Science.gov

Sample records for flight muscle dimorphism

  1. Sexual dimorphism in skeletal muscle protein turnover.

    PubMed

    Smith, Gordon I; Mittendorfer, Bettina

    2016-03-15

    Skeletal muscle is the major constituent of lean body mass and essential for the body's locomotor function. Women have less muscle mass (and more body fat) than men and are therefore not able to exert the same absolute maximal force as men. The difference in body composition between the sexes is evident from infancy but becomes most marked after puberty (when boys experience an accelerated growth spurt) and persists into old age. During early adulthood until approximately the fourth decade of life, muscle mass is relatively stable, both in men and women, but then begins to decline, and the rate of loss is slower in women than in men. In this review we discuss the underlying mechanisms responsible for the age-associated sexual dimorphism in muscle mass (as far as they have been elucidated to date) and highlight areas that require more research to advance our understanding of the control of muscle mass throughout life. PMID:26702024

  2. Physiological trade-off between cellular immunity and flight capability in the wing-dimorphic cricket, Gryllus firmus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sand cricket, Gryllus firmus, is a wing-dimorphic species with long-wing (LW) and short wing (LW) morphs. The LW forms have very well developed wings and flight muscles and their SW counterparts have reduced wings and flight muscles, coupled with greater resource allocations to reproduction. Thi...

  3. Sexual dimorphism of Murine Masticatory Muscle Function

    PubMed Central

    Daniels, David W.; Tian, Zuozhen; Barton, Elisabeth R.

    2008-01-01

    (1) Objective To determine if gender distinctions of force generating capacity existed in murine masticatory muscles. (2) Design In order to investigate the effect of sex on force generating capacity in this muscle group, an isolated muscle preparation was developed utilizing the murine anterior deep masseter. Age-matched male and female mice were utilized to assess function, muscle fiber type and size in this muscle. (3) Results Maximum isometric force production was not different between age-matched male and female mice. However, the rate of force generation and relaxation was slower in female masseter muscles. Assessment of fiber type distribution by immunohistochemistry revealed a threefold decrease in the proportion of myosin heavy chain 2b positive fibers in female masseters, which correlated with the differences in contraction kinetics. (4) Conclusions These results provide evidence that masticatory muscle strength in mice is not affected by sex, but there are significant distinctions in kinetics associated with force production between males and females. PMID:18028868

  4. Skeletal muscle gender dimorphism from proteomics.

    PubMed

    Dimova, Kalina; Metskas, Lauren Ann; Kulp, Mohini; Scordilis, Stylianos P

    2011-01-01

    Gross contraction in skeletal muscle is primarily determined by a relatively small number of contractile proteins, however this tissue is also remarkably adaptable to environmental factors such as hypertrophy by resistance exercise and atrophy by disuse. It thereby exhibits remodeling and adaptations to stressors (heat, ischemia, heavy metals, etc.). Damage can occur to muscle by a muscle exerting force while lengthening, the so-called eccentric contraction. The contractile proteins can be damaged in such exertions and need to be repaired, degraded and/or resynthesized; these functions are not part of the contractile proteins, but of other much less abundant proteins in the cell. To determine what subset of proteins is involved in the amelioration of this type of damage, a global proteome must be established prior to exercise and then followed subsequent to the exercise to determine the differential protein expression and thereby highlight candidate proteins in the adaptations to damage and its repair. Furthermore, most studies of skeletal muscle have been conducted on the male of the species and hence may not be representative of female muscle. In this article we present a method for extracting proteins reproducibly from male and female muscles, and separating them by two-dimensional gel electrophoresis followed by high resolution digital imaging. This provides a protocol for spots (and subsequently identified proteins) that show a statistically significant (p < 0.05) two-fold increase or decrease, appear or disappear from the control state. These are then excised, digested with trypsin and separated by high-pressure liquid chromatography coupled to a mass spectrometer (LC/MS) for protein identification (LC/MS/MS). This methodology (Figure 1) can be used on many tissues with little to no modification (liver, brain, heart etc.). PMID:22215112

  5. Regulating the contraction of insect flight muscle.

    PubMed

    Bullard, Belinda; Pastore, Annalisa

    2011-12-01

    The rapid movement of the wings in small insects is powered by the indirect flight muscles. These muscles are capable of contracting at up to 1,000 Hz because they are activated mechanically by stretching. The mechanism is so efficient that it is also used in larger insects like the waterbug, Lethocerus. The oscillatory activity of the muscles occurs a low concentration of Ca(2+), which stays constant as the muscles contract and relax. Activation by stretch requires particular isoforms of tropomyosin and the troponin complex on the thin filament. We compare the tropomyosin and troponin of Lethocerus and Drosophila with that of vertebrates. The characteristics of the flight muscle regulatory proteins suggest ways in which stretch-activation works. There is evidence for bridges between troponin on thin filaments and myosin crossbridges on the thick filaments. Recent X-ray fibre diffraction results suggest that a pull on the bridges activates the thin filament by shifting tropomyosin from a blocking position on actin. The troponin bridges are likely to contain extended sequences of tropomyosin or troponin I (TnI). Flight muscle has two isoforms of TnC with different Ca(2+)-binding properties: F1 TnC is needed for stretch-activation and F2 TnC for isometric contractions. In this review, we describe the structural changes in both isoforms on binding Ca(2+) and TnI, and discuss how the steric model of muscle regulation can apply to insect flight muscle. PMID:22105701

  6. Can Nocturnal Flight Calls of the Migrating Songbird, American Redstart, Encode Sexual Dimorphism and Individual Identity?

    PubMed Central

    Lanzone, Michael

    2016-01-01

    Bird species often use flight calls to engage in social behavior, for instance maintain group cohesion and to signal individual identity, kin or social associations, or breeding status of the caller. Additional uses also exist, in particular among migrating songbirds for communication during nocturnal migration. However, our understanding of the information that these vocalizations convey is incomplete, especially in nocturnal scenarios. To examine whether information about signaler traits could be encoded in flight calls we quantified several acoustic characteristics from calls of a nocturnally migrating songbird, the American Redstart. We recorded calls from temporarily captured wild specimens during mist-netting at the Powdermill Avian Research Center in Rector, PA. We measured call similarity among and within individuals, genders, and age groups. Calls from the same individual were significantly more similar to one another than to the calls of other individuals, and calls were significantly more similar among individuals of the same sex than between sexes. Flight calls from hatching-year and after hatching-year individuals were not significantly different. Our results suggest that American Redstart flight calls may carry identifiers of gender and individual identity. To our knowledge, this is the first evidence of individuality or sexual dimorphism in the flight calls of a migratory songbird. Furthermore, our results suggest that flight calls may have more explicit functions beyond simple group contact and cohesion. Nocturnal migration may require coordination among numerous individuals, and the use of flight calls to transmit information among intra- and conspecifics could be advantageous. Applying approaches that account for such individual and gender information may enable more advanced research using acoustic monitoring. PMID:27284697

  7. Nerve-muscle interactions during flight muscle development in Drosophila

    NASA Technical Reports Server (NTRS)

    Fernandes, J. J.; Keshishian, H.

    1998-01-01

    During Drosophila pupal metamorphosis, the motoneurons and muscles differentiate synchronously, providing an opportunity for extensive intercellular regulation during synapse formation. We examined the existence of such interactions by developmentally delaying or permanently eliminating synaptic partners during the formation of indirect flight muscles. When we experimentally delayed muscle development, we found that although adult-specific primary motoneuron branching still occurred, the higher order (synaptic) branching was suspended until the delayed muscle fibers reached a favourable developmental state. In reciprocal experiments we found that denervation caused a decrease in the myoblast pool. Furthermore, the formation of certain muscle fibers (dorsoventral muscles) was specifically blocked. Exceptions were the adult muscles that use larval muscle fibers as myoblast fusion targets (dorsal longitudinal muscles). However, when these muscles were experimentally compelled to develop without their larval precursors, they showed an absolute dependence on the motoneurons for their formation. These data show that the size of the myoblast pool and early events in fiber formation depend on the presence of the nerve, and that, conversely, peripheral arbor development and synaptogenesis is closely synchronized with the developmental state of the muscle.

  8. Building Muscles, Keeping Muscles: Protein Turnover During Space Flight

    NASA Technical Reports Server (NTRS)

    Ferrando, Arny; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    As we age we lose muscle mass and strength. The problem is a matter of use it or lose it and more - a fact to which any active senior can attest. An imbalance in the natural cycle of protein turnover may be a contributing factor to decreased muscle mass. But the answer is not so simple, since aging is associated with changes in hormones, activity levels, nutrition, and often, disease. The human body constantly uses amino acids to build muscle protein, which then breaks down and must be replaced. When protein turnover gets out of balance, so that more protein breaks down than the body can replace, the result is muscle loss. This is not just the bane of aging, however. Severely burned people may have difficulty building new muscle long after the burned skin has been repaired. Answers to why we lose muscle mass and strength - and how doctors can fix it - may come from space. Astronauts usually eat a well-balanced diet and maintain an exercise routine to stay in top health. During long-duration flight, they exercise regularly to reduce the muscle loss that results from being in a near-weightless environment. Despite these precautions, astronauts lose muscle mass and strength during most missions. They quickly recover after returning to Earth - this is a temporary condition in an otherwise healthy population. Members of the STS-107 crew are participating in a study of the effects of space flight, hormone levels, and stress on protein turnover. When we are under stress, the body responds with a change in hormone levels. Researchers hypothesize that this stress-induced change in hormones along with the near-weightlessness might result in the body synthesizing less muscle protein, causing muscles to lose their strength and size. Astronauts, who must perform numerous duties in a confined and unusual environment, experience some stress during their flight, making them excellent candidates for testing the researchers' hypothesis.

  9. Mechanical analysis of Drosophila indirect flight and jump muscles

    PubMed Central

    Swank, Douglas M.

    2011-01-01

    The genetic advantages of Drosophila make it a very appealing choice for investigating muscle development, muscle physiology and muscle protein structure and function. To take full advantage of this model organism, it has been vital to develop isolated Drosophila muscle preparations that can be mechanically evaluated. We describe techniques to isolate, prepare and mechanically analyze skinned muscle fibers from two Drosophila muscle types, the indirect flight muscle and the jump muscle. The function of the indirect flight muscle is similar to vertebrate cardiac muscle, to generate power in an oscillatory manner. The indirect flight muscle is ideal for evaluating the influence of protein mutations on muscle and cross-bridge stiffness, oscillatory power, and deriving cross-bridge rate constants. Jump muscle physiology and structure are more similar to skeletal vertebrate muscle than indirect flight muscle, and it is ideal for measuring maximum shortening velocity, force-velocity characteristics and steady-state power generation. PMID:22079350

  10. Mechanical analysis of Drosophila indirect flight and jump muscles.

    PubMed

    Swank, Douglas M

    2012-01-01

    The genetic advantages of Drosophila make it a very appealing choice for investigating muscle development, muscle physiology and muscle protein structure and function. To take full advantage of this model organism, it has been vital to develop isolated Drosophila muscle preparations that can be mechanically evaluated. We describe techniques to isolate, prepare and mechanically analyze skinned muscle fibers from two Drosophila muscle types, the indirect flight muscle and the jump muscle. The function of the indirect flight muscle is similar to vertebrate cardiac muscle, to generate power in an oscillatory manner. The indirect flight muscle is ideal for evaluating the influence of protein mutations on muscle and cross-bridge stiffness, oscillatory power, and deriving cross-bridge rate constants. Jump muscle physiology and structure are more similar to skeletal vertebrate muscle than indirect flight muscle, and it is ideal for measuring maximum shortening velocity, force-velocity characteristics and steady-state power generation. PMID:22079350

  11. Atypical 'fibrillar' flight muscle in strepsiptera.

    PubMed

    Smith, D S; Kathirithamby, J

    1984-01-01

    The fine structure of the principal and ancillary metathoracic flight muscle fibres in the adult male of a strepsipteran, Elenchus tenuicornis, is described. Power-producing dorsal longitudinal and dorso-ventral flight muscles show features consistent with myoneural asynchrony: myofibrils are large and discrete and are separated by large closely packed mitochondria; the sarcoplasmic reticulum is very reduced but engages with T-system membranes in dyads at the mid-sarcomere H-band level. With respect to other asynchronous insect flight muscles, the fibres of Elenchus are anomalous (i) in the small fibre diameter, (ii) in the variable contour of the myofibrils and (iii) in the absence of tracheolar invagination. The functional significance of these structural features is discussed. Ancillary metathoracic muscles are structurally comparable with other synchronous fibres in possessing an extensive SR compartment. Structural evidence for asynchrony in the flight mechanism of Strepsiptera is considered in the context of the evolution of this mechanism throughout the insect Orders. PMID:6531780

  12. Nonmyocytic androgen receptor regulates the sexually dimorphic development of the embryonic bulbocavernosus muscle.

    PubMed

    Ipulan, Lerrie Ann; Suzuki, Kentaro; Sakamoto, Yuki; Murashima, Aki; Imai, Yuuki; Omori, Akiko; Nakagata, Naomi; Nishinakamura, Ryuichi; Valasek, Petr; Yamada, Gen

    2014-07-01

    The bulbocavernosus (BC) is a sexually dimorphic muscle observed only in males. Androgen receptor knockout mouse studies show the loss of BC formation. This suggests that androgen signaling plays a vital role in its development. Androgen has been known to induce muscle hypertrophy through satellite cell activation and myonuclei accretion during muscle regeneration and growth. Whether the same mechanism is present during embryonic development is not yet elucidated. To identify the mechanism of sexual dimorphism during BC development, the timing of morphological differences was first established. It was revealed that the BC was morphologically different between male and female mice at embryonic day (E) 16.5. Differences in the myogenic process were detected at E15.5. The male BC possesses a higher number of proliferating undifferentiated myoblasts. To identify the role of androgen signaling in this process, muscle-specific androgen receptor (AR) mutation was introduced, which resulted in no observable phenotypes. Hence, the expression of AR in the BC was examined and found that the AR did not colocalize with any muscle markers such as Myogenic differentiation 1, Myogenin, and paired box transcription factor 7. It was revealed that the mesenchyme surrounding the BC expressed AR and the BC started to express AR at E15.5. AR mutation on the nonmyocytic cells using spalt-like transcription factor 1 (Sall1) Cre driver mouse was performed, which resulted in defective BC formation. It was revealed that the number of proliferating undifferentiated myoblasts was reduced in the Sall1 Cre:AR(L-/Y) mutant embryos, and the adult mutants were devoid of BC. The transition of myoblasts from proliferation to differentiation is mediated by cyclin-dependent kinase inhibitors. An increased expression of p21 was observed in the BC myoblast of the Sall1 Cre:AR(L-/Y) mutant and wild-type female. Altogether this study suggests that the nonmyocytic AR may paracrinely regulate the

  13. De Novo Transcriptome Assembly from Fat Body and Flight Muscles Transcripts to Identify Morph-Specific Gene Expression Profiles in Gryllus firmus

    PubMed Central

    Nanoth Vellichirammal, Neetha; Zera, Anthony J.; Schilder, Rudolf J.; Wehrkamp, Cody; Riethoven, Jean-Jack M.; Brisson, Jennifer A.

    2014-01-01

    Wing polymorphism is a powerful model for examining many aspects of adaptation. The wing dimorphic cricket species, Gryllus firmus, consists of a long-winged morph with functional flight muscles that is capable of flight, and two flightless morphs. One (obligately) flightless morph emerges as an adult with vestigial wings and vestigial flight muscles. The other (plastic) flightless morph emerges with fully-developed wings but later in adulthood histolyzes its flight muscles. Importantly both flightless morphs have substantially increased reproductive output relative to the flight-capable morph. Much is known about the physiological and biochemical differences between the morphs with respect to adaptations for flight versus reproduction. In contrast, little is known about the molecular genetic basis of these morph-specific adaptations. To address this issue, we assembled a de novo transcriptome of G. firmus using 141.5 million Illumina reads generated from flight muscles and fat body, two organs that play key roles in flight and reproduction. We used the resulting 34,411 transcripts as a reference transcriptome for differential gene expression analyses. A comparison of gene expression profiles from functional flight muscles in the flight-capable morph versus histolyzed flight muscles in the plastic flight incapable morph identified a suite of genes involved in respiration that were highly expressed in pink (functional) flight muscles and genes involved in proteolysis highly expressed in the white (histolyzed) flight muscles. A comparison of fat body transcripts from the obligately flightless versus the flight-capable morphs revealed differential expression of genes involved in triglyceride biosynthesis, lipid transport, immune function and reproduction. These data provide a valuable resource for future molecular genetics research in this and related species and provide insight on the role of gene expression in morph-specific adaptations for flight versus

  14. Morphometrics of the Anterior Belly and Intermediate Tendon of the Digastric Muscle: Sexual Dimorphism and Implications for Surgery.

    PubMed

    Zdilla, Matthew J; Pancake, Alex R; Lambert, H Wayne

    2016-07-01

    The anterior belly of the digastric muscle (ABDM) is important in a variety of surgeries including submental lipectomy, rhytidectomy, alteration of the cervicomental angle via muscle resection, the "digastric corset" procedure for submental rejuvenation, the submental artery flap, and reanimation of the mouth after facial nerve palsy. Despite its clinical significance, little information exists regarding the morphometrics of the ABDM or its associated intermediate tendon. This study analyzed a total of 35 intact ABDMs and 43 intact intermediate tendons from 23 cadavers. Measurements were taken of the following parameters: muscle belly area, muscle belly length, intermediate tendon length, and intermediate tendon width at mid-tendon. Normative descriptive statistics are included within the report. Males were found to have significantly longer left-sided muscle bellies than right-sided bellies from males (U = 23.0; P = 0.044), left-sided bellies from females (U = 19.0; P = 0.020), and right-sided bellies from females (U = 12.0; P = 0.035). The morphometry, including sexual dimorphism, presented in this report can aid in the surgical planning and execution of numerous operations performed in head and neck, especially digastric muscle transfer surgery. PMID:27258716

  15. Muscle function in avian flight: achieving power and control

    PubMed Central

    Biewener, Andrew A.

    2011-01-01

    Flapping flight places strenuous requirements on the physiological performance of an animal. Bird flight muscles, particularly at smaller body sizes, generally contract at high frequencies and do substantial work in order to produce the aerodynamic power needed to support the animal's weight in the air and to overcome drag. This is in contrast to terrestrial locomotion, which offers mechanisms for minimizing energy losses associated with body movement combined with elastic energy savings to reduce the skeletal muscles' work requirements. Muscles also produce substantial power during swimming, but this is mainly to overcome body drag rather than to support the animal's weight. Here, I review the function and architecture of key flight muscles related to how these muscles contribute to producing the power required for flapping flight, how the muscles are recruited to control wing motion and how they are used in manoeuvring. An emergent property of the primary flight muscles, consistent with their need to produce considerable work by moving the wings through large excursions during each wing stroke, is that the pectoralis and supracoracoideus muscles shorten over a large fraction of their resting fibre length (33–42%). Both muscles are activated while being lengthened or undergoing nearly isometric force development, enhancing the work they perform during subsequent shortening. Two smaller muscles, the triceps and biceps, operate over a smaller range of contractile strains (12–23%), reflecting their role in controlling wing shape through elbow flexion and extension. Remarkably, pigeons adjust their wing stroke plane mainly via changes in whole-body pitch during take-off and landing, relative to level flight, allowing their wing muscles to operate with little change in activation timing, strain magnitude and pattern. PMID:21502121

  16. Genetic Evidence That Captured Retroviral Envelope syncytins Contribute to Myoblast Fusion and Muscle Sexual Dimorphism in Mice.

    PubMed

    Redelsperger, François; Raddi, Najat; Bacquin, Agathe; Vernochet, Cécile; Mariot, Virginie; Gache, Vincent; Blanchard-Gutton, Nicolas; Charrin, Stéphanie; Tiret, Laurent; Dumonceaux, Julie; Dupressoir, Anne; Heidmann, Thierry

    2016-09-01

    Syncytins are envelope genes from endogenous retroviruses, "captured" for a role in placentation. They mediate cell-cell fusion, resulting in the formation of a syncytium (the syncytiotrophoblast) at the fetomaternal interface. These genes have been found in all placental mammals in which they have been searched for. Cell-cell fusion is also pivotal for muscle fiber formation and repair, where the myotubes are formed from the fusion of mononucleated myoblasts into large multinucleated structures. Here we show, taking advantage of mice knocked out for syncytins, that these captured genes contribute to myoblast fusion, with a >20% reduction in muscle mass, mean muscle fiber area and number of nuclei per fiber in knocked out mice for one of the two murine syncytin genes. Remarkably, this reduction is only observed in males, which subsequently show muscle quantitative traits more similar to those of females. In addition, we show that syncytins also contribute to muscle repair after cardiotoxin-induced injury, with again a male-specific effect on the rate and extent of regeneration. Finally, ex vivo experiments carried out on murine myoblasts demonstrate the direct involvement of syncytins in fusion, with a >40% reduction in fusion index upon addition of siRNA against both syncytins. Importantly, similar effects are observed with primary myoblasts from sheep, dog and human, with a 20-40% reduction upon addition of siRNA against the corresponding syncytins. Altogether, these results show a direct contribution of the fusogenic syncytins to myogenesis, with a demonstrated male-dependence of the effect in mice, suggesting that these captured genes could be responsible for the muscle sexual dimorphism observed in placental mammals. PMID:27589388

  17. Evolution of avian flight: muscles and constraints on performance.

    PubMed

    Tobalske, Bret W

    2016-09-26

    Competing hypotheses about evolutionary origins of flight are the 'fundamental wing-stroke' and 'directed aerial descent' hypotheses. Support for the fundamental wing-stroke hypothesis is that extant birds use flapping of their wings to climb even before they are able to fly; there are no reported examples of incrementally increasing use of wing movements in gliding transitioning to flapping. An open question is whether locomotor styles must evolve initially for efficiency or if they might instead arrive due to efficacy. The proximal muscles of the avian wing output work and power for flight, and new research is exploring functions of the distal muscles in relation to dynamic changes in wing shape. It will be useful to test the relative contributions of the muscles of the forearm compared with inertial and aerodynamic loading of the wing upon dynamic morphing. Body size has dramatic effects upon flight performance. New research has revealed that mass-specific muscle power declines with increasing body mass among species. This explains the constraints associated with being large. Hummingbirds are the only species that can sustain hovering. Their ability to generate force, work and power appears to be limited by time for activation and deactivation within their wingbeats of high frequency. Most small birds use flap-bounding flight, and this flight style may offer an energetic advantage over continuous flapping during fast flight or during flight into a headwind. The use of flap-bounding during slow flight remains enigmatic. Flap-bounding birds do not appear to be constrained to use their primary flight muscles in a fixed manner. To improve understanding of the functional significance of flap-bounding, the energetic costs and the relative use of alternative styles by a given species in nature merit study.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528773

  18. Calcium signalling indicates bilateral power balancing in the Drosophila flight muscle during manoeuvring flight

    PubMed Central

    Lehmann, Fritz-Olaf; Skandalis, Dimitri A.; Berthé, Ruben

    2013-01-01

    Manoeuvring flight in animals requires precise adjustments of mechanical power output produced by the flight musculature. In many insects such as fruit flies, power generation is most likely varied by altering stretch-activated tension, that is set by sarcoplasmic calcium levels. The muscles reside in a thoracic shell that simultaneously drives both wings during wing flapping. Using a genetically expressed muscle calcium indicator, we here demonstrate in vivo the ability of this animal to bilaterally adjust its calcium activation to the mechanical power output required to sustain aerodynamic costs during flight. Motoneuron-specific comparisons of calcium activation during lift modulation and yaw turning behaviour suggest slightly higher calcium activation for dorso-longitudinal than for dorsoventral muscle fibres, which corroborates the elevated need for muscle mechanical power during the wings’ downstroke. During turning flight, calcium activation explains only up to 54 per cent of the required changes in mechanical power, suggesting substantial power transmission between both sides of the thoracic shell. The bilateral control of muscle calcium runs counter to the hypothesis that the thorax of flies acts as a single, equally proportional source for mechanical power production for both flapping wings. Collectively, power balancing highlights the precision with which insects adjust their flight motor to changing energetic requirements during aerial steering. This potentially enhances flight efficiency and is thus of interest for the development of technical vehicles that employ bioinspired strategies of power delivery to flapping wings. PMID:23486171

  19. Weight, muscle and bone loss during space flight: another perspective.

    PubMed

    Stein, T P

    2013-09-01

    Space flight is a new experience for humans. Humans adapt if not perfectly, rather well to life without gravity. There is a reductive remodeling of the musculo-skeletal system. Protein is lost from muscles and calcium from bones with anti-gravity functions. The observed biochemical and physiological changes reflect this accommodative process. The two major direct effects of the muscle loss are weakness post-flight and the increased incidence of low back ache pre- and post-flight. The muscle protein losses are compromised by the inability to maintain energy balance inflight. Voluntary dietary intake is reduced during space flight by ~20 %. These adaptations to weightlessness leave astronauts ill-equipped for life with gravity. Exercise, the obvious counter-measure has been repeatedly tried and since the muscle and bone losses persist it is not unreasonable to assume that success has been limited at best. Nevertheless, more than 500 people have now flown in space for up to 1 year and have done remarkably well. This review addresses the question of whether enough is now known about these three problems (negative energy balance, muscle loss and bone loss) for to the risks to be considered either acceptable or correctible enough to meet the requirements for a Mars mission. PMID:23192310

  20. Electrical Stimulation of Coleopteran Muscle for Initiating Flight

    PubMed Central

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots. PMID:27050093

  1. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    PubMed

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots. PMID:27050093

  2. Sexual Dimorphism in the Alterations of Cardiac Muscle Mitochondrial Bioenergetics Associated to the Ageing Process.

    PubMed

    Colom, Bartomeu; Oliver, Jordi; Garcia-Palmer, Francisco J

    2015-11-01

    The incidence of cardiac disease is age and sex dependent, but the mechanisms governing these associations remain poorly understood. Mitochondria are the organelles in charge of producing energy for the cells, and their malfunction has been linked to cardiovascular disease and heart failure. Interestingly, heart mitochondrial content and functionality are also age and sex dependent. Here we investigated the combinatory effects of age and sex in mitochondrial bioenergetics that could help to understand their role on cardiac disease. Cardiac mitochondria from 6- and 24-month-old male and female Wistar rats were isolated, and the enzymatic activities of the oxidative-phosphorylative complexes I, III, and IV and ATPase, as well as the protein levels of complex IV, β-ATPase, and mitochondrial transcription factor A (TFAM), were measured. Furthermore, heart DNA content, citrate synthase activity, mitochondrial protein content, oxygen consumption, and H2O2 generation were also determined. Results showed a reduction in heart mitochondrial mass and functionality with age that correlated with increased H2O2 generation. Moreover, sex-dependent differences were found in several of these parameters. In particular, old females exhibited a significant loss of mitochondrial function and increased relative H2O2 production compared with their male counterparts. The results demonstrate a sex dimorphism in the age-associated defects on cardiac mitochondrial function. PMID:24682352

  3. Effects of flight speed upon muscle activity in hummingbirds.

    PubMed

    Tobalske, Bret W; Biewener, Andrew A; Warrick, Douglas R; Hedrick, Tyson L; Powers, Donald R

    2010-07-15

    Hummingbirds have the smallest body size and highest wingbeat frequencies of all flying vertebrates, so they represent one endpoint for evaluating the effects of body size on sustained muscle function and flight performance. Other bird species vary neuromuscular recruitment and contractile behavior to accomplish flight over a wide range of speeds, typically exhibiting a U-shaped curve with maxima at the slowest and fastest flight speeds. To test whether the high wingbeat frequencies and aerodynamically active upstroke of hummingbirds lead to different patterns, we flew rufous hummingbirds (Selasphorus rufus, 3 g body mass, 42 Hz wingbeat frequency) in a variable-speed wind tunnel (0-10 m s(-1)). We measured neuromuscular activity in the pectoralis (PECT) and supracoracoideus (SUPRA) muscles using electromyography (EMG, N=4 birds), and we measured changes in PECT length using sonomicrometry (N=1). Differing markedly from the pattern in other birds, PECT deactivation occurred before the start of downstroke and the SUPRA was deactivated before the start of upstroke. The relative amplitude of EMG signal in the PECT and SUPRA varied according to a U-shaped curve with flight speed; additionally, the onset of SUPRA activity became relatively later in the wingbeat at intermediate flight speeds (4 and 6 m s(-1)). Variation in the relative amplitude of EMG was comparable with that observed in other birds but the timing of muscle activity was different. These data indicate the high wingbeat frequency of hummingbirds limits the time available for flight muscle relaxation before the next half stroke of a wingbeat. Unlike in a previous study that reported single-twitch EMG signals in the PECT of hovering hummingbirds, across all flight speeds we observed 2.9+/-0.8 spikes per contraction in the PECT and 3.8+/-0.8 spikes per contraction in the SUPRA. Muscle strain in the PECT was 10.8+/-0.5%, the lowest reported for a flying bird, and average strain rate was 7.4+/-0.2 muscle

  4. Sexual dimorphism in the histologic organization of the muscle fibers in human tongue.

    PubMed

    de Campos, Deivis; Jotz, Geraldo Pereira; Heck, Layana; Xavier, Léder Leal

    2014-07-01

    Tongue movements are critical for speech, swallowing, and respiration; and tongue dysfunction could lead to dysarthria, dysphagia, and obstructive sleep apnea, respectively. Our current understanding of the contributions of specific tongue muscles (TOs) to precise movement patterns is limited. Likewise, there is still little information regarding the orientation of histologic muscle fibers of the tongue in humans, especially between men and women. Thus, the aim of this study was to compare the histologic organization in the tongue of men and women. Ten tongues were studied in human specimens obtained from necropsies (five men and five women). The muscles were analyzed using histology, and the morphometric parameters were measured using Image Pro-Plus Software (Image Pro-Plus 6.0; Media Cybernetics, Silver Spring, MD). Slices were obtained from the anterior, median, and posterior parts of the tongue. We classified and estimated the percentages of transverse (T), oblique (O), and longitudinal (L) fibers in the tongue. To quantify the percentage of fibers in each category in the tongue, the shape coefficient (Shape Z) was estimated. Statistical differences were found between the orientation of the muscle fibers of men and women only for the middle region of the tongue. The middle region of the tongue in women compared with men has a smaller difference in the variation of the percentage of fibers T (P=0.0004), O (P=0.0006), and L (P=0.0013). These morphologic findings are probably related to physiological differences. PMID:24629642

  5. Flight capacity of Bactrocera dorsalis (Diptera: Tephritidae) adult females based on flight mill studies and flight muscle ultrastructure.

    PubMed

    Chen, Min; Chen, Peng; Ye, Hui; Yuan, Ruiling; Wang, Xiaowei; Xu, Jin

    2015-01-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is considered a major economic threat in many regions worldwide. To better comprehend flight capacity of B. dorsalis and its physiological basis, a computer-monitored flight mill was used to study flight capacity of B. dorsalis adult females of various ages, and the changes of its flight muscle ultrastructures were studied by transmission electron microscopy. The flight capacity (both speed and distance) changed significantly with age of B. dorsalis female adults, peaking at about 15 d; the myofibril diameter of the flight muscle of test insects at 15-d old was the longest, up to 1.56 µm, the sarcomere length at 15-d old was the shortest, averaging at 1.37 µm, volume content of mitochondria of flight muscle at 15-d old reached the peak, it was 32.64%. This study provides the important scientific data for better revealing long-distance movement mechanism of B. dorsalis. PMID:26450591

  6. Flight Capacity of Bactrocera dorsalis (Diptera: Tephritidae) Adult Females Based on Flight Mill Studies and Flight Muscle Ultrastructure

    PubMed Central

    Chen, Peng; Yuan, Ruiling; Wang, Xiaowei; Xu, Jin

    2015-01-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is considered a major economic threat in many regions worldwide. To better comprehend flight capacity of B. dorsalis and its physiological basis, a computer-monitored flight mill was used to study flight capacity of B. dorsalis adult females of various ages, and the changes of its flight muscle ultrastructures were studied by transmission electron microscopy. The flight capacity (both speed and distance) changed significantly with age of B. dorsalis female adults, peaking at about 15 d; the myofibril diameter of the flight muscle of test insects at 15-d old was the longest, up to 1.56 µm, the sarcomere length at 15-d old was the shortest, averaging at 1.37 µm, volume content of mitochondria of flight muscle at 15-d old reached the peak, it was 32.64%. This study provides the important scientific data for better revealing long-distance movement mechanism of B. dorsalis. PMID:26450591

  7. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  8. The metabolic power requirements of flight and estimations of flight muscle efficiency in the cockatiel (Nymphicus hollandicus).

    PubMed

    Morris, Charlotte R; Nelson, Frank E; Askew, Graham N

    2010-08-15

    Little is known about how in vivo muscle efficiency, that is the ratio of mechanical and metabolic power, is affected by changes in locomotory tasks. One of the main problems with determining in vivo muscle efficiency is the large number of muscles generally used to produce mechanical power. Animal flight provides a unique model for determining muscle efficiency because only one muscle, the pectoralis muscle, produces nearly all of the mechanical power required for flight. In order to estimate in vivo flight muscle efficiency, we measured the metabolic cost of flight across a range of flight speeds (6-13 m s(-1)) using masked respirometry in the cockatiel (Nymphicus hollandicus) and compared it with measurements of mechanical power determined in the same wind tunnel. Similar to measurements of the mechanical power-speed relationship, the metabolic power-speed relationship had a U-shape, with a minimum at 10 m s(-1). Although the mechanical and metabolic power-speed relationships had similar minimum power speeds, the metabolic power requirements are not a simple multiple of the mechanical power requirements across a range of flight speeds. The pectoralis muscle efficiency (estimated from mechanical and metabolic power, basal metabolism and an assumed value for the 'postural costs' of flight) increased with flight speed and ranged from 6.9% to 11.2%. However, it is probable that previous estimates of the postural costs of flight have been too low and that the pectoralis muscle efficiency is higher. PMID:20675549

  9. An embryonic myosin converter domain influences Drosophila indirect flight muscle stretch activation, power generation and flight

    PubMed Central

    Wang, Qian; Newhard, Christopher S.; Ramanath, Seemanti; Sheppard, Debra; Swank, Douglas M.

    2014-01-01

    Stretch activation (SA) is critical to the flight ability of insects powered by asynchronous, indirect flight muscles (IFMs). An essential muscle protein component for SA and power generation is myosin. Which structural domains of myosin are significant for setting SA properties and power generation levels is poorly understood. We made use of the transgenic techniques and unique single muscle myosin heavy chain gene of Drosophila to test the influence of the myosin converter domain on IFM SA and power generation. Replacing the endogenous converter with an embryonic version decreased SA tension and the rate of SA tension generation. The alterations in SA properties and myosin kinetics from the converter exchange caused power generation to drop to 10% of control fiber power when the optimal conditions for control fibers – 1% muscle length (ML) amplitude and 150 Hz oscillation frequency – were applied to fibers expressing the embryonic converter (IFI-EC). Optimizing conditions for IFI-EC fiber power production, by doubling ML amplitude and decreasing oscillation frequency by 60%, improved power output to 60% of optimized control fiber power. IFI-EC flies altered their aerodynamic flight characteristics to better match optimal fiber power generation conditions as wing beat frequency decreased and wing stroke amplitude increased. This enabled flight in spite of the drastic changes to fiber mechanical performance. PMID:24115062

  10. Aging Enhances Indirect Flight Muscle Fiber Performance yet Decreases Flight Ability in Drosophila

    SciTech Connect

    Miller, Mark S.; Lekkas, Panagiotis; Braddock, Joan M.; Farman, Gerrie P.; Ballif, Bryan A.; Irving, Thomas C.; Maughan, David W.; Vigoreaux, Jim O.

    2008-10-02

    We investigated the effects of aging on Drosophila melanogaster indirect flight muscle from the whole organism to the actomyosin cross-bridge. Median-aged (49-day-old) flies were flight impaired, had normal myofilament number and packing, barely longer sarcomeres, and slight mitochondrial deterioration compared with young (3-day-old) flies. Old (56-day-old) flies were unable to beat their wings, had deteriorated ultrastructure with severe mitochondrial damage, and their skinned fibers failed to activate with calcium. Small-amplitude sinusoidal length perturbation analysis showed median-aged indirect flight muscle fibers developed greater than twice the isometric force and power output of young fibers, yet cross-bridge kinetics were similar. Large increases in elastic and viscous moduli amplitude under active, passive, and rigor conditions suggest that median-aged fibers become stiffer longitudinally. Small-angle x-ray diffraction indicates that myosin heads move increasingly toward the thin filament with age, accounting for the increased transverse stiffness via cross-bridge formation. We propose that the observed protein composition changes in the connecting filaments, which anchor the thick filaments to the Z-disk, produce compensatory increases in longitudinal stiffness, isometric tension, power and actomyosin interaction in aging indirect flight muscle. We also speculate that a lack of MgATP due to damaged mitochondria accounts for the decreased flight performance.

  11. Aging Enhances Indirect Flight Muscle Fiber Performance yet Decreases Flight Ability in Drosophila

    PubMed Central

    Miller, Mark S.; Lekkas, Panagiotis; Braddock, Joan M.; Farman, Gerrie P.; Ballif, Bryan A.; Irving, Thomas C.; Maughan, David W.; Vigoreaux, Jim O.

    2008-01-01

    We investigated the effects of aging on Drosophila melanogaster indirect flight muscle from the whole organism to the actomyosin cross-bridge. Median-aged (49-day-old) flies were flight impaired, had normal myofilament number and packing, barely longer sarcomeres, and slight mitochondrial deterioration compared with young (3-day-old) flies. Old (56-day-old) flies were unable to beat their wings, had deteriorated ultrastructure with severe mitochondrial damage, and their skinned fibers failed to activate with calcium. Small-amplitude sinusoidal length perturbation analysis showed median-aged indirect flight muscle fibers developed greater than twice the isometric force and power output of young fibers, yet cross-bridge kinetics were similar. Large increases in elastic and viscous moduli amplitude under active, passive, and rigor conditions suggest that median-aged fibers become stiffer longitudinally. Small-angle x-ray diffraction indicates that myosin heads move increasingly toward the thin filament with age, accounting for the increased transverse stiffness via cross-bridge formation. We propose that the observed protein composition changes in the connecting filaments, which anchor the thick filaments to the Z-disk, produce compensatory increases in longitudinal stiffness, isometric tension, power and actomyosin interaction in aging indirect flight muscle. We also speculate that a lack of MgATP due to damaged mitochondria accounts for the decreased flight performance. PMID:18515368

  12. The proteins in the Z line of insect flight muscle.

    PubMed Central

    Bullard, B; Sainsbury, G M

    1977-01-01

    Z discs were isolated from Lethocerus flight muscle by removing the contractile proteins from myofibrils with a solution of high ionic strength. The protein composition of the Z discs was analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis; the major proteins were alpha-actinin, actin and tropomyosin. Z lines were selectively removed from intact myofibrils by digestion with crude lipase and chymotrypsin, but not by purified lipase. Images PLATE 1 PLATE 2 PMID:849268

  13. Effects of Flight on Gene Expression and Aging in the Honey Bee Brain and Flight Muscle

    PubMed Central

    Margotta, Joseph W.; Mancinelli, Georgina E.; Benito, Azucena A.; Ammons, Andrew; Roberts, Stephen P.; Elekonich, Michelle M.

    2012-01-01

    Honey bees move through a series of in-hive tasks (e.g., “nursing”) to outside tasks (e.g., “foraging”) that are coincident with physiological changes and higher levels of metabolic activity. Social context can cause worker bees to speed up or slow down this process, and foragers may revert back to their earlier in-hive tasks accompanied by reversion to earlier physiological states. To investigate the effects of flight, behavioral state and age on gene expression, we used whole-genome microarrays and real-time PCR. Brain tissue and flight muscle exhibited different patterns of expression during behavioral transitions, with expression patterns in the brain reflecting both age and behavior, and expression patterns in flight muscle being primarily determined by age. Our data suggest that the transition from behaviors requiring little to no flight (nursing) to those requiring prolonged flight bouts (foraging), rather than the amount of previous flight per se, has a major effect on gene expression. Following behavioral reversion there was a partial reversion in gene expression but some aspects of forager expression patterns, such as those for genes involved in immune function, remained. Combined with our real-time PCR data, these data suggest an epigenetic control and energy balance role in honey bee functional senescence. PMID:26466793

  14. Muscle function during takeoff and landing flight in the pigeon (Columba livia).

    PubMed

    Robertson, Angela M Berg; Biewener, Andrew A

    2012-12-01

    This study explored the muscle strain and activation patterns of several key flight muscles of the pigeon (Columba livia) during takeoff and landing flight. Using electromyography (EMG) to measure muscle activation, and sonomicrometry to quantify muscle strain, we evaluated the muscle function patterns of the pectoralis, biceps, humerotriceps and scapulotriceps as pigeons flew between two perches. These recordings were analyzed in the context of three-dimensional wing kinematics. To understand the different requirements of takeoff, midflight and landing, we compared the activity and strain of these muscles among the three flight modes. The pectoralis and biceps exhibited greater fascicle strain rates during takeoff than during midflight or landing. However, the triceps muscles did not exhibit notable differences in strain among flight modes. All observed strain, activation and kinematics were consistent with hypothesized muscle functions. The biceps contracted to stabilize and flex the elbow during the downstroke. The humerotriceps contracted to extend the elbow at the upstroke-downstroke transition, followed by scapulotriceps contraction to maintain elbow extension during the downstroke. The scapulotriceps also appeared to contribute to humeral elevation. Greater muscle activation intensity was observed during takeoff, compared with mid-flight and landing, in all muscles except the scapulotriceps. The timing patterns of muscle activation and length change differed among flight modes, yet demonstrated that pigeons do not change the basic mechanical actions of key flight muscles as they shift from flight activities that demand energy production, such as takeoff and midflight, to maneuvers that require absorption of energy, such as landing. Similarly, joint kinematics were consistent among flight modes. The stereotypy of these neuromuscular and joint kinematic patterns is consistent with previously observed stereotypy of wing kinematics relative to the pigeon's body

  15. Differential catabolism of muscle protein in garden warblers (Sylvia borin): flight and leg muscle act as a protein source during long-distance migration.

    PubMed

    Bauchinger, U; Biebach, H

    2001-05-01

    Samples of flight and leg muscle tissue were taken from migratory garden warblers at three different stages of migration: (1) pre-flight: when birds face an extended flight phase within the next few days, (2) post-flight: when they have just completed an extended flight phase, and (3) recovery: when they are at the end of a stop-over period following an extended flight phase. The changes in body mass are closely related to the changes in flight (P<0.001) and leg muscle mass (P<0.001), suggesting that the skeletal muscles are involved in the protein metabolism associated with migratory flight. From pre- to post-flight, the flight and the leg muscle masses decrease by about 22%, but are restored to about 12% above the pre-flight masses during the recovery period. Biochemical analyses show that following flight a selective reduction occurred in the myofibrillar (contractile) component of the flight muscle (P<0.01). As this selective reduction accounts only for a minor part of the muscle mass changes, sarcoplasmic (non-contractile) and myofibrillar proteins of both the flight and leg muscle act as a protein source during long-distance migration. As a loss of leg muscle mass is additionally observed besides the loss in flight muscle mass, mass change seems not to be strictly associated with the mechanical power output requirements during flight. Whereas the specific content of sarcoplasmic proteins in the flight muscle is nearly twice as high as that in the leg muscle (P<0.001), the specific content of myofibrillar proteins differs only slightly (P < 0.05), being comparably low in both muscles. The ratio of non-contractile to contractile proteins in the flight muscle is one of the highest observed in muscles of a vertebrate. PMID:11409626

  16. Flight and seizure motor patterns in Drosophila mutants: simultaneous acoustic and electrophysiological recordings of wing beats and flight muscle activity.

    PubMed

    Iyengar, Atulya; Wu, Chun-Fang

    2014-01-01

    Abstract Tethered flies allow studies of biomechanics and electrophysiology of flight control. We performed microelectrode recordings of spikes in an indirect flight muscle (the dorsal longitudinal muscle, DLMa) coupled with acoustic analysis of wing beat frequency (WBF) via microphone signals. Simultaneous electrophysiological recording of direct and indirect flight muscles has been technically challenging; however, the WBF is thought to reflect in a one-to-one relationship with spiking activity in a subset of direct flight muscles, including muscle m1b. Therefore, our approach enables systematic mutational analysis for changes in temporal features of electrical activity of motor neurons innervating subsets of direct and indirect flight muscles. Here, we report the consequences of specific ion channel disruptions on the spiking activity of myogenic DLMs (firing at ∼5 Hz) and the corresponding WBF (∼200 Hz). We examined mutants of the genes enconding: 1) voltage-gated Ca(2+) channels (cacophony, cac), 2) Ca(2+)-activated K(+) channels (slowpoke, slo), and 3) voltage-gated K(+) channels (Shaker, Sh) and their auxiliary subunits (Hyperkinetic, Hk and quiver, qvr). We found flight initiation in response to an air puff was severely disrupted in both cac and slo mutants. However, once initiated, slo flight was largely unaltered, whereas cac displayed disrupted DLM firing rates and WBF. Sh, Hk, and qvr mutants were able to maintain normal DLM firing rates, despite increased WBF. Notably, defects in the auxiliary subunits encoded by Hk and qvr could lead to distinct consequences, that is, disrupted DLM firing rhythmicity, not observed in Sh. Our mutant analysis of direct and indirect flight muscle activities indicates that the two motor activity patterns may be independently modified by specific ion channel mutations, and that this approach can be extended to other dipteran species and additional motor programs, such as electroconvulsive stimulation-induced seizures

  17. Muscle Efficiency and Elastic Storage in the Flight Motor of Drosophila

    NASA Astrophysics Data System (ADS)

    Dickinson, Michael H.; Lighton, John R. B.

    1995-04-01

    Insects could minimize the high energetic costs of flight in two ways: by employing high-efficiency muscles and by using elastic elements within the thorax to recover energy expended accelerating the wings. However, because muscle efficiency and elastic storage have proven difficult variables to measure, it is not known which of these strategies is actually used. By comparison of mechanical power measurements based on gas exchange with simultaneously measured flight kinematics in Drosophila, a method was developed for determining both the mechanical efficiency and the minimum degree of elastic storage within the flight motor. Muscle efficiency values of 10 percent suggest that insects may minimize energy use in flight by employing an elastic flight motor rather than by using extraordinarily efficient muscles. Further, because of the trade-off between inertial and aerodynamic power throughout the wing stroke, an elastic storage capacity as low as 10 percent may be enough to minimize the energetic costs of flight.

  18. Regulation of oscillatory contraction in insect flight muscle by troponin.

    PubMed

    Krzic, Uros; Rybin, Vladimir; Leonard, Kevin R; Linke, Wolfgang A; Bullard, Belinda

    2010-03-19

    Insect indirect flight muscle is activated by sinusoidal length change, which enables the muscle to work at high frequencies, and contracts isometrically in response to Ca(2+). Indirect flight muscle has two TnC isoforms: F1 binding a single Ca(2+) in the C-domain, and F2 binding Ca(2+) in the N- and C-domains. Fibres substituted with F1 produce delayed force in response to a single rapid stretch, and those with F2 produce isometric force in response to Ca(2+). We have studied the effect of TnC isoforms on oscillatory work. In native Lethocerus indicus fibres, oscillatory work was superimposed on a level of isometric force that depended on Ca(2+) concentration. Maximum work was produced at pCa 6.1; at higher concentrations, work decreased as isometric force increased. In fibres substituted with F1 alone, work continued to rise as Ca(2+) was increased up to pCa 4.7. Fibres substituted with various F1:F2 ratios produced maximal work at a ratio of 100:1 or 50:1; a higher proportion of F2 increased isometric force at the expense of oscillatory work. The F1:F2 ratio was 9.8:1 in native fibres, as measured by immunofluorescence, using isoform-specific antibodies. The small amount of F2 needed to restore work to levels obtained for the native fibre is likely to be due to the relative affinity of F1 and F2 for TnH, the Lethocerus homologue of TnI. Affinity of TnC isoforms for a TnI fragment of TnH was measured by isothermal titration calorimetry. The K(d) was 1.01 muM for F1 binding and 22.7 nM for F2. The higher affinity of F2 can be attributed to two TnH binding sites on F2 and a single site on F1. Stretch may be sensed by an extended C-terminal domain of TnH, resulting in reversible dissociation of the inhibitory sequence from actin during the oscillatory cycle. PMID:20100491

  19. Specificity and localisation of lipoprotein lipase in the flight muscles of Locusta migratoria.

    PubMed

    Wheeler, C H; Goldsworthy, G J

    1985-12-01

    Using natural lipoproteins as substrates, lipase activity has been measured in leg muscle, fat body, midgut and flight muscles of Locusta migratoria. The enzymic activity in the flight muscles is higher than in those other tissues tested, confirming the potential of the flight muscles to utilise lipids at high rates. In addition, a membrane-bound lipoprotein lipase can be extracted from flight muscle. The flight muscle enzyme activity shows a marked substrate specificity; at lipoprotein concentrations equivalent to those found normally in flown or resting locusts respectively, the enzyme hydrolyses diacylglycerols associated with lipoprotein A+ (present in the haemolymph of flown or adipokinetic hormone-injected locusts) at about 4 times the rate of those associated with lipoprotein Ayellow (which is the major lipoprotein in resting locusts). In addition, the hydrolysis of lipids carried by lipoprotein Ayellow is dramatically reduced in the presence of lipoprotein A+. These observations indicate that the enzyme plays a specific role in the uptake of lipids at the flight muscles to ensure a smooth transition from carbohydrate to lipid based metabolism during flight. PMID:4091966

  20. [Morphohistochemical study of skeletal muscles in rats after experimental flight on "Kosmos-1887"].

    PubMed

    Il'ina-Kakueva, E I

    1990-01-01

    Morphometric and histochemical methods were used to examine the soleus, gastrocnemius (medial portion), quadriceps femoris (central portion) and biceps brachii muscles of Wistar SPF rats two days after the 13-day flight on Cosmos-1887. It was found that significant atrophy developed only in the soleus muscle. The space flight did not change the percentage content of slow (type I) and fast (type II) fibers in fast twitch muscles. During two days at 1 g the slow soleus muscle developed substantial circulation disorders, which led to interstitial edema and necrotic changes. The gastrocnemius muscle showed small foci containing necrotic myofibers. Two days after recovery no glycogen aggregates were seen in myofibers, which were previously observed in other rats examined 4--8 hours after flight. An initial stage of muscle readaptation to 1 g occurred, when NAD.H2-dehydrogenase activity was decreased. PMID:2145470

  1. Differences in the Aerobic Capacity of Flight Muscles between Butterfly Populations and Species with Dissimilar Flight Abilities

    PubMed Central

    Rauhamäki, Virve; Wolfram, Joy; Jokitalo, Eija; Hanski, Ilkka; Dahlhoff, Elizabeth P.

    2014-01-01

    Habitat loss and climate change are rapidly converting natural habitats and thereby increasing the significance of dispersal capacity for vulnerable species. Flight is necessary for dispersal in many insects, and differences in dispersal capacity may reflect dissimilarities in flight muscle aerobic capacity. In a large metapopulation of the Glanville fritillary butterfly in the Åland Islands in Finland, adults disperse frequently between small local populations. Individuals found in newly established populations have higher flight metabolic rates and field-measured dispersal distances than butterflies in old populations. To assess possible differences in flight muscle aerobic capacity among Glanville fritillary populations, enzyme activities and tissue concentrations of the mitochondrial protein Cytochrome-c Oxidase (CytOx) were measured and compared with four other species of Nymphalid butterflies. Flight muscle structure and mitochondrial density were also examined in the Glanville fritillary and a long-distance migrant, the red admiral. Glanville fritillaries from new populations had significantly higher aerobic capacities than individuals from old populations. Comparing the different species, strong-flying butterfly species had higher flight muscle CytOx content and enzymatic activity than short-distance fliers, and mitochondria were larger and more numerous in the flight muscle of the red admiral than the Glanville fritillary. These results suggest that superior dispersal capacity of butterflies in new populations of the Glanville fritillary is due in part to greater aerobic capacity, though this species has a low aerobic capacity in general when compared with known strong fliers. Low aerobic capacity may limit dispersal ability of the Glanville fritillary. PMID:24416122

  2. Daily variations in the glycerol-3-phosphate dehydrogenase isoforms expression in Triatoma infestans flight muscles.

    PubMed

    Stroppa, María M; Carriazo, Carlota S; Gerez de Burgos, Nelia M; Garcia, Beatríz A

    2014-08-01

    Triatoma infestans, the main vector of Chagas disease, is a blood-sucking insect. Flight dispersal of adults is the most important mechanism for reinfestation of houses after insecticide spraying. Flight muscles have two glycerol-3-phosphate dehydrogenase (GPDH) isoforms: GPDH-1 is involved in flight metabolism and GPDH-2 provides lipid precursors. In this study, we explored the profile of GPDH expression in females and males adult flight muscles under light/dark cycle, constant light, and constant dark conditions. Under constant dark conditions, GPDH-1 flight muscles of T. infestans showed a rhythmic pattern of transcription synchronous with a rhythmic profile of activity suggesting regulation by the endogenous circadian clock. Otherwise, the GPDH-2 expression analysis showed no regulation by the endogenous clock, but showed that an external factor, such as the dark/light period, was necessary for synchronization of GPDH-2 transcription and activity. PMID:24914000

  3. Daily Variations in the Glycerol-3-Phosphate Dehydrogenase Isoforms Expression in Triatoma infestans Flight Muscles

    PubMed Central

    Stroppa, María M.; Carriazo, Carlota S.; Gerez de Burgos, Nelia M.; Garcia, Beatríz A.

    2014-01-01

    Triatoma infestans, the main vector of Chagas disease, is a blood-sucking insect. Flight dispersal of adults is the most important mechanism for reinfestation of houses after insecticide spraying. Flight muscles have two glycerol-3-phosphate dehydrogenase (GPDH) isoforms: GPDH-1 is involved in flight metabolism and GPDH-2 provides lipid precursors. In this study, we explored the profile of GPDH expression in females and males adult flight muscles under light/dark cycle, constant light, and constant dark conditions. Under constant dark conditions, GPDH-1 flight muscles of T. infestans showed a rhythmic pattern of transcription synchronous with a rhythmic profile of activity suggesting regulation by the endogenous circadian clock. Otherwise, the GPDH-2 expression analysis showed no regulation by the endogenous clock, but showed that an external factor, such as the dark/light period, was necessary for synchronization of GPDH-2 transcription and activity. PMID:24914000

  4. Myosin heavy-chain isoforms in the flight and leg muscles of hummingbirds and zebra finches.

    PubMed

    Velten, Brandy P; Welch, Kenneth C

    2014-06-01

    Myosin heavy chain (MHC) isoform complement is intimately related to a muscle's contractile properties, yet relatively little is known about avian MHC isoforms or how they may vary with fiber type and/or the contractile properties of a muscle. The rapid shortening of muscles necessary to power flight at the high wingbeat frequencies of ruby-throated hummingbirds and zebra finches (25-60 Hz), along with the varied morphology and use of the hummingbird hindlimb, provides a unique opportunity to understand how contractile and morphological properties of avian muscle may be reflected in MHC expression. Isoforms of the hummingbird and zebra finch flight and hindlimb muscles were electrophoretically separated and compared with those of other avian species representing different contractile properties and fiber types. The flight muscles of the study species operate at drastically different contraction rates and are composed of different histochemically defined fiber types, yet each exhibited the same, single MHC isoform corresponding to the chicken adult fast isoform. Thus, despite quantitative differences in the contractile demands of flight muscles across species, this isoform appears necessary for meeting the performance demands of avian powered flight. Variation in flight muscle contractile performance across species may be due to differences in the structural composition of this conserved isoform and/or variation within other mechanically linked proteins. The leg muscles were more varied in their MHC isoform composition across both muscles and species. The disparity in hindlimb MHC expression between hummingbirds and the other species highlights previously observed differences in fiber type composition and thrust production during take-off. PMID:24671242

  5. Patterning the dorsal longitudinal flight muscles (DLM) of Drosophila: insights from the ablation of larval scaffolds

    NASA Technical Reports Server (NTRS)

    Fernandes, J. J.; Keshishian, H.

    1996-01-01

    The six Dorsal Longitudinal flight Muscles (DLMs) of Drosophila develop from three larval muscles that persist into metamorphosis and serve as scaffolds for the formation of the adult fibers. We have examined the effect of muscle scaffold ablation on the development of DLMs during metamorphosis. Using markers that are specific to muscle and myoblasts we show that in response to the ablation, myoblasts which would normally fuse with the larval muscle, fuse with each other instead, to generate the adult fibers in the appropriate regions of the thorax. The development of these de novo DLMs is delayed and is reflected in the delayed expression of erect wing, a transcription factor thought to control differentiation events associated with myoblast fusion. The newly arising muscles express the appropriate adult-specific Actin isoform (88F), indicating that they have the correct muscle identity. However, there are frequent errors in the number of muscle fibers generated. Ablation of the larval scaffolds for the DLMs has revealed an underlying potential of the DLM myoblasts to initiate de novo myogenesis in a manner that resembles the mode of formation of the Dorso-Ventral Muscles, DVMs, which are the other group of indirect flight muscles. Therefore, it appears that the use of larval scaffolds is a superimposition on a commonly used mechanism of myogenesis in Drosophila. Our results show that the role of the persistent larval muscles in muscle patterning involves the partitioning of DLM myoblasts, and in doing so, they regulate formation of the correct number of DLM fibers.

  6. Mucor dimorphism.

    PubMed Central

    Orlowski, M

    1991-01-01

    Mucor dimorphism has interested microbiologists since the time of Pasteur. When deprived of oxygen, these fungi grow as spherical, multipolar budding yeasts. In the presence of oxygen, they propagate as branching coenocytic hyphae. The ease with which these morphologies can be manipulated in the laboratory, the diverse array of morphopoietic agents available, and the alternative developmental fates that can be elicited from a single cell type (the sporangiospore) make Mucor spp. a highly propitious system in which to study eukaryotic cellular morphogenesis. The composition and organization of the cell wall differ greatly in Mucor yeasts and hyphae. The deposition of new wall polymers is isodiametric in yeasts and apically polarized in hyphae. Current research has focused on the identity and control of enzymes participating in wall synthesis. An understanding of how the chitosome interacts with appropriate effectors, specific enzymes, and the plasma membrane to assemble chitin-chitosan microfibrils and to deposit them at the proper sites on the cell exterior will be critical to elucidating dimorphism. Several biochemical and physiological parameters have been reported to fluctuate in a manner that correlates with Mucor morphogenesis. The literature describing these has been reviewed critically with the intent of distinguishing between causal and casual connections. The advancement of molecular genetics has afforded powerful new tools that researchers have begun to exploit in the study of Mucor dimorphism. Several genes, some encoding products known to correlate with development in Mucor spp. or other fungi, have been cloned, sequenced, and examined for transcriptional activity during morphogenesis. Most have appeared in multiple copies displaying independent transcriptional control. Selective translation of stored mRNA molecules occurs during sporangiospore germination. Many other correlates of Mucor morphogenesis, presently described but not yet explained, should

  7. [Ultrastructural changes in transverse striated muscles under the influence of space flight factors].

    PubMed

    Pozdniakov, O M; Babakova, L L; Demorzhi, M S

    1988-12-01

    The influence of space flight (on the biosatellite "Kosmos-1667") on muscles (diaphragmatic, soleus, gastrocnemius) was studied by electron microscope. Muscles had destructive and atrophic changes. The rate of changes was maximal in m. soleus, minimal in the diaphragmatic m. However, some regeneration was found demonstrating the reversibility of changes. PMID:2974735

  8. Effects of host quality on flight muscle development in Neochetina eichhornia and N bruchi (Coleoptera: Curculionidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neochetina eichhorniae Warner and N. bruchi Hustache, biological control agents of waterhyacinth. are usually incapable of flight but occasionally develop flight muscles enabling dispersal. We examined host quality as a possible explanation for the transitions between these two states by allowing p...

  9. Abdicating power for control: a precision timing strategy to modulate function of flight power muscles

    PubMed Central

    Sponberg, S.; Daniel, T. L.

    2012-01-01

    Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power–phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left–right pairs of flight muscles normally fire precisely, within 0.5–0.6 ms of each other; (ii) during a yawing optomotor response, left—right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left–right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left—right timing differences. Because many organisms also have muscles operating with high power–phase gains (Δpower/Δphase), this motor control strategy may be ubiquitous in locomotor systems. PMID:22833272

  10. [Contractile properties of skeletal muscles of rats after flight on "Kosmos-1887"].

    PubMed

    Oganov, V S; Skuratova, S A; Murashko, L M

    1991-01-01

    Contractile properties of skeletal muscles of rats were investigated using glycerinated muscle preparations that were obtained from Cosmos-1887 animals flown for 13 days (plus 2 days on the ground) and from rats that remained hypokinetic for 13 days on the ground. In the flow rats, the absolute mass of postural muscles remained unchanged while their relative mass increased; this may be attributed to their enhanced hydration which developed during the first 2 days after landing. Strength losses of the postural muscles were less significant than after previous flights. Comparison of the Cosmos-1887 and hypokinesia control data has shown that even 2-day exposure to 1 G after 13-day flight can modify drastically flight-induced changes. PMID:1870316

  11. Arrest is a regulator of fiber-specific alternative splicing in the indirect flight muscles of Drosophila

    PubMed Central

    Oas, Sandy T.

    2014-01-01

    Drosophila melanogaster flight muscles are distinct from other skeletal muscles, such as jump muscles, and express several uniquely spliced muscle-associated transcripts. We sought to identify factors mediating splicing differences between the flight and jump muscle fiber types. We found that the ribonucleic acid–binding protein Arrest (Aret) is expressed in flight muscles: in founder cells, Aret accumulates in a novel intranuclear compartment that we termed the Bruno body, and after the onset of muscle differentiation, Aret disperses in the nucleus. Down-regulation of the aret gene led to ultrastructural changes and functional impairment of flight muscles, and transcripts of structural genes expressed in the flight muscles became spliced in a manner characteristic of jump muscles. Aret also potently promoted flight muscle splicing patterns when ectopically expressed in jump muscles or tissue culture cells. Genetically, aret is located downstream of exd (extradenticle), hth (homothorax), and salm (spalt major), transcription factors that control fiber identity. Our observations provide insight into a transcriptional and splicing regulatory network for muscle fiber specification. PMID:25246617

  12. Arrest is a regulator of fiber-specific alternative splicing in the indirect flight muscles of Drosophila.

    PubMed

    Oas, Sandy T; Bryantsev, Anton L; Cripps, Richard M

    2014-09-29

    Drosophila melanogaster flight muscles are distinct from other skeletal muscles, such as jump muscles, and express several uniquely spliced muscle-associated transcripts. We sought to identify factors mediating splicing differences between the flight and jump muscle fiber types. We found that the ribonucleic acid-binding protein Arrest (Aret) is expressed in flight muscles: in founder cells, Aret accumulates in a novel intranuclear compartment that we termed the Bruno body, and after the onset of muscle differentiation, Aret disperses in the nucleus. Down-regulation of the aret gene led to ultrastructural changes and functional impairment of flight muscles, and transcripts of structural genes expressed in the flight muscles became spliced in a manner characteristic of jump muscles. Aret also potently promoted flight muscle splicing patterns when ectopically expressed in jump muscles or tissue culture cells. Genetically, aret is located downstream of exd (extradenticle), hth (homothorax), and salm (spalt major), transcription factors that control fiber identity. Our observations provide insight into a transcriptional and splicing regulatory network for muscle fiber specification. PMID:25246617

  13. Sugar flux through the flight muscles of hovering vertebrate nectarivores: a review.

    PubMed

    Welch, Kenneth C; Chen, Chris C W

    2014-12-01

    In most vertebrates, uptake and oxidation of circulating sugars by locomotor muscles rises with increasing exercise intensity. However, uptake rate by muscle plateaus at moderate aerobic exercise intensities and intracellular fuels dominate at oxygen consumption rates of 50% of maximum or more. Further, uptake and oxidation of circulating fructose by muscle is negligible. In contrast, hummingbirds and nectar bats are capable of fueling expensive hovering flight exclusively, or nearly completely, with dietary sugar. In addition, hummingbirds and nectar bats appear capable of fueling hovering flight completely with fructose. Three crucial steps are believed to be rate limiting to muscle uptake of circulating glucose or fructose in vertebrates: (1) delivery to muscle; (2) transport into muscle through glucose transporter proteins (GLUTs); and (3) phosphorylation of glucose by hexokinase (HK) within the muscle. In this review, we summarize what is known about the functional upregulation of exogenous sugar flux at each of these steps in hummingbirds and nectar bats. High cardiac output, capillary density, and blood sugar levels in hummingbirds and bats enhance sugar delivery to muscles (step 1). Hummingbird and nectar bat flight muscle fibers have relatively small cross-sectional areas and thus relatively high surface areas across which transport can occur (step 2). Maximum HK activities in each species are enough for carbohydrate flux through glycolysis to satisfy 100 % of hovering oxidative demand (step 3). However, qualitative patterns of GLUT expression in the muscle (step 2) raise more questions than they answer regarding sugar transport in hummingbirds and suggest major differences in the regulation of sugar flux compared to nectar bats. Behavioral and physiological similarities among hummingbirds, nectar bats, and other vertebrates suggest enhanced capacities for exogenous fuel use during exercise may be more wide spread than previously appreciated. Further, how

  14. Morphometric analysis of rat muscle fibers following space flight and hypogravity

    NASA Technical Reports Server (NTRS)

    Chui, L. A.; Castleman, K. R.

    1982-01-01

    The effect of hypogravity on striate muscles, containing both fast twitch glycolytic and slow twitch oxidative fibers, was studied in rats aboard two Cosmos biosatellites. Results of a computer-assisted image analysis of extensor digitorum muscles from five rats, exposed to 18.5 days of hypogravity and processed for the alkaline ATPase reaction, showed a reduction of the mean fiber diameter (41.32 + or - 0.55 microns), compared to synchronous (46.32 + or - 0.55 microns) and vivarium (49 + or - 0.5 microns) controls. A further experiment studied the ratio of fast to slow twitch fibers in 25 rats exposed to 18.5 days of hypogravity and analyzed at four different periods of recovery following the space flight. Using the previous techniques, the gastrocnemius muscle showed a reduction of the total muscle fiber area in square microns and a reduction in the percentage of slow fibers of flight animals compared to the control animals.

  15. [Energy reactions in the skeletal muscles of rats after a flight on the Kosmos-1129 biosatellite].

    PubMed

    Mailian, E S; Buravkova, L B; Kokoreva, L V

    1983-01-01

    The polarographic analysis of biological oxidation in rat skeletal muscles after the 18.5-day flight revealed changes specific for the flight animals: oxidative phosphorylation uncoupling, distinct inertness of energy accumulation 10 hrs after recovery. Tissue respiration inhibition occurred in both flight and synchronous rats suggesting the effect of other than weightlessness factors. In the flight animals the parameters of energy metabolism returned to the prelaunch level within a longer (29 days) time than in the synchronous rats (6 days). Muscles of different function (predominance of fast or slow fibers) showed similar responses of energy metabolism to weightlessness, i. e. inhibition of the intensity and decrease of the energy efficiency of oxidative processes. PMID:6876715

  16. Disrupting the myosin converter-relay interface impairs Drosophila indirect flight muscle performance.

    PubMed

    Ramanath, Seemanti; Wang, Qian; Bernstein, Sanford I; Swank, Douglas M

    2011-09-01

    Structural interactions between the myosin converter and relay domains have been proposed to be critical for the myosin power stroke and muscle power generation. We tested this hypothesis by mutating converter residue 759, which interacts with relay residues I508, N509, and D511, to glutamate (R759E) and determined the effect on Drosophila indirect flight muscle mechanical performance. Work loop analysis of mutant R759E indirect flight muscle fibers revealed a 58% and 31% reduction in maximum power generation (P(WL)) and the frequency at which maximum power (f(WL)) is generated, respectively, compared to control fibers at 15 °C. Small amplitude sinusoidal analysis revealed a 30%, 36%, and 32% reduction in mutant elastic modulus, viscous modulus, and mechanical rate constant 2πb, respectively. From these results, we infer that the mutation reduces rates of transitions through work-producing cross-bridge states and/or force generation during strongly bound states. The reductions in muscle power output, stiffness, and kinetics were physiologically relevant, as mutant wing beat frequency and flight index decreased about 10% and 45% compared to control flies at both 15 °C and 25 °C. Thus, interactions between the relay loop and converter domain are critical for lever-arm and catalytic domain coordination, high muscle power generation, and optimal Drosophila flight performance. PMID:21889448

  17. A gravity exercise system. [for muscle conditioning during manned space flight

    NASA Technical Reports Server (NTRS)

    Brandt, W. E.; Clark, A. L.

    1973-01-01

    An effective method for muscle conditioning during weightlessness flight is derived from isometric exercise. The basic principle of gravity exercise is to periodically displace the human body upon reactionless rollers so that spacial equilibrium can only be maintained by the proper tension and relaxation of the body's muscles. A rotating platform mounted upon two degrees of freedom rollers provides such a condition of gravitational reaction stress throughout each of its 360 deg rotation.

  18. Temperature gradients drive mechanical energy gradients in the flight muscle of Manduca sexta.

    PubMed

    George, N T; Sponberg, S; Daniel, T L

    2012-02-01

    A temperature gradient throughout the dominant flight muscle (dorsolongitudinal muscle, DLM(1)) of the hawkmoth Manduca sexta, together with temperature-dependent muscle contractile rates, demonstrates that significant spatial variation in power production is possible within a single muscle. Using in situ work-loop analyses under varying muscle temperatures and phases of activation, we show that regional differences in muscle temperature will induce a spatial gradient in the mechanical power output throughout the DLM(1). Indeed, we note that this power gradient spans from positive to negative values across the predicted temperature range. Warm ventral subunits produce positive power at their in vivo operating temperatures, and therefore act as motors. Concurrently, as muscle temperature decreases dorsally, the subunits produce approximately zero mechanical power output, acting as an elastic energy storage source, and negative power output, behaving as a damper. Adjusting the phase of activation further influences the temperature sensitivity of power output, significantly affecting the mechanical power output gradient that is expressed. Additionally, the separate subregions of the DLM(1) did not appear to employ significant physiological compensation for the temperature-induced differences in power output. Thus, although the components of a muscle are commonly thought to operate uniformly, a significant within-muscle temperature gradient has the potential to induce a mechanical power gradient, whereby subunits within a muscle operate with separate and distinct functional roles. PMID:22246256

  19. Energetic Metabolism and Biochemical Adaptation: A Bird Flight Muscle Model

    ERIC Educational Resources Information Center

    Rioux, Pierre; Blier, Pierre U.

    2006-01-01

    The main objective of this class experiment is to measure the activity of two metabolic enzymes in crude extract from bird pectoral muscle and to relate the differences to their mode of locomotion and ecology. The laboratory is adapted to stimulate the interest of wildlife management students to biochemistry. The enzymatic activities of cytochrome…

  20. [Skeletal muscle mixed fiber tissue metabolism in rats after a flight on the Kosmos-690 biosatellite].

    PubMed

    Gaevskaia, M S; Belitskaia, R A; Kolganova, N S; Kolchina, E V; Kurkina, L M

    1979-01-01

    On the R+O day the quadriceps muscle of rats showed a decrease in the content of T protein and an inhibition of LDH activity of sacroplasmatic proteins. These changes resulted from the combined affect of space flight factors and gamma-irradiation, and may be considered as a decline of compensatory synthetic processes responsible for the recovery of muscle proteins in weightlessness. Inhibition of the age-associated shift of the M:H ratio of LDH found on the R+25 day can be attributed to the inhibitory effect of gamma-irradiation. No change in the content of glycogen in the gastrocnemius muscle of flight rats was noted. PMID:449263

  1. X-ray diffraction of indirect flight muscle from Drosohila in vivo

    SciTech Connect

    Irving, T.

    2007-02-09

    The indirect flight muscle (IFM) of the fruit fly, Drosophila, represents a powerful model system for integrated structure and function studies because of the ease of genetically manipulating this organism. Recent advances in synchrotron technology have allowed collection of high quality two dimensional x-ray fiber diffraction patterns from the IFM of living fruit flies both at rest and during tethered flight. Based on many decades of x-ray and electron microscopic studies of vertebrate muscle and IFM from the waterbug, Lethocerus, there now exists a framework for interpreting changes in the x-ray diffraction patterns in terms of structural changes at the myofilament level. These developments allow testing of hypotheses concerning muscle function in a truly in vivo system.

  2. [Amino acid composition of the rat quadriceps femoris muscle after a flight on the Kosmos-936 biosatellite].

    PubMed

    Vlasova, T F; Miroshnikova, E B; Poliakov, V V; Murugova, T P

    1982-01-01

    The amino acid composition of the quadriceps muscle of rats flown onboard the biosatellite Cosmos-936 and exposed to the ground-based synchronous control experiment was studied. The weightless rats showed changes in the amino acid concentration in the quadriceps muscle. The centrifuged flight and synchronous rats displayed an accumulation of free amino acids in the above muscle. PMID:7070040

  3. Female pheromones modulate flight muscle activation patterns during preflight warm-up

    PubMed Central

    Vickers, Neil J.; Goller, Franz

    2013-01-01

    At low ambient temperature Helicoverpa zea male moths engage in warm-up behavior prior to taking flight in response to an attractive female pheromone blend. Male H. zea warm up at a faster rate when sensing the attractive pheromone blend compared with unattractive blends or blank controls (Crespo et al. 2012), but the mechanisms involved in this olfactory modulation of the heating rate during preflight warm-up are unknown. Here, we test three possible mechanisms for increasing heat production: 1) increased rate of muscle contraction; 2) reduction in mechanical movement by increased overlap in activation of the antagonistic flight muscles; and 3) increased activation of motor units. To test which mechanisms play a role, we simultaneously recorded electrical activation patterns of the main flight muscles (dorsolongitudinal and dorsoventral muscles), wing movement, and thoracic temperature in moths exposed to both the attractive pheromone blend and a blank control. Results indicate that the main mechanism responsible for the observed increase in thoracic heating rate with pheromone stimulation is the differential activation of motor units during each muscle contraction cycle in both antagonistic flight muscles. This additional activation lengthens the contracted state within each cycle and thus accounts for the greater heat production. Interestingly, the rate of activation (frequency of contraction cycles) of motor units, which is temperature dependent, did not vary between treatments. This result suggests that the activation rate is determined by a temperature-dependent oscillator, which is not affected by the olfactory stimulus, but activation of motor units is modulated during each cycle. PMID:23699056

  4. Effect of myonuclear number and mitochondrial fusion on Drosophila indirect flight muscle organization and size

    SciTech Connect

    Rai, Mamta; Nongthomba, Upendra

    2013-10-15

    Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. - Highlights: • Drosophila dorsal longitudinal muscles are similar to vertebrate skeletal muscles. • A threshold number of myoblasts governs the organization of a fibre and its size. • Mitochondrial fusion defect leads to abnormal fibre growth and organization.

  5. Transgenic expression and purification of myosin isoforms using the Drosophila melanogaster indirect flight muscle system

    PubMed Central

    Caldwell, James T.; Melkani, Girish C.; Huxford, Tom; Bernstein, Sanford I.

    2011-01-01

    Biophysical and structural studies on muscle myosin rely upon milligram quantities of extremely pure material. However, many biologically interesting myosin isoforms are expressed at levels that are too low for direct purification from primary tissues. Efforts aimed at recombinant expression of functional striated muscle myosin isoforms in bacterial or insect cell culture have largely met with failure, although high level expression in muscle cell culture has recently been achieved at significant expense. We report a novel method for the use of strains of the fruit fly Drosophila melanogaster genetically engineered to produce histidine-tagged recombinant muscle myosin isoforms. This method takes advantage of the single muscle myosin heavy chain gene within the Drosophila genome, the high level of expression of accessible myosin in the thoracic indirect flight muscles, the ability to knock out endogenous expression of myosin in this tissue and the relatively low cost of fruit fly colony production and maintenance. We illustrate this method by expressing and purifying a recombinant histidine-tagged variant of embryonic body wall skeletal muscle myosin II from an engineered fly strain. The recombinant protein shows the expected ATPase activity and is of sufficient purity and homogeneity for crystallization. This system may prove useful for the expression and isolation of mutant myosins associated with skeletal muscle diseases and cardiomyopathies for their biochemical and structural characterization. PMID:22178692

  6. [Energy reactions in the skeletal muscles of rats after short-term space flight on Kosmos-1514].

    PubMed

    Mailian, E S; Chabdarova, R N; Korzun, E I

    1988-01-01

    Ten hours after the 5-day space flight on Cosmos-1514 rats were examined for oxidative phosphorylation in mitochondria isolated from the posterior femoral muscles as well as for Krebs cycle enzymes and glycolysis in the mitochondrial and cytoplasmic fractions of the muscles. The mitochondrial respiration rate in various metabolic states was similar in flight rats and vivarium controls. After flight calculated parameters of energy efficacy of respiration as well as activity of malate dehydrogenase, isocitrate dehydrogenase and total lactate dehydrogenase remained unchanged. Unlike the flight rats, the synchronous controls showed signs of the stress-reaction: uncoupling of oxidative phosphorylation and oxalacetate inhibition of succinate dehydrogenase. Comparison of these findings with those from prolonged space flights indicates that inhibition of oxidative metabolism and glycolysis in mixed muscles which was demonstrated in the 20-day space flight does not develop immediately after launch but occurs within the time interval between mission days 6 and 18. PMID:3047495

  7. Identification of Drosophila indirect flight muscle myofibrillar proteins by means of two-dimensional electrophoresis.

    PubMed

    Mogami, K; Fujita, S C; Hotta, Y

    1982-02-01

    When proteins of whole Drosophila thorax were analyzed by two-dimensional gel electrophoresis, 186 spots were detected by protein staining with Coomassie brilliant blue R-250. Two methods were developed to identify proteins which exist in indirect flight muscle (IFM) and its myofibrils. 1) A whole fly was freeze-dried in a dry ice-acetone mixture, and indirect flight muscle fibers were cleanly dissected out from the thorax. The muscle cells and the rest of the thorax were analyzed separately. The muscle contained 146 polypeptides, of which 12 were not detected elsewhere. 2) Flies were frozen in liquid nitrogen and shaken vigorously so that their thoraces broke off from heads and abdomens. The thoraces were separated from the rest by sieving and centrifugation. After homogenization of the thorax, myofibrils were prepared by centrifugation in a discontinuous sucrose density gradient. The myofibril fraction contained at least 20 proteins. There were two types of actin (II and III), myosin heavy chain, tropomyosin and paramyosin. Nine of the other myofibrillar proteins were specific to this muscle. PMID:6802813

  8. Sexual dimorphism of body composition.

    PubMed

    Wells, Jonathan C K

    2007-09-01

    Sexual dimorphism in human body composition is evident from fetal life, but emerges primarily during puberty. At birth, males have a similar fat mass to females but are longer and have greater lean mass. Such differences remain detectable during childhood; however, females enter puberty earlier and undergo a more rapid pubertal transition, whereas boys have a substantially longer growth period. After adjusting for dimorphism in size (height), adult males have greater total lean mass and mineral mass, and a lower fat mass than females. These whole-body differences are complemented by major differences in tissue distribution. Adult males have greater arm muscle mass, larger and stronger bones, and reduced limb fat, but a similar degree of central abdominal fat. Females have a more peripheral distribution of fat in early adulthood; however, greater parity and the menopause both induce a more android fat distribution with increasing age. Sex differences in body composition are primarily attributable to the action of sex steroid hormones, which drive the dimorphisms during pubertal development. Oestrogen is important not only in body fat distribution but also in the female pattern of bone development that predisposes to a greater female risk of osteoporosis in old age. Disorders of sex development are associated with significant abnormalities of body composition, attributable largely to their impact on mechanisms of hormonal regulation. PMID:17875489

  9. Ecdysteroids affect in vivo protein metabolism of the flight muscle of the tobacco hornworm (Manduca sexta)

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Wu, M.; Cook, P.; Hodsden, S.

    1990-01-01

    Ecdysteroid growth promotion of the dorsolongitudinal flight muscle of Manduca sexta was studied by measuring in vivo protein metabolism using both "flooding-dose" and "non-carrier" techniques. These procedures differ in that the former method includes injection of non-labelled phenylalanine (30 micromoles/insect) together with the [3H]amino acid. Injected radioactivity plateaued in the haemolymph within 7 min. With the flooding-dose method, haemolymph and intramuscular specific radioactivities were similar between 15 min and 2 h. Incorporation of [3H]phenylalanine into muscle protein was linear with either method between 30 and 120 min. Fractional rates (%/12 h) of synthesis with the flooding-dose technique were best measured after 1 h because of the initial delay in radioactivity equilibration. Estimation of body phenylalanine turnover with the non-carrier method showed 24-53%/h which was negligible with the flooding-dose method. Since the two methods yielded similar rates of protein synthesis, the large injection of non-labelled amino acid did not alter the rate of synthesis. Because the flooding-dose technique requires only a single time point measurement, it is the preferred method. The decline and eventual cessation of flight-muscle growth was mostly a consequence of declining protein synthesis though degradation increased between 76-86 h before eclosion and was relatively rapid. This decline in muscle growth could be prevented by treating pupae with 20-hydroxyecdysone (10 micrograms/insect). Protein accretion was promoted by a decline of up to 80% in protein breakdown, which was offset in part by a concurrent though much smaller decrease in protein synthesis. Therefore, ecdysteroids may increase flight-muscle growth by inhibiting proteolysis.

  10. Long-term effects of the trehalase inhibitor trehazolin on trehalase activity in locust flight muscle.

    PubMed

    Wegener, Gerhard; Macho, Claudia; Schlöder, Paul; Kamp, Günter; Ando, Osamu

    2010-11-15

    Trehalase (EC 3.2.1.28) hydrolyzes the main haemolymph sugar of insects, trehalose, into the essential cellular substrate glucose. Trehalase in locust flight muscle is bound to membranes that appear in the microsomal fraction upon tissue fractionation, but the exact location in vivo has remained elusive. Trehalase has been proposed to be regulated by a novel type of activity control that is based on the reversible transformation of a latent (inactive) form into an overt (active) form. Most trehalase activity from saline-injected controls was membrane-bound (95%) and comprised an overt form (∼25%) and a latent form (75%). Latent trehalase could be assayed only after the integrity of membranes had been destroyed. Trehazolin, a potent tight-binding inhibitor of trehalase, is confined to the extracellular space and has been used as a tool to gather information on the relationship between latent and overt trehalase. Trehazolin was injected into the haemolymph of locusts, and the trehalase activity of the flight muscle was determined at different times over a 30-day period. Total trehalase activity in locust flight muscle was markedly inhibited during the first half of the interval, but reappeared during the second half. Inhibition of the overt form preceded inhibition of the latent form, and the time course suggested a reversible precursor-product relation (cycling) between the two forms. The results support the working hypothesis that trehalase functions as an ectoenzyme, the activity of which is regulated by reversible transformation of latent into overt trehalase. PMID:21037064

  11. Magnetic Resonance Imaging (MRI) of skeletal muscles in astronauts after 9 days of space flight

    NASA Technical Reports Server (NTRS)

    Jaweed, M.; Narayana, P.; Slopis, J.; Butler, I.; Schneider, V.; Leblanc, A.; Fotedar, L.; Bacon, D.

    1992-01-01

    Skylab data indicated that prolonged exposure of human subjects to microgravity environment causes significant muscle atrophy accompanied by reduced muscle strength and fatigue resistance. The objective of this study was to determine decrements in muscle size, if any, in the soleus and gastrocnemius muscles of male and female astronauts after 9 days of space flight. Methods: Eight astronauts, one female and seven male, between the ages of 31 and 59 years 59-84 kg in body weight were examined by MRI 2-3 times preflight within 16 days before launch, and 2 days, (n=6) and seven days (n=3) after landing. The right leg muscles (gastroc-soleus) were imaged with a lower extremity coil in magnets operating at 1.0 or 1.5 Tsela. The imaging protocol consisted of spin echo with a Tr of 0.70 - 1.5 sec. Thirty to forty 3-5 mm thick slices were acquired in 256 x 128 or 256 x 256 matrices. Acquisition time lasted 20-40 minutes. Multiple slices were measured by computerized planimetry. Results: Compared to the preflight, the cross-sectoral areas (CSA) of the soleus, gastrocnemius, and the leg, at 2 days after landing were reduced (at least p less than 0.05) 8.9 percent, 13.2 percent, and 9.5 percent respectively. The soleus and the leg of three astronauts evaluated at 7 days postflight did not show full recovery compared to the preflight values. Conclusions: It is concluded that l9-days of space flight may cause significant decreases in CSA of the leg muscles. The factors responsible for this loss need further determination.

  12. Subcellular trafficking of FGF controls tracheal invasion of Drosophila flight muscle

    PubMed Central

    Peterson, Soren J.; Krasnow, Mark A.

    2015-01-01

    SUMMARY To meet the extreme oxygen demand of insect flight muscle, tracheal (respiratory) tubes ramify not only on its surface, as in other tissues, but also within T-tubules and ultimately surrounding every mitochondrion. Although this remarkable physiological specialization has long been recognized, its cellular and molecular basis is unknown. Here we show that Drosophila tracheoles invade flight muscle T-tubules through transient surface openings. Like other tracheal branching events, invasion requires the Branchless FGF pathway. However, localization of the FGF chemoattractant changes from all muscle membranes to T-tubules as invasion begins. Core regulators of epithelial basolateral membrane identity localize to T-tubules, and knockdown of AP-1γ, required for basolateral trafficking, redirects FGF from T-tubules to surface, increasing tracheal surface ramification and preventing invasion. We propose that tracheal invasion is controlled by an AP-1-dependent switch in FGF trafficking. Thus, subcellular targeting of a chemoattractant can direct outgrowth to specific domains including inside the cell. PMID:25557078

  13. Functional Task Test: 3. Skeletal Muscle Performance Adaptations to Space Flight

    NASA Technical Reports Server (NTRS)

    Ryder, Jeffrey W.; Wickwire, P. J.; Buxton, R. E.; Bloomberg, J. J.; Ploutz-Snyder, L.

    2011-01-01

    The functional task test is a multi-disciplinary study investigating how space-flight induced changes to physiological systems impacts functional task performance. Impairment of neuromuscular function would be expected to negatively affect functional performance of crewmembers following exposure to microgravity. This presentation reports the results for muscle performance testing in crewmembers. Functional task performance will be presented in the abstract "Functional Task Test 1: sensory motor adaptations associated with postflight alternations in astronaut functional task performance." METHODS: Muscle performance measures were obtained in crewmembers before and after short-duration space flight aboard the Space Shuttle and long-duration International Space Station (ISS) missions. The battery of muscle performance tests included leg press and bench press measures of isometric force, isotonic power and total work. Knee extension was used for the measurement of central activation and maximal isometric force. Upper and lower body force steadiness control were measured on the bench press and knee extension machine, respectively. Tests were implemented 60 and 30 days before launch, on landing day (Shuttle crew only), and 6, 10 and 30 days after landing. Seven Space Shuttle crew and four ISS crew have completed the muscle performance testing to date. RESULTS: Preliminary results for Space Shuttle crew reveal significant reductions in the leg press performance metrics of maximal isometric force, power and total work on R+0 (p<0.05). Bench press total work was also significantly impaired, although maximal isometric force and power were not significantly affected. No changes were noted for measurements of central activation or force steadiness. Results for ISS crew were not analyzed due to the current small sample size. DISCUSSION: Significant reductions in lower body muscle performance metrics were observed in returning Shuttle crew and these adaptations are likely

  14. The Drosophila Z-disc Protein Z(210) Is an Adult Muscle Isoform of Zasp52, Which Is Required for Normal Myofibril Organization in Indirect Flight Muscles*

    PubMed Central

    Chechenova, Maria B.; Bryantsev, Anton L.; Cripps, Richard M.

    2013-01-01

    The Z-disc is a critical anchoring point for thin filaments as they slide during muscle contraction. Therefore, identifying components of the Z-disc is critical for fully comprehending how myofibrils assemble and function. In the adult Drosophila musculature, the fibrillar indirect flight muscles accumulate a >200 kDa Z-disc protein termed Z(210), the identity of which has to date been unknown. Here, we use mass spectrometry and gene specific knockdown studies, to identify Z(210) as an adult isoform of the Z-disc protein Zasp52. The Zasp52 primary transcript is extensively alternatively spliced, and we describe its splicing pattern in the flight muscles, identifying a new Zasp52 isoform, which is the one recognized by the Z(210) antibody. We also demonstrate that Zasp52 is required for the association of α-actinin with the flight muscle Z-disc, and for normal sarcomere structure. These studies expand our knowledge of Zasp isoforms and their functions in muscle. Given the role of Zasp proteins in mammalian muscle development and disease, our results have relevance to mammalian muscle biology. PMID:23271733

  15. Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres

    PubMed Central

    Fitts, R H; Trappe, S W; Costill, D L; Gallagher, P M; Creer, A C; Colloton, P A; Peters, J R; Romatowski, J G; Bain, J L; Riley, D A

    2010-01-01

    The primary goal of this study was to determine the effects of prolonged space flight (∼180 days) on the structure and function of slow and fast fibres in human skeletal muscle. Biopsies were obtained from the gastrocnemius and soleus muscles of nine International Space Station crew members ∼45 days pre- and on landing day (R+0) post-flight. The main findings were that prolonged weightlessness produced substantial loss of fibre mass, force and power with the hierarchy of the effects being soleus type I > soleus type II > gastrocnemius type I > gastrocnemius type II. Structurally, the quantitatively most important adaptation was fibre atrophy, which averaged 20% in the soleus type I fibres (98 to 79 μm diameter). Atrophy was the main contributor to the loss of peak force (P0), which for the soleus type I fibre declined 35% from 0.86 to 0.56 mN. The percentage decrease in fibre diameter was correlated with the initial pre-flight fibre size (r = 0.87), inversely with the amount of treadmill running (r = 0.68), and was associated with an increase in thin filament density (r = 0.92). The latter correlated with reduced maximal velocity (V0) (r = −0.51), and is likely to have contributed to the 21 and 18% decline in V0 in the soleus and gastrocnemius type I fibres. Peak power was depressed in all fibre types with the greatest loss (∼55%) in the soleus. An obvious conclusion is that the exercise countermeasures employed were incapable of providing the high intensity needed to adequately protect fibre and muscle mass, and that the crew's ability to perform strenuous exercise might be seriously compromised. Our results highlight the need to study new exercise programmes on the ISS that employ high resistance and contractions over a wide range of motion to mimic the range occurring in Earth's 1 g environment. PMID:20660569

  16. Isoform composition, gene expression and sarcomeric protein phosphorylation in striated muscle of mice after space flight

    NASA Astrophysics Data System (ADS)

    Vikhlyantsev, Ivan; Ulanova, Anna; Salmov, Nikolay; Gritsyna, Yulia; Bobylev, Alexandr; Rogachevsky, Vadim; Shenkman, Boris; Podlubnaya, Zoya

    Using RT-PCR and SDS-PAGE, changes in isoform composition, gene expression, titin and nebulin phosphorylation, as well as changes in isoform composition of myosin heavy chains in striated muscles of mice were studied after 30-day-long space flight onboard the Russian spacecraft “BION-M” No. 1. The muscle fibre-type shift from slow-to-fast was observed in m. gastrocnemius and m. tibialis anterior of animals from “Flight” group. A decrease in the content of the NT and N2A titin isoforms and nebulin in the skeletal muscles of animals from “Flight” group was found. Meanwhile, significant differences in gene expression of these proteins in skeletal muscles of mice from “Flight” and “Control” groups were not observed. Using Pro-Q Diamond stain, an increase in titin phosphorylation in m. gastrocnemius of mice from “Flight” group was detected. The content of the NT, N2BA and N2B titin isoforms in cardiac muscle of mice from “Flight” and “Control” groups did not differ, nevertheless an increase in titin gene expression in the myocardium of the “Flight” group animals was found. The observed changes will be discussed in the context of theirs role in contractile activity of striated muscles of mice in conditions of weightlessness. This work was supported by the Russian Foundation for Basic Research (grants No. 14-04-32240, 14-04-00112). Acknowledgement. We express our gratitude to the teams of Institute of Biomedical Problems RAS and “PROGRESS” Corporation involved in the preparation of the “BION-M” mission.

  17. Spring or string: does tendon elastic action influence wing muscle mechanics in bat flight?

    PubMed

    Konow, Nicolai; Cheney, Jorn A; Roberts, Thomas J; Waldman, J Rhea S; Swartz, Sharon M

    2015-10-01

    Tendon springs influence locomotor movements in many terrestrial animals, but their roles in locomotion through fluids as well as in small-bodied mammals are less clear. We measured muscle, tendon and joint mechanics in an elbow extensor of a small fruit bat during ascending flight. At the end of downstroke, the tendon was stretched by elbow flexion as the wing was folded. At the end of upstroke, elastic energy was recovered via tendon recoil and extended the elbow, contributing to unfurling the wing for downstroke. Compared with a hypothetical 'string-like' system lacking series elastic compliance, the tendon spring conferred a 22.5% decrease in muscle fascicle strain magnitude. Our findings demonstrate tendon elastic action in a small flying mammal and expand our understanding of the occurrence and action of series elastic actuator mechanisms in fluid-based locomotion. PMID:26423848

  18. Accumulation of Tumor Suppressor P53 in Rat Muscle After a Space Flight

    NASA Astrophysics Data System (ADS)

    Ohnishi, T.; Wang, X.; Fukuda, S.; Takahashi, A.; Ohnishi, K.; Nagaoka, S.

    Tumor suppressor p53 functions as a cell cycle checkpoint under stressful conditions. Early studies have shown that genotoxic stress activates p53 pathway. Recently, many kinds of non-genotoxic stress such as heat shock, cold shock, and low pH also have been found to activate p53 pathway. The effects on living organism remains to be explored. Here, we show that an 18-day space flight induced a 3.6 fold accumulation of p53 in rat skeletal muscle. This results suggests that the p53 pathway plays a role in safeguarding genomic stability against the stressful space environments and supports our previous observation of p53 accumulation in rat skin after a space flight

  19. Effect of flying activity on capillary-fiber geometry in pigeon flight muscle.

    PubMed

    Mathieu-Costello, O; Agey, P J; Logemann, R B; Florez-Duquet, M; Bernstein, M H

    1994-02-01

    The effect of flying activity on capillary density and geometry was investigated in pectoralis muscle of 4 wild-caught (W) pigeons (BW 233-348 g) perfusion-fixed in situ and processed for electron microscopy. Morphometric analysis revealed both differences and similarities with similar sampling sites (superficial and deep in central area of right or left pectoralis major muscle, approximately midway along cranio-caudal and lateral axis) in sedentary (S) pigeons. Differences were the greater fractional cross-sectional area of aerobic fibers (W, 82 +/- 2%; S, 63 +/- 6%; p = 0.006) and the greater volume density of mitochondria per volume of fiber (W, 22.0 +/- 1.3%; S, 15.7 +/- 1.7%; p = 0.011) in wild-caught pigeons. While glycolytic fibers were significantly narrower in W, the size of the majority of fibers comprising the muscles, i.e. aerobic fibers, was similar in the two groups. Other similarities were found in capillary-to-fiber ratio (W, 2.0 +/- 0.2; S, 2.1 +/- 0.2) and in the degree of orientation of capillaries in the two groups. In addition, both capillary density at a given fractional cross-sectional area of aerobic fibers and capillary length per fiber volume at a given mitochondrial volume density were similar in the two groups, indicating a proportional increase in capillarity and muscle aerobic capacity in W compared with S. Comparison of capillary numbers around aerobic fibers at a given mitochondrial volume per microns length of fiber showed no difference between W and S groups nor with previous data in muscles with wide differences in fiber size and mitochondrial density such as rat soleus, bat muscles and hummingbird flight muscles. This supported the notion of a tight correlation between capillary numbers around individual fibers and mitochondrial volume per unit length of fiber in aerobic muscles. It also supported the idea that it is the number of capillaries around the fibers rather than diffusion distance which determines O2 flux rates in

  20. The RNA-binding protein Arrest (Bruno) regulates alternative splicing to enable myofibril maturation in Drosophila flight muscle.

    PubMed

    Spletter, Maria L; Barz, Christiane; Yeroslaviz, Assa; Schönbauer, Cornelia; Ferreira, Irene R S; Sarov, Mihail; Gerlach, Daniel; Stark, Alexander; Habermann, Bianca H; Schnorrer, Frank

    2015-02-01

    In Drosophila, fibrillar flight muscles (IFMs) enable flight, while tubular muscles mediate other body movements. Here, we use RNA-sequencing and isoform-specific reporters to show that spalt major (salm) determines fibrillar muscle physiology by regulating transcription and alternative splicing of a large set of sarcomeric proteins. We identify the RNA-binding protein Arrest (Aret, Bruno) as downstream of salm. Aret shuttles between the cytoplasm and nuclei and is essential for myofibril maturation and sarcomere growth of IFMs. Molecularly, Aret regulates IFM-specific splicing of various salm-dependent sarcomeric targets, including Stretchin and wupA (TnI), and thus maintains muscle fiber integrity. As Aret and its sarcomeric targets are evolutionarily conserved, similar principles may regulate mammalian muscle morphogenesis. PMID:25532219

  1. The RNA-binding protein Arrest (Bruno) regulates alternative splicing to enable myofibril maturation in Drosophila flight muscle

    PubMed Central

    Spletter, Maria L; Barz, Christiane; Yeroslaviz, Assa; Schönbauer, Cornelia; Ferreira, Irene R S; Sarov, Mihail; Gerlach, Daniel; Stark, Alexander; Habermann, Bianca H; Schnorrer, Frank

    2015-01-01

    In Drosophila, fibrillar flight muscles (IFMs) enable flight, while tubular muscles mediate other body movements. Here, we use RNA-sequencing and isoform-specific reporters to show that spalt major (salm) determines fibrillar muscle physiology by regulating transcription and alternative splicing of a large set of sarcomeric proteins. We identify the RNA-binding protein Arrest (Aret, Bruno) as downstream of salm. Aret shuttles between the cytoplasm and nuclei and is essential for myofibril maturation and sarcomere growth of IFMs. Molecularly, Aret regulates IFM-specific splicing of various salm-dependent sarcomeric targets, including Stretchin and wupA (TnI), and thus maintains muscle fiber integrity. As Aret and its sarcomeric targets are evolutionarily conserved, similar principles may regulate mammalian muscle morphogenesis. PMID:25532219

  2. [Contractile properties of fibers and cytoskeletal proteins of gerbil's hindlimb muscles after space flight].

    PubMed

    Lipets, E N; Ponomareva, E V; Ogneva, I V; Vikhliantsev, I M; Karaduleva, E V; Kratashkina, N L; Kuznetsov, S L; Podlubnaia, Z A; Shenkman, B S

    2009-01-01

    The work had the goal to compare the microgravity effects on gerbil's muscles-antagonists, m. soleus and m. tibialis anterior. The animals were exposed in 12-d space microgravity aboard Earth's artificial satellite "Foton-M3". Findings of the analysis of single skinned fibers contractility are 19.7% diminution of the diameter and 21.8% loss of the total contractive force of m. soleus fibers post flight. However, there was no significant difference in calcium sensitivity which agrees with the absence of changes in the relative content of several major cytoskeletal proteins (titin and nebulin ratios to heavy chains of myosin were identical in the flight and control groups) and a slight shifting of the myosin phenotype toward the "fast type" (9%, p < 0.05). These parameters were mostly unaffected by the space flight in m. tibialis anterior. To sum up, the decline of contractility and diminution of gerbil's myofibers after the space flight were less significant as compared with rats and did not impact the sytoskeletal protein ratios. PMID:19711860

  3. Sexual dimorphism in Ramapithecinae

    PubMed Central

    Kay, Richard F.

    1982-01-01

    The Ramapithecinae are an extinct, mainly Miocene group of hominoids comprising the genera Sivapithecus and Gigantopithecus. Ouranopithecus and Ramapithecus are other included genera, here regarded as invalid. Cladistically, ramapithecines are hominid, although, in most aspects of their anatomy, they remain very primitive or ape-like. Miocene ramapithecines show reduced sexual dimorphism in canine size. In this respect they resemble Pliocene/Recent hominids, not extant great apes (which have highly dimorphic canines). Reduced dimorphism in canine size is an important shared derived feature indicating the hominid status of ramapithecines. Among living anthropoids, a significant association has been observed between a monogamous social structure and low canine dimorphism. This supports the inference that ramapithecines may have been monogamous. PMID:16593143

  4. Sexual dimorphism in Ramapithecinae.

    PubMed

    Kay, R F

    1982-01-01

    The Ramapithecinae are an extinct, mainly Miocene group of hominoids comprising the genera Sivapithecus and Gigantopithecus. Ouranopithecus and Ramapithecus are other included genera, here regarded as invalid. Cladistically, ramapithecines are hominid, although, in most aspects of their anatomy, they remain very primitive or ape-like. Miocene ramapithecines show reduced sexual dimorphism in canine size. In this respect they resemble Pliocene/Recent hominids, not extant great apes (which have highly dimorphic canines). Reduced dimorphism in canine size is an important shared derived feature indicating the hominid status of ramapithecines. Among living anthropoids, a significant association has been observed between a monogamous social structure and low canine dimorphism. This supports the inference that ramapithecines may have been monogamous. PMID:16593143

  5. Anatomy and histochemistry of flight muscles in a wing-propelled diving bird, the Atlantic puffin, Fratercula arctica.

    PubMed

    Kovacs, C E; Meyers, R A

    2000-05-01

    Twenty-three species within the avian family Alcidae are capable of wing-propelled flight in the air and underwater. Alcids have been viewed as Northern Hemisphere parallels to penguins, and have often been studied to see if their underwater flight comes at a cost, compromising their aerial flying ability. We examined the anatomy and histochemistry of select wing muscles (Mm. pectoralis, supracoracoideus, latissimus dorsi caudalis, coracobrachialis caudalis, triceps scapularis, and scapulohumeralis caudalis) from Atlantic puffins (Fratercula arctica) to assess if the muscle fiber types reveal the existence of a compromise associated with "dual-medium" flight. Pectoralis was found to be proportional in size with that of nondiving species, although the supracoracoideus was proportionally larger in puffins. Muscle fiber types were largely aerobic in both muscles, with two distinct fast-twitch types demonstrable: a smaller, aerobic, moderately glycolytic population (FOg), and a larger, moderately aerobic, glycolytic population (FoG). The presence of these two fiber types in the primary flight muscles of puffins suggests that aerial and underwater flight necessitate a largely aerobic fiber complement. We suggest that alcids do not represent an adaptive compromise, but a stable adaptation for wing-propelled locomotion both in the air and underwater. PMID:10761049

  6. Differential Flight Muscle Development in Workers, Queens and Males of the Eusocial Bees, Apis mellifera and Scaptotrigona postica

    PubMed Central

    Correa-Fernandez, Fernanda; Cruz-Landim, Carminda

    2010-01-01

    The flight capability of the adult eusocial bees, Apis mellifera L. and Scaptotrigona postica Latreille (Hymenoptera: Apidae), is intrinsically linked to their colonial functions, such as the nuptial flight for mating in the case of queens and males, and the exploration of new habitats for nesting and food sources in the case of workers. Flight is achieved by the contraction of indirect flight muscles that produce changes in thoracic volume and, therefore, wing movement. The purpose of this work is to examine possible differences in muscle development that may be associated with the flying activity of individuals in a given life stage considering the behavioral and physiological differences among the stages and between the two species studied. Measurements of the muscle fibers obtained from light microscopy preparations of muscle were submitted to statistical analysis in order to detect the differences at a given time, or throughout the life of the individual. The results show that muscle morphology is similar in both species, but in A. mellifera the muscle fibers are thicker and more numerous than in S. postica. Differences in the fiber thickness according to life stage in all classes of individuals of both species were detected. These results are discussed in relation to the need for flying in each life stage. PMID:20673070

  7. Very low force-generating ability and unusually high temperature dependency in hummingbird flight muscle fibers.

    PubMed

    Reiser, Peter J; Welch, Kenneth C; Suarez, Raul K; Altshuler, Douglas L

    2013-06-15

    Hummingbird flight muscle is estimated to have among the highest mass-specific power output among vertebrates, based on aerodynamic models. However, little is known about the fundamental contractile properties of their remarkable flight muscles. We hypothesized that hummingbird pectoralis fibers generate relatively low force when activated in a tradeoff for high shortening speeds associated with the characteristic high wingbeat frequencies that are required for sustained hovering. Our objective was to measure maximal force-generating ability (maximal force/cross-sectional area, Po/CSA) in single, skinned fibers from the pectoralis and supracoracoideus muscles, which power the wing downstroke and upstroke, respectively, in hummingbirds (Calypte anna) and in another similarly sized species, zebra finch (Taeniopygia guttata), which also has a very high wingbeat frequency during flight but does not perform a sustained hover. Mean Po/CSA in hummingbird pectoralis fibers was very low - 1.6, 6.1 and 12.2 kN m(-2), at 10, 15 and 20°C, respectively. Po/CSA in finch pectoralis fibers was also very low (for both species, ~5% of the reported Po/CSA of chicken pectoralis fast fibers at 15°C). Q10-force (force generated at 20°C/force generated at 10°C) was very high for hummingbird and finch pectoralis fibers (mean=15.3 and 11.5, respectively) compared with rat slow and fast fibers (1.8 and 1.9, respectively). Po/CSA in hummingbird leg fibers was much higher than in pectoralis fibers at each temperature, and the mean Q10-force was much lower. Thus, hummingbird and finch pectoralis fibers have an extremely low force-generating ability compared with other bird and mammalian limb fibers, and an extremely high temperature dependence of force generation. However, the extrapolated maximum force-generating ability of hummingbird pectoralis fibers in vivo (~48 kN m(-2)) is substantially higher than the estimated requirements for hovering flight of C. anna. The unusually low Po

  8. Sallimus and the dynamics of sarcomere assembly in Drosophila flight muscles.

    PubMed

    Orfanos, Zacharias; Leonard, Kevin; Elliott, Chris; Katzemich, Anja; Bullard, Belinda; Sparrow, John

    2015-06-19

    The Drosophila indirect flight muscles (IFM) can be used as a model for the study of sarcomere assembly. Here we use a transgenic line with a green fluorescent protein (GFP) exon inserted into the Z-disc-proximal portion of sallimus (Sls), also known as Drosophila titin, to observe sarcomere assembly during IFM development. Firstly, we confirm that Sls-GFP can be used in the heterozygote state without an obvious phenotype in IFM and other muscles. We then use Sls-GFP in the IFM to show that sarcomeres grow individually and uniformly throughout the fibre, growing linearly in length and in diameter. Finally, we show that limiting the amounts of Sls in the IFM using RNAi leads to sarcomeres with smaller Z-discs in their core, whilst the thick/thin filament lattice can form peripherally without a Z-disc. Thick filament preparations from those muscles show that although the Z-disc-containing core has thick filaments of a regular length, filaments from the peripheral lattice are longer and asymmetrical around the bare zone. Therefore, the Z-disc and Sls are required for thick filament length specification but not for the assembly of the thin/thick filament lattice. PMID:25868382

  9. Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle

    PubMed Central

    Kulke, Michael; Neagoe, Ciprian; Kolmerer, Bernhard; Minajeva, Ave; Hinssen, Horst; Bullard, Belinda; Linke, Wolfgang A.

    2001-01-01

    Kettin is a high molecular mass protein of insect muscle that in the sarcomeres binds to actin and α-actinin. To investigate kettin's functional role, we combined immunolabeling experiments with mechanical and biochemical studies on indirect flight muscle (IFM) myofibrils of Drosophila melanogaster. Micrographs of stretched IFM sarcomeres labeled with kettin antibodies revealed staining of the Z-disc periphery. After extraction of the kettin-associated actin, the A-band edges were also stained. In contrast, the staining pattern of projectin, another IFM–I-band protein, was not altered by actin removal. Force measurements were performed on single IFM myofibrils to establish the passive length-tension relationship and record passive stiffness. Stiffness decreased within seconds during gelsolin incubation and to a similar degree upon kettin digestion with μ-calpain. Immunoblotting demonstrated the presence of kettin isoforms in normal Drosophila IFM myofibrils and in myofibrils from an actin-null mutant. Dotblot analysis revealed binding of COOH-terminal kettin domains to myosin. We conclude that kettin is attached not only to actin but also to the end of the thick filament. Kettin along with projectin may constitute the elastic filament system of insect IFM and determine the muscle's high stiffness necessary for stretch activation. Possibly, the two proteins modulate myofibrillar stiffness by expressing different size isoforms. PMID:11535621

  10. Molecular modeling of averaged rigor crossbridges from tomograms of insect flight muscle.

    PubMed

    Chen, Li Fan; Winkler, Hanspeter; Reedy, Michael K; Reedy, Mary C; Taylor, Kenneth A

    2002-01-01

    Electron tomography, correspondence analysis, molecular model building, and real-space refinement provide detailed 3-D structures for in situ myosin crossbridges in the nucleotide-free state (rigor), thought to represent the end of the power stroke. Unaveraged tomograms from a 25-nm longitudinal section of insect flight muscle preserved native structural variation. Recurring crossbridge motifs that repeat every 38.7 nm along the actin filament were extracted from the tomogram and classified by correspondence analysis into 25 class averages, which improved the signal to noise ratio. Models based on the atomic structures of actin and of myosin subfragment 1 were rebuilt to fit 11 class averages. A real-space refinement procedure was applied to quantitatively fit the reconstructions and to minimize steric clashes between domains introduced during the fitting. These combined procedures show that no single myosin head structure can fit all the in situ crossbridges. The validity of the approach is supported by agreement of these atomic models with fluorescent probe data from vertebrate muscle as well as with data from regulatory light chain crosslinking between heads of smooth muscle heavy meromyosin when bound to actin. PMID:12160705

  11. Thick-to-Thin Filament Surface Distance Modulates Cross-Bridge Kinetics in Drosophila Flight Muscle

    SciTech Connect

    Tanner, Bertrand C.W.; Farman, Gerrie P.; Irving, Thomas C.; Maughan, David W.; Palmer, Bradley M.; Miller, Mark S.

    2012-09-19

    The demembranated (skinned) muscle fiber preparation is widely used to investigate muscle contraction because the intracellular ionic conditions can be precisely controlled. However, plasma membrane removal results in a loss of osmotic regulation, causing abnormal hydration of the myofilament lattice and its proteins. We investigated the structural and functional consequences of varied myofilament lattice spacing and protein hydration on cross-bridge rates of force development and detachment in Drosophila melanogaster indirect flight muscle, using x-ray diffraction to compare the lattice spacing of dissected, osmotically compressed skinned fibers to native muscle fibers in living flies. Osmolytes of different sizes and exclusion properties (Dextran T-500 and T-10) were used to differentially alter lattice spacing and protein hydration. At in vivo lattice spacing, cross-bridge attachment time (t{sub on}) increased with higher osmotic pressures, consistent with a reduced cross-bridge detachment rate as myofilament protein hydration decreased. In contrast, in the swollen lattice, t{sub on} decreased with higher osmotic pressures. These divergent responses were reconciled using a structural model that predicts t{sub on} varies inversely with thick-to-thin filament surface distance, suggesting that cross-bridge rates of force development and detachment are modulated more by myofilament lattice geometry than protein hydration. Generalizing these findings, our results suggest that cross-bridge cycling rates slow as thick-to-thin filament surface distance decreases with sarcomere lengthening, and likewise, cross-bridge cycling rates increase during sarcomere shortening. Together, these structural changes may provide a mechanism for altering cross-bridge performance throughout a contraction-relaxation cycle.

  12. The invertebrate myosin filament: subfilament arrangement of the solid filaments of insect flight muscles.

    PubMed Central

    Beinbrech, G; Ashton, F T; Pepe, F A

    1992-01-01

    Transverse sections (approximately 140 nm thick) of solid myosin filaments of the flight muscles of the fleshfly, Phormia terrae-novae, the honey bee, Apis mellifica, and the waterbug, Lethocerus uhleri, were photographed in a JEM model 200A electron microscope at 200 kV. The images were digitized and computer processed by rotational filtering. In each of these filaments it was found that the symmetry of the core and the wall was not the same. The power spectra of the images showed sixfold symmetry for the wall and threefold symmetry for the core of the filaments. The images of the filaments in each muscle were superimposed according to the sixfold center of the wall. These averaged images for all three muscles showed six pairs of subunits in the wall similar to those found in the wall of tubular filaments. From serial sections of the fleshfly filaments, we conclude that the subunits in the wall of the filaments represent subfilaments essentially parallel to the long axis of the filament. In each muscle there are additional subunits in the core, closely related to the subunits in the wall. Evaluation of serial sections through fleshfly filaments suggests that the relationship of the three subunits observed in the core to those in the wall varies along the length of the filaments. In waterbug filaments there are three dense and three less dense subunits for a total of six all closely related to the wall. Bee filaments have three subunits related to the wall and three subunits located eccentrically in the core of the filaments. The presence of core subunits can be related to the paramyosin content of the filaments. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 7 FIGURE 9 FIGURE 12 PMID:1617135

  13. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Differentiation of the Dimorphic Fungal Species Paracoccidioides brasiliensis and Paracoccidioides lutzii

    PubMed Central

    Del Negro, Gilda M. B.; Grenfell, Rafaella C.; Vidal, Monica S. M.; Thomaz, Danilo Y.; de Figueiredo, Dulce S. Y.; Bagagli, Eduardo; Juliano, Luiz; Benard, Gil

    2015-01-01

    Isolates of Paracoccidioides brasiliensis and Paracoccidioides lutzii, previously characterized by molecular techniques, were identified for the first time by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). All isolates were correctly identified, with log score values of >2.0. Thus, MALDI-TOF MS is a new tool for differentiating species of the genus Paracoccidioides. PMID:25631803

  14. Influence of the insecticide pyriproxyfen on the flight muscle differentiation of Apis mellifera (Hymenoptera, Apidae).

    PubMed

    Corrêa Fernandez, Fernanda; Da Cruz-Landim, Carminda; Malaspina, Osmar

    2012-06-01

    The Brazilian africanized Apis mellifera is currently considered as one of the most important pollinators threatened by the use of insecticides due to its frequent exposition to their toxic action while foraging in the crops it pollinated. Among the insecticides, the most used in the control of insect pragues has as active agent the pyriproxyfen, analogous to the juvenile hormone (JH). Unfortunately the insecticides used in agriculture affect not only the target insects but also beneficial nontarget ones as bees compromising therefore, the growth rate of their colonies at the boundaries of crop fields. Workers that forage for provisions in contaminated areas can introduce contaminated pollen or/and nectar inside the beehives. As analogous to JH the insecticide pyriproxyfen acts in the bee's larval growth and differentiation during pupation or metamorphosis timing. The flighty muscle is not present in the larvae wingless organisms, but differentiates during pupation/metamorphosis. This work aimed to investigate the effect of pyriproxyfen insecticide on differentiation of such musculature in workers of Brazilian africanized honey bees fed with artificial diet containing the pesticide. The results show that the bees fed with contaminated diet, independent of the insecticide concentration used, show a delay in flight muscle differentiation when compared to the control. PMID:22223201

  15. The Apparent Rates of Crossbridge Attachment and Detachment Estimated from Atpase Activity in Insect Flight Muscle

    PubMed Central

    Güth, K.; Poole, K. J. V.; Maughan, D.; Kuhn, H. J.

    1987-01-01

    The ATPase activity of single fibers of small fiber bundles (one to three fibers) of insect flight muscle was measured when fibers were repetitively released and restretched by 1.5% of their initial length. The ATPase activity increased with increasing duration of release-restretch pulses applied at a constant repetition frequency, reaching a maximum at a duration of ∼20 ms. For a given duration, the average ATPase activity also increased with increasing frequency of applied length changes and reached a maximum (200% of the isometric ATPase) at a frequency of ∼50 Hz. The data could be fitted to a two-state model in which the apparent rate of crossbridge detachment is enhanced when the crossbridges are mechanically released. Estimates of the apparent rates of attachment and detachment in the isometrically contracting state and of the enhanced detachment rate of unloaded crossbridges were derived from fits to the two-state model. After short pulses of releasing and restretching the fiber the force was low and increased after the restretch in a roughly exponential manner to the initial level. The rate at which force increased after a release-restretch pulse was similar to the sum of the apparent attachment and detachment rates for the isometrically contracting muscle derived from the ATPase activity measurements. PMID:19431712

  16. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    PubMed Central

    Wu, Shenping; Liu, Jun; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2010-01-01

    Background Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. Methodology We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the “target zone”, situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. Conclusion We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force

  17. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    SciTech Connect

    Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2010-10-22

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77{sup o}/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127{sup o} range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  18. Structural changes in isometrically contracting insect flight muscle trapped following a mechanical perturbation.

    PubMed

    Wu, Shenping; Liu, Jun; Reedy, Mary C; Perz-Edwards, Robert J; Tregear, Richard T; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E; Reedy, Michael K; Taylor, Kenneth A

    2012-01-01

    The application of rapidly applied length steps to actively contracting muscle is a classic method for synchronizing the response of myosin cross-bridges so that the average response of the ensemble can be measured. Alternatively, electron tomography (ET) is a technique that can report the structure of the individual members of the ensemble. We probed the structure of active myosin motors (cross-bridges) by applying 0.5% changes in length (either a stretch or a release) within 2 ms to isometrically contracting insect flight muscle (IFM) fibers followed after 5-6 ms by rapid freezing against a liquid helium cooled copper mirror. ET of freeze-substituted fibers, embedded and thin-sectioned, provides 3-D cross-bridge images, sorted by multivariate data analysis into ~40 classes, distinct in average structure, population size and lattice distribution. Individual actin subunits are resolved facilitating quasi-atomic modeling of each class average to determine its binding strength (weak or strong) to actin. ~98% of strong-binding acto-myosin attachments present after a length perturbation are confined to "target zones" of only two actin subunits located exactly midway between successive troponin complexes along each long-pitch helical repeat of actin. Significant changes in the types, distribution and structure of actin-myosin attachments occurred in a manner consistent with the mechanical transients. Most dramatic is near disappearance, after either length perturbation, of a class of weak-binding cross-bridges, attached within the target zone, that are highly likely to be precursors of strong-binding cross-bridges. These weak-binding cross-bridges were originally observed in isometrically contracting IFM. Their disappearance following a quick stretch or release can be explained by a recent kinetic model for muscle contraction, as behaviour consistent with their identification as precursors of strong-binding cross-bridges. The results provide a detailed model for

  19. Structural Changes in Isometrically Contracting Insect Flight Muscle Trapped following a Mechanical Perturbation

    PubMed Central

    Wu, Shenping; Liu, Jun; Perz-Edwards, Robert J.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2012-01-01

    The application of rapidly applied length steps to actively contracting muscle is a classic method for synchronizing the response of myosin cross-bridges so that the average response of the ensemble can be measured. Alternatively, electron tomography (ET) is a technique that can report the structure of the individual members of the ensemble. We probed the structure of active myosin motors (cross-bridges) by applying 0.5% changes in length (either a stretch or a release) within 2 ms to isometrically contracting insect flight muscle (IFM) fibers followed after 5–6 ms by rapid freezing against a liquid helium cooled copper mirror. ET of freeze-substituted fibers, embedded and thin-sectioned, provides 3-D cross-bridge images, sorted by multivariate data analysis into ∼40 classes, distinct in average structure, population size and lattice distribution. Individual actin subunits are resolved facilitating quasi-atomic modeling of each class average to determine its binding strength (weak or strong) to actin. ∼98% of strong-binding acto-myosin attachments present after a length perturbation are confined to “target zones” of only two actin subunits located exactly midway between successive troponin complexes along each long-pitch helical repeat of actin. Significant changes in the types, distribution and structure of actin-myosin attachments occurred in a manner consistent with the mechanical transients. Most dramatic is near disappearance, after either length perturbation, of a class of weak-binding cross-bridges, attached within the target zone, that are highly likely to be precursors of strong-binding cross-bridges. These weak-binding cross-bridges were originally observed in isometrically contracting IFM. Their disappearance following a quick stretch or release can be explained by a recent kinetic model for muscle contraction, as behaviour consistent with their identification as precursors of strong-binding cross-bridges. The results provide a detailed model

  20. Dual Dimensionality Reduction Reveals Independent Encoding of Motor Features in a Muscle Synergy for Insect Flight Control

    PubMed Central

    Sponberg, Simon; Daniel, Thomas L.; Fairhall, Adrienne L.

    2015-01-01

    What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional

  1. A morphological view of the relationship between indirect flight muscle maturation and the flying needs of two species of advanced eusocial bees.

    PubMed

    Fernandez-Winckler, Fernanda; da Cruz-Landim, Carminda

    2008-12-01

    This paper describes the flight muscles changes in relation to the age/function of the adult members of the colonies of two advanced species of eusocial bees: Apis mellifera (Apini) and Scaptotrigona postica (Meliponini). Here, are reported the results obtained through transmission electron microscopy studies, first describing a general overview of the flight muscle ultrastructure and second reporting on the ultrastructural changes that occur along the life stages/functions of workers, queens and males. The workers emerge with immature flight muscles, and the maturation takes about 20 days. In contrast, queens and males emerged with more advanced muscle differentiation, similar to workers after the 20 days of maturation. In both forager workers and laying queens, flight muscles showed signs of senescence, but not in sexually mature males. The differences among life phases, individual classes and species are discussed in relation to their functions in the colony. PMID:18672375

  2. Fourier analysis of wing beat signals: assessing the effects of genetic alterations of flight muscle structure in Diptera.

    PubMed Central

    Hyatt, C J; Maughan, D W

    1994-01-01

    A method for determining and analyzing the wing beat frequency in Diptera is presented. This method uses an optical tachometer to measure Diptera wing movement during flight. The resulting signal from the optical measurement is analyzed using a Fast Fourier Transform (FFT) technique, and the dominant frequency peak in the Fourier spectrum is selected as the wing beat frequency. Also described is a method for determining quantitatively the degree of variability of the wing beat frequency about the dominant frequency. This method is based on determination of a quantity called the Hindex, which is derived using data from the FFT analysis. Calculation of the H index allows computer-based selection of the most suitable segment of recorded data for determination of the representative wing beat frequency. Experimental data suggest that the H index can also prove useful in examining wing beat frequency variability in Diptera whose flight muscle structure has been genetically altered. Examples from Drosophila indirect flight muscle studies as well as examples of artificial data are presented to illustrate the method. This method fulfills a need for a standardized method for determining wing beat frequencies and examining wing beat frequency variability in insects whose flight muscles have been altered by protein engineering methods. PMID:7811927

  3. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning.

    PubMed

    Baldwin, K M; Caiozzo, V J; Haddad, F; Baker, M J; Herrick, R E

    1994-05-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques. PMID:11538774

  4. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Caiozzo, V. J.; Haddad, F.; Baker, M. J.; Herrick, R. E.

    1994-01-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  5. [Electrolyte makeup of the blood plasma and skeletal muscles of rats after a flight on the Kosmos-690 biosatellite].

    PubMed

    Nesterov, V P; Tigranian, R A

    1979-01-01

    Measurements of Na+, K+, Mg2+ and Ca2+ concentrations in the functionally different muscles (soleus, plantaris, diaphragm muscles) and plasma of the rats flown for 20.5 days aboard the biosatellite Cosmos-690 did not show any significant changes as compared with the controls. At the same time a decrease of the K+/Na+ ratio and a similar shift of Mg2+ and Ca2+ concentrations in plasma of irradiated rats as compared with these of non-irradiated animals demonstrated that the combined effects of space flight factors and gamma-irradiation influenced the system of ionic homeostasis in the blood. In the animals sacrificed on the R + 1 day the K+/Na+ ratio in the soleus muscle changed in favor of Na+ and in the plantaris muscle in favor of K+, and remained essentially unchanged in the diaphragm. The comparison of the flight experiments with the ground-based controls showed that ion changes in muscles occurred due to ionizing radiation rather than due to weightlessness. PMID:459397

  6. Sexual Dimorphism in the Regulation of Estrogen, Progesterone, and Androgen Receptors by Sex Steroids in the Rat Airway Smooth Muscle Cells

    PubMed Central

    Zarazúa, Abraham; González-Arenas, Aliesha; Ramírez-Vélez, Gabriela; Bazán-Perkins, Blanca; Guerra-Araiza, Christian; Campos-Lara, María G.

    2016-01-01

    The role of sex hormones in lung is known. The three main sex steroid receptors, estrogen, progesterone, and androgen, have not been sufficiently studied in airway smooth muscle cells (ASMC), and the sex hormone regulation on these receptors is unknown. We examined the presence and regulation of sex hormone receptors in female and male rat ASMC by Western blotting and flow cytometry. Gonadectomized rats were treated with 17β-estradiol, progesterone, 17β-estradiol + progesterone, or testosterone. ASMC were enzymatically isolated from tracheas and bronchi. The experiments were performed with double staining flow cytometry (anti-α-actin smooth muscle and antibodies to each hormone receptor). ERα, ERβ, tPR, and AR were detected in females or males. ERα was upregulated by E2 and T and downregulated by P4 in females; in males, ERα was downregulated by P4, E + P, and T. ERβ was downregulated by each treatment in females, and only by E + P and T in males. tPR was downregulated by P4, E + P, and T in females. No hormonal regulation was observed in male receptors. AR was downregulated in males treated with E + P and T. We have shown the occurrence of sex hormone receptors in ASMC and their regulation by the sex hormones in female and male rats. PMID:27110242

  7. Sexual Dimorphism in the Regulation of Estrogen, Progesterone, and Androgen Receptors by Sex Steroids in the Rat Airway Smooth Muscle Cells.

    PubMed

    Zarazúa, Abraham; González-Arenas, Aliesha; Ramírez-Vélez, Gabriela; Bazán-Perkins, Blanca; Guerra-Araiza, Christian; Campos-Lara, María G

    2016-01-01

    The role of sex hormones in lung is known. The three main sex steroid receptors, estrogen, progesterone, and androgen, have not been sufficiently studied in airway smooth muscle cells (ASMC), and the sex hormone regulation on these receptors is unknown. We examined the presence and regulation of sex hormone receptors in female and male rat ASMC by Western blotting and flow cytometry. Gonadectomized rats were treated with 17β-estradiol, progesterone, 17β-estradiol + progesterone, or testosterone. ASMC were enzymatically isolated from tracheas and bronchi. The experiments were performed with double staining flow cytometry (anti-α-actin smooth muscle and antibodies to each hormone receptor). ERα, ERβ, tPR, and AR were detected in females or males. ERα was upregulated by E2 and T and downregulated by P4 in females; in males, ERα was downregulated by P4, E + P, and T. ERβ was downregulated by each treatment in females, and only by E + P and T in males. tPR was downregulated by P4, E + P, and T in females. No hormonal regulation was observed in male receptors. AR was downregulated in males treated with E + P and T. We have shown the occurrence of sex hormone receptors in ASMC and their regulation by the sex hormones in female and male rats. PMID:27110242

  8. Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles

    PubMed Central

    Dhanyasi, Nagaraju; Segal, Dagan; Shimoni, Eyal; Shinder, Vera

    2015-01-01

    Fusion of individual myoblasts to form multinucleated myofibers constitutes a widely conserved program for growth of the somatic musculature. We have used electron microscopy methods to study this key form of cell–cell fusion during development of the indirect flight muscles (IFMs) of Drosophila melanogaster. We find that IFM myoblast–myotube fusion proceeds in a stepwise fashion and is governed by apparent cross talk between transmembrane and cytoskeletal elements. Our analysis suggests that cell adhesion is necessary for bringing myoblasts to within a minimal distance from the myotubes. The branched actin polymerization machinery acts subsequently to promote tight apposition between the surfaces of the two cell types and formation of multiple sites of cell–cell contact, giving rise to nascent fusion pores whose expansion establishes full cytoplasmic continuity. Given the conserved features of IFM myogenesis, this sequence of cell interactions and membrane events and the mechanistic significance of cell adhesion elements and the actin-based cytoskeleton are likely to represent general principles of the myoblast fusion process. PMID:26459604

  9. Blood-Feeding Induces Reversible Functional Changes in Flight Muscle Mitochondria of Aedes aegypti Mosquito

    PubMed Central

    Gonçalves, Renata L. S.; Machado, Ana Carolina L.; Paiva-Silva, Gabriela O.; Sorgine, Marcos H. F.; Momoli, Marisa M.; Oliveira, Jose Henrique M.; Vannier-Santos, Marcos A.; Galina, Antonio; Oliveira, Pedro L.; Oliveira, Marcus F.

    2009-01-01

    Background Hematophagy poses a challenge to blood-feeding organisms since products of blood digestion can exert cellular deleterious effects. Mitochondria perform multiple roles in cell biology acting as the site of aerobic energy-transducing pathways, and also an important source of reactive oxygen species (ROS), modulating redox metabolism. Therefore, regulation of mitochondrial function should be relevant for hematophagous arthropods. Here, we investigated the effects of blood-feeding on flight muscle (FM) mitochondria from the mosquito Aedes aegypti, a vector of dengue and yellow fever. Methodology/Principal Findings Blood-feeding caused a reversible reduction in mitochondrial oxygen consumption, an event that was parallel to blood digestion. These changes were most intense at 24 h after blood meal (ABM), the peak of blood digestion, when oxygen consumption was inhibited by 68%. Cytochromes c and a+a3 levels and cytochrome c oxidase activity of the electron transport chain were all reduced at 24 h ABM. Ultrastructural and molecular analyses of FM revealed that mitochondria fuse upon blood meal, a condition related to reduced ROS generation. Consistently, BF induced a reversible decrease in mitochondrial H2O2 formation during blood digestion, reaching their lowest values at 24 h ABM where a reduction of 51% was observed. Conclusion Blood-feeding triggers functional and structural changes in hematophagous insect mitochondria, which may represent an important adaptation to blood feeding. PMID:19924237

  10. Neurons associated with the dorsal longtitudinal flight muscles of Drosophilla melanogaster.

    PubMed

    Coggshall, J C

    1978-02-15

    The anatomy of the neurons associated with the six fibers forming the dorsal longitudinal flight muscle (DLM) of Drosophila melanogaster has been investigated using a horseradis peroxidase lable. The two dorsal-most fibers are innervated by the same neuron whose cell body is in the dorsal, contralateral, mesothoracic region of the thoracic ganglion. The ventral-most four fibers are innervated by four neurons whose cell bodies are clustered in the ventral, ipsilateral, prothoracic region. The processes of all five of these cells ramify extensively in the dorsal part of the ipsilateral and contralateral mesothoracic neuromeres. A large interneuron has been discovered which is associated with the DLM and whose cell body is located contralaterally. Several neurons with small cell bodies on the ventral midline of the mesothoracic neuromere are also consistently labeled. A single fiber projects dorsally from a midline cell body, forms a Y-branch near the top of the ganglion and apparently sends an axon into each posterior dorsal mesothoracic nerve (PDMN) subsequently innervating the DLM. PMID:415072

  11. The impact of beef cattle temperament assessed using flight speed on muscle glycogen, muscle lactate and plasma lactate concentrations at slaughter.

    PubMed

    Coombes, S V; Gardner, G E; Pethick, D W; McGilchrist, P

    2014-12-01

    This study evaluated the effect of animal temperament measured using flight speed (FS) on plasma lactate, muscle glycogen and lactate concentrations at slaughter plus ultimate pH in 648 lot finished cattle of mixed breed and sex. Muscle samples were collected at slaughter from the m. semimembranosus, m. semitendinosus and m. longissimus thoracis (LT) for analysis of glycogen and lactate concentration. Blood was collected after exsanguination and analysed for plasma lactate concentration and ultimate pH of the LT was measured. FS had no effect on muscle glycogen concentration in any muscle or ultimate pH of the LT (P>0.05). As FS increased from 1 to 5m/s, plasma and muscle lactate concentration increased by 54% and 11.4% (P<0.01). The mechanisms through which temperament contributes to variation in glycogen metabolism remain unclear. The risk of dark cutting was not impacted by temperament, indicating that other production and genetic factors have a greater impact on the incidence of dark cutting. PMID:25170817

  12. Binding of myosin subfragment 1 to glycerinated insect flight muscle in the rigor state.

    PubMed Central

    Goody, R S; Reedy, M C; Hofmann, W; Holmes, K C; Reedy, M K

    1985-01-01

    The binding of rabbit muscle myosin subfragment 1 (S1) to glycerinated insect flight muscle fibers has been studied by low-angle x-ray diffraction, quantitative sodium dodecyl sulfate gel electrophoresis, quantitative interference microscopy, and electron microscopy. Changes induced in the rigor x-ray diffraction pattern are consistent with the idea that vacant myosin-binding sites on thin filaments are filled by exogenous S1. Electron microscopy indicates that S1 permeates and labels fibers and fibrils completely. Electron micrographs also show that cross-bridges are not displaced by exogenous S1 under the conditions used, and this is supported by the unchanged mechanical stiffness of the S1-labeled fibers. The amount of bound S1, as measured by gel electrophoresis and interference microscopy, together with the magnitude of the intensity changes in the x-ray diffraction pattern, is consistent with a thick filament structure that contains four molecules of endogenous myosin per 14.5 nm of its length, but does not agree well with earlier estimates of six myosins per crown. Lack of information on possible inhibition of S1-binding by factors other than the presence of cross-bridges, e.g., troponin, render uncertain calculations of the number of attached cross-bridges in the rigor state. However, it appears that at least 75% of the endogenous myosin heads are attached. Occupancy of binding sites on thin filaments after incubation with S1 is high, probably greater than 85%, so that x-ray scattering from those parts of the structure that adhere to the symmetry of the thin filaments can be treated as diffraction from S1-decorated thin filaments. In addition, we show in thin flared X cross sections that exo-S1 heads bind to actin with the geometry described in decorated actin by Taylor, K.A., and L.A. Amos. Images FIGURE 1 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 14 FIGURE 15 FIGURE 16 PMID:3978197

  13. Influence of space flight factors on the ultrastructure of rat diaphragm muscle.

    PubMed

    Babakova, L L; Baranov, V M; Pozdnyakov, O M

    2013-05-01

    Analysis of ultrastructural changes in diaphragm muscle and synaptic apparatus after 7- and 14-day biosatellite spaceflight showed destructive and atrophic changes that developed starting from in the early terms of exposure. Structural alterations of different severity were revealed in all elements of the muscle (muscle fibers, neuromuscular junctions, intramuscular nerves, and blood vessels) and were paralleled by activation of regeneration processes. PMID:23667862

  14. [Metabolic processes in rat skeletal muscle after a flight on the Kosmos-936 biosatellite].

    PubMed

    Nosova, E A; Veresotskaia, N A; Kolchina, E V; Kurkina, L M; Belitskaia, R A

    1981-01-01

    The study of skeletal muscles of rats flown on Cosmos-936 demonstrated different metabolic reactions in muscle fibers of different function and type to weightlessness and Earth gravity. The data obtained gave evidence that artificial gravity may considerably prevent metabolic changes in muscles developing in response to specific effects of weightlessness. PMID:7289569

  15. CF2 represses Actin 88F gene expression and maintains filament balance during indirect flight muscle development in Drosophila.

    PubMed

    Gajewski, Kathleen M; Schulz, Robert A

    2010-01-01

    The zinc finger protein CF2 is a characterized activator of muscle structural genes in the body wall muscles of the Drosophila larva. To investigate the function of CF2 in the indirect flight muscle (IFM), we examined the phenotypes of flies bearing five homozygous viable mutations. The gross structure of the IFM was not affected, but the stronger hypomorphic alleles caused an increase of up to 1.5X in the diameter of the myofibrils. This size increase did not cause any disruption of the hexameric arrangement of thick and thin filaments. RT-PCR analysis revealed an increase in the transcription of several structural genes. Ectopic overexpression of CF2 in the developing IFM disrupts muscle formation. While our results indicate a role for CF2 as a direct negative regulator of the thin filament protein gene Actin 88F (Act88F), effects on levels of transcripts of myosin heavy chain (mhc) appear to be indirect. This role is in direct contrast to that described in the larval muscles, where CF2 activates structural gene expression. The variation in myofibril phenotypes of CF2 mutants suggest the CF2 may have separate functions in fine-tuning expression of structural genes to insure proper filament stoichiometry, and monitoring and/or controlling the final myofibril size. PMID:20520827

  16. Pseudo-acetylation of K326 and K328 of actin disrupts Drosophila melanogaster indirect flight muscle structure and performance

    PubMed Central

    Viswanathan, Meera C.; Blice-Baum, Anna C.; Schmidt, William; Foster, D. Brian; Cammarato, Anthony

    2015-01-01

    In striated muscle tropomyosin (Tm) extends along the length of F-actin-containing thin filaments. Its location governs access of myosin binding sites on actin and, hence, force production. Intermolecular electrostatic associations are believed to mediate critical interactions between the proteins. For example, actin residues K326, K328, and R147 were predicted to establish contacts with E181 of Tm. Moreover, K328 also potentially forms direct interactions with E286 of myosin when the motor is strongly bound. Recently, LC-MS/MS analysis of the cardiac acetyl-lysine proteome revealed K326 and K328 of actin were acetylated, a post-translational modification (PTM) that masks the residues' inherent positive charges. Here, we tested the hypothesis that by removing the vital actin charges at residues 326 and 328, the PTM would perturb Tm positioning and/or strong myosin binding as manifested by altered skeletal muscle function and structure in the Drosophila melanogaster model system. Transgenic flies were created that permit tissue-specific expression of K326Q, K328Q, or K326Q/K328Q acetyl-mimetic actin and of wild-type actin via the UAS-GAL4 bipartite expression system. Compared to wild-type actin, muscle-restricted expression of mutant actin had a dose-dependent effect on flight ability. Moreover, excessive K328Q and K326Q/K328Q actin overexpression induced indirect flight muscle degeneration, a phenotype consistent with hypercontraction observed in other Drosophila myofibrillar mutants. Based on F-actin-Tm and F-actin-Tm-myosin models and on our physiological data, we conclude that acetylating K326 and K328 of actin alters electrostatic associations with Tm and/or myosin and thereby augments contractile properties. Our findings highlight the utility of Drosophila as a model that permits efficient targeted design and assessment of molecular and tissue-specific responses to muscle protein modifications, in vivo. PMID:25972811

  17. [Effect of short-term space flights on physiological properties and composition of myofibrillar proteins of the skeletal muscles of rats].

    PubMed

    Oganov, V S; Skuratova, S A; Murashko, L M; Guba, F; Takach, O

    1988-01-01

    Contractile properties of preparations of glycerinated myofibers and subunit composition of myofibrillar proteins of skeletal muscles were studied using rats flown on Kosmos-1514 (pregnant females) and Kosmos-1667 (males). After the 5- and 7-day flights the strength and velocity of contraction of myofibers decreased, although this change was not correlated with functional differentiation of muscles. The myosin population tended to vary in terms of the proportion of fast and slow isoforms. It is concluded that physiological properties of skeletal muscles at an early stage of orbital flights deteriorated primarily due to a decline in the functional activity of the excitation-contraction conjugation system of myofibers. PMID:3226095

  18. [Mode of formation of the flight muscles in a nematocerous Diptera].

    PubMed

    Lebart-Pedebas, M C; Auber, J

    1982-01-01

    An electron microscope study was conducted on the origin of the dorsal longitudinal muscles of a Nematocerous Diptera (Chironomus). These imaginal muscles arise from three pairs of slender larval muscles that are characterized by the presence of myoblasts located beneath the basal lamina and adhering to the sarcoplasmic membrane. During the last larval instar the myoblasts increase in number, each of the associated muscle fibers loses its contractile material and splits longitudinally into two to form six columns of sarcoplasm. Differentiation of the fibrillar material begins in each of the six muscle rudiments after the adhering myoblasts have become incorporated. There are several possible origins for these myoblasts: they may be embryonic cells that persist in association with the larval muscle fibers; or --as in the case of Cyclorrhaphous Diptera-- they may migrate from elsewhere to invest these fibers. PMID:7138012

  19. Binding partners of the kinase domains in Drosophila obscurin and their effect on the structure of the flight muscle

    PubMed Central

    Katzemich, Anja; West, Ryan J. H.; Fukuzawa, Atsushi; Sweeney, Sean T.; Gautel, Mathias; Sparrow, John; Bullard, Belinda

    2015-01-01

    ABSTRACT Drosophila obscurin (Unc-89) is a titin-like protein in the M-line of the muscle sarcomere. Obscurin has two kinase domains near the C-terminus, both of which are predicted to be inactive. We have identified proteins binding to the kinase domains. Kinase domain 1 bound Bällchen (Ball, an active kinase), and both kinase domains 1 and 2 bound MASK (a 400-kDa protein with ankyrin repeats). Ball was present in the Z-disc and M-line of the indirect flight muscle (IFM) and was diffusely distributed in the sarcomere. MASK was present in both the M-line and the Z-disc. Reducing expression of Ball or MASK by siRNA resulted in abnormalities in the IFM, including missing M-lines and multiple Z-discs. Obscurin was still present, suggesting that the kinase domains act as a scaffold binding Ball and MASK. Unlike obscurin in vertebrate skeletal muscle, Drosophila obscurin is necessary for the correct assembly of the IFM sarcomere. We show that Ball and MASK act downstream of obscurin, and both are needed for development of a well defined M-line and Z-disc. The proteins have not previously been identified in Drosophila muscle. PMID:26251439

  20. Comparison of a space shuttle flight (STS-78) and bed rest on human muscle function

    NASA Technical Reports Server (NTRS)

    Trappe, S. W.; Trappe, T. A.; Lee, G. A.; Widrick, J. J.; Costill, D. L.; Fitts, R. H.

    2001-01-01

    The purpose of this investigation was to assess muscle fiber size, composition, and in vivo contractile characteristics of the calf muscle of four male crew members during a 17-day spaceflight (SF; Life and Microgravity Sciences Spacelab Shuttle Transport System-78 mission) and eight men during a 17-day bed rest (BR). The protocols and timelines of these two investigations were identical, therefore allowing for direct comparisons between SF and the BR. The subjects' age, height, and weight were 43 +/- 2 yr, 183 +/- 4 cm, and 86 +/- 3 kg for SF and 43 +/- 2 yr, 182 +/- 3 cm, and 82 +/- 4 kg for BR, respectively. Calf muscle strength was examined before SF and BR; on days 2, 8, and 12 during SF and BR; and on days 2 and 8 of recovery. Muscle biopsies were obtained before and within 3 h after SF (gastrocnemius and soleus) and BR (soleus) before reloading. Maximal isometric calf strength and the force-velocity characteristics were unchanged with SF or BR. Additionally, neither SF nor BR had any effect on fiber composition or fiber size of the calf muscles studied. In summary, no changes in calf muscle strength and morphology were observed after the 17-day SF and BR. Because muscle strength is lost during unloading, both during spaceflight and on the ground, these data suggest that the testing sequence employed during the SF and BR may have served as a resistance training countermeasure to attenuate whole muscle strength loss.

  1. A comparison of the properties of the phosphofructokinases of the fat body and flight muscle of the adult male desert locust

    PubMed Central

    Walker, P. R.; Bailey, E.

    1969-01-01

    1. Phosphofructokinase was isolated, and partially purified by ammonium sulphate fractionation, from the fat body and flight muscle of the desert locust. 2. Ammonium sulphate appears to stabilize the enzymes, but does not activate them. 3. Both flight-muscle and fat-body enzymes give sigmoidal hexose monophosphate concentration–activity curves, which are characteristic of regulatory enzymes. 4. At low ATP concentrations both the enzyme activities increase rapidly with increasing ATP concentrations, but above an optimum concentration ATP becomes inhibitory. This optimum concentration is 0·2mm for the fat-body enzyme and 0·1mm for the flight-muscle enzyme. 5. AMP activates both the enzymes; half-maximal activation occurs at 10μm in each case, the effect being independent of substrate concentration. 6. 3′,5′-(cyclic)-AMP (0·5mm) and Pi (1mm) activate the flight-muscle enzyme, but have no effect on the fat-body enzyme. 7. FDP (1mm) inhibits both enzymes, and with the flight-muscle enzyme this inhibition is increased by increasing the ATP concentration. 8. Citrate, phosphoenolpyruvate and α-glycerophosphate have no effect on either enzyme under the assay conditions used. 9. The properties of phosphofructokinases from the locust are compared with those of phosphofructokinases from other sources. PMID:4304161

  2. Isoform composition and gene expression of thick and thin filament proteins in striated muscles of mice after 30-day space flight.

    PubMed

    Ulanova, Anna; Gritsyna, Yulia; Vikhlyantsev, Ivan; Salmov, Nikolay; Bobylev, Alexander; Abdusalamova, Zarema; Rogachevsky, Vadim; Shenkman, Boris; Podlubnaya, Zoya

    2015-01-01

    Changes in isoform composition, gene expression of titin and nebulin, and isoform composition of myosin heavy chains as well as changes in titin phosphorylation level in skeletal (m. gastrocnemius, m. tibialis anterior, and m. psoas) and cardiac muscles of mice were studied after a 30-day-long space flight onboard the Russian spacecraft "BION-M" number 1. A muscle fibre-type shift from slow-to-fast and a decrease in the content of titin and nebulin in the skeletal muscles of animals from "Flight" group was found. Using Pro-Q Diamond staining, an ~3-fold increase in the phosphorylation level of titin in m. gastrocnemius of mice from the "Flight" group was detected. The content of titin and its phosphorylation level in the cardiac muscle of mice from "Flight" and "Control" groups did not differ; nevertheless an increase (2.2 times) in titin gene expression in the myocardium of flight animals was found. The observed changes are discussed in the context of their role in the contractile activity of striated muscles of mice under conditions of weightlessness. PMID:25664316

  3. The efficiency of a flight muscle from the locust Schistocerca americana.

    PubMed Central

    Josephson, R K; Stevenson, R D

    1991-01-01

    1. The efficiency of the metathoracic tergosternal muscle of the locust Schistocerca americana was examined by simultaneously measuring work output from the muscle and oxygen consumption by the muscle. The work output was determined using the work-loop technique in which the muscle is subjected to periodic strain and to phasic stimulation in the strain cycle. The area of the loop formed by plotting muscle force against muscle length over a cycle is the net work output for that cycle. 2. The tergosternal muscle is a synchronous, parallel-fibred muscle containing two motor units with similar contraction kinetics. The average twitch rise time (30 degrees C) was 15 ms, the twitch duration (to 50% relaxation) was 26 ms, and the peak twitch tension with both units active was 73 kN m-2. The maximum mechanical power output during sinusoidal shortening at 20 Hz with both motor units active and stimulated once per cycle averaged 37 W kg-1. 3. The overall efficiency of the tergosternal muscle averaged 6.4% (range 4-10%) where efficiency is defined as the ratio of the net work done (20 Hz sinusoidal strain, 1 stimulus per cycle, optimum strain amplitude and stimulus phase) to the caloric equivalent of the oxygen consumed. The efficiency was independent of the duration of the test period (examined range = 10-30 s) and the same when both motor units were active as when only one was stimulated. 4. Stimulating the muscle with two stimuli per cycle (interstimulus interval = 6 ms) increased the work per cycle by about 13% above that with single stimuli per cycle, but the muscle fatigued more rapidly and after 15-25 s the power output was less with two stimuli per cycle than with one. The efficiency with two stimuli per cycle was slightly less than that with one shock per cycle. 5. The oxygen consumption during normal work cycles at 20 Hz with optimum stimulus phase and strain was greater by about 15% than the oxygen consumption during isometric contractions at the same frequency

  4. Molecular characterization of the flightin gene in the wing-dimorphic planthopper, Nilaparvata lugens, and its evolution in Pancrustacea.

    PubMed

    Xue, Jian; Zhang, Xiao-Qin; Xu, Hai-Jun; Fan, Hai-Wei; Huang, Hai-Jian; Ma, Xiao-Fang; Wang, Chun-Yan; Chen, Jian-Guo; Cheng, Jia-An; Zhang, Chuan-Xi

    2013-05-01

    Flightin was initially identified in Drosophila melanogaster. Previous work has shown that Drosophila flightin plays a key role in indirect flight muscle (IFM) function and has limited expression in the IFM. In this study, we demonstrated that flightin is conserved across the Pancrustacea species, including winged insects, non-winged insects, non-insect hexapods and several crustaceans. The brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), a long-distance migration insect with wing dimorphism, is the most destructive rice pest in Asia. We showed that flightin was one of the most differentially expressed genes in macropterous and brachypterous BPH adults. In female BPHs, flightin was expressed in the IFM of macropterous adults, no expression was detected in brachypterous ones; while in male BPHs, flightin was not only expressed in the IFM of macropterous adults, but also in the dorsal longitudinal muscle (DLM) in the basal two abdominal segments of both macropterous and brachypterous ones. RNAi and transmission electron microscopy results showed that flightin played key roles in maintaining IFM and male DLM structure, which drive wing movements in macropterous adults and the vibration of the male-specific tymbal, respectively. Using Daphnia magna as an example of a crustacean species, we observed that flightin was expressed in juvenile instars and adults, and was localized in the antenna muscles. These results illustrate the functional variations of flightin in insects and other arthropod species and provide clues as to how insects with flight apparatuses evolved from ancient pancrustaceans. PMID:23459170

  5. Seasonal upregulation of catabolic enzymes and fatty acid transporters in the flight muscle of migrating hoary bats, Lasiurus cinereus.

    PubMed

    McGuire, Liam P; Fenton, M Brock; Guglielmo, Christopher G

    2013-06-01

    The high energy density of fat, and limited capacity for carbohydrate storage suggest that migrating bats should fuel endurance flights with fat, as observed in migrating birds. Yet, cursorial mammals are unable to support high intensity exercise with fat stores. We hypothesized that migratory bats and birds have converged on similar physiological mechanisms to fuel endurance flight with fat. We predicted bats would seasonally upregulate fatty acid transport and oxidation pathways when migration demands were high. We studied seasonal variation in mitochondrial oxidative enzyme activities and fatty acid transport protein expression in the flight muscle of hoary bats (Lasiurus cinereus). Carnitine palmitoyl transferase, 3-hydroxyacyl-CoA dehydrogenase and citrate synthase activity increased during migration. There were no changes in expression of fatty acid translocase or plasma membrane fatty acid binding protein. Heart-type fatty acid binding protein expression increased 5-fold in migrating females, but did not vary seasonally in males. An aerial insectivore lifestyle, and the coincidence of migration and pregnancy may explain differences in transporter expression compared to previously studied birds. Overall, our results are consistent with seasonal upregulation of lipid metabolism and aerobic capacity, and confirm that migration poses distinct physiological challenges for bats. PMID:23545469

  6. A muscle-specific intron enhancer required for rescue of indirect flight muscle and jump muscle function regulates Drosophila tropomyosin I gene expression

    SciTech Connect

    Schultz, J.A.; Gremke, L.; Storti, R.V. ); Tansey, T. )

    1991-04-01

    The control of expression of the Drosophila melanogaster tropomyosin I (TmI) gene has been investigated by P-element transformation and rescue of the flightless TmI mutant strain, Ifm(3)3. To localize cis-acting DNA sequences that control TmI gene expression, Ifm(3)3 flies were transformed with P-element plasmids containing various deletions and rearrangements of the TmI gene. The effects of these mutations on TmI gene expression were studied by analyzing both the extent of rescue of the Ifm(3)3 mutant phenotypes and determining TmI RNA levels in the transformed flies by primer extension analysis. The results of this analysis indicate that a region located within intron 1 of the gene is necessary and sufficient for directing muscle-specific TmI expression in the adult fly. This intron region has characteristics of a muscle regulatory enhancer element that can function in conjunction with the heterologous nonmuscle hsp70 promoter to promote rescue of the mutant phenotypes and to direct expression of an hsp70-Escherichia coli lacZ reporter gene in adult muscle. The enhancer can be subdivided further into two domains of activity based on primer extension analysis of TmI mRNA levels and on the rescue of mutant phenotypes.

  7. Design and fabrication of a bat-inspired flapping-flight platform using shape memory alloy muscles and joints

    NASA Astrophysics Data System (ADS)

    Furst, Stephen J.; Bunget, George; Seelecke, Stefan

    2013-01-01

    This work focuses on the development of a concept for a micro-air vehicle (MAV) based on a bio-inspired flapping motion that is generated from integrated smart materials. Since many smart materials have their own biomimetic characteristics and the potential to be highly efficient, lightweight, and streamlined, they are ideal candidates for use in structural or actuator components in MAVs. In this work, shape memory alloy (SMA) actuator wires are used as analogs for biological muscles, and super-elastic SMAs are implemented as flexible joints capable of large bending angles. While biological organisms have an intrinsic sensing array composed of nerves, the SMA wires also provide self-sensing by virtue of a phase-dependent resistance change. Study of the biology and flight characteristics of natural fliers concluded that the bat provides an ideal platform for SMA muscle wires because of its comparatively low wingbeat frequency and superb maneuverability. A first-generation prototype is built to further the understanding of fabricating Nature’s designs. The engineering design is then improved further in a second-generation prototype that combines 3D printing and new techniques for embedding SMA wires and shaping SMA joints for improved robustness, reproducibility, and lifetime. These prototypes are on display at the North Carolina Museum of Natural Science’s Nature Research Center, which has the goal of bridging the gaps between biology and engineering.

  8. Neck and shoulder muscle activity and posture among helicopter pilots and crew-members during military helicopter flight.

    PubMed

    Murray, Mike; Lange, Britt; Chreiteh, Shadi Samir; Olsen, Henrik Baare; Nørnberg, Bo Riebeling; Boyle, Eleanor; Søgaard, Karen; Sjøgaard, Gisela

    2016-04-01

    Neck pain among helicopter pilots and crew-members is common. This study quantified the physical workload on neck and shoulder muscles using electromyography (EMG) measures during helicopter flight. Nine standardized sorties were performed, encompassing: cruising from location A to location B (AB) and performing search and rescue (SAR). SAR was performed with Night Vision Goggles (NVG), while AB was performed with (AB+NVG) and without NVG (AB-NVG). EMG was recorded for: trapezius (TRA), upper neck extensors (UNE), and sternocleido-mastoid (SCM). Maximal voluntary contractions (MVC) were performed for normalization of EMG (MVE). Neck posture of pilots and crew-members was monitored and pain intensity of neck, shoulder, and back was recorded. Mean muscle activity for UNE was ∼10% MVE and significantly higher than TRA and SCM, and SCM was significantly lower than TRA. There was no significant difference between AB-NVG and AB+NVG. Muscle activity in the UNE was significantly higher during SAR+NVG than AB-NVG. Sortie time (%) with non-neutral neck posture for SAR+NVG and AB-NVG was: 80.4%, 74.5% (flexed), 55.5%, 47.9% (rotated), 4.5%, 3.7% (lateral flexed). Neck pain intensity increased significantly from pre- (0.7±1.3) to post-sortie (1.6±1.9) for pilots (p=0.028). If sustained, UNE activity of ∼10% MVE is high, and implies a risk for neck disorders. PMID:26852114

  9. Detection of G-Induced Loss of Consciousness (G-LOC) prognosis through EMG monitoring on gastrocnemius muscle in flight.

    PubMed

    Booyong Choi; Yongkyun Lee; Taehwan Cho; Hyojin Koo; Dongsoo Kim

    2015-08-01

    G-Induced Loss of Consciousness (G-LOC) is mainly caused by the sudden acceleration in the direction of +Gz axis from the fighter pilots, and is considered as an emergent situation of which fighter pilots are constantly aware. In order to resist against G-LOC, fighter pilots are subject to run Anti-G straining maneuver (AGSM), which includes L-1 respiration maneuvering and muscular contraction of the whole body. The purpose of this study is to create a G-LOC warning alarm prior to G-LOC by monitoring the Electromyogram (EMG) of the gastrocnemius muscle on the calf, which goes under constant muscular contraction during the AGSM process. EMG data was retrieved from pilots and pilot trainees of the Korean Air Force, during when subjects were under high G-trainings on a human centrifugal simulator. Out of the EMG features, integrated absolute value (IAV), reflecting muscle contraction, and waveform length (WL), reflecting muscle contraction and fatigue, have shown a rapid decay during the alarm phase, 3 seconds before G-LOC, compared to that of a normal phase withstanding G-force. Such results showed consistency amongst pilots and pilot trainees who were under G-LOC. Based on these findings, this study developed an algorithm which can detect G-LOC prognosis during flight, and at the same time, generate warning signals. The probability of G-LOC occurrence is detected through monitoring the decay trend and degree of the IVA and WL value of when the pilot initiates AGSM during sudden acceleration above 6G. Conclusively, this G-LOC prognosis detecting and warning system is a customized, real-time countermeasure which enhanced the accuracy of detecting G-LOC. PMID:26737905

  10. Biotechnological Applications of Dimorphic Yeasts

    NASA Astrophysics Data System (ADS)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  11. [Energy reactions in the skeletal muscles of rats following space flight on the Kosmos-936 biosatellite].

    PubMed

    Mailian, E S; Bruavkova, L B; Kokoreva, L V

    1982-01-01

    The respiration of mitochondria isolated from mixed skeletal muscles of hindlimbs of rats flown for 18.5 days on Cosmos-936 was investigated polarographically. At R + 10 hours the rate of mitochondrial respiration in different metabolic states during the oxidation of succinic acid and NAD-dependent substrates declined. The enzyme activity of mitochondrial cytochrome oxidase and cytosol lactate dehydrogenase diminished. At R + 25 days both aerobic and anaerobic oxidative processes increased, thus leading to the recovery of the parameters (sometimes they not only returned to the norm but exceeded it). PMID:6294407

  12. Prevention of bone loss and muscle atrophy during manned space flight.

    PubMed

    Keller, T S; Strauss, A M; Szpalski, M

    1992-04-01

    This paper reviews the biomedical literature concerning human adaptation to nonterrestrial environments, and focuses on the definition of practical countermeasures necessary for long-term survival on the Moon, Mars and during long-term space missions and exploration. Of particular importance is the development of clinically relevant countermeasures for prevention of pathophysiological changes in the musculoskeletal and cardiopulmonary systems under these conditions. The countermeasures which are proposed are based upon a combination of biomechanical and theoretical analyses. The biomechanical analyses are based upon clinical measurements of human skeletal density changes associated with weight lifting as well as clinical studies of human strength and fitness currently being conducted using an isoinertial trunk dynamometer. The theoretical analysis stems from a mathematical model for bone loss in altered gravity environments that we have begun to develop. These analyses provide guidelines for the development of practical therapeutic treatments (exercise, artificial gravity) designed to minimize musculoskeletal deconditioning associated with less than Earth gravity environments. Our findings suggest that very intensive exercise, which impose high loads on the musculoskeletal system for brief periods, may be more efficient in preserving bone and skeletal muscle conditioning within "safe" limits for longer periods than low intensity activities such as treadmill running and bicycling. A 1/6 to 1/7-g gravitational environment is predicted to be sufficient to preserve bone strength above the fracture risk level. Basic biomedical support of manned space missions, Moon and Mars bases should include routine assessment of skeletal density, muscle strength, cardiac output and total energy expenditure. This information can be used to periodically re-evaluate exercise programs and or artificial gravity requirements for crew members. PMID:11541051

  13. Research opportunities in muscle atrophy

    NASA Technical Reports Server (NTRS)

    Herbison, G. J.; Talbot, J. M.

    1984-01-01

    A trophy of skeletal muscle; muscle a trophy associated with manned space flight; the nature, causes, and mechanisms of muscle atrophy associated with space flight, selected physiological factors, biochemical aspects, and countermeasures are addressed.

  14. Countermeasures for Maintenance of Cardiovascular and Muscle Function in Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session FA2, the discussion focuses on the following topics: Effects of Repeated Long Duration +2Gz Load on Man's Cardiovascular Function; Certain Approaches to the Development of On-Board Automated Training System; Cardiac, Arterial, and Venous Adaptation to Og during 6 Month MIR-Spaceflights with and without "Thigh Cuffs" (93-95); Space Cycle(TM) Induced Physiologic Responses; Muscular Deconditioning During Long-term Spaceflight Exercise Recommendations to Optimize Crew Performance; Structure And Function of Knee Extensors After Long-Duration Spaceflight in Man, Effects of Countermeasure Exercise Training; Force and power characteristics of an exercise ergometer designed for use in space; and The simulating of overgravity conditions for astronauts' motor apparatus at the conditions of the training for orbital flights.

  15. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments.

    PubMed Central

    Granzier, H L; Wang, K

    1993-01-01

    Tension and dynamic stiffness of passive rabbit psoas, rabbit semitendinosus, and waterbug indirect flight muscles were investigated to study the contribution of weak-binding cross-bridges and elastic filaments (titin and minititin) to the passive mechanical behavior of these muscles. Experimentally, a functional dissection of the relative contribution of actomyosin cross-bridges and titin and minititin was achieved by 1) comparing mechanically skinned muscle fibers before and after selective removal of actin filaments with a noncalcium-requiring gelsolin fragment (FX-45), and 2) studying passive tension and stiffness as a function of sarcomere length, ionic strength, temperature, and the inhibitory effect of a carboxyl-terminal fragment of smooth muscle caldesmon. Our data show that weak bridges exist in both rabbit skeletal muscle and insect flight muscle at physiological ionic strength and room temperature. In rabbit psoas fibers, weak bridge stiffness appears to vary with both thin-thick filament overlap and with the magnitude of passive tension. Plots of passive tension versus passive stiffness are multiphasic and strikingly similar for these three muscles of distinct sarcomere proportions and elastic proteins. The tension-stiffness plot appears to be a powerful tool in discerning changes in the mechanical behavior of the elastic filaments. The stress-strain and stiffness-strain curves of all three muscles can be merged into one, by normalizing strain rate and strain amplitude of the extensible segment of titin and minititin, further supporting the segmental extension model of resting tension development. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:8298040

  16. Isoform Composition and Gene Expression of Thick and Thin Filament Proteins in Striated Muscles of Mice after 30-Day Space Flight

    PubMed Central

    Ulanova, Anna; Gritsyna, Yulia; Vikhlyantsev, Ivan; Salmov, Nikolay; Bobylev, Alexander; Abdusalamova, Zarema; Rogachevsky, Vadim; Shenkman, Boris; Podlubnaya, Zoya

    2015-01-01

    Changes in isoform composition, gene expression of titin and nebulin, and isoform composition of myosin heavy chains as well as changes in titin phosphorylation level in skeletal (m. gastrocnemius, m. tibialis anterior, and m. psoas) and cardiac muscles of mice were studied after a 30-day-long space flight onboard the Russian spacecraft “BION-M” number 1. A muscle fibre-type shift from slow-to-fast and a decrease in the content of titin and nebulin in the skeletal muscles of animals from “Flight” group was found. Using Pro-Q Diamond staining, an ~3-fold increase in the phosphorylation level of titin in m. gastrocnemius of mice from the “Flight” group was detected. The content of titin and its phosphorylation level in the cardiac muscle of mice from “Flight” and “Control” groups did not differ; nevertheless an increase (2.2 times) in titin gene expression in the myocardium of flight animals was found. The observed changes are discussed in the context of their role in the contractile activity of striated muscles of mice under conditions of weightlessness. PMID:25664316

  17. X-ray diffraction indicates that active cross-bridges bind to actin target zones in insect flight muscle.

    PubMed

    Tregear, R T; Edwards, R J; Irving, T C; Poole, K J; Reedy, M C; Schmitz, H; Towns-Andrews, E; Reedy, M K

    1998-03-01

    We report the first time-resolved study of the two-dimensional x-ray diffraction pattern during active contraction in insect flight muscle (IFM). Activation of demembranated Lethocerus IFM was triggered by 1.5-2.5% step stretches (risetime 10 ms; held for 1.5 s) giving delayed active tension that peaked at 100-200 ms. Bundles of 8-12 fibers were stretch-activated on SRS synchrotron x-ray beamline 16.1, and time-resolved changes in diffraction were monitored with a SRS 2-D multiwire detector. As active tension rose, the 14.5- and 7.2-nm meridionals fell, the first row line dropped at the 38.7 nm layer line while gaining a new peak at 19.3 nm, and three outer peaks on the 38.7-nm layer line rose. The first row line changes suggest restricted binding of active myosin heads to the helically preferred region in each actin target zone, where, in rigor, two-headed lead bridges bind, midway between troponin bulges that repeat every 38.7 nm. Halving this troponin repeat by binding of single active heads explains the intensity rise at 19.3 nm being coupled to a loss at 38.7 nm. The meridional changes signal movement of at least 30% of all myosin heads away from their axially ordered positions on the myosin helix. The 38.7- and 19.3-nm layer line changes signal stereoselective attachment of 7-23% of the myosin heads to the actin helix, although with too little ordering at 6-nm resolution to affect the 5.9-nm actin layer line. We conclude that stretch-activated tension of IFM is produced by cross-bridges that bind to rigor's lead-bridge target zones, comprising < or = 1/3 of the 75-80% that attach in rigor. PMID:9512040

  18. [Desmin content and transversal stiffness of the left ventricle mouse cardiomyocytes and skeletal muscle fibers after a 30-day space flight on board "BION-M1" biosatellite].

    PubMed

    Ogneva, I V; Maximova, M V; Larina, I M

    2014-01-01

    The aim of this study was to determine the transversal stiffness of the cortical cytoskeleton and the cytoskeletal protein desmin content in the left ventricle cardiomyocytes, fibers of the mouse soleus and tibialis anterior muscle after a 30-day space flight on board the "BION-M1" biosatellite (Russia, 2013). The dissection was made after 13-16.5 h after landing. The transversal stiffness was measured in relaxed and calcium activated state by, atomic force microscopy. The desmin content was estimated by western blotting, and the expression level of desmin-coding gene was detected using real-time PCR. The results indicate that, the transversal stiffness of the left ventricle cardiomyocytes and fibers of the soleus muscle in relaxed and activated states did not differ from the control. The transversal stiffness of the tibialis muscle fibers in relaxed and activated state was increased in the mice group after space flight. At the same time, in all types of studied tissues the desmin content and the expression level of desmin-coding gene did not differ from the control level. PMID:25730983

  19. The function of the M-line protein obscurin in controlling the symmetry of the sarcomere in the flight muscle of Drosophila

    PubMed Central

    Katzemich, Anja; Kreisköther, Nina; Alexandrovich, Alexander; Elliott, Christopher; Schöck, Frieder; Leonard, Kevin; Sparrow, John; Bullard, Belinda

    2012-01-01

    Summary Obscurin (also known as Unc-89 in Drosophila) is a large modular protein in the M-line of Drosophila muscles. Drosophila obscurin is similar to the nematode protein UNC-89. Four isoforms are found in the muscles of adult flies: two in the indirect flight muscle (IFM) and two in other muscles. A fifth isoform is found in the larva. The larger IFM isoform has all the domains that were predicted from the gene sequence. Obscurin is in the M-line throughout development of the embryo, larva and pupa. Using P-element mutant flies and RNAi knockdown flies, we have investigated the effect of decreased obscurin expression on the structure of the sarcomere. Embryos, larvae and pupae developed normally. In the pupa, however, the IFM was affected. Although the Z-disc was normal, the H-zone was misaligned. Adults were unable to fly and the structure of the IFM was irregular: M-lines were missing and H-zones misplaced or absent. Isolated thick filaments were asymmetrical, with bare zones that were shifted away from the middle of the filaments. In the sarcomere, the length and polarity of thin filaments depends on the symmetry of adjacent thick filaments; shifted bare zones resulted in abnormally long or short thin filaments. We conclude that obscurin in the IFM is necessary for the development of a symmetrical sarcomere in Drosophila IFM. PMID:22467859

  20. Sexual dimorphism and human enhancement.

    PubMed

    Casal, Paula

    2013-12-01

    Robert Sparrow argues that because of women's longer life expectancy philosophers who advocate the genetic modification of human beings to enhance welfare rather than merely supply therapy are committed to favouring the selection of only female embryos, an implication he deems sufficiently implausible to discredit their position. If Sparrow's argument succeeds, then philosophers who advocate biomedical moral enhancement also seem vulnerable to a similar charge because of men's greater propensity for various forms of harmful wrongdoing. This paper argues there are various flaws in Sparrow's argument that render it unsuccessful. The paper also examines whether dimorphism reduction is a more desirable outcome than male elimination, thereby further illustrating the difficulties besetting the distinction between therapy and enhancement. PMID:22962068

  1. Incorporation of 3-deoxy-3-fluoro-D-glucose into glycogen and trehalose in fat body and flight muscle in Locusta migratoria.

    PubMed

    Agbanyo, M; Taylor, N F

    1986-03-01

    Flight muscle and fat body extracts from Locusta migratoria were incubated with D-[U-14C]-glucose or D-[3-3H]-3-deoxy-3-fluoroglucose and the products were analyzed. In the case of the latter compound, radio-chromatographic analysis yielded glycogen and trehalose fractions that were shown by 19F nuclear magnetic resonance to contain fluorine. Acid hydrolysis of these fractions liberated tritium labelled 3-deoxy-3-fluoro-D-glucose. In addition to the formation of "fluoroglycogen" and "fluorotrehalose" in these tissue extracts, there was an accumulation of tritium labelled fructose. PMID:3524699

  2. The evolution of sex dimorphism in recombination.

    PubMed Central

    Lenormand, Thomas

    2003-01-01

    Sex dimorphism in recombination is widespread on both sex chromosomes and autosomes. Various hypotheses have been proposed to explain these dimorphisms. Yet no theoretical model has been explored to determine how heterochiasmy--the autosomal dimorphism--could evolve. The model presented here shows three circumstances in which heterochiasmy is likely to evolve: (i) a male-female difference in haploid epistasis, (ii) a male-female difference in cis-epistasis minus trans-epistasis in diploids, or (iii) a difference in epistasis between combinations of genes inherited maternally or paternally. These results hold even if sources of linkage disequilibria besides epistasis, such as migration or Hill-Robertson interference, are considered and shed light on previous verbal models of sex dimorphism in recombination rates. Intriguingly, these results may also explain why imprinted regions on the autosomes of humans or sheep are particularly heterochiasmate. PMID:12618416

  3. Passive Stiffness in Drosophila Indirect Flight Muscle Reduced by Disrupting Paramyosin Phosphorylation, but Not by Embryonic Myosin S2 Hinge Substitution

    PubMed Central

    Hao, Yudong; Miller, Mark S.; Swank, Douglas M.; Liu, Hongjun; Bernstein, Sanford I.; Maughan, David W.; Pollack, Gerald H.

    2006-01-01

    High passive stiffness is one of the characteristic properties of the asynchronous indirect flight muscle (IFM) found in many insects like Drosophila. To evaluate the effects of two thick filament protein domains on passive sarcomeric stiffness, and to investigate their correlation with IFM function, we used microfabricated cantilevers and a high resolution imaging system to study the passive IFM myofibril stiffness of two groups of transgenic Drosophila lines. One group (hinge-switch mutants) had a portion of the endogenous S2 hinge region replaced by an embryonic version; the other group (paramyosin mutants) had one or more putative phosphorylation sites near the N-terminus of paramyosin disabled. Both transgenic groups showed severely compromised flight ability. In this study, we found no difference (compared to the control) in passive elastic modulus in the hinge-switch group, but a 15% reduction in the paramyosin mutants. All results were corroborated by muscle fiber mechanics experiments performed on the same lines. The fact that myofibril elasticity is unaffected by hinge switching implies alternative S2 hinges do not critically affect passive sarcomere stiffness. In contrast, the mechanical defects observed upon disrupting paramyosin phosphorylation sites in Drosophila suggests that paramyosin phosphorylation is important for maintaining high passive stiffness in IFM myofibrils, probably by affecting paramyosin's interaction with other sarcomeric proteins. PMID:17012313

  4. The 2013 German-Russian BION-M1 Joint Flight Project: Skeletal Muscle and Neuromuscular Changes in Mice Housed for 30 Days in a Biosatellite on Orbit

    NASA Astrophysics Data System (ADS)

    Blottner, Dieter; Shenkman, Boris; Salanova, Michele

    Exposure to microgravity results in various structural, biochemical and molecular changes of the skeletal neuromuscular system. The BION Joint Flight Proposal between the Charité Berlin Center of Space Medicine (www.zwmb.de) in Berlin, and the Institute of Biomedical Problem (IMBP) in Moscow, provided an exciting opportunity for a more detailed analysis of neuromuscular changes in mice (C57/bl6) exposed to real microgravity housed for 30 days in a BION M1 biosatellite on orbit. The mice from the BION flight group (n=5) were compared to three different on-ground control groups (Flight control, BION-ground and Vivarium, each n=5 mice). We started to analyse various skeletal muscles from the hind limbs or trunk. Apart from routine structural and biochemical analysis (fiber size and type distribution, slow/fastMyHC) we test the hypothesis for the presence of a microgravity-induced sarcolemma-cytosolic protein shift of nitric oxide synthase (NOS) and partial loss in neuromuscular synapse scaffold protein (Homer) immunoexpression known to be prone to disuse in mice or humans (hind limb unloading, bed rest) as previously shown (Sandonà D et al., PLoS One, 2012, Salanova M et al., FASEB J, 2011). National Sponsors: Federal Ministry of Economics and Technology (BMWi) via the German AeroSpace Board, DLR e.V., Bonn-Oberkassel, Germany (#50WB1121); Contract RAS-IMBP/Charité Berlin # Bion-M1/2013

  5. [Changes in the soleus muscle tissue metabolism of rats after a flight on the Kosmos-690 biosatellite].

    PubMed

    Gaevskaia, M S; Veresotskaia, N A; Kolganova, N S; Kolchina, E V; Kurkina, L M

    1979-01-01

    The soleus muscle of flown rats did not show any effect of gamma-irradiation on the composition and enzymic activity of protein fractions. On the Ist postflight day a significant decrease in the content of myofibrillar and sarcoplasmatic proteins in the soleus muscle was found. Besides, a drastic increase in the activity of aspartate aminotransferase and lactate dehydrogenase of sarcoplasmatic proteins and an atrophic type change in the LDH pattern were demonstrated. Those changes were similar to the weighttlessness-induced processes of atrophy and dystrophy and proved reversible. PMID:423507

  6. Investigate methods for measuring muscle and bone mass changes in astronauts and animals which occur during space flight

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1977-01-01

    Sodium-22 is being used as a tracer for bone mineral metabolism studies. Dogs are being grown from puppies to adulthood on a diet containing a constant level of sodium-22 in order to uniformly tag the entire skeleton with a long lived radionuclide. This study is still in progress and the dogs are still growing. Potassium-40 measurements were made on people, who are replacing muscle mass lost due to leg injuries, in a second study. It appears that potassium-40 measurements provide an accurate and convenient method for determining relative changes in the muscle content of the leg.

  7. The sexual dimorphism of obesity

    PubMed Central

    Palmer, Biff F.; Clegg, Deborah J.

    2015-01-01

    The NIH has recently highlighted the importance of sexual dimorphisms and has mandated inclusion of both sexes in clinical trials and basic research. In this review we highlight new and novel ways sex hormones influence body adiposity and the metabolic syndrome. Understanding how and why metabolic processes differ by sex will enable clinicians to target and personalize therapies based on gender. Adipose tissue function and deposition differ by sex. Females differ with respect to distribution of adipose tissues, males tend to accrue more visceral fat, leading to the classic android body shape which has been highly correlated to increased cardiovascular risk; whereas females accrue more fat in the subcutaneous depot prior to menopause, a feature which affords protection from the negative consequences associated with obesity and the metabolic syndrome. After menopause, fat deposition and accrual shift to favor the visceral depot. This shift is accompanied by a parallel increase in metabolic risk reminiscent to that seen in men. A full understanding of the physiology behind why, and by what mechanisms, adipose tissues accumulate in specific depots and how these depots differ metabolically by sex is important in efforts of prevention of obesity and chronic disease. Estrogens, directly or through activation of their receptors on adipocytes and in adipose tissues, facilitate adipose tissue deposition and function. Evidence suggests that estrogens augment the sympathetic tone differentially to the adipose tissue depots favoring lipid accumulation in the subcutaneous depot in women and visceral fat deposition in men. At the level of adipocyte function, estrogens and their receptors influence the expandability of fat cells enhancing the expandability in the subcutaneous depot and inhibiting it in the visceral depot. Sex hormones clearly influence adipose tissue function and deposition, determining how to capture and utilize their function in a time of caloric surfeit

  8. Sexual Dimorphism and Allometric Effects Associated With the Wing Shape of Seven Moth Species of Sphingidae (Lepidoptera: Bombycoidea).

    PubMed

    de Camargo, Willian Rogers Ferreira; de Camargo, Nícholas Ferreira; Corrêa, Danilo do Carmo Vieira; de Camargo, Amabílio J Aires; Diniz, Ivone Rezende

    2015-01-01

    Sexual dimorphism is a pronounced pattern of intraspecific variation in Lepidoptera. However, moths of the family Sphingidae (Lepidoptera: Bombycoidea) are considered exceptions to this rule. We used geometric morphometric techniques to detect shape and size sexual dimorphism in the fore and hindwings of seven hawkmoth species. The shape variables produced were then subjected to a discriminant analysis. The allometric effects were measured with a simple regression between the canonical variables and the centroid size. We also used the normalized residuals to assess the nonallometric component of shape variation with a t-test. The deformations in wing shape between sexes per species were assessed with a regression between the nonreduced shape variables and the residuals. We found sexual dimorphism in both wings in all analyzed species, and that the allometric effects were responsible for much of the wing shape variation between the sexes. However, when we removed the size effects, we observed shape sexual dimorphism. It is very common for females to be larger than males in Lepidoptera, so it is expected that the shape of structures such as wings suffers deformations in order to preserve their function. However, sources of variation other than allometry could be a reflection of different reproductive flight behavior (long flights in search for sexual mates in males, and flight in search for host plants in females). PMID:26206895

  9. Sexual Dimorphism and Allometric Effects Associated With the Wing Shape of Seven Moth Species of Sphingidae (Lepidoptera: Bombycoidea)

    PubMed Central

    de Camargo, Nícholas Ferreira; Corrêa, Danilo do Carmo Vieira; de Camargo, Amabílio J. Aires; Diniz, Ivone Rezende

    2015-01-01

    Sexual dimorphism is a pronounced pattern of intraspecific variation in Lepidoptera. However, moths of the family Sphingidae (Lepidoptera: Bombycoidea) are considered exceptions to this rule. We used geometric morphometric techniques to detect shape and size sexual dimorphism in the fore and hindwings of seven hawkmoth species. The shape variables produced were then subjected to a discriminant analysis. The allometric effects were measured with a simple regression between the canonical variables and the centroid size. We also used the normalized residuals to assess the nonallometric component of shape variation with a t-test. The deformations in wing shape between sexes per species were assessed with a regression between the nonreduced shape variables and the residuals. We found sexual dimorphism in both wings in all analyzed species, and that the allometric effects were responsible for much of the wing shape variation between the sexes. However, when we removed the size effects, we observed shape sexual dimorphism. It is very common for females to be larger than males in Lepidoptera, so it is expected that the shape of structures such as wings suffers deformations in order to preserve their function. However, sources of variation other than allometry could be a reflection of different reproductive flight behavior (long flights in search for sexual mates in males, and flight in search for host plants in females). PMID:26206895

  10. Modular genetic control of sexually dimorphic behaviors

    PubMed Central

    Xu, Xiaohong; Coats, Jennifer K.; Yang, Cindy F.; Wang, Amy; Ahmed, Osama M.; Alvarado, Maricruz; Izumi, Tetsuro; Shah, Nirao M.

    2012-01-01

    SUMMARY Sex hormones such as estrogen and testosterone are essential for sexually dimorphic behaviors in vertebrates. However, the hormone-activated molecular mechanisms that control the development and function of the underlying neural circuits remain poorly defined. We have identified numerous sexually dimorphic gene expression patterns in the adult mouse hypothalamus and amygdala. We find that adult sex hormones regulate these expression patterns in a sex-specific, regionally-restricted manner, suggesting that these genes regulate sex typical behaviors. Indeed, we find that mice with targeted disruptions of each of four of these genes (Brs3, Cckar, Irs4, Sytl4) exhibit extremely specific deficits in sex specific behaviors, with single genes controlling the pattern or extent of male sexual behavior, male aggression, maternal behavior, or female sexual behavior. Taken together, our findings demonstrate that various components of sexually dimorphic behaviors are governed by separable genetic programs. PMID:22304924

  11. A histochemical and X-ray microanalysis study of calcium changes in insect flight muscle degeneration in Solenopsis, the queen fire ant

    SciTech Connect

    Jones, R.G.; Davis, W.L.; Vinson, S.B.

    1982-04-01

    Potassium pyroantimonate histochemistry, coupled with ethyleneglycoltetraacetic acid (EGTA)-chelation and X-ray microprobe analysis, was employed to localize intracellular calcium binding sites in the normal and degenerating flight musculature in queens of Solenopsis, the fire ant. In normal animals, calcium distribution was light to moderate within myofibrils and mitochondria. In the early contracture stages of the insemination-induced degeneration, both myofilament and mitochondrial calcium loading was markedly increased. In the terminal stages of myofibril breakdown, only Z-lines (isolated or in clusters) with an associated filamentous residue persisted. These complexes were also intensely calcium positive. This study further documents the presence of increased sarcoplasmic calcium during muscle necrosis. Surface membrane defects, mitochondrial calcium overload, and calcium-activated proteases may all be involved in this ''normal'' breakdown process.

  12. Interpreting hominid behavior on the basis of sexual dimorphism.

    PubMed

    Plavcan, J M; van Schaik, C P

    1997-04-01

    Numerous studies use estimates of sexual dimorphism in canine tooth size and body weight to support speculation about the behavior of australopithecines. However, the range of mating systems inferred for australopithecines encompasses virtually the entire spectrum of mating systems seen among extant anthropoid primates, from monogamy to polygyny characterized by intense male male competition. This variety of opinion can be attributed partly to the unusual combination of high body size dimorphism and reduced canine dimorphism in australopithecines. Here we provide a joint comparison of recent models for the behavioral correlates of both canine dimorphism and body size dimorphism, and apply this to published estimates of dimorphism in body size and canine tooth size in hominids. Among extant species, body weight dimorphism and canine dimorphism are strongly correlated with estimates of intrasexual competition. Canine crown height dimorphism provides the best discrimination between taxa that show high degrees of male-male competition, and those that do not. Relative male maxillary canine tooth size offers additional evidence about male-male competition. On the other hand, canine occlusal dimorphism offers little discrimination among species of different male-male competition levels. Estimates of canine dimorphism, relative canine size, and body weight dimorphism in australopithecines provide little definitive information about male-male competition or mating systems. Dimorphism of Australopithecus africanus and Australopithecus robustus can be reconciled with a mating system characterized by low-intensity male-male competition. The pattern of dimorphism and relative canine size in Australopithecus afarensis and A. robustus provides contradictory evidence about mating systems and male-male competition. We review a number of hypotheses that may explain the unusual pattern of dimorphism of A. afarensis and Australopithecus boisei, but non-satisfactorily resolves the

  13. Human sexual size dimorphism in early pregnancy.

    PubMed

    Bukowski, Radek; Smith, Gordon C S; Malone, Fergal D; Ball, Robert H; Nyberg, David A; Comstock, Christine H; Hankins, Gary D V; Berkowitz, Richard L; Gross, Susan J; Dugoff, Lorraine; Craigo, Sabrina D; Timor-Tritsch, Ilan E; Carr, Stephen R; Wolfe, Honor M; D'Alton, Mary E

    2007-05-15

    Sexual size dimorphism is thought to contribute to the greater mortality and morbidity of men compared with women. However, the timing of onset of sexual size dimorphism remains uncertain. The authors determined whether human fetuses exhibit sexual size dimorphism in the first trimester of pregnancy. Using a prospective cohort study, conducted in 1999-2002 in the United States, they identified 27,655 women who conceived spontaneously and 1,008 whose conception was assisted by in vitro fertilization or intrauterine insemination and for whom a first-trimester measurement of fetal crown-rump length was available. First-trimester size was expressed as the difference between the observed and expected size of the fetus, expressed as equivalence to days of gestational age. The authors evaluated the association between fetal sex, first-trimester size, and birth weight. Eight to 12 weeks after conception, males were larger than females (mean difference: assisted conception = 0.4 days, 95% confidence interval (CI): 0.1, 0.7, p = 0.008; spontaneous conception = 0.3 days, 95% CI: 0.2, 0.4, p < 0.00001). The size discrepancy remained significant at birth (mean birth weight difference: assisted conception = 90 g, 95% CI: 22, 159, p = 0.009; spontaneous conception = 120 g, 95% CI: 107, 132, p < 0.00001). These data demonstrate that human fetuses exhibit sexual size dimorphism in the first trimester of pregnancy. PMID:17344203

  14. [Space flight/bedrest immobilization and bone. Development a devise to maintain the skeletal muscles in space].

    PubMed

    Shiba, Naoto; Matsuse, Hiroo; Nago, Takeshi; Masayuki, Omoto; Kawaguchi, Takumi; Tagawa, Yoshihiko

    2012-12-01

    We have developed a "hybrid training system" (HTS) that is designed to maintain the musculoskeletal system of astronauts by using an electrically stimulated antagonist to resist the volitional contraction of agonist muscles in weightlessness. In other words, electrical stimulation generates a resistive force instead of gravity. HTS will become a useful back-up for the standard training device in the International Space Station, or a useful training device in the small space ship for the exploration of the Moon and Mars. PMID:23187080

  15. Fine-Tuning of PI3K/AKT Signalling by the Tumour Suppressor PTEN Is Required for Maintenance of Flight Muscle Function and Mitochondrial Integrity in Ageing Adult Drosophila melanogaster

    PubMed Central

    Mensah, Lawrence B.; Davison, Claire; Fan, Shih-Jung; Morris, John F.; Goberdhan, Deborah C. I.; Wilson, Clive

    2015-01-01

    Insulin/insulin-like growth factor signalling (IIS), acting primarily through the PI3-kinase (PI3K)/AKT kinase signalling cassette, plays key evolutionarily conserved regulatory roles in nutrient homeostasis, growth, ageing and longevity. The dysfunction of this pathway has been linked to several age-related human diseases including cancer, Type 2 diabetes and neurodegenerative disorders. However, it remains unclear whether minor defects in IIS can independently induce the age-dependent functional decline in cells that accompany some of these diseases or whether IIS alters the sensitivity to other aberrant signalling. We identified a novel hypomorphic allele of PI3K’s direct antagonist, Phosphatase and tensin homologue on chromosome 10 (Pten), in the fruit fly, Drosophila melanogaster. Adults carrying combinations of this allele, Pten5, combined with strong loss-of-function Pten mutations exhibit subtle or no increase in mass, but are highly susceptible to a wide range of stresses. They also exhibit dramatic upregulation of the oxidative stress response gene, GstD1, and a progressive loss of motor function that ultimately leads to defects in climbing and flight ability. The latter phenotype is associated with mitochondrial disruption in indirect flight muscles, although overall muscle structure appears to be maintained. We show that the phenotype is partially rescued by muscle-specific expression of the Bcl-2 homologue Buffy, which in flies, maintains mitochondrial integrity, modulates energy homeostasis and suppresses cell death. The flightless phenotype is also suppressed by mutations in downstream IIS signalling components, including those in the mechanistic Target of Rapamycin Complex 1 (mTORC1) pathway, suggesting that elevated IIS is responsible for functional decline in flight muscle. Our data demonstrate that IIS levels must be precisely regulated by Pten in adults to maintain the function of the highly metabolically active indirect flight muscles

  16. The Contributions of the Amino and Carboxy Terminal Domains of Flightin to the Biomechanical Properties of Drosophila Flight Muscle Thick Filaments.

    PubMed

    Gasek, Nathan S; Nyland, Lori R; Vigoreaux, Jim O

    2016-01-01

    Flightin is a myosin binding protein present in Pancrustacea. In Drosophila, flightin is expressed in the indirect flight muscles (IFM), where it is required for the flexural rigidity, structural integrity, and length determination of thick filaments. Comparison of flightin sequences from multiple Drosophila species revealed a tripartite organization indicative of three functional domains subject to different evolutionary constraints. We use atomic force microscopy to investigate the functional roles of the N-terminal domain and the C-terminal domain that show different patterns of sequence conservation. Thick filaments containing a C-terminal domain truncated flightin (fln(ΔC44)) are significantly shorter (2.68 ± 0.06 μm; p < 0.005) than thick filaments containing a full length flightin (fln⁺; 3.21 ± 0.05 μm) and thick filaments containing an N-terminal domain truncated flightin (fln(ΔN62); 3.21 ± 0.06 μm). Persistence length was significantly reduced in fln(ΔN62) (418 ± 72 μm; p < 0.005) compared to fln⁺ (1386 ± 196μm) and fln(ΔC44)(1128 ± 193 μm). Statistical polymer chain analysis revealed that the C-terminal domain fulfills a secondary role in thick filament bending propensity. Our results indicate that the flightin amino and carboxy terminal domains make distinct contributions to thick filament biomechanics. We propose these distinct roles arise from the interplay between natural selection and sexual selection given IFM's dual role in flight and courtship behaviors. PMID:27128952

  17. COOH-terminal truncation of flightin decreases myofilament lattice organization, cross-bridge binding, and power output in Drosophila indirect flight muscle

    SciTech Connect

    Tanner, Bertrand C.W.; Miller, Mark S.; Miller, Becky M.; Lekkas, Panagiotis; Irving, Thomas C.; Maughan, David W.; Vigoreaux, Jim O.

    2011-08-26

    The indirect flight muscle (IFM) of insects is characterized by a near crystalline myofilament lattice structure that likely evolved to achieve high power output. In Drosophila IFM, the myosin rod binding protein flightin plays a crucial role in thick filament organization and sarcomere integrity. Here we investigate the extent to which the COOH terminus of flightin contributes to IFM structure and mechanical performance using transgenic Drosophila expressing a truncated flightin lacking the 44 COOH-terminal amino acids (fln{sup {Delta}C44}). Electron microscopy and X-ray diffraction measurements show decreased myofilament lattice order in the fln{sup {Delta}C44} line compared with control, a transgenic flightin-null rescued line (fln{sup +}). fln{sup {Delta}C44} fibers produced roughly 1/3 the oscillatory work and power of fln{sup +}, with reduced frequencies of maximum work (123 Hz vs. 154 Hz) and power (139 Hz vs. 187 Hz) output, indicating slower myosin cycling kinetics. These reductions in work and power stem from a slower rate of cross-bridge recruitment and decreased cross-bridge binding in fln{sup {Delta}C44} fibers, although the mean duration of cross-bridge attachment was not different between both lines. The decreases in lattice order and myosin kinetics resulted in fln{sup {Delta}C44} flies being unable to beat their wings. These results indicate that the COOH terminus of flightin is necessary for normal myofilament lattice organization, thereby facilitating the cross-bridge binding required to achieve high power output for flight.

  18. The Contributions of the Amino and Carboxy Terminal Domains of Flightin to the Biomechanical Properties of Drosophila Flight Muscle Thick Filaments

    PubMed Central

    Gasek, Nathan S.; Nyland, Lori R.; Vigoreaux, Jim O.

    2016-01-01

    Flightin is a myosin binding protein present in Pancrustacea. In Drosophila, flightin is expressed in the indirect flight muscles (IFM), where it is required for the flexural rigidity, structural integrity, and length determination of thick filaments. Comparison of flightin sequences from multiple Drosophila species revealed a tripartite organization indicative of three functional domains subject to different evolutionary constraints. We use atomic force microscopy to investigate the functional roles of the N-terminal domain and the C-terminal domain that show different patterns of sequence conservation. Thick filaments containing a C-terminal domain truncated flightin (flnΔC44) are significantly shorter (2.68 ± 0.06 μm; p < 0.005) than thick filaments containing a full length flightin (fln+; 3.21 ± 0.05 μm) and thick filaments containing an N-terminal domain truncated flightin (flnΔN62; 3.21 ± 0.06 μm). Persistence length was significantly reduced in flnΔN62 (418 ± 72 μm; p < 0.005) compared to fln+ (1386 ± 196μm) and flnΔC44(1128 ± 193 μm). Statistical polymer chain analysis revealed that the C-terminal domain fulfills a secondary role in thick filament bending propensity. Our results indicate that the flightin amino and carboxy terminal domains make distinct contributions to thick filament biomechanics. We propose these distinct roles arise from the interplay between natural selection and sexual selection given IFM’s dual role in flight and courtship behaviors. PMID:27128952

  19. Muscle Session Summary

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth; Feeback, Daniel

    1999-01-01

    Presentations from the assembled group of investigators involved in specific research projeects related to skeletal muscle in space flight can categorized in thematic subtopics: regulation of contractile protein phenotypes, muscle growth and atrophy, muscle structure: injury, recovery,and regeneration, metabolism and fatigue, and motor control and loading factors.

  20. Protandry, sexual size dimorphism, and adaptive growth.

    PubMed

    Morbey, Yolanda E

    2013-12-21

    Adaptive growth refers to the strategic adjustment of growth rate by individuals to maximize some component of fitness. The concept of adaptive growth proliferated in the 1990s, in part due to an influential theoretical paper by Peter Abrams and colleagues. In their 1996 paper, Abrams et al. explored the effects of time stress on optimal growth rate, development time, and adult size in seasonal organisms. In this review, I explore how the concept of adaptive growth informs our understanding of protandry (the earlier arrival of males to sites of reproduction than females) and sexual size dimorphism in seasonal organisms. I conclude that growth rate variation is an important mechanism that helps to conserve optimal levels of protandry and sexual size dimorphism in changing environments. PMID:23688825

  1. Mammalian meiotic silencing exhibits sexually dimorphic features.

    PubMed

    Cloutier, J M; Mahadevaiah, S K; ElInati, E; Tóth, A; Turner, James

    2016-06-01

    During mammalian meiotic prophase I, surveillance mechanisms exist to ensure that germ cells with defective synapsis or recombination are eliminated, thereby preventing the generation of aneuploid gametes and embryos. Meiosis in females is more error-prone than in males, and this is in part because the prophase I surveillance mechanisms are less efficient in females. A mechanistic understanding of this sexual dimorphism is currently lacking. In both sexes, asynapsed chromosomes are transcriptionally inactivated by ATR-dependent phosphorylation of histone H2AFX. This process, termed meiotic silencing, has been proposed to perform an important prophase I surveillance role. While the transcriptional effects of meiotic silencing at individual genes are well described in the male germ line, analogous studies in the female germ line have not been performed. Here we apply single- and multigene RNA fluorescence in situ hybridization (RNA FISH) to oocytes from chromosomally abnormal mouse models to uncover potential sex differences in the silencing response. Notably, we find that meiotic silencing in females is less efficient than in males. Within individual oocytes, genes located on the same asynapsed chromosome are silenced to differing extents, thereby generating mosaicism in gene expression profiles across oocyte populations. Analysis of sex-reversed XY female mice reveals that the sexual dimorphism in silencing is determined by gonadal sex rather than sex chromosome constitution. We propose that sex differences in meiotic silencing impact on the sexually dimorphic prophase I response to asynapsis. PMID:26712235

  2. Phosphorylation and the N-terminal extension of the regulatory light chain help orient and align the myosin heads in Drosophila flight muscle

    SciTech Connect

    Farman, Gerrie P.; Miller, Mark S.; Reedy, Mary C.; Soto-Adames, Felipe N.; Vigoreaux, Jim O.; Maughan, David W.; Irving, Thomas C.

    2010-02-02

    X-ray diffraction of the indirect flight muscle (IFM) in living Drosophila at rest and electron microscopy of intact and glycerinated IFM was used to compare the effects of mutations in the regulatory light chain (RLC) on sarcomeric structure. Truncation of the RLC N-terminal extension (Dmlc2{sup {Delta}2-46}) or disruption of the phosphorylation sites by substituting alanines (Dmlc2{sup S66A, S67A}) decreased the equatorial intensity ratio (I{sub 20}/I{sub 10}), indicating decreased myosin mass associated with the thin filaments. Phosphorylation site disruption (Dmlc2{sup S66A, S67A}), but not N-terminal extension truncation (Dmlc2{sup {Delta}2-46}), decreased the 14.5 nm reflection intensity, indicating a spread of the axial distribution of the myosin heads. The arrangement of thick filaments and myosin heads in electron micrographs of the phosphorylation mutant (Dmlc2{sup S66A, S67A}) appeared normal in the relaxed and rigor states, but when calcium activated, fewer myosin heads formed cross-bridges. In transgenic flies with both alterations to the RLC (Dmlc2{sup {Delta}2-46; S66A, S67A}), the effects of the dual mutation were additive. The results suggest that the RLC N-terminal extension serves as a 'tether' to help pre-position the myosin heads for attachment to actin, while phosphorylation of the RLC promotes head orientations that allow optimal interactions with the thin filament.

  3. Early evolution of sexual dimorphism and polygyny in Pinnipedia.

    PubMed

    Cullen, Thomas M; Fraser, Danielle; Rybczynski, Natalia; Schröder-Adams, Claudia

    2014-05-01

    Sexual selection is one of the earliest areas of interest in evolutionary biology. And yet, the evolutionary history of sexually dimorphic traits remains poorly characterized for most vertebrate lineages. Here, we report on evidence for the early evolution of dimorphism within a model mammal group, the pinnipeds. Pinnipeds show a range of sexual dimorphism and mating systems that span the extremes of modern mammals, from monomorphic taxa with isolated and dispersed mating to extreme size dimorphism with highly ordered polygynous harem systems. In addition, the degree of dimorphism in pinnipeds is closely tied to mating system, with strongly dimorphic taxa always exhibiting a polygynous system, and more monomorphic taxa possessing weakly polygynous systems. We perform a comparative morphological description, and provide evidence of extreme sexual dimorphism (similar to sea lions), in the Miocene-aged basal pinniped taxon Enaliarctos emlongi. Using a geometric morphometric approach and combining both modern and fossil taxa we show a close correlation between mating system and sex-related cranial dimorphism, and also reconstruct the ancestral mating system of extant pinnipeds as highly polygynous. The results suggest that sexual dimorphism and extreme polygyny in pinnipeds arose by 27 Ma, in association with changing climatic conditions. PMID:24548136

  4. Research opportunities in muscle atrophy

    NASA Technical Reports Server (NTRS)

    Herbison, G. J. (Editor); Talbot, J. M. (Editor)

    1984-01-01

    Muscle atrophy in a weightless environment is studied. Topics of investigation include physiological factors of muscle atrophy in space flight, biochemistry, countermeasures, modelling of atrophied muscle tissue, and various methods of measurement of muscle strength and endurance. A review of the current literature and suggestions for future research are included.

  5. Developmental basis of sexually dimorphic digit ratios

    PubMed Central

    Zheng, Zhengui; Cohn, Martin J.

    2011-01-01

    Males and females generally have different finger proportions. In males, digit 2 is shorter than digit 4, but in females digit 2 is the same length or longer than digit 4. The second- to fourth-digit (2D:4D) ratio correlates with numerous sexually dimorphic behavioral and physiological conditions. Although correlational studies suggest that digit ratios reflect prenatal exposure to androgen, the developmental mechanism underlying sexually dimorphic digit development remains unknown. Here we report that the 2D:4D ratio in mice is controlled by the balance of androgen to estrogen signaling during a narrow window of digit development. Androgen receptor (AR) and estrogen receptor α (ER-α) activity is higher in digit 4 than in digit 2. Inactivation of AR decreases growth of digit 4, which causes a higher 2D:4D ratio, whereas inactivation of ER-α increases growth of digit 4, which leads to a lower 2D:4D ratio. We also show that addition of androgen has the same effect as inactivation of ER and that addition of estrogen mimics the reduction of AR. Androgen and estrogen differentially regulate the network of genes that controls chondrocyte proliferation, leading to differential growth of digit 4 in males and females. These studies identify previously undescribed molecular dimorphisms between male and female limb buds and provide experimental evidence that the digit ratio is a lifelong signature of prenatal hormonal exposure. Our results also suggest that the 2D:4D ratio can serve as an indicator of disrupted endocrine signaling during early development, which may aid in the identification of fetal origins of adult diseases. PMID:21896736

  6. Patterns of sexual dimorphism in body weight among prosimian primates.

    PubMed

    Kappeler, P M

    1991-01-01

    Many primatologists believe that there is no sexual dimorphism in body size in prosimian primates. Because this belief is based upon data that came from only a few species and were largely flawed in some aspect of sample quality, I re-examined the extent of sexual dimorphism in body weight, using weights of 791 adult prosimians from 34 taxa recorded over the last 17 years at the Duke University Primate Center. There was no significant sex difference in body weight in 17 species, but males were significantly larger in Nycticebus pygmaeus, Tarsius syrichta, Galago moholi, Galagoides demidovii, Otolemur crassicaudatus and Otolemur garnettii. Moreover, females were significantly larger in Microcebus murinus. Thus, the general lack of sexual dimorphism could be confirmed, notably for lemurs, but prosimians as a group show more variability in sexual size dimorphism than was previously thought. After including previously published data obtained in the wild from 8 additional species, I found significant heterogeneity in the degree of sexual dimorphism at the family level, but only the Indridae and Galagidae were significantly different from each other. Among the prosimian infraorders, the Lorisiformes were significantly more dimorphic than the Lemuriformes. Differences in dimorphism between higher taxonomic groups are discussed in the context of prosimian evolution, concluding that phylogenetic inertia cannot provide a causal explanation for the evolution of sexual dimorphism. The relative monomorphism of most prosimians may be related to allometric constraints and, especially in the Lemuriformes, to selective forces affecting male and female behavioral strategies. PMID:1794769

  7. Sexual Dimorphism: How Female Cells Win the Race.

    PubMed

    Deng, Hansong; Jasper, Heinrich

    2016-03-01

    Sexual dimorphisms are established by sex determination pathways and are maintained during regeneration of adult tissues. Two recent studies in Drosophila elucidate the contribution of cell-autonomous and endocrine mechanisms to the establishment and maintenance of growth dimorphism in larvae and the adult intestine. PMID:26954444

  8. Evidence for ecological causation of sexual dimorphism in a hummingbird.

    PubMed

    Temeles, E J; Pan, I L; Brennan, J L; Horwitt, J N

    2000-07-21

    Unambiguous examples of ecological causes of animal sexual dimorphism are rare. Here we present evidence for ecological causation of sexual dimorphism in the bill morphology of a hummingbird, the purple-throated carib. This hummingbird is the sole pollinator of two Heliconia species whose flowers correspond to the bills of either males or females. Each sex feeds most quickly at the flower species approximating its bill dimensions, which supports the hypothesis that floral specialization has driven the evolution of bill dimorphism. Further evidence for ecological causation of sexual dimorphism was provided by a geographic replacement of one Heliconia species by the other and the subsequent development of a floral dimorphism, with one floral morph matching the bills of males and the other of females. PMID:10903203

  9. The Dilemma of Choosing a Reference Character for Measuring Sexual Size Dimorphism, Sexual Body Component Dimorphism, and Character Scaling: Cryptic Dimorphism and Allometry in the Scorpion Hadrurus arizonensis

    PubMed Central

    Fox, Gerad A.; Cooper, Allen M.; Hayes, William K.

    2015-01-01

    Sexual differences in morphology, ranging from subtle to extravagant, occur commonly in many animal species. These differences can encompass overall body size (sexual size dimorphism, SSD) or the size and/or shape of specific body parts (sexual body component dimorphism, SBCD). Interacting forces of natural and sexual selection shape much of the expression of dimorphism we see, though non-adaptive processes may be involved. Differential scaling of individual features can result when selection favors either exaggerated (positive allometry) or reduced (negative allometry) size during growth. Studies of sexual dimorphism and character scaling rely on multivariate models that ideally use an unbiased reference character as an overall measure of body size. We explored several candidate reference characters in a cryptically dimorphic taxon, Hadrurus arizonensis. In this scorpion, essentially every body component among the 16 we examined could be interpreted as dimorphic, but identification of SSD and SBCD depended on which character was used as the reference (prosoma length, prosoma area, total length, principal component 1, or metasoma segment 1 width). Of these characters, discriminant function analysis suggested that metasoma segment 1 width was the most appropriate. The pattern of dimorphism in H. arizonensis mirrored that seen in other more obviously dimorphic scorpions, with static allometry trending towards isometry in most characters. Our findings are consistent with the conclusions of others that fecundity selection likely favors a larger prosoma in female scorpions, whereas sexual selection may favor other body parts being larger in males, especially the metasoma, pectines, and possibly the chela. For this scorpion and probably most other organisms, the choice of reference character profoundly affects interpretations of SSD, SBCD, and allometry. Thus, researchers need to broaden their consideration of an appropriate reference and exercise caution in interpreting

  10. Stomatal Dimorphism of Neodiplogaster acaloleptae (Diplogastromorpha: Diplogastridae)

    PubMed Central

    Kanzaki, Natsumi

    2016-01-01

    Several genera belonging to the nematode family Diplogastridae show characteristic dimorphism in their feeding structures; specifically, they have microbial feeding stenostomatous and predatory eurystomatous morphs. A diplogastrid satellite model species, Pristionchus pacificus, and its close relatives have become a model system for studying this phenotypic plasticity, with intensive physiological and structural studies having been undertaken. However, the many other species that are morphologically and phylogenetically divergent from P. pacificus have not been examined to date. In the present study, the detailed stomatal structure and induction of dimorphism in Neodiplogaster acaloleptae were examined. N. acaloleptae has a fungal feeding stenostomatous morph and a predatory eurystomatous morph. The predatory morph was induced by starvation, high population density, and co-culturing with its potential prey, Caenorhabditis elegans. The feeding behavior of the stenostomatous and eurystomatous morphs of N. acaloleptae was confirmed, demonstrating that 1) the stomatal and pharyngeal movements of the two morphs were basically identical, and 2) the stomatal elements were protracted to cut open the hyphae and/or prey to feed when a N. acaloleptae flips its dorsal movable tooth dorsally and tilts its subventral stegostomatal cylinder ventrally, forming a pair of scissors to cut the food source. The stoma morphology of N. acaloleptae with a single movable tooth and a long stoma is markedly different from that of Pristionchus, which has two movable teeth and a short stoma. It is, however, similar to that of Mononchoides, tentatively a sister to Neodiplogaster. PMID:27196730

  11. The 2013 German-Russian Bion-M1 Joint Flight Project: Altered cAMP/PKA Signaling Pathway in Skeletal Muscle during Exposure to Real Microgravity in Mice Housed for 30 Days in a Biosatellite on Orbit

    NASA Astrophysics Data System (ADS)

    Salanova, Michele; Blottner, Dieter; Shenkman, Boris S.; Lomonosova, Yulia

    Exposure to real microgravity (muG) results in an impaired skeletal muscle structure and function. We here hypothesized that the cAMP/PKA cell signaling pathway, which triggers a multitude of intracellular effects in response to a variety of extracellular stimuli and which further promote muscle growth, play an important role during Spaceflight- induced disuse atrophy. Particularly, we hypothesized that different effectors of the cAMP-PKA signaling machinery, which are highly compartmentalized into subcellular functional microdomains in order to guarantee signal specificity, are altered after long term exposure to real µG. Taking advantage of the Bion-M1 Spaceflight program which provided us an excellent opportunity to explore mice skeletal muscle exposed for 30 days to real µG, by investigating at the cAMP-dependent protein kinase A (PKA) subcellular localization we compared muscle soleus (SOL) and extensor digitorum longus (EDL) of C57/black mice of a Bion-flight (n=5) group with a Bion-ground control (n=5) group and a ground control (n=5) group which was housed in a standard cage considered as vivarium control. Preliminary results of our experiments showed that different cAMP-PKA micro pools were normally detectable using high-resolution images of immunofluorescence experiments in different subcellular compartments of both SOL and EDL of Bion-ground and ground control groups which were not any longer detectable in Bion-flight group. In summary, our data indicate that an efficient organization in microdomains of the cAMP/PKA pathway may exist in skeletal muscle on ground and that such compartmentalization may be altered in response to prolonged exposure to real muG. National Sponsors: Federal Ministry of Economics and Technology (BMWi) via the German AeroSpace Board, DLR e.V., Bonn-Oberkassel, Germany (#50WB1121 to DB); Contract RAS-IMPB/Charité Berlin # Bion-M1/2013

  12. Mimetic butterflies support Wallace's model of sexual dimorphism.

    PubMed

    Kunte, Krushnamegh

    2008-07-22

    Theoretical and empirical observations generally support Darwin's view that sexual dimorphism evolves due to sexual selection on, and deviation in, exaggerated male traits. Wallace presented a radical alternative, which is largely untested, that sexual dimorphism results from naturally selected deviation in protective female coloration. This leads to the prediction that deviation in female rather than male phenotype causes sexual dimorphism. Here I test Wallace's model of sexual dimorphism by tracing the evolutionary history of Batesian mimicry-an example of naturally selected protective coloration-on a molecular phylogeny of Papilio butterflies. I show that sexual dimorphism in Papilio is significantly correlated with both female-limited Batesian mimicry, where females are mimetic and males are non-mimetic, and with the deviation of female wing colour patterns from the ancestral patterns conserved in males. Thus, Wallace's model largely explains sexual dimorphism in Papilio. This finding, along with indirect support from recent studies on birds and lizards, suggests that Wallace's model may be more widely useful in explaining sexual dimorphism. These results also highlight the contribution of naturally selected female traits in driving phenotypic divergence between species, instead of merely facilitating the divergence in male sexual traits as described by Darwin's model. PMID:18426753

  13. Miracle Flights

    MedlinePlus

    ... the perfect solution for your needs. Book A Flight Request a flight now Click on the link ... Now Make your donation today Saving Lives One Flight At A Time Miracle Flights provides free flights ...

  14. A conserved dimorphism-regulating histidine kinase controls the dimorphic switching in Paracoccidioides brasiliensis.

    PubMed

    Chaves, Alison F A; Navarro, Marina V; Castilho, Daniele G; Calado, Juliana C P; Conceição, Palloma M; Batista, Wagner L

    2016-08-01

    Paracoccidioides brasiliensis and P. lutzii, thermally dimorphic fungi, are the causative agents of paracoccidioidomycosis (PCM). Paracoccidioides infection occurs when conidia or mycelium fragments are inhaled by the host, which causes the Paracoccidioides cells to transition to the yeast form. The development of disease requires conidia inside the host alveoli to differentiate into yeast cells in a temperature-dependent manner. We describe the presence of a two-component signal transduction system in P. brasiliensis, which we investigated by expression analysis of a hypothetical protein gene (PADG_07579) that showed high similarity with the dimorphism-regulating histidine kinase (DRK1) gene of Blastomyces dermatitidis and Histoplasma capsulatum This gene was sensitive to environmental redox changes, which was demonstrated by a dose-dependent decrease in transcript levels after peroxide stimulation and a subtler decrease in transcript levels after NO stimulation. Furthermore, the higher PbDRK1 levels after treatment with increasing NaCl concentrations suggest that this histidine kinase can play a role as osmosensing. In the mycelium-yeast (M→Y) transition, PbDRK1 mRNA expression increased 14-fold after 24 h incubation at 37°C, consistent with similar observations in other virulent fungi. These results demonstrate that the PbDRK1 gene is differentially expressed during the dimorphic M→Y transition. Finally, when P. brasiliensis mycelium cells were exposed to a histidine kinase inhibitor and incubated at 37°C, there was a delay in the dimorphic M→Y transition, suggesting that histidine kinases could be targets of interest for PCM therapy. PMID:27268997

  15. Isavuconazole Treatment of Cryptococcosis and Dimorphic Mycoses

    PubMed Central

    Thompson, George R.; Rendon, Adrian; Ribeiro dos Santos, Rodrigo; Queiroz-Telles, Flavio; Ostrosky-Zeichner, Luis; Azie, Nkechi; Maher, Rochelle; Lee, Misun; Kovanda, Laura; Engelhardt, Marc; Vazquez, Jose A.; Cornely, Oliver A.; Perfect, John R.

    2016-01-01

    Background. Invasive fungal diseases (IFD) caused by Cryptococcus and dimorphic fungi are associated with significant morbidity and mortality. Isavuconazole (ISAV) is a novel, broad-spectrum, triazole antifungal agent (IV and by mouth [PO]) developed for the treatment of IFD. It displays potent activity in vitro against these pathogens and in this report we examine outcomes of patients with cryptococcosis or dimorphic fungal infections treated with ISAV. Methods. The VITAL study was an open-label nonrandomized phase 3 trial conducted to evaluate the efficacy and safety of ISAV treatment in management of rare IFD. Patients received ISAV 200 mg 3 times daily for 2 days followed by 200 mg once-daily (IV or PO). Proven IFD and overall response at end of treatment (EOT) were determined by an independent, data-review committee. Mortality and safety were also assessed. Results. Thirty-eight patients received ISAV for IFD caused by Cryptococcus spp. (n = 9), Paracoccidioides spp. (n = 10), Coccidioides spp. (n = 9), Histoplasma spp. (n = 7) and Blastomyces spp. (n = 3). The median length of therapy was 180 days (range 2–331 days). At EOT 24/38 (63%) patients exhibited a successful overall response. Furthermore, 8 of 38 (21%) had stable IFD at the end of therapy without progression of disease, and 6 (16%) patients had progressive IFD despite this antifungal therapy. Thirty-three (87%) patients experienced adverse events. Conclusions. ISAV was well tolerated and demonstrated clinical activity against these endemic fungi with a safety profile similar to that observed in larger studies, validating its broad-spectrum in vitro activity and suggesting it may be a valuable alternative to currently available agents. Clinical Trials Registration. NCT00634049. PMID:27169478

  16. Sexually dimorphic actions of glucocorticoids: beyond chromosomes and sex hormones.

    PubMed

    Quinn, Matthew; Ramamoorthy, Sivapriya; Cidlowski, John A

    2014-05-01

    Sexual dimorphism is a well-documented phenomenon that is observed at all levels of the animal kingdom. Historically, sex hormones (testosterone and estrogen) have been implicated as key players in a wide array of pathologies displaying sexual dimorphism in their etiology and progression. While these hormones clearly contribute to sexually dimorphic diseases, other factors may be involved in this phenomenon as well. In particular, the stress hormone cortisol exerts differential effects in both males and females. The underlying molecular basis for the sexually dimorphic actions of glucocorticoids is unknown but clearly important to understand, since synthetic glucocorticoids are the most widely prescribed medication for the treatment of chronic inflammatory diseases and hematological cancers in humans. PMID:24739020

  17. Dimorphic foraging behaviors and the evolution of hominid hunting.

    PubMed

    Fessler, Daniel M T

    2002-01-01

    In contemporary foraging societies men typically hunt more than women. This observation has played an important role in many reconstructions of hominid evolution. The gender difference in human hunting, likely a product of both ecological and cultural factors, is mirrored by a similar sex difference among nonhuman primates. Existing explanations of such primate behavioral dimorphism are augmented by the recognition of an additional factor that may contribute to differences between males and females in the value of meat. Episodic female immunosuppression is a normal part of reproduction. Because meat is a source of pathogens, females can be expected to exhibit less constant attraction to meat. Sexual dimorphism in the attraction to meat may then contribute to dimorphic foraging specializations, a divergence that is likely augmented by the differential value of insectivory across the sexes. With the rise of cultural transmission of foraging knowledge, dimorphic foraging behaviors would have been reinforced, creating a more comprehensive gender-based division of labor. PMID:12680308

  18. The postnatal ontogeny of the sexually dimorphic vocal apparatus in goitred gazelles (Gazella subgutturosa).

    PubMed

    Efremova, Kseniya O; Frey, Roland; Volodin, Ilya A; Fritsch, Guido; Soldatova, Natalia V; Volodina, Elena V

    2016-06-01

    This study quantitatively documents the progressive development of sexual dimorphism of the vocal organs along the ontogeny of the goitred gazelle (Gazella subgutturosa). The major, male-specific secondary sexual features, of vocal anatomy in goitred gazelle are an enlarged larynx and a marked laryngeal descent. These features appear to have evolved by sexual selection and may serve as a model for similar events in male humans. Sexual dimorphism of larynx size and larynx position in adult goitred gazelles is more pronounced than in humans, whereas the vocal anatomy of neonate goitred gazelles does not differ between sexes. This study examines the vocal anatomy of 19 (11 male, 8 female) goitred gazelle specimens across three age-classes, that is, neonates, subadults and mature adults. The postnatal ontogenetic development of the vocal organs up to their respective end states takes considerably longer in males than in females. Both sexes share the same features of vocal morphology but differences emerge in the course of ontogeny, ultimately resulting in the pronounced sexual dimorphism of the vocal apparatus in adults. The main differences comprise larynx size, vocal fold length, vocal tract length, and mobility of the larynx. The resilience of the thyrohyoid ligament and the pharynx, including the soft palate, and the length changes during contraction and relaxation of the extrinsic laryngeal muscles play a decisive role in the mobility of the larynx in both sexes but to substantially different degrees in adult females and males. Goitred gazelles are born with an undescended larynx and, therefore, larynx descent has to develop in the course of ontogeny. This might result from a trade-off between natural selection and sexual selection requiring a temporal separation of different laryngeal functions at birth and shortly after from those later in life. J. Morphol. 277:826-844, 2016. © 2016 Wiley Periodicals, Inc. PMID:26997608

  19. Sex Dimorphism in Late Gestational Sleep Fragmentation and Metabolic Dysfunction in Offspring Mice

    PubMed Central

    Khalyfa, Abdelnaby; Carreras, Alba; Almendros, Isaac; Hakim, Fahed; Gozal, David

    2015-01-01

    Background: Excessive sleep fragmentation (SF) is common in pregnant women. Adult-onset metabolic disorders may begin during early development and exhibit substantial sex dimorphism. We hypothesized that metabolic dysfunction induced by gestational SF in male mice would not be apparent in female littermates. Methods: Body weight and food consumption were measured weekly in male and female offspring after late gestational SF or control sleep (SC). At 20 weeks, plasma leptin, adiponectin, lipid profiles, and insulin and glucose tolerance tests were assessed. Leptin and adiponectin, M1, and M2 macrophage messenger RNA expression and polarity were examined. Adiponectin gene promoter methylation levels in several tissues were assessed. Results: Food intake, body weight, visceral fat mass, and insulin resistance were higher, and adiponectin levels lower in male but not female offspring exposed to gestational SF. However, dyslipidemia was apparent in both male and female offspring exposed to SF, albeit of lesser magnitude. In visceral fat, leptin messenger RNA expression was selectively increased and adiponectin expression was decreased in male offspring exposed to gestational SF, but adiponectin was increased in exposed female offspring. Differences in adipokine expression also emerged in liver, subcutaneous fat, and muscle. Increased M1 macrophage markers were present in male offspring exposed to SF (SFOM) while increased M2 markers emerged in SF in female offspring (SFOF). Similarly, significant differences emerged in the methylation patterns of adiponectin promoter in SFOM and SFOF. Conclusion: Gestational sleep fragmentation increases the susceptibility to obesity and metabolic syndrome in male but not in female offspring, most likely via epigenetic changes. Thus, sleep perturbations impose long-term detrimental effects to the fetus manifesting as sex dimorphic metabolic dysfunction in adulthood. Citation: Khalyfa A, Carreras A, Almendros I, Hakim F, Gozal D. Sex

  20. Your Muscles

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Your Muscles KidsHealth > For Kids > Your Muscles Print A A ... and skeletal (say: SKEL-uh-tul) muscle. Smooth Muscles Smooth muscles — sometimes also called involuntary muscles — are ...

  1. Sexual dimorphism and feeding ecology of Diamond-backed Terrapins (Malaclemys terrapin)

    USGS Publications Warehouse

    Underwood, Elizabeth B.; Bowers, Sarah; Guzy, Jacquelyn C.; Lovich, Jeffrey E.; Taylor, Carole A.; Gibbons, J. Whitfield; Dorcas, Michael E.

    2013-01-01

    Natural and sexual selection are frequently invoked as causes of sexual size dimorphism in animals. Many species of turtles, including the Diamond-backed Terrapin (Malaclemys terrapin), exhibit sexual dimorphism in body size, possibly enabling the sexes to exploit different resources and reduce intraspecific competition. Female terrapins not only have larger body sizes but also disproportionately larger skulls and jaws relative to males. To better understand the relationship between skull morphology and terrapin feeding ecology, we measured the in-lever to out-lever ratios of 27 male and 33 female terrapin jaws to evaluate biomechanics of the trophic apparatus. In addition, we measured prey handling times by feeding Fiddler Crabs (Uca pugnax), a natural prey item, to 24 terrapins in the laboratory. Our results indicate that although females have disproportionately larger heads, they have similar in:out lever ratios to males, suggesting that differences in adductor muscle mass are more important in determining bite force than jaw in:out lever ratios. Females also had considerably reduced prey handling times. Understanding the factors affecting terrapin feeding ecology can illuminate the potential roles male and female terrapins play as top-down predators that regulate grazing of Periwinkle Snails (Littorina irrorata) on Cord Grass (Spartina alterniflora).

  2. A possible instance of sexual dimorphism in the tails of two oviraptorosaur dinosaurs

    PubMed Central

    IV, W. Scott Persons; Funston, Gregory F.; Currie, Philip J.; Norell, Mark A.

    2015-01-01

    The hypothesis that oviraptorosaurs used tail-feather displays in courtship behavior previously predicted that oviraptorosaurs would be found to display sexually dimorphic caudal osteology. MPC-D 100/1002 and MPC-D 100/1127 are two specimens of the oviraptorosaur Khaan mckennai. Although similar in absolute size and in virtually all other anatomical details, the anterior haemal spines of MPC-D 100/1002 exceed those of MPC-D 100/1127 in ventral depth and develop a hitherto unreported “spearhead” shape. This dissimilarity cannot be readily explained as pathologic and is too extreme to be reasonably attributed to the amount of individual variation expected among con-specifics. Instead, this discrepancy in haemal spine morphology may be attributable to sexual dimorphism. The haemal spine form of MPC-D 100/1002 offers greater surface area for caudal muscle insertions. On this basis, MPC-D 100/1002 is regarded as most probably male, and MPC-D 100/1127 is regarded as most probably female. PMID:25824625

  3. Sexual dimorphism and hormone responsiveness in the spinal cord of the socially monogamous prairie vole (Microtus ochrogaster).

    PubMed

    Holmes, Melissa M; Musa, Mutaz; Lonstein, Joseph S; Monks, D Ashley

    2009-09-10

    Prairie voles (Microtus ochrogaster) are exceptional among rodents in that many aspects of their brain and behavior are not masculinized by exogenous aromatizable androgens. However, the sexually differentiated endpoints studied to date rely on estrogenic mechanisms in other mammals. We examined whether sexual differentiation of an androgen receptor-dependent sex difference would be similarly distinct in prairie voles. Male mammals have more and larger motoneurons projecting to perineal muscles than do females. This sex difference normally arises from males' perinatal androgen exposure and can be eliminated by treating developing females with androgens. Gross dissection revealed bulbospongiosus muscles in adult male, but not female, prairie voles. Retrograde tracing from males' bulbocavernosus muscles and the external anal sphincter from both sexes revealed sexually dimorphic populations of labeled motoneurons in the ventral horn of the lumbar spinal cord. Similar to other rodents, males had twice as many motoneurons as females, although no sex difference in motoneuron size was detected. Unexpectedly, prenatal or early postnatal exposure to testosterone propionate had no effect on adult females' motoneuron number or size. In adulthood, gonadectomy alone or followed by chronic testosterone treatment also had no effect on females' motoneuron size or number, although castration reduced motoneuron size in males. Comparing gonadally intact weanlings confirmed that the sex difference in motoneuron number exists before adulthood. As with some other sexually dimorphic traits, and perhaps related to their unique social organization, sexual differentiation of the prairie vole spinal cord differs from that found in most other laboratory rodents. PMID:19575447

  4. Magnesium and Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in astronauts before, during, and after space missions, in 43 astronauts (34 male, 9 female) on 4-6 month space flight missions. We also studied individuals participating in a ground analog of space flight, (head-down tilt bed rest, n=27, 35 +/- 7 y). We evaluated serum concentration and 24-hour urinary excretion of magnesium along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-d space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4- to 6-month space missions.

  5. Mercury Sulfide Dimorphism in Thioarsenate Glasses.

    PubMed

    Kassem, M; Sokolov, A; Cuisset, A; Usuki, T; Khaoulani, S; Masselin, P; Le Coq, D; Neuefeind, J C; Feygenson, M; Hannon, A C; Benmore, C J; Bychkov, E

    2016-06-16

    Crystalline mercury sulfide exists in two drastically different polymorphic forms in different domains of the P,T-diagram: red chain-like insulator α-HgS, stable below 344 °C, and black tetrahedral narrow-band semiconductor β-HgS, stable at higher temperatures. Using pulsed neutron and high-energy X-ray diffraction, we show that these two mercury bonding patterns are present simultaneously in mercury thioarsenate glasses HgS-As2S3. The population and interconnectivity of chain-like and tetrahedral dimorphous forms determine both the structural features and fundamental glass properties (thermal, electronic, etc.). DFT simulations of mercury species and RMC modeling of high-resolution diffraction data provide additional details on local Hg environment and connectivity implying the (HgS2/2)m oligomeric chains (1 ≤ m ≤ 6) are acting as a network former while the HgS4/4-related mixed agglomerated units behave as a modifier. PMID:27214120

  6. Parasitism and the expression of sexual dimorphism.

    PubMed

    De Lisle, Stephen P; Rowe, Locke

    2015-02-01

    Although a negative covariance between parasite load and sexually selected trait expression is a requirement of few sexual selection models, such a covariance may be a general result of life-history allocation trade-offs. If both allocation to sexually selected traits and to somatic maintenance (immunocompetence) are condition dependent, then in populations where individuals vary in condition, a positive covariance between trait expression and immunocompetence, and thus a negative covariance between trait and parasite load, is expected. We test the prediction that parasite load is generally related to the expression of sexual dimorphism across two breeding seasons in a wild salamander population and show that males have higher trematode parasite loads for their body size than females and that a key sexually selected trait covaries negatively with parasite load in males. We found evidence of a weaker negative relationship between the analogous female trait and parasite infection. These results underscore that parasite infection may covary with expression of sexually selected traits, both within and among species, regardless of the model of sexual selection, and also suggest that the evolution of condition dependence in males may affect the evolution of female trait expression. PMID:25750721

  7. Mandibular sexual dimorphism analysis in CBCT scans.

    PubMed

    Gamba, Thiago de Oliveira; Alves, Marcelo Corrêa; Haiter-Neto, Francisco

    2016-02-01

    The aim of this study was to evaluate sexual dimorphism using anthropometric measurements on mandibular images obtained by cone beam computed tomography (CBCT). The sample consisted of 160 CT scans collected from a Brazilian population (74 males, 86 females) aged 18-60 years. The CBCT images were analyzed by five reviewers. Six measurements (ramus length, gonion-gnathion length, minimum ramus breadth, gonial angle, bicondylar breadth, and bigonial breadth) were collected for the sexual prediction analysis. For the statistical analysis, intraclass correlation was used to evaluate intra- and inter-reviewers, analysis of variance was used to compare the mean values of these measurements, binary logistic regression equations were created to predict sex. Using these four variables, the rate of correct sex classification was 95.1%. After, the discriminant function was used to validate the formula built. Accuracy of 93.33% and 94.74% was found for estimating male and females, respectively. Thus, the formula developed in this study can be used for sex estimation in forensic settings. PMID:26773251

  8. Biomechanics of bird flight.

    PubMed

    Tobalske, Bret W

    2007-09-01

    Power output is a unifying theme for bird flight and considerable progress has been accomplished recently in measuring muscular, metabolic and aerodynamic power in birds. The primary flight muscles of birds, the pectoralis and supracoracoideus, are designed for work and power output, with large stress (force per unit cross-sectional area) and strain (relative length change) per contraction. U-shaped curves describe how mechanical power output varies with flight speed, but the specific shapes and characteristic speeds of these curves differ according to morphology and flight style. New measures of induced, profile and parasite power should help to update existing mathematical models of flight. In turn, these improved models may serve to test behavioral and ecological processes. Unlike terrestrial locomotion that is generally characterized by discrete gaits, changes in wing kinematics and aerodynamics across flight speeds are gradual. Take-off flight performance scales with body size, but fully revealing the mechanisms responsible for this pattern awaits new study. Intermittent flight appears to reduce the power cost for flight, as some species flap-glide at slow speeds and flap-bound at fast speeds. It is vital to test the metabolic costs of intermittent flight to understand why some birds use intermittent bounds during slow flight. Maneuvering and stability are critical for flying birds, and design for maneuvering may impinge upon other aspects of flight performance. The tail contributes to lift and drag; it is also integral to maneuvering and stability. Recent studies have revealed that maneuvers are typically initiated during downstroke and involve bilateral asymmetry of force production in the pectoralis. Future study of maneuvering and stability should measure inertial and aerodynamic forces. It is critical for continued progress into the biomechanics of bird flight that experimental designs are developed in an ecological and evolutionary context. PMID:17766290

  9. Sexual dimorphism in the face of Australopithecus africanus.

    PubMed

    Lockwood, C A

    1999-01-01

    Recently discovered crania of Australopithecus africanus from Sterkfontein Member 4 and Makapansgat enlarge the size range of the species and encourage a reappraisal of both the degree and pattern of sexual dimorphism. Resampling methodology (bootstrapping) is used here to establish that A. africanus has a greater craniofacial size range than chimpanzees or modern humans, a range which is best attributed to a moderately high degree of sexual dimorphism. Compared to other fossil hominins, this variation is similar to that of Homo habilis (sensu lato) but less than that of A. boisei. The finding of moderately high dimorphism is corroborated by a CV-based estimate and ratios between those specimens considered to be male and those considered to be female. Inferences about the pattern of craniofacial dimorphism in the A. africanus face currently rely on the relationship of morphology and size. Larger specimens, particularly Stw 505, show prominent superciliary eminences and glabellar regions, but in features related in part to canine size, such as the curvature of the infraorbital surface, large and small specimens of A. africanus are similar. In this respect, the pattern resembles that of modern humans more so than chimpanzees or lowland gorillas. A. africanus may also show novel patterns of sexual dimorphism when compared to extant hominines, such as in the form of the anterior pillar. However, males of the species do not exhibit characteristics of more derived hominins, such as A. robustus. PMID:9915304

  10. ALTERATIONS IN SEXUALLY DIMORPHIC BIOTRANSFORMATION OF TESTOSTERONE IN JUVENILE AMERICAN ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM CONTAMINATED LAKES

    EPA Science Inventory

    The goal of this study was to determine whether hepatic biotransformation of testosterone is normally sexually dimorphic in juvenile alligators and whether living in a contaminated environment affects hepatic dimorphism. Lake Woodruff served as our reference site. Moonshine Bay, ...

  11. Control of Dimorphism in Mucor rouxii

    PubMed Central

    Haidle, C. W.; Storck, R.

    1966-01-01

    Haidle, C. W. (The University of Texas, Austin), and R. Storck. Control of dimorphism in Mucor rouxii. J. Bacteriol. 92:1236–1244. 1966.—Yeastlike cells of Mucor rouxii NRRL 1894 were converted to filaments in a medium containing glucose, mineral salts, casein hydrolysate, nicotinic acid, and thiamine when the gas phase was changed from CO2-N2 or N2 alone to air. Germ tubes began to appear 3 to 4 hr after exposure to air. Ribonucleic acid (RNA) precursors were incorporated into RNA in a discontinuous fashion during this conversion, but the incorporation was continuous during the anaerobic growth of yeastlike cells and during the aerobic germination of sporangiospores. The incorporation of labeled amino acids during the conversion was exponential. Labeling of ribosomal RNA occurred as shortly as 5 min after replacement of CO2-N2 with air. However, P32-labeled RNA isolated 20 min after exposure to air had a guanine plus cytosine (GC) content of 41% (mole%) as compared with the 47% found for labeled and unlabeled RNA isolated at other stages of the life cycle of this organism or later during the conversion. In addition, the overall base composition of this 20-min pulse-labeled RNA resembled that of deoxyribonucleic acid (GC = 39%), suggesting that a significant proportion of this RNA is of the messenger type. Furthermore, the synthesis of cytochrome oxidase was induced upon exposure of yeastlike cells to air. Cyanide, acriflavine, and cycloheximide, which inhibited the action or synthesis of cytochrome oxidase, also inhibited the yeast to filament transition. Images PMID:4288798

  12. The use of dimorphic Alu insertions in human DNA fingerprinting

    SciTech Connect

    Novick, G.E.; Gonzalez, T.; Garrison, J.; Novick, C.C.; Herrera, R.J.; Batzer, M.A.; Deininger, P.L.

    1992-12-04

    We have characterized certain Human Specific Alu Insertions as either dimorphic (TPA25, PV92, APO), sightly dimorphic (C2N4 and C4N4) or monomorphic (C3N1, C4N6, C4N2, C4N5, C4N8), based on studies of Caucasian, Asian, American Black and African Black populations. Our approach is based upon: (1) PCR amplification using primers directed to the sequences that flank the site of insertion of the different Alu elements studied; (2) gel electrophoresis and scoring according to the presence or absence of an Alu insertion in one or both homologous chromosomes; (3) allelic frequencies calculated and compared according to Hardy-Weinberg equilibrium. Our DNA fingerprinting procedure using PCR amplification of dimorphic Human Specific Alu insertions, is stable enough to be used not only as a tool for genetic mapping but also to characterize populations, study migrational patterns and track the inheritance of human genetic disorders.

  13. The earliest fossil evidence for sexual dimorphism in primates

    NASA Technical Reports Server (NTRS)

    Krishtalka, Leonard; Stucky, Richard K.; Beard, K. C.

    1990-01-01

    Recently obtained material of the early Eocene primate Notharctus venticolus, including two partial skulls from a single stratigraphic horizon, provides the geologically earliest evidence of sexual dimorphism in canine size and shape in primates and the only unequivocal evidence for such dimorphism in strepsirhines. By analogy with living platyrrhines, these data suggest that Notharctus venticolus may have lived in polygynous social groups characterized by a relatively high level of intermale competition for mates and other limited resources. The anatomy of the upper incisors and related evidence imply that Notharctus is not as closely related to extant lemuriform primates as has been recently proposed. The early Eocene evidence for canine sexual dimorphism reported here, and its occurrence in a nonanthropoid, indicates that in the order Primates such a condition is either primitive or evolved independently more than once.

  14. Magnesium and Space Flight.

    PubMed

    Smith, Scott M; Zwart, Sara R

    2015-12-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions. PMID:26670248

  15. Magnesium and Space Flight

    PubMed Central

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  16. Singularity theory of fitness functions under dimorphism equivalence.

    PubMed

    Wang, Xiaohui; Golubitsky, Martin

    2016-09-01

    We apply singularity theory to classify monomorphic singular points as they occur in adaptive dynamics. Our approach is based on a new equivalence relation called dimorphism equivalence, which is the largest equivalence relation on strategy functions that preserves ESS singularities, CvSS singularities, and dimorphisms. Specifically, we classify singularities up to topological codimension two and compute their normal forms and universal unfoldings. These calculations lead to the classification of local mutual invasibility plots that can be seen generically in systems with two parameters. PMID:26733311

  17. [Change in the content and makeup of the phospholipids in the microsomal fraction of rat skeletal muscles under the influence of a flight on the Kosmos-690 biosatellite].

    PubMed

    Belitskaia, R A

    1979-01-01

    The content and composition of phospholipids in the microsomes isolated from the back femoral muscles of rats flown for 20.5 days aboard the biosatellite Cosmos-690 were studied. Gamma-irradiation applied in the ground-based control experiments did not change the amount of total phospholipids in microsomes of skeletal muscles and altered insignificantly the content of their individual fractions. On the 2nd postflight day a substantial increase in the content of total and fractional phospholipids in microsomes was found. The decrease seems to be induced by weightlessness. On the 26th postflight day the content of total phospholipids returned to the normal whereas their fractional composition still remained changed. PMID:423509

  18. Male dimorphism and alternative reproductive tactics in harvestmen (Arachnida: Opiliones).

    PubMed

    Buzatto, Bruno A; Machado, Glauco

    2014-11-01

    Strong sexual selection may lead small males or males in poor condition to adopt alternative reproductive tactics (ARTs) as a way to avoid the risk of being completely excluded from the mating pool. ARTs, sometimes accompanying morphological dimorphism among males, are taxonomically widespread, especially common in arthropods. Here we review the current knowledge on ARTs and male dimorphism in a diverse but relatively overlooked group of arachnids, the order Opiliones, popularly known as harvestmen or daddy long-legs. We begin with a summary of harvestman mating systems, followed by a review of the two lines of evidence for the presence of ARTs in the group: (1) morphological data from natural populations and museum collections; and (2) behavioral information from field studies. Despite receiving less attention than spiders, scorpions and insects, our review shows that harvestmen are an exciting group of organisms that are potentially great models for sexual selection studies focused on ARTs. We also suggest that investigating the proximate mechanisms underlying male dimorphism in the order would be especially important. New research on ARTs and male dimorphism will have implications for our understanding of the evolution of mating systems, sperm competition, and polyandry. This article is part of a Special Issue entitled: Neotropical Behaviour. PMID:24983786

  19. Modeling the Process of Science: Investigating Sexual Dimorphism in Crayfish.

    ERIC Educational Resources Information Center

    Mullen, Dennis M.; Rutledge, Michael L.; Swain, Sarah H.

    2003-01-01

    Describes a scientific investigation of sexual dimorphism with regard to chela size in crayfish in which students utilize the skills, tools, and techniques associated with the formulation and testing of scientific hypotheses. Indicates that students find the investigation effective in aiding their understanding of fundamental aspects of scientific…

  20. Sexual dimorphism in Tripedaliidae (Conant 1897) (Cnidaria, Cubozoa, Carybdeida).

    PubMed

    Straehler-Pohl, Ilka; Garm, Anders; Morandini, André C

    2014-01-01

    The family Tripedaliidae was re-defined and expanded based on a molecular phylogenetic hypothesis by Bentlage et al. (2010, Proceedings of the Royal Society Biological Science, 277: 497). Additionally, Bentlage et al. (2010) proposed that all members of the family Tripedaliidae present dimorphism in gonads and have structures that function as seminal vesicles (at least in males). Until now, no information on Tripedalia binata concerning gonad morphology, sexual dimorphism, spermatophore formation or structures that serve as seminal vesicles or spermathecae were published. We studied mature medusae of both sexes of Tripedalia cystophora, Tripedalia binata and Copula sivickisi in order to compare these structures in their stomach regions. We found sexual dimorphism and spermatophore formation in seminal vesicle-like structures in all three species. In particular, we show that along with the females of Copula sivickisi, the females of Tripedalia cystophora and Tripedalia binata also possess structures that store spermatophores and serve as spermathecae. The results are in agreement with the morphological synapomorphies for Tripedaliidae outlined in Bentlage et al. (2010), but suggest an adjustment of the diagnosis of Tripedaliidae (underlined): All carybdeids that display sexual dimorphism of the gonads, produce spermatophores and in which males and females possess subgastral sacs, pockets or purses which function as seminal vesicles or spermathecae. PMID:24872244

  1. Seasonal dimorphism in the horny bills of sparrows

    EPA Science Inventory

    Bill shape and size are often viewed as species-specific adaptations for feeding, but they sometimes vary between sexes, suggesting that sexual selection or inter-sexual competition may also be important. Hypotheses to explain sexual bill size dimorphism in birds avian bill size...

  2. Heterospecific interactions and the proliferation of sexually dimorphic traits.

    PubMed

    Pfennig, Karin S; Hurlbert, Allen H

    2012-02-01

    Sexual selection is expected to promote speciation by fostering the evolution of sexual traits that minimize reproductive interactions among existing or incipient species. In species that compete for access to, or attention of, females, sexual selection fosters more elaborate traits in males compared to females. If these traits also minimize reproductive interactions with heterospecifics, then species with enhanced risk of interactions between species might display greater numbers of these sexual dimorphic characters. We tested this prediction in eight families of North American birds. In particular, we evaluated whether the number of sexually dimorphic traits was positively associated with species richness at a given site or with degree of sympatry with congeners. We found no strong evidence of enhanced sexual dimorphism with increasing confamilial species richness at a given site. We also found no overall relationship between the number of sexually dimorphic traits and overlap with congeners across these eight families. However, we found patterns consistent with our prediction within Anatidae (ducks, geese and swans) and, to a lesser degree, Parulidae (New World warblers). Our results suggest that sexually selected plumage traits in these groups potentially play a role in reproductive isolation. PMID:24639684

  3. Sexual dimorphism in the white matter of rodents

    PubMed Central

    Cerghet, Mirela; Skoff, Robert P.; Swamydas, Muthulekha; Bessert, Denise

    2009-01-01

    Sexual dimorphism of astrocytes and neurons is well documented in many brain and spinal cord structures. Sexual dimorphism of oligodendrocytes (Olgs) and myelin has received less attention. We recently showed that density of Olgs in corpus callosum, fornix, and spinal cord of wild-type male rodents are more densely packed than in females; myelin proteins and myelin gene expression is likewise greater in males than in female rodents. However, glial cell proliferation and cell death were two times greater in female corpus callosum. Endogenous sex hormones, specifically lack of androgens, produce an Olg female phenotype in castrated male mouse. In vitro studies using Olgs culture also showed differences between males and females Olg survival and signaling pathways in response to sexual hormones. Sexual dimorphism of white matter tracts and glia in rodents indicates the necessity for controlling gender in experimental studies of neurodegenerative disorders. Most importantly, our studies suggest that hormones may contribute to sexual dimorphism observed in certain human diseases including multiple sclerosis. PMID:19625027

  4. Variation of mandibular sexual dimorphism across human facial patterns.

    PubMed

    Alarcón, J A; Bastir, M; Rosas, A

    2016-06-01

    This study analysed how sex-specific features differed in male and female adult mandibles throughout the spectrum of vertical facial patterns (i.e., meso-, dolicho- and brachyfacial) and sagittal variations (the so-called skeletal Classes I, II and III; normal maxillo-mandibular relationship, maxillary prognathism vs. mandibular retrognathism, and maxillary retrognathism vs. mandibular prognathism, respectively). Specifically, we test the hypothesis that sexual dimorphism in the mandible is independent of such facial vertical and sagittal patterns. A sample of 187 European adults (92 males, 95 females; age range, 20-30 years; mean age 25.6 years, sd=4.2 years) from Granada (southern Spain) were randomly selected and grouped according to the standard cephalometric criteria of the sagittal and vertical patterns. Geometric morphometrics were used to analyse the size (centroid size) and shape (principal components analysis, mean shape comparisons) of the mandible. The patterns of sexual dimorphism were evaluated with a generalised linear model with interaction term. We found that sagittal and vertical facial patterns are associated with different mandibular morphologies (size and shape). Also, sexual dimorphism was present in all comparisons. The hypothesis was rejected only for vertical facial patterns. That is, the nature of sexual dimorphism was similar among the skeletal classes but different (e.g., distribution of dimorphic variables, interaction term) in meso-, dolicho-, and brachyfacial mandibles. In conclusion, sex-specific mandibular traits behave in a different way across vertical facial patterns. These results imply that an assessment of the vertical facial pattern of the individual is required before a sexual diagnosis of the mandible is proposed. PMID:26852041

  5. Sexual Size Dimorphism and Body Condition in the Australasian Gannet.

    PubMed

    Angel, Lauren P; Wells, Melanie R; Rodríguez-Malagón, Marlenne A; Tew, Emma; Speakman, John R; Arnould, John P Y

    2015-01-01

    Sexual size dimorphism is widespread throughout seabird taxa and several drivers leading to its evolution have been hypothesised. While the Australasian Gannet (Morus serrator) has previously been considered nominally monomorphic, recent studies have documented sexual segregation in diet and foraging areas, traits often associated with size dimorphism. The present study investigated the sex differences in body mass and structural size of this species at two colonies (Pope's Eye, PE; Point Danger, PD) in northern Bass Strait, south-eastern Australia. Females were found to be 3.1% and 7.3% heavier (2.74 ± 0.03, n = 92; 2.67 ± 0.03 kg, n = 43) than males (2.66 ± 0.03, n = 92; 2.48 ± 0.03 kg, n = 43) at PE and PD, respectively. Females were also larger in wing ulna length (0.8% both colonies) but smaller in bill depth (PE: 2.2%; PD: 1.7%) than males. Despite this dimorphism, a discriminant function provided only mild accuracy in determining sex. A similar degree of dimorphism was also found within breeding pairs, however assortative mating was not apparent at either colony (R2 < 0.04). Using hydrogen isotope dilution, a body condition index was developed from morphometrics to estimate total body fat (TBF) stores, where TBF(%) = 24.43+1.94*(body mass/wing ulna length) - 0.58*tarsus length (r2 = 0.84, n = 15). This index was used to estimate body composition in all sampled individuals. There was no significant difference in TBF(%) between the sexes for any stage of breeding or in any year of the study at either colony suggesting that, despite a greater body mass, females were not in a better condition than males. While the driving mechanism for sexual dimorphism in this species is currently unknown, studies of other Sulids indicate segregation in foraging behaviour, habitat and diet may be a contributing factor. PMID:26637116

  6. Extradenticle and homothorax control adult muscle fiber identity in Drosophila.

    PubMed

    Bryantsev, Anton L; Duong, Sandy; Brunetti, Tonya M; Chechenova, Maria B; Lovato, TyAnna L; Nelson, Cloyce; Shaw, Elizabeth; Uhl, Juli D; Gebelein, Brian; Cripps, Richard M

    2012-09-11

    Here we identify a key role for the homeodomain proteins Extradenticle (Exd) and Homothorax (Hth) in the specification of muscle fiber fate in Drosophila. exd and hth are expressed in the fibrillar indirect flight muscles but not in tubular jump muscles, and manipulating exd or hth expression converts one muscle type into the other. In the flight muscles, exd and hth are genetically upstream of another muscle identity gene, salm, and are direct transcriptional regulators of the signature flight muscle structural gene, Actin88F. Exd and Hth also impact muscle identity in other somatic muscles of the body by cooperating with Hox factors. Because mammalian orthologs of exd and hth also contribute to muscle gene regulation, our studies suggest that an evolutionarily conserved genetic pathway determines muscle fiber differentiation. PMID:22975331

  7. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy. Disuse atrophy occurs from a lack of physical activity. In most people, muscle atrophy is caused by not using the ...

  8. Muscle Disorders

    MedlinePlus

    Your muscles help you move and help your body work. Different types of muscles have different jobs. There are many problems that can affect muscles. Muscle disorders can cause weakness, pain or even ...

  9. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy: disuse and neurogenic. Disuse atrophy is caused by not using the muscles enough . This type of atrophy can often be ...

  10. Muscle Cramps

    MedlinePlus

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur after exercise or at night, ... to several minutes. It is a very common muscle problem. Muscle cramps can be caused by nerves ...

  11. Determination of aminoglycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass spectrometry.

    PubMed

    Arsand, Juliana Bazzan; Jank, Louíse; Martins, Magda Targa; Hoff, Rodrigo Barcellos; Barreto, Fabiano; Pizzolato, Tânia Mara; Sirtori, Carla

    2016-07-01

    Antibiotics are widely used in veterinary medicine mainly for treatment and prevention of diseases. The aminoglycosides are one of the antibiotics classes that have been extensively employed in animal husbandry for the treatment of bacterial infections, but also as growth promotion. The European Union has issued strict Maximum Residue Levels (MRLs) for aminoglycosides in several animal origin products including bovine milk, bovine, swine and poultry muscle. This paper describes a fast and simple analytical method for the determination of ten aminoglycosides (spectinomycin, tobramycin, gentamicin, kanamycin, hygromycin, apramycin, streptomycin, dihydrostreptomycin, amikacin and neomycin) in bovine milk and bovine, swine and poultry muscle. For sample preparation, an extraction method was developed using trichloroacetic acid and clean up with low temperature precipitation and C18 bulk. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to carry out quantitative analysis and liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-QTOF-MS) was used to screening purposes. Both methods were validated according to the European Union Commission Directive 2002/657/EC. Good performance characteristics were obtained for recovery, precision, calibration curve, specificity, decision limits (CCα) and detection capabilities (CCβ) in all matrices evaluated. The detection limit (LOD) and quantification limit (LOQ) were ranging from 5 to 100ngg(-1) and 12.5 to 250ngg(-1), respectively. Good linearity (r)-above 0.99-was achieved in concentrations ranging from 0.0 to 2.0×MRL. Recoveries ranged from 36.8% to 98.0% and the coefficient of variation from 0.9 to 20.2%, noting that all curves have been made into their own matrices in order to minimize the matrix effects. The CCβ values obtained in qualitative method were between 25 and 250ngg(-1). The proposed method showed to be simple, easy, and adequate for high-throughput analysis of a large

  12. Human preferences for sexually dimorphic faces may be evolutionarily novel.

    PubMed

    Scott, Isabel M; Clark, Andrew P; Josephson, Steven C; Boyette, Adam H; Cuthill, Innes C; Fried, Ruby L; Gibson, Mhairi A; Hewlett, Barry S; Jamieson, Mark; Jankowiak, William; Honey, P Lynne; Huang, Zejun; Liebert, Melissa A; Purzycki, Benjamin G; Shaver, John H; Snodgrass, J Josh; Sosis, Richard; Sugiyama, Lawrence S; Swami, Viren; Yu, Douglas W; Zhao, Yangke; Penton-Voak, Ian S

    2014-10-01

    A large literature proposes that preferences for exaggerated sex typicality in human faces (masculinity/femininity) reflect a long evolutionary history of sexual and social selection. This proposal implies that dimorphism was important to judgments of attractiveness and personality in ancestral environments. It is difficult to evaluate, however, because most available data come from large-scale, industrialized, urban populations. Here, we report the results for 12 populations with very diverse levels of economic development. Surprisingly, preferences for exaggerated sex-specific traits are only found in the novel, highly developed environments. Similarly, perceptions that masculine males look aggressive increase strongly with development and, specifically, urbanization. These data challenge the hypothesis that facial dimorphism was an important ancestral signal of heritable mate value. One possibility is that highly developed environments provide novel opportunities to discern relationships between facial traits and behavior by exposing individuals to large numbers of unfamiliar faces, revealing patterns too subtle to detect with smaller samples. PMID:25246593

  13. Human preferences for sexually dimorphic faces may be evolutionarily novel

    PubMed Central

    Scott, Isabel M.; Clark, Andrew P.; Josephson, Steven C.; Boyette, Adam H.; Cuthill, Innes C.; Fried, Ruby L.; Gibson, Mhairi A.; Hewlett, Barry S.; Jamieson, Mark; Jankowiak, William; Honey, P. Lynne; Huang, Zejun; Liebert, Melissa A.; Purzycki, Benjamin G.; Shaver, John H.; Snodgrass, J. Josh; Sosis, Richard; Sugiyama, Lawrence S.; Swami, Viren; Yu, Douglas W.; Zhao, Yangke; Penton-Voak, Ian S.

    2014-01-01

    A large literature proposes that preferences for exaggerated sex typicality in human faces (masculinity/femininity) reflect a long evolutionary history of sexual and social selection. This proposal implies that dimorphism was important to judgments of attractiveness and personality in ancestral environments. It is difficult to evaluate, however, because most available data come from large-scale, industrialized, urban populations. Here, we report the results for 12 populations with very diverse levels of economic development. Surprisingly, preferences for exaggerated sex-specific traits are only found in the novel, highly developed environments. Similarly, perceptions that masculine males look aggressive increase strongly with development and, specifically, urbanization. These data challenge the hypothesis that facial dimorphism was an important ancestral signal of heritable mate value. One possibility is that highly developed environments provide novel opportunities to discern relationships between facial traits and behavior by exposing individuals to large numbers of unfamiliar faces, revealing patterns too subtle to detect with smaller samples. PMID:25246593

  14. Measuring sexual dimorphism with a race-gender face space.

    PubMed

    Hopper, William J; Finklea, Kristin M; Winkielman, Piotr; Huber, David E

    2014-10-01

    Faces are complex visual objects, and faces chosen to vary in 1 regard may unintentionally vary in other ways, particularly if the correlation is a property of the population of faces. Here, we present an example of a correlation that arises from differences in the degree of sexual dimorphism. In Experiment 1, paired similarity ratings were collected for a set of 40 real face images chosen to vary in terms of gender and race (Asian vs. White). Multidimensional scaling (MDS) placed these stimuli in a "face space," with different attributes corresponding to different dimensions. Gender was found to vary more for White faces, resulting in a negative or positive correlation between gender and race when only considering male or only considering female faces. This increased sexual dimorphism for White faces may provide an alternative explanation for differences in face processing between White and Asian faces (e.g., the own-race bias, face attractiveness biases, etc.). Studies of face processing that are unconfounded by this difference in the degree of sexual dimorphism require stimuli that are decorrelated in terms of race and gender. Decorrelated faces were created using a morphing technique, spacing the morphs uniformly around a ring in the 2-dimensional (2D) race-gender plane. In Experiment 2, paired similarity ratings confirmed the 2D positions of the morph faces. In Experiment 3, race and gender category judgments varied uniformly for these decorrelated stimuli. Our results and stimuli should prove useful for studying sexual dimorphism and for the study of face processing more generally. PMID:25151105

  15. Sexual dimorphism in tooth morphometrics: An evaluation of the parameters

    PubMed Central

    Banerjee, Abhishek; Kamath, Venkatesh V.; Satelur, Krishnanand; Rajkumar, Komali; Sundaram, Lavanya

    2016-01-01

    Aims and Objectives: Sexual dimorphism refers to the variations in tooth size and shape between the sexes. The consistency of these variations is valuable in the identification of the sex of an individual in times of mass disaster when whole body parts get destroyed or are unavailable. There exist differences in the expression of these variables across races and regions. This study aims to tabulate and identify the variations in tooth measurements using standarized reference points in an attempt to establish parameters of sexual dimorphism. Materials and Methods: 100 individuals (50 of each sex) in the age group 19-23 years were assessed for standard morphometric parameters of the maxillary central incisor, canine, premolar and molar. Odontometric measurements of established parameters were recorded from impression casts of the maxillary jaws. The mesiodistal width (MDW), the bucco-ligual width (BLW), the crown length (CL) and the cervical angle (CA) were charted among the teeth. The consistency of the variations was statistically analyzed and a logistic regression table was prepared to identify the sex of the individual from the tooth measurements. Results and Conclusions: The BLW, MDW and CL reflected significant variations among all the teeth to be effective in establishing sexual dimorphism. CA as a parameter was inadequate across all the teeth. The permanent maxillary canine was the most important tooth to be reflective of the gender and statistically significant to be utilized for gender determination. PMID:27051219

  16. Sexual dimorphism in a trophically polymorphic cichlid fish?

    PubMed

    Hulsey, Christopher Darrin; García-De León, Francisco J; Meyer, Axel

    2015-12-01

    Sexual dimorphism in ecologically relevant traits is ubiquitous in animals. However, other types of intraspecific phenotypic divergence, such as trophic polymorphism, are less common. Because linkage to sex should often lead to balancing selection, understanding the association between sex and phenotypic divergence could help explain why particular species show high morphological variability. To determine if sexual dimorphism could be helping to maintain ecomorphological variation in a classic case of intraspecific trophic polymorphism, we examined the association between sex and morphological divergence in the cichlid Herichthys minckleyi. Although H. minckleyi with enlarged molariform teeth on their pharyngeal jaws have been reported to more commonly be male, we did not find an association between sex and pharyngeal morphotype. Sex was associated with divergence in body size (as measured through standard length). But, sex was not associated with any of the other trophic traits examined. However, pharyngeal morphotype did show an association with gut length, gape, and tooth number. Sexual dimorphism is not playing a central role in enhancing trophic diversity within H. minckleyi. PMID:26289966

  17. Plasmodium falciparum Merozoite Surface Protein 6 Is a Dimorphic Antigen

    PubMed Central

    Pearce, J. Andrew; Triglia, Tony; Hodder, Anthony N.; Jackson, David C.; Cowman, Alan F.; Anders, Robin F.

    2004-01-01

    Merozoite surface protein 1 (MSP1) is a highly polymorphic Plasmodium falciparum merozoite surface protein implicated in the invasion of human erythrocytes during the asexual cycle. It forms a complex with MSP6 and MSP7 on the merozoite surface, and this complex is released from the parasite around the time of erythrocyte invasion. MSP1 and many other merozoite surface proteins contain dimorphic elements in their protein structures, and here we show that MSP6 is also dimorphic. The sequences of eight MSP6 genes indicate that the alleles of each dimorphic form of MSP6 are highly conserved. The smaller 3D7-type MSP6 alleles are detected in parasites from all malarious regions of the world, whereas K1-type MSP6 alleles have only been detected in parasites from mainland Southeast Asia. Cleavage of MSP6, which produces the p36 fragment in 3D7-type MSP6 and associates with MSP1, also occurs in K1-type MSP6 but at a different site in the protein. Anti-3D7 MSP6 antibodies weakly inhibited erythrocyte invasion by homologous 3D7 merozoites but did not inhibit a parasite line expressing the K1-type MSP6 allele. Antibodies from hyperimmune individuals affinity purified on an MSP3 peptide cross-reacted with MSP6; therefore, MSP6 may also be a target of antibody-dependent cellular inhibition. PMID:15039357

  18. Retinol and Retinyl Palmitate in Foetal Lung Mice: Sexual Dimorphism

    PubMed Central

    Carvalho, Olga; Gonçalves, Carlos

    2013-01-01

    In this work, we evaluate the lung retinoids content to study the possible difference between male and female mice during prenatal development and to comprehend if the vitamin A metabolism is similar in both genders. The study occurred between developmental days E15 and E19, and the retinol and retinyl palmitate lung contents were determined by HPLC analysis. We established two main groups: the control, consisting of foetuses obtained from pregnant females without any manipulation, and vitamin A, composed of foetuses from pregnant females submitted to vitamin A administration on developmental day E14. Each of these groups was subdivided by gender, establishing the four final groups. In the lung of control group, retinol was undetected in both genders and retinyl palmitate levels exhibited a sexual dimorphism. In the vitamin A group, we detected retinol and retinyl palmitate in both genders, and we observed a more evident sexual dimorphism for both retinoids. Our study also indicates that, from developmental day E15 to E19, there is an increase in the retinoids content in foetal lung and a gender difference in the retinoids metabolism. In conclusion, there is a sexual dimorphism in the lung retinoids content and in its metabolism during mice development. PMID:23365730

  19. Sexual dimorphism in the feeding mechanism of threespine stickleback.

    PubMed

    McGee, Matthew D; Wainwright, Peter C

    2013-03-01

    Sexual dimorphism is common in nature and has the potential to increase intraspecific variation in performance and patterns of resource use. We sought to determine whether anadromous threespine stickleback, Gasterosteus aculeatus, exhibit sexual dimorphism in feeding kinematics. We filmed four males and four females consuming live prey in a total of 51 sequences filmed at 500 Hz, then tested for differences in cranial kinematics using a combination of principal component analysis and linear mixed models. We document, for the first time in fishes, divergence between males and females in both the timing of key movements and the magnitude of excursions reached by the hyoid, jaws and neurocranium during prey capture. Some of the largest differences are in jaw protrusion, with males exhibiting faster time to peak jaw protrusion but females exhibiting greater maximum jaw protrusion. Measurements of morphological jaw protrusion on cleared and stained specimens significantly predict jaw protrusion in kinematics. This morphological divergence could reflect ecological divergence between the sexes, or the demands of nest building and territory defense compromising male feeding performance. Remarkably, the morphological jaw protrusion divergence in anadromous males and females is similar to jaw protrusion divergence between ecomorphs in a benthic-limnetic species pair, with limnetics exhibiting female-like patterns of protrusion and benthics exhibiting male-like patterns. These results suggest that sexual dimorphism in feeding functional morphology exists in nature and may have played an important role in the radiation of threespine stickleback. PMID:23408802

  20. Skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  1. Sexual Size Dimorphism and Body Condition in the Australasian Gannet

    PubMed Central

    Angel, Lauren P.; Wells, Melanie R.; Rodríguez-Malagón, Marlenne A.; Tew, Emma; Speakman, John R.; Arnould, John P. Y.

    2015-01-01

    Sexual size dimorphism is widespread throughout seabird taxa and several drivers leading to its evolution have been hypothesised. While the Australasian Gannet (Morus serrator) has previously been considered nominally monomorphic, recent studies have documented sexual segregation in diet and foraging areas, traits often associated with size dimorphism. The present study investigated the sex differences in body mass and structural size of this species at two colonies (Pope’s Eye, PE; Point Danger, PD) in northern Bass Strait, south-eastern Australia. Females were found to be 3.1% and 7.3% heavier (2.74 ± 0.03, n = 92; 2.67 ± 0.03 kg, n = 43) than males (2.66 ± 0.03, n = 92; 2.48 ± 0.03 kg, n = 43) at PE and PD, respectively. Females were also larger in wing ulna length (0.8% both colonies) but smaller in bill depth (PE: 2.2%; PD: 1.7%) than males. Despite this dimorphism, a discriminant function provided only mild accuracy in determining sex. A similar degree of dimorphism was also found within breeding pairs, however assortative mating was not apparent at either colony (R2 < 0.04). Using hydrogen isotope dilution, a body condition index was developed from morphometrics to estimate total body fat (TBF) stores, where TBF(%) = 24.43+1.94*(body mass/wing ulna length) – 0.58*tarsus length (r2 = 0.84, n = 15). This index was used to estimate body composition in all sampled individuals. There was no significant difference in TBF(%) between the sexes for any stage of breeding or in any year of the study at either colony suggesting that, despite a greater body mass, females were not in a better condition than males. While the driving mechanism for sexual dimorphism in this species is currently unknown, studies of other Sulids indicate segregation in foraging behaviour, habitat and diet may be a contributing factor. PMID:26637116

  2. Lessons from dragonfly flight

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane

    2005-11-01

    I will describe two lessons we learned from analyzing dragonfly flight using computers and table-top experiments. Part I: The role of drag in insect flight. Airplanes and helicopters are airborne via aerodynamic lift, not drag. However, it is not a priori clear that insects use only lift to fly. We find that dragonfly uses mainly drag to hover, which explains an anomalous factor of four in previous estimates of dragonfly lift coefficients, where drag was assumed to be negligible. Moreover, we show that the use of drag for flight is efficient at insect size. This suggests a re-consideration of the hovering efficiency of flapping flight, which is no longer described by the lift to drag ratio. Part II. Fore-hind wing interaction in dragonfly flight. A distinctive feature of dragonflies is their use of two pairs of wings which are driven by separate direct muscles. Dragonflies can actively modulate the phase delay between fore-hind wings during different maneuver. We compute the Navier-Stokes equation around two wings following the motion measured from our tethered dragonfly experiments, and find an explanation of the advantage of counter-stroking during hovering.

  3. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  4. Muscle aches

    MedlinePlus

    ... common cause of muscle aches and pain is fibromyalgia , a condition that causes tenderness in your muscles ... imbalance, such as too little potassium or calcium Fibromyalgia Infections, including the flu, Lyme disease , malaria , muscle ...

  5. Muscle disorder

    MedlinePlus

    Myopathic changes; Myopathy; Muscle problem ... Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs ...

  6. Muscle disorder

    MedlinePlus

    Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs of a muscle disorder, tests such as an electromyogram , ...

  7. Sexually Monomorphic Maps and Dimorphic Responses in Rat Genital Cortex.

    PubMed

    Lenschow, Constanze; Copley, Sean; Gardiner, Jayne M; Talbot, Zoe N; Vitenzon, Ariel; Brecht, Michael

    2016-01-11

    Mammalian external genitals show sexual dimorphism [1, 2] and can change size and shape upon sexual arousal. Genitals feature prominently in the oldest pieces of figural art [3] and phallic depictions of penises informed psychoanalytic thought about sexuality [4, 5]. Despite this longstanding interest, the neural representations of genitals are still poorly understood [6]. In somatosensory cortex specifically, many studies did not detect any cortical representation of genitals [7-9]. Studies in humans debate whether genitals are represented displaced below the foot of the cortical body map [10-12] or whether they are represented somatotopically [13-15]. We wondered what a high-resolution mapping of genital representations might tell us about the sexual differentiation of the mammalian brain. We identified genital responses in rat somatosensory cortex in a region previously assigned as arm/leg cortex. Genital responses were more common in males than in females. Despite such response dimorphism, we observed a stunning anatomical monomorphism of cortical penis and clitoris input maps revealed by cytochrome-oxidase-staining of cortical layer 4. Genital representations were somatotopic and bilaterally symmetric, and their relative size increased markedly during puberty. Size, shape, and erect posture give the cortical penis representation a phallic appearance pointing to a role in sexually aroused states. Cortical genital neurons showed unusual multi-body-part responses and sexually dimorphic receptive fields. Specifically, genital neurons were co-activated by distant body regions, which are touched during mounting in the respective sex. Genital maps indicate a deep homology of penis and clitoris representations in line with a fundamentally bi-sexual layout [16] of the vertebrate brain. PMID:26725197

  8. Early constraints in sexual dimorphism: survival benefits of feminized phenotypes.

    PubMed

    López-Rull, I; Vergara, P; Martínez-Padilla, J; Fargallo, J A

    2016-02-01

    Sexual dimorphism (SD) has evolved in response to selection pressures that differ between sexes. Since such pressures change across an individual's life, SD may vary within age classes. Yet, little is known about how selection on early phenotypes may drive the final SD observed in adults. In many dimorphic species, juveniles resemble adult females rather than adult males, meaning that out of the selective pressures established by sexual selection feminized phenotypes may be adaptive. If true, fitness benefits of early female-like phenotypes may constrain the expression of male phenotypes in adulthood. Using the common kestrel Falco tinnunculus as a study model, we evaluated the fitness advantages of expressing more feminized phenotypes at youth. Although more similar to adult females than to adult males, common kestrel fledglings are still sexually dimorphic in size and coloration. Integrating morphological and chromatic variables, we analysed the phenotypic divergence between sexes as a measure of how much each individual looks like the sex to which it belongs (phenotypic sexual resemblance, PSR). We then tested the fitness benefits associated with PSR by means of the probability of recruitment in the population. We found a significant interaction between PSR and sex, showing that in both sexes more feminized phenotypes recruited more into the population than less feminized phenotypes. Moreover, males showed lower PSR than females and a higher proportion of incorrect sex classifications. These findings suggest that the mechanisms in males devoted to resembling female phenotypes in youth, due to a trend to increase fitness through more feminized phenotypes, may provide a mechanism to constrain the SD in adulthood. PMID:26494322

  9. Sexual dimorphism of canine volume: a pilot study.

    PubMed

    De Angelis, Danilo; Gibelli, Daniele; Gaudio, Daniel; Cipriani Noce, Filippo; Guercini, Nicola; Varvara, Giuseppe; Sguazza, Emanuela; Sforza, Chiarella; Cattaneo, Cristina

    2015-05-01

    Sex assessment is a crucial part of the biological profile in forensic and archaeological context, but it can be hardly performed in cases of commingled and charred human remains where DNA tests often are not applicable. With time literature have analyzed the sexual dimorphism of teeth (and especially canines), but very few articles take into consideration the teeth volume, although with time several technologies have been introduced in order to assess 3D volume (CT-scan, laser scanner, etc.). This study aims at assessing the sexual dimorphism of dental and pulp chamber volumes of a sample of canines. Cone beam computed tomography analyses were performed by 87 patients (41 males and 46 females, aged between 15 and 83 years) for clinical purposes, and were acquired in order to measure canine volumes. Results show that the dental volume amounted to 0.745 cm(3) (SD 0.126 cm(3)) in males, 0.551 cm(3) (SD 0.130 cm(3)) with a statistically significant difference (p<0.01). A diagnostic threshold of 0.619 cm(3) was stated, which provides a percentage of correct answer of 80.5% in the chosen sample. The novel method was then applied with success to 7 archaeological: where in all the cases the results were concordant with those provided by the assessment of the cranium and pelvis. The study adds a contribution to the wide analysis of dental sexual dimorphism confirming the statistically significant differences of volume between males and females and providing a method for the diagnosis of sex applicable to forensic cases. PMID:25556039

  10. Between-sex genetic covariance constrains the evolution of sexual dimorphism in Drosophila melanogaster.

    PubMed

    Ingleby, F C; Innocenti, P; Rundle, H D; Morrow, E H

    2014-08-01

    Males and females share much of their genome, and as a result, intralocus sexual conflict is generated when selection on a shared trait differs between the sexes. This conflict can be partially or entirely resolved via the evolution of sex-specific genetic variation that allows each sex to approach, or possibly achieve, its optimum phenotype, thereby generating sexual dimorphism. However, shared genetic variation between the sexes can impose constraints on the independent expression of a shared trait in males and females, hindering the evolution of sexual dimorphism. Here, we examine genetic constraints on the evolution of sexual dimorphism in Drosophila melanogaster cuticular hydrocarbon (CHC) expression. We use the extended G matrix, which includes the between-sex genetic covariances that constitute the B matrix, to compare genetic constraints on two sets of CHC traits that differ in the extent of their sexual dimorphism. We find significant genetic constraints on the evolution of further dimorphism in the least dimorphic traits, but no such constraints for the most dimorphic traits. We also show that the genetic constraints on the least dimorphic CHCs are asymmetrical between the sexes. Our results suggest that there is evidence both for resolved and ongoing sexual conflict in D. melanogaster CHC profiles. PMID:24893565

  11. Isolation of UmRrm75, a gene involved in dimorphism and virulence of Ustilago maydis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ustilago maydis displays dimorphic growth, alternating between a saprophytic haploid yeast form and a filamentous dikaryon, generated by mating of haploid cells and which is an obligate parasite. Induction of the dimorphic transition of haploid strains in vitro by change in ambient pH has been used...

  12. Masculinization of Gene Expression Is Associated with Exaggeration of Male Sexual Dimorphism

    PubMed Central

    Pointer, Marie A.; Harrison, Peter W.; Wright, Alison E.; Mank, Judith E.

    2013-01-01

    Gene expression differences between the sexes account for the majority of sexually dimorphic phenotypes, and the study of sex-biased gene expression is important for understanding the genetic basis of complex sexual dimorphisms. However, it has been difficult to test the nature of this relationship due to the fact that sexual dimorphism has traditionally been conceptualized as a dichotomy between males and females, rather than an axis with individuals distributed at intermediate points. The wild turkey (Meleagris gallopavo) exhibits just this sort of continuum, with dominant and subordinate males forming a gradient in male secondary sexual characteristics. This makes it possible for the first time to test the correlation between sex-biased gene expression and sexually dimorphic phenotypes, a relationship crucial to molecular studies of sexual selection and sexual conflict. Here, we show that subordinate male transcriptomes show striking multiple concordances with their relative phenotypic sexual dimorphism. Subordinate males were clearly male rather than intersex, and when compared to dominant males, their transcriptomes were simultaneously demasculinized for male-biased genes and feminized for female-biased genes across the majority of the transcriptome. These results provide the first evidence linking sexually dimorphic transcription and sexually dimorphic phenotypes. More importantly, they indicate that evolutionary changes in sexual dimorphism can be achieved by varying the magnitude of sex-bias in expression across a large proportion of the coding content of a genome. PMID:23966876

  13. Aspects of the development of flight-muscle sarcosomes in the sheep blowfly, Lucilia cuprina, in relation to changes in the distribution of protein and some respiratory enzymes during metamorphosis

    PubMed Central

    Lennie, R. W.; Birt, L. M.

    1967-01-01

    1. Changes in the amounts and distribution of protein and respiratory enzymes have been estimated during the life cycle of the fly Lucilia cuprina. 2. The fully fed larva contains about 7mg. of protein, the pupa and newly emerged fly about 4mg., and the mature adult about 3mg. 3. There are two periods of incorporation of protein into particles at the expense of the soluble protein; the first, immediately after pupation, may store protein (0·5mg./insect) for use in adult development; the second, over the period of emergence, was due mainly to the development of the thoracic mitochondria of the adult (0·7mg./insect). 4. In the thorax, cytochrome c oxidase and the dehydrogenases for glycerophosphate, isocitrate (NAD-dependent), succinate and malate appeared initially in small particles (less than 1μ in diameter). 5. In adult development these enzymes were redistributed so that in the mature fly most of the activity was present in larger particles (1–10μ in diameter). 6. During this redistribution the specific activity (μl. of oxygen/hr./mg. of protein) of glycerophosphate dehydrogenase in the small particles was 690 at 1½ days before emergence, 955 at emergence and 980 at 7 days after emergence; the corresponding values for the large particles were 164, 760 and 1220. 7. In the mature fly the highest specific activities (μl. of oxygen/hr./mg. of protein) estimated were: glycerophosphate dehydrogenase 1380, isocitrate dehydrogenase (NAD-dependent and requiring ADP and Mg2+) 408, succinate dehydrogenase 122, malate dehydrogenase 190, and cytochrome c oxidase 1360. 8. The results are considered in relation to the development of the flight-muscle sarcosomes. PMID:4291561

  14. Control-oriented reduced order modeling of dipteran flapping flight

    NASA Astrophysics Data System (ADS)

    Faruque, Imraan

    Flying insects achieve flight stabilization and control in a manner that requires only small, specialized neural structures to perform the essential components of sensing and feedback, achieving unparalleled levels of robust aerobatic flight on limited computational resources. An engineering mechanism to replicate these control strategies could provide a dramatic increase in the mobility of small scale aerial robotics, but a formal investigation has not yet yielded tools that both quantitatively and intuitively explain flapping wing flight as an "input-output" relationship. This work uses experimental and simulated measurements of insect flight to create reduced order flight dynamics models. The framework presented here creates models that are relevant for the study of control properties. The work begins with automated measurement of insect wing motions in free flight, which are then used to calculate flight forces via an empirically-derived aerodynamics model. When paired with rigid body dynamics and experimentally measured state feedback, both the bare airframe and closed loop systems may be analyzed using frequency domain system identification. Flight dynamics models describing maneuvering about hover and cruise conditions are presented for example fruit flies (Drosophila melanogaster) and blowflies (Calliphorids). The results show that biologically measured feedback paths are appropriate for flight stabilization and sexual dimorphism is only a minor factor in flight dynamics. A method of ranking kinematic control inputs to maximize maneuverability is also presented, showing that the volume of reachable configurations in state space can be dramatically increased due to appropriate choice of kinematic inputs.

  15. The Sexual Dimorphism of Lipid Kinetics in Humans

    PubMed Central

    Santosa, Sylvia; Jensen, Michael D.

    2015-01-01

    In addition to the obvious differences in body shape, there are substantial differences in lipid metabolism between men and women. These differences include how dietary fatty acids are handled, the secretion and clearance of very low-density lipoprotein-triglycerides, the release rates of free fatty acids (FFA) from adipose tissue relative to energy needs, and the removal of FFA from the circulation, including the storage of FFA into adipose tissue via the direct uptake process. We will review what is known about these processes and how they may contribute to the sexual dimorphism of body fat distribution. PMID:26191040

  16. Linear versus geometric morphometric approaches for the analysis of head shape dimorphism in lizards.

    PubMed

    Fabre, Anne-Claire; Cornette, Raphäel; Huyghe, Katleen; Andrade, Denis V; Herrel, Anthony

    2014-09-01

    Differences between the sexes may arise because of differences in reproductive strategy, with females investing more in traits related to reproductive output and males investing more in traits related to resource holding capacity and territory defence. Sexual dimorphism is widespread in lizards and in many species males and females also differ in head shape. Males typically have bigger heads than females resulting in intersexual differences in bite force. Whereas most studies documenting differences in head dimensions between sexes use linear dimensions, the use of geometric morphometrics has been advocated as more appropriate to characterize such differences. This method may allow the characterization of local shape differences that may have functional consequences, and provides unbiased indicators of shape. Here, we explore whether the two approaches provide similar results in an analyses of head shape in Tupinambis merianae. The Argentine black and white tegu differs dramatically in body size, head size, and bite force between the sexes. However, whether the intersexual differences in bite force are simply the result of differences in head size or whether more subtle modifications (e.g., in muscle insertion areas) are involved remains currently unknown. Based on the crania and mandibles of 19 lizards with known bite force, we show intersexual differences in the shape of the cranium and mandible using both linear and geometric morphometric approaches. Although both types of analyses showed generally similar results for the mandible, this was not the case for the cranium. Geometric morphometric approaches provided better insights into the underlying functional relationships between the cranium and the jaw musculature, as illustrated by shape differences in muscle insertion areas not detected using linear morphometric data. PMID:24740578

  17. Ancient balancing selection at tan underlies female colour dimorphism in Drosophila erecta

    PubMed Central

    Yassin, Amir; Bastide, Héloïse; Chung, Henry; Veuille, Michel; David, Jean R.; Pool, John E.

    2016-01-01

    Dimorphic traits are ubiquitous in nature, but the evolutionary factors leading to dimorphism are largely unclear. We investigate a potential case of sexual mimicry in Drosophila erecta, in which females show contrasting resemblance to males. We map the genetic basis of this sex-limited colour dimorphism to a region containing the gene tan. We find a striking signal of ancient balancing selection at the ‘male-specific enhancer' of tan, with exceptionally high sequence divergence between light and dark alleles, suggesting that this dimorphism has been adaptively maintained for millions of years. Using transgenic reporter assays, we confirm that these enhancer alleles encode expression differences that are predicted to generate this pigmentation dimorphism. These results are compatible with the theoretical prediction that divergent phenotypes maintained by selection can evolve simple genetic architectures. PMID:26778363

  18. Sexual Dimorphism Analysis and Gender Classification in 3D Human Face

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Lu, Li; Yan, Jingqi; Liu, Zhi; Shi, Pengfei

    In this paper, we present the sexual dimorphism analysis in 3D human face and perform gender classification based on the result of sexual dimorphism analysis. Four types of features are extracted from a 3D human-face image. By using statistical methods, the existence of sexual dimorphism is demonstrated in 3D human face based on these features. The contributions of each feature to sexual dimorphism are quantified according to a novel criterion. The best gender classification rate is 94% by using SVMs and Matcher Weighting fusion method.This research adds to the knowledge of 3D faces in sexual dimorphism and affords a foundation that could be used to distinguish between male and female in 3D faces.

  19. Ancient balancing selection at tan underlies female colour dimorphism in Drosophila erecta.

    PubMed

    Yassin, Amir; Bastide, Héloïse; Chung, Henry; Veuille, Michel; David, Jean R; Pool, John E

    2016-01-01

    Dimorphic traits are ubiquitous in nature, but the evolutionary factors leading to dimorphism are largely unclear. We investigate a potential case of sexual mimicry in Drosophila erecta, in which females show contrasting resemblance to males. We map the genetic basis of this sex-limited colour dimorphism to a region containing the gene tan. We find a striking signal of ancient balancing selection at the 'male-specific enhancer' of tan, with exceptionally high sequence divergence between light and dark alleles, suggesting that this dimorphism has been adaptively maintained for millions of years. Using transgenic reporter assays, we confirm that these enhancer alleles encode expression differences that are predicted to generate this pigmentation dimorphism. These results are compatible with the theoretical prediction that divergent phenotypes maintained by selection can evolve simple genetic architectures. PMID:26778363

  20. Variation in Craniomandibular Morphology and Sexual Dimorphism in Pantherines and the Sabercat Smilodon fatalis

    PubMed Central

    Christiansen, Per; Harris, John M.

    2012-01-01

    Sexual dimorphism is widespread among carnivorans, and has been an important evolutionary factor in social ecology. However, its presence in sabertoothed felids remains contentious. Here we present a comprehensive analysis of extant Panthera and the sabertoothed felid Smilodon fatalis. S. fatalis has been reported to show little or no sexual dimorphism but to have been intraspecifically variable in skull morphology. We found that large and small specimens of S. fatalis could be assigned to male and female sexes with similar degrees of confidence as Panthera based on craniomandibular shape. P. uncia is much less craniomandibularly variable and has low levels of sexual size-dimorphism. Shape variation in S. fatalis probably reflects sexual differences. Craniomandibular size-dimorphism is lower in S. fatalis than in Panthera except P. uncia. Sexual dimorphism in felids is related to more than overall size, and S. fatalis and the four large Panthera species show marked and similar craniomandibular and dental morphometric sexual dimorphism, whereas morphometric dimorphism in P. uncia is less. Many morphometric-sexually dimorphic characters in Panthera and Smilodon are related to bite strength and presumably to killing ecology. This suggests that morphometric sexual dimorphism is an evolutionary adaptation to intraspecific resource partitioning, since large males with thicker upper canines and stronger bite forces would be able to hunt larger prey than females, which is corroborated by feeding ecology in P. leo. Sexual dimorphism indicates that S. fatalis could have been social, but it is unlikely that it lived in fusion-fission units dominated by one or a few males, as in sub-Saharan populations of P. leo. Instead, S. fatalis could have been solitary and polygynous, as most extant felids, or it may have lived in unisexual groups, as is common in P. leo persica. PMID:23110232

  1. The Ontogeny of Sexual Size Dimorphism of a Moth: When Do Males and Females Grow Apart?

    PubMed Central

    Stillwell, R. Craig; Daws, Andrew; Davidowitz, Goggy

    2014-01-01

    Sexual dimorphism in body size (sexual size dimorphism) is common in many species. The sources of selection that generate the independent evolution of adult male and female size have been investigated extensively by evolutionary biologists, but how and when females and males grow apart during ontogeny is poorly understood. Here we use the hawkmoth, Manduca sexta, to examine when sexual size dimorphism arises by measuring body mass every day during development. We further investigated whether environmental variables influence the ontogeny of sexual size dimorphism by raising moths on three different diet qualities (poor, medium and high). We found that size dimorphism arose during early larval development on the highest quality food treatment but it arose late in larval development when raised on the medium quality food. This female-biased dimorphism (females larger) increased substantially from the pupal-to-adult stage in both treatments, a pattern that appears to be common in Lepidopterans. Although dimorphism appeared in a few stages when individuals were raised on the poorest quality diet, it did not persist such that male and female adults were the same size. This demonstrates that the environmental conditions that insects are raised in can affect the growth trajectories of males and females differently and thus when dimorphism arises or disappears during development. We conclude that the development of sexual size dimorphism in M. sexta occurs during larval development and continues to accumulate during the pupal/adult stages, and that environmental variables such as diet quality can influence patterns of dimorphism in adults. PMID:25184664

  2. Species-specific loss of sexual dimorphism in vocal effectors accompanies vocal simplification in African clawed frogs (Xenopus)

    PubMed Central

    Leininger, Elizabeth C.; Kitayama, Ken; Kelley, Darcy B.

    2015-01-01

    ABSTRACT Phylogenetic studies can reveal patterns of evolutionary change, including the gain or loss of elaborate courtship traits in males. Male African clawed frogs generally produce complex and rapid courtship vocalizations, whereas female calls are simple and slow. In a few species, however, male vocalizations are also simple and slow, suggesting loss of male-typical traits. Here, we explore features of the male vocal organ that could contribute to loss in two species with simple, slow male calls. In Xenopus boumbaensis, laryngeal morphology is more robust in males than in females. Larynges are larger, have a more complex cartilaginous morphology and contain more muscle fibers. Laryngeal muscle fibers are exclusively fast-twitch in males but are both fast- and slow-twitch in females. The laryngeal electromyogram, a measure of neuromuscular synaptic strength, shows greater potentiation in males than in females. Male-specific physiological features are shared with X. laevis, as well as with a species of the sister clade, Silurana tropicalis, and thus are likely ancestral. In X. borealis, certain aspects of laryngeal morphology and physiology are sexually monomorphic rather than dimorphic. In both sexes, laryngeal muscle fibers are of mixed-twitch type, which limits the production of muscle contractions at rapid intervals. Muscle activity potentiation and discrete tension transients resemble female rather than male X. boumbaensis. The de-masculinization of these laryngeal features suggests an alteration in sensitivity to the gonadal hormones that are known to control the sexual differentiation of the larynx in other Xenopus and Silurana species. PMID:25788725

  3. Effect of spaceflight on skeletal muscle: Mechanical properties and myosin isoform content of a slow muscle

    NASA Technical Reports Server (NTRS)

    Caiozzo, Vincent J.; Baker, Michael J.; Herrick, Robert E.; Tao, Ming; Baldwin, Kenneth M.

    1994-01-01

    This study examined changes in contractile, biochemical, and histochemical properties of slow antigravity skeletal muscle after a 6-day spaceflight mission. Twelve male Sprague-Dawley rats were randomly divided into two groups: flight and ground-based control. Approximately 3 h after the landing, in situ contractile measurements were made on the soleus muscles of the flight animals. The control animals were studied 24 h later. The contractile measurements included force-velocity relationship, force-frequency relationship, and fatigability. Biochemical measurements focused on the myosin heavy chain (MHC) and myosin light chain profiles. Adenosinetriphosphatase histochemistry was performed to identify cross-sectional area of slow and fast muscle fibers and to determine the percent fiber type distribution. The force-velocity relationships of the flight muscles were altered such that maximal isometric tension P(sub o) was decreased by 24% and maximal shortening velocity was increased by 14% (P less than 0.05). The force-frequency relationship of the flight muscles was shifted to the right of the control muscles. At the end of the 2-min fatigue test, the flight muscles generated only 34% of P(sub o), whereas the control muscles generated 64% of P(sub o). The flight muscles exhibited de novo expression of the type IIx MHC isoform as well as a slight decrease in the slow type I and fast type IIa MHC isoforms. Histochemical analyses of flight muscles demonstrated a small increase in the percentage of fast type II fibers and a greater atrophy of the slow type I fibers. The results demonstrate that contractile properties of slow antigravity skeletal muscle are sensitive to the microgravity environment and that changes begin to occur within the 1st wk. These changes were at least, in part, associated with changes in the amount and type of contractile protein expressed.

  4. Stamen dimorphism in Rhododendron ferrugineum (Ericaceae): development and function.

    PubMed

    Escaravage, Nathalie; Flubacker, Elisabeth; Pornon, André; Doche, Bernard; Till-Bottraud, Irène

    2001-01-01

    The function of stamen dimorphism in the breeding system of the alpine shrub Rhododendron ferrugineum was studied in two populations in the French Alps. This species has pentameric flowers with two whorls of stamens: an inner whorl of five long stamens and an outer whorl of short stamens. We studied the development of stamens from buds to mature flowers (measurement of the filament, anther, and style lengths at five successive phenological stages) and compared the size and position of reproductive organs at maturity in control and partially emasculated flowers (removal of long-level stamens) to determine whether the presence of long-level stamens constitutes a constraint for the development of the short-level ones. Stamen dimorphism can be observed early in stamen development, from the bud stage of the year prior to flowering. At this early stage, meiosis had already occurred. Emasculation of the long-level stamens induced the short-level ones to grow longer than in normal conditions. We also performed seven pollination treatments on ten randomly chosen individuals in each population, and the number of seeds following each treatment was recorded. Results from these treatments showed that R. ferrugineum produced spontaneous selfed seeds in the absence of pollinators. However, no seed was produced when short-level stamens were emasculated and pollinators excluded, suggesting that long-level stamens are not responsible for selfing in the absence of pollinators and that reproductive assurance is promoted by short-level stamens. PMID:11159128

  5. Is Sexual Size Dimorphism Inherent in the Scallop Patinopecten yessoensis?

    PubMed Central

    Silina, Alla V.

    2016-01-01

    Studies on sexual size dimorphism in Pectinidae are limited. This work deals with the mobile long-lived scallop Patinopecten yessoensis, a common (fished and cultured) species in the subtidal benthos of the Sea of Japan. A previously developed method of age determination in P. yessoensis allowed me to compare the parameters of same aged males and females in scallop populations. The shell growth rates and sizes of both sexes were similar; therefore, it was only possible to visually identify the sex of live specimens during the breeding period (May-June). Statistical analyses showed female-biased dimorphism in the gonad weight for age groups that are >4 years old. Gonad weight (in the prespawning period) increased with age, until a threshold age was attained, which varied between populations; and then gonad weight remained virtually unchanged. The fecundity advantage hypothesis for P. yessoensis with group mating and external fertilization is at least partly realized by physiological mechanisms, which cause older females to have larger gonads than those of same aged males in the population in order to produce a larger brood. Gregarious settlement of this bivalve contributes to the reproductive success of the population so that the energetically costly ovaries may all be fertilized. PMID:27293980

  6. Geometric morphometric analysis reveals sexual dimorphism in the distal femur.

    PubMed

    Cavaignac, Etienne; Savall, Frederic; Faruch, Marie; Reina, Nicolas; Chiron, Philippe; Telmon, Norbert

    2016-02-01

    An individual's sex can be determined by the shape of their distal femur. The goal of this study was to show that differences in distal femur shape related to sexual dimorphism could be identified, visualized, and quantified using 3D geometric morphometric analysis. Geometric morphometric analysis was carried out on CT scans of the distal femur of 256 subjects living in the south of France. Ten landmarks were defined on 3D reconstructions of the distal femur. Both traditional metric and geometric morphometric analyses were carried out on these bone reconstructions; these analyses identified trends in bone shape in sex-based subgroups. Sex-related differences in shape were statistically significant. The subject's sex was correctly assigned in 77.3% of cases using geometric morphometric analysis. This study has shown that geometric morphometric analysis of the distal femur is feasible and has revealed sexual dimorphism differences in this bone segment. This reliable, accurate method could be used for virtual autopsy and be used to perform diachronic and interethnic comparisons. Moreover, this study provides updated morphometric data for a modern population in the south of France. PMID:26743712

  7. A brain sexual dimorphism controlled by adult circulating androgens.

    PubMed

    Cooke, B M; Tabibnia, G; Breedlove, S M

    1999-06-22

    Reports of structural differences between the brains of men and women, heterosexual and homosexual men, and male-to-female transsexuals and other men have been offered as evidence that the behavioral differences between these groups are likely caused by differences in the early development of the brain. However, a possible confounding variable is the concentration of circulating hormones seen in these groups in adulthood. Evaluation of this possibility hinges on the extent to which circulating hormones can alter the size of mammalian brain regions as revealed by Nissl stains. We now report a sexual dimorphism in the volume of a brain nucleus in rats that can be completely accounted for by adult sex differences in circulating androgen. The posterodorsal nucleus of the medial amygdala (MePD) has a greater volume in male rats than in females, but adult castration of males causes the volume to shrink to female values within four weeks, whereas androgen treatment of adult females for that period enlarges the MePD to levels equivalent to normal males. This report demonstrates that adult hormone manipulations can completely reverse a sexual dimorphism in brain regional volume in a mammalian species. The sex difference and androgen responsiveness of MePD volume is reflected in the soma size of neurons there. PMID:10377450

  8. Regulation of transcription factors on sexual dimorphism of fig wasps.

    PubMed

    Sun, Bao-Fa; Li, Yong-Xing; Jia, Ling-Yi; Niu, Li-Hua; Murphy, Robert W; Zhang, Peng; He, Shunmin; Huang, Da-Wei

    2015-01-01

    Fig wasps exhibit extreme intraspecific morphological divergence in the wings, compound eyes, antennae, body color, and size. Corresponding to this, behaviors and lifestyles between two sexes are also different: females can emerge from fig and fly to other fig tree to oviposit and pollinate, while males live inside fig for all their lifetime. Genetic regulation may drive these extreme intraspecific morphological and behavioral divergence. Transcription factors (TFs) involved in morphological development and physiological activity may exhibit sex-specific expressions. Herein, we detect 865 TFs by using genomic and transcriptomic data of the fig wasp Ceratosolen solmsi. Analyses of transcriptomic data indicated that up-regulated TFs in females show significant enrichment in development of the wing, eye and antenna in all stages, from larva to adult. Meanwhile, TFs related to the development of a variety of organs display sex-specific patterns of expression in the adults and these may contribute significantly to their sexual dimorphism. In addition, up-regulated TFs in adult males exhibit enrichment in genitalia development and circadian rhythm, which correspond with mating and protandry. This finding is consistent with their sex-specific behaviors. In conclusion, our results strongly indicate that TFs play important roles in the sexual dimorphism of fig wasps. PMID:26031454

  9. Cell death is involved in sexual dimorphism during preimplantation development.

    PubMed

    Oliveira, C S; Saraiva, N Z; de Lima, M R; Oliveira, L Z; Serapião, R V; Garcia, J M; Borges, C A V; Camargo, L S A

    2016-02-01

    In bovine preimplantation development, female embryos progress at lower rates and originate smaller blastocysts than male counterparts. Although sex-specific gene expression patterns are reported, when and how sex dimorphism is established is not clear. Differences among female and male early development can be useful for human assisted reproductive medicine, when X-linked disorders risk is detected, and for genetic breeding programs, especially in dairy cattle, which requires female animals for milk production. The aim of this study was to characterize the development of female and male embryos, attempting to identify sex effects during preimplantation development and the role of cell death in this process. Using sex-sorted semen from three different bulls for fertilization, we compared kinetics of bovine sex-specific embryos in six time points, and cell death was assessed in viable embryos. For kinetics analysis, we detected an increased population of female embryos arrested at 48 and 120h.p.i., suggesting this time points as delicate stages of development for female embryos that should be considered for testing improvement strategies for assisted reproductive technologies. Assessing viable embryos quality, we found 144h.p.i. is the first time point when viable embryos are phenotypically distinct: cell number is decreased, and apoptosis and cell fragmentation are increased in female embryos at this stage. These new results lead us to propose that sex dimorphism in viable embryos is established during morula-blastocyst transition, and cell death is involved in this process. PMID:26752320

  10. Sexual dimorphism in primate aerobic capacity: a phylogenetic test.

    PubMed

    Lindenfors, Patrik; Revell, L J; Nunn, C L

    2010-06-01

    Male intrasexual competition should favour increased male physical prowess. This should in turn result in greater aerobic capacity in males than in females (i.e. sexual dimorphism) and a correlation between sexual dimorphism in aerobic capacity and the strength of sexual selection among species. However, physiological scaling laws predict that aerobic capacity should be lower per unit body mass in larger than in smaller animals, potentially reducing or reversing the sex difference and its association with measures of sexual selection. We used measures of haematocrit and red blood cell (RBC) counts from 45 species of primates to test four predictions related to sexual selection and body mass: (i) on average, males should have higher aerobic capacity than females, (ii) aerobic capacity should be higher in adult than juvenile males, (iii) aerobic capacity should increase with increasing sexual selection, but also that (iv) measures of aerobic capacity should co-vary negatively with body mass. For the first two predictions, we used a phylogenetic paired t-test developed for this study. We found support for predictions (i) and (ii). For prediction (iii), however, we found a negative correlation between the degree of sexual selection and aerobic capacity, which was opposite to our prediction. Prediction (iv) was generally supported. We also investigated whether substrate use, basal metabolic rate and agility influenced physiological measures of oxygen transport, but we found only weak evidence for a correlation between RBC count and agility. PMID:20406346