented for (1) steady-state load, (2) stiffness and damping coefficients, and (3) the stability. These results are given for various slenderness ratios, eccentricity ratios, and elasticity parameters. The lubricant is first assumed to be isoviscous. The analysis is then extended to the case of a pressure-dependent viscosity. It has been found that stability decreases with increase of the elasticity parameter of the bearing liner for heavily loaded bearings.

  7. Flexible macrocycles as versatile supports for catalytically active metal clusters.

    PubMed

    Ryan, Jason D; Gagnon, Kevin J; Teat, Simon J; McIntosh, Ruaraidh D

    2016-07-12

    Here we present three structurally diverse clusters stabilised by the same macrocyclic polyphenol; t-butylcalix[8]arene. This work demonstrates the range of conformations the flexible ligand is capable of adopting, highlighting its versatility in metal coordination. In addition, a Ti complex displays activity for the ring-opening polymerisation of lactide. PMID:26892948

  8. The influence of dynamic inflow and torsional flexibility on rotor damping in forward flight from symbolically generated equations

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Warmbrodt, W.

    1985-01-01

    The combined effects of blade torsion and dynamic inflow on the aeroelastic stability of an elastic rotor blade in forward flight are studied. The governing sets of equations of motion (fully nonlinear, linearized, and multiblade equations) used in this study are derived symbolically using a program written in FORTRAN. Stability results are presented for different structural models with and without dynamic inflow. A combination of symbolic and numerical programs at the proper stage in the derivation process makes the obtainment of final stability results an efficient and straightforward procedure.

  9. Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk

    PubMed Central

    Wächter, André; Bi, Yumin; Dunn, Stanley D.; Cain, Brian D.; Sielaff, Hendrik; Wintermann, Frank; Engelbrecht, Siegfried; Junge, Wolfgang

    2011-01-01

    ATP is synthesized by ATP synthase (FOF1-ATPase). Its rotary electromotor (FO) translocates protons (in some organisms sodium cations) and generates torque to drive the rotary chemical generator (F1). Elastic power transmission between FO and F1 is essential for smoothing the cooperation of these stepping motors, thereby increasing their kinetic efficiency. A particularly compliant elastic domain is located on the central rotor (c10–15/ϵ/γ), right between the two sites of torque generation and consumption. The hinge on the active lever on subunit β adds further compliance. It is under contention whether or not the peripheral stalk (and the “stator” as a whole) also serves as elastic buffer. In the enzyme from Escherichia coli, the most extended component of the stalk is the homodimer b2, a right-handed α-helical coiled coil. By fluctuation analysis we determined the spring constant of the stator in response to twisting and bending, and compared wild-type with b-mutant enzymes. In both deformation modes, the stator was very stiff in the wild type. It was more compliant if b was elongated by 11 amino acid residues. Substitution of three consecutive residues in b by glycine, expected to destabilize its α-helical structure, further reduced the stiffness against bending deformation. In any case, the stator was at least 10-fold stiffer than the rotor, and the enzyme retained its proton-coupled activity. PMID:21368147

  10. Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk.

    PubMed

    Wächter, André; Bi, Yumin; Dunn, Stanley D; Cain, Brian D; Sielaff, Hendrik; Wintermann, Frank; Engelbrecht, Siegfried; Junge, Wolfgang

    2011-03-01

    ATP is synthesized by ATP synthase (F(O)F(1)-ATPase). Its rotary electromotor (F(O)) translocates protons (in some organisms sodium cations) and generates torque to drive the rotary chemical generator (F(1)). Elastic power transmission between F(O) and F(1) is essential for smoothing the cooperation of these stepping motors, thereby increasing their kinetic efficiency. A particularly compliant elastic domain is located on the central rotor (c(10-15)/ε/γ), right between the two sites of torque generation and consumption. The hinge on the active lever on subunit β adds further compliance. It is under contention whether or not the peripheral stalk (and the "stator" as a whole) also serves as elastic buffer. In the enzyme from Escherichia coli, the most extended component of the stalk is the homodimer b(2), a right-handed α-helical coiled coil. By fluctuation analysis we determined the spring constant of the stator in response to twisting and bending, and compared wild-type with b-mutant enzymes. In both deformation modes, the stator was very stiff in the wild type. It was more compliant if b was elongated by 11 amino acid residues. Substitution of three consecutive residues in b by glycine, expected to destabilize its α-helical structure, further reduced the stiffness against bending deformation. In any case, the stator was at least 10-fold stiffer than the rotor, and the enzyme retained its proton-coupled activity. PMID:21368147

  11. Analysis of Coolant-flow Requirements for an Improved, Internal-strut-supported, Air-cooled Turbine-rotor Blade

    NASA Technical Reports Server (NTRS)

    Schramm, Wilson B; Nachtigall, Alfred J

    1952-01-01

    An analytical evaluation of a new typ An analytical evaluation of a new type of air-cooled turbine-rotor-blade design, based on the principle of submerging the load-carrying element in cooling air within a thin high-temperature sheel, indicates that this principle of blade design permits the load carrying element to be operated at considerably lower temperature than that of the enveloping shell. Comparison with an air-cooled shell-supported air-cooled blade has greater potentiality to withstand increased stresses that can be anticipated in future engines.

  12. The dynamic characteristics of a turbo-rotor simulator supported on gas-lubricated foil bearings. Part 1: Response to rotating imbalance and unidirectional excitation

    NASA Technical Reports Server (NTRS)

    Licht, L.

    1970-01-01

    A sixteen-inch rotor, weighing approximately twenty-one pounds, was supported by air-lubricated foil bearings. In physical size and in mass distribution, the rotor closely matched that of an experimental Brayton cycle turboalternator unit. The rotor was stable in both vertical horizontal attitudes at speeds up to 50,000 rpm. A detailed description of the experimental apparatus and of the foil bearing design are given. The paper contains data on response of the rotor to rotating imbalance, symmetric and asymmetric, and to excitation by means of a vibrator (shake table). It is concluded that the gas-lubricated foil bearing suspension is free from fractional frequency whirl and suffers no loss of load capacity when excited at frequency equal to half the rotational speed. In contrast to rigid gas bearings, the foil bearing imposes no stringent requirements with respect to dimensional tolerances, cleanliness, or limitations of journal motion within the narrow confines of bearing clearance.

  13. A Comprehensive C++ Controller for a Magnetically Supported Vertical Rotor. 1.0

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.

    2001-01-01

    This manual describes the new FATMaCC (Five-Axis, Three-Magnetic-Bearing Control Code). The FATMaCC (pronounced "fat mak") is a versatile control code that possesses many desirable features that were not available in previous in-house controllers. The ultimate goal in designing this code was to achieve full rotor levitation and control at a loop time of 50 microsec. Using a 1-GHz processor, the code will control a five-axis system in either a decentralized or a more elegant centralized (modal control) mode at a loop time of 56 microsec. In addition, it will levitate and control (with only minor modification to the input/output wiring) a two-axis and/or a four-axis system. Stable rotor levitation and control of any of the systems mentioned above are accomplished through appropriate key presses to modify parameters, such as stiffness, damping, and bias. A signal generation block provides 11 excitation signals. An excitation signal is then superimposed on the radial bearing x- and y-control signals, thus producing a resultant force vector. By modulating the signals on the bearing x- and y-axes with a cosine and a sine function, respectively, a radial excitation force vector is made to rotate 360 deg. about the bearing geometric center. The rotation of the force vector is achieved manually by using key press or automatically by engaging the "one-per-revolution" feature. Rotor rigid body modes can be excited by using the excitation module. Depending on the polarities of the excitation signal in each radial bearing, the bounce or tilt mode will be excited.

  14. Supporting Mobile Collaborative Activities through Scaffolded Flexible Grouping

    ERIC Educational Resources Information Center

    Boticki, Ivica; Looi, Chee-Kit; Wong, Lung-Hsiang

    2011-01-01

    Within the field of Mobile Computer-Supported Collaborative Learning (mCSCL), we are interested in exploring the space of collaborative activities that enable students to practice communication, negotiation and decision-making skills. Collaboration is via learning activities that circumvent the constraints of fixed seating or locations of…

  15. Centrifuge rotor integrated analysis

    NASA Astrophysics Data System (ADS)

    Ohtomi, Koichi; Kanzawa, Takuya; Hampton, Roy; Kawamoto, Osamu

    2004-09-01

    The Centrifuge Rotor (CR) is a large life science experiment facility which will be installed in the International Space Station (ISS). It will provide artificial gravity of 2g or less by rotating up to 4 science habitats, and it will be the first such machinery to be used in space. To prevent vibration disturbance exchanges between the CR and the ISS, a soft 5 dof vibration isolation mechanism is used which cannot support the CR weight on the ground. Therefore, the CR on-orbit performance must be predicted by integrated analysis which must model all of the equipment including sensors, actuators, flexible structure, gyroscopic effects, and controllers. Here, we introduce the CR mechatronics, a verification procedure, and examples of the application of the integrated analysis which is based on the general-purpose mechanism analysis software ADAMS.

  16. Influence of magnetic non-uniformity existing in a rigid rotor supported by a superconducting magnetic bearing on its whirling

    NASA Astrophysics Data System (ADS)

    Kamada, Soichiro; Amano, Ryosuke; Sugiura, Toshihiko

    2014-05-01

    Superconducting magnetic bearings (SMBs) have a significant feature over conventional bearings in terms of supporting a shaft without physical contact while attaining its stability without control. In their large-scale rotary applications, magnetization distribution of a rotor in the circumferential direction can be non-uniform and it would be better to know influence of such circumferential magnetic non-uniformity existing in a rotor on its dynamics, especially on its behaviors in the vicinity of the critical speed. In this study, further developing our previous research, we improved our analytical model so that we can adjust several different degrees of magnetic non-uniformity by arranging multiple magnetization vectors and investigated its influence. First, we simulated dynamical behavior of the system by numerical calculations and their results show that, with increasing the degree of magnetic non-uniformity, the whirling amplitude of the system, together with the difference of the amplitudes in the orthogonal directions in the whirling plane, get larger. Further, the rotational frequency at which the whirling amplitude takes its peak gets lower, which is caused by nonlinearity of the electromagnetic force. We carried out experiments and verified our numerical predicions.

  17. A service-oriented approach for flexible process support within enterprises: application on PLM systems

    NASA Astrophysics Data System (ADS)

    Hachani, Safa; Gzara, Lilia; Verjus, Hervé

    2013-02-01

    Manufacturing industries collaborating to develop new products need to implement an effective management of their design processes (DPs) and product information. Unfortunately, product lifecycle management (PLM) systems which are dedicated to support design activities are not efficient as it might be expected. Indeed, DPs are changing, emergent and non deterministic, due to the business environment under which they are carried out. PLM systems are currently based on workflow technology which does not support process agility. So, needs in terms of process support flexibility are necessary to facilitate the coupling with the environment reality. Furthermore, service-oriented approaches (SOA) enhances flexibility and adaptability of composed solutions. Systems based on SOA have the ability to inherently being evolvable. So, we can say that SOA can promote a support of flexible DPs. The aim of this work is to propose an alternative approach for flexible process support within PLM systems. The objective is to specify, design and implement business processes (BPs) in a very flexible way so that business changes can rapidly be considered in PLM solutions. Unlike existing approaches, the proposed one deal with a service-oriented perspectives rather than an activity-oriented one.

  18. Theory of self-excited mechanical oscillations of helicopter rotors with hinged blades

    NASA Technical Reports Server (NTRS)

    Coleman, Robert P; Feingold, Arnold M

    1958-01-01

    Vibrations of rotary-wing aircraft may derive their energy from the rotation of the rotor rather than from the air forces. A theoretical analysis of these vibrations is described and methods for its application are explained in Chapter one. Chapter two reports the results of an investigation of the mechanical stability of a rotor having two vertically hinged blades mounted upon symmetrical supports, that is, of equal stiffness and mass in all horizontal directions. Chapter three presents the theory of ground vibrations of a two-blade helicopter rotor on anisotropic flexible supports.

  19. Nonlinear Equations of Motion for Cantilever Rotor Blades in Hover with Pitch Link Flexibility, Twist, Precone, Droop, Sweep, Torque Offset, and Blade Root Offset

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.

    1976-01-01

    Nonlinear equations of motion for a cantilever rotor blade are derived for the hovering flight condition. The blade is assumed to have twist, precone, droop, sweep, torque offset and blade root offset, and the elastic axis and the axes of center of mass, tension, and aerodynamic center coincident at the quarter chord. The blade is cantilevered in bending, but has a torsional root spring to simulate pitch link flexibility. Aerodynamic forces acting on the blade are derived from strip theory based on quasi-steady two-dimensional airfoil theory. The equations are hybrid, consisting of one integro-differential equation for root torsion and three integro-partial differential equations for flatwise and chordwise bending and elastic torsion. The equations are specialized for a uniform blade and reduced to nonlinear ordinary differential equations by Galerkin's method. They are linearized for small perturbation motions about the equilibrium operating condition. Modal analysis leads to formulation of a standard eigenvalue problem where the elements of the stability matrix depend on the solution of the equilibrium equations. Two different forms of the root torsion equation are derived that yield virtually identical numerical results. This provides a reasonable check for the accuracy of the equations.

  20. Coupled rotor-body equations of motion hover flight

    NASA Technical Reports Server (NTRS)

    Curtiss, H. C., Jr.; Mckillip, R. M., Jr.

    1990-01-01

    A set of linearized equations of motion to predict the linearized dynamic response of a single rotor helicopter in a hover trim condition to cyclic pitch control inputs is described. The equations of motion assume four fuselage degrees of freedom: lateral and longitudinal translation, roll angle, pitch angle: four rotor degrees of freedom: flapping (lateral and longitudinal tilt of the tip path plane), lagging (lateral and longitudinal displacement of the rotor plane center of mass); and dynamic inflow (harmonic components). These ten degrees of freedom correspond to a system with eighteen dynamic states. In addition to examination of the full system dynamics, the computer code supplied with this report permits the examination of various reduced order models. The code is presented in a specific form such that the dynamic response of a helicopter in flight can be investigated. With minor modifications to the code the dynamics of a rotor mounted on a flexible support can also be studied.

  1. Transient rotor dynamic rub phenomena - Theory and test

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.; Montaque, G.; Palazzolo, A. B.

    1987-01-01

    This paper develops an implicit integration scheme for transient rotor dynamic rub prediction and includes a correlation study with actual test results. A Nordsieck-like numerical integration scheme is applied directly to the second-order equations of motion. The assumption that forces and torques on the rotor are functions of the position and velocity at the point of application and its nearest neighbor is made in order to make the computational time proportional to the number of elements in the rotor dynamics model rather than the cube of the number. The test rig consists of a turbine driven, flexible shaft supported by squeeze film dampers. The blade loss event occurs due to collision of a balance bolt on one of the disks with a high speed plunger. The rotor is seen to spiral outward and contact against a stationary assemblage of seal shoes.

  2. High Speed, High Temperature, Fault Tolerant Operation of a Combination Magnetic-Hydrostatic Bearing Rotor Support System for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Jansen, Mark; Montague, Gerald; Provenza, Andrew; Palazzolo, Alan

    2004-01-01

    Closed loop operation of a single, high temperature magnetic radial bearing to 30,000 RPM (2.25 million DN) and 540 C (1000 F) is discussed. Also, high temperature, fault tolerant operation for the three axis system is examined. A novel, hydrostatic backup bearing system was employed to attain high speed, high temperature, lubrication free support of the entire rotor system. The hydrostatic bearings were made of a high lubricity material and acted as journal-type backup bearings. New, high temperature displacement sensors were successfully employed to monitor shaft position throughout the entire temperature range and are described in this paper. Control of the system was accomplished through a stand alone, high speed computer controller and it was used to run both the fault-tolerant PID and active vibration control algorithms.

  3. The Effects of Manufacturing Tolerances on the Vibration of Aero-engine Rotor-damper Assemblies

    NASA Technical Reports Server (NTRS)

    Sykes, J. E. H.; Holmes, R.

    1991-01-01

    A range of rotor assemblies incorporating one and two squeeze film dampers with various static misalignments is investigated. Waterfall diagrams are constructed which demonstrate the effects of such misalignment and damper support flexibility on the nature and severity of subsynchronous resonance and jump phenomena. Vibration signatures of similar rotor-bearing assemblies are shown to contrast strongly due to different accumulations of tolerances during manufacture, fitting, and operation.

  4. Flexibility Principle 2: State-Developed Differentiated Recognition, Accountability, and Support

    ERIC Educational Resources Information Center

    National Clearinghouse for English Language Acquisition & Language Instruction Educational Programs, 2012

    2012-01-01

    Within the US Department of Education's new flexibility initiative, there are three key and fundamental areas of focus, each referred to as a "principle." The second of these is that State Education Agencies (SEAs) must develop and implement differentiated recognition, accountability, and support to assure that all students are taught by…

  5. Design and analysis of the flexible support structure of a space infrared detector

    NASA Astrophysics Data System (ADS)

    Sun, Dewei; Zhang, Guangyu; Guo, Ning

    2009-07-01

    A flexible support structure of space infrared detector is presented so as to reduce the impacts of mechanical vibration, electromagnetic interference and temperature shift from outside environment. According to technical requirements of the infrared detector, the flexible support structure is designed, which mainly consists of two components: one component is planted in the outside of the infrared detector to shield electromagnetic wave called shield cover; the other component is a soft rubber ring, which can connect the shield cover to bracket forming a flexible support. In order to demonstrate its effectiveness on reducing vibration, parameter identification and dynamic analysis of this structure are carried out to calculate the acceleration of detector under sine vibration with different frequency. Then a new type composite material is used to produce the shield cover, which has some advantages such as lighter weight, higher stiffness and function of electromagnetic shielding. Besides, the soft rubber ring is made of a special rubber called XM-31. Not only can this rubber isolate the vibration, but insulate the heat, which will further improve the performance of detector. The flexible support structure has an important application value in the field of infrared detection and imaging.

  6. Flexibly Adaptive Professional Development in Support of Teaching Science with Geospatial Technology

    NASA Astrophysics Data System (ADS)

    Trautmann, Nancy M.; Makinster, James G.

    2010-04-01

    The flexibly adaptive model of professional development, developed in the GIT Ahead project, enables secondary science teachers to incorporate a variety of geospatial technology applications into wide-ranging classroom contexts. Teacher impacts were evaluated quantitatively and qualitatively. Post-questionnaire responses showed significant growth in teachers’ perceived technological expertise, interest, and ability to integrate geospatial technology into their science teaching. Application of the Technical Pedagogical Content Knowledge (TPACK) framework to three case studies illustrates such growth. Crucial aspects of professional development in support of teaching science with geospatial technology include intensive training, ongoing support, a supportive learning community, and flexibility in terms of support provided and implementation expectations. Implications are presented for design of professional development and use of TPACK in evaluating impacts.

  7. Internally supported flexible duct joint. [device for conducting fluids in high pressure systems

    NASA Technical Reports Server (NTRS)

    Kuhn, R. F., Jr. (Inventor)

    1975-01-01

    An internally supported, flexible duct joint for use in conducting fluids under relatively high pressures in systems where relatively large deflection angles must be accommodated is presented. The joint includes a flexible tubular bellows and an elongated base disposed within the bellows. The base is connected through radiating struts to the bellows near mid-portion and to each of the opposite end portions of the bellows through a pivotal connecting body. A motion-controlling linkage is provided for linking the connecting bodies, whereby angular displacement of the joint is controlled and uniformity in the instantaneous bend radius of the duct is achieved as deflection is imposed.

  8. Developing an Advanced Life Support System for the Flexible Path into Deep Space

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Kliss, Mark H.

    2010-01-01

    Long duration human missions beyond low Earth orbit, such as a permanent lunar base, an asteroid rendezvous, or exploring Mars, will use recycling life support systems to preclude supplying large amounts of metabolic consumables. The International Space Station (ISS) life support design provides a historic guiding basis for future systems, but both its system architecture and the subsystem technologies should be reconsidered. Different technologies for the functional subsystems have been investigated and some past alternates appear better for flexible path destinations beyond low Earth orbit. There is a need to develop more capable technologies that provide lower mass, increased closure, and higher reliability. A major objective of redesigning the life support system for the flexible path is achieving the maintainability and ultra-reliability necessary for deep space operations.

  9. Integrated technology rotor/flight research rotor concept definition study

    NASA Technical Reports Server (NTRS)

    Carlson, R. G.; Beno, E. A.; Ulisnik, H. D.

    1983-01-01

    As part of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) Program a number of advanced rotor system designs were conceived and investigated. From these, several were chosen that best meet the started ITR goals with emphasis on stability, reduced weight and hub drag, simplicity, low head moment stiffness, and adequate strength and fatigue life. It was concluded that obtaining low hub moment stiffness was difficult when only the blade flexibility of bearingless rotor blades is considered, unacceptably low fatigue life being the primary problem. Achieving a moderate hub moment stiffness somewhat higher than state of the art articulated rotors in production today is possible within the fatigue life constraint. Alternatively, low stiffness is possible when additional rotor elements, besides the blades themselves, provide part of the rotor flexibility. Two primary designs evolved as best meeting the general ITR requirements that presently exist. An I shaped flexbeam with an external torque tube can satisfy the general goals but would have either higher stiffness or reduced fatigue life. The elastic gimbal rotor can achieve a better combination of low stiffness and high fatigue life but would be a somewhat heavier design and possibly exhibit a higher risk of aeromechanical instability.

  10. Dynamic Characteristics of Micro-Beams Considering the Effect of Flexible Supports

    PubMed Central

    Zhong, Zuo-Yang; Zhang, Wen-Ming; Meng, Guang

    2013-01-01

    Normally, the boundaries are assumed to allow small deflections and moments for MEMS beams with flexible supports. The non-ideal boundary conditions have a significant effect on the qualitative dynamical behavior. In this paper, by employing the principle of energy equivalence, rigorous theoretical solutions of the tangential and rotational equivalent stiffness are derived based on the Boussinesq's and Cerruti's displacement equations. The non-dimensional differential partial equation of the motion, as well as coupled boundary conditions, are solved analytically using the method of multiple time scales. The closed-form solution provides a direct insight into the relationship between the boundary conditions and vibration characteristics of the dynamic system, in which resonance frequencies increase with the nonlinear mechanical spring effect but decrease with the effect of flexible supports. The obtained results of frequencies and mode shapes are compared with the cases of ideal boundary conditions, and the differences between them are contrasted on frequency response curves. The influences of the support material property on the equivalent stiffness and resonance frequency shift are also discussed. It is demonstrated that the proposed model with the flexible supports boundary conditions has significant effect on the rigorous quantitative dynamical analysis of the MEMS beams. Moreover, the proposed analytical solutions are in good agreement with those obtained from finite element analyses.

  11. Oil-Free Rotor Support Technologies for an Optimized Helicopter Propulsion System

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Bruckner, Robert J.

    2007-01-01

    An optimized rotorcraft propulsion system incorporating a foil air bearing supported Oil-Free engine coupled to a high power density gearbox using high viscosity gear oil is explored. Foil air bearings have adequate load capacity and temperature capability for the highspeed gas generator shaft of a rotorcraft engine. Managing the axial loads of the power turbine shaft (low speed spool) will likely require thrust load support from the gearbox through a suitable coupling or other design. Employing specially formulated, high viscosity gear oil for the transmission can yield significant improvements (approx. 2X) in allowable gear loading. Though a completely new propulsion system design is needed to implement such a system, improved performance is possible.

  12. Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model

    NASA Astrophysics Data System (ADS)

    de Castro, Helio Fiori; Cavalca, Katia Lucchesi; Nordmann, Rainer

    2008-10-01

    Linear models and synchronous response are generally adequate to describe and analyze rotors supported by hydrodynamic bearings. Hence, stiffness and damping coefficients can provide a good model for a wide range of situations. However, in some cases, this approach does not suffice to describe the dynamic behavior of the rotor-bearing system. Moreover, unstable motion occurs due to precessional orbits in the rotor-bearing system. This instability is called "oil whirl" or "oil whip". The oil whirl phenomenon occurs when the journal bearings are lightly loaded and the shaft is whirling at a frequency close to one-half of rotor angular speed. When the angular speed of the rotor reaches approximately twice the natural frequency (first critical speed), the oil whip phenomenon occurs and remains even if the rotor angular speed increases. Its frequency and vibration mode correspond to the first critical speed. The main purpose of this paper is to validate a complete nonlinear solution to simulate the fluid-induced instability during run-up and run-down. A flexible rotor with a central disk under unbalanced excitation is modeled. A nonlinear hydrodynamic model is considered for short bearing and laminar flow. The effects of unbalance, journal-bearing parameters and rotor arrangement (vertical or horizontal) on the instability threshold are verified. The model simulations are compared with measurements at a real vertical power plant and a horizontal test rig.

  13. Blade loss transient dynamics analysis with flexible bladed disk

    NASA Technical Reports Server (NTRS)

    Gallardo, V. C.; Black, G.; Bach, L.; Cline, S.; Storace, A.

    1983-01-01

    The transient dynamic response of a flexible bladed disk on a flexible rotor in a two rotor system is formulated by modal synthesis and a Lagrangian approach. Only the nonequilibrated one diameter flexible mode is considered for the flexible bladed disk, while the two flexible rotors are represented by their normal modes. The flexible bladed disk motion is modeled as a combination of two one diameter standing waves, and is coupled inertially and gyroscopically to the flexible rotors. Application to a two rotor model shows that a flexible bladed disk on one rotor can be driven into resonance by an unbalance in the other rotor, and at a frequency equal to the difference in the rotor speeds.

  14. A flexible and efficient multi-model framework in support of water management

    NASA Astrophysics Data System (ADS)

    Wolfs, Vincent; Tran Quoc, Quan; Willems, Patrick

    2016-05-01

    Flexible, fast and accurate water quantity models are essential tools in support of water management. Adjustable levels of model detail and the ability to handle varying spatial and temporal resolutions are requisite model characteristics to ensure that such models can be employed efficiently in various applications. This paper uses a newly developed flexible modelling framework that aims to generate such models. The framework incorporates several approaches to model catchment hydrology, rivers and floodplains, and the urban drainage system by lumping processes on different levels. To illustrate this framework, a case study of integrated hydrological-hydraulic modelling is elaborated for the Grote Nete catchment in Belgium. Three conceptual rainfall-runoff models (NAM, PDM and VHM) were implemented in a generalized model structure, allowing flexibility in the spatial resolution by means of an innovative disaggregation/aggregation procedure. They were linked to conceptual hydraulic models of the rivers in the catchment, which were developed by means of an advanced model structure identification and calibration procedure. The conceptual models manage to emulate the simulation results of a detailed full hydrodynamic model accurately. The models configured using the approaches of this framework are well-suited for many applications in water management due to their very short calculation time, interfacing possibilities and adjustable level of detail.

  15. Flexible Foam Protection Materials for Portable Life Support System Packaging Study

    NASA Technical Reports Server (NTRS)

    Tang,Henry H.; Dillon, Paul A.; Thomas, Gretchen A.

    2009-01-01

    This paper discusses the phase I effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be robust to consistently perform over several Extravehicular Activity (EVA) missions in the extreme lunar thermal vacuum environment. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating some commercial off-the-shelf (COTS) foam material candidates. It also presents the mechanical properties and impact drop tests results of the foam material candidates. The results of this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.

  16. Flexible Foam Protection Materials for Constellation Space Suit Element Portable Life Support Subsystem Packaging Study

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.; Orndoff, Evelyne S.; Thomas, Gretchen A.

    2009-01-01

    This paper discusses the effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be very robust and function in the extreme lunar thermal vacuum environment for up to one hundred Extravehicular Activity (EVA) missions. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating commercial off-the-shelf (COTS) foam protection materials. It also presents the materials properties test results and impact drop test results of the various foam materials evaluated in the study. The findings from this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam properties or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.

  17. The effect of damping on the stability of a finite element model of a flexible non-axisymmetric rotor on tilting pad bearings

    NASA Astrophysics Data System (ADS)

    Taylor, Anthony G.; Craggs, Anthony

    1995-09-01

    A finite element model of a rotor-bearing system with non-axisymmetric stiffness and mass properties was analyzed in a previous study. In this paper the model is extended to include the effects of external damping due to symmetrical tilting-pad bearings. The same instability mechanisms, due to the lack of axisymmetry and shear deflection occurred in the damped case as for the undamped case, but within the normal operating speed of typical industrial rotor systems, a quite high degree of asymmetry is necessary. A ratio of the difference in a diametral second moments of area to mean diametral second moment of area, greater than 0.3 is necessary for instability for the configuration modelled. The instabilities involving antisymmetric modes in the undamped case are not present in the damped case. The first backward mode is involved in the instabilities of most practical interest. The effect of internal damping is also examined for an axisymmetric rotor and the behaviour, involving instability of the first forward mode, compares well with purely analytical methods for simple rotors.

  18. Experimental and analytical determination of vibration characteristics of corrugated, flexibly supported, heat-shield panels

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1974-01-01

    Experimental and analytical natural frequencies, nodal patterns, and typical modal displacements for a corrugated, flexibly supported, heat-shield panel are discussed. Good correlation was found between the experimental data and NASTRAN analytical results for the corrugated panel over a relatively wide frequency spectrum covered in the investigation. Of the two experimental techniques used for mode shape and displacement measurements (a noncontacting displacement sensor system and a holographic technique using a helium-neon, continuous-wave laser), the holographic technique was found, in the present investigation, to be faster and better suited for determining a large number of complex nodal patterns of the corrugated panel.

  19. System for Controlling a Magnetically Levitated Rotor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R. (Inventor)

    2006-01-01

    In a rotor assembly having a rotor supported for rotation by magnetic bearings, a processor controlled by software or firmware controls the generation of force vectors that position the rotor relative to its bearings in a "bounce" mode in which the rotor axis is displaced from the principal axis defined between the bearings and a "tilt" mode in which the rotor axis is tilted or inclined relative to the principal axis. Waveform driven perturbations are introduced to generate force vectors that excite the rotor in either the "bounce" or "tilt" modes.

  20. A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support

    NASA Astrophysics Data System (ADS)

    Shen, Yang-Wu; Ke, De-Ping; Sun, Yuan-Zhang; Daniel, Kirschen; Wang, Yi-Shen; Hu, Yuan-Chao

    2015-07-01

    A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).

  1. Dynamic Behavior of Wind Turbine by a Mixed Flexible-Rigid Multi-Body Model

    NASA Astrophysics Data System (ADS)

    Wang, Jianhong; Qin, Datong; Ding, Yi

    A mixed flexible-rigid multi-body model is presented to study the dynamic behavior of a horizontal axis wind turbine. The special attention is given to flexible body: flexible rotor is modeled by a newly developed blade finite element, support bearing elasticities, variations in the number of teeth in contact as well as contact tooth's elasticities are mainly flexible components in the power train. The couple conditions between different subsystems are established by constraint equations. The wind turbine model is generated by coupling models of rotor, power train and generator with constraint equations together. Based on this model, an eigenproblem analysis is carried out to show the mode shape of rotor and power train at a few natural frequencies. The dynamic responses and contact forces among gears under constant wind speed and fixed pitch angle are analyzed.

  2. The effect of flexible acrylic resin on masticatory muscle activity in implant-supported mandibular overdentures: a controlled clinical trial

    PubMed Central

    Ibraheem, Eman Mostafa Ahmed; Nassani, Mohammad Zakaria

    2016-01-01

    Background It is not yet clear from the current literature to what extent masticatory muscle activity is affected by the use of flexible acrylic resin in the construction of implant-supported mandibular overdentures. Objective To compare masticatory muscle activity between patients who were provided with implant-supported mandibular overdentures constructed from flexible acrylic resin and those who were provided with implant-supported mandibular overdentures constructed from heat-cured conventional acrylic resin. Methods In this clinical trial, 12 completely edentulous patients were selected and randomly allocated into two equal treatment groups. Each patient in Group 1 received two implants to support a mandibular overdenture made of conventional acrylic resin. In Group 2, the patients received two implants to support mandibular overdentures constructed from “Versacryl” flexible acrylic resin. The maxillary edentulous arch for patients in both groups was restored by conventional complete dentures. For all patients, masseter and temporalis muscle activity was evaluated using surface electromyography (sEMG). Results The results showed a significant decrease in masticatory muscle activity among patients with implant-supported mandibular overdentures constructed from flexible acrylic resin. Conclusion The use of “Versacryl” flexible acrylic resin in the construction of implant-supported mandibular overdentures resulted in decreased masticatory muscle activity. PMID:26955445

  3. Design and Analysis of a Flexible, Reliable Deep Space Life Support System

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2012-01-01

    This report describes a flexible, reliable, deep space life support system design approach that uses either storage or recycling or both together. The design goal is to provide the needed life support performance with the required ultra reliability for the minimum Equivalent System Mass (ESM). Recycling life support systems used with multiple redundancy can have sufficient reliability for deep space missions but they usually do not save mass compared to mixed storage and recycling systems. The best deep space life support system design uses water recycling with sufficient water storage to prevent loss of crew if recycling fails. Since the amount of water needed for crew survival is a small part of the total water requirement, the required amount of stored water is significantly less than the total to be consumed. Water recycling with water, oxygen, and carbon dioxide removal material storage can achieve the high reliability of full storage systems with only half the mass of full storage and with less mass than the highly redundant recycling systems needed to achieve acceptable reliability. Improved recycling systems with lower mass and higher reliability could perform better than systems using storage.

  4. Analysis and Tests of Pultruded Blades for Wind Turbine Rotors

    SciTech Connect

    Cheney, M. C.; Olsen, T.; Quandt, G.; Archidiacono, P.

    1999-07-19

    PS Enterprises, Inc. investigated a flexible, downwind, free-yaw, five-blade rotor system employing pultruded blades. A rotor was designed, manufactured and tested in the field. A preliminary design study and proof of concept test were conducted to assess the feasibility of using pultruded blades for wind turbine rotors. A 400 kW turbine was selected for the design study and a scaled 80 kW rotor was fabricated and field tested as a demonstration of the concept. The design studies continued to support the premise that pultruded blades offer the potential for significant reductions in rotor weight and cost. The field test provided experimental performance and loads data that compared well with predictions using the FLEXDYNE aeroelastic analysis. The field test also demonstrated stable yaw behavior and the absence of stall flutter over the wind conditions tested. During the final year of the contract, several studies were conducted by a number of independent consultants to address specific technical issues related to pultruded blades that could impact the commercial viability of turbines using this technology. The issues included performance, tower strikes, yaw stability, stall flutter, fatigue, and costs. While the performance of straight pultruded blades was projected to suffer a penalty of about 13% over fully twisted and tapered blades, the study showed that an aerodynamic fairing over the inner 40% could recover 85% of that loss while still keeping the blade cost well below that of conventional blades. Other results of the study showed that with proper design, rotors using pultruded blades could operate without aeroelastic problems, have acceptable fatigue life, and cost less than half that of rotors employing conventionally manufactured blades.

  5. Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model.

    PubMed

    Smith, Robin P; Taher, Leila; Patwardhan, Rupali P; Kim, Mee J; Inoue, Fumitaka; Shendure, Jay; Ovcharenko, Ivan; Ahituv, Nadav

    2013-09-01

    Despite continual progress in the cataloging of vertebrate regulatory elements, little is known about their organization and regulatory architecture. Here we describe a massively parallel experiment to systematically test the impact of copy number, spacing, combination and order of transcription factor binding sites on gene expression. A complex library of ∼5,000 synthetic regulatory elements containing patterns from 12 liver-specific transcription factor binding sites was assayed in mice and in HepG2 cells. We find that certain transcription factors act as direct drivers of gene expression in homotypic clusters of binding sites, independent of spacing between sites, whereas others function only synergistically. Heterotypic enhancers are stronger than their homotypic analogs and favor specific transcription factor binding site combinations, mimicking putative native enhancers. Exhaustive testing of binding site permutations suggests that there is flexibility in binding site order. Our findings provide quantitative support for a flexible model of regulatory element activity and suggest a framework for the design of synthetic tissue-specific enhancers. PMID:23892608

  6. Low-cost flexible supercapacitors based on laser reduced graphene oxide supported on polyethylene terephthalate substrate

    NASA Astrophysics Data System (ADS)

    Ghoniem, Engy; Mori, Shinsuke; Abdel-Moniem, Ahmed

    2016-08-01

    A controlled high powered CO2 laser system is used to reduce and pattern graphene oxide (GO) film supported onto a flexible polyethylene terephthalate (PET) substrate. The laser reduced graphene oxide (rGO) film is characterized and evaluated electrochemically in the absence and presence of an overlying anodicaly deposited thin film of pseuodcapactive MnO2 as electrodes for supercapacitor applications using aqueous electrolyte. The laser treatment of the GO film leads to an overlapped structure of defective multi-layer rGO sheets with an electrical conductivity of 273 S m-1. The rGO and MnO2/rGO electrodes exhibit specific capacitance in the range of 82-107 and 172-368 Fg-1 at applied current range of 0.1-1.0 mA cm-2 and retain 98 and 95% of their initial capacitances after 2000 cycles at a current density of 1.0 mA cm-2, respectively. Also, the rGO is assigned as an electrode material for flexible conventionally stacked and interdigitated in-plane supercapacitor structures using gel electrolyte. Three electrode architectures of 2, 4, and 6 sub-electrodes are studied for the interdigital in-plane design. The device with interdigital 6 sub-electrodes architecture I-PS(6) delivers power density of 537.1 Wcm-3 and an energy density of 0.45 mWh cm-3.

  7. Flexible Packaging Concept for a Space Suit Portable Life Support Subsystem

    NASA Technical Reports Server (NTRS)

    Thomas, Gretchen; Dillon, Paul; Oliver, Joe; Zapata, Felipe

    2009-01-01

    Neither the Shuttle Extravehicular Mobility Unit (EMU), the space suit currently used for space shuttle and International Space Station (ISS) missions, nor the Apollo EMU, the space suit successfully used on previous lunar missions, will satisfy the requirements for the next generation Constellation Program (CxP) lunar suit. The CxP system or Constellation Space Suit Element (CSSE) must be able to tolerate more severe environmental and use conditions than any previous system. These conditions include missions to the severely cold lunar poles and up to 100 Extravehicular Activity (EVA) excursions without ground maintenance. Much effort is focused on decreasing the mass and volume of the Portable Life Support Subsystem (PLSS) over previous suit designs in order to accommodate the required increase in functionality. This paper documents the progress of a conceptual packaging effort of a flexible backpack for the CSSE PLSS. The flexible backpack concept relies on a foam protection system to absorb, distribute, and dissipate the energy from falls on the lunar surface. Testing and analysis of the foam protection system concept that was conducted during this effort indicates that this method of system packaging is a viable solution.

  8. Exact mesh shape design of large cable-network antenna reflectors with flexible ring truss supports

    NASA Astrophysics Data System (ADS)

    Liu, Wang; Li, Dong-Xu; Yu, Xin-Zhan; Jiang, Jian-Ping

    2014-04-01

    An exact-designed mesh shape with favorable surface accuracy is of practical significance to the performance of large cable-network antenna reflectors. In this study, a novel design approach that could guide the generation of exact spatial parabolic mesh configurations of such reflector was proposed. By incorporating the traditional force density method with the standard finite element method, this proposed approach had taken the deformation effects of flexible ring truss supports into consideration, and searched for the desired mesh shapes that can satisfy the requirement that all the free nodes are exactly located on the objective paraboloid. Compared with the conventional design method, a remarkable improvement of surface accuracy in the obtained mesh shapes had been demonstrated by numerical examples. The present work would provide a helpful technical reference for the mesh shape design of such cable-network antenna reflector in engineering practice. [Figure not available: see fulltext.

  9. Evolution of Flexible Multibody Dynamics for Simulation Applications Supporting Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Huynh, An; Brain, Thomas A.; MacLean, John R.; Quiocho, Leslie J.

    2016-01-01

    During the course of transition from the Space Shuttle and International Space Station programs to the Orion and Journey to Mars exploration programs, a generic flexible multibody dynamics formulation and associated software implementation has evolved to meet an ever changing set of requirements at the NASA Johnson Space Center (JSC). Challenging problems related to large transitional topologies and robotic free-flyer vehicle capture/ release, contact dynamics, and exploration missions concept evaluation through simulation (e.g., asteroid surface operations) have driven this continued development. Coupled with this need is the requirement to oftentimes support human spaceflight operations in real-time. Moreover, it has been desirable to allow even more rapid prototyping of on-orbit manipulator and spacecraft systems, to support less complex infrastructure software for massively integrated simulations, to yield further computational efficiencies, and to take advantage of recent advances and availability of multi-core computing platforms. Since engineering analysis, procedures development, and crew familiarity/training for human spaceflight is fundamental to JSC's charter, there is also a strong desire to share and reuse models in both the non-realtime and real-time domains, with the goal of retaining as much multibody dynamics fidelity as possible. Three specific enhancements are reviewed here: (1) linked list organization to address large transitional topologies, (2) body level model order reduction, and (3) parallel formulation/implementation. This paper provides a detailed overview of these primary updates to JSC's flexible multibody dynamics algorithms as well as a comparison of numerical results to previous formulations and associated software.

  10. Limit cycles of a flexible shaft with hydrodynamic journal bearings in unstable regimes

    NASA Technical Reports Server (NTRS)

    Brown, R. D.; Black, H. F.

    1980-01-01

    A symmetric 3 mass rotor supported on hydrodynamic bearings is described. An approximate method of representing finite bearings is used to calculate bearing forces. As the method sums forces from a number of independent circular lobes lemon 3 and 4 lobe bearings are taken into account. The calculations are based on an axial groove bearing. Linear analysis precedes nonlinear simulation of some unstable conditions. The demonstration of small limit cycles suggests that necessarily flexible rotors e.g., helicopter tail rotors, may be practical without either tilt pad bearings or external dampers.

  11. Instability analysis procedure for 3-level multi-bearing rotor-foundation systems

    NASA Technical Reports Server (NTRS)

    Zhou, S.; Rieger, N. F.

    1985-01-01

    A procedure for the instability analysis of a three-level multispan rotor systems is described. This procedure is based on a distributed mass elastic representation of the rotor system in several eight-coefficient bearings. Each bearing is supported from an elastic foundation on damped, elastic pedestals. The foundation is represented as a general distributed mass elastic structure on discrete supports, which may have different stiffness and damping properties in the horizontal and vertical directions. This system model is suited to studies of instability threshold conditions for multirotor turbomachines on either massive or flexible foundations. The instability conditions is found by obtaining the eigenvalues of the system determinant, which is obtained by the transfer matrix method from the three-level system model. The stability determinant is solved for the lowest rotational speed at which the system damping becomes zero in the complex eigenvalue, and for the whirl frequency corresponding to the natural frequency of the unstable mode. An efficient algorithm for achieving this is described. Application of this procedure to a rigid rotor in two damped-elastic bearings and flexible supports is described. A second example discusses a flexible rotor with four damped-elastic bearings. The third case compares the stability of a six-bearing 300 Mw turbine generator unit, using two different bearing types. These applications validate the computer program and various aspects of the analysis.

  12. A rotor unbalance response based approach to the identification of the closed-loop stiffness and damping coefficients of active magnetic bearings

    NASA Astrophysics Data System (ADS)

    Zhou, Jin; Di, Long; Cheng, Changli; Xu, Yuanping; Lin, Zongli

    2016-01-01

    The stiffness and damping coefficients of active magnetic bearings (AMBs) have direct influence on the dynamic response of a rotor bearing system, including the bending critical speeds, modes of vibrations and stability. Rotor unbalance response is informative in the identification of these bearing support parameters. In this paper, we propose a method for identifying closed-loop AMB stiffness and damping coefficients based on the rotor unbalance response. We will use a flexible rotor-AMB test rig to help describe the proposed method as well as to validate the identification results. First, based on a rigid body model of the rotor, a formula is derived that computes the nominal values of the bearing stiffness and damping coefficients at a given rotating speed from the experimentally measured rotor unbalance response at the given speed. Then, based on a finite element model of the rotor, an error response surface is constructed for each parameter to estimate the identification errors induced by the rotor flexibility. The final identified values of the stiffness and damping coefficients equal the sums of the nominal values initially computed from the unbalance response and the identification errors determined by the error response surfaces. The proposed identification method is carried out on the rotor-AMB test rig. In order to validate the identification results, the identified values of the closed-loop AMB stiffness and damping coefficients are combined with the finite element model of the rotor to form a full model of the rotor-AMB test rig, from which the model unbalance responses at various rotating speeds are determined through simulation and compared with the experimental measurements. The close agreements between the simulation results and the measurements validate the proposed identification method.

  13. Rotary sequencing valve with flexible port plate

    DOEpatents

    Wagner, Glenn Paul

    2005-05-10

    Rotary sequencing valve comprising a rotor having a rotor face rotatable about an axis perpendicular to the rotor face, wherein the rotor face has a plurality of openings, one or more of which are disposed at a selected radial distance from the axis, and wherein the rotor includes at least one passage connecting at least one pair of the plurality of openings. The valve includes a flexible port plate having a first side and a second side, wherein the first side faces the rotor and engages the rotor such that the flexible port plate can be rotated coaxially by the rotor and can move axially with respect to the rotor, wherein the flexible port plate has a plurality of ports between the first and second sides, which ports are aligned with the openings in the rotor face. The valve also includes a stator having a stator face disposed coaxially with the rotor and the flexible port plate, wherein the second side of the flexible port plate is in sealable, slidable rotary contact with the stator face, wherein the stator face has a plurality of openings, some of which are disposed at the selected radial distance from the axis, and wherein the plurality of openings extend as passages through the stator. The valve may be used in pressure or temperature swing adsorption systems.

  14. Flexible self-supporting nanofibers thin films showing reversible photochromic fluorescence.

    PubMed

    Gao, Rui; Cao, Ding; Guan, Yan; Yan, Dongpeng

    2015-05-13

    Highly sensitive stimuli-responsive fluorescent films play an important role in smart sensors and readable optical devices. However, systems involving light-driven fluorescence changes are still limited compared with photochromic materials that simply change color upon photostimulation. Herein, by incorporation of stilbene-based molecules into a poly(vinyl alcohol) host, we have developed new flexible self-supporting nanofiber films that exhibited fast and obvious photochromic fluorescence (PCF). The reversible transfer between two fluorescent states can be easily recycled. Fluorescence microscopy and atomic force microscopy images supplied in situ evidence of changes in fluorescence and surface morphology, respectively. Density functional theoretical calculations showed that the PCF can be attributed to photoisomerization of the stilbene-based molecules. Therefore, based on the combination of experimental and theoretical studies, this work not only supplies new stilbene-based systems with light-induced fluorescence change, but also gives detailed understanding on the photoisomerization and PCF processes of the nanofibers systems. We anticipate that these PCF films can be applied in erasable memory devices and antiforgery materials, and that our strategy may be extended to other systems to fabricate multistimuli-responsive fluorescent materials. PMID:25897557

  15. Dynamic behavior of air lubricated pivoted-pad journal-bearing, rotor system. 2: Pivot consideration and pad mass

    NASA Technical Reports Server (NTRS)

    Nemeth, Z. N.

    1972-01-01

    Rotor bearing dynamic tests were conducted with tilting-pad journal bearings having three different pad masses and two different pivot geometries. The rotor was vertically mounted and supported by two three-pad tilting-pad gas journal bearings and a simple externally pressurized thrust bearing. The bearing pads were 5.1 cm (2.02 in.) in diameter and 2.8 cm (1.5 in.) long. The length to diameter ratio was 0.75. One pad was mounted on a flexible diaphragm. The bearing supply pressure ranged from 0 to 690 kilonewtons per square meter (0 to 100 psig), and speeds ranged to 38,500 rpm. Heavy mass pad tilting-pad assemblies produced three rotor-bearing resonances above the first two rotor critical speeds. Lower supply pressure eliminated the resonances. The resonances were oriented primarily in the direction normal to the diaphragm.

  16. Effect of seals on rotor systems

    NASA Technical Reports Server (NTRS)

    Fleming, D. P.

    1982-01-01

    Seals can exert large forces on rotors. As an example, in turbopump ring seals film stiffness as high as 90 MN/m (500,000 lb/in) have been calculated. This stiffness is comparable to the stiffness of rotor support bearings; thus seals can play an important part in supporting and stabilizing rotor systems. The work done to determine forces generated in ring seals is reviewed. Working formulas are presented for seal stiffness and damping, and geometries to maximize stiffness are discussed. An example is described where a change in seal design stabilized a previously unstable rotor.

  17. Nonlinear analysis of cylindrical and conical hysteretic whirl motions in rotor-dynamics

    NASA Astrophysics Data System (ADS)

    Sorge, Francesco

    2014-09-01

    The internal friction of a rotor-shaft-support system is mainly due to the shaft structural hysteresis and to some possible shrink-fit release of the assembly. The experimentation points out the destabilizing effect of the internal friction in the over-critical rotor running. Nevertheless, this detrimental influence may be efficiently counterbalanced by other external dissipative sources located in the supports or by a proper anisotropic configuration of the support stiffness. The present analysis considers a rotor-shaft system which is symmetric with respect to the mid-span and is constrained by viscous-flexible supports with different stiffness on two orthogonal planes. The cylindrical and conical whirling modes are easily uncoupled and separately analysed. The internal dissipation is modelled by nonlinear Coulombian forces and moments, which counteract the translational and rotational motion of the rotor relative to a frame rotating with the shaft ends. The nonlinear equations of motion are solved by averaging approaches of the Krylov-Bogoliubov type. In both the over-critical whirling motions, cylindrical and conical, stable limit cycles may be attained whose amplitude is as large as the external dissipation applied by the supports is low. The stiffness anisotropy of the supports may be recognised as quite beneficial for the cylindrical whirl.

  18. Software for System for Controlling a Magnetically Levitated Rotor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R. (Inventor)

    2004-01-01

    In a rotor assembly having a rotor supported for rotation by magnetic bearings, a processor controlled by software or firmware controls the generation of force vectors that position the rotor relative to its bearings in a 'bounce' mode in which the rotor axis is displaced from the principal axis defined between the bearings and a 'tilt' mode in which the rotor axis is tilted or inclined relative to the principal axis. Waveform driven perturbations are introduced to generate force vectors that excite the rotor in either the 'bounce' or 'tilt' modes.

  19. Flexibly Adaptive Professional Development in Support of Teaching Science with Geospatial Technology

    ERIC Educational Resources Information Center

    Trautmann, Nancy M.; MaKinster, James G.

    2010-01-01

    The "flexibly adaptive" model of professional development, developed in the GIT Ahead project, enables secondary science teachers to incorporate a variety of geospatial technology applications into wide-ranging classroom contexts. Teacher impacts were evaluated quantitatively and qualitatively. Post-questionnaire responses showed significant…

  20. Occupation and Industry Sex Segregation, Gender, and Workplace Support: The Use of Flexible Scheduling Policies

    ERIC Educational Resources Information Center

    Minnotte, Krista Lynn; Cook, Alison; Minnotte, Michael C.

    2010-01-01

    This study examines how industry and occupation sex segregation are related to the use of flexible scheduling policies and perceptions of the career repercussions of using such policies. The analysis is performed on data from the 2002 National Study of the Changing Workforce (N = 2,810). Findings suggest that the percentage of women per industry…

  1. Becoming Self-Directed: Abstract Representations Support Endogenous Flexibility in Children

    ERIC Educational Resources Information Center

    Snyder, Hannah R.; Munakata, Yuko

    2010-01-01

    A fundamental part of growing up is going beyond routines. Children become increasingly skilled over the first years of life at actively maintaining goals in the service of flexible behavior, allowing them to break out of habits and switch from one task to another. Their early successes often occur with exogenous (externally-provided) goals, and…

  2. Internal rotor friction instability

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  3. An exploratory investigation of the flight dynamics effects of rotor rpm variations and rotor state feedback in hover

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.

    1992-01-01

    This paper presents the results of an analytical study conducted to investigate airframe/engine interface dynamics, and the influence of rotor speed variations on the flight dynamics of the helicopter in hover, and to explore the potential benefits of using rotor states as additional feedback signals in the flight control system. The analytical investigation required the development of a parametric high-order helicopter hover model, which included heave/yaw body motion, the rotor speed degree of freedom, rotor blade motion in flapping and lead-lag, inflow dynamics, a drive train model with a flexible rotor shaft, and an engine/rpm governor. First, the model was used to gain insight into the engine/drive train/rotor system dynamics and to obtain an improved simple formula for easy estimation of the dominant first torsional mode, which is important in the dynamic integration of the engine and airframe system. Then, a linearized version of the model was used to investigate the effects of rotor speed variations and rotor state feedback on helicopter flight dynamics. Results show that, by including rotor speed variations, the effective vertical damping decreases significantly from that calculated with a constant speed assumption, thereby providing a better correlation with flight test data. Higher closed-loop bandwidths appear to be more readily achievable with rotor state feedback. The results also indicate that both aircraft and rotor flapping responses to gust disturbance are significantly attenuated when rotor state feedback is used.

  4. Autonomous Operations Planner: A Flexible Platform for Research in Flight-Deck Support for Airborne Self-Separation

    NASA Technical Reports Server (NTRS)

    Karr, David A.; Vivona, Robert A.; DePascale, Stephen M.; Wing, David J.

    2012-01-01

    The Autonomous Operations Planner (AOP), developed by NASA, is a flexible and powerful prototype of a flight-deck automation system to support self-separation of aircraft. The AOP incorporates a variety of algorithms to detect and resolve conflicts between the trajectories of its own aircraft and traffic aircraft while meeting route constraints such as required times of arrival and avoiding airspace hazards such as convective weather and restricted airspace. This integrated suite of algorithms provides flight crew support for strategic and tactical conflict resolutions and conflict-free trajectory planning while en route. The AOP has supported an extensive set of experiments covering various conditions and variations on the self-separation concept, yielding insight into the system s design and resolving various challenges encountered in the exploration of the concept. The design of the AOP will enable it to continue to evolve and support experimentation as the self-separation concept is refined.

  5. Flexible thermoplastic resin to add retention to tooth-supported stereolithographic surgical guides.

    PubMed

    Stumpel, Lambert J

    2015-10-01

    Surgical guides produced by stereolithography use hard resin. The hard resin prevents seating beyond the height of contour, hence these guides are not intrinsically retentive. By covering the guide with a flexible thermoplastic material that extends into the undercuts, the resulting guide now has a retentive feature. This allows it to maintain its position during surgery yet it can easily be removed and repositioned. PMID:26130234

  6. The roles of CymA in support of the respiratory flexibility of Shewanella oneidensis MR-1

    SciTech Connect

    Marritt, Sophie; McMillan, Duncan G.; Shi, Liang; Fredrickson, Jim K.; Zachara, John M.; Richardson, David J.; Jeuken, Lars J.; Butt, Julea N.

    2012-12-01

    Shewanella species are isolated from the oxic/anoxic regions of seawater and aquatic sediments where redox conditions fluctuate in time and space. Colonization of these environments is by virtue of flexible respiratory chains, many of which are notable for the ability to reduce extracellular substrates including the Fe(III) and Mn(IV) contained in oxide and phyllosilicate minerals. Shewanella oneidensis MR-1 serves as a model organism to consider the biochemical basis of this flexibility. In the present paper, we summarize the various systems that serve to branch the respiratory chain of S. oneidensis MR-1 in order that electrons from quinol oxidation can be delivered the various terminal electron acceptors able to support aerobic and anaerobic growth. This serves to highlight several unanswered questions relating to the regulation of respiratory electron transport in Shewanella and the central role(s) of the tetrahaem-containing quinol dehydrogenase CymA in that process.

  7. Rotor noise

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.

    1991-01-01

    The physical characteristics and sources of rotorcraft noise as they exist today are presented. Emphasis is on helicopter-like vehicles, that is, on rotorcraft in nonaxial flight. The mechanisms of rotor noise are reviewed in a simple physical manner for the most dominant sources of rotorcraft noise. With simple models, the characteristic time- and frequency-domain features of these noise sources are presented for idealized cases. Full-scale data on several rotorcraft are then reviewed to allow for the easy identification of the type and extent of the radiating noise. Methods and limitations of using scaled models to test for several noise sources are subsequently presented. Theoretical prediction methods are then discussed and compared with experimental data taken under very controlled conditions. Finally, some promising noise reduction technology is reviewed.

  8. Predesign study for a modern 4-bladed rotor for the NASA rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Bishop, H. E.; Burkam, J. E.; Heminway, R. C.; Keys, C. N.; Smith, K. E.; Smith, J. H.; Staley, J. A.

    1981-01-01

    Trade-off study results and the rationale for the final selection of an existing modern four-bladed rotor system that can be adapted for installation on the Rotor Systems Research Aircraft (RSRA) are reported. The results of the detailed integration studies, parameter change studies, and instrumentation studies and the recommended plan for development and qualification of the rotor system is also given. Its parameter variants, integration on the RSRA, and support of ground and flight test programs are also discussed.

  9. Flexibility Support for Homecare Applications Based on Models and Multi-Agent Technology

    PubMed Central

    Armentia, Aintzane; Gangoiti, Unai; Priego, Rafael; Estévez, Elisabet; Marcos, Marga

    2015-01-01

    In developed countries, public health systems are under pressure due to the increasing percentage of population over 65. In this context, homecare based on ambient intelligence technology seems to be a suitable solution to allow elderly people to continue to enjoy the comforts of home and help optimize medical resources. Thus, current technological developments make it possible to build complex homecare applications that demand, among others, flexibility mechanisms for being able to evolve as context does (adaptability), as well as avoiding service disruptions in the case of node failure (availability). The solution proposed in this paper copes with these flexibility requirements through the whole life-cycle of the target applications: from design phase to runtime. The proposed domain modeling approach allows medical staff to design customized applications, taking into account the adaptability needs. It also guides software developers during system implementation. The application execution is managed by a multi-agent based middleware, making it possible to meet adaptation requirements, assuring at the same time the availability of the system even for stateful applications. PMID:26694416

  10. Flexibility Support for Homecare Applications Based on Models and Multi-Agent Technology.

    PubMed

    Armentia, Aintzane; Gangoiti, Unai; Priego, Rafael; Estévez, Elisabet; Marcos, Marga

    2015-01-01

    In developed countries, public health systems are under pressure due to the increasing percentage of population over 65. In this context, homecare based on ambient intelligence technology seems to be a suitable solution to allow elderly people to continue to enjoy the comforts of home and help optimize medical resources. Thus, current technological developments make it possible to build complex homecare applications that demand, among others, flexibility mechanisms for being able to evolve as context does (adaptability), as well as avoiding service disruptions in the case of node failure (availability). The solution proposed in this paper copes with these flexibility requirements through the whole life-cycle of the target applications: from design phase to runtime. The proposed domain modeling approach allows medical staff to design customized applications, taking into account the adaptability needs. It also guides software developers during system implementation. The application execution is managed by a multi-agent based middleware, making it possible to meet adaptation requirements, assuring at the same time the availability of the system even for stateful applications. PMID:26694416

  11. The Stanford MediaServer Project: strategies for building a flexible digital media platform to support biomedical education and research.

    PubMed

    Durack, Jeremy C; Chao, Chih-Chien; Stevenson, Derek; Andriole, Katherine P; Dev, Parvati

    2002-01-01

    Medical media collections are growing at a pace that exceeds the value they currently provide as research and educational resources. To address this issue, the Stanford MediaServer was designed to promote innovative multimedia-based application development. The nucleus of the MediaServer platform is a digital media database strategically designed to meet the information needs of many biomedical disciplines. Key features include an intuitive web-based interface for collaboratively populating the media database, flexible creation of media collections for diverse and specialized purposes, and the ability to construct a variety of end-user applications from the same database to support biomedical education and research. PMID:12463820

  12. Research on the support truss structure of foreign space remote sensor with large-scale and flexibility

    NASA Astrophysics Data System (ADS)

    An, Mingxin; Dong, Jihong; Li, Wei; Guo, Quanfeng; Li, Yan-chun; Zhao, Weiguo; Wang, Haiping

    2014-09-01

    The truss structure had the merits of simple configuration, reliable, flexible assembly, specific stiffness and strong design ability. It was widely used in the support structure of Space camera and large telescope at home and abroad. The article described and analyzed truss structures of ground-based telescopes, space-based telescopes and Space camera. Conclusions that some reference should be followed in the truss design process were given. Simultaneously it also introduced the basic knowledge of truss design optimization, including the optimization ideas of truss structure and optimization algorithm of truss structure, which laid a good foundation for optimal design of truss in future.

  13. Rotor dynamic considerations for large wind power generator systems

    NASA Technical Reports Server (NTRS)

    Ormiston, R. A.

    1973-01-01

    Successful large, reliable, low maintenance wind turbines must be designed with full consideration for minimizing dynamic response to aerodynamic, inertial, and gravitational forces. Much of existing helicopter rotor technology is applicable to this problem. Compared with helicopter rotors, large wind turbines are likely to be relatively less flexible with higher dimensionless natural frequencies. For very large wind turbines, low power output per unit weight and stresses due to gravitational forces are limiting factors. The need to reduce rotor complexity to a minimum favors the use of cantilevered (hingeless) rotor configurations where stresses are relieved by elastic deformations.

  14. Ultrafast direct fabrication of flexible substrate-supported designer plasmonic nanoarrays

    NASA Astrophysics Data System (ADS)

    Hu, Yaowu; Kumar, Prashant; Xu, Rong; Zhao, Kejie; Cheng, Gary J.

    2015-12-01

    Fabrication of plasmonic nanostructures has been an important topic for their potential applications in photonic and optoelectronic devices. Among plasmonic materials, gold is one of the most promising materials due to its low ohmic loss at optical frequencies and high oxidation resistance. However, there are two major bottlenecks for its industrial applications: (1) the need for large-scale fabrication technology for high-precision plasmonic nanostructures; and (2) the need to integrate the plasmonic nanostructures on various substrates. While conventional top-down approaches involve high cost and give low throughput, bottom-up approaches suffer from irreproducibility and low precision. Herein, we report laser shock induced direct imprinting of large-area plasmonic nanostructures from physical vapor deposited (PVD) gold thin film on a flexible commercial free-standing aluminum foil. Among the important characteristics of the laser-shock direct imprinting is their unique capabilities to reproducibly deliver designer plasmonic nanostructures with extreme precision and in an ultrafast manner. Excellent size tunability (from several μm down to 15 nm) has been achieved by varying mold dimensions and laser parameters. The physical mechanism of the hybrid film imprinting is elaborated by finite element modeling. A mechanical robustness test of the hybrid film validates a significantly improved interfacial contact between gold arrays and the underlying substrate. The strong optical field enhancement was realized in the large-area fabricated engineered gold nanostructures. Low concentration molecular sensing was investigated employing the fabricated structures as surface-enhanced Raman scattering (SERS) substrates. The ability to ultrafast direct imprint plasmonic nanoarrays on a flexible substrate at multiscale is a critical step towards roll-to-roll manufacturing of multi-functional devices which is poised to inspire several emerging applications.Fabrication of

  15. Instability of a Bogie Moving on a Flexibly Supported Timoshenko Beam

    NASA Astrophysics Data System (ADS)

    VERICHEV, S. N.; METRIKINE, A. V.

    2002-06-01

    The stability of vibration of a bogie uniformly moving along a Timoshenko beam on a viscoelastic foundation has been studied. The bogie has been modelled by a rigid bar of a finite length on two identical supports. Each support consists of a spring and a dashpot connected in parallel. The upper ends of the supports are attached to the bar, whilst the lower ends are mounted onto concentrated masses through which the supports interact with the beam. It is assumed that the masses and the beam are always in contact. It is shown that when the velocity of the bogie exceeds the minimum phase velocity of waves in the beam, the vibration of the system may become unstable. The instability region is found in the space of the system parameters with the help of the D-decomposition method and the principle of the argument. An extended analysis of the effect of the bogie parameters on the model stability has been carried out.

  16. Aeroelastic effects in multirotor vehicles. Part 2: Methods of solution and results illustrating coupled rotor/body aeromechanical stability

    NASA Technical Reports Server (NTRS)

    Venkatesan, C.; Friedmann, P. P.

    1987-01-01

    This report is a sequel to the earlier report titled, Aeroelastic Effects in Multi-Rotor Vehicles with Application to Hybrid Heavy Lift System, Part 1: Formulation of Equations of Motion (NASA CR-3822). The trim and stability equations are presented for a twin rotor system with a buoyant envelope and an underslung load attached to a flexible supporting structure. These equations are specialized for the case of hovering flight. A stability analysis, for such a vehicle with 31 degrees of freedom, yields a total of 62 eigenvalues. A careful parametric study is performed to identify the various blade and vehicle modes, as well as the coupling between various modes. Finally, it is shown that the coupled rotor/vehicle stability analysis provides information on both the aeroelastic stability as well as complete vehicle dynamic stability. Also presented are the results of an analytical study aimed at predicting the aeromechanical stability of a single rotor helicopter in ground resonance. The theoretical results are found to be in good agreement with the experimental results, thereby validating the analytical model for the dynamics of the coupled rotor/support system.

  17. Halbach Magnetic Rotor Development

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.

    2008-01-01

    The NASA John H. Glenn Research Center has a wealth of experience in Halbach array technology through the Fundamental Aeronautics Program. The goals of the program include improving aircraft efficiency, reliability, and safety. The concept of a Halbach magnetically levitated electric aircraft motor will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels, increase efficiency and reliability, reduce maintenance and decrease operating noise levels. Experimental hardware systems were developed in the GRC Engineering Development Division to validate the basic principles described herein and the theoretical work that was performed. A number of Halbach Magnetic rotors have been developed and tested under this program. A separate test hardware setup was developed to characterize each of the rotors. A second hardware setup was developed to test the levitation characteristics of the rotors. Each system focused around a unique Halbach array rotor. Each rotor required original design and fabrication techniques. A 4 in. diameter rotor was developed to test the radial levitation effects for use as a magnetic bearing. To show scalability from the 4 in. rotor, a 1 in. rotor was developed to also test radial levitation effects. The next rotor to be developed was 20 in. in diameter again to show scalability from the 4 in. rotor. An axial rotor was developed to determine the force that could be generated to position the rotor axially while it is rotating. With both radial and axial magnetic bearings, the rotor would be completely suspended magnetically. The purpose of this report is to document the development of a series of Halbach magnetic rotors to be used in testing. The design, fabrication and assembly of the rotors will be discussed as well as the hardware developed to test the rotors.

  18. Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials

    PubMed Central

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; Di, Chong-an; Zhu, Daoben

    2015-01-01

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature–pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of <0.1 K and a high-pressure-sensing sensitivity of up to 28.9 kPa−1. More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements. PMID:26387591

  19. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; di, Chong-An; Zhu, Daoben

    2015-09-01

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of <0.1 K and a high-pressure-sensing sensitivity of up to 28.9 kPa-1. More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  20. Flexible establishment of functional brain networks supports attentional modulation of unconscious cognition.

    PubMed

    Ulrich, Martin; Adams, Sarah C; Kiefer, Markus

    2014-11-01

    In classical theories of attention, unconscious automatic processes are thought to be independent of higher-level attentional influences. Here, we propose that unconscious processing depends on attentional enhancement of task-congruent processing pathways implemented by a dynamic modulation of the functional communication between brain regions. Using functional magnetic resonance imaging, we tested our model with a subliminally primed lexical decision task preceded by an induction task preparing either a semantic or a perceptual task set. Subliminal semantic priming was significantly greater after semantic compared to perceptual induction in ventral occipito-temporal (vOT) and inferior frontal cortex, brain areas known to be involved in semantic processing. The functional connectivity pattern of vOT varied depending on the induction task and successfully predicted the magnitude of behavioral and neural priming. Together, these findings support the proposal that dynamic establishment of functional networks by task sets is an important mechanism in the attentional control of unconscious processing. PMID:24954512

  1. Component mode synthesis of large rotor systems

    NASA Technical Reports Server (NTRS)

    Li, D. F.; Gunter, E. J.

    1981-01-01

    A scheme is presented for calculating the vibrations of large multi-component flexible rotor systems based on the component mode synthesis method. It is shown that, by a modal expansion of the elastic interconnecting elements, the system modal equation can be conveniently constructed from the undamped eigen representations of the component subsystems. The capability of the component mode method is demonstrated in two examples: a transient simulation of a two-spool gas turbine engine equipped with a squeeze-film damper; and an unbalance response analysis of the Space Shuttle Main Engine oxygen turbopump in which the dynamics of the rotor and the housing are both considered.

  2. A disk-type magneto-rheological fluid damper for rotor system vibration control

    NASA Astrophysics Data System (ADS)

    Zhu, Changsheng

    2005-05-01

    Based on the particular characteristic of a magneto-rheological (MR) fluid, i.e., a rapid, reversible and dramatic change in its rheological properties produced by the application of an external magnetic field, a simple disk-type MR fluid damper operating in shear flow mode is presented in this paper. The magnetic field of the disk-type MR fluid damper is analyzed by the finite element method in order to show if the design is reasonable. The effect of excitation current in the coil on the magnetic flux density in the axial gaps filled with the MR fluid is studied both theoretically and experimentally. Finally, the effectiveness of the disk-type MR fluid damper for attenuating the vibration of rotor systems and of a simple open-loop on-off control based on the feedback of rotational speed for controlling vibration of rotor systems are experimentally studied in a flexible rotor system. It is shown that the dynamic characteristics of the disk-type MR fluid damper can be easily controlled by a steady magnetic field produced by a simple electrical magnetic coil with a low DC current (less than 1 A) and that the disk-type MR fluid damper is very effective for attenuating and controlling the vibration of the rotor systems. It is possible to supply the optimum supporting damping for every vibration mode in the rotor system by using the disk-type MR damper, if the location of the disk-type MR fluid damper in the rotor is properly chosen.

  3. Hierarchically structured self-supported latex films for flexible and semi-transparent electronics

    NASA Astrophysics Data System (ADS)

    Määttänen, Anni; Ihalainen, Petri; Törngren, Björn; Rosqvist, Emil; Pesonen, Markus; Peltonen, Jouko

    2016-02-01

    Different length scale alterations in topography, surface texture, and symmetry are known to evoke diverse cell behavior, including adhesion, orientation, motility, cytoskeletal condensation, and modulation of intracellular signaling pathways. In this work, self-supported latex films with well-defined isotropic/anisotropic surface features and hierarchical morphologies were fabricated by a peel-off process from different template surfaces. In addition, the latex films were used as substrates for evaporated ultrathin gold films with nominal thicknesses of 10 and 20 nm. Optical properties and topography of the samples were characterized using UV-vis spectroscopy and Atomic Force Microscopy (AFM) measurements, respectively. The latex films showed high-level transmittance of visible light, enabling the fabrication of semi-transparent gold electrodes. Electrochemical impedance spectroscopy (EIS) measurements were carried out for a number of days to investigate the long-term stability of the electrodes. The effect of 1-octadecanethiol (ODT) and HS(CH2)11OH (MuOH) thiolation and protein (human serum albumin, HSA) adsorption on the impedance and capacitance was studied. In addition, cyclic voltammetry (CV) measurements were carried out to determine active medicinal components, i.e., caffeic acid with interesting biological activities and poorly water-soluble anti-inflammatory drug, piroxicam. The results show that the fabrication procedure presented in this study enables the formation of platforms with hierarchical morphologies for multimodal (optical and electrical) real-time monitoring of length-scale-dependent biomaterial-surface interactions.

  4. Stroboscope Controller for Imaging Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Jensen, Scott; Marmie, John; Mai, Nghia

    2004-01-01

    A versatile electronic timing-and-control unit, denoted a rotorcraft strobe controller, has been developed for use in controlling stroboscopes, lasers, video cameras, and other instruments for capturing still images of rotating machine parts especially helicopter rotors. This unit is designed to be compatible with a variety of sources of input shaftangle or timing signals and to be capable of generating a variety of output signals suitable for triggering instruments characterized by different input-signal specifications. It is also designed to be flexible and reconfigurable in that it can be modified and updated through changes in its control software, without need to change its hardware. Figure 1 is a block diagram of the rotorcraft strobe controller. The control processor is a high-density complementary metal oxide semiconductor, singlechip 8-bit microcontroller. It is connected to a 32K x 8 nonvolatile static random-access memory (RAM) module. Also connected to the control processor is a 32K 8 electrically programmable read-only-memory (EPROM) module, which is used to store the control software. Digital logic support circuitry is implemented in a field-programmable gate array (FPGA). A 240 x 128-dot, 40- character 16-line liquid-crystal display (LCD) module serves as a graphical user interface; the user provides input through a 16-key keypad mounted next to the LCD. A 12-bit digital-to-analog converter (DAC) generates a 0-to-10-V ramp output signal used as part of a rotor-blade monitoring system, while the control processor generates all the appropriate strobing signals. Optocouplers are used to isolate all input and output digital signals, and optoisolators are used to isolate all analog signals. The unit is designed to fit inside a 19-in. (.48-cm) rack-mount enclosure. Electronic components are mounted on a custom printed-circuit board (see Figure 2). Two power-conversion modules on the printedcircuit board convert AC power to +5 VDC and 15 VDC, respectively.

  5. Lateral vibration of hydro turbine-generator rotor with varying stiffness of guide bearings

    NASA Astrophysics Data System (ADS)

    Lai, X. D.; Liao, G. L.; Zhu, Y.; Zhang, X.; Gou, Q. Q.; Zhang, W. B.

    2012-11-01

    The rotor consisted of rotating components and origin of energy transfer is the source of all vibrations in a hydro turbine generator unit. Among all vibration modes, the lateral mode is of the greatest concern. A lateral vibration response calculation model for rotor-bearing system with the nonlinear characteristics of the guide bearing's stiffness is presented in this paper. The model for hydro-generator rotor combines finite element model with the varying guide bearing's stiffness, the gyroscopic effect, unbalanced magnetic pull, hydraulic force and mechanical forces to calculate natural frequencies and steady state response. Take Francis turbine unit with three guide bearings for an example, the unit's lateral vibration characteristics and response of rotating components had been simulated by using FEM. The lateral vibration characteristics and response amplitude at rotating parts had been analyzed by varying stiffness simultaneously or one of the three guide bearings based on the assumption of elastic supporting models, and the influence of rotating speed, phase difference between the unbalanced forces on the vibration response had also been analyzed by the simplified analysis at the designed guide bearing stiffness. It shows that accounting for bearing stiffness and support structure flexibility, and then understanding the resulting in vibration behavior is an important factor in enhancing the stability of a hydro turbine generator rotor. The simulation results show that, for a vertical-mounted hydro turbine generator unit, there exists a common characteristic in the first three vibration mode, that is, the maximum amplitude is at the exciter in the first vibration mode and at the runner in the second vibration mode respectively, and the maximum amplitude is near the exciter or rotor in the third vibration mode. These results have great significance for the optimization design of the supporting structure of a hydro turbine generator unit.

  6. Refurbishment of fatigue-cracked generator rotor forgings

    SciTech Connect

    Roberts, B.W.; Zielke, W.; Puri, A.

    1996-12-31

    In a paper presented at the 1994 IJPGC in Phoenix, AZ, TVA discussed the management of a fleet of fourteen generator rotors which had developed cracks in the axial cooling holes under the retaining rings and in the radial cooling holes in the rotor body. The management consisted of establishing the root cause of the crack initiation and propagation, initially establishing the flaw size distribution by eddy-current testing (ECT), performing reinspection at appropriate intervals, preheating the rotor prior to startup, lowering overspeed trip settings to 105%, confirming overspeed trip response by simulation rather than actual overspeed, and maintaining a spare generator rotor. Since the 1994 paper, one of the rotors developed an electrical liability, forcing its removal from service. While a replacement rotor which was on hand resolved the immediate crisis, the long term options were: (1) operate without a spare, (b) procure a new rotor with substantially improved mechanical properties and slightly improved electrical performance, or (c) refurbish the existing forging. After an exhaustive economic analysis, option C was identified as the most cost effective solution. This paper addresses the 43-inch rotor rehabilitation and rewind that has been successfully executed for less than half the cost of a new replacement rotor, without loss in operating flexibility.

  7. A Functional Description of CymA, an Electron Transfer Hub Supporting Anaerobic Respiratory Flexibility in Shewanella

    SciTech Connect

    Marritt, Sophie; Lowe, Thomas G.; Bye, Jordan; McMillan, Duncan G.; Shi, Liang; Fredrickson, Jim K.; Zachara, John M.; Richardson, David J.; Cheesman, Myles R.; Jeuken, Lars J.; Butt, Julea N.

    2012-06-15

    CymA is a member of the NapC/NirT family of quinol dehydrogenases. Essential for the anaerobic respiratory flexibility of shewanellae, CymA transfers electrons from menaquinol to various dedicated systems for the reduction of terminal electron acceptors including fumarate and insoluble minerals of Fe(III). Spectroscopic characterization of CymA from Shewanella oneidensis MR-1 identifies three low-spin His/His coordinated c-hemes and a single high-spin c-heme with His/H{sub 2}O coordination lying adjacent to the quinol binding site. At pH 7, binding of the menaquinol analogue, 2-heptyl-4-hydroxyquinoline-N-oxide, does not alter the mid-point potentials of the high-spin (ca. {approx}240 mV) and low-spin (ca. {approx}110, {approx}190 and {approx}265 mV) hemes that appear biased to transfer electrons from the high- to low-spin centres following quinol oxidation. CymA is reduced with menadiol (E{sub m} = {approx} 80 mV) in the presence of NADH (E{sub m} = {approx} 320 mV) and an NADH:menadione oxidoreductase, but not by menadiol alone. In cytoplasmic membranes reduction of CymA may then require the thermodynamic driving force from NADH, formate or H{sub 2} oxidation as the redox poise of the menaquinol pool in isolation is insufficient. Spectroscopic studies suggest that CymA requires a nonheme cofactor for quinol oxidation and that the reduced enzyme forms a 1:1 complex with its redox partner Fcc{sub 3}. The implications for CymA supporting the respiratory flexibility of shewanellae are discussed.

  8. A review of research in rotor loads

    NASA Technical Reports Server (NTRS)

    Bousman, William G.; Mantay, Wayne R.

    1988-01-01

    The research accomplished in the area of rotor loads over the last 13 to 14 years is reviewed. The start of the period examined is defined by the 1973 AGARD Milan conference and the 1974 hypothetical rotor comparison. The major emphasis of the review is research performed by the U.S. Army and NASA at their laboratories and/or by the industry under government contract. For the purpose of this review, two main topics are addressed: rotor loads prediction and means of rotor loads reduction. A limited discussion of research in gust loads and maneuver loads is included. In the area of rotor loads predictions, the major problem areas are reviewed including dynamic stall, wake induced flows, blade tip effects, fuselage induced effects, blade structural modeling, hub impedance, and solution methods. It is concluded that the capability to predict rotor loads has not significantly improved in this time frame. Future progress will require more extensive correlation of measurements and predictions to better understand the causes of the problems, and a recognition that differences between theory and measurement have multiple sources, yet must be treated as a whole. There is a need for high-quality data to support future research in rotor loads, but the resulting data base must not be seen as an end in itself. It will be useful only if it is integrated into firm long-range plans for the use of the data.

  9. Rotor dynamic behaviour of a high-speed oil-free motor compressor with a rigid coupling supported on four radial magnetic bearings

    NASA Technical Reports Server (NTRS)

    Schmied, J.; Pradetto, J. C.

    1994-01-01

    The combination of a high-speed motor, dry gas seals, and magnetic bearings realized in this unit facilitates the elimination of oil. The motor is coupled with a quill shaft to the compressor. This yields higher natural frequencies of the rotor than with the use of a diaphragm coupling and helps to maintain a sufficient margin of the maximum speed to the frequency of the second compressor bending mode. However, the controller of each bearing then has to take the combined modes of both machines into account. The requirements for the controller to ensure stability and sufficient damping of all critical speeds are designed and compared with the implemented controller. The calculated closed loop behavior was confirmed experimentally, except the stability of some higher modes due to slight frequency deviations of the rotor model to the actual rotor. The influence of a mechanical damper as a device to provide additional damping to high models is demonstrated theoretically. After all, it was not necessary to install the damper, since all modes cold be stabilized by the controller.

  10. Flapping response characteristics of hingeless rotor blades by a gereralized harmonic balance method

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ormiston, R. A.

    1975-01-01

    Linearized equations of motion for the flapping response of flexible rotor blades in forward flight are derived in terms of generalized coordinates. The equations are solved using a matrix form of the method of linear harmonic balance, yielding response derivatives for each harmonic of the blade deformations and of the hub forces and moments. Numerical results and approximate closed-form expressions for rotor derivatives are used to illustrate the relationships between rotor parameters, modeling assumptions, and rotor response characteristics. Finally, basic hingeless rotor response derivatives are presented in tabular and graphical form for a wide range of configuration parameters and operating conditions.

  11. Rotordynamic Modelling and Response Characteristics of an Active Magnetic Bearing Rotor System

    NASA Technical Reports Server (NTRS)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1996-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied. These results are presented and discussed.

  12. Dynamic modelling and response characteristics of a magnetic bearing rotor system with auxiliary bearings

    NASA Technical Reports Server (NTRS)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1995-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied.

  13. Tilt Rotor Aircraft Aeroacoustics

    NASA Technical Reports Server (NTRS)

    George, Albert R.

    1996-01-01

    A fleet of civil tilt rotor transports offers a means of reducing airport congestion and point-to-point travel time. The speed, range, and fuel economy of these aircraft, along with their efficient use of vertiport area, make them good candidates for short-to-medium range civil transport. However, to be successfully integrated into the civilian community, the tilt rotor must be perceived as a quiet, safe, and economical mode of transportation that does not harm the environment. In particular, noise impact has been identified as a possible barrier to the civil tilt rotor. Along with rotor conversion-mode flight, and blade-vortex interaction noise during descent, hover mode is a noise problem for tilt rotor operations. In the present research, tilt rotor hover aeroacoustics have been studied analytically, experimentally, and computationally. Various papers on the subject were published as noted in the list of publications. More recently, experimental measurements were made on a 1/12.5 scale model of the XV-15 in hover and analyses of this data and extrapolations to full scale were also carried out. A dimensional analysis showed that the model was a good aeroacoustic approximation to the full-scale aircraft, and scale factors were derived to extrapolate the model measurements to the full-scale XV-15. The experimental measurements included helium bubble flow visualization, silk tuft flow visualization, 2-component hot wire anemometry, 7-hole pressure probe measurements, vorticity measurements, and outdoor far field acoustic measurements. The hot wire measurements were used to estimate the turbulence statistics of the flow field into the rotors, such as length scales, velocity scales, dissipation, and turbulence intermittency. Several different configurations of the model were tested: (1) standard configurations (single isolated rotor, two rotors without the aircraft, standard tilt rotor configuration); (2) flow control devices (the 'plate', the 'diagonal fences'); (3

  14. Three-Dimensional Graphene Supported Bimetallic Nanocomposites with DNA Regulated-Flexibly Switchable Peroxidase-Like Activity.

    PubMed

    Yuan, Fang; Zhao, Huimin; Zang, Hongmei; Ye, Fei; Quan, Xie

    2016-04-20

    A synergistic bimetallic enzyme mimetic catalyst, three-dimensional (3D) graphene/Fe3O4-AuNPs, was successfully fabricated which exhibited flexibly switchable peroxidase-like activity. Compared to the traditional 2D graphene-based monometallic composite, the introduced 3D structure, which was induced by the addition of glutamic acid, and bimetallic anchoring approach dramatically improved the catalytic activity, as well as the catalysis velocity and its affinity for substrate. Herein, Fe3O4NPs acted as supporters for AuNPs, which contributed to enhance the efficiency of electron transfer. On the basis of the measurement of Mott-Schottky plots of graphene and metal anchored hybrids, the catalysis mechanism was elucidated by the decrease of Fermi level resulted from the chemical doping behavior. Notably, the catalytic activity was able to be regulated by the adsorption and desorption of single-stranded DNA molecules, which laid a basis for its utilization in the construction of single-stranded DNA-based colorimetric biosensors. This strategy not only simplified the operation process including labeling, modification, and imprinting, but also protected the intrinsic affinity between the target and biological probe. Accordingly, based on the peroxidase-like activity and its controllability, our prepared nanohybrids was successfully adopted in the visualized and label-free sensing detections of glucose, sequence-specific DNA, mismatched nucleotides, and oxytetracycline. PMID:27018504

  15. Breaking the Symmetry with Flexible Blades: Part II

    NASA Astrophysics Data System (ADS)

    Cosse, Julia; Kim, Daegyoum; Mueller, Lutz; Gharib, Morteza

    2013-11-01

    Vertical axis wind turbines use various methods of asymmetry to promote rotation. Historically two main methods were used; rigid blades with complex shapes or walls blocking the wind from passing through the upwind moving half of the rotor. This project has investigated the use of flexibility as a simpler alternative with great success. A model turbine with interchangeable blades was built and tested in a wind tunnel when configured with several blades of different materials. We found that rotation occurred only when the turbine was equipped with the flexible blades. Successful wind tunnel studies motivated field-testing of the turbine. This talk addresses the recent results regarding the flexible bladed wind turbine testing in the fickle wind environment of the Caltech field laboratory for wind energy (FLOWE). This research is supported by the Gordon and Betty Moore foundation.

  16. The Statement of Design and Application Questions for the Gyroscope with a Gas-dynamic Suspension of Ball Rotor in the Navigation Support Drilling System

    NASA Astrophysics Data System (ADS)

    Golikov, A. N.; Ignatovskaya, A. A.

    2016-01-01

    The general issues of creation the inertial navigation system are considered. Analysis of the possible implementation of the gyroscope with a gas-dynamic suspension of ball rotor for using it as a sensor in the information and measuring complex is provided. The permissible layout construction is proposed. The software system variants for the mathematical modelling of the main gas-dynamic bearing characteristics are considered. Mathematical modelling is essential to extend and optimize the design parameters of the developed gyroscopic construction. Some results of modelling, theoretical evaluation and preliminary experimental studies are summarized.

  17. A rotor technology assessment of the advancing blade concept

    NASA Technical Reports Server (NTRS)

    Pleasants, W. A.

    1983-01-01

    A rotor technology assessment of the Advancing Blade Concept (ABC) was conducted in support of a preliminary design study. The analytical methodology modifications and inputs, the correlation, and the results of the assessment are documented. The primary emphasis was on the high-speed forward flight performance of the rotor. The correlation data base included both the wind tunnel and the flight test results. An advanced ABC rotor design was examined; the suitability of the ABC for a particular mission was not considered. The objective of this technology assessment was to provide estimates of the performance potential of an advanced ABC rotor designed for high speed forward flight.

  18. Aerodynamic Interaction Effects of a Helicopter Rotor and Fuselage

    NASA Technical Reports Server (NTRS)

    Boyd, David D., Jr.

    1999-01-01

    A three year Cooperative Research Agreements made in each of the three years between the Subsonic Aerodynamics Branch of the NASA Langley Research Center and the Virginia Polytechnic Institute and State University (Va. Tech) has been completed. This document presents results from this three year endeavor. The goal of creating an efficient method to compute unsteady interactional effects between a helicopter rotor and fuselage has been accomplished. This paper also includes appendices to support these findings. The topics are: 1) Rotor-Fuselage Interactions Aerodynamics: An Unsteady Rotor Model; and 2) Rotor/Fuselage Unsteady Interactional Aerodynamics: A New Computational Model.

  19. Double-ended ceramic helical-rotor expander

    DOEpatents

    Mohr, P.B.; Myers, W.B.

    1995-02-28

    A ceramic helical rotor expander is disclosed using a double-ended or tandem herringbone type rotor arrangement with bearing and seal assemblies remote from the hot gas inlets and especially capable of operating at an inlet temperature of above 1,100 C. The rotors are solid or hollow and bonded to hollow metal shafts, and mounted in a composite or simple prismatic casing. The rotors, casing and shafts are constructed from low expansivity materials. In the preferred embodiment the rotors are constructed of silicon nitride and the shafts constructed of an molybdenum alloy, with the metal shafts being supported in bearings and secured to synchronizing gears. The rotors and casing may be provided with coolant channels therein, and are constructed to eliminate the problem of end leakages at inlet temperature and pressure, and the need for high temperature bearings and seals. 3 figs.

  20. Double-ended ceramic helical-rotor expander

    DOEpatents

    Mohr, Peter B.; Myers, Wendell B.

    1995-01-01

    A ceramic helical rotor expander using a double-ended or tandem herringbone type rotor arrangement with bearing and seal assemblies remote from the hot gas inlets and especially capable of operating at an inlet temperature of above 1100.degree. C. The rotors are solid or hollow and bonded to hollow metal shafts, and mounted in a composite or simple prismatic casing. The rotors, casing and shafts are constructed from low expansivity materials. In the preferred embodiment the rotors are constructed of silicon nitride and the shafts constructed of an molybdenum alloy, with the metal shafts being supported in bearings and secured to synchronizing gears. The rotors and casing may be provided with coolant channels therein, and are constructed to eliminate the problem of end leakages at inlet temperature and pressure, and the need for high temperature bearings and seals.

  1. Effect of AFT Rotor on the Inter-Rotor Flow of an Open Rotor Propulsion System

    NASA Technical Reports Server (NTRS)

    Slaboch, Paul E.; Stephens, David B.; Van Zante, Dale E.

    2016-01-01

    The effects of the aft rotor on the inter-rotor flow field of an open rotor propulsion rig were examined. A Particle Image Velocimetry (PIV) dataset that was acquired phase locked to the front rotor position has been phase averaged based on the relative phase angle between the forward and aft rotors. The aft rotor phase was determined by feature tracking in raw PIV images through an image processing algorithm. The effect of the aft rotor potential field on the inter-rotor flow were analyzed and shown to be in good agreement with Computational Fluid Dynamics (CFD) simulations. It was shown that the aft rotor had no substantial effect on the position of the forward rotor tip vortex but did have a small effect on the circulation strength of the vortex when the rotors were highly loaded.

  2. Open Rotor Aeroacoustic Modelling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  3. Open Rotor Aeroacoustic Modeling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  4. Tilt rotor hover aeroacoustics

    NASA Technical Reports Server (NTRS)

    Coffen, Charles David

    1992-01-01

    The methodology, results, and conclusions of a study of tilt rotor hover aeroacoustics and aerodynamics are presented. Flow visualization and hot wire velocity measurement were performed on a 1/12-scale model of the XV-15 Tilt Rotor Aircraft in hover. The wing and fuselage below the rotor cause a complex recirculating flow. Results indicate the physical dimensions and details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Discrete frequency harmonic thickness and the loading noise mechanism were predicted using WOPWOP for the standard metal blades and the Advanced Technology Blades. The recirculating flow created by the wing below the rotor is a primary sound mechanism for a hovering tilt rotor. The effects of dynamic blade response should be included for fountain flow conditions which produce impulsive blade loading. Broadband noise mechanisms were studied using Amiet's method with azimuthally varying turbulence characteristics derived from the measurements. The recirculating fountain flow with high turbulence levels in the recirculating zone is the dominant source of broadband noise for a hovering rotor. It is shown that tilt rotor hover aeroacoustic noise mechanisms are now understood. Noise predictions can be made based on reasonably accurate aerodynamic models developed here.

  5. Helicopter Rotor Antenna

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.; Cable, Vaughn P.

    2001-01-01

    This effort was directed toward demonstration of the efficacy of a concept for mitigation of the rotor blade modulation problem in helicopter communications. An antenna is envisioned with radiating elements mounted on the rotor and rotating with it. The rf signals are coupled to the radio stationary with respect to the airframe via a coupler of unique design. The coupler has an rf cavity within which a mode is established and the field distribution of this mode is sampled by probes rotating with the radiating elements. In this manner the radiated pattern is "despun" with respect to the rotor. Theoretical analysis has indicated that this arrangement will be less susceptible to rotor blade modulation that would be a conventional fixed mounted antenna. A small coupler operating at S-band was designed, fabricated, and mounted on a mockup representative of a helicopter body. A small electric motor was installed to rotate the rotor portion of the coupler along with a set of radiating elements during testing. This test article was be evaluated using the JPL Mesa Antenna Measurement Facility to establish its ability to mitigate rotor blade modulation. It was found that indeed such a coupler will result in a despun pattern and that such a pattern can be effective in mitigation of rotor blade modulation.

  6. Full-scale hingeless rotor performance and loads

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.

    1995-01-01

    A full-scale BO-105 hingeless rotor system was tested in the NASA Ames 40- by 80-Foot Wind Tunnel on the rotor test apparatus. Rotor performance, rotor loads, and aeroelastic stability as functions of both collective and cyclic pitch, tunnel velocity, and shaft angle were investigated. This test was performed in support of the Rotor Data Correlation Task under the U.S. Army/German Memorandum of Understanding on Cooperative Research in the Field of Helicopter Aeromechanics. The primary objective of this test program was to create a data base for full-scale hingeless rotor performance and structural blade loads. A secondary objective was to investigate the ability to match flight test conditions in the wind tunnel. This data base can be used for the experimental and analytical studies of hingeless rotor systems over large variations in rotor thrust and tunnel velocity. Rotor performance and structural loads for tunnel velocities from hover to 170 knots and thrust coefficients (C(sub T)/sigma) from 0.0 to 0.12 are presented in this report. Thrust sweeps at tunnel velocities of 10, 20, and 30 knots are also included in this data set.

  7. Open Rotor Spin Test

    NASA Video Gallery

    An open rotor, also known as a high-speed propeller, is tested in a wind tunnel. The propeller moves much more quickly than a standard propeller, and the blades of the propeller are shaped differen...

  8. Single Rotor Turbine

    DOEpatents

    Platts, David A.

    2004-10-26

    A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

  9. Reducing rotor weight

    SciTech Connect

    Cheney, M.C.

    1997-12-31

    The cost of energy for renewables has gained greater significance in recent years due to the drop in price in some competing energy sources, particularly natural gas. In pursuit of lower manufacturing costs for wind turbine systems, work was conducted to explore an innovative rotor designed to reduce weight and cost over conventional rotor systems. Trade-off studies were conducted to measure the influence of number of blades, stiffness, and manufacturing method on COE. The study showed that increasing number of blades at constant solidity significantly reduced rotor weight and that manufacturing the blades using pultrusion technology produced the lowest cost per pound. Under contracts with the National Renewable Energy Laboratory and the California Energy Commission, a 400 kW (33m diameter) turbine was designed employing this technology. The project included tests of an 80 kW (15.5m diameter) dynamically scaled rotor which demonstrated the viability of the design.

  10. Rotor internal friction instability

    NASA Technical Reports Server (NTRS)

    Bently, D. E.; Muszynska, A.

    1985-01-01

    Two aspects of internal friction affecting stability of rotating machines are discussed. The first role of internal friction consists of decreasing the level of effective damping during rotor subsynchronous and backward precessional vibrations caused by some other instability mechanisms. The second role of internal frication consists of creating rotor instability, i.e., causing self-excited subsynchronous vibrations. Experimental test results document both of these aspects.

  11. Different Executive Functions Support Different Kinds of Cognitive Flexibility: Evidence from 2-, 3-, and 4-Year-Olds

    ERIC Educational Resources Information Center

    Blakey, Emma; Visser, Ingmar; Carroll, Daniel J.

    2016-01-01

    Improvements in cognitive flexibility during the preschool years have been linked to developments in both working memory and inhibitory control, though the precise contribution of each remains unclear. In the current study, one hundred and twenty 2-, 3-, and 4-year-olds completed two rule-switching tasks. In one version, children switched rules in…

  12. Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Haihan; Zhai, Hua-Jin; Han, Gaoyi

    2016-08-01

    Ternary composite electrodes based on carbon nanotubes thin films (CNFs)-loaded graphene oxide (GO) supported poly(3,4-ethylenedioxythiophene)- carbon nanotubes (GO/PEDOT-CNTs) have been prepared via a facile one-step electrochemical codeposition method. The effect of long and short CNTs-incorporated composites (GO/PEDOT-lCNTs and GO/PEDOT-sCNTs) on the electrochemical behaviors of the electrodes is investigated and compared. Electrochemical measurements indicate that the incorporation of CNTs effectively improves the electrochemical performances of the GO/PEDOT electrodes. Long CNTs-incorporated GO/PEDOT-lCNTs electrodes have more superior electrochemical behaviors with respect to the short CNTs-incorporated GO/PEDOT-lCNTs electrodes, which can be attributed to the optimized composition and specific microstructures of the former. To verify the feasibility of the prepared composite electrodes for utilization as flexible supercapacitor, a solid-state supercapacitor using the CNFs-loaded GO/PEDOT-lCNTs electrodes is fabricated and tested. The device shows lightweight, ultrathin, and highly flexible features, which also has a high areal and volumetric specific capacitance (33.4 m F cm-2 at 10 mV s-1 and 2.7 F cm-3 at 0.042 A cm-3), superior rate capability, and excellent cycle stability (maintaining 97.5% for 5000 cycles). This highly flexible solid-state supercapacitor has great potential for applications in flexible electronics, roll-up display, and wearable devices.

  13. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose

    PubMed Central

    Sani, Negar; Wang, Xin; Granberg, Hjalmar; Andersson Ersman, Peter; Crispin, Xavier; Dyreklev, Peter; Engquist, Isak; Gustafsson, Göran; Berggren, Magnus

    2016-01-01

    Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future “internet of things” viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-μPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-μPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-μPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm2, a current rectification ratio up to 4 × 103 between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits. PMID:27357006

  14. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose.

    PubMed

    Sani, Negar; Wang, Xin; Granberg, Hjalmar; Andersson Ersman, Peter; Crispin, Xavier; Dyreklev, Peter; Engquist, Isak; Gustafsson, Göran; Berggren, Magnus

    2016-01-01

    Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future "internet of things" viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-μPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-μPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-μPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm(2), a current rectification ratio up to 4 × 10(3) between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits. PMID:27357006

  15. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose

    NASA Astrophysics Data System (ADS)

    Sani, Negar; Wang, Xin; Granberg, Hjalmar; Andersson Ersman, Peter; Crispin, Xavier; Dyreklev, Peter; Engquist, Isak; Gustafsson, Göran; Berggren, Magnus

    2016-06-01

    Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future “internet of things” viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-μPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-μPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-μPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm2, a current rectification ratio up to 4 × 103 between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits.

  16. Dynamic performance and control of squeeze mode MR fluid damper rotor system

    NASA Astrophysics Data System (ADS)

    Wang, J.; Meng, G.; Feng, N.; Hahn, E. J.

    2005-08-01

    By using magnetorheological (MR) fluid in place of lubricating oil in a traditional squeeze film damper (SFD), one can build a variable-damping SFD, thereby controlling the vibration of a rotor by controlling the magnetic field. Assuming a Bingham model, the Reynolds equation for an MR fluid squeeze film is developed and solved to provide expressions for the velocity, the pressure distribution and the damping force. Electromagnetic theory is used to calculate the magnetic pull force between the magnetic poles in the damper. The mechanical properties of the squeeze film and the unbalance response characteristics of an MR fluid SFD-rigid rotor system are analyzed theoretically. An MR fluid SFD is designed and manufactured, and the unbalance response properties and control method of a flexible rotor supported on the damper are studied experimentally. The study shows that the magnetic pull force can decrease both the first critical speed and the critical amplitude; the film damping force can decrease the amplitude at the undamped critical speeds, but increase the amplitude in a speed range between two undamped critical speeds. The damper may have the best control effect to minimize the vibration within the range of all working speed by using the on-off control method.

  17. Rotor/bearing system dynamic stiffness measurements

    NASA Technical Reports Server (NTRS)

    Muszynska, A.

    1985-01-01

    Sweep perturbation testing as used in Modal Analysis when applied to a rotating machine has to take into consideration the machine dynamic state of equilibrium at its operational rotative speed. This stands in contrasts to a static equilibrium of nonrotating structures. The rotational energy has a significant influence on rotor dynamic characteristics. The best perturbing input for rotating machines is a forward or reverse rotating, circular force applied directly to the shaft. Determination of Dynamic Stiffness Characteristics of the rotor bearing system by nonsynchronous perturbation of a symmetric rotating shaft supported in one relatively rigid and one oil lubricated bearing.

  18. Using a collision model to design safer wind turbine rotors for birds

    SciTech Connect

    Tucker, V.A.

    1996-11-01

    A mathematical model for collisions between birds and propeller-type turbine rotors identifies the variables that can be manipulated to reduce the probability that birds will collide with the rotor. This study defines a safety index--the clearance power density--that allows rotors of different sizes and designs to be compared in terms of the amount of wind energy converted to electrical energy per bird collision. The collision model accounts for variations in wind speed during the year and shows that for model rotors with simple, one-dimensional blades, the safety index increases in proportion to rotor diameter, and variable speed rotors have higher safety indexes than constant speed rotors. The safety index can also be increased by enlarging the region near the center of the rotor hub where the blades move slowly enough for birds to avoid them. Painting the blades to make them more visible might have this effect. Model rotors with practical designs can have safety indexes an order of magnitude higher than those for model rotors typical of the constant speeds rotors in common use today. This finding suggests that redesigned rotors could have collision rates with birds perhaps an order of magnitude lower than today`s rotors, with no reduction in the production of wind power. The empirical data that exist for collisions between raptors, such as hawks and eagles, and rotors are consistent with the model: the numbers of raptor carcasses found beneath large variable speed rotors, relative to the numbers found under small constant speed rotors, are in the proportions predicted by the collision model rather than in proportion to the areas swept by the rotor blades. However, uncontrolled variables associated with these data prevent a stronger claim of support for the model.

  19. Coupled rotor/airframe vibration analysis

    NASA Technical Reports Server (NTRS)

    Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.

    1982-01-01

    A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.

  20. The calculation of transonic rotor noise

    NASA Technical Reports Server (NTRS)

    Aggarwal, H. R.

    1984-01-01

    It is pointed out that an accurate prediction of the high-speed impulsive rotor noise is very difficult since the noise field depends on many complex factors. Schmitz and Yu (1981) have conducted a study with the aim to include local aerodynamic nonlinearities in a calculation regarding the acoustic shock. In the present investigation, the hover case of the model rotor studied by Schmitz and Yu was recomputed without certain implicit assumptions made in the earlier calculation. The obtained results show that the Schmitz-Yu computations are very much base-support area dependent. Attention is given to the quadrupole integral, and the pressure-time curves for the model rotor in hover.

  1. Growth and Characterization of Polyimide-Supported AlN Films for Flexible Surface Acoustic Wave Devices

    NASA Astrophysics Data System (ADS)

    Li, Qi; Liu, Hongyan; Li, Gen; Zeng, Fei; Pan, Feng; Luo, Jingting; Qian, Lirong

    2016-06-01

    Highly c-axis oriented aluminum nitride (AlN) films, which can be used in flexible surface acoustic wave (SAW) devices, were successfully deposited on polyimide (PI) substrates by direct current reactive magnetron sputtering without heating. The sputtering power, film thickness, and deposition pressure were optimized. The characterization studies show that at the optimized conditions, the deposited AlN films are composed of columnar grains, which penetrate through the entire film thickness (~2 μm) and exhibit an excellent (0002) texture with a full width at half maximum value of the rocking curve equal to 2.96°. The film surface is smooth with a root mean square value of roughness of 3.79 nm. SAW prototype devices with a center frequency of about 520 MHz and a phase velocity of Rayleigh wave of about 4160 m/s were successfully fabricated using the AlN/PI composite structure. The obtained results demonstrate that the highly c-axis oriented AlN films with a smooth surface and low stress can be produced on relatively rough, flexible substrates, and this composite structure can be possibly used in flexible SAW devices.

  2. Disc rotors with permanent magnets for brushless DC motor

    DOEpatents

    Hawsey, Robert A.; Bailey, J. Milton

    1992-01-01

    A brushless dc permanent magnet motor drives an autonomous underwater vehe. In one embodiment, the motor comprises four substantially flat stators in stacked relationship, with pairs of the stators axially spaced, each of the stators comprising a tape-wound stator coil, and first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and a drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs of rotors mounted on opposite sides of the stators and driven by counterrotating shafts.

  3. Wind turbine rotor

    SciTech Connect

    Baskin, J. M.; Miller, G. E.; Wiesner, W.

    1985-12-10

    A fixed pitch wind turbine rotor is teeter mounted onto a low speed input shaft which is connected to the input of a step-up transmission. The output of the transmission is connected to a rotary pole amplitude modulated induction machine which is operable as a generator at a plurality of discreet speeds of rotation and is also operable as a startup motor for the rotor. A switch responsive to the rotational speed of the wind turbine rotor switches the generator from one speed of operation to the other. The rotor hub and the inner body portions of two blades which extend radially outwardly in opposite directions from the hub, are constructed from steel. The outer end portions of the blade are constructed from a lighter material, such as wood, and are both thinner and narrower than the remainder of the rotor. The outer end section of each blade includes a main body portion and a trailing edge portion which is hinge-connected to the main body portion. Each blade includes a centrifugal force operated positioning means which normally holds the drag brake section in a retracted position, but operates in response to a predetermined magnitude of centrifugal force to move the drag brake section into its deployed position. Each blade has an airfoil cross section and each blade has a plus twist inner portion adjacent the hub changing to first a zero twist and then a minus twist as it extends radially outwardly from the hub.

  4. Rotor-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amiet, R. K.

    1983-01-01

    A theoretical and experimental study was conducted to develop a validated first principles analysis for predicting noise generated by helicopter main-rotor shed vortices interacting with the tail rotor. The generalized prediction procedure requires a knowledge of the incident vortex velocity field, rotor geometry, and rotor operating conditions. The analysis includes compressibility effects, chordwise and spanwise noncompactness, and treats oblique intersections with the blade planform. Assessment of the theory involved conducting a model rotor experiment which isolated the blade-vortex interaction noise from other rotor noise mechanisms. An isolated tip vortex, generated by an upstream semispan airfoil, was convected into the model tail rotor. Acoustic spectra, pressure signatures, and directivity were measured. Since assessment of the acoustic prediction required a knowledge of the vortex properties, blade-vortes intersection angle, intersection station, vortex stength, and vortex core radius were documented. Ingestion of the vortex by the rotor was experimentally observed to generate harmonic noise and impulsive waveforms.

  5. Calculation of unsteady fan rotor response caused by downstream flow distortions

    NASA Technical Reports Server (NTRS)

    Obrien, W. F.; Richardson, S. M.; Ng, W. F.

    1984-01-01

    The present model for fan rotor/support strut airfoil interaction uses a time-marching code for the rotor flow, coupled with a potential flow model for the stator-strut region. Study of the effect of strut design variables indicates that rotor flow disturbance is increased by the primary variables of larger strut thickness and circumferential spacing, while decreasing exponentially with increased rotor-strut separation. The time-marching code predicts local rotor pressure and flow perturbations in response to an unsteady downstream boundary condition.

  6. Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency

    SciTech Connect

    John G. Cowie; Edwin F. Brush, Jr.; Dale T. Peters; Stephen P. Midson; Darryl J. Van Son

    2003-05-01

    The objective of the study, Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency, was to support the Copper Development Association (CDA) in its effort to design, fabricate and demonstrate mold technologies designed to withstand the copper motor rotor die casting environment for an economically acceptable life. The anticipated result from the compiled data and tests were to: (1) identify materials suitable for die casting copper, (2) fabricate motor rotor molds and (3) supply copper rotor motors for testing in actual compressor systems. Compressor manufacturers can apply the results to assess the technical and economical viability of copper rotor motors.

  7. Technical support package: Flexible seal accommodates part mismatch. NASA Tech Briefs, Fall 1982, volume 7, no. 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A radial seal for the inside diameter of a part that develops an out-of-round condition and grows under pressure was developed. The primary seal consists of overlapping segments fabricated from metal or composite material that has been molded into a rubber jacket. The purpose of the segments is to provide the strength to withstand side loads (seal tested at 2,300 psi), and the rubber encapsulation provides the sealing surface and needed flexibility to conform to the variable eccentric shape.

  8. Helicopter tail rotor noise analyses

    NASA Technical Reports Server (NTRS)

    George, A. R.; Chou, S. T.

    1986-01-01

    A study was made of helicopter tail rotor noise, particularly that due to interactions with the main rotor tip vortices, and with the fuselage separation mean wake. The tail rotor blade-main rotor tip vortex interaction is modelled as an airfoil of infinite span cutting through a moving vortex. The vortex and the geometry information required by the analyses are obtained through a free wake geometry analysis of the main rotor. The acoustic pressure-time histories for the tail rotor blade-vortex interactions are then calculated. These acoustic results are compared to tail rotor loading and thickness noise, and are found to be significant to the overall tail rotor noise generation. Under most helicopter operating conditions, large acoustic pressure fluctuations can be generated due to a series of skewed main rotor tip vortices passing through the tail rotor disk. The noise generation depends strongly upon the helicopter operating conditions and the location of the tail rotor relative to the main rotor.

  9. Wave rotor demonstrator engine assessment

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.

    1996-01-01

    The objective of the program was to determine a wave rotor demonstrator engine concept using the Allison 250 series engine. The results of the NASA LERC wave rotor effort were used as a basis for the wave rotor design. A wave rotor topped gas turbine engine was identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle were used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine were addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an impressive improvement in shaft horsepower (+11.4%) and SFC (-22%). Off design part power engine performance for the wave rotor topped engine was similarly improved including that at engine idle conditions. Operation of the engine at off design was closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges identified in the development of a demonstrator engine are discussed. A preliminary design was made of the demonstrator engine including wave rotor to engine transition ducts. Program cost and schedule for a wave rotor demonstrator engine fabrication and test program were developed.

  10. Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries.

    PubMed

    Li, Wenwu; Gan, Lin; Guo, Kai; Ke, Linbo; Wei, Yaqing; Li, Huiqiao; Shen, Guozhen; Zhai, Tianyou

    2016-04-21

    We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g(-1) with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g(-1) capacity retention at an ultrahigh rate of 15 A g(-1). More interestingly, a flexible LIB full cell is assembled based on the as-synthesized integrated anode and the commercial LiFePO4 cathode, and shows striking lithium storage performances very close to the half cells: a large reversible capacity over 1000 mA h g(-1), a long cycle life of over 200 cycles without obvious decay, and an ultrahigh rate performance of ca. 300 mA h g(-1) even at 20 A g(-1). Considering the excellent lithium storage performances of coin-type half cells as well as flexible full cells, the as-prepared carbon cloth grafted well-aligned Zn3P2 nanowire arrays would be a promising integrated anode for flexible LIB full cell devices. PMID:27049639

  11. Numerical modelling of a high-speed rigid rotor in a single-aerostatic bearing using modified Euler equations of motion

    NASA Astrophysics Data System (ADS)

    Frew, D. A.; Scheffer, C.

    2008-01-01

    Accurate rotordynamic analysis is critical in the achievement of efficient rotary machine design, however the majority of models concern flexible shafts with concentrated supports. The modified Euler equations of motion are used in a numerical model to calculate the natural frequencies and whirl amplitudes of a rigid rotor supported by a single-aerostatic bearing. The bearing is modelled with a non-constant stiffness distribution along its length and a non-symmetric centre of gravity. The results are compared with experimental modal analysis (EMA).

  12. A strategy for advancing tilt-rotor technology

    NASA Technical Reports Server (NTRS)

    Morlok, Edward K.; Schoendorfer, David L.

    1985-01-01

    Tilt-rotor technology has many features which make it a very promising development in aviation which might have application to a wide variety of transportation and logistics situations. However, aside from military applications and rather specialized industrial applications, little is known regarding the potential of tilt-rotor for commercial transportation and hence it is difficult to plan a development program which would gain support and be likely to produce a stream of significant benefits. The purpose is to attempt to provide some of this information in a manner that would be useful for preparing a strategy for development of tilt-rotor aircraft technology. Specifically, the objectives were: to identify promising paths of development and deployment of tilt-rotor aircraft technology in the air transportation system considering both benefits and disbenefits, and to identify any particular groups that are likely to benefit significantly and propose plans for gaining their support of research and development of this technology. Potential advantages of the tilt-rotor technology in the context of air transportation as a door-to-door system were identified, and then promising paths of development of such tilt-rotor systems were analyzed. These then lead to recommendations for specific studies, information dissemination and development of awareness of the tilt-rotor among specific transport-related groups.

  13. Reference Model 2: %22Rev 0%22 Rotor Design.

    SciTech Connect

    Barone, Matthew F.; Berg, Jonathan Charles; Griffith, Daniel

    2011-12-01

    The preliminary design for a three-bladed cross-flow rotor for a reference marine hydrokinetic turbine is presented. A rotor performance design code is described, along with modifications to the code to allow prediction of blade support strut drag as well as interference between two counter-rotating rotors. The rotor is designed to operate in a reference site corresponding to a riverine environment. Basic rotor performance and rigid-body loads calculations are performed to size the rotor elements and select the operating speed range. The preliminary design is verified with a simple finite element model that provides estimates of bending stresses during operation. A concept for joining the blades and support struts is developed and analyzed with a separate finite element analysis. Rotor mass, production costs, and annual energy capture are estimated in order to allow calculations of system cost-of-energy. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd

  14. A full-scale wind tunnel investigation of a helicopter bearingless main rotor. [Ames 40 by 80 Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Mccloud, J. L., II

    1981-01-01

    A helicopter bearingless main rotor was tested. Areas of investigation included aeroelastic stability, aerodynamic performance, and rotor loads as a function of collective pitch setting, RPM, airspeed and shaft angle. The rotor/support system was tested with the wind tunnel balance dampers installed and, subsequently, removed. Modifications to the rotor hub were tested. These included a reduction in the rotor control system stiffness and increased flexbeam structural damping. The primary objective of the test was to determine aeroelastic stability of the fundamental flexbeam/blade chordwise bending mode. The rotor was stable for all conditions. Damping of the rotor chordwise bending mode increases with increased collective pitch angle at constant operating conditions. No significant decrease in rotor damping occured due to frequency coalescence between the blade chordwise fundamental bending mode and the support system.

  15. Broadband rotor noise analyses

    NASA Technical Reports Server (NTRS)

    George, A. R.; Chou, S. T.

    1984-01-01

    The various mechanisms which generate broadband noise on a range of rotors studied include load fluctuations due to inflow turbulence, due to turbulent boundary layers passing the blades' trailing edges, and due to tip vortex formation. Existing analyses are used and extensions to them are developed to make more accurate predictions of rotor noise spectra and to determine which mechanisms are important in which circumstances. Calculations based on the various prediction methods in existing experiments were compared. The present analyses are adequate to predict the spectra from a wide variety of experiments on fans, full scale and model scale helicopter rotors, wind turbines, and propellers to within about 5 to 10 dB. Better knowledge of the inflow turbulence improves the accuracy of the predictions. Results indicate that inflow turbulence noise depends strongly on ambient conditions and dominates at low frequencies. Trailing edge noise and tip vortex noise are important at higher frequencies if inflow turbulence is weak. Boundary layer trailing edge noise, important, for large sized rotors, increases slowly with angle of attack but not as rapidly as tip vortex noise.

  16. Rotor transient analysis

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Choy, K. C.; Gunter, E. J.

    1980-01-01

    Undamped modes approximate dynamic behavior of rotors and bearings. Application of modal analysis to uncouple equations of motion simplifies stability, steady-state unbalance response, and transient response analysis of system; nonlinear stability is predicted from calculated frequency spectra. Analysis provides designers with complete information without involving large-scale computational costs. Programs are written in FORTRAN IV for use on CDC 6600 computer.

  17. Broadband rotor noise analyses

    NASA Astrophysics Data System (ADS)

    George, A. R.; Chou, S. T.

    1984-04-01

    The various mechanisms which generate broadband noise on a range of rotors studied include load fluctuations due to inflow turbulence, due to turbulent boundary layers passing the blades' trailing edges, and due to tip vortex formation. Existing analyses are used and extensions to them are developed to make more accurate predictions of rotor noise spectra and to determine which mechanisms are important in which circumstances. Calculations based on the various prediction methods in existing experiments were compared. The present analyses are adequate to predict the spectra from a wide variety of experiments on fans, full scale and model scale helicopter rotors, wind turbines, and propellers to within about 5 to 10 dB. Better knowledge of the inflow turbulence improves the accuracy of the predictions. Results indicate that inflow turbulence noise depends strongly on ambient conditions and dominates at low frequencies. Trailing edge noise and tip vortex noise are important at higher frequencies if inflow turbulence is weak. Boundary layer trailing edge noise, important, for large sized rotors, increases slowly with angle of attack but not as rapidly as tip vortex noise.

  18. Finite element analysis of two disk rotor system

    NASA Astrophysics Data System (ADS)

    Dixit, Harsh Kumar

    2016-05-01

    A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.

  19. XV-15 tilt rotor

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This photo shows the unique XV-15 Tiltrotor aircraft in vertical flight at the NASA Dryden Flight Research Center. The XV-15s, manufactured by Bell, were involved in limited research at NASA/Dryden in 1980 and 1981. The development of the XV-15 Tiltrotor research aircraft was initiated in 1973 with joint Army/NASA funding as a 'proof of concept', or 'technology demonstrator' program, with two aircraft being built by Bell Helicopter Textron (BHT) in 1977. NASA Ames Research Center, where most of the NASA research is conducted, continues to be in charge of the joint NASA/Army/Bell program. The aircraft are powered by twin Lycoming T-53 turboshaft engines that are connected by a cross-shaft and drive three-bladed, 25 ft diameter metal rotors (the size extensively tested in a wind tunnel). The engines and main transmissions are located in wingtip nacelles to minimize the operational loads on the cross-shaft system and, with the rotors, tilt as a single unit. For takeoff, the proprotors and their engines are used in the straight-up position where the thrust is directed downward. The XV-15 then climbs vertically into the air like a helicopter. In this VTOL mode, the vehicle can lift off and hover for approximately one hour. Once off the ground, the XV-15 has the ability to fly in one of two different modes. It can fly as a helicopter, in the partially converted airplane mode. The XV-15 can also then convert from the helicopter mode to the airplane mode. This is accomplished by continuous rotation of the proprotors from the helicopter rotor position to the conventional airplane propeller position. During the ten to fifteen second conversion period, the aircraft speed increases and lift is transferred from the rotors to the wing. To land, the proprotors are rotated up to the helicopter rotor position and flown as a helicopter to a vertical landing.

  20. Structural analysis of wind turbine rotors for NSF-NASA Mod-0 wind power system

    NASA Technical Reports Server (NTRS)

    Spera, D. A.

    1976-01-01

    Preliminary estimates are presented of vibratory loads and stresses in hingeless and teetering rotors for the proposed NSF-NASA Mod-0 wind power system. Preliminary blade design utilizes a tapered tubular aluminum spar which supports nonstructural aluminum ribs and skin and is joined to the rotor hub by a steel shank tube. Stresses in the shank of the blade are calculated for static, rated, and overload operating conditions. Blade vibrations were limited to the fundamental flapping modes, which were elastic cantilever bending for hingeless rotor blades and rigid-body rotation for teetering rotor blades. The MOSTAB-C computer code was used to calculate aerodynamic and mechanical loads. The teetering rotor has substantial advantages over the hingeless rotor with respect to shank stresses, fatigue life, and tower loading. The hingeless rotor analyzed does not appear to be structurally stable during overloads.

  1. Experimental verification of Jeffcott rotor model with preloaded snubber ring

    NASA Astrophysics Data System (ADS)

    Karpenko, E. V.; Wiercigroch, M.; Pavlovskaia, E. E.; Neilson, R. D.

    2006-12-01

    This paper describes the experimental verification of a nonlinear Jeffcott rotor model with a preloaded snubber ring. The nonlinearity, in the form of a discontinuous stiffness, is caused by the radial clearance between rotor and the snubber ring. The rotor is placed eccentrically within the snubber ring and the eccentricity can be varied. For purpose of clarity the mathematical model of the rotor system with the preloaded snubber ring developed in Pavlovskaia et al. [Nonlinear dynamics of a Jeffcott rotor with a preloaded snubber ring, Journal of Sound and Vibration 276 (2004) 361-379] is presented briefly. Theoretical results obtained from analytical approximate solutions and numerical simulations of the model are verified by the experimental study. A detailed description of the experimental rig and the data acquisition system developed are presented, along with the experimental procedures used to investigate the dynamical responses of the system. The results concentrate on the dynamic responses caused by interactions between the whirling rotor and the massless snubber ring, which has much higher support stiffness than the rotor. Bifurcation diagrams, Poincaré maps and phase plane diagrams are used to compare the results obtained from the experiment and the theory. Good correlation between the experimental and theoretical results is found.

  2. Supporting Teaching and Learning Via the Web: Transforming Hard-Copy Linear Mindsets into Web-Flexible Creative Thinking.

    ERIC Educational Resources Information Center

    Borkowski, Ellen Yu; Henry, David; Larsen, Lida L.; Mateik, Deborah

    This paper describes a four-tiered approach to supporting University of Maryland faculty in the development of instructional materials to be delivered via the World Wide Web. The approach leverages existing equipment and staff by the design of Web posting, editing, and management tools for use on the campus-wide information server, "inforM" (a…

  3. Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Wenwu; Gan, Lin; Guo, Kai; Ke, Linbo; Wei, Yaqing; Li, Huiqiao; Shen, Guozhen; Zhai, Tianyou

    2016-04-01

    We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g-1 with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g-1 capacity retention at an ultrahigh rate of 15 A g-1. More interestingly, a flexible LIB full cell is assembled based on the as-synthesized integrated anode and the commercial LiFePO4 cathode, and shows striking lithium storage performances very close to the half cells: a large reversible capacity over 1000 mA h g-1, a long cycle life of over 200 cycles without obvious decay, and an ultrahigh rate performance of ca. 300 mA h g-1 even at 20 A g-1. Considering the excellent lithium storage performances of coin-type half cells as well as flexible full cells, the as-prepared carbon cloth grafted well-aligned Zn3P2 nanowire arrays would be a promising integrated anode for flexible LIB full cell devices.We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g-1 with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g-1 capacity retention at an ultrahigh rate of 15 A g-1. More interestingly, a flexible LIB full cell is assembled based on the as

  4. Asymmetric supercapacitor based on flexible TiC/CNF felt supported interwoven nickel-cobalt binary hydroxide nanosheets

    NASA Astrophysics Data System (ADS)

    Zhou, Gangyong; Xiong, Tianrou; He, Shuijian; Li, Yonghong; Zhu, Yongmei; Hou, Haoqing

    2016-06-01

    Nanostructured nickel-cobalt binary hydroxide (NiCosbnd BH) is widely investigated as supercapacitor electrode material. However, the aggregation and poor electrical conductivity of NiCosbnd BH limit its practical application as a supercapacitor. In this work, a flexible free-standing hierarchical porous composite composed of NiCosbnd BH nanosheets and titanium carbide-carbon nanofiber (NiCosbnd BH@TiC/CNF) is fabricated through electrospinning and microwave assisted method. The as-prepared composites exhibit desirable electrochemical performances, including high specific capacitance, cycling stability, and rate capability. In particular, the NiCosbnd BH41@TiC/CNF composite electrode exhibits a maximum specific capacitance of 2224 F g-1 at the current density of 0.5 A g-1 and excellent cyclic stability of 91% capacity retention after 3000 cycles at 5.0 A g-1. To expand its practical application, an asymmetric supercapacitor (ASC) is fabricated using the NiCosbnd BH41@TiC/CNF composite as the positive electrode and active carbon as the negative electrode. The ASC exhibits a prominent energy density of 55.93 Wh kg-1 and a high power density of 18,300 W kg-1 at 5.0 A g-1. The superior electrochemical property is attributed to the uniform dispersion of NiCosbnd BH nanosheets on the TiC/CNF felt matrix. The TiC/CNF felt with uniformed TiC nanoparticles makes the fiber surface more suitable for growing NiCosbnd BH nanosheets and simultaneously enhances the conductivity of electrode.

  5. V/STOL tilt rotor study. Volume 5: A mathematical model for real time flight simulation of the Bell model 301 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Harendra, P. B.; Joglekar, M. J.; Gaffey, T. M.; Marr, R. L.

    1973-01-01

    A mathematical model for real-time flight simulation of a tilt rotor research aircraft was developed. The mathematical model was used to support the aircraft design, pilot training, and proof-of-concept aspects of the development program. The structure of the mathematical model is indicated by a block diagram. The mathematical model differs from that for a conventional fixed wing aircraft principally in the added requirement to represent the dynamics and aerodynamics of the rotors, the interaction of the rotor wake with the airframe, and the rotor control and drive systems. The constraints imposed on the mathematical model are defined.

  6. ROTOR END CAP

    DOEpatents

    Rushing, F.C.

    1959-02-01

    An improved end cap is described for the cylindrical rotor or bowl of a high-speed centrifugal separator adapted to permit free and efficient continuous counter current flow of gas therethrough for isotope separation. The end cap design provides for securely mounting the same to the hollow central shaft and external wall of the centrifuge. Passageways are incorporated and so arranged as to provide for continuous counter current flow of the light and heavy portions of the gas fed to the centrifuge.

  7. Rotor blade dynamic design

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1989-01-01

    The rotor dynamic design considerations are essentially limitations on the vibratory response of the blades which in turn limit the dynamic excitation of the fuselage by forces and moments transmitted to the hub. Quantities which are associated with the blade response and which are subject to design constraints are discussed. These include blade frequencies, vertical and inplane hub shear, rolling and pitching moments, and aeroelastic stability margin.

  8. Design and Testing of the Primary and Secondary Oxygen Regulators for the Flexible Portable Life Support System (FlexPLSS)

    NASA Technical Reports Server (NTRS)

    Campbell, Colin; Hepworth, Mark

    2010-01-01

    The next generation space suit requires additional capabilities for controlling and adjusting internal pressure compared to that of historical designs. Although the general configuration of the oxygen systems for the next generation space suit is similar or derived from the Apollo and Shuttle Extravehicular Mobility Unit (EMU) with Primary closed loop life support operation and Secondary sourced open loop life support operations, nearly everything else has evolved with new available technologies. For the case of the primary and secondary regulators, the design has gone away from purely mechanical systems actuated with pull-cords or "bicycle cables" to electro-mechanical hybrids that provide the best of both worlds with respect to power draw, reliability, and versatility. This paper discusses the development and testing of a Secondary Oxygen Regulator bench-top prototype along with comparisons of operation with the various prototypes for the Primary Oxygen Regulator.

  9. Polydopamine-coated open cell polyurethane foams as an inexpensive, flexible yet robust catalyst support: a proof of concept.

    PubMed

    Pardieu, Elodie; Chau, Nguyet Trang Thanh; Dintzer, Thierry; Romero, Thierry; Favier, Damien; Roland, Thierry; Edouard, David; Jierry, Loïc; Ritleng, Vincent

    2016-03-17

    Commercially available polyurethane open cell foams are readily coated with mussel-inspired polydopamine. The polydopamine film allows robust immobilisation of TiO2 nanoparticles at the surface of the three-dimensional material. The resulting catalyst is efficient for the photo-degradation of an azo dye, reusable and highly resistant to mechanical stress. A novel type of robust structured catalytic support, easily accessible via an inexpensive and green process, is thus described. PMID:26952989

  10. Polygonal shaft hole rotor

    DOEpatents

    Hussey, John H.; Rose, John Scott; Meystrik, Jeffrey J.; White, Kent Lee

    2001-01-23

    A laminated rotor for an induction motor has a plurality of ferro-magnetic laminations mounted axially on a rotor shaft. Each of the plurality of laminations has a central aperture in the shape of a polygon with sides of equal length. The laminations are alternatingly rotated 180.degree. from one another so that the straight sides of the polygon shaped apertures are misaligned. As a circular rotor shaft is press fit into a stack of laminations, the point of maximum interference occurs at the midpoints of the sides of the polygon (i.e., at the smallest radius of the central apertures of the laminations). Because the laminates are alternatingly rotated, the laminate material at the points of maximum interference yields relatively easily into the vertices (i.e., the greatest radius of the central aperture) of the polygonal central aperture of the next lamination as the shaft is inserted into the stack of laminations. Because of this yielding process, the amount of force required to insert the shaft is reduced, and a tighter fit is achieved.

  11. Variable camber rotor study

    NASA Technical Reports Server (NTRS)

    Dadone, L.; Cowan, J.; Mchugh, F. J.

    1982-01-01

    Deployment of variable camber concepts on helicopter rotors was analytically assessed. It was determined that variable camber extended the operating range of helicopters provided that the correct compromise can be obtained between performance/loads gains and mechanical complexity. A number of variable camber concepts were reviewed on a two dimensional basis to determine the usefulness of leading edge, trailing edge and overall camber variation schemes. The most powerful method to vary camber was through the trailing edge flaps undergoing relatively small motions (-5 deg to +15 deg). The aerodynamic characteristics of the NASA/Ames A-1 airfoil with 35% and 50% plain trailing edge flaps were determined by means of current subcritical and transonic airfoil design methods and used by rotor performance and loads analysis codes. The most promising variable camber schedule reviewed was a configuration with a 35% plain flap deployment in an on/off mode near the tip of a blade. Preliminary results show approximately 11% reduction in power is possible at 192 knots and a rotor thrust coefficient of 0.09. The potential demonstrated indicates a significant potential for expanding the operating envelope of the helicopter. Further investigation into improving the power saving and defining the improvement in the operational envelope of the helicopter is recommended.

  12. Single rotor turbine engine

    DOEpatents

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  13. 3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing.

    PubMed

    Zhao, Anshun; Zhang, Zhaowei; Zhang, Penghui; Xiao, Shuang; Wang, Lu; Dong, Yue; Yuan, Hao; Li, Peiwu; Sun, Yimin; Jiang, Xueliang; Xiao, Fei

    2016-09-28

    Recent advances in on-body wearable medical apparatus and implantable devices drive the development of light-weight and bendable electrochemical sensors, which require the design of high-performance flexible electrode system. In this work, we reported a new type of freestanding and flexible electrode based on graphene paper (GP) supported 3D monolithic nanoporous gold (NPG) scaffold (NPG/GP), which was further modified by a layer of highly dense, well dispersed and ultrafine binary PtCo alloy nanoparticles via a facile and effective ultrasonic electrodeposition method. Our results demonstrated that benefited from the synergistic effect of the electrocatalytically active PtCo alloy nanoparticles, the large-active-area and highly conductive 3D NPG scaffold, and the mechanically strong and stable GP electrode substrate, the resultant PtCo alloy nanoparticles modified NPG/GP (PtCo/NPG/GP) exhibited high mechanical strength and good electrochemical sensing performances toward nonenzymatic detection of glucose, including a wide linear range from 35 μM- to 30 mM, a low detection limit of 5 μM (S/N = 3) and a high sensitivity of 7.84 μA cm(-2) mM(-1) as well as good selectivity, long-term stability and reproducibility. The practical application of the proposed PtCo/NPG/GP has also been demonstrated in in vitro detection of blood glucose in real clinic samples. PMID:27619087

  14. Homopolar motor with dual rotors

    DOEpatents

    Hsu, John S.

    1998-01-01

    A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.

  15. Homopolar motor with dual rotors

    DOEpatents

    Hsu, J.S.

    1998-12-01

    A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

  16. Assessment of Scaled Rotors for Wind Tunnel Experiments.

    SciTech Connect

    Maniaci, David Charles; Kelley, Christopher Lee; Chiu, Phillip

    2015-07-01

    Rotor design and analysis work has been performed to support the conceptualization of a wind tunnel test focused on studying wake dynamics. This wind tunnel test would serve as part of a larger model validation campaign that is part of the Department of Energy Wind and Water Power Program’s Atmosphere to electrons (A2e) initiative. The first phase of this effort was directed towards designing a functionally scaled rotor based on the same design process and target full-scale turbine used for new rotors for the DOE/SNL SWiFT site. The second phase focused on assessing the capabilities of an already available rotor, the G1, designed and built by researchers at the Technical University of München.

  17. Extension-twist coupling optimization in composite rotor blades

    NASA Astrophysics Data System (ADS)

    Ozbay, Serkan

    2005-07-01

    For optimal rotor performance in a tiltrotor aircraft the difference in the inflow and the rotor speeds between the hover and cruise flight modes suggests different blade twist and chord distributions. The blade twist rates in current tiltrotor applications are defined based upon a compromise between the figure of merit in hover and propeller efficiency in airplane mode. However, when each operation mode is considered separately the optimum blade distributions are found to be considerably different. Passive blade twist control, which uses the inherent variation in centrifugal forces on a rotor blade to achieve optimum blade twist distributions in each flight mode through the use of extension-twist coupled composite rotor blades, has been considered for performance improvement of tiltrotor aircraft over the last two decades. The challenge for this concept is to achieve the desired twisting deformations in the rotor blade without altering the aeroelastic characteristics of the vehicle. A concept referred to as the sliding mass concept is proposed in this work in order to increase the twist change with rotor speed for a closed-cell composite rotor blade cross-section to practical levels for performance improvement in a tiltrotor aircraft. The concept is based on load path changes for the centrifugal forces by utilizing non-structural masses readily available on a conventional blade, such as the leading edge balancing mass. A multilevel optimization technique based on the simulated annealing method is applied to improve the performance of the XV15 tiltrotor aircraft. A cross-sectional analysis tool, VABS together with a multibody dynamics code, DYMORE are integrated into the optimization process. The optimization results revealed significant improvements in the power requirement in hover while preserving cruise efficiency. It is also shown that about 21% of the improvement is provided through the sliding mass concept pointing to the additional flexibility the concept

  18. Structural response of a rotating bladed disk to rotor whirl

    NASA Technical Reports Server (NTRS)

    Crawley, E. F.

    1985-01-01

    A set of high speed rotating whirl experiments were performed in the vacuum of the MIT Blowdown Compressor Facility on the MIT Aeroelastic Rotor, which is structurally typical of a modern high bypass ratio turbofan stage. These tests identified the natural frequencies of whirl of the rotor system by forcing its response using an electromagnetic shaker whirl excitation system. The excitation was slowly swept in frequency at constant amplitude for several constant rotor speeds in both a forward and backward whirl direction. The natural frequencies of whirl determined by these experiments were compared to those predicted by an analytical 6 DOF model of a flexible blade-rigid disk-flexible shaft rotor. The model is also presented in terms of nondimensional parameters in order to assess the importance of the interation between the bladed disk dynamics and the shaft-disk dynamics. The correlation between the experimental and predicted natural frequencies is reasonable, given the uncertainty involved in determining the stiffness parameters of the system.

  19. Dynamic Analysis of Geared Rotors by Finite Elements

    NASA Technical Reports Server (NTRS)

    Kahraman, A.; Ozguven, H. Nevzat; Houser, D. R.; Zakrajsek, J. J.

    1992-01-01

    A finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of on shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis geared rotors by calculating the critical speeds and determining the response of any point on the shafts to mass unbalances, geometric eccentricities of gears, and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.

  20. Dynamic analysis of geared rotors by finite elements

    NASA Technical Reports Server (NTRS)

    Kahraman, A.; Ozguven, H. N.; Houser, D. R.; Zakrajsek, J.

    1989-01-01

    The finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis of geared rotors by calculating the critical speeds and determining the response of any point on the shaft to mass unbalances, geometric eccentricities of gears and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.

  1. Dynamic analysis of geared rotors by finite elements

    NASA Technical Reports Server (NTRS)

    Kahraman, Ahmet; Ozguven, H. Nevzat; Houser, Donald R.; Zakrajsek, James J.

    1990-01-01

    A finite-element model of a geared rotor system on flexible bearings was developed. The model includes the rotary inertia of shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis of geared rotors by calculating the critical speeds and determining the response of any point on the shaft to mass unbalances, geometric eccentricities of gears and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.

  2. Flexible Scheduling: Making the Transition

    ERIC Educational Resources Information Center

    Creighton, Peggy Milam

    2008-01-01

    Citing literature that supports the benefits of flexible scheduling on student achievement, the author exhorts readers to campaign for flexible scheduling in their library media centers. She suggests tips drawn from the work of Graziano (2002), McGregor (2006) and Stripling (1997) for making a smooth transition from fixed to flexible scheduling:…

  3. Molecular Rotors as Switches

    PubMed Central

    Xue, Mei; Wang, Kang L.

    2012-01-01

    The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene) monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V) revealed a temperature-dependent negative differential resistance (NDR) associated with the device. The analysis of the device I–V characteristics suggests the source of the

  4. Open Rotor Test Status

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.

    2010-01-01

    Testing of low noise, counter-rotating open rotor propulsion concepts has been ongoing at Glenn Research Center in collaboration with General Electric Company. The presentation is an overview of the testing that has been completed to date and previews the upcoming test entries. The NASA Environmentally Responsible Aviation Project Diagnostics entry is the most recent to finish. That test entry included acoustic phased array, pressure sensitive paint, particle image velocimetry, pylon installed measurements and acoustic shielding measurements. A preview of the data to be acquired in the 8x6 high-speed wind tunnel is also included.

  5. An overview of the NREL/SNL flexible turbine characterization project

    SciTech Connect

    Bir, Gunjit; Kelley, Neil; McKenna, Ed; Osgood, Richard; Sutherland, Herbert; Wright, Alan

    1998-09-01

    There has been a desire to increase the generating capacity of the latest generation of wind turbine designs. In order to achieve these larger capacities, the dimensions of the turbine rotors are also increasing significantly. These larger structures are often much more flexible than their smaller predecessors. This higher degree of structural flexibility has placed increased demands on available analytical models to accurately predict the dynamic response to turbulence excitation, In this paper we present an overview and our progress to date of a joint effort of the National Renewable Energy Laboratory (NREL) and the Sandia National Laboratory (SNL). In this paper we present an overview and status of an ongoing program to characterize and analytically model the dynamics associated with the operation of one of the most flexible turbine designs currently available, the Cannon Wind Eagle 300 (CWE-300). The effort includes extensive measurements involving a detailed inventory of the turbine's physical properties, establishing the turbine component and fill-system vibrational modes, and documenting the dynamic deformations of the rotor system and support tower while in operation.

  6. Flexible Multi-Shock Shield

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L. (Inventor); Crews, Jeanne L. (Inventor)

    2005-01-01

    Flexible multi-shock shield system and method are disclosed for defending against hypervelocity particles. The flexible multi-shock shield system and method may include a number of flexible bumpers or shield layers spaced apart by one or more resilient support layers, all of which may be encapsulated in a protective cover. Fasteners associated with the protective cover allow the flexible multi-shock shield to be secured to the surface of a structure to be protected.

  7. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  8. Development of Mach scale rotors with composite tailored couplings for vibration reduction

    NASA Astrophysics Data System (ADS)

    Bao, Jinsong

    The use of composite tailored couplings in rotor blades to reduce vibratory hub loads was studied through design, structural and aeroelastic analysis, fabrication, and wind tunnel test of Mach scale articulated composite rotors with tailored flap-bending/torsion couplings. The rotor design was nominally based on the UH-60 BLACK HAWK rotor. The 6-foot diameter blades have a SC1095 profile and feature a linear twist of -12 deg. The analysis of composite rotor was carried out using a mixed cross-section structural model, and UMARC. Five sets of composite rotor were fabricated, including a baseline rotor without coupling, rotors with spanwise uniform positive coupling and negative coupling, and rotors with spanwise dual-segmented coupling (FBT-P/N) and triple-segmented coupling. The blade composite D-spar is the primary structural element supporting the blade loads and providing the desired elastic couplings. Non-rotating tests were performed to examine blade structural properties. The measurements showed good correlation with predictions, and good repeatability for the four blades of each rotor set. All rotors were tested at a rotor speed of 2300 rpm (tip Mach number 0.65) at different advance ratios and thrust levels, in the Glenn L. Martin Wind Tunnel at the University of Maryland. The test results showed that flap-bending/torsion couplings have a significant effect on the rotor vibratory hub loads. All coupled rotors reduced the 4/rev vertical force for advance ratios up to 0.3, with reductions ranging from 1 to 34%. The mixed coupling rotor FBT-P/N reduced overall 4/rev hub loads at advance ratios of 0.1, 0.2 and 0.3. At a rotor speed of 2300 rpm and an advance ratio of 0.3, the FBT-P/N rotor achieved 15% reduction for 4/rev vertical force, 3% for 4/rev in-plane force and 14% for 4/rev head moment. The reductions in the 4/rev hub loads are related to the experimentally observed reductions in 3/rev and 5/rev blade flap bending moments. Through the present research

  9. Inflight Rotor Stability Monitor. [for Sikorsky aircraft

    NASA Technical Reports Server (NTRS)

    Kuczynski, W. A.

    1976-01-01

    An inflight rotor stability monitor developed at Sikorsky Aircraft to support stability testing of new rotorcraft is described. The monitor has as its core a damping estimation algorithm which embodies spectral analysis techniques. The interactive system is activated and controlled from a cathode ray tube (CRT) and operates on-line in a flight test telemetry environment. Accurate estimates of the level of damping of critical system modes are generated within one minute of the completion of a prescribed test maneuver. The stability monitor was used successfully to support various Sikorsky research and development flight programs including the UTTAS, CH-53E, S-67 Fan-in-Fin, and ABC.

  10. Numerical Investigation of a Rotor System with Disc-Housing Impact

    NASA Astrophysics Data System (ADS)

    ZAPOMĚL, J.; FOX, C. H. J.; MALENOVSKÝ, E.

    2001-05-01

    This paper presents a computer modelling investigation of the dynamic behaviour of rotors supported by hydrodynamic bearings. The rotor is discretized into finite elements. The fluid-film bearings are represented by non-linear forces that are linearized in the neighbourhood of the static equilibrium position. Particular emphasis is given to the modelling of impacts between rotor discs and their casings, for which two approaches are used, namely (i) Newton's impact theory and (ii) direct determination of contact forces using a contact stiffness. In the first approach, the discs are assumed to be connected to the shaft by spring elements. The discs and the stationary part are considered to be absolutely rigid. Velocity components of the discs after the impact are calculated using the law of conservation of the momentum and moment of momentum. Dissipation of mechanical energy during impact is taken into account through the coefficient of restitution. In the second approach local flexibility and damping in the contact area are assumed. Local deformation produces impact forces and moments acting on the shaft at the disc location. In both cases, Coulomb friction is assumed to act in the contact area. A modified form of the Newmark method was applied to solve the resulting non-linear equations of motion. Both approaches make it possible to characterize the steady state forced vibration behaviour (periodic, quasi-periodic, chaotic). In addition, the second approach provides further information on the likely magnitude and time history of the impact forces, duration of impacts, etc. The two approaches are illustrated by examples involving imbalance excitation and kinematic excitation of the baseplate.

  11. Turbomachinery rotor forces

    NASA Technical Reports Server (NTRS)

    Arndt, Norbert

    1988-01-01

    The fluid-induced forces, both steady and unsteady, acting upon an impeller of a centrifugal pump, and impeller blade-diffuser vane interaction in centrifugal pumps with vaned radial diffusers were evaluated experimentally and theoretically. Knowledge of the steady and unsteady forces, and the associated rotordynamic coefficients are required to effectively model the rotor dynamics of the High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). These forces and rotordynamic coefficients were investigated using different impellers in combination with volutes and vaned diffusers, and axial inducers. These rotor forces are global. Local forces and pressures are also important in impeller-diffuser interaction, for they may cause cavitation damage and even vane failures. Thus, in a separate investigation, impeller wake, and impeller blade and diffuser vane pressure measurements were made. The nature of the rotordynamic forces is discussed, the experimental facility is described, and the measurements of unsteady forces and pressure are reported together with a brief and incomplete attempt to calculate these flows.

  12. Blade lock for a rotor disk and rotor blade assembly

    NASA Technical Reports Server (NTRS)

    Moore, Jerry H. (Inventor)

    1992-01-01

    A rotor disk 18 and rotor blade 26 assembly is disclosed having a blade lock 66 which retains the rotor blade against axial movement in an axially extending blade retention slot 58. Various construction details are developed which shield the dead rim region D.sub.d and shift at least a portion of the loads associated with the locking device from the dead rim. In one detailed embodiment, a projection 68 from the live rim D.sub.1 of the disk 18 is adapted by slots 86 to receive blade locks 66.

  13. Integrated technology rotor/flight research rotor hub concept definition

    NASA Technical Reports Server (NTRS)

    Dixon, P. G. C.

    1983-01-01

    Two variations of the helicopter bearingless main rotor hub concept are proposed as bases for further development in the preliminary design phase of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) program. This selection was the result of an evaluation of three bearingless hub concepts and two articulated hub concepts with elastomeric bearings. The characteristics of each concept were evaluated by means of simplified methodology. These characteristics included the assessment of stability, vulnerability, weight, drag, cost, stiffness, fatigue life, maintainability, and reliability.

  14. Nonlinear dynamic response of a 'flexible-and-heavy' printed circuit board (PCB) to an impact load applied to its support contour

    NASA Astrophysics Data System (ADS)

    Suhir, E.; Vujosevic, M.; Reinikainen, T.

    2009-02-01

    Based on the developed simple and physically meaningful analytical ('mathematical') stress model, we evaluate some major parameters (amplitude, frequency, maximum acceleration, stresses and strains) of the response of a 'flexible-and-heavy' square simply supported printed circuit board (PCB) to an impact drop load applied to its support contour. The analysis is restricted to the first mode of vibrations and is carried out in application to the PCB design employed in an advanced accelerated test setup (test vehicle). This setup is aimed at the assessment of the performance, in accelerated test conditions on the board level, of packaging materials (and, first of all, BGA solder joint interconnections) subjected to dynamic (drop or shock) loading. It is anticipated that heavy masses could be mounted on the PCB to accelerate its dynamic response to an impact load. These masses are expected to be small in size, so that while changing the total mass of the board and generating significant inertia forces, they do not affect the board's flexural rigidity or its stiffness with respect to the in-plane loading. The PCB's contour is considered non-deformable, which is indeed the case in many practical situations. This circumstance, if the drop height and/or the induced inertia forces are significant, leads to elevated in-plane ('membrane') stresses in the PCB and, as a result of that, to the nonlinear response of the board to the impact load: the relationship between the magnitude of the load (determined by the initial impact velocity) and the induced PCB deflections becomes geometrically nonlinear, with a rigid cubic characteristic of the restoring force. The carried out numerical example, although reflects the characteristics of the PCB and loading conditions in an actual experimental setup, is merely an illustration of the general concept and is intended to demonstrate the abilities of the suggested method. Predictions based on this method agree well with the finite element

  15. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  16. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  17. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  18. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  19. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  20. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  1. Compensating linkage for main rotor control

    NASA Technical Reports Server (NTRS)

    Jeffery, P. A. E.; Huber, R. F. (Inventor)

    1981-01-01

    A compensating linkage for the rotor control system on rotary wing aircraft is described. The main rotor and transmission are isolated from the airframe structure by clastic suspension. The compensating linkage prevents unwanted signal inputs to the rotor control system caused by relative motion of the airframe structure and the main rotor and transmission.

  2. Study Of Helicopter-Tail-Rotor Noise

    NASA Technical Reports Server (NTRS)

    Ahmadi, Ali R.; Beranek, Bolt

    1988-01-01

    Report describes findings of experiment in generation of impulsive noise and fluctuating blade loads by helicopter tail rotor interacting with vortexes from main rotor. Experiment used model rotor and isolated vortex and designed to isolate blade/vortex interaction noise from other types of rotor noise.

  3. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor brake. 27.921 Section 27.921... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is a means to control the rotation of the rotor drive system independently of the engine, any limitations...

  4. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor brake. 29.921 Section 29.921... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is a means to control the rotation of the rotor drive system independently of the engine, any limitations...

  5. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  6. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  7. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  8. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  9. Rolling cuff flexible bellows

    DOEpatents

    Lambert, Donald R.

    1985-01-01

    A flexible connector apparatus used to join two stiff non-deformable members, such as piping. The apparatus is provided with one or more flexible sections or assemblies each utilizing a bellows of a rolling cuff type connected between two ridge members, with the bellows being supported by a back-up ring, such that only the curved end sections of the bellows are unsupported. Thus, the bellows can be considered as being of a tube-shaped configuration and thus have high pressure resistance. The components of the flexible apparatus are sealed or welded one to another such that it is fluid tight.

  10. Rolling cuff flexible bellows

    SciTech Connect

    Lambert, D. R.

    1985-09-10

    A flexible connector apparatus used to join two stiff non-deformable members, such as piping. The apparatus is provided with one or more flexible sections or assemblies each utilizing a bellows of a rolling cuff type connected between two ridge members, with the bellows being supported by a back-up ring, such that only the curved end sections of the bellows are unsupported. Thus, the bellows can be considered as being of a tube-shaped configuration and thus have high pressure resistance. The components of the flexible apparatus are sealed or welded one to another such that it is fluid tight.

  11. Development of an analysis for the determination of coupled helicopter rotor/control system dynamic response. Part 1: Analysis and applications

    NASA Technical Reports Server (NTRS)

    Sutton, L. R.; Rinehart, S. A.

    1975-01-01

    A theoretical analysis is developed for a coupled helicopter rotor system to allow determination of the loads and dynamic response behavior of helicopter rotor systems in both steady-state forward flight and maneuvers. The effects of an anisotropically supported swashplate or gyroscope control system and a deformed free wake on the rotor system dynamic response behavior are included in the analysis.

  12. NASA Open Rotor Noise Research

    NASA Technical Reports Server (NTRS)

    Envia, Ed

    2010-01-01

    Owing to their inherent fuel burn efficiency advantage compared with the current generation high bypass ratio turbofan engines, there is resurgent interest in developing open rotor propulsion systems for powering the next generation commercial aircraft. However, to make open rotor systems truly competitive, they must be made to be acoustically acceptable too. To address this challenge, NASA in collaboration with industry is exploring the design space for low-noise open rotor propulsion systems. The focus is on the system level assessment of the open rotors compared with other candidate concepts like the ultra high bypass ratio cycle engines. To that end there is an extensive research effort at NASA focused on component testing and diagnostics of the open rotor acoustic performance as well as assessment and improvement of open rotor noise prediction tools. In this presentation and overview of the current NASA research on open rotor noise will be provided. Two NASA projects, the Environmentally Responsible Aviation Project and the Subsonic Fixed Wing Project, have been funding this research effort.

  13. Flexible sliding seal

    NASA Technical Reports Server (NTRS)

    Wallenhorst, E. L.

    1980-01-01

    Circular seal both slides and flexes to accomodate relative motion between two sealed members. Originally developed for Space Shuttle orbiter, it contains sliding seal to accommodate engine gimbaling and flexible seal that absorbs forward motion at high thrust of engine heat shield relative to airframe. Other possible applications are in support structures of heavy machinery and vehicle engines. Flexible sliding seal is ring about 7 feet in diameter and can withstand temperatures up to 1,600 F.

  14. Structural modeling for multicell composite rotor blades

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases.

  15. Rotor component displacement measurement system

    DOEpatents

    Mercer, Gary D.; Li, Ming C.; Baum, Charles R.

    2003-05-27

    A measuring system for measuring axial displacement of a tube relative to an axially stationary component in a rotating rotor assembly includes at least one displacement sensor adapted to be located normal to a longitudinal axis of the tube; an insulated cable system adapted for passage through the rotor assembly; a rotatable proximitor module located axially beyond the rotor assembly to which the cables are connected; and a telemetry system operatively connected to the proximitor module for sampling signals from the proximitor module and forwarding data to a ground station.

  16. Helicopter rotor trailing edge noise

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amiet, R. K.

    1981-01-01

    An experimental and theoretical study was conducted to assess the importance of trailing edge noise as a helicopter main rotor broadband noise source. The noise mechanism was isolated by testing a rotor blade segment in an open jet acoustic wind tunnel at close to full scale Reynolds numbers. Boundary layer data and acoustic data were used to develop scaling laws and assess a first principles trailing edge noise theory. Conclusions from the isolated blade study were analytically transformed to the rotating frame coordinate system to develop a generalized rotor noise prediction. Trailing edge noise was found to contribute significantly to the total helicopter noise spectrum at high frequencies.

  17. Helicopter rotor trailing edge noise

    NASA Astrophysics Data System (ADS)

    Schlinker, R. H.; Amiet, R. K.

    1981-10-01

    An experimental and theoretical study was conducted to assess the importance of trailing edge noise as a helicopter main rotor broadband noise source. The noise mechanism was isolated by testing a rotor blade segment in an open jet acoustic wind tunnel at close to full scale Reynolds numbers. Boundary layer data and acoustic data were used to develop scaling laws and assess a first principles trailing edge noise theory. Conclusions from the isolated blade study were analytically transformed to the rotating frame coordinate system to develop a generalized rotor noise prediction. Trailing edge noise was found to contribute significantly to the total helicopter noise spectrum at high frequencies.

  18. Dynamic analysis of rotor blade undergoing rotor power shutdown

    NASA Technical Reports Server (NTRS)

    Nguyen, Khanh Quoc

    1990-01-01

    A rigid flap-lag blade analysis was developed to simulate a rotor in a wind tunnel undergoing an emergency power shutdown. Results show that for a rotor at a nonzero shaft tilt angle undergoing an emergency power shutdown, the oscillatory lag response is divergent. The mean lag response is large when tested at high collective pitch angles. Reducing the collective pitch during the emergency shutdown reduces the steady lag response. Increasing the rotor shaft tilt angle increases the oscillatory lag response component. The blade lag response obtained by incorporating a nonlinear lag damper model indicates that in this case the equivalent linear viscous damping is lower than originally expected. Simulation results indicate that large oscillatory lag motions can be suppressed if the rotor shaft is returned to the fully vertical position during the emergency power shutdown.

  19. Flexibility of mobile laboratory unit in support of patient management during the 2007 Ebola-Zaire outbreak in the Democratic Republic of Congo.

    PubMed

    Grolla, A; Jones, S; Kobinger, G; Sprecher, A; Girard, G; Yao, M; Roth, C; Artsob, H; Feldmann, H; Strong, J E

    2012-09-01

    The mobile laboratory provides a safe, rapid and flexible platform to provide effective diagnosis of Ebola virus as well as additional differential diagnostic agents in remote settings of equatorial Africa. During the 2007 Democratic Republic of Congo outbreak of Ebola-Zaire, the mobile laboratory was set up in two different locations by two separate teams within a day of equipment arriving in each location. The first location was in Mweka where our laboratory took over the diagnostic laboratory space of the local hospital, whereas the second location, approximately 50 km south near Kampungu at the epicentre of the outbreak, required local labour to fabricate a tent structure as a suitable pre-existing structure was not available. In both settings, the laboratory was able to quickly set up, providing accurate and efficient molecular diagnostics (within 3 h of receiving samples) for 67 individuals, including four cases of Ebola, seven cases of Shigella and 13 cases of malaria. This rapid turn-around time provides an important role in the support of patient management and epidemiological surveillance. PMID:22958259

  20. Wind turbine rotor aileron

    DOEpatents

    Coleman, Clint; Kurth, William T.

    1994-06-14

    A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

  1. Flexibility Program

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    These brief guidelines for a muscular flexibility program state that the purpose of such a program is to increase the range of motion in order to avoid injuries and eliminate awkwardness in physical activities. A flexibility program is described as an extension of the warm-up period and should be an ongoing, permanent effort to lengthen muscles. A…

  2. Flexible Scheduling.

    ERIC Educational Resources Information Center

    Davis, Harold S.; Bechard, Joseph E.

    A flexible schedule allows teachers to change group size, group composition, and class length according to the purpose of the lesson. This pamphlet presents various "master" schedules for flexible scheduling: (1) Simple block schedules, (2) back-to-back schedules, (3) interdisciplinary schedules, (4) school-wide block schedules, (5) open-lab…

  3. Design and performance of compliant thrust bearing with spiral-groove membranes on resilient supports

    NASA Technical Reports Server (NTRS)

    Licht, L.; Anderson, W. J.; Doroff, S. W.

    1980-01-01

    Novel thrust bearings with spiral-groove flexible membranes mounted on resilient supports were designed and their performance demonstrated. Advantages of surface compliance were combined with the superior load-capacity of the spiral-groove geometry. Loads of 127-150N were supported on an area 42 sq cm, at speeds of 43,000-45,000 rpm and mean clearances of 15-20 microns. Support-worthiness was proved when tested in conjunction with foil journal-bearings and a 19N rotor, excited in a pitching mode by a total unbalance of 43 micron-N.

  4. LAVA Applications to Open Rotors

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Housman, Jeff; Barad, Mike; Brehm, Christoph

    2015-01-01

    Outline: LAVA (Launch Ascent Vehicle Aerodynamics); Introduction; Acoustics Related Applications; LAVA Applications to Open Rotor; Structured Overset Grids; Cartesian Grid with Immersed Boundary; High Speed Case; High Speed Case with Plate Low Speed Case.

  5. Soft hub for bearingless rotors

    NASA Technical Reports Server (NTRS)

    Dixon, Peter G. C.

    1991-01-01

    Soft hub concepts which allow the direct replacement of articulated rotor systems by bearingless types without any change in controllability or need for reinforcement to the drive shaft and/or transmission/fuselage attachments of the helicopter were studied. Two concepts were analyzed and confirmed for functional and structural feasibility against a design criteria and specifications established for this effort. Both systems are gimballed about a thrust carrying universal elastomeric bearing. One concept includes a set of composite flexures for drive torque transmittal from the shaft to the rotor, and another set (which is changeable) to impart hub tilting stiffness to the rotor system as required to meet the helicopter application. The second concept uses a composite bellows flexure to drive the rotor and to augment the hub stiffness provided by the elastomeric bearing. Each concept was assessed for weight, drag, ROM cost, and number of parts and compared with the production BO-105 hub.

  6. Rotor noise in maneuvering flight

    NASA Astrophysics Data System (ADS)

    Chen, Hsuan-Nien

    The objective of this research is to understand the physics of rotor noise in the maneuvering flight. To achieve this objective, an integrated noise prediction system is constructed, namely GenHel-MFW-PSU-WOPWOP. This noise prediction system includes a flight simulation code, a high fidelity free vortex-wake code, and a rotor acoustic prediction code. By using this noise prediction system, rotor maneuver noise characteristics are identified. Unlike periodic rotor noise, a longer duration is required to describe rotor maneuver noise. The variation of helicopter motion, blade motion and blade airloads are all influencing the noise prediction results in both noise level and directivity in the maneuvering flight. In this research, two types of rotor maneuver noise are identified, steady maneuver noise and transient maneuver noise. In the steady maneuver, rotor noise corresponds to a steady maneuver condition, which has nearly steady properties in flight dynamics and aerodynamics. Transient maneuver noise is the result of the transition between two steady maneuvers. In a transient maneuver, the helicopter experiences fluctuations in airload and helicopter angular rates, which lead to excess rotor noise. Even though the transient maneuver only exists for a fairly short period of time, the corresponding transient maneuver noise could be significant when compared to steady maneuver noise. The blade tip vortices also present complex behaviors in the transient maneuver condition. With stronger vortex circulation strength and the potential for vortex bundling, blade vortex-interaction (BVI) noise may increase significantly during a transient maneuver. In this research, it is shown that even with small pilot controls, significant BVI noise can be generated during a transient flight condition. Finally, through this research, the importance of transient maneuver noise is demonstrated and recognized.

  7. The History of the XV-15 Tilt Rotor Research Aircraft: From Concept to Flight

    NASA Technical Reports Server (NTRS)

    Maisel, Martin D.; Giulianetti, Demo J.; Dugan, Daniel C.

    2000-01-01

    This monograph is a testament to the efforts of many people overcoming multiple technical challenges encountered while developing the XV-15 tilt rotor research aircraft. The Ames involvement with the tilt rotor aircraft began in 1957 with investigations of the performance and dynamic behavior of the Bell XV-3 tilt rotor aircraft. At that time, Ames Research Center was known as the Ames Aeronautical Laboratory of the National Advisory Committee for Aeronautics (NACA). As we approach the new millennium, and after more than 40 years of effort and the successful completion of our initial goals, it is appropriate to reflect on the technical accomplishments and consider the future applications of this unique aircraft class, the tilt rotor. The talented engineers, technicians, managers, and leaders at Ames have worked hard with their counterparts in the U.S. rotorcraft industry to overcome technology barriers and to make the military and civil tilt rotor aircraft safer, environmentally acceptable, and more efficient. The tilt rotor aircraft combines the advantages of vertical takeoff and landing capabilities, inherent to the helicopter, with the forward speed and range of a fixed wing turboprop airplane. Our studies have shown that this new vehicle type can provide the aviation transportation industry with the flexibility for highspeed, long-range flight, coupled with runway-independent operations, thus having a significant potential to relieve airport congestion. We see the tilt rotor aircraft as an element of the solution to this growing air transport problem.

  8. Detached Eddy Simulation of the UH-60 Rotor Wake Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Ahmad, Jasim U.

    2012-01-01

    Time-dependent Navier-Stokes flow simulations have been carried out for a UH-60 rotor with simplified hub in forward flight and hover flight conditions. Flexible rotor blades and flight trim conditions are modeled and established by loosely coupling the OVERFLOW Computational Fluid Dynamics (CFD) code with the CAMRAD II helicopter comprehensive code. High order spatial differences, Adaptive Mesh Refinement (AMR), and Detached Eddy Simulation (DES) are used to obtain highly resolved vortex wakes, where the largest turbulent structures are captured. Special attention is directed towards ensuring the dual time accuracy is within the asymptotic range, and verifying the loose coupling convergence process using AMR. The AMR/DES simulation produced vortical worms for forward flight and hover conditions, similar to previous results obtained for the TRAM rotor in hover. AMR proved to be an efficient means to capture a rotor wake without a priori knowledge of the wake shape.

  9. Comparison of Computed and Measured Vortex Evolution for a UH-60A Rotor in Forward Flight

    NASA Technical Reports Server (NTRS)

    Ahmad, Jasim Uddin; Yamauchi, Gloria K.; Kao, David L.

    2013-01-01

    A Computational Fluid Dynamics (CFD) simulation using the Navier-Stokes equations was performed to determine the evolutionary and dynamical characteristics of the vortex flowfield for a highly flexible aeroelastic UH-60A rotor in forward flight. The experimental wake data were acquired using Particle Image Velocimetry (PIV) during a test of the fullscale UH-60A rotor in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The PIV measurements were made in a stationary cross-flow plane at 90 deg rotor azimuth. The CFD simulation was performed using the OVERFLOW CFD solver loosely coupled with the rotorcraft comprehensive code CAMRAD II. Characteristics of vortices captured in the PIV plane from different blades are compared with CFD calculations. The blade airloads were calculated using two different turbulence models. A limited spatial, temporal, and CFD/comprehensive-code coupling sensitivity analysis was performed in order to verify the unsteady helicopter simulations with a moving rotor grid system.

  10. Vibration response of misaligned rotors

    NASA Astrophysics Data System (ADS)

    Patel, Tejas H.; Darpe, Ashish K.

    2009-08-01

    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  11. Macroscopic balance model for wave rotors

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.

  12. Modeling flexible active nematics

    NASA Astrophysics Data System (ADS)

    Varga, Michael; Selinger, Robin

    We study active nematic phases of self-propelled flexible chains in two dimensions using computer simulation, to investigate effects of chain flexibility. In a ``dry'' phase of self-propelled flexible chains, we find that increasing chain stiffness enhances orientational order and correlation length, narrows the distribution of turning angles, increases persistence length, and increases the magnitude of giant density fluctuations. We further adapt the simulation model to describe behavior of microtubules driven by kinesin molecular motors in two different environments: on a rigid substrate with kinesin immobilized on the surface; and on a lipid membrane where kinesin is bonded to lipid head groups and can diffuse. Results are compared to experiments by L. Hirst and J. Xu. Lastly, we consider active nematics of flexible particles enclosed in soft, deformable encapsulation in two dimensions, and demonstrate novel mechanisms of pattern formation that are fundamentally different from those observed in bulk. Supported by NSF-DMR 1409658.

  13. Structural Considerations of a 20MW Multi-Rotor Wind Energy System

    NASA Astrophysics Data System (ADS)

    Jamieson, P.; Branney, M.

    2014-12-01

    The drive to upscale offshore wind turbines relates especially to possiblereductions in O&M and electrical interconnection costs per MW of installed capacity.Even with best current technologies, designs with rated capacity above about 3 MW are less cost effective exfactory per rated MW(turbine system costs) than smaller machines.Very large offshore wind turbines are thereforejustifiedprimarily by overall offshore project economics. Furthermore, continuing progress in materials and structures has been essential to avoid severe penalties in the power/mass ratio of large multi-MW machines.The multi-rotor concept employs many small rotors to maximise energy capture area withminimum systemvolume. Previous work has indicated that this can enablea very large reduction in the total weight and cost of rotors and drive trains compared to an equivalent large single rotor system.Thus the multi rotor concept may enable rated capacities of 20 MW or more at a single maintenancesite. Establishing the cost benefit of a multi rotor system requires examination of solutions for the support structure and yawing, ensuring aerodynamic losses from rotor interaction are not significant and that overall logistics, with much increased part count (more reliable components) and less consequence of single failuresare favourable. This paper addresses the viability of a support structure in respect of structural concept and likely weight as one necessary step in exploring the potential of the multi rotor concept.

  14. Development and application of a method for predicting rotor free wake positions and resulting rotor blade air loads. Volume 1: Model and results

    NASA Technical Reports Server (NTRS)

    Sadler, S. G.

    1971-01-01

    Rotor wake geometries are predicted by a process similar to the startup of a rotor in a free stream. An array of discrete trailing and shed vortices is generated with vortex strengths corresponding to stepwise radial and azimuthal blade circulations. The array of shed and trailing vortices is limited to an arbitrary number of azimuthal steps behind each blade. The remainder of the wake model of each blade is an arbitrary number of trailing vortices. Vortex element end points were allowed to be transported by the resultant velocity of the free stream and vortex-induced velocities. Wake geometry, wake flow, and wake-induced velocity influence coefficients are generated by this program for use in the blade loads portion of the calculations. Blade loads computations include the effects of nonuniform inflow due to a free wake, nonlinear airfoil characteristics, and response of flexible blades to the applied loads. Computed wake flows and blade loads are compared with experimentally measured data. Predicted blade loads, response and shears and moments are obtained for a model rotor system having two independent rotors. The effects of advance ratio, vertical separation of rotors, different blade radius ratios, and different azimuthal spacing of the blades of one rotor with respect to the other are investigated.

  15. An experimental study of the sensitivity of helicopter rotor blade tracking to root pitch adjustment in hover

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Langston, Chester W.; Mirick, Paul H.; Singleton, Jeffrey D.; Wilbur, Matthew L.; Yeager, William T., Jr.

    1991-01-01

    The sensitivity of blade tracking in hover to variations in root pitch was examined for two rotor configurations. Tests were conducted using a four bladed articulated rotor mounted on the NASA-Army aeroelastic rotor experimental system (ARES). Two rotor configurations were tested: one consisting of a blade set with flexible fiberglass spars and one with stiffer (by a factor of five in flapwise and torsional stiffnesses) aluminum spars. Both blade sets were identical in planform and airfoil distribution and were untwisted. The two configurations were ballasted to the same Lock number so that a direct comparison of the tracking sensitivity to a gross change in blade stiffness could be made. Experimental results show no large differences between the two sets of blades in the sensitivity of the blade tracking to root pitch adjustments. However, a measurable reduction in intrack coning of the fiberglass spar blades with respect to the aluminum blades is noted at higher rotor thrust conditions.

  16. Application of system identification to analytic rotor modeling from simulated and wind tunnel dynamic test data, part 2

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Banerjee, D.

    1977-01-01

    An introduction to aircraft state and parameter identification methods is presented. A simplified form of the maximum likelihood method is selected to extract analytical aeroelastic rotor models from simulated and dynamic wind tunnel test results for accelerated cyclic pitch stirring excitation. The dynamic inflow characteristics for forward flight conditions from the blade flapping responses without direct inflow measurements were examined. The rotor blades are essentially rigid for inplane bending and for torsion within the frequency range of study, but flexible in out-of-plane bending. Reverse flow effects are considered for high rotor advance ratios. Two inflow models are studied; the first is based on an equivalent blade Lock number, the second is based on a time delayed momentum inflow. In addition to the inflow parameters, basic rotor parameters like the blade natural frequency and the actual blade Lock number are identified together with measurement bias values. The effect of the theoretical dynamic inflow on the rotor eigenvalues is evaluated.

  17. Control of molecular rotor rotational frequencies in porous coordination polymers using a solid-solution approach.

    PubMed

    Inukai, Munehiro; Fukushima, Tomohiro; Hijikata, Yuh; Ogiwara, Naoki; Horike, Satoshi; Kitagawa, Susumu

    2015-09-30

    Rational design to control the dynamics of molecular rotors in crystalline solids is of interest because it offers advanced materials with precisely tuned functionality. Herein, we describe the control of the rotational frequency of rotors in flexible porous coordination polymers (PCPs) using a solid-solution approach. Solid-solutions of the flexible PCPs [{Zn(5-nitroisophthalate)x(5-methoxyisophthalate)1-x(deuterated 4,4'-bipyridyl)}(DMF·MeOH)]n allow continuous modulation of cell volume by changing the solid-solution ratio x. Variation of the isostructures provides continuous changes in the local environment around the molecular rotors (pyridyl rings of the 4,4'-bipyridyl group), leading to the control of the rotational frequency without the need to vary the temperature. PMID:26368067

  18. Redox flexibility of iron complexes supported by sulfur-based tris(o-methylenethiophenolato)amine relative to its tripodal oxygen-based congener.

    PubMed

    Mondragón, Alexander; Martínez-Alanis, Paulina R; Aullón, Gabriel; Hernández-Ortega, Simón; Robles-Marín, Elvis; Flores-Alamo, Marcos; Ugalde-Saldívar, Víctor M; Castillo, Ivan

    2016-06-14

    Tripodal ligands designed to generate a local C3 symmetry have resulted in novel types of metal complexes that feature unusual bonding and electronic properties. However, most complexes reported to date are characterised by strong field ligands that enforce low or intermediate-spin states for the metal centres. Moreover, anionic sulfur-based tripodal ligands are particularly scarce due to their challenging synthesis. In this context, we herein report the synthesis, spectral characterization, structural, and electronic properties of an iron complex supported by the tripodal, trianionic ligand [N(CH2ArS)3](3-) as the trigonal-bipyramidal complexes [Fe{N(CH2ArS)3}(X)] ((X), X = DMSO, THF). The solid-state structures reveal local C3v symmetry around the Fe(3+) ions, while electron spin resonance measurements established a high-spin state (S = 5/2). Electrochemical studies demonstrate the redox flexibility of the FeS3 fragment by direct comparison with the oxygen-based analogue N(CH2ArOH)3, which displays an irreversible reduction; in contrast, (THF) has a reversible Fe(3+)/Fe(2+) redox process at -0.83 V (relative to the ferrocenium/ferrocene redox couple). The high spin and redox properties of (THF) are attributable to the weak ligand field provided by the NS3 fragment, as confirmed by the electronic structure calculated by density functional theory, which reveals substantial electronic delocalisation and covalency of the Fe-S bonds in (X). PMID:27027224

  19. Research investigation of helicopter main rotor/tail rotor interaction noise

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Kohlhepp, F.

    1988-01-01

    Acoustic measurements were obtained in a Langley 14 x 22 foot Subsonic Wind Tunnel to study the aeroacoustic interaction of 1/5th scale main rotor, tail rotor, and fuselage models. An extensive aeroacoustic data base was acquired for main rotor, tail rotor, fuselage aerodynamic interaction for moderate forward speed flight conditions. The details of the rotor models, experimental design and procedure, aerodynamic and acoustic data acquisition and reduction are presented. The model was initially operated in trim for selected fuselage angle of attack, main rotor tip-path-plane angle, and main rotor thrust combinations. The effects of repositioning the tail rotor in the main rotor wake and the corresponding tail rotor countertorque requirements were determined. Each rotor was subsequently tested in isolation at the thrust and angle of attack combinations for trim. The acoustic data indicated that the noise was primarily dominated by the main rotor, especially for moderate speed main rotor blade-vortex interaction conditions. The tail rotor noise increased when the main rotor was removed indicating that tail rotor inflow was improved with the main rotor present.

  20. Nonlinear dynamic response of wind turbine rotors. Ph.D. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Chopra, I.

    1977-01-01

    The nonlinear equations of motion for a rigid rotor restrained by three flexible springs representing the flapping, lagging and feathering motions are derived using Lagrange's equations for arbitrary angular rotations. These are reduced to a consistent set of nonlinear equations using nonlinear terms up to third order.

  1. Flap/Lag/Torsion Dynamics of a Uniform, Cantilever Rotor Blade in Hover

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1977-01-01

    The dynamic stability of the flap/lag/torsion motion of a uniform, cantilever rotor blade in hover is calculated. The influence of blade collective pitch, lag frequency, torsional flexibility, structural coupling, and precone angle on the stability is examined. Good agreement is found with the results of an independent analytical investigation.

  2. A new dynamic model of rotor-blade systems

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Lu, Yang; Wu, Zhiyuan; Tai, Xingyu; Li, Hui; Wen, Bangchun

    2015-11-01

    A new dynamic model of rotor-blade systems is developed in this paper considering the lateral and torsional deformations of the shaft, gyroscopic effects of the rotor which consists of shaft and disk, and the centrifugal stiffening, spin softening and Coriolis force of the blades. In this model, the rotating flexible blades are represented by Timoshenko beams. The shaft and rigid disk are described by multiple lumped mass points (LMPs), and these points are connected by massless springs which have both lateral and torsional stiffness. LMPs are represented by the corresponding masses and mass moments of inertia in lateral and rotational directions, where each point has five degrees of freedom (dofs) excluding axial dof. Equations of motion of the rotor-blade system are derived using Hamilton's principle in conjunction with the assumed modes method to describe blade deformation. The proposed model is compared with both finite element (FE) model and real experiments. The proposed model is first validated by comparing the model natural frequencies and vibration responses with those obtained from an FE model. A further verification of the model is then performed by comparing the model natural frequencies at zero rotational speed with those obtained from experimental studies. The results shown a good agreement between the model predicted system characteristics and those obtained from the FE model and experimental tests. Moreover, the following interesting phenomena have been revealed from the new model based analysis: The torsional natural frequency of the system decreases with the increase of rotational speed, and the frequency veering phenomenon has been observed at high rotational speed; The complicated coupling modes, such as the blade-blade coupling mode (BB), the coupling mode between the rotor lateral vibration and blade bending (RBL), and the coupling mode between the rotor torsional vibration and blade bending (RBT), have also been observed when the number of

  3. Implementation of state-of-the-art rotor forging evaluation to manage the oldest rotor fleet in the USA

    SciTech Connect

    Puri, A.; Steakley, M.; McCann, D.

    1995-12-31

    The average age of the Tennessee Valley Authority`s (TVA) fossil fleet is almost 40 years with a large population of ``C`` grade rotors manufactured in the 1950`s. Until 1991, TVA relied upon the OEM`s to support the rotor forging assessment and establish the reinspection intervals. Based on the OEM`s recommendations most turbine/generator overhauls were governed by the forging reinspection interval. In the spring of 1992, TVA initiated an engineered forging evaluation process that involved state-of-the-art amplitude independent, target-motion based Ultrasonic And Data Processing System (UDRPS) forging inspection, forging material sampling, and fracture mechanics analysis. This paper outlines TVA`s state-of-art rotor forging evaluation program, results achieved since its introduction and the long range benefits to TVA.

  4. Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications.

    PubMed

    Guillem, María S; Climent, Andreu M; Rodrigo, Miguel; Fernández-Avilés, Francisco; Atienza, Felipe; Berenfeld, Omer

    2016-04-01

    Rotor-guided ablation has opened new perspectives into the therapy of atrial fibrillation (AF). Analysis of the spatio-temporal cardiac excitation patterns in the frequency and phase domains has demonstrated the importance of rotors in research models of AF, however, the dynamics and role of rotors in human AF are still controversial. In this review, the current knowledge gained through research models and patient data that support the notion that rotors are key players in AF maintenance is summarized. We report and discuss discrepancies regarding rotor prevalence and stability in various studies, which can be attributed in part to methodological differences among mapping systems. Future research for validation and improvement of current clinical electrophysiology mapping technologies will be crucial for developing mechanistic-based selection and application of the best therapeutic strategy for individual AF patient, being it, pharmaceutical, ablative, or other approach. PMID:26786157

  5. NASA/Army rotor system flight research leading to the UH-60 airloads program

    NASA Technical Reports Server (NTRS)

    Snyder, W. J.; Cross, J. L.; Kufeld, Robert

    1990-01-01

    A review is presented of some of the early rotor systems flight research leading to the present comprehensive NASA/Army rotor system airloads program with the UH-60 helicopter. The experimental and analytical plans and progress for this program are described, including the design and development of a rotor blade which incorporated 242 pressure transducers buried in the surface of the blade, and also the development of calibration hardware for regular calibration and testing of the transducers. Supporting analytical developments based on the comprehensive analytical model of rotorcraft aerodynamics and dynamics (CAMRAD) and various CFD codes are discussed. The highly instrumented UH-60 as well as companion programs of full-scale and model wind tunnel tests of the UH-60 rotor with identical instrumentation will provide the opportunity to explore a full range of rotor experiments and the data necessary to validate the advanced methodologies under development.

  6. Rotor assembly and assay method

    DOEpatents

    Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.

    1993-01-01

    A rotor assembly for carrying out an assay includes a rotor body which is rotatable about an axis of rotation, and has a central chamber and first, second, third, fourth, fifth, and sixth chambers which are in communication with and radiate from the central chamber. The rotor assembly further includes a shuttle which is movable through the central chamber and insertable into any of the chambers, the shuttle including a reaction cup carrying an immobilized antigen or an antibody for transport among the chambers. A method for carrying out an assay using the rotor assembly includes moving the reaction cup among the six chambers by passing the cup through the central chamber between centrifugation steps in order to perform the steps of: separating plasma from blood cells, binding plasma antibody or antigen, washing, drying, binding enzyme conjugate, reacting with enzyme substrate and optically comparing the resulting reaction product with unreacted enzyme substrate solution. The movement of the reaction cup can be provided by attaching a magnet to the reaction cup and supplying a moving magnetic field to the rotor.

  7. Rotor assembly and assay method

    DOEpatents

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1993-09-07

    A rotor assembly for carrying out an assay includes a rotor body which is rotatable about an axis of rotation, and has a central chamber and first, second, third, fourth, fifth, and sixth chambers which are in communication with and radiate from the central chamber. The rotor assembly further includes a shuttle which is movable through the central chamber and insertable into any of the chambers, the shuttle including a reaction cup carrying an immobilized antigen or an antibody for transport among the chambers. A method for carrying out an assay using the rotor assembly includes moving the reaction cup among the six chambers by passing the cup through the central chamber between centrifugation steps in order to perform the steps of: separating plasma from blood cells, binding plasma antibody or antigen, washing, drying, binding enzyme conjugate, reacting with enzyme substrate and optically comparing the resulting reaction product with unreacted enzyme substrate solution. The movement of the reaction cup can be provided by attaching a magnet to the reaction cup and supplying a moving magnetic field to the rotor. 34 figures.

  8. Flexible cystoscopy.

    PubMed

    Kennedy, T J; Preminger, G M

    1988-08-01

    Flexible fiberoptic technology was first applied to cystoscopy in 1973, with greatly increased usage since 1982. Most procedures formerly performed with rigid cystoscopes can be done using flexible cystoscopes with minimal or no anesthesia. Patient positioning and precystocopy preparation and draping are simplified with the flexible fiberoptic instruments. Complete examination of the urethra and bladder can be performed with a single-lens system and with the patient in a variety of positions. Fiberoptic cystoscopy is limited in patients who are bleeding or have blood clots in their bladders. Withdrawal of irrigant or bladder drainage is cumbersome, and the fiberoptic image is currently not of the same caliber as that of the rigid-lens systems. Fiberoptic cystoscopy has become the procedure of choice for many urologists for ureteral stenting prior to extracorporeal shock-wave lithotripsy. With the advent of lithotripters that require no anesthesia, this application is likely to broaden. Future applications of flexible cystoscopy may include a flexible videocystoscope for use in diagnostic and therapeutic procedures. PMID:3407042

  9. Rotor-to-stator Partial Rubbing and Its Effects on Rotor Dynamic Response

    NASA Technical Reports Server (NTRS)

    Muszynska, Agnes; Franklin, Wesley D.; Hayashida, Robert D.

    1991-01-01

    Results from experimental and analytical studies on rotor to stationary element partial rubbings at several locations and their effects on rotor dynamic responses are presented. The mathematical model of a rubbing rotor is given. The computer program provides numerical results which agree with experimentally obtained rotor responses.

  10. Rotor/Wing Interactions in Hover

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Derby, Michael R.

    2002-01-01

    Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.

  11. Open Rotor: New Option for Jet Engines

    NASA Video Gallery

    NASA's Dale Van Zante describes how the open rotor propulsion system will be tested in a wind tunnel at NASA's Glenn Research Center. Open rotor aircraft engines use high-speed propellers and are c...

  12. Piping Flexibility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A NASA computer program aids Hudson Engineering Corporation, Houston, Texas, in the design and construction of huge petrochemical processing plants like the one shown, which is located at Ju'aymah, Saudi Arabia. The pipes handling the flow of chemicals are subject to a variety of stresses, such as weight and variations in pressure and temperature. Hudson Engineering uses a COSMIC piping flexibility analysis computer program to analyze stresses and unsure the necessary strength and flexibility of the pipes. This program helps the company realize substantial savings in reduced engineering time.

  13. Quantum rotor in nanostructured superconductors

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Hsin; Milošević, M. V.; Covaci, L.; Jankó, B.; Peeters, F. M.

    2014-04-01

    Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos.

  14. Quantum rotor in nanostructured superconductors.

    PubMed

    Lin, Shi-Hsin; Milošević, M V; Covaci, L; Jankó, B; Peeters, F M

    2014-01-01

    Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos. PMID:24686241

  15. Turbomachine rotor with improved cooling

    DOEpatents

    Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

    1998-05-26

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

  16. Turbomachine rotor with improved cooling

    DOEpatents

    Hultgren, Kent Goran; McLaurin, Leroy Dixon; Bertsch, Oran Leroy; Lowe, Perry Eugene

    1998-01-01

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

  17. Quantum rotor in nanostructured superconductors

    PubMed Central

    Lin, Shi-Hsin; Milošević, M. V.; Covaci, L.; Jankó, B.; Peeters, F. M.

    2014-01-01

    Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos. PMID:24686241

  18. Rotor for centrifugal fast analyzers

    DOEpatents

    Lee, N.E.

    1984-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  19. Rotor for centrifugal fast analyzers

    DOEpatents

    Lee, Norman E.

    1985-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  20. On Cup Anemometer Rotor Aerodynamics

    PubMed Central

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup. PMID:22778638

  1. A study of the effects of disk flexibility on the rotordynamics of the space shuttle main engine turbo-pumps

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1989-01-01

    Rotor dynamical analyses are typically performed using rigid disk models. Studies of rotor models in which the effects of disk flexibility were included indicate that is may be an important effect for many systems. This issue is addressed with respect to the Space Shuttle Main Engine high pressure turbo-pumps. Finite element analyses have been performed for a simplified free-free flexible disk rotor model and the modes and frequencies compared to those of a rigid disk model. The simple model was then extended to a more sophisticated HPTOP rotor model and similar results were observed. Equations were developed that are suitable for modifying the current rotordynamical analysis program to account for disk flexibility. Some conclusions are drawn from the results of this work as to the importance of disk flexibility on the HPTOP rotordynamics and some recommendations are given for follow-up research in this area.

  2. Filter type rotor for multistation photometer

    DOEpatents

    Shumate, II, Starling E.

    1977-07-12

    A filter type rotor for a multistation photometer is provided. The rotor design combines the principle of cross-flow filtration with centrifugal sedimentation so that these occur simultaneously as a first stage of processing for suspension type fluids in an analytical type instrument. The rotor is particularly useful in whole-blood analysis.

  3. 14 CFR 29.1565 - Tail rotor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tail rotor. 29.1565 Section 29.1565 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS....1565 Tail rotor. Each tail rotor must be marked so that its disc is conspicuous under normal...

  4. 14 CFR 27.1565 - Tail rotor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tail rotor. 27.1565 Section 27.1565 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Tail rotor. Each tail rotor must be marked so that its disc is conspicuous under normal daylight...

  5. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor brake. 29.921 Section 29.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is...

  6. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor brake. 27.921 Section 27.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is...

  7. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor brake. 29.921 Section 29.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is...

  8. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor brake. 29.921 Section 29.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is...

  9. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor brake. 27.921 Section 27.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is...

  10. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor brake. 27.921 Section 27.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is...

  11. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor brake. 29.921 Section 29.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is...

  12. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor brake. 27.921 Section 27.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is...

  13. Assessment of Geometry and In-Flow Effects on Contra-Rotating Open Rotor Broadband Noise Predictions

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Nark, Douglas M.; Boyd, D. Douglas, Jr.

    2015-01-01

    Application of previously formulated semi-analytical models for the prediction of broadband noise due to turbulent rotor wake interactions and rotor blade trailing edges is performed on the historical baseline F31/A31 contra-rotating open rotor configuration. Simplified two-dimensional blade element analysis is performed on cambered NACA 4-digit airfoil profiles, which are meant to serve as substitutes for the actual rotor blade sectional geometries. Rotor in-flow effects such as induced axial and tangential velocities are incorporated into the noise prediction models based on supporting computational fluid dynamics (CFD) results and simplified in-flow velocity models. Emphasis is placed on the development of simplified rotor in-flow models for the purpose of performing accurate noise predictions independent of CFD information. The broadband predictions are found to compare favorably with experimental acoustic results.

  14. High speed rotor assembly shroud

    NASA Technical Reports Server (NTRS)

    Miller, Jeff H. (Inventor); Zheng, Xinhong J. (Inventor); Grota, Steven P. (Inventor); Phui, Khin C. (Inventor)

    2006-01-01

    An improved rotor assembly shroud includes at least one reinforcing flange on the upper surface of the shroud. The strength provided by the reinforcing flange allows for a smaller shroud thickness resulting in a net reduction of shroud mass. The lower shroud mass reduces the centrifugal stress on the rotor assembly blade during operation. The strength provided by the reinforcing flanges also significantly reduces the centrifugal bending stress on the shroud during operation. The shroud mass may be further reduced by tapering the shroud leading and trailing edges or, for shrouds incorporating a damper, by providing a damper cavity with a lower diameter surface defining an opening therethrough.

  15. ENGINEL: A single rotor turbojet engine cycle match performance program

    NASA Technical Reports Server (NTRS)

    Lovell, W. A.

    1977-01-01

    ENGINEL is a computer program which was developed to generate the design and off-design performance of a single rotor turbojet engine with or without afterburning using a cycle match procedure. It is capable of producing engine performance over a wide range of altitudes and Mach numbers. The flexibility, of operating with a variable geometry turbine, for improved off-design fuel consumption or with a fixed geometry turbine as in conventional turbojets, has been incorporated. In addition, the option of generation engine performance with JP4, liquid hydrogen or methane as fuel is provided.

  16. Whirl flutter analysis of a horizontal-axis wind turbine with a two-bladed teetering rotor

    NASA Technical Reports Server (NTRS)

    Janetzke, D. C.; Kaza, K. R. V.

    1981-01-01

    Whirl flutter and the effect of pitch-flap coupling on teetering motion of a wind turbine were investigated. The equations of motion are derived for an idealized five-degree-of-freedom mathematical model of a horizontal-axis wind turbine with a two-bladed teetering rotor. The model accounts for the out-of-plane bending motion of each blade, the teetering motion of the rotor, and both the pitching and yawing motions of the rotor support. Results show that the design is free from whirl flutter. Selected results are presented indicating the effect of variations in rotor support damping, rotor support stiffness, and pitch-flap coupling on pitching, yawing, teetering, and blade bending motions.

  17. The NASA modern technology rotors program

    NASA Technical Reports Server (NTRS)

    Watts, M. E.; Cross, J. L.

    1986-01-01

    Existing data bases regarding helicopters are based on work conducted on 'old-technology' rotor systems. The Modern Technology Rotors (MTR) Program is to provide extensive data bases on rotor systems using present and emerging technology. The MTR is concerned with modern, four-bladed, rotor systems presently being manufactured or under development. Aspects of MTR philosophy are considered along with instrumentation, the MTR test program, the BV 360 Rotor, and the UH-60 Black Hawk. The program phases include computer modelling, shake test, model-scale test, minimally instrumented flight test, extensively pressure-instrumented-blade flight test, and full-scale wind tunnel test.

  18. Previous Open Rotor Research in the US

    NASA Technical Reports Server (NTRS)

    VanZante, Dale

    2011-01-01

    Previous Open Rotor noise experience in the United States, current Open Rotor noise research in the United States and current NASA prediction methods activities were presented at a European Union (EU) X-Noise seminar. The invited attendees from EU industries, research establishments and universities discussed prospects for reducing Open Rotor noise and reviewed all technology programs, past and present, dedicated to Open Rotor engine concepts. This workshop was particularly timely because the Committee on Aviation Environmental Protection (CAEP) plans to involve Independent Experts in late 2011 in assessing the noise of future low-carbon technologies including the open rotor.

  19. A review of tilt rotor download research

    NASA Technical Reports Server (NTRS)

    Felker, Fort F.

    1988-01-01

    Experimental and theoretical research on the forces on a wing immersed in the wake of a hovering rotor is reviewed, with emphasis on the tilt rotor download problem. The basic features of the rotor/wing flow field on a tilt rotor aircraft are described. The effect of important geometric and operational parameters on the wing download is assessed. The magnitude of the download for typical tilt rotor configurations is reviewed, and advanced concepts for download reduction are described. Recommendations are presented for the direction of future research efforts.

  20. Optimization of stall regulated rotors

    SciTech Connect

    Fuglsang, P.L.; Madsen, H.A.

    1995-09-01

    The present work deals with the optimization of stall regulated rotors for wind turbines. Two different optimization methods are presented. The first method is a single design point optimization procedure, whereas the second is a multi pointed optimization technique which is founded on a general optimization algorithm. The use of an optimization algorithm offers the possibility to treat complex optimization problems concerning the entire rotor geometry. The two methods are compared through design of a 20 kW rotor showing good agreement. By use of the optimization algorithm, different aspects of modern wind turbine design layout are investigated. The improvement of the annual energy production by optimizing the airfoil characteristics in addition to the blade chord and twist has been found marginal compared to a case where a standard NACA 634x airfoil family is used. The optimal ratio of swept area to rated power is found depending strongly on the value of the specified maximum loads. Optimization of rotors to specific wind regimes has not been found favorable. In general, the results show that the optimization algorithm is an useful aid to the design.

  1. Open rotor broadband interaction noise

    NASA Astrophysics Data System (ADS)

    Kingan, Michael J.

    2013-08-01

    A theoretical model is presented for calculating the broadband noise produced by the interaction of an open rotor with the wake from either an upstream contra-rotating rotor or a stationary pylon. The model is used to investigate the dependence of the radiated noise on parameters such as pylon-rotor gap and the polar and azimuthal directivity of the noise field. A simple model is also presented which assumes that the unsteady loading on adjacent blades is uncorrelated. It is shown that the simple model can be used to calculate broadband interaction noise for most practical open rotor geometries. The errors in Ref. [3] are listed in this footnote. (1) The effect of wake skew on the 'mean wake profile' was not properly accounted for (see Eqs. (38 and 39) of this paper). (2) The final formulation contained an extra factor of 2π due to an inconsistent Fourier transform convention. (3) There was an error in the wavenumber contained in the blade response function g (see Appendix 1 of this paper). (4) There were a number of errors in the 'acoustically weighted lift function', ΨL, which is defined in Appendix 1 of this paper.

  2. Topological dynamics in supramolecular rotors.

    PubMed

    Palma, Carlos-Andres; Björk, Jonas; Rao, Francesco; Kühne, Dirk; Klappenberger, Florian; Barth, Johannes V

    2014-08-13

    Artificial molecular switches, rotors, and machines are set to establish design rules and applications beyond their biological counterparts. Herein we exemplify the role of noncovalent interactions and transient rearrangements in the complex behavior of supramolecular rotors caged in a 2D metal-organic coordination network. Combined scanning tunneling microscopy experiments and molecular dynamics modeling of a supramolecular rotor with respective rotation rates matching with 0.2 kcal mol(-1) (9 meV) precision, identify key steps in collective rotation events and reconfigurations. We notably reveal that stereoisomerization of the chiral trimeric units entails topological isomerization whereas rotation occurs in a topology conserving, two-step asynchronous process. In supramolecular constructs, distinct displacements of subunits occur inducing a markedly lower rotation barrier as compared to synchronous mechanisms of rigid rotors. Moreover, the chemical environment can be instructed to control the system dynamics. Our observations allow for a definition of mechanical cooperativity based on a significant reduction of free energy barriers in supramolecules compared to rigid molecules. PMID:25078022

  3. Rotor damage detection by using piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  4. Fuselage upwash effects on RSRA rotor systems

    NASA Technical Reports Server (NTRS)

    Cowan, J.; Dadone, L.

    1985-01-01

    The effects of RSRA fuselage configurations on rotor performance and loads have been quantified analytically by means of currently available potential flow and rotor analysis. Four configurations of the Rotor Systems Research Aircraft (RSRA) were considered in this study. They were: (1) fuselage alone (conventional helicopter); (2) fuselage with auxiliary propulsion; (3) fuselage with wings (auxiliary lift); and (4) fuselage with both auxiliary lift propulsion. The rotor system investigated was identical to a CH-47D front rotor except that it had four instead of three blades. Two scaled-down versions of the same rotor were also analyzed to determine the effect of rotor scale on the fuselage upwash effects. The flight conditions considered for the upwash study are discussed. The potential flow models for the RSRA configuration, with and without the wings and the auxiliary propulsion system, are presented. The results of fuselage/wing/propulsion system upwash on performance and loads are also presented.

  5. Aerodynamic/Acoustic Analysis for Main Rotor and Tail Rotor of Helicopter

    NASA Astrophysics Data System (ADS)

    Yang, Choongmo; Aoyama, Takashi; Kondo, Natsuki; Saito, Shigeru

    A simulation method for full helicopter configuration is constructed by combining an unsteady Euler code and an aero-acoustic code based on the Ffowcs-Williams and Hawkings formulation. The flow field and helicopter noise are calculated using a moving overlapped grid system, and the mutual effect of main rotor and tail rotor are studied for the helicopter in hover or forward flight. In the hovering flight calculation, the tip vortex of the tail rotor is dragged by the induced flow of the main rotor, and the detailed phenomena of the flow pattern are captured well. In the forward-flight calculation, noises from the main rotor and tail rotor are predicted to show tail rotor noise for both self noise and the interaction noise with the main-rotor wake. Comparison of noise magnitude shows the relative importance of tail rotor noise according to flight conditions.

  6. Hi-Q Rotor - Low Wind Speed Technology

    SciTech Connect

    Todd E. Mills; Judy Tatum

    2010-01-11

    The project objective was to optimize the performance of the Hi-Q Rotor. Early research funded by the California Energy Commission indicated the design might be advantageous over state-of-the-art turbines for collecting wind energy in low wind conditions. The Hi-Q Rotor is a new kind of rotor targeted for harvesting wind in Class 2, 3, and 4 sites, and has application in areas that are closer to cities, or 'load centers.' An advantage of the Hi-Q Rotor is that the rotor has non-conventional blade tips, producing less turbulence, and is quieter than standard wind turbine blades which is critical to the low-wind populated urban sites. Unlike state-of-the-art propeller type blades, the Hi-Q Rotor has six blades connected by end caps. In this phase of the research funded by DOE's Inventions and Innovation Program, the goal was to improve the current design by building a series of theoretical and numeric models, and composite prototypes to determine a best of class device. Development of the rotor was performed by aeronautical engineering and design firm, DARcorporation. From this investigation, an optimized design was determined and an 8-foot diameter, full-scale rotor was built and mounted using a Bergey LX-1 generator and furling system which were adapted to support the rotor. The Hi-Q Rotor was then tested side-by-side against the state-of-the-art Bergey XL-1 at the Alternative Energy Institute's Wind Test Center at West Texas State University for six weeks, and real time measurements of power generated were collected and compared. Early wind tunnel testing showed that the cut-in-speed of the Hi-Q rotor is much lower than a conventional tested HAWT enabling the Hi-Q Wind Turbine to begin collecting energy before a conventional HAWT has started spinning. Also, torque at low wind speeds for the Hi-Q Wind Turbine is higher than the tested conventional HAWT and enabled the wind turbine to generate power at lower wind speeds. Based on the data collected, the results of

  7. Blade platform seal for ceramic/metal rotor assembly

    DOEpatents

    Wertz, John L.

    1982-01-01

    A combination ceramic and metal turbine rotor for use in high temperature gas turbine engines includes a metal rotor disc having a rim with a plurality of circumferentially spaced blade root retention slots therein to receive a plurality of ceramic blades, each including side platform segments thereon and a dovetail configured root slidably received in one of the slots. Adjacent ones of the platform segments including edge portions thereon closely spaced when the blades are assembled to form expansion gaps in an annular flow surface for gas passage through the blades and wherein the assembly further includes a plurality of unitary seal members on the rotor connected to its rim and each including a plurality of spaced, axially extending, flexible fingers that underlie and conform to the edge portions of the platform segments and which are operative at turbine operating temperatures and speeds to distribute loading on the platform segments as the fingers are seated against the underside of the blade platforms to seal the gaps without undesirably stressing thin web ceramic sections of the platform.

  8. High optical switching speed and flexible electrochromic display based on WO3 nanoparticles with ZnO nanorod arrays' supported electrode

    NASA Astrophysics Data System (ADS)

    Wang, Mingjun; Fang, Guojia; Yuan, Longyan; Huang, Huihui; Sun, Zhenhua; Liu, Nishuang; Xia, Shanhong; Zhao, Xingzhong

    2009-05-01

    The electrochromic (EC) property of WO3 nanoparticles grown on vertically self-aligned ZnO nanorods (ZNRs) is reported. An electrochromic character display based on WO3 nanoparticle-modified ZnO nanorod arrays on a flexible substrate has been fabricated and demonstrated. The ZNRs were first synthesized on ZnO-seed-coated In2O3:Sn (ITO) glass (1 cm2 cell) and polyethylene terephthalate (PET) (4 cm2 cell) substrates by a low temperature hydrothermal method, and then amorphous WO3 nanoparticles were grown directly on the surface of the ZNRs by the pulsed laser deposition (PLD) method. The ZNR-based EC device shows high transparence, good electrochromic stability and fast switching speed (4.2 and 4 s for coloration and bleaching, respectively, for a 1 cm2 cell). The good performance of the ZNR electrode-based EC display can be attributed to the large surface area, high crystallinity and good electron transport properties of the ZNR arrays. Its high contrast, fast switching, good memory and flexible characteristics indicate it is a promising candidate for flexible electrochromic displays or electronic paper.

  9. Synchronous dynamics of a coupled shaft/bearing/housing system with auxiliary support from a clearance bearing: Analysis and experiment

    NASA Technical Reports Server (NTRS)

    Lawen, James, Jr.; Flowers, George T.

    1992-01-01

    This study examines the response of a flexible rotor supported by load sharing between linear bearings and an auxiliary clearance bearing. The objective of the work is to develop a better understanding of the dynamical behavior of a magnetic bearing supported rotor system interacting with auxiliary bearings during a critical operating condition. Of particular interest is the effect of coupling between the bearing/housing and shaft vibration on the rotordynamical responses. A simulation model is developed and a number of studies are performed for various parametric configurations. An experimental investigation is also conducted to compare and verify the rotordynamic behavior predicted by the simulation studies. A strategy for reducing synchronous shaft vibration through appropriate design of coupled shaft/bearing/housing vibration modes is identified. The results are presented and discussed.

  10. Synchronous dynamics of a coupled shaft/bearing/housing system with auxiliary support from a clearance bearing: Analysis and experiment

    NASA Technical Reports Server (NTRS)

    Lawen, James L., Jr.; Flowers, George T.

    1995-01-01

    This study examines the response of a flexible rotor supported by load sharing between linear bearings and an auxiliary clearance bearing. The objective is to develop a better understanding of the dynamical behavior of a magnetic bearing supported rotor system interacting with auxiliary bearings during a critical operating condition. Of particular interest is the effect of coupling between the bearing/housing and shaft vibration on the rotordynamical responses. A simulation model is developed and a number of studies are performed for various parametric configurations. An experimental investigation is also conducted to compare and verify the rotordynamic behavior predicted by the simulation studies. A strategy for reducing synchronous shaft vibration through appropriate design of coupled shaft/bearing/housing vibration modes is identified.

  11. Pre-design study for a modern four-bladed rotor for the Rotor System Research Aircraft (RSRA). [integrating the YAH-64 main rotor

    NASA Technical Reports Server (NTRS)

    Hughes, C. W.; Logan, A. H.

    1981-01-01

    Various candidate rotor systems were compared in an effort to select a modern four-bladed rotor for the RSRA. The YAH-64 rotor system was chosen as the candidate rotor system for further development for the RSRA. The process used to select the rotor system, studies conducted to mate the rotor with the RSRA and provide parametric variability, and the development plan which would be used to implement these studies are presented. Drawings are included.

  12. Investigation of rotor blade element airloads for a teetering rotor in the blade stall regime

    NASA Technical Reports Server (NTRS)

    Dadone, L. U.; Fukushima, T.

    1974-01-01

    A model of a teetering rotor was tested in a low speed wind tunnel. Blade element airloads measured on an articulated model rotor were compared with the teetering rotor and showed that the teetering rotor is subjected to less extensive flow separation. Retreating blade stall was studied. Results show that stall, under the influence of unsteady aerodynamic effects, consists of four separate stall events, each associated with a vortex shed from the leading edge and sweeping over the upper surface of the rotor blade. Current rotor performance prediction methodology was evaluated through computer simulation.

  13. Dynamic Calibration of the NASA Ames Rotor Test Apparatus Steady/Dynamic Rotor Balance

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; vanAken, Johannes M.

    1996-01-01

    The NASA Ames Rotor Test Apparatus was modified to include a Steady/Dynamic Rotor Balance. The dynamic calibration procedures and configurations are discussed. Random excitation was applied at the rotor hub, and vibratory force and moment responses were measured on the steady/dynamic rotor balance. Transfer functions were computed using the load cell data and the vibratory force and moment responses from the rotor balance. Calibration results showing the influence of frequency bandwidth, hub mass, rotor RPM, thrust preload, and dynamic loads through the stationary push rods are presented and discussed.

  14. Transient vibrations of a bent rotor having residual imbalance during its rundown

    NASA Astrophysics Data System (ADS)

    Kostyuk, A. G.; Volokhovskaya, O. A.

    2015-09-01

    The model of a single-span rotor having an initial nonremovable sag and residual imbalance is used for estimating the amplitudes of its resonance vibrations at check points (on the supports and in the middle of the span) in the vicinity of critical speeds lying below the operating angular speed passed by the rotor as it rotates with an angular deceleration in the period from the turbine disconnection moment to its full stop (during the rundown). Two cases of installing the rotor on yielding anisotropic supports (sleeve-type bearings with an elliptic bore) are considered: during rig tests when there are two yielding supports, and when the rotor interacts with the remaining part of the assembled turbine set shaft system, which was modeled by using a yielding support at the left-hand end and a fixed hinge at the right-hand end. The analysis procedure is illustrated by calculations carried out for a K-300-23.5 turbine's high-pressure rotor having an initial sag and residual imbalance. The values of both excitation initiating factors were taken equal to their maximum permissible levels established by the limitations imposed from turbine sets operating experience on the hot-test values for the initial sag of a thermally unstable rotor and for its residual imbalance. The list of considered cases included lumped imbalance of the rotor resulted from separation of a blade or disk section and distributed residual imbalance remaining after preliminary balancing of the rotor on a rig. An analysis of the obtained results is presented.

  15. Rotor wake mixing effects downstream of a compressor rotor

    NASA Technical Reports Server (NTRS)

    Ravindranath, A.; Lakshminarayana, B.

    1981-01-01

    An experimental study of rotor wake was conducted in the trailing-edge and near-wake regions of a moderately loaded compressor rotor blade using a rotating triaxial hot-wire probe in a rotating frame of reference. The flow-field was surveyed very close to the trailing-edge as well as inside the annulus- and hub-wall boundary layers. The large amount of data acquired during this program has been analyzed to discern the decay effects as well as the spanwise variation of three components of velocity, three components of intensities and three components of shear stresses. The data set also include extensive information on the variation of the flow properties downstream. The other derived quantities include wake momentum thickness and deviation angles at various spanwise and downstream locations. These data are presented and interpreted, with emphasis on the downstream mixing as well as endwall-wake interaction effects.

  16. Rotor design optimization using a free wake analysis

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Boschitsch, Alexander H.; Wachspress, Daniel A.; Chua, Kiat

    1993-01-01

    The aim of this effort was to develop a comprehensive performance optimization capability for tiltrotor and helicopter blades. The analysis incorporates the validated EHPIC (Evaluation of Hover Performance using Influence Coefficients) model of helicopter rotor aerodynamics within a general linear/quadratic programming algorithm that allows optimization using a variety of objective functions involving the performance. The resulting computer code, EHPIC/HERO (HElicopter Rotor Optimization), improves upon several features of the previous EHPIC performance model and allows optimization utilizing a wide spectrum of design variables, including twist, chord, anhedral, and sweep. The new analysis supports optimization of a variety of objective functions, including weighted measures of rotor thrust, power, and propulsive efficiency. The fundamental strength of the approach is that an efficient search for improved versions of the baseline design can be carried out while retaining the demonstrated accuracy inherent in the EHPIC free wake/vortex lattice performance analysis. Sample problems are described that demonstrate the success of this approach for several representative rotor configurations in hover and axial flight. Features that were introduced to convert earlier demonstration versions of this analysis into a generally applicable tool for researchers and designers is also discussed.

  17. New type of wind turbine with composite rotor blade

    SciTech Connect

    Rys, J.

    1995-11-01

    During the last three years a new type of a wind turbine has been designed and tested in Division of Machine Design at Cracow University of Technology. The wind turbine consists of four main units: (1) rotor with two blades, each of them having an aerodynamically formed surface made of a laminated composite material bordered by a metallic frame; (2) directing system consisting of one rotor unit which drives blades about their own axis and controls the orientation of the turbine towards the wind; (3) supporting and transmissing system; and (4) foundation consisting of typical reinforced concrete plates fastened together, convenient to transport. The paper presents the method describing simulation of motion of the turbine. Such an approach gives one the possibility to analyze the maximum load acting in the vicinity of the blade and the load response of the elements of the turbine. A certain useful technique is demonstrated which can be applied to determine the load distribution. It is used to find e.g. the optimal fastening of internal metallic frame of the rotor blade. Specific and important advantages of the new type of engine are summarized in the final remarks as follows: perfect static and dynamic balancing, nice geometric shape of rotor which can be made of typical materials, low mass and cost per unit, typical technology of elements, easy mounting and dismounting. Several designing and technological solutions are illustrated in graphs and drawings.

  18. A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research

    NASA Technical Reports Server (NTRS)

    Coleman, Colin P.

    1997-01-01

    The recent appearance of the Kamov Ka-50 helicopter and the application of coaxial rotors to unmanned aerial vehicles have renewed international interest in the coaxial rotor configuration. This report addresses the aerodynamic issues peculiar to coaxial rotors by surveying American, Russian, Japanese, British, and German research. (Herein, 'coaxial rotors' refers to helicopter, not propeller, rotors. The intermeshing rotor system was not investigated.) Issues addressed are separation distance, load sharing between rotors, wake structure, solidity effects, swirl recovery, and the effects of having no tail rotor. A general summary of the coaxial rotor configuration explores the configuration's advantages and applications.

  19. Drive system for the retraction/extension of variable diameter rotor systems

    NASA Technical Reports Server (NTRS)

    Gmirya, Yuriy (Inventor)

    2003-01-01

    A drive system for a variable diameter rotor (VDR) system includes a plurality of rotor blade assemblies with inner and outer rotor blade segments. The outer blade segment being telescopically mounted to the inner blade segment. The VDR retraction/extension system includes a drive housing mounted at the root of each blade. The housing supports a spool assembly, a harmonic gear set and an electric motor. The spool assembly includes a pair of counter rotating spools each of which drive a respective cable which extends through the interior of the inboard rotor blade section and around a pulley mounted to the outboard rotor blade section. In operation, the electric motor drives the harmonic gear set which rotates the counter rotating spools. Rotation of the spools causes the cables to be wound onto or off their respective spool consequently effecting retraction/extension of the pulley and the attached outboard rotor blade section relative the inboard rotor blade section. As each blade drive system is independently driven by a separate electrical motor, each independent VDR blade assembly is independently positionable.

  20. Chaos control and impact suppression in rotor-bearing system using magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Piccirillo, V.; Balthazar, J. M.; Tusset, A. M.

    2015-11-01

    In this paper a general dynamic model of a rotor-bearing system using magnetorheological fluid (MR) is presented. The mathematical model of the rotor-bearing system results from a Jeffcott rotor with two-degrees of freedom and discontinuous supports. The effect of magnetorheological fluid on vibration is investigated based on a model of a modified LuGre dynamical friction model. A comparison with equivalent rotor-bearing system is made to verify the contribution of MR in this system. In this study two different implementations of the control procedure are presented, one eliminating the chaotic behavior and the second suppressing the unbalancing vibration so as to avoid impact in rotor-bearing system. First, to control the undesirable chaos in rotor-bearing system a damped passive control methodology is used. On the other hand, to suppressing the impact vibration, the Fuzzy Logic Control is considered. Results demonstrate that undesirable behaviors of rotor can be avoided by varying the damping force.

  1. Rotor and bearing system for a turbomachine

    DOEpatents

    Lubell, Daniel; Weissert, Dennis

    2006-09-26

    A rotor and bearing system for a turbomachine. The turbomachine includes a drive shaft, an impeller positioned on the drive shaft, and a turbine positioned on the drive shaft proximate to the impeller. The bearing system comprises one gas journal bearing supporting the drive shaft between the impeller and the turbine. The area between the impeller and the turbine is an area of increased heat along the drive shaft in comparison to other locations along the drive shaft. The section of the drive shaft positioned between impeller and the turbine is also a section of the drive shaft that experiences increased stressed and load in the turbomachine. The inventive bearing machine system positions only one radial bearing in this area of increased stress and load.

  2. Tone generation by rotor-downstream strut interaction

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Balombin, J. R.

    1983-01-01

    A JT15D fan stage was acoustically tested in the NASA Lewis anechoic chamber as part of the joint Lewis-Langley Research Center investigation of flight simulation techniques and flight effects using the JT15D engine as a common test vehicle. Suspected rotor-downstream support strut interaction was confirmed through the use of simulated support struts which were tested at three axial rotor-strut spacings. Tests were also performed with the struts removed. Inlet boundary layer suction in conjuction with an inflow control device was also explored. The removal of the boundary layer reduced the fan fundamental tone levels suggesting that the mounting and mating of such a device to the nacelle requires careful attention. With the same inflow control device installed good acoustic agreement was shown between the engine on an outdoor test stand and the fan in the anechoic chamber.

  3. Tone generation by rotor-downstream strut interaction

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Balombin, J. R.

    1983-01-01

    A JT15D fan stage was acoustically tested in the NASA Lewis anechoic chamber as part of the joint Lewis-Langley Research Center investigation of flight simulation techniques and flight effects using the JT15D engine as a common test vehicle. Suspected rotor-downstream support strut interaction was confirmed through the use of simulated support struts which were tested at three axial rotor-strut spacings. Tests were also performed with the struts removed. Inlet boundary layer suction in conjunction with an inflow control device was also explored. The removal of the boundary layer reduced the fan fundamental tone levels suggesting that the mounting and mating of such a device to the nacelle requires careful attention. With the same inflow control device installed good acoustic agreement was shown between the engine on an outdoor test stand and the fan in the anechoic chamber.

  4. Preliminary investigation of labyrinth packing pressure drops at onset of swirl-induced rotor instability

    NASA Technical Reports Server (NTRS)

    Miller, E. H.; Vohr, J. H.

    1984-01-01

    Backward and forward subsynchronous instability was observed in a flexible model test rotor under the influence of swirl flow in a straight-through labyrinth packing. The packing pressure drop at the onset of instability was then measured for a range of operating speeds, clearances and inlet swirl conditions. The trend in these measurements for forward swirl and forward instability is generally consistent with the short packing rotor force formulations of Benchert and Wachter. Diverging clearances were also destabilizing and had a forward orbit with forward swirl and a backward orbit with reverse swirl. A larger, stiff rotor model system is now being assembled which will permit testing steam turbine-type straight-through and hi-lo labyrinth packings. With calibrated and adjustable bearings in this new apparatus, direct measure of the net destabilizing force generated by the packings can be made.

  5. Wind turbine rotor assembly

    SciTech Connect

    Kaiser, H. W.

    1984-11-20

    A vertical axis wind turbine having a horizontal arm member which supports an upright blade assembly. Bearing structure coupling the blade assembly to the turbine arm permits blade movement about its longitudinal axis as well as flexing motion of the blade assembly about axes perpendicular to the longitudinal axis. A latching mechanism automatically locks the blade assembly to its supporting arm during normal turbine operation and automatically unlocks same when the turbine is at rest. For overspeed prevention, a centrifugally actuated arm functions to unlatch the blade assembly permitting same to slipstream or feather into the wind. Manually actuated means are also provided for unlatching the moving blade assembly. The turbine arm additionally carries a switching mechanism in circuit with a turbine generator with said mechanism functioning to open and hence protect the generator circuit in the event of an overspeed condition of the turbine.

  6. A study of rotor broadband noise mechanisms and helicopter tail rotor noise

    NASA Technical Reports Server (NTRS)

    Chou, Shau-Tak Rudy

    1990-01-01

    The rotor broadband noise mechanisms considered are the following: (1) lift fluctuation due to turbulence ingestion; (2) boundary layer/trailing edge interaction; (3) tip vortex formation; and (4) turbulent vortex shedding from blunt trailing edge. Predictions show good agreement with available experimental data. The study shows that inflow turbulence is the most important broadband noise source for typical helicopters' main rotors at low- and mid-frequencies. Due to the size difference, isolated helicopter tail rotor broadband noise is not important compared to the much louder main rotor broadband noise. However, the inflow turbulence noise from a tail rotor can be very significant because it is operating in a highly turbulent environment, ingesting wakes from upstream components of the helicopter. The study indicates that the main rotor turbulent wake is the most important source of tail rotor broadband noise. The harmonic noise due to ingestion of main rotor tip vortices is studied.

  7. Rotor blade vortex interaction noise

    NASA Astrophysics Data System (ADS)

    Yu, Yung H.

    2000-02-01

    Blade-vortex interaction noise-generated by helicopter main rotor blades is one of the most severe noise problems and is very important both in military applications and community acceptance of rotorcraft. Research over the decades has substantially improved physical understanding of noise-generating mechanisms, and various design concepts have been investigated to control noise radiation using advanced blade planform shapes and active blade control techniques. The important parameters to control rotor blade-vortex interaction noise and vibration have been identified: blade tip vortex structures and its trajectory, blade aeroelastic deformation, and airloads. Several blade tip design concepts have been investigated for diffusing tip vortices and also for reducing noise. However, these tip shapes have not been able to substantially reduce blade-vortex interaction noise without degradation of rotor performance. Meanwhile, blade root control techniques, such as higher-harmonic pitch control (HHC) and individual blade control (IBC) concepts, have been extensively investigated for noise and vibration reduction. The HHC technique has proved the substantial blade-vortex interaction noise reduction, up to 6 dB, while vibration and low-frequency noise have been increased. Tests with IBC techniques have shown the simultaneous reduction of rotor noise and vibratory loads with 2/rev pitch control inputs. Recently, active blade control concepts with smart structures have been investigated with the emphasis on active blade twist and trailing edge flap. Smart structures technologies are very promising, but further advancements are needed to meet all the requirements of rotorcraft applications in frequency, force, and displacement.

  8. Rotor blades for turbine engines

    SciTech Connect

    Piersall, Matthew R; Potter, Brian D

    2013-02-12

    A tip shroud that includes a plurality of damping fins, each damping fin including a substantially non-radially-aligned surface that is configured to make contact with a tip shroud of a neighboring rotor blade. At least one damping fin may include a leading edge damping fin and at least one damping fin may include a trailing edge damping fin. The leading edge damping fin may be configured to correspond to the trailing edge damping fin.

  9. Rotor stability estimation with competing tilting pad bearing models

    NASA Astrophysics Data System (ADS)

    Cloud, C. Hunter; Maslen, Eric H.; Barrett, Lloyd E.

    2012-05-01

    When predicting the stability of rotors supported by tilting pad journal bearings, it is currently debated whether or not the bearings should be represented with frequency dependent dynamics. Using an experimental apparatus, measurements of pad temperatures, unbalance response and stability are compared with modeling predictions for two tilting pad bearing designs. Predictions based on frequency dependent tilting pad bearing dynamics exhibited significantly better correlation with the stability measurements than those assuming frequency independent dynamics.

  10. A comprehensive vibration analysis of a coupled rotor/fuselage system

    NASA Astrophysics Data System (ADS)

    Yeo, Hyeonsoo

    A comprehensive vibration analysis of a coupled rotor/fuselage system for a two-bladed teetering rotor using finite element methods in space and time is developed which incorporates consistent rotor/fuselage structural, aerodynamic, and inertial couplings and a modern free wake model. A coordinate system is developed to take into account a teetering rotor's unique characteristics, such as teetering motion and undersling. Coupled nonlinear periodic blade and fuselage equations are transformed to the modal space in the fixed frame and solved simultaneously. The elastic line and detailed 3-D NASTRAN finite element models of the AH-1G helicopter airframe from the DAMVIBS program are integrated into the elastic rotor finite element model. Analytical predictions of rotor control angles, blade loads, hub forces, and vibration are compared with AH-1G Operation Load Survey flight test data. The blade loads predicted by present analysis show generally fair agreement with the flight test data, especially blade chord bending moment estimation shows good agreement. Calculated 2/rev vertical vibration levels at pilot seat show good correlation with the flight test data both in magnitude and phase, but 4/rev vibration levels show fair correlation only in magnitude. Lateral vibration results show more disagreement than vertical vibration results. Pylon flexibility effect is essential in the two-bladed teetering rotor vibration analysis. The pylon flexibility increases the first lag frequency by about 14%, and decreases 2/rev longitudinal and lateral hub forces by more than half. Rotor/fuselage coupling reduces 2/rev vertical and lateral vibration levels by 60% to 70% and has a small effect on 4/rev vibration levels. Modeling of difficult components (secondary structures, doors/panels, etc) is essential in predicting airframe natural frequencies. Refined aerodynamics such as free wake and unsteady aerodynamics have an important role in the prediction of vibration. For example, free

  11. Aeroelastic considerations for torsionally soft rotors

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.

    1985-01-01

    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades.

  12. Helicopter rotor trailing edge noise

    NASA Astrophysics Data System (ADS)

    Schlinker, R. H.; Amier, R. K.

    1981-11-01

    A two dimensional section of a helicopter main rotor blade was tested in an acoustic wind tunnel at close to full-scale Reynolds numbers to obtain boundary layer data and acoustic data for use in developing an acoustic scaling law and testing a first principles trailing edge noise theory. Results were extended to the rotating frame coordinate system to develop a helicopter rotor trailing edge noise prediction. Comparisons of the calculated noise levels with helicopter flyover spectra demonstrate that trailing edge noise contributes significantly to the total helicopter noise spectrum at high frequencies. This noise mechanism is expected to control the minimum rotor noise. In the case of noise radiation from a local blade segment, the acoustic directivity pattern is predicted by the first principles trailing edge noise theory. Acoustic spectra are predicted by a scaling law which includes Mach number, boundary layer thickness and observer position. Spectrum shape and sound pressure level are also predicted by the first principles theory but the analysis does not predict the Strouhal value identifying the spectrum peak.

  13. A novel piezoelectric actuator with a screw-coupled stator and rotor for driving an aperture

    NASA Astrophysics Data System (ADS)

    Li, Xiaoniu; Zhou, Shengqiang

    2016-03-01

    Variable apertures have become very important in optical applications. This paper presents a new type of piezoelectric actuator with a screw-coupled stator and rotor that is developed to operate an aperture. The actuator and the aperture are integrated to control the luminous flux. To open or close, the aperture only needs to rotate through a limited angle. Therefore, the actuator is designed so that the rotor and the stator are simply connected by a screw to couple the axial preload and the circumferential movement. The torque and velocity of the actuator are produced by its circumferential motion. The preload of the actuator is applied by deforming the rotor along the axial direction. This method of preloading makes it difficult to keep the preload constant during the actuator’s work. To overcome this problem, a novel flexible rotor with a low stiffness is designed. An equivalent stiffness model of the rotor is presented for the design of a flexible rotor. Its design parameters are determined by a numerical model and confirmed using the finite element method. A prototype is fabricated to drive the aperture. The experimental results demonstrate a resolution of 20 μrad and a rotational range of 300°. The opening and closing durations of the aperture are 96 ms and 97.2 ms, respectively, for a rotation range of 90°. The rotation angle of the actuator is linearly related to time, which shows that its performance is controlled well. The novel screw-coupled piezoelectric actuator for driving an aperture features high resolution, high speed, simple structure and compact size.

  14. Rotor fatigue monitoring data acquisition system

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    1993-01-01

    The 40 by 80 Foot Wind Tunnel of the National Full Scale Aerodynamics Complex (NFAC) had a requirement to monitor rotor fatigue during a test. This test subjected various rotor components to stress levels higher than their structural fatigue limits. A data acquisition system was developed to monitor the cumulative fatigue damage of rotor components using National Instruments hardware and LabVIEW software. A full description of the data acquisition system including its configuration and salient features, is presented in this paper.

  15. Coupled rotor and fuselage equations of motion

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.

    1979-01-01

    The governing equations of motion of a helicopter rotor coupled to a rigid body fuselage are derived. A consistent formulation is used to derive nonlinear periodic coefficient equations of motion which are used to study coupled rotor/fuselage dynamics in forward flight. Rotor/fuselage coupling is documented and the importance of an ordering scheme in deriving nonlinear equations of motion is reviewed. The nature of the final equations and the use of multiblade coordinates are discussed.

  16. Flywheel Rotor Safe-Life Technology

    NASA Technical Reports Server (NTRS)

    Ratner, J. K. H.; Chang, J. B.; Christopher, D. A.; McLallin, Kerry L. (Technical Monitor)

    2002-01-01

    Since the 1960s, research has been conducted into the use of flywheels as energy storage systems. The-proposed applications include energy storage for hybrid and electric automobiles, attitude control and energy storage for satellites, and uninterruptible power supplies for hospitals and computer centers. For many years, however, the use of flywheels for space applications was restricted by the total weight of a system employing a metal rotor. With recent technological advances in the manufacturing of composite materials, however, lightweight composite rotors have begun to be proposed for such applications. Flywheels with composite rotors provide much higher power and energy storage capabilities than conventional chemical batteries. However, the failure of a high speed flywheel rotor could be a catastrophic event. For this reason, flywheel rotors are classified by the NASA Fracture Control Requirements Standard as fracture critical parts. Currently, there is no industry standard to certify a composite rotor for safe and reliable operation forth( required lifetime of the flywheel. Technical problems hindering the development of this standard include composite manufacturing inconsistencies, insufficient nondestructive evaluation (NDE) techniques for detecting defects and/or impact damage, lack of standard material test methods for characterizing composite rotor design allowables, and no unified proof (over-spin) test for flight rotors. As part of a flywheel rotor safe-life certification pro-ram funded b the government, a review of the state of the art in composite rotors is in progress. The goal of the review is to provide a clear picture of composite flywheel rotor technologies. The literature review has concentrated on the following topics concerning composites and composite rotors: durability (fatigue) and damage tolerance (safe-life) analysis/test methods, in-service NDE and health monitoring techniques, spin test methods/ procedures, and containment options

  17. Strong, Ductile Rotor For Cryogenic Flowmeters

    NASA Technical Reports Server (NTRS)

    Royals, W. T.

    1993-01-01

    Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected.

  18. Rotor/wing aerodynamic interactions in hover

    NASA Technical Reports Server (NTRS)

    Felker, F. F.; Light, J. S.

    1986-01-01

    An experimental and theoretical investigation of rotor/wing aerodynamic interactions in hover is described. The experimental investigation consisted of both a large-scale and small-scale test. A 0.658-scale, V-22 rotor and wing was used in the large-scale test. Wind download, wing surface pressure, rotor performance, and rotor downwash data from the large-scale test are presented. A small-scale experiment was conducted to determine how changes in the rotor/wing geometry affected the aerodynamic interactions. These geometry variations included the distance between the rotor and wing, wing incidence angle, and configurations both with the rotor axis at the tip of the wing (tilt rotor configuration) and with the rotor axis at the center of the wing (compound helicopter configuration). A wing with boundary-layer control was also tested to evaluate the effect of leading and trailing edge upper surface blowing on the wing download. A computationally efficient, semi-empirical theory was developed to predict the download on the wing. Finally, correlations between the theoretical predictions and test data are presented.

  19. Rotor thermal stress monitoring in steam turbines

    NASA Astrophysics Data System (ADS)

    Antonín, Bouberle; Jan, Jakl; Jindřich, Liška

    2015-11-01

    One of the issues of steam turbines diagnostics is monitoring of rotor thermal stress that arises from nonuniform temperature field. The effort of steam turbine operator is to operate steam turbine in such conditions, that rotor thermal stress doesn't exceed the specified limits. If rotor thermal stress limits are exceeded for a long time during machine operation, the rotor fatigue life is shortened and this may lead to unexpected machine failure. Thermal stress plays important role during turbine cold startup, when occur the most significant differences of temperatures through rotor cross section. The temperature field can't be measured directly in the entire rotor cross section and standardly the temperature is measured by thermocouple mounted in stator part. From this reason method for numerical solution of partial differential equation of heat propagation through rotor cross section must be combined with method for calculation of temperature on rotor surface. In the first part of this article, the application of finite volume method for calculation of rotor thermal stress is described. The second part of article deals with optimal trend generation of thermal flux, that could be used for optimal machine loading.

  20. Design of helicopter rotors to noise constraints

    NASA Technical Reports Server (NTRS)

    Schaeffer, E. G.; Sternfeld, H., Jr.

    1978-01-01

    Results of the initial phase of a research project to study the design constraints on helicopter noise are presented. These include the calculation of nonimpulsive rotor harmonic and broadband hover noise spectra, over a wide range of rotor design variables and the sensitivity of perceived noise level (PNL) to changes in rotor design parameters. The prediction methodology used correlated well with measured whirl tower data. Application of the predictions to variations in rotor design showed tip speed and thrust as having the most effect on changing PNL.

  1. Rotor Flapping Response to Active Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Khanh; Johnson, Wayne

    2004-01-01

    Rotor active control using higher harmonic blade pitch has been proposed as a means to reduce both rotor radiated noise and airframe vibration and to enhance rotor performance. The higher harmonic input, however, can affect rotor thrust and cyclic flapping - the basic trim characteristics of the rotor. Some of the trim changes can negate the active control benefits. For example, wind tunnel test results of a full scale BO-105 rotor with individual-blade control indicate some rotor performance improvements, accompanied with changes in rotor trim, using two-per-rev blade pitch input. The observed performance benefits could therefore be a simple manifestation of the trim change rather than an efficient redistribution of the rotor airloads. More recently, the flight test of the BO-105 helicopter equip,ped with individual-blade-control actuators also reported trim changes whenever the two-per-rev blade pitch for noise reduction was activated. The pilot had to adjust the trim control to maintain the aircraft under a constant flight path. These two cases highlight the, importance of trim considerations in the application of active control to rotorcraft.

  2. Aeroelastic characteristics of composite bearingless rotor blades

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.

    1976-01-01

    Owing to the inherent unique structural features of composite bearingless rotors, various assumptions upon which conventional rotor aeroelastic analyses are formulated, are violated. Three such features identified are highly nonlinear and time-varying structural twist, structural redundancy in bending and torsion, and for certain configurations a strongly coupled low frequency bending-torsion mode. An examination of these aeroelastic considerations and appropriate formulations required for accurate analyses of such rotor systems is presented. Also presented are test results from a dynamically scaled model rotor and complementary analytic results obtained with the appropriately reformulated aeroelastic analysis.

  3. FLEXIBLE COUPLING

    DOEpatents

    Babelay, E.F.

    1962-02-13

    A flexible shaft coupling for operation at speeds in excess of 14,000 rpm is designed which requires no lubrication. A driving sleeve member and a driven sleeve member are placed in concentric spaced relationship. A torque force is transmitted to the driven member from the driving member through a plurality of nylon balls symmetrically disposed between the spaced sleeves. The balls extend into races and recesses within the respective sleeve members. The sleeve members have a suitable clearance therebetween and the balls have a suitable radial clearance during operation of the coupling to provide a relatively loose coupling. These clearances accommodate for both parallel and/or angular misalignments and avoid metal-tometal contact between the sleeve members during operation. Thus, no lubrication is needed, and a minimum of vibrations is transmitted between the sleeve members. (AEC)

  4. Theoretical study of hull-rotor aerodynamic interference on semibuoyant vehicles

    NASA Technical Reports Server (NTRS)

    Spangler, S. B.; Smith, C. A.

    1978-01-01

    Analytical methods are developed to predict the pressure distribution and overall loads on the hulls of airships which have close coupled, relatively large and/or high disk loading propulsors for attitude control, station keeping, and partial support of total weight as well as provision of thrust in cruise. The methods comprise a surface-singularity, potential-flow model for the hull and lifting surfaces (such as tails) and a rotor model which calculates the velocity induced by the rotor and its wake at points adjacent to the wake. Use of these two models provides an inviscid pressure distribution on the hull with rotor interference. A boundary layer separation prediction method is used to locate separation on the hull, and a wake pressure is imposed on the separated region for purposes of calculating hull loads. Results of calculations are shown to illustrate various cases of rotor-hull interference and comparisons with small scale data are made to evaluate the method.

  5. An assessment of the capability to calculate tilting prop-rotor aircraft performance, loads and stability

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1984-01-01

    Calculated performance, loads, and stability of the XV-15 tilt rotor research aircraft are compared with wind tunnel and flight measurements, to define the level of the current analytical capability for tilting prop rotor aircraft, and to define the requirements for additional experimental data and further analysis development. The correlation between calculated and measured behavior is generally good, although there are some significant discrepancies. Based on this correlation, the analysis is assessed overall as being adequate for the design, evaluation, and testing of tilting prop rotor aircraft. A general assessment of the state of the art of tilt rotor predictive capability is given. Specific areas are identified where improvements in the capability to calculate performance, loads, and stability are desirable. Requirements for more accurate and detailed data which support the development of improved analytical models are identified as well.

  6. Flag-lag-torsional dynamics or extensional and inextensional rotor blades in hover and in forward flight

    NASA Technical Reports Server (NTRS)

    Crespodasilva, M. R. M.

    1981-01-01

    The differential equations describing the flap-lag-torsional motion of a flexible rotor blade including third-order nonlinearities were derived for hover and forward flight. Making use of the two boundary conditions, those equations were reduced to a set of three integro partial differential equations written in terms of the flexural deflections and the torsional variable.

  7. AI vibration control of high-speed rotor systems using electrorheological fluid

    NASA Astrophysics Data System (ADS)

    Lim, Seungchul; Park, Sang-Min; Kim, Kab-Il

    2005-06-01

    This paper is concerned with the design and application of an electrorheological (ER) fluid damper to semiactive vibration control of rotor systems. In particular, the system under the present study is constructed structurally flexible in order to explore the behavior of a high-speed spindle system traversing multiple critical speeds within motor capacity. To seek a way of suppressing the rotor vibration, dynamic models for the proposed ER damper and its associated amplifier are derived. Subsequently, they are assembled with the other relevant spindle components by means of the finite element method, enabling predictions as to free and forced vibration characteristics of the entire rotor system. Next, an artificial intelligent (AI) feedback controller is synthesized based on the system model, taking into account the stiffening effect of the point damper in flexible rotor applications. Finally, computational and experimental results are presented regarding model validation and control performances. In practice, such an AI control scheme proves effective and robust whether the spin rate is either below or above the critical speeds.

  8. An analytic modeling and system identification study of rotor/fuselage dynamics at hover

    NASA Technical Reports Server (NTRS)

    Hong, Steven W.; Curtiss, H. C., Jr.

    1993-01-01

    A combination of analytic modeling and system identification methods have been used to develop an improved dynamic model describing the response of articulated rotor helicopters to control inputs. A high-order linearized model of coupled rotor/body dynamics including flap and lag degrees of freedom and inflow dynamics with literal coefficients is compared to flight test data from single rotor helicopters in the near hover trim condition. The identification problem was formulated using the maximum likelihood function in the time domain. The dynamic model with literal coefficients was used to generate the model states, and the model was parametrized in terms of physical constants of the aircraft rather than the stability derivatives, resulting in a significant reduction in the number of quantities to be identified. The likelihood function was optimized using the genetic algorithm approach. This method proved highly effective in producing an estimated model from flight test data which included coupled fuselage/rotor dynamics. Using this approach it has been shown that blade flexibility is a significant contributing factor to the discrepancies between theory and experiment shown in previous studies. Addition of flexible modes, properly incorporating the constraint due to the lag dampers, results in excellent agreement between flight test and theory, especially in the high frequency range.

  9. An analytic modeling and system identification study of rotor/fuselage dynamics at hover

    NASA Technical Reports Server (NTRS)

    Hong, Steven W.; Curtiss, H. C., Jr.

    1993-01-01

    A combination of analytic modeling and system identification methods have been used to develop an improved dynamic model describing the response of articulated rotor helicopters to control inputs. A high-order linearized model of coupled rotor/body dynamics including flap and lag degrees of freedom and inflow dynamics with literal coefficients is compared to flight test data from single rotor helicopters in the near hover trim condition. The identification problem was formulated using the maximum likelihood function in the time domain. The dynamic model with literal coefficients was used to generate the model states, and the model was parametrized in terms of physical constants of the aircraft rather than the stability derivatives resulting in a significant reduction in the number of quantities to be identified. The likelihood function was optimized using the genetic algorithm approach. This method proved highly effective in producing an estimated model from flight test data which included coupled fuselage/rotor dynamics. Using this approach it has been shown that blade flexibility is a significant contributing factor to the discrepancies between theory and experiment shown in previous studies. Addition of flexible modes, properly incorporating the constraint due to the lag dampers, results in excellent agreement between flight test and theory, especially in the high frequency range.

  10. Advances in Rotor Performance and Turbulent Wake Simulation Using DES and Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    2012-01-01

    Time-dependent Navier-Stokes simulations have been carried out for a rigid V22 rotor in hover, and a flexible UH-60A rotor in forward flight. Emphasis is placed on understanding and characterizing the effects of high-order spatial differencing, grid resolution, and Spalart-Allmaras (SA) detached eddy simulation (DES) in predicting the rotor figure of merit (FM) and resolving the turbulent rotor wake. The FM was accurately predicted within experimental error using SA-DES. Moreover, a new adaptive mesh refinement (AMR) procedure revealed a complex and more realistic turbulent rotor wake, including the formation of turbulent structures resembling vortical worms. Time-dependent flow visualization played a crucial role in understanding the physical mechanisms involved in these complex viscous flows. The predicted vortex core growth with wake age was in good agreement with experiment. High-resolution wakes for the UH-60A in forward flight exhibited complex turbulent interactions and turbulent worms, similar to the V22. The normal force and pitching moment coefficients were in good agreement with flight-test data.

  11. A finite element-based algorithm for rubbing induced vibration prediction in rotors

    NASA Astrophysics Data System (ADS)

    Behzad, Mehdi; Alvandi, Mehdi; Mba, David; Jamali, Jalil

    2013-10-01

    In this paper, an algorithm is developed for more realistic investigation of rotor-to-stator rubbing vibration, based on finite element theory with unilateral contact and friction conditions. To model the rotor, cross sections are assumed to be radially rigid. A finite element discretization based on traditional beam theories which sufficiently accounts for axial and transversal flexibility of the rotor is used. A general finite element discretization model considering inertial and viscoelastic characteristics of the stator is used for modeling the stator. Therefore, for contact analysis, only the boundary of the stator is discretized. The contact problem is defined as the contact between the circular rigid cross section of the rotor and “nodes” of the stator only. Next, Gap function and contact conditions are described for the contact problem. Two finite element models of the rotor and the stator are coupled via the Lagrange multipliers method in order to obtain the constrained equation of motion. A case study of the partial rubbing is simulated using the algorithm. The synchronous and subsynchronous responses of the partial rubbing are obtained for different rotational speeds. In addition, a sensitivity analysis is carried out with respect to the initial clearance, the stator stiffness, the damping parameter, and the coefficient of friction. There is a good agreement between the result of this research and the experimental result in the literature.

  12. Nonlinear vibration analysis of an eccentric rotor with unbalance magnetic pull

    NASA Astrophysics Data System (ADS)

    Song, Z.; Ma, Z.

    2010-08-01

    The unbalance magnetic pull of an eccentric water turbine generator set rotor has important influence on its vibration. The magnetic stiffness matrix is introduced to express the energy of the air gap magnetic field. Two vibration models are constructed through the Lagrange Equation. The difference of the two models is the boundary supporting conditions: one is rigid support and the other is elastic support through bearing. The influence of the magnetic stiffness and the elastic support on the critical speed of the rotor is studied using the Liapunov nonlinear vibration theory. The vibration amplitude of the rotor is calculated taking the magnetic stiffness and level eccentricity force into account. The sensitivity of the magnetic, mechanical and bearing parameters to the critical speed is analyzed. Some conclusions may be benefit to the study the dynamic characters of the generator set shaft system which concludes all the magnetic, mechanical and hydraulic parameters.

  13. Method for manufacturing a rotor having superconducting coils

    DOEpatents

    Driscoll, David I.; Shoykhet, Boris A.

    2001-01-01

    A method and apparatus for manufacturing a rotor for use with a rotating machine is provided that employs a superconducting coil on the rotor. An adhesive is applied to an outer surface of the rotor body, which may include a groove disposed within an outer surface of the rotor body. A superconducting coil is then mounted onto the rotor body such that the adhesive bonds the superconducting coil to the rotor body.

  14. Rolling-cuff flexible bellows

    DOEpatents

    Lambert, D.R.

    1982-09-27

    A flexible connector apparatus used to join two stiff non-deformable members, such as piping, is described. The apparatus is provided with one or more flexible sections or assemblies each utilizing a bellows of a rolling cuff type connected between two ridge members, with the bellows being supported by a back-up ring, such that only the curved end sections of the bellows are unsupported. Thus, the bellows can be considered as being of a tube-shaped configuration and thus have high pressure resistance. The components of the flexible apparatus are sealed or welded one to another such that it is fluid tight.

  15. Development of a set of equations for incorporating disk flexibility effects in rotordynamical analyses

    NASA Technical Reports Server (NTRS)

    Flowers, George T.; Ryan, Stephen G.

    1991-01-01

    Rotordynamical equations that account for disk flexibility are developed. These equations employ free-free rotor modes to model the rotor system. Only transverse vibrations of the disks are considered, with the shaft/disk system considered to be torsionally rigid. Second order elastic foreshortening effects that couple with the rotor speed to produce first order terms in the equations of motion are included. The approach developed in this study is readily adaptable for usage in many of the codes that are current used in rotordynamical simulations. The equations are similar to those used in standard rigid disk analyses but with additional terms that include the effects of disk flexibility. An example case is presented to demonstrate the use of the equations and to show the influence of disk flexibility on the rotordynamical behavior of a sample system.

  16. Flexible Flatfoot

    MedlinePlus

    ... therapy modalities may be used to provide temporary relief. Shoe modifications. Wearing shoes that support the arches is important for anyone who has flatfoot. Ankle Foot Orthoses (AFO) devices. Your foot and ankle surgeon may recommend advanced ...

  17. Recent developments in the dynamics of advanced rotor systems

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1985-01-01

    The problems that were encountered in the dynamics of advanced rotor systems are described. The methods for analyzing these problems are discussed, as are past solutions of the problems. To begin, the basic dynamic problems of rotors are discussed: aeroelastic stability, rotor and airframe loads, and aircraft vibration. Next, advanced topics that are the subject of current research are described: vibration control, dynamic upflow, finite element analyses, and composite materials. Finally, the dynamics of various rotorcraft configurations are considered: hingeless rotors, bearingless rotors, rotors with circulation control, coupled rotor/engine dynamics, articulated rotors, and tilting proprotor aircraft.

  18. Control of flexible structures

    NASA Technical Reports Server (NTRS)

    Russell, R. A.

    1985-01-01

    The requirements for future space missions indicate that many of these spacecraft will be large, flexible, and in some applications, require precision geometries. A technology program that addresses the issues associated with the structure/control interactions for these classes of spacecraft is discussed. The goal of the NASA control of flexible structures technology program is to generate a technology data base that will provide the designer with options and approaches to achieve spacecraft performance such as maintaining geometry and/or suppressing undesired spacecraft dynamics. This technology program will define the appropriate combination of analysis, ground testing, and flight testing required to validate the structural/controls analysis and design tools. This work was motivated by a recognition that large minimum weight space structures will be required for many future missions. The tools necessary to support such design included: (1) improved structural analysis; (2) modern control theory; (3) advanced modeling techniques; (4) system identification; and (5) the integration of structures and controls.

  19. A study of autogiro rotor-blade oscillations in the plane of the rotor disk

    NASA Technical Reports Server (NTRS)

    Wheatley, John B

    1936-01-01

    An analysis of the factors governing the oscillation of an autogiro rotor blade in the plane of the rotor disk showed that the contribution of the air forces to the resultant motion was small and that the oscillation is essentially a direct effect of the rotor-blade flapping motion. A comparison of calculated oscillations with those measured in flight on three different rotors disclosed that the calculations gave satisfactory agreement with experiment. The calculated air forces on the rotor blade appear to be larger than the experimental ones, but this discrepancy can be attributed to the deficiencies in the strip analysis.

  20. V/STOL tilt rotor aircraft study. Volume 5: Definition of stowed rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Soule, V. A.

    1973-01-01

    The results of a study of folding tilt rotor (stowed rotor) aircraft are presented. The effects of design cruise speed on the gross weight of a conceptual design stowed rotor aircraft are shown and a comparison is made with a conventional (non-folding) tilt rotor aircraft. A flight research stowed rotor design is presented. The program plans, including costs and schedules, are shown for the research aircraft development and a wind tunnel plan is presented for a full scale test of the aircraft.

  1. Disk flexibility effects on the rotordynamics of the SSME high pressure turbopumps

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1990-01-01

    Rotordynamical analyses are typically performed using rigid disk models. Studies of rotor models in which the effects of disk flexibility were included indicate that it may be an important effect for many systems. This issue is addressed with respect to the Space Shuttle Main Engine high pressure turbopumps. Finite element analyses were performed for a simplified free-free flexible disk rotor models and the modes and frequencies compared to those of a rigid disk model. Equations were developed to account for disk flexibility in rotordynamical analysis. Simulation studies were conducted to assess the influence of disk flexibility on the HPOTP. Some recommendations are given as to the importance of disk flexibility and for how this project should proceed.

  2. An evaluation of free- and fixed-vane flowmeters with curved- and flat-bladed Savonius rotors

    NASA Astrophysics Data System (ADS)

    Joseph, Antony; Desa, Ehrlich

    1994-04-01

    Speed and direction performances of flowmeters, designed by the authors for in-house use, employing an Aanderaa-type curved-bladed Savonius rotor and a free vane and an Aanderaa-type flat-bladed Savonius rotor and a fixed vane, are discussed. It has been observed that accuracy, linearity, and tilt response of a meter using the Aanderaa curved-bladed rotor is superior to those of a meter using the Aanderaa flat-bladed rotor. Analysis showed that the azimuth response of a flowmeter is affected by the presence of support rods surrounding its rotor. The change in azimuth response arises from flow pattern modifications in the vicinity of the rotor, imposed by the changes in the horizontal angle of the support rods of the rotor relative to the flow streamlines. While the use of two support rods may be suitable for a fixed-vane system, it is undesirable for a free-vane system where the meter's orientation with respect to the flow direction is not defined. Flow direction calibration results indicated that a fixed-vane system exhibits superior direction performance compared to a free-vane system. The comparatively poor direction performance of the free-vane system stems from the poor coupling to the 'vane-follower' magnet from the external vane.

  3. Periodic response of multi-disk rotors with bearing clearances

    NASA Technical Reports Server (NTRS)

    Kim, Y. B.; Noah, S. T.; Choi, Y. S.

    1991-01-01

    The forced steady state response of a multi-disk rotor system involving a clearance at one of the bearings is determined by using a harmonic balance approach. The impedance method is applied to each of the harmonic steady state components in order to reduce the system to its displacement at the nonlinear bearing support. The results reveal the interrelated roles of the bearing clearance, mass eccentricity and side force in producing dangerous subharmonics. The significant effects of the strong nonlinearity of a bearing clearance are studied as related to the various system parameters. The results show that the approach developed in this study is computationally superior to numerical integration methods in analyzing multi-disk rotor systems with strong nonlinearity.

  4. Periodic response of multi-disk rotors with bearing clearances

    NASA Astrophysics Data System (ADS)

    Kim, Y. B.; Noah, S. T.; Choi, Y. S.

    1991-02-01

    The forced steady state response of a multi-disk rotor system involving a clearance at one of the bearings is determined by using a harmonic balance approach. The impedance method is applied to each of the harmonic steady state components in order to reduce the system to its displacement at the non-linear bearing support. The results reveal the interrelated roles of the bearing clearance, mass eccentricity and side force in producing dangerous subharmonics. The significant effects of the strong non-linearity of a bearing clearance are studied as related to the various system parameters. The results show that the approach developed in this study is computationally superior to numerical integration methods in analyzing multi-disk rotor systems with strong non-linearity.

  5. Sweep-twist adaptive rotor blade : final project report.

    SciTech Connect

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.

  6. A study of helicopter main rotor noise in hover

    NASA Technical Reports Server (NTRS)

    Kitaplioglu, C.; Kinney, C.

    1986-01-01

    Some fundamental aspects of rotor noise generation and radiation are presented. Data on which the study is based were obtained during a hover test at the NASA Ames Outdoor Aerodynamic Research Facility of a one-sixth-scale, four-bladed, helicopter rotor. The test site provided an open environment ideal for acquiring good acoustic data. Information is presented on the delineation between the acoustic near-field and far-field, and on the effect of a simple boundary-layer trip device. Data obtained at near-zero thrust conditions indicate that it is possible to isolate thickness noise with minimum contamination by loading noise effects. An abrupt change in the nature of the emitted noise at high-thrust conditions is investigated and is related to unsteady wake/support interaction.

  7. Variable-Tilt Helicopter Rotor Mast

    NASA Technical Reports Server (NTRS)

    Kelley, Henry L.

    1995-01-01

    Variable-tilt helicopter rotor mast proposed to improve helicopter performance and reduce vibration, especially at upper end of forward-speed range of helicopters. Achieved by use of universal coupling in main rotor mast or by tilting entire engine-and-transmission platform. Performance, energy efficiency, and safety enhanced.

  8. 14 CFR 33.34 - Turbocharger rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbocharger rotors. 33.34 Section 33.34... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.34 Turbocharger rotors. Each turbocharger case must be designed and constructed to be able to contain fragments of...

  9. Blood Pump Having a Magnetically Suspended Rotor

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2002-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  10. Blood Pump Having a Magnetically Suspended Rotor

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2001-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  11. Pneumatic boot for helicopter rotor deicing

    NASA Technical Reports Server (NTRS)

    Blaha, B. J.; Evanich, P. L.

    1981-01-01

    Pneumatic deicer boots for helicopter rotor blades were tested. The tests were conducted in the 6 by 9 ft icing research tunnel on a stationary section of a UH-IH helicopter main rotor blade. The boots were effective in removing ice and in reducing aerodynamic drag due to ice.

  12. Radial-radial single rotor turbine

    DOEpatents

    Platts, David A.

    2006-05-16

    A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

  13. Flapping inertia for selected rotor blades

    NASA Technical Reports Server (NTRS)

    Berry, John D.; May, Matthew J.

    1991-01-01

    Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.

  14. 14 CFR 33.34 - Turbocharger rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbocharger rotors. 33.34 Section 33.34 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... rotors. Each turbocharger case must be designed and constructed to be able to contain fragments of...

  15. Algebraic Realization of the Triaxial Rotor Dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, Q. Y.; Zuo, Y.; Wang, X. X.

    A mapping from the triaxial rotor to the SU(3) limit description in the interacting boson model is established. A comparison between the triaxial dynamics generated from the triaxial rotor and those from the IBM image has been made through a numerical example, and the results indicate that the mapping scheme works very well.

  16. Composite hub/metal blade compressor rotor

    NASA Technical Reports Server (NTRS)

    Yao, S.

    1978-01-01

    A low cost compressor rotor was designed and fabricated for a small jet engine. The rotor hub and blade keepers were compression molded with graphite epoxy. Each pair of metallic blades was held in the hub by a keeper. All keepers were locked in the hub with circumferential windings. Feasibility of fabrication was demonstrated in this program.

  17. Theoretical models of helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Hawkings, D. L.

    1978-01-01

    For low speed rotors, it is shown that unsteady load models are only partially successful in predicting experimental levels. A theoretical model is presented which leads to the concept of unsteady thickness noise. This gives better agreement with test results. For high speed rotors, it is argued that present models are incomplete and that other mechanisms are at work. Some possibilities are briefly discussed.

  18. Rotor systems research aircraft simulation mathematical model

    NASA Technical Reports Server (NTRS)

    Houck, J. A.; Moore, F. L.; Howlett, J. J.; Pollock, K. S.; Browne, M. M.

    1977-01-01

    An analytical model developed for evaluating and verifying advanced rotor concepts is discussed. The model was used during in both open loop and real time man-in-the-loop simulation during the rotor systems research aircraft design. Future applications include: pilot training, preflight of test programs, and the evaluation of promising concepts before their implementation on the flight vehicle.

  19. Multiple piece turbine rotor blade

    SciTech Connect

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  20. Nonlinear Analysis Of Rotor Dynamics

    NASA Technical Reports Server (NTRS)

    Day, William B.; Zalik, Richard

    1988-01-01

    Study explores analytical consequences of nonlinear Jeffcott equations of rotor dynamics. Section 1: Summary of previous studies. Section 2: Jeffcott Equations. Section 3: Proves two theorems that provide inequalities on coefficients of differential equations and magnitude of forcing function in absence of side force. Section 4: Numerical investigation of multiple-forcing-function problem by introducing both side force and mass imbalance. Section 5: Examples of numberical solutions of complex generalized Jeffcott equation with two forcing functions of different frequencies f1 and f2. Section 6: Boundedness and stability of solutions.Section 7: Concludes report reviewing analytical results and significance.

  1. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    NASA Astrophysics Data System (ADS)

    Karst, N.; Dralle, D.; Thompson, S. E.

    2015-12-01

    Soil fungi fill many essential ecological and biogeochemical roles, e.g. decomposing litter, redistributing nutrients, and promoting biodiversity. Fairy ring fungi offer a rare glimpse into the otherwise opaque spatiotemporal dynamics of soil fungal growth, because subsurface mycelial patterns can be inferred from observations at the soil's surface. These observations can be made directly when the fungi send up fruiting bodies (e.g., mushrooms and toadstools), or indirectly via the effect the fungi have on neighboring organisms. Grasses in particular often temporarily thrive on the nutrients liberated by the fungus, creating bands of rich, dark green turf at the edge of the fungal mat. To date, only annular (the "ring" in fairy ring) and arc patterns have been described in the literature. We report observations of novel spiral and rotor pattern formation in fairy ring fungi, as seen in publically available high-resolution aerial imagery of 22 sites across the continental United States. To explain these new behaviors, we first demonstrate that a well-known model describing fairy ring formation is equivalent to the Gray-Scott reaction-diffusion model, which is known to support a wide range of dynamical behaviors, including annular traveling waves, rotors, spirals, and stable spatial patterns including spots and stripes. Bifurcation analysis and numerical simulation are then used to define the region of parameter space that supports spiral and rotor formation. We find that this region is adjacent to one within which typical fairy rings develop. Model results suggest simple experimental procedures that could potentially induce traditional ring structures to exhibit rotor or spiral dynamics. Intriguingly, the Gray-Scott model predicts that these same procedures could be used to solicit even richer patterns, including spots and stripes, which have not yet been identified in the field.

  2. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    NASA Astrophysics Data System (ADS)

    Karst, N.; Dralle, D.; Thompson, S. E.

    2014-12-01

    Soil fungi fill many essential ecological and biogeochemical roles, e.g. decomposing litter, redistributing nutrients, and promoting biodiversity. Fairy ring fungi offer a rare glimpse into the otherwise opaque spatiotemporal dynamics of soil fungal growth, because subsurface mycelial patterns can be inferred from observations at the soil's surface. These observations can be made directly when the fungi send up fruiting bodies (e.g., mushrooms and toadstools), or indirectly via the effect the fungi have on neighboring organisms. Grasses in particular often temporarily thrive on the nutrients liberated by the fungus, creating bands of rich, dark green turf at the edge of the fungal mat. To date, only annular (the "ring" in fairy ring) and arc patterns have been described in the literature. We report observations of novel spiral and rotor pattern formation in fairy ring fungi, as seen in publically available high-resolution aerial imagery of 22 sites across the continental United States. To explain these new behaviors, we first demonstrate that a well-known model describing fairy ring formation is equivalent to the Gray-Scott reaction-diffusion model, which is known to support a wide range of dynamical behaviors, including annular traveling waves, rotors, spirals, and stable spatial patterns including spots and stripes. Bifurcation analysis and numerical simulation are then used to define the region of parameter space that supports spiral and rotor formation. We find that this region is adjacent to one within which typical fairy rings develop. Model results suggest simple experimental procedures that could potentially induce traditional ring structures to exhibit rotor or spiral dynamics. Intriguingly, the Gray-Scott model predicts that these same procedures could be used to solicit even richer patterns, including spots and stripes, which have not yet been identified in the field.

  3. Dielectric Relaxation of Molecular Dipolar Rotors

    NASA Astrophysics Data System (ADS)

    Clarke, L.; Horansky, R.; Hinderer, T.; Price, J.; Nunez, J.; Khuong, T.; Garcia-Garibay, M.; Horinek, D.; Kottas, G.; Varaska, N.; Magnera, T.; Michl, J.

    2003-03-01

    Molecular rotors, molecules with a rotational degree of freedom about a single bond, are a fundamental element of nanoscale machinery. We study dipolar rotors arranged into either three-dimensional crystalline arrays or surface mounted to form two-dimensional films. Through dielectric relaxation experiments, we probe fundamental rotor attributes such as torsional barriers, polarization, and dipole-dipole interactions. We have measured the dielectric response of chloromethylsilyl rotors, surface mounted on fused silica, at frequencies in the kHz range and temperatures from 4 to 300 K, and find an inhomogeneous system, where the intrinsic barrier to rotation in the vapor phase has been modified by surface interactions. Using computer simulations, we have studied both thermally activated and driven rotors. We discuss work towards experimental realization of more homogeneous systems.

  4. Open Rotor - Analysis of Diagnostic Data

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2011-01-01

    NASA is researching open rotor propulsion as part of its technology research and development plan for addressing the subsonic transport aircraft noise, emission and fuel burn goals. The low-speed wind tunnel test for investigating the aerodynamic and acoustic performance of a benchmark blade set at the approach and takeoff conditions has recently concluded. A high-speed wind tunnel diagnostic test campaign has begun to investigate the performance of this benchmark open rotor blade set at the cruise condition. Databases from both speed regimes will comprise a comprehensive collection of benchmark open rotor data for use in assessing/validating aerodynamic and noise prediction tools (component & system level) as well as providing insights into the physics of open rotors to help guide the development of quieter open rotors.

  5. Computational Analysis of Multi-Rotor Flows

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.

  6. A CFD study of tilt rotor flowfields

    NASA Technical Reports Server (NTRS)

    Fejtek, Ian; Roberts, Leonard

    1989-01-01

    The download on the wing produced by the rotor wake of a tilt rotor vehicle in hover is of major concern because of its severe impact on payload-carrying capability. In a concerted effort to understand the fundamental fluid dynamics that cause this download, and to help find ways to reduce it, computational fluid dynamics (CFD) is employed to study this problem. The thin-layer Navier-Stokes equations are used to describe the flow, and an implicit, finite difference numerical algorithm is the method of solution. The methodology is developed to analyze the tilt rotor flowfield. Included are discussions of computations of an airfoil and wing in freestream flows at -90 degrees, a rotor alone, and wing/rotor interaction in two and three dimensions. Preliminary results demonstrate the feasibility and great potential of the present approach. Recommendations are made for both near-term and far-term improvements to the method.

  7. Substantially parallel flux uncluttered rotor machines

    SciTech Connect

    Hsu, John S.

    2012-12-11

    A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator

  8. Generator rotor long ring modifications without rewinds

    SciTech Connect

    Gardner, W.C.

    1995-10-01

    Generator rotor tooth top cracking can occur on some generator rotors after the accumulation of a number of start-stop speed cycles. The number of speed cycles for crack initiation is dependent upon the size and the configuration of the rotor. Distress of rotor tooth tops is manageable in a manner that can avoid forced outages and maximize unit availability. Modifications have been developed which remove fatigue damaged areas and provide increased rotor life. For rotors that have experienced substantial cracking or when the anticipated or desired speed cycling capability exceeds that provided by modifications utilizing retaining ring geometry similar to the original configuration, a modification using a longer retaining ring is required. Until recently, this long ring modification required a complete factory rotor rewind. The requirement for a factory rewind in conjunction with the long ring modification, while maximizing subsequent reliability of the upgraded machine, limited opportunities for implementation of the long ring design. The cost and schedule impact associated with a rewind were difficult to accept if the original winding was adequate for continued service. Some utilities were also reluctant to ship their rotors off site for maintenance because of the impact on schedule and possible damage to the rotor during handling and shipping. Responding to the need for minimum outage duration and reduced cost, Westinghouse has developed the capability to perform this long ring modification in the field or the factory without the need for a rotor rewind. This paper summarizes the development criteria, qualification techniques and design procedures to perform a long ring modification with the windings still in place.

  9. Model updating of rotor systems by using Nonlinear least square optimization

    NASA Astrophysics Data System (ADS)

    Jha, A. K.; Dewangan, P.; Sarangi, M.

    2016-07-01

    Mathematical models of structure or machineries are always different from the existing physical system, because the approach of numerical predictions to the behavior of a physical system is limited by the assumptions used in the development of the mathematical model. Model updating is, therefore necessary so that updated model should replicate the physical system. This work focuses on the model updating of rotor systems at various speeds as well as at different modes of vibration. Support bearing characteristics severely influence the dynamics of rotor systems like turbines, compressors, pumps, electrical machines, machine tool spindles etc. Therefore bearing parameters (stiffness and damping) are considered to be updating parameters. A finite element model of rotor systems is developed using Timoshenko beam element. Unbalance response in time domain and frequency response function have been calculated by numerical techniques, and compared with the experimental data to update the FE-model of rotor systems. An algorithm, based on unbalance response in time domain is proposed for updating the rotor systems at different running speeds of rotor. An attempt has been made to define Unbalance response assurance criterion (URAC) to check the degree of correlation between updated FE model and physical model.

  10. Flexible ocean upwelling pipe

    DOEpatents

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  11. FSD- FLEXIBLE SPACECRAFT DYNAMICS

    NASA Technical Reports Server (NTRS)

    Fedor, J. V.

    1994-01-01

    The Flexible Spacecraft Dynamics and Control program (FSD) was developed to aid in the simulation of a large class of flexible and rigid spacecraft. FSD is extremely versatile and can be used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. FSD has been used to analyze the in-orbit attitude performance and antenna deployment of the RAE and IMP class satellites, and the HAWKEYE, SCATHA, EXOS-B, and Dynamics Explorer flight programs. FSD is applicable to inertially-oriented spinning, earth oriented, or gravity gradient stabilized spacecraft. The spacecraft flexibility is treated in a continuous manner (instead of finite element) by employing a series of shape functions for the flexible elements. Torsion, bending, and three flexible modes can be simulated for every flexible element. FSD can handle up to ten tubular elements in an arbitrary orientation. FSD is appropriate for studies involving the active control of pointed instruments, with options for digital PID (proportional, integral, derivative) error feedback controllers and control actuators such as thrusters and momentum wheels. The input to FSD is in four parts: 1) Orbit Construction FSD calculates a Keplerian orbit with environmental effects such as drag, magnetic torque, solar pressure, thermal effects, and thruster adjustments; or the user can supply a GTDS format orbit tape for a particular satellite/time-span; 2) Control words - for options such as gravity gradient effects, control torques, and integration ranges; 3) Mathematical descriptions of spacecraft, appendages, and control systems- including element geometry, properties, attitudes, libration damping, tip mass inertia, thermal expansion, magnetic tracking, and gimbal simulation options; and 4) Desired state variables to output, i.e., geometries, bending moments, fast Fourier transform plots, gimbal rotation, filter vectors, etc. All FSD input is of free format, namelist construction. FSD

  12. Flexible Material Systems Testing

    NASA Technical Reports Server (NTRS)

    Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.

    2010-01-01

    An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.

  13. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  14. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  15. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  16. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  17. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  18. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  19. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  20. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  1. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  2. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  3. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  4. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  5. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  6. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  7. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  8. 14 CFR 27.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground clearance: tail rotor guard. 27.411... System Loads § 27.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to contact the landing surface during a normal landing. (b) If a tail rotor guard is required to...

  9. 14 CFR 33.92 - Rotor locking tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor locking tests. 33.92 Section 33.92... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.92 Rotor locking tests. If continued rotation is prevented by a means to lock the rotor(s), the engine must be subjected to a test that...

  10. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground clearance: tail rotor guard. 29.411... System Loads § 29.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to contact the landing surface during a normal landing. (b) If a tail rotor guard is required to...

  11. 14 CFR 29.1151 - Rotor brake controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor brake controls. 29.1151 Section 29... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before take-off....

  12. 14 CFR 27.1151 - Rotor brake controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor brake controls. 27.1151 Section 27... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before takeoff....

  13. 14 CFR 27.661 - Rotor blade clearance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor blade clearance. 27.661 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  14. 14 CFR 27.547 - Main rotor structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Main rotor structure. 27.547 Section 27.547... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Main Component Requirements § 27.547 Main rotor structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed...

  15. 14 CFR 29.661 - Rotor blade clearance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor blade clearance. 29.661 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  16. 14 CFR 27.661 - Rotor blade clearance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor blade clearance. 27.661 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  17. 14 CFR 29.661 - Rotor blade clearance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor blade clearance. 29.661 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  18. 14 CFR 29.661 - Rotor blade clearance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor blade clearance. 29.661 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  19. 14 CFR 29.661 - Rotor blade clearance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor blade clearance. 29.661 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  20. 14 CFR 27.661 - Rotor blade clearance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor blade clearance. 27.661 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  1. 14 CFR 29.547 - Main and tail rotor structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Requirements § 29.547 Main and tail rotor structure. (a) A rotor is an assembly of rotating components, which includes the rotor hub, blades, blade dampers, the pitch control mechanisms, and all other parts that... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Main and tail rotor structure....

  2. 14 CFR 27.661 - Rotor blade clearance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor blade clearance. 27.661 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  3. 14 CFR 27.661 - Rotor blade clearance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor blade clearance. 27.661 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  4. 14 CFR 29.661 - Rotor blade clearance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor blade clearance. 29.661 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  5. 14 CFR 29.1151 - Rotor brake controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor brake controls. 29.1151 Section 29... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before take-off....

  6. 14 CFR 27.1151 - Rotor brake controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor brake controls. 27.1151 Section 27... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before takeoff....

  7. 14 CFR 29.1151 - Rotor brake controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor brake controls. 29.1151 Section 29... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before take-off....

  8. 14 CFR 27.1151 - Rotor brake controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor brake controls. 27.1151 Section 27... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before takeoff....

  9. 14 CFR 29.1151 - Rotor brake controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor brake controls. 29.1151 Section 29... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before take-off....

  10. 14 CFR 27.1151 - Rotor brake controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor brake controls. 27.1151 Section 27... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before takeoff....

  11. 14 CFR 29.1151 - Rotor brake controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor brake controls. 29.1151 Section 29... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before take-off....

  12. 14 CFR 27.1151 - Rotor brake controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor brake controls. 27.1151 Section 27... Rotor brake controls. (a) It must be impossible to apply the rotor brake inadvertently in flight. (b) There must be means to warn the crew if the rotor brake has not been completely released before takeoff....

  13. Rotor instrumentation study for high-temperature superconducting generators

    SciTech Connect

    Schwenterly, S.W.; Wilson, C.T.

    1996-06-01

    In FY 9195, ORNL carried out work on rotor instrumentation systems in support of the General Electric (GE) Superconductivity Partnership Initiative (SPI) on Superconducting Generator Development. The objective was to develop a system for tramsitting data from sensors in the spinning rotor to a stationary data acquisition system. Previous work at ORNL had investigated an optical method of cryogenic temperature measurement using laser-induced fluorescence in certain phosphors. Later follow-up discussions with experts in the ORNL Engineering Technology Division indicated that this method could also be extended to measure strain and magnetic field. Another optical alternative using standard fiber optic transmission modules was also investigated. The equipment is very inexpensive, but needs to be adapted for operation in a high-g-force rotating environment. An optical analog of a commutator or slip ring also needs to be developed to couple the light signals from the rotor to the stationary frame. Sealed mercury-film rotary contacts are manufactured by Meridian Laboratory. Unlike conventional slipring assemblies, these offer low noise and long lifetime, with low costs per channel. Standard units may need some upgrading for 3600-rpm or high-voltage operation. A commercial electronic telemetry system offered by Wireless Data Corporation (WDC) was identified as a viable candidate, and information on this system was presented to GE. GE has since ordered two of these systems from WDC for temperature measurements in their rotating test cryostat.

  14. The influence of nonlinear magnetic pull on hydropower generator rotors

    NASA Astrophysics Data System (ADS)

    Gustavsson, Rolf. K.; Aidanpää, Jan-Olov

    2006-11-01

    In large electrical machines the electromagnetic forces can in some situations have a strong influence on the rotor dynamics. One such case is when the rotor is eccentrically displaced in the generator bore. A strong unbalanced magnetic pull will then appear in the direction of the smallest air-gap. In this paper, the influence of nonlinear magnetic pull is studied for a hydropower generator where the generator spider hub does not coincide with the centre of the generator rim. The generator model consists of a four-degree-of-freedom rigid body, which is connected to an elastic shaft supported by isotropic bearings. The influence of magnetic pull is calculated for the case when the generator spider hub deviates from the centre of the generator rim. A nonlinear model of the magnetic pull is introduced to the model by radial forces and transverse moments. In the numerical analysis input parameters typical for a 70 MW hydropower generator are used. Results are presented in stability and response diagrams. The results show that this type of rotor configuration can in some cases become unstable. Therefore, it is important to consider the distance between the centreline of generator spider hub and the centreline of generator rim.

  15. Spiral and Rotor Patterns Produced by Fairy Ring Fungi.

    PubMed

    Karst, Nathaniel; Dralle, David; Thompson, Sally

    2016-01-01

    A broad class of soil fungi form the annular patterns known as 'fairy rings' and provide one of the only means to observe spatio-temporal dynamics of otherwise cryptic fungal growth processes in natural environments. We present observations of novel spiral and rotor patterns produced by fairy ring fungi and explain these behaviors mathematically by first showing that a well known model of fairy ring fungal growth and the Gray-Scott reaction-diffusion model are mathematically equivalent. We then use bifurcation analysis and numerical simulations to identify the conditions under which spiral waves and rotors can arise. We demonstrate that the region of dimensionless parameter space supporting these more complex dynamics is adjacent to that which produces the more familiar fairy rings, and identify experimental manipulations to test the transitions between these spatial modes. These same manipulations could also feasibly induce fungal colonies to transition from rotor/spiral formation to a set of richer, as yet unobserved, spatial patterns. PMID:26934477

  16. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    PubMed Central

    2016-01-01

    A broad class of soil fungi form the annular patterns known as ‘fairy rings’ and provide one of the only means to observe spatio-temporal dynamics of otherwise cryptic fungal growth processes in natural environments. We present observations of novel spiral and rotor patterns produced by fairy ring fungi and explain these behaviors mathematically by first showing that a well known model of fairy ring fungal growth and the Gray-Scott reaction-diffusion model are mathematically equivalent. We then use bifurcation analysis and numerical simulations to identify the conditions under which spiral waves and rotors can arise. We demonstrate that the region of dimensionless parameter space supporting these more complex dynamics is adjacent to that which produces the more familiar fairy rings, and identify experimental manipulations to test the transitions between these spatial modes. These same manipulations could also feasibly induce fungal colonies to transition from rotor/spiral formation to a set of richer, as yet unobserved, spatial patterns. PMID:26934477

  17. Optical evidence of quantum rotor orbital excitations in orthorhombic manganites

    NASA Astrophysics Data System (ADS)

    Kovaleva, N. N.; Kugel, K. I.; Potůček, Z.; Kusmartseva, O. E.; Goryachev, N. S.; Bryknar, Z.; Demikhov, E. I.; Trepakov, V. A.; Dejneka, A.; Kusmartsev, F. V.; Stoneham, A. M.

    2016-05-01

    In magnetic compounds with Jahn-Teller (JT) ions (such as Mn3+ or Cu2+), the ordering of the electron or hole orbitals is associated with cooperative lattice distortions. There the role of JT effect, although widely recognized, is still elusive in the ground state properties. Here we discovered that, in these materials, there exist excitations whose energy spectrum is described in terms of the total angular momentum eigenstates and is quantized as in quantum rotors found in JT centers. We observed features originating from these excitations in the optical spectra of a model compound LaMnO3 using ellipsometry technique. They appear clearly as narrow sidebands accompanying the electron transition between the JT split orbitals at neighboring Mn3+ ions, displaying anomalous temperature behavior around the Néel temperature T N ≈ 140 K. We present these results together with new experimental data on photoluminescence found in LaMnO3, which lend additional support to the ellipsometry implying the electronic-vibrational origin of the quantum rotor orbital excitations. We note that the discovered orbital excitations of quantum rotors may play an important role in many unusual properties observed in these materials upon doping, such as high-temperature superconductivity and colossal magnetoresistance.

  18. Modeling Disk Cracks in Rotors by Utilizing Speed Dependent Eccentricity

    NASA Astrophysics Data System (ADS)

    Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Haase, Wayne C.

    2010-03-01

    This paper discusses the feasibility of vibration-based structural health monitoring for detecting disk cracks in rotor systems. The approach of interest assumes that a crack located on a rotating disk causes a minute change in the system’s center of mass due to the centrifugal force induced opening of the crack. The center of mass shift is expected to reveal itself in the vibration vector (i.e., whirl response; plotted as amplitude and phase versus speed) gathered during a spin-up and/or spin-down test. Here, analysis is accomplished by modeling a Jeffcott rotor that is characterized by analytical, numerical, and experimental data. The model, which has speed dependent eccentricity, is employed in order to better understand the sensitivity of the approach. For the experimental set-up emulated here (i.e., a single disk located mid-span on a flexible shaft), it appears that a rather sizable flaw in the form of a through-thickness notch could be detected by monitoring the damage-induced shift in center of mass. Although, identifying actual disk cracks in complex “real world” environments, where noncritical crack lengths are small and excessive mechanical and/or electrical noise are present, would prove to be rather challenging. Further research is needed in this regard.

  19. Flywheel rotor and containment technology development

    SciTech Connect

    Kulkarni, S.V.

    1981-08-11

    The goals of the project are: to develop an economical and practical composite flywheel having an energy density of 88 Wh/kg at failure, an operational energy density of 44 to 55 Wh/kg, and an energy storage capacity of approximately 1 kWh; to determine the suitability of various manufacturing processes for low-cost rotor fabrication; to investigate flywheel and flywheel-systems dynamics; to test and evaluate prototype rotors for use in transportation and stationary applications; and to develop a fail-safe, lightweight, and low-cost flywheel containment. The following tasks have been accomplished: evaluation and selection of 1-kWh, first-generation, advanced flywheel rotor designs for subsequent development towards the DOE-established energy density goal of 88 Wh/kg at burst; completion of an advanced design concept for a flywheel primary containment structure, capable of containing the failure of a 1-kWh flywheel rotor and targeted for vehicular applications; non-destructive inspection and burst testing of approximately twenty (20) prototype rotors, and initiation of cyclic testing; completion of various activities in the areas of rotor manufacturing processes, dynamic analyses and composite materials design data generation; and initiation of an economic feasibility study to establish a rational costing methodology for composite rotors and containment.

  20. Internal Friction And Instabilities Of Rotors

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1992-01-01

    Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.