Science.gov

Sample records for floating light activated

  1. Feasibility of Neural Stimulation With Floating-Light-Activated Microelectrical Stimulators.

    PubMed

    Abdo, Ammar; Sahin, Mesut

    2011-04-01

    Neural microstimulation is becoming a powerful tool for the restoration of impaired functions in the central nervous system. Microelectrode arrays with fine wire interconnects have traditionally been used in the development of these neural prosthetic devices. However, these interconnects are usually the most vulnerable part of the neuroprosthetic implant that can eventually cause the device to fail. In this paper, we investigate the feasibility of floating-light-activated microelectrical stimulators (FLAMES) for wireless neural stimulation. A computer model was developed to simulate the micro stimulators for typical requirements of neural activation in the human white and gray matters. First, the photon densities due to a circular laser beam were simulated in the neural tissue at near-infrared (NIR) wavelengths. Temperature elevation in the tissue was calculated and the laser power was retrospectively adjusted to 325 and 250 mW/cm(2) in the gray and white matters, respectively, to limit ΔT to 0.5 °C. Total device area of the FLAMES increased with all parameters considered but decreased with the output voltage. We conclude that the number of series photodiodes in the device can be used as a free parameter to minimize the device size. The results suggest that floating, optically activated stimulators are feasible at submillimeter sizes for the activation of the brain cortex or the spinal cord. PMID:21552457

  2. Feasibility of Neural Stimulation With Floating-Light-Activated Microelectrical Stimulators

    PubMed Central

    Abdo, Ammar; Sahin, Mesut

    2011-01-01

    Neural microstimulation is becoming a powerful tool for the restoration of impaired functions in the central nervous system. Microelectrode arrays with fine wire interconnects have traditionally been used in the development of these neural prosthetic devices. However, these interconnects are usually the most vulnerable part of the neuroprosthetic implant that can eventually cause the device to fail. In this paper, we investigate the feasibility of floating-light-activated microelectrical stimulators (FLAMES) for wireless neural stimulation. A computer model was developed to simulate the micro stimulators for typical requirements of neural activation in the human white and gray matters. First, the photon densities due to a circular laser beam were simulated in the neural tissue at near-infrared (NIR) wavelengths. Temperature elevation in the tissue was calculated and the laser power was retrospectively adjusted to 325 and 250 mW/cm2 in the gray and white matters, respectively, to limit ΔT to 0.5 °C. Total device area of the FLAMES increased with all parameters considered but decreased with the output voltage. We conclude that the number of series photodiodes in the device can be used as a free parameter to minimize the device size. The results suggest that floating, optically activated stimulators are feasible at submillimeter sizes for the activation of the brain cortex or the spinal cord. PMID:21552457

  3. Floating Light-Activated Micro Electrical Stimulators Tested in the Rat Spinal Cord

    PubMed Central

    Abdo, Ammar; Sahin, Mesut; Freedman, David S.; Cevik, Elif; Spuhler, Philipp S.; Unlu, M. Selim

    2011-01-01

    Microelectrodes of neural stimulation utilize fine wires for electrical connections to driving electronics. Breakage of these wires and the neural tissue response due to their tethering forces are major problems encountered with long term implantation of microelectrodes. The lifetime of an implant for neural stimulation can be substantially improved if the wire interconnects are eliminated. Thus, we proposed a floating light-activated micro electrical stimulator (FLAMES) for wireless neural stimulation. In this paradigm, a laser beam at near infrared (NIR) wavelengths will be used as a means of energy transfer to the device. In this study, microstimulators of various sizes were fabricated, with two cascaded GaAs p-i-n photodiodes, and tested in the rat spinal cord. A train of NIR pulses (0.2 ms, 50 Hz) was sent through the tissue to wirelessly activate the devices and generate the stimulus current. The forces elicited by intraspinal stimulation were measured from the ipsilateral forelimb with a force transducer. The largest forces were around 1.08N, a significant level of force for the rat forelimb motor function. These in vivo tests suggest that the FLAMES can be used for intraspinal microstimulation even for the deepest implant locations in the rat spinal cord. The power required to generate a threshold arm movement was investigated as the laser source was moved away from the microstimulator. The results indicate that the photon density does not decrease substantially for horizontal displacements of the source that are in the same order as the beam radius. This gives confidence that the stimulation threshold may not be very sensitive to small displacement of the spinal cord relative to the spine-mounted optical power source. PMID:21914931

  4. In Vitro Testing of Floating Light Activated Micro-Electrical Stimulators

    PubMed Central

    Abdo, Ammar; Jayasinha, Vianney; Spuhler, Philipp S.; Unlu, M. Selim; Sahin, Mesut

    2010-01-01

    Chronic tissue response to microelectrode implants stands in the way as a major challenge to development of many neural prosthetic applications. The long term tissue response is mostly due to the movement of interconnects and the resulting mechanical stress between the electrode and the surrounding neural tissue. Remotely activated floating micro-stimulators are one possible method of eliminating the interconnects. As a method of energy transfer to the micro-stimulator, we proposed to use a laser beam at near infrared (NIR) wavelengths. FLAMES of various sizes were fabricated with integrated silicon PIN photodiodes. Sizes varied from 120 (Width) × 300 (Length) × 100 (Height) μm to 200 × 500 × 100μm. Devices were bench tested using 850nm excitation from a Ti:Sapphire laser. To test this method, the voltage field of the FLAMES was experimentally tested in saline solution pulsed with a NIR laser beam. The voltage generated is around 196mV in peak at the cathodic contact as a response to a single pulse. When a train of laser pulses was applied at 100Hz, the peak voltage at the cathodic contact remained around 141mV suggesting the feasibility of this approach for applications with pulse frequencies up to 100Hz. PMID:19964480

  5. In vitro testing of floating light activated micro-electrical stimulators.

    PubMed

    Abdo, Ammar; Jayasinha, Vianney; Spuhler, Philipp S; Unlu, M; Sahin, Mesut

    2009-01-01

    Chronic tissue response to microelectrode implants stands in the way as a major challenge to development of many neural prosthetic applications. The long term tissue response is mostly due to the movement of interconnects and the resulting mechanical stress between the electrode and the surrounding neural tissue. Remotely activated floating micro-stimulators are one possible method of eliminating the interconnects. As a method of energy transfer to the micro-stimulator, we proposed to use a laser beam at near infrared (NIR) wavelengths. FLAMES of various sizes were fabricated with integrated silicon PIN photodiodes. Sizes varied from 120 (Width) x 300 (Length) x 100 (Height) microm to 200 x 500 x 100microm. Devices were bench tested using 850nm excitation from a Ti:Sapphire laser. To test this method, the voltage field of the FLAMES was experimentally tested in saline solution pulsed with a NIR laser beam. The voltage generated is around 196mV in peak at the cathodic contact as a response to a single pulse. When a train of laser pulses was applied at 100Hz, the peak voltage at the cathodic contact remained around 141mV suggesting the feasibility of this approach for applications with pulse frequencies up to 100Hz. PMID:19964480

  6. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  7. Photo-active float for field water disinfection.

    PubMed

    Shwetharani, R; Balakrishna, R Geetha

    2016-03-01

    The present study investigates the antibacterial activity of a photoactive float fabricated with visible light active N-F-TiO2 for the disinfection of field water widely contaminated with Gram positive and Gram negative bacteria like, Salmonella typhimurium (Gram negative), Escherichia coli (Gram negative), Staphylococcus aureus (Gram positive), Bacillus species (Gram positive), and Pseudomonas species (Gram negative). The antibacterial activity can be attributed to the unique properties of the photocatalyst, which releases reactive oxygen species in aqueous solution, under the illumination of sunlight. N-F-TiO2 nanoparticles efficiently photocatalyse the destruction of all the bacteria present in the contaminated water, giving clean water. The inactivation of bacteria is confirmed by a standard plate count method, MDA, RNA and DNA analysis. The purity of water was further validated by SPC indicating nil counts of bacteria after two days of storing and testing. The photocatalysts were characterized by XRD, BET measurement, SEM, EDX, UV-Vis and PL analysis. PMID:26924232

  8. Controlled-motion of floating macro-objects induced by light

    NASA Astrophysics Data System (ADS)

    Lucchetta, Daniele E.; Simoni, Francesco; Nucara, Luca; Castagna, Riccardo

    2015-07-01

    Photons energy can be conventionally converted to mechanical work through a series of energy-expensive steps such as for example delivery and storage. However, these steps can be bypassed obtaining a straightforward conversion of photons energy to mechanical work. As an example, in literature, high power near infrared light is used to move small objects floating on fluid surfaces, exploiting the Marangoni effect. In this work we use a low power non-collimated visible laser-light to induce thermal surface tension gradients, resulting in the movement of objects floating on fluid surfaces. By real time tracking of the object trajectories, we evaluate the average applied driving force caused by the light irradiation. In addition we show how transparent objects can be moved by light when the supporting fluids are properly doped.

  9. Active vibration isolation of macro-micro motion stage disturbances using a floating stator platform

    NASA Astrophysics Data System (ADS)

    Zhang, Lufan; Long, Zhili; Cai, Jiandong; Liu, Yang; Fang, Jiwen; Wang, Michael Yu

    2015-10-01

    Macro-micro motion stage is mainly applied in microelectronics manufacturing to realize a high-acceleration, high-speed and nano-positioning motion. The high acceleration and nano-positioning accuracy would be influenced by the vibration of the motion stage. In the paper, a concept of floating stage is introduced in the macro-micro motion for isolating vibration disturbances. The design model of the floating stage is established and its theoretical analyses including natural frequency, transient and frequency response analyses are investigated, in order to demonstrate the feasibility of the floating stator platform as a vibration isolator for the macro-micro motion stage. Moreover, an optimal design of the floating stator is conducted and then verified by experiments. In order to characterize and quantify the performance of isolation obtained from the traditional fixed stator and the floating stator, the acceleration responses at different accelerations, speeds and displacements are measured in x, y and z directions. The theoretical and experimental analyses in time and frequency domains indicate that the floating stator platform is effective to actively isolate the vibration in the macro-micro motion stage. In macro-micro motion stage, high acceleration motion is provided by VCM. Vibration is induced from VCM, that is, VCM is a source system, the vibration response or force is felt by a receiver system. Generally, VCM is fixed on the base, which means that the base is the receiver system which absorbs or transfers the vibration. However, the vibration cannot completely disappear and the base vibration is inevitable. In the paper, a floated stator platform as isolation system is developed to decrease or isolate vibration between VCM and base. The floated stator platform consists of damper, stopper, floated lock, spring, limiter, sub base, etc. Unlike the traditional stator of VCM fixed on the base, the floated stator can be moved on the linear guide under vibration force or driven force. The springs are used to buffer shock at both end of the floated stator and the dampers are applied to absorb vibration before and after the floated stator. Limiter and stopper prevent the damper from impact damage in the linear direction. The springs and dampers form a spring-damping system, as shown in above figure. When VCM provides a large driven force transiently for high acceleration motion, the impact force or unpredictable vibration would be absorbed or decreased through the floated stator platform. The vibration of base will be weakened or eliminated and this can assure positional accuracy of grating ruler read head on positioning platform and others.

  10. "JCE" Classroom Activity #108. Using Archimedes' Principle to Explain Floating and Sinking Cans

    ERIC Educational Resources Information Center

    Sanger, Michael J.

    2011-01-01

    In this activity, students (working alone or in groups) measure the mass of several soda cans (diet and regular soda) along with the mass of water that each can displaces. The students are then asked to compare these two mass values for the sinking cans and for the floating cans. The purpose of this activity is for students to determine that the…

  11. 24 CFR 570.301 - Activity locations and float-funding.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... submission requirements referred to in this section are those in 24 CFR part 91. (a) For activities for which... planned public facility or improvement, how it expects to determine its location. (b) Float-funded... to be received in a future program year (in accordance with 24 CFR 91.220(g)(1)(ii)(D)). (4)...

  12. 24 CFR 570.301 - Activity locations and float-funding.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... submission requirements referred to in this section are those in 24 CFR part 91. (a) For activities for which... planned public facility or improvement, how it expects to determine its location. (b) Float-funded... to be received in a future program year (in accordance with 24 CFR 91.220(g)(1)(ii)(D)). (4)...

  13. 24 CFR 570.301 - Activity locations and float-funding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... submission requirements referred to in this section are those in 24 CFR part 91. (a) For activities for which... planned public facility or improvement, how it expects to determine its location. (b) Float-funded... to be received in a future program year (in accordance with 24 CFR 91.220(g)(1)(ii)(D)). (4)...

  14. 24 CFR 570.301 - Activity locations and float-funding.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... submission requirements referred to in this section are those in 24 CFR part 91. (a) For activities for which... planned public facility or improvement, how it expects to determine its location. (b) Float-funded... to be received in a future program year (in accordance with 24 CFR 91.220(g)(1)(ii)(D)). (4)...

  15. Active pulmonary tuberculosis case detection and treatment among floating population in China: an effective pilot.

    PubMed

    Li, Xinxu; Zhang, Hui; Jiang, Shiwen; Wang, Jia; Liu, Xiaoqiu; Li, Weibin; Yao, Hongyan; Wang, Lixia

    2010-12-01

    China has more and more floating population because of reform and opening-up. As one of the high burden countries in tuberculosis (TB) control in the world, China has to face more challenges about the TB case detection and treatment among floating population in China. Aim to evaluate the effect of case detection and treatment of the Floating Population TB Control Pilot Project from Global Fund Round Five (GFR5) TB Control Program in China. During October 2006 to September 2008, the pilot project was implemented gradually in 60 counties in Tianjin, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong and Guangdong. All quarterly reports of the pilot project were collected, and these materials were summarized and analyzed. In seven coastal provinces, 19,584 active pulmonary TB (PTB) cases were registered among floating population in 2 years. Among the active PTB cases, 87.2% were 15-45 years old, and 62.8% were male. In second year, 15,629 active PTB cases were registered, and the overall registration rate was 68 per 100,000 people. DOT treatments were provided for 18,125 active PTB cases in 2 years, and overall DOT treatment rate was 92.6%. There were 3,955 active PTB cases registered in first year, and the overall cure rate was 86.0%. Through the implementation of the pilot project, the TB case detection and treatment among floating population have been enhanced in pilot areas of China. The useful experience and results from the pilot project have been being gradually generalized nationally. PMID:20221695

  16. Adaptability of free-floating green tide algae in the Yellow Sea to variable temperature and light intensity.

    PubMed

    Cui, Jianjun; Zhang, Jianheng; Huo, Yuanzi; Zhou, Lingjie; Wu, Qing; Chen, Liping; Yu, Kefeng; He, Peimin

    2015-12-30

    In this study, the influence of temperature and light intensity on the growth of seedlings and adults of four species of green tide algae (Ulvaprolifera, Ulvacompressa, Ulva flexuosa and Ulvalinza) from the Yellow Sea was evaluated. The results indicated that the specific growth rate (SGR) of seedlings was much higher than that of adults for the four species. The adaptability of U. prolifera is much wider: Adult daily SGRs were the highest among the four species at 15-20 °C with 10-600 μmol · m(-2) · s(-1) and 25-30 °C with 200-600 μmol · m(-2) · s(-1). SGRs were 1.5-3.5 times greater than the other three species at 15-25 °C with 200-600 μmol · m(-2) · s(-1). These results indicate that U. prolifera has better tolerance to high temperature and light intensity than the other three species, which may in part explain why only U. prolifera undergoes large-scale outbreaks and floats to the Qingdao coast while the other three species decline and disappear at the early stage of blooming. PMID:26573134

  17. To Float or Not to Float: How Interactions between Light and Dissolved Inorganic Carbon Species Determine the Buoyancy of Stratiotes aloides.

    PubMed

    Harpenslager, Sarah F; Smolders, Alfons J P; Kieskamp, Ariët A M; Roelofs, Jan G M; Lamers, Leon P M

    2015-01-01

    Structural diversity formed by dense, floating Stratiotes aloides stands, generates hotspots of biodiversity of flora and fauna in wetlands. However, only part of the populations become emergent and provide this important facilitation. Since it has been hypothesised that its buoyancy depends on the rates of underwater photosynthesis, we investigated the role of dissolved CO2 availability and PAR on photosynthesis, biomass production and buoyancy in a controlled greenhouse experiment. Photosynthesis and growth were strongly influenced by both PAR and CO2 availability. At low PAR, plants formed less biomass and produced no emergent leaves, even when CO2 was abundant. At low CO2 levels, S. aloides switched to HCO3- use, resulting in a lower photosynthetic O2 production, decreased emergent leaf formation and increased CaCO3 precipitation on its leaves, all of which impaired buoyancy. At high PAR, low CO2 availability resulted in slower colonisation of the water layer, whereas CO2 availability did not influence PAR-limited plants. Our study shows that site conditions, rather than the sole abundance of potentially facilitating species, may strongly determine whether or not they form the structure necessary to act as a facilitator for biodiversity in aquatic environments. PMID:25909504

  18. To Float or Not to Float: How Interactions between Light and Dissolved Inorganic Carbon Species Determine the Buoyancy of Stratiotes aloides

    PubMed Central

    Harpenslager, Sarah F.; Smolders, Alfons J. P.; Kieskamp, Ariët A. M.; Roelofs, Jan G. M.; Lamers, Leon P. M.

    2015-01-01

    Structural diversity formed by dense, floating Stratiotes aloides stands, generates hotspots of biodiversity of flora and fauna in wetlands. However, only part of the populations become emergent and provide this important facilitation. Since it has been hypothesised that its buoyancy depends on the rates of underwater photosynthesis, we investigated the role of dissolved CO2 availability and PAR on photosynthesis, biomass production and buoyancy in a controlled greenhouse experiment. Photosynthesis and growth were strongly influenced by both PAR and CO2 availability. At low PAR, plants formed less biomass and produced no emergent leaves, even when CO2 was abundant. At low CO2 levels, S. aloides switched to HCO3- use, resulting in a lower photosynthetic O2 production, decreased emergent leaf formation and increased CaCO3 precipitation on its leaves, all of which impaired buoyancy. At high PAR, low CO2 availability resulted in slower colonisation of the water layer, whereas CO2 availability did not influence PAR-limited plants. Our study shows that site conditions, rather than the sole abundance of potentially facilitating species, may strongly determine whether or not they form the structure necessary to act as a facilitator for biodiversity in aquatic environments. PMID:25909504

  19. Does It Sink or Float?

    ERIC Educational Resources Information Center

    McDonald, Judith Richards

    2012-01-01

    This activity is designed to teach prekindergarten to second grade students about the concept of sink or float through an inquiry activity. Students will use familiar objects to predict and test the properties of sink and float. Background information is offered to teachers to assist them with this activity. This lesson begins with an engaging…

  20. Does It Sink or Float?

    ERIC Educational Resources Information Center

    McDonald, Judith Richards

    2012-01-01

    This activity is designed to teach prekindergarten to second grade students about the concept of sink or float through an inquiry activity. Students will use familiar objects to predict and test the properties of sink and float. Background information is offered to teachers to assist them with this activity. This lesson begins with an engaging

  1. On floats and float tests

    NASA Technical Reports Server (NTRS)

    Seewald, Friedrich

    1931-01-01

    The principal source of information on float resistance is the model test. In view of the insuperable difficulties opposing any attempt at theoretical treatment of the resistance problem, particularly at attitudes which tend toward satisfactory take-off, such as the transitory stage to planing, the towing test is and will remain the primary method for some time.

  2. Artificial light and nocturnal activity in gammarids

    PubMed Central

    Hölker, Franz; Heller, Stefan; Berghahn, Rüdiger

    2014-01-01

    Artificial light is gaining attention as a potential stressor to aquatic ecosystems. Artificial lights located near streams increase light levels experienced by stream invertebrates and we hypothesized light would depress night drift rates. We also hypothesized that the effect of light on drift rates would decrease over time as the invertebrates acclimated to the new light level over the course of one month’s exposure. These hypotheses were tested by placing Gammarus spp. in eight, 75 m × 1 m artificial flumes. One flume was exposed to strong (416 lx) artificial light at night. This strong light created a gradient between 4.19 and 0.04 lx over the neighboring six artificial flumes, while a control flume was completely covered with black plastic at night. Night-time light measurements taken in the Berlin area confirm that half the flumes were at light levels experienced by urban aquatic invertebrates. Surprisingly, no light treatment affected gammarid drift rates. In contrast, physical activity measurements of in situ individually caged G. roeseli showed they increased short-term activity levels in nights of complete darkness and decreased activity levels in brightly lit flumes. Both nocturnal and diurnal drift increased, and day drift rates were unexpectadly higher than nocturnal drift. PMID:24688857

  3. 33 CFR 144.01-1 - Life floats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Life floats. 144.01-1 Section...

  4. 33 CFR 144.01-1 - Life floats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Life floats. 144.01-1 Section...

  5. 33 CFR 144.01-1 - Life floats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Life floats. 144.01-1 Section...

  6. Mutations in SRCAP, Encoding SNF2-Related CREBBP Activator Protein, Cause Floating-Harbor Syndrome

    PubMed Central

    Hood, Rebecca L.; Lines, Matthew A.; Nikkel, Sarah M.; Schwartzentruber, Jeremy; Beaulieu, Chandree; Nowaczyk, Małgorzata J.M.; Allanson, Judith; Kim, Chong Ae; Wieczorek, Dagmar; Moilanen, Jukka S.; Lacombe, Didier; Gillessen-Kaesbach, Gabriele; Whiteford, Margo L.; Quaio, Caio Robledo D.C.; Gomy, Israel; Bertola, Debora R.; Albrecht, Beate; Platzer, Konrad; McGillivray, George; Zou, Ruobing; McLeod, D. Ross; Chudley, Albert E.; Chodirker, Bernard N.; Marcadier, Janet; Majewski, Jacek; Bulman, Dennis E.; White, Susan M.; Boycott, Kym M.

    2012-01-01

    Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delayed osseous maturation, expressive-language deficits, and a distinctive facial appearance. Occurrence is generally sporadic, although parent-to-child transmission has been reported on occasion. Employing whole-exome sequencing, we identified heterozygous truncating mutations in SRCAP in five unrelated individuals with sporadic FHS. Sanger sequencing identified mutations in SRCAP in eight more affected persons. Mutations were de novo in all six instances in which parental DNA was available. SRCAP is an SNF2-related chromatin-remodeling factor that serves as a coactivator for CREB-binding protein (CREBBP, better known as CBP, the major cause of Rubinstein-Taybi syndrome [RTS]). Five SRCAP mutations, two of which are recurrent, were identified; all are tightly clustered within a small (111 codon) region of the final exon. These mutations are predicted to abolish three C-terminal AT-hook DNA-binding motifs while leaving the CBP-binding and ATPase domains intact. Our findings show that SRCAP mutations are the major cause of FHS and offer an explanation for the clinical overlap between FHS and RTS. PMID:22265015

  7. Advanced Light Source Activity Report 2000

    SciTech Connect

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  8. Floating Point Control Library

    Energy Science and Technology Software Center (ESTSC)

    2007-08-02

    Floating Point Control is a Library that allows for the manipulation of floating point unit exception masking funtions control exceptions in both the Streaming "Single Instruction, Multiple Data" Extension 2 (SSE2) unit and the floating point unit simultaneously. FPC also provides macros to set floating point rounding and precision control.

  9. Light Activation of Ribulose Bisphosphate Carboxylase

    PubMed Central

    Daley, Larry S.; Dailey, Frank; Criddle, Richard S.

    1978-01-01

    The development of methods of preparation of long wavelength ultraviolet light capable of activating ribulose bisphosphate carboxylase is reported. This preparation was obtained from tobacco (Nicotiana tabacum) leaves which had reached about one-half maximum leaf weight. It was prepared at low ionic strength by use of mixed anion and cation exchange resins and buffers containing dimethylsulfoxide. The preparation is greatly enriched in fraction I protein to the point of apparent homogeneity. When assayed in the presence of saturating ribulose bisphosphate and sodium bicarbonate, the rate of carbon fixation is a linear function of long wavelength ultraviolet irradiation in the range of 20,000 to 30,000 ergs per square centimeter per second. Glutathione (5 mm) inhibits light activation without affecting activity in the dark. Copper sulfate inhibits both light and dark activity, but is slightly less effective in the presence of ultraviolet light. Sucrose inhibition of carboxylation is only readily apparent in the absence of ultraviolet light. Ammonium sulfate precipitation followed by solubilization in buffers containing dimethylsulfoxide plus heat treatment promotes ultraviolet light activation. PMID:16660592

  10. 24 CFR 570.301 - Activity locations and float-funding.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... submission requirements referred to in this section are those in 24 CFR part 91. (a) For activities for which... to be received in a future program year (in accordance with 24 CFR 91.220(g)(1)(ii)(D)). (4) The... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Activity locations and...

  11. Study on a Mechanical Semi-Active Heave Compensation System of Drill String for Use on Floating Drilling Platform.

    PubMed

    Liu, Qingyou; Tang, Yang; Huang, Chongjun; Xie, Chong

    2015-01-01

    There are some disadvantages for existing heave compensation systems of drill string used for the Floating Drilling Platform (FDP), including high energy consumption, large and complex structure, and expensive manufacturing and maintenance costs. In view of the above, we present a streamlined mechanical semi-active heave compensation system (MSAHC) in this study. This system consists of active compensation part with the pinion and rack and passive compensation part. In order to evaluate system performance of the MSAHC, we establish its simulation model with AMEsim software. In the process of simulation, displacement of rotary hook and energy consumption is regarded as performance parameters of the system. And the change rule of two performance parameters are analyzed by changing these design parameters including gear radius of the pinion and rack, scale coefficient of PID, rotary hook load, heave height and heave period of the FDP, and accumulator volume. Then, based on the simulation results of the MSAHC system performance, we have selected out a best set of design parameters from them. Moreover, the feasibility of the design scheme of the MSAHC is effectively verified by comparison with the existing three heave compensation system. The result shows that the energy consumption of the MSAHC is lower than the active heave compensation system (AHC) and the semi-active heave compensation system (SAHC) when achieving a same compensation effect as well as the accumulator volume of MSAHC is half of the passive heave compensation system (PHC). Therefore, the new designed MSAHC not only ensure compensation effect but also lower energy consumption, and its structure is simplified by adopting the simple mechanical structure to decrease manufacturing cost, maintenance cost and floor space. PMID:26186620

  12. Study on a Mechanical Semi-Active Heave Compensation System of Drill String for Use on Floating Drilling Platform

    PubMed Central

    Liu, Qingyou; Tang, Yang; Huang, Chongjun; Xie, Chong

    2015-01-01

    There are some disadvantages for existing heave compensation systems of drill string used for the Floating Drilling Platform (FDP), including high energy consumption, large and complex structure, and expensive manufacturing and maintenance costs. In view of the above, we present a streamlined mechanical semi-active heave compensation system (MSAHC) in this study. This system consists of active compensation part with the pinion and rack and passive compensation part. In order to evaluate system performance of the MSAHC, we establish its simulation model with AMEsim software. In the process of simulation, displacement of rotary hook and energy consumption is regarded as performance parameters of the system. And the change rule of two performance parameters are analyzed by changing these design parameters including gear radius of the pinion and rack, scale coefficient of PID, rotary hook load, heave height and heave period of the FDP, and accumulator volume. Then, based on the simulation results of the MSAHC system performance, we have selected out a best set of design parameters from them. Moreover, the feasibility of the design scheme of the MSAHC is effectively verified by comparison with the existing three heave compensation system. The result shows that the energy consumption of the MSAHC is lower than the active heave compensation system (AHC) and the semi-active heave compensation system (SAHC) when achieving a same compensation effect as well as the accumulator volume of MSAHC is half of the passive heave compensation system (PHC). Therefore, the new designed MSAHC not only ensure compensation effect but also lower energy consumption, and its structure is simplified by adopting the simple mechanical structure to decrease manufacturing cost, maintenance cost and floor space. PMID:26186620

  13. Light-activated Reassembly of Split GFP

    PubMed Central

    Kent, Kevin P.; Boxer, Steven G.

    2011-01-01

    Truncated Green Fluorescent Protein (GFP) with the 11th β-strand removed is potentially interesting for bioconjugation, imaging, and the preparation of semi-synthetic proteins with novel spectroscopic or functional properties. Surprisingly, the truncated GFP generated by removing the 11th strand, once refolded, does not reassemble with a synthetic peptide corresponding to strand 11, but does reassemble following light activation. The mechanism of this process has been studied in detail by absorption, fluorescence and Raman spectroscopy. The chromophore in this refolded truncated GFP is found to be in the trans configuration. Upon exposure to light a photostationary state is formed between the trans and cis conformations of the chromophore, and only truncated GFP with the cis configuration of the chromophore binds the peptide. A kinetic model describing the light activated reassembly of this split GFP is discussed. This unique light-driven reassembly is potentially useful for controlling protein-protein interactions. PMID:21351768

  14. Light activated nitric oxide releasing materials

    NASA Astrophysics Data System (ADS)

    Muizzi Casanas, Dayana Andreina

    The ability to control the location and dosage of biologically active molecules inside the human body can be critical to maximizing effective treatment of cardiovascular diseases like angina. The current standard of treatment relies on the metabolism of organonitrate drugs into nitric oxide (NO), which are not specific, and also show problems with densitization with long-term use. There is a need then to create a treatment method that gives targeted release of NO. Metal-nitrosyl (M-NO) complexes can be used for delivery of NO since the release of NO can be controlled with light. However, the NO-releasing drug must be activated with red light to ensure maximum penetration of light through tissue. However, the release of NO from M-NO complexes with red-light activation is a significant challenge since the energy required to break the metal-NO bond is usually larger than the energy provided by red light. The goal of this project was to create red- sensitive, NO-releasing materials based on Ru-salen-nitrosyl compounds. Our approach was to first modify Ru salen complexes to sensitize the photochemistry for release of NO after red light irradiation. Next, we pursued polymerization of the Ru-salen complexes. We report the synthesis and quantitative photochemical characterization of a series of ruthenium salen nitrosyl complexes. These complexes were modified by incorporating electron donating groups in the salen ligand structure at key locations to increase electron density on the Ru. Complexes with either an --OH or --OCH3 substituent showed an improvement in the quantum yield of release of NO upon blue light irradiation compared to the unmodified salen. These --OH and --OCH3 complexes were also sensitized for NO release after red light activation, however the red-sensitive complexes were unstable and showed ligand substitution on the order of minutes. The substituted complexes remained sensitive for NO release, but only after blue light irradiation. The Ru-nitrosyl complexes could be regenerated by treatment of the complex with solutions of nitrite. Treatment of the exhaustively irradiated solutions with excess NO2- led to generation of a Ru-NO complex that was sensitive to blue light. Preliminary work on creating metallopolymers of Ru-salen-NO is also discussed.

  15. Green laser light activates the inner ear

    NASA Astrophysics Data System (ADS)

    Wenzel, Gentiana I.; Balster, Sven; Zhang, Kaiyin; Lim, Hubert H.; Reich, Uta; Massow, Ole; Lubatschowski, Holger; Ertmer, Wolfgang; Lenarz, Thomas; Reuter, Guenter

    2009-07-01

    The hearing performance with conventional hearing aids and cochlear implants is dramatically reduced in noisy environments and for sounds more complex than speech (e. g. music), partially due to the lack of localized sensorineural activation across different frequency regions with these devices. Laser light can be focused in a controlled manner and may provide more localized activation of the inner ear, the cochlea. We sought to assess whether visible light with parameters that could induce an optoacoustic effect (532 nm, 10-ns pulses) would activate the cochlea. Auditory brainstem responses (ABRs) were recorded preoperatively in anesthetized guinea pigs to confirm normal hearing. After opening the bulla, a 50-μm core-diameter optical fiber was positioned in the round window niche and directed toward the basilar membrane. Optically induced ABRs (OABRs), similar in shape to those of acoustic stimulation, were elicited with single pulses. The OABR peaks increased with energy level (0.6 to 23 μJ/pulse) and remained consistent even after 30 minutes of continuous stimulation at 13 μJ, indicating minimal or no stimulation-induced damage within the cochlea. Our findings demonstrate that visible light can effectively and reliably activate the cochlea without any apparent damage. Further studies are in progress to investigate the frequency-specific nature and mechanism of green light cochlear activation.

  16. WindWaveFloat

    SciTech Connect

    Weinstein, Alla

    2011-11-01

    Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.

  17. The Design of Floats

    NASA Technical Reports Server (NTRS)

    Sottorf, W

    1938-01-01

    Following a summary of the multiplicity of domestic and foreign floats and a brief enumeration of the requirements of floats, the essential form parameters and their effect on the qualities of floats are detailed. On this basis a standard float design is developed which in model families with varying length/beam ratio and angle of dead rise is analyzed by an experimental method which permits its best utilization on any airplane.

  18. Light-activated polymethylmethacrylate nanofibers with antibacterial activity.

    PubMed

    Elashnikov, Roman; Lyutakov, Oleksiy; Ulbrich, Pavel; Svorcik, Vaclav

    2016-07-01

    The creation of an antibacterial material with triggerable properties enables us to avoid the overuse or misuse of antibacterial substances and, thus, prevent the emergence of resistant bacterial strains. As a potential light-activated antibacterial material, polymethylmethacrylate (PMMA) nanofibers doped with silver nanoparticles (AgNPs) and meso-tetraphenylporphyrin (TPP) were prepared by electrospinning. TPP was chosen as an effectively reactive oxygen species (ROS) producer. Antibacterial tests on Staphylococcus epidermidis (S. epidermidis) and Enterococcus faecalis (E. faecalis) showed the excellent light-triggerable antibacterial activity of the doped materials. Upon light irradiation at the wavelength corresponding to the TPP absorption peak (405nm), antibacterial activity dramatically increased, mostly due to the release of AgNPs from the polymer matrix. Furthermore, under prolonged light irradiation, the AgNPs/TPP/PMMA nanofibers, displayed enhanced longevity and photothermal stability. Thus, our results suggest that the proposed material is a promising option for the photodynamic inactivation of bacteria. PMID:27127048

  19. Whatever Floats Your Boat: A Design Challenge

    ERIC Educational Resources Information Center

    Kornoelje, Joanne; Roman, Harry T.

    2012-01-01

    This article presents a simple design challenge, based on the PBS program "Design Squad's" "Watercraft" activity that will prove engaging to most technology and engineering students. In this floating boat challenge, students are to build a boat that can float and support 25 pennies for at least 10 seconds--without leaking, sinking, or tipping…

  20. Whatever Floats Your Boat: A Design Challenge

    ERIC Educational Resources Information Center

    Kornoelje, Joanne; Roman, Harry T.

    2012-01-01

    This article presents a simple design challenge, based on the PBS program "Design Squad's" "Watercraft" activity that will prove engaging to most technology and engineering students. In this floating boat challenge, students are to build a boat that can float and support 25 pennies for at least 10 seconds--without leaking, sinking, or tipping

  1. Floating Boats

    ERIC Educational Resources Information Center

    Waugh, Michael

    2007-01-01

    The purpose of this article is to describe a simple laboratory activity in which students collect a series of measurements and then use graphical analysis to determine the nature of the relationship between an object's mass and the volume of water it displaces. In this activity, students explore the relationships between the mass of a floating…

  2. Visible-Light-Activated Molecular Switches.

    PubMed

    Bléger, David; Hecht, Stefan

    2015-09-21

    The ability to influence key properties of molecular systems by using light holds much promise for the fields of materials science and life sciences. The cornerstone of such systems is molecules that are able to reversibly photoisomerize between two states, commonly referred to as photoswitches. One serious restriction to the development of functional photodynamic systems is the necessity to trigger switching in at least one direction by UV light, which is often damaging and penetrates only partially through most media. This review provides a summary of the different conceptual strategies for addressing molecular switches in the visible and near-infrared regions of the optical spectrum. Such visible-light-activated molecular switches tremendously extend the scope of photoswitchable systems for future applications and technologies. PMID:26096635

  3. Anomalous Light Phenomena vs. Bioelectric Brain Activity

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.

  4. Light-activated self-propelled colloids

    PubMed Central

    Palacci, J.; Sacanna, S.; Kim, S.-H.; Yi, G.-R.; Pine, D. J.; Chaikin, P. M.

    2014-01-01

    Light-activated self-propelled colloids are synthesized and their active motion is studied using optical microscopy. We propose a versatile route using different photoactive materials, and demonstrate a multiwavelength activation and propulsion. Thanks to the photoelectrochemical properties of two semiconductor materials (α-Fe2O3 and TiO2), a light with an energy higher than the bandgap triggers the reaction of decomposition of hydrogen peroxide and produces a chemical cloud around the particle. It induces a phoretic attraction with neighbouring colloids as well as an osmotic self-propulsion of the particle on the substrate. We use these mechanisms to form colloidal cargos as well as self-propelled particles where the light-activated component is embedded into a dielectric sphere. The particles are self-propelled along a direction otherwise randomized by thermal fluctuations, and exhibit a persistent random walk. For sufficient surface density, the particles spontaneously form ‘living crystals’ which are mobile, break apart and reform. Steering the particle with an external magnetic field, we show that the formation of the dense phase results from the collisions heads-on of the particles. This effect is intrinsically non-equilibrium and a novel principle of organization for systems without detailed balance. Engineering families of particles self-propelled by different wavelength demonstrate a good understanding of both the physics and the chemistry behind the system and points to a general route for designing new families of self-propelled particles. PMID:25332383

  5. Light-activated self-propelled colloids.

    PubMed

    Palacci, J; Sacanna, S; Kim, S-H; Yi, G-R; Pine, D J; Chaikin, P M

    2014-11-28

    Light-activated self-propelled colloids are synthesized and their active motion is studied using optical microscopy. We propose a versatile route using different photoactive materials, and demonstrate a multiwavelength activation and propulsion. Thanks to the photoelectrochemical properties of two semiconductor materials (α-Fe2O3 and TiO2), a light with an energy higher than the bandgap triggers the reaction of decomposition of hydrogen peroxide and produces a chemical cloud around the particle. It induces a phoretic attraction with neighbouring colloids as well as an osmotic self-propulsion of the particle on the substrate. We use these mechanisms to form colloidal cargos as well as self-propelled particles where the light-activated component is embedded into a dielectric sphere. The particles are self-propelled along a direction otherwise randomized by thermal fluctuations, and exhibit a persistent random walk. For sufficient surface density, the particles spontaneously form 'living crystals' which are mobile, break apart and reform. Steering the particle with an external magnetic field, we show that the formation of the dense phase results from the collisions heads-on of the particles. This effect is intrinsically non-equilibrium and a novel principle of organization for systems without detailed balance. Engineering families of particles self-propelled by different wavelength demonstrate a good understanding of both the physics and the chemistry behind the system and points to a general route for designing new families of self-propelled particles. PMID:25332383

  6. Light-Dependent Electrogenic Activity of Cyanobacteria

    PubMed Central

    Baskakov, Ilia V.

    2010-01-01

    Background Cyanobacteria account for 20–30% of Earth's primary photosynthetic productivity and convert solar energy into biomass-stored chemical energy at the rate of ∼450 TW [1]. These single-cell microorganisms are resilient predecessors of all higher oxygenic phototrophs and can be found in self-sustaining, nitrogen-fixing communities the world over, from Antarctic glaciers to the Sahara desert [2]. Methodology/Principal Findings Here we show that diverse genera of cyanobacteria including biofilm-forming and pelagic strains have a conserved light-dependent electrogenic activity, i.e. the ability to transfer electrons to their surroundings in response to illumination. Naturally-growing biofilm-forming photosynthetic consortia also displayed light-dependent electrogenic activity, demonstrating that this phenomenon is not limited to individual cultures. Treatment with site-specific inhibitors revealed the electrons originate at the photosynthetic electron transfer chain (P-ETC). Moreover, electrogenic activity was observed upon illumination only with blue or red but not green light confirming that P-ETC is the source of electrons. The yield of electrons harvested by extracellular electron acceptor to photons available for photosynthesis ranged from 0.05% to 0.3%, although the efficiency of electron harvesting likely varies depending on terminal electron acceptor. Conclusions/Significance The current study illustrates that cyanobacterial electrogenic activity is an important microbiological conduit of solar energy into the biosphere. The mechanism responsible for electrogenic activity in cyanobacteria appears to be fundamentally different from the one exploited in previously discovered electrogenic bacteria, such as Geobacter, where electrons are derived from oxidation of organic compounds and transported via a respiratory electron transfer chain (R-ETC) [3], [4]. The electrogenic pathway of cyanobacteria might be exploited to develop light-sensitive devices or future technologies that convert solar energy into limited amounts of electricity in a self-sustainable, CO2-free manner. PMID:20520829

  7. Exploring Floating Concrete and Beam Design.

    ERIC Educational Resources Information Center

    Snell, Billie G.; Snell, Luke M.

    2002-01-01

    Presents two construction activities that address both state and federal science standards and encourage students to consider career options in mathematics and science. Includes floating concrete and paper bridge activities. (YDS)

  8. Light-activated communication in synthetic tissues.

    PubMed

    Booth, Michael J; Schild, Vanessa Restrepo; Graham, Alexander D; Olof, Sam N; Bayley, Hagan

    2016-04-01

    We have previously used three-dimensional (3D) printing to prepare tissue-like materials in which picoliter aqueous compartments are separated by lipid bilayers. These printed droplets are elaborated into synthetic cells by using a tightly regulated in vitro transcription/translation system. A light-activated DNA promoter has been developed that can be used to turn on the expression of any gene within the synthetic cells. We used light activation to express protein pores in 3D-printed patterns within synthetic tissues. The pores are incorporated into specific bilayer interfaces and thereby mediate rapid, directional electrical communication between subsets of cells. Accordingly, we have developed a functional mimic of neuronal transmission that can be controlled in a precise way. PMID:27051884

  9. Light-activated communication in synthetic tissues

    PubMed Central

    Booth, Michael J.; Schild, Vanessa Restrepo; Graham, Alexander D.; Olof, Sam N.; Bayley, Hagan

    2016-01-01

    We have previously used three-dimensional (3D) printing to prepare tissue-like materials in which picoliter aqueous compartments are separated by lipid bilayers. These printed droplets are elaborated into synthetic cells by using a tightly regulated in vitro transcription/translation system. A light-activated DNA promoter has been developed that can be used to turn on the expression of any gene within the synthetic cells. We used light activation to express protein pores in 3D-printed patterns within synthetic tissues. The pores are incorporated into specific bilayer interfaces and thereby mediate rapid, directional electrical communication between subsets of cells. Accordingly, we have developed a functional mimic of neuronal transmission that can be controlled in a precise way. PMID:27051884

  10. Neuropharmacology of light-induced locomotor activation.

    PubMed

    Amato, Davide; Pum, Martin E; Groos, Dominik; Lauber, Andrea C; Huston, Joseph P; Carey, Robert J; de Souza Silva, Maria A; Müller, Christian P

    2015-08-01

    Presentation of non-aversive light stimuli for several seconds was found to reliably induce locomotor activation and exploratory-like activity. Light-induced locomotor activity (LIA) can be considered a convenient simple model to study sensory-motor activation. LIA was previously shown to coincide with serotonergic and dopaminergic activation in specific cortical areas in freely moving and anesthetized animals. In the present study we explore the neuropharmacology of LIA using a receptor antagonist/agonist approach in rats. The non-selective 5-HT2-receptor antagonist ritanserin (1.5-6 mg/kg, i.p.) dose-dependently reduced LIA. Selective antagonism of either the 5-HT2A-receptor by MDL 11,939 (0.1-0.4 mg/kg, i.p.), or the 5-HT2C-receptor by SDZ SER 082 (0.125-0.5 mg/kg, i.p.), alone or in combination, had no significant influence on LIA. Also the selective 5-HT1A-receptor antagonist, WAY 100635 (0.4 mg/kg, i.p.) did not affect LIA. Neither did the preferential dopamine D2-receptor antagonist, haloperidol (0.025-0.1 mg/kg, i.p.) nor the D2/D3-receptor agonist, quinpirole (0.025-0.5 mg/kg, i.p.) affect the expression of LIA. However, blocking the glutamatergic NMDA-receptor with phencyclidine (PCP, 1.5-6 mg/kg, i.p.) dose-dependently reduced LIA. This effect was also observed with ketamine (10 mg/kg, i.p.). These findings suggest that serotonin and dopamine receptors abundantly expressed in the cortex do not mediate light-stimulus triggered locomotor activity. PCP and ketamine effects, however, suggest an important role of NMDA receptors in LIA. PMID:25842246

  11. Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia.

    PubMed

    Chang, Jin-Soo

    2015-11-01

    The potential arsenite bioteansformation activity of arsenic was investigated by examining bacterial arsenic arsenite-oxidizing gene such as aoxS, aoxR, aoxA, aoxB, aoxC, and aoxD in high arsenic-contaminated drinking water produced from the surface water of floating houses. There is a biogeochemical cycle of activity involving arsenite oxidase aox system and the ars (arsenic resistance system) gene operon and aoxR leader gene activity in Alcaligenes faecalis SRR-11 and aoxS leader gene activity in Achromobacter xylosoxidans TSL-66. Batch experiments showed that SRR-11 and TSL-66 completely oxidized 1 mM of As (III) to As (V) within 35-40 h. The leaders of aoxS and aoxR are important for gene activity, and their effects in arsenic bioremediation and mobility in natural water has a significant ecological role because it allows arsenite oxidase in bacteria to control the biogeochemical cycle of arsenic-contaminated drinking water produced from surface water of floating houses. PMID:26219073

  12. Light and dark-activated biocidal activity of conjugated polyelectrolytes.

    PubMed

    Ji, Eunkyung; Corbitt, Thomas S; Parthasarathy, Anand; Schanze, Kirk S; Whitten, David G

    2011-08-01

    This Spotlight on Applications provides an overview of a research program that has focused on the development and mechanistic study of cationic conjugated polyelectrolytes (CPEs) that function as light- and dark-active biocidal agents. Investigation has centered on poly-(phenylene ethynylene) (PPE) type conjugated polymers that are functionalized with cationic quaternary ammonium solubilizing groups. These polymers are found to interact strongly with Gram-positive and Gram-negative bacteria, and upon illumination with near-UV and visible light act to rapidly kill the bacteria. Mechanistic studies suggest that the cationic PPE-type polymers efficiently sensitize singlet oxygen ((1)O(2)), and this cytotoxic agent is responsible for initiating the sequence of events that lead to light-activated bacterial killing. Specific CPEs also exhibit dark-active antimicrobial activity, and this is believed to arise due to interactions between the cationic/lipophilic polymers and the negatively charged outer membrane characteristic of Gram-negative bacteria. Specific results are shown where a cationic CPE with a degree of polymerization of 49 exhibits pronounced light-activated killing of E. coli when present in the cell suspension at a concentration of 1 μg mL(-1). PMID:21755955

  13. Light and immune systems: activation of immunological activities

    NASA Astrophysics Data System (ADS)

    Huang, Zheng; Liu, Hong; Chen, Wei R.

    2006-02-01

    Light has been used to treat diseases for hundreds of years. Convenient and powerful light sources such as lasers make photomedicine a major branch in diseases treatment and detection. Originally, light was often used for local treatment, using photomechanical, photochemical, photothermal reactions and photomodulation as the major mechanisms. More and more investigators have become interested in the systemic effects of light, particularly in its effects on immune systems. Much work has been done to activate and/or enhance the host immune system to combat cancer, either using light as a direct tool or as an adjuvant method. Light has long been used for assisting disease detection and diagnosis. Advances in light technology have made photo-diagnostics ever more precise spatially and temporally. Many techniques facilitate observation of bio-molecule interactions and other biological processes at the cellular level, hence providing opportunities to detect and monitor immune activities. This manuscript will review recent photo-immunological research in treatment of cancer. The recent development of combination therapies involving lasers will be presented. Specifically, the results of cancer treatment using laser photothermal interaction, either with or without additional immunological stimulation will be discussed. The immunological effects of photodynamic therapy (PDT), and of its combination with immunotherapy in cancer treatment will also be discussed. Much interest has been recently concentrated in the immunological responses after laser treatment. Such responses at cellular and molecular levels will be discussed. The effect of these treatment modalities on the distant metastases also showed promise of light induced antitumor immunity. The combination therapy and induced immunological responses appear to be the key for long-term control of tumors.

  14. Antibacterial nanofiber materials activated by light.

    PubMed

    Jesenská, Soňa; Plíštil, Lukáš; Kubát, Pavel; Lang, Kamil; Brožová, Libuše; Popelka, Stěpán; Szatmáry, Lórant; Mosinger, Jiří

    2011-12-15

    Electrospun polymeric nanofiber materials doped with 5,10,15,20-tetraphenylporphyrin (TPP) photosensitizer were prepared from four different polymers and were characterized with microscopic methods, steady-state, and time-resolved fluorescence and absorption spectroscopy. The polymers used included polyurethane Larithane™ (PUR), polystyrene (PS), polycaprolactone (PCL), and polyamide 6 (PA6). The antibacterial activity of all nanofiber materials against E. coli was activated by visible light and it was dependent on oxygen permeability/diffusion coefficients and the diameter of the polymeric nanofibers. This activity is based on oxidation ability of singlet oxygen O₂(¹Δ(g)) that is generated upon irradiation. All tested nanofiber materials exhibited prolonged antibacterial properties, even in the dark after long-duration irradiation. The post-irradiation effect was explained by the photogeneration of H₂O₂, which provided the material with long-lasting antibacterial properties. PMID:21972201

  15. Active Brownian motion tunable by light

    NASA Astrophysics Data System (ADS)

    Buttinoni, Ivo; Volpe, Giovanni; Kümmel, Felix; Volpe, Giorgio; Bechinger, Clemens

    2012-07-01

    Active Brownian particles are capable of taking up energy from their environment and converting it into directed motion; examples range from chemotactic cells and bacteria to artificial micro-swimmers. We have recently demonstrated that Janus particles, i.e. gold-capped colloidal spheres, suspended in a critical binary liquid mixture perform active Brownian motion when illuminated by light. In this paper, we investigate in more detail their swimming mechanism, leading to active Brownian motion. We show that the illumination-borne heating induces a local asymmetric demixing of the binary mixture, generating a spatial chemical concentration gradient which is responsible for the particle’s self-diffusiophoretic motion. We study this effect as a function of the functionalization of the gold cap, the particle size and the illumination intensity: the functionalization determines what component of the binary mixture is preferentially adsorbed at the cap and the swimming direction (towards or away from the cap); the particle size determines the rotational diffusion and, therefore, the random reorientation of the particle; and the intensity tunes the strength of the heating and, therefore, of the motion. Finally, we harness this dependence of the swimming strength on the illumination intensity to investigate the behavior of a micro-swimmer in a spatial light gradient, where its swimming properties are space-dependent.

  16. Development of Wax-Incorporated Emulsion Gel Beads for the Encapsulation and Intragastric Floating Delivery of the Active Antioxidant from Tamarindus indica L.

    PubMed

    Soradech, Sitthiphong; Petchtubtim, Intira; Thongdon-A, Jeerayu; Muangman, Thanchanok

    2016-01-01

    In this study, tamarind (Tamarindus indica L.) seed extracts with potential antioxidant activity and toxicity to cancer cells were developed as functional foods and nutraceutical ingredients in the form of emulsion gel beads. Three extracts were obtained from ethanol and water: TSCH50, TSCH95 and TSCH. All extracts exhibited high potential for superoxide anion scavenging activity over the IC50 range < 5-11 µg/mL and had no toxic effects on normal cells, however, the water extract (TSCH) was the most effective due to its free radical scavenging activity and toxicity in mitochondrial membranes of cancer cells. Next a study was designed to develop a new formulation for encapsulation and intragastric floating delivery of tamarind seed extract (TSCH) using wax-incorporated emulsion gel beads, which were prepared using a modified ionotropic gelation technique. Tamarind seed extract at 1% (w/w) was used as the active ingredient in all formulations. The effect of the types and amounts of wax on the encapsulation efficiency and percentage of the active release of alginate gel beads was also investigated. The results demonstrated that the incorporation of both waxes into the gel beads had an effect on the percentage of encapsulation efficiency (%) and the percentage of the active ingredient release. Furthermore, the addition of water insoluble waxes (carnauba and bee wax) significantly retarded the release of the active ingredient. The addition of both waxes had a slight effect on drug release behavior. Nevertheless, the increase in incorporated waxes in all formulations could sustain the percentage of active ingredient release. In conclusion, wax-incorporated emulsion gel beads using a modified ionotropic gelation technique could be applied for the intragastric floating delivery and controlled release of functional food and nutraceutical products for their antioxidant and anticancer capacity. PMID:27011162

  17. Float Zone Workshop

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1980-01-01

    A summary of the Analytical Float Zone Experiment System (AFZES) concept is presented. The types of experiments considered for such a facility are discussed. Reports from various industrial producers and users of float zone material are presented. Special emphasis is placed on state-of-the-art developments in low gravity manufacturing and their applications to space processing.

  18. "Floating shoulder" injuries.

    PubMed

    Heng, Kenneth

    2016-12-01

    "Floating shoulder" is a rare injury complex resulting from high-energy blunt force trauma to the shoulder, resulting in scapulothoracic dissociation. It is commonly associated with catastrophic neurovascular injury. Two cases of motorcyclists with floating shoulder injuries are described. PMID:26961729

  19. Positive seal float collar

    SciTech Connect

    Bolding, B.H.

    1981-09-01

    A device for insuring a positive fluid seal between a float collar valving element and valve seat therein is disclosed. The device comprises a rubberlike tension strap or compression steel spring positioned within the float collar valve assembly for urging the valving element against the upper valve seat. Fluid pressure from above the valve assembly will overcome the force exerted on the valving element by the urging device and permit fluid to flow in a downwardly direction through the float collar valve assembly. However, when this fluid pressure above the float collar is reduced, the urging device overcomes the force exerted thereby and again urges the valving element in positive sealing engagement with the upper valve seat to preclude flow of fluid in an upperwardly direction back through the float collar valve assembly.

  20. Can flexibility help you float?

    NASA Astrophysics Data System (ADS)

    Burton, L. J.; Bush, J. W. M.

    2012-10-01

    We consider the role of flexibility in the weight-bearing characteristics of bodies floating at an interface. Specifically, we develop a theoretical model for a two-dimensional thin floating plate that yields the maximum stable plate load and optimal stiffness for weight support. Plates small relative to the capillary length are primarily supported by surface tension, and their weight-bearing potential does not benefit from flexibility. Above a critical size comparable to the capillary length, flexibility assists interfacial flotation. For plates on the order of and larger than the capillary length, deflection from an initially flat shape increases the force resulting from hydrostatic pressure, allowing the plate to support a greater load. In this large plate limit, the shape that bears the most weight is a semicircle, which displaces the most fluid above the plate for a fixed plate length. Exact results for maximum weight-bearing plate shapes are compared to analytic approximations made in the limits of large and small plate sizes. The value of flexibility for floating to a number of biological organisms is discussed in light of our study.

  1. National Synchrotron Light Source 2010 Activity Report

    SciTech Connect

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3) high-temperature superconducting materials that carry electricity with no loss for efficient power transmission lines; and (4) materials for solid-state lighting with half of the present power consumption. Excitement about NSLS-II is evident in many ways, most notably the extraordinary response we had to the 2010 call for beamline development proposals for the anticipated 60 or more beamlines that NSLS-II will ultimately host. A total of 54 proposals were submitted and, after extensive review, 34 were approved. Funding from both the Department of Energy and the National Institutes of Health has already been secured to support the design and construction of a number of these beamlines. FY11 is a challenging and exciting year for the NSLS-II Project as we reach the peak of our construction activity. We remain on track to complete the project by March 2014, a full 15 months ahead of schedule and with even more capabilities than originally planned. The Photon Sciences Directorate is well on its way to fulfilling our vision of being a provider of choice for world-class photon sciences and facilities.

  2. Floating emitter solar cell

    NASA Technical Reports Server (NTRS)

    Chih, Sah (Inventor); Cheng, Li-Jen (Inventor)

    1987-01-01

    A front surface contact floating emitter solar cell transistor is provided in a semiconductor body (n-type), in which floating emitter sections (p-type) are diffused or implanted in the front surface. Between the emitter sections, a further section is diffused or implanted in the front surface, but isolated from the floating emitter sections, for use either as a base contact to the n-type semiconductor body, in which case the section is doped n+, or as a collector for the adjacent emitter sections.

  3. An active lighting module with natural light guiding system and solid state source for indoor illumination

    NASA Astrophysics Data System (ADS)

    Chen, Chi-An; Chen, Yi-Yung; Whang, Allen Jong-Woei

    2009-08-01

    Recently, many researches focus on healthy lighting with sunlight. A Natural Light Guiding System includes collecting, transmitting, and lighting parts. In general, the lighting module of the Natural Light Guiding System only uses scattering element, such as diffuser, to achieve uniform illumination. With the passive lighting module, the application of the Natural Light Guiding System is limited because sunlight is dynamic source. When the sunlight is weak at morning, at evening, or on cloudy day, the illumination system is fail. In this paper, we provide an active lighting module that includes the lighting part of Natural Light Guiding System, LED auxiliary sources, optical elements, and optical detector. We use optical simulation tool to design and simulate the efficiency of the active module. The optical element can redistribute the sunlight only, LED light only, or sunlight with LED light to achieve uniform illumination. With the feedback of the detector, the active lighting module will adjust the intensity of LED to provide a steady illumination. Moreover, the module could replace the backlight module of LCD TV when the house has Natural Light Guiding System for saving energy and higher performance of image.

  4. A floating type holographic display.

    PubMed

    Son, Jung-Young; Lee, Chun-Hae; Chernyshov, Oleksii O; Lee, Beom-Ryeol; Kim, Sung-Kyu

    2013-08-26

    A floating image type holographic display which projects an electronically generated holographic image together with a background image displayed on a monitor/TV to enhance the visual effects of the former image is introduced. This display can display a holographic image with a spatial volume floating in the front space of the display with use of PDLC sheets as the focused plane of the image. This display can preserve and enhance the main property of holographic image from a display chip, i.e., a spatial image with a volume. This property had not been appealed by the previous holographic displays due to the much brighter active surface image accompanied with the reconstructed image and the diffuser used for viewing the image. PMID:24105588

  5. Floating Magnet Demonstration.

    ERIC Educational Resources Information Center

    Wake, Masayoshi

    1990-01-01

    A room-temperature demonstration of a floating magnet using a high-temperature superconductor is described. The setup and operation of the apparatus are described. The technical details of the effect are discussed. (CW)

  6. Float-in powerhouses

    SciTech Connect

    Makela, G.A.

    1983-06-01

    The nation's inland waterway system affords a means of transporting large objects limited only by channel depth, size of locks and bridge clearances. The concept of prefabricating standardized, hydroelectric powerhouses at shipyards, transporting them along the inland waterways and installing them at navigation dams without powerhouses was examined for the McClellan-Kerr Arkansas River Navigation system. It was found that construction costs for the float-in design was very close to those of conventional sitebuilt design. Experience at Greenup Dam on the Ohio River where a float-in powerhouse has been installed indicated that construction time could be reduced if the float-in design was used. This time saving, use of standardized designs and construction of the float-in module at a shipyard may offer advantages that should be examined in more detailed when the power potential of the nation's low navigation dams is assessed.

  7. Micromechanisms with floating pivot

    DOEpatents

    Garcia, Ernest J.

    2001-03-06

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use floating pivot structures to relieve some of the problems encountered in the use of solid flexible pivots.

  8. Stabilized floating platforms

    DOEpatents

    Thomas, David G.

    1976-01-01

    The subject invention is directed to a floating platform for supporting nuclear reactors and the like at selected offshore sites. The platform is provided with a stabilizer mechanism which significantly reduces the effects of wave action upon the platform and which comprises a pair of relatively small floats attached by rigid booms to the platform at locations spaced therefrom for reducing wave pitch, acceleration, and the resonance period of the wave.

  9. Floating wind turbine system

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  10. Advanced Light Source Activity Report 2002

    SciTech Connect

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  11. Lightly stuffed pyrochlore structure of single-crystalline Yb2Ti2O7 grown by the optical floating zone technique

    NASA Astrophysics Data System (ADS)

    Ross, K. A.; Proffen, Th.; Dabkowska, H. A.; Quilliam, J. A.; Yaraskavitch, L. R.; Kycia, J. B.; Gaulin, B. D.

    2012-11-01

    Recent neutron scattering and specific heat studies on the pyrochlore Yb2Ti2O7 have revealed variations in its magnetic behavior below 265 mK. In the best samples, a sharp anomaly in the specific heat is observed at T=265 mK. Other samples, especially single crystals, have broad features in the specific heat which vary in sharpness and temperature depending on the sample, indicating that the magnetic ground state may be qualitatively different in such samples. We performed detailed comparisons of the chemical structure of a pulverized single crystal of Yb2Ti2O7, grown by the floating zone technique, to a sintered powder sample of Yb2Ti2O7. Rietveld refinements of neutron powder diffraction data on these samples reveal that the crushed single crystal is best described as a “stuffed” pyrochlore, Yb2(Ti2-xYbx)O7-x/2 with x = 0.046(4), despite perfectly stoichiometric starting material. Substituting magnetic Yb3+ on the nonmagnetic Ti4+ sublattice would introduce random exchange bonds and local lattice deformations. These are expected to be the mechanism leading to the variation of the delicate magnetic ground state of Yb2Ti2O7. Determination of the cubic cell length a could be useful as a method for characterizing the stoichiometry of nonpulverized single crystals at room temperature.

  12. A Phytochrome Sensory Domain Permits Receptor Activation by Red Light.

    PubMed

    Reichhart, Eva; Ingles-Prieto, Alvaro; Tichy, Alexandra-Madelaine; McKenzie, Catherine; Janovjak, Harald

    2016-05-17

    Optogenetics and photopharmacology enable the spatio-temporal control of cell and animal behavior by light. Although red light offers deep-tissue penetration and minimal phototoxicity, very few red-light-sensitive optogenetic methods are currently available. We have now developed a red-light-induced homodimerization domain. We first showed that an optimized sensory domain of the cyanobacterial phytochrome 1 can be expressed robustly and without cytotoxicity in human cells. We then applied this domain to induce the dimerization of two receptor tyrosine kinases-the fibroblast growth factor receptor 1 and the neurotrophin receptor trkB. This new optogenetic method was then used to activate the MAPK/ERK pathway non-invasively in mammalian tissue and in multicolor cell-signaling experiments. The light-controlled dimerizer and red-light-activated receptor tyrosine kinases will prove useful to regulate a variety of cellular processes with light. PMID:27101018

  13. Blue light-activated hypocrellin B damages ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Leung, A. W. N.; Xiang, J. Y.; Xu, C. S.

    2011-10-01

    In the present study, a novel blue light source from LED was used to activate hypocrellin B in ovarian cancer HO-8910 cells. Hyppcrellin B concentration was kept at 2.5 μM and light doses from 0.5-4.0 J/cm2. Photocytotoxicity was investigated using MTT reduction assay and light microscopy after light irradiation. Cellular morphology was observed using transmission electron microscopy (TEM). MTT assay showed that the cytotoxicity of blue light-activated hypocrellin B in HO-8910 cells increased along with light dose. The observations from light microscopy reinforced the above results. TEM showed that microvillin disappearance, vacuole formation, chromatin condensation, and topical apoptotic body were observed in the cells treated by both light and hypocrellin B. The findings demonstrated that blue light from LED source could effectively activate hypocrellin B to cause the destruction of HO-8910 cells, indicating that Blue light-activated hypocrellin B might be potential therapeutic strategy in the management of ovarian cancer.

  14. An anion channel in Arabidopsis hypocotyls activated by blue light

    NASA Technical Reports Server (NTRS)

    Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.

  15. Floating nut retention system

    NASA Technical Reports Server (NTRS)

    Charles, J. F.; Theakston, H. A. (Inventor)

    1980-01-01

    A floating nut retention system includes a nut with a central aperture. An inner retainer plate has an opening which is fixedly aligned with the nut aperture. An outer retainer member is formed of a base plate having an opening and a surface adjacent to a surface of the inner retainer plate. The outer retainer member includes a securing mechanism for retaining the inner retainer plate adjacent to the outer retainer member. The securing mechanism enables the inner retainer plate to float with respect to the outer retainer number, while simultaneously forming a bearing surface for inner retainer plate.

  16. NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.

    SciTech Connect

    ROTHMAN,E.

    1999-05-01

    In FY 1998, following the 50th Anniversary Year of Brookhaven National Laboratory, Brookhaven Science Associates became the new Managers of BNL. The new start is an appropriate time to take stock of past achievements and to renew or confirm future goals. During the 1998 NSLS Annual Users Meeting (described in Part 3 of this Activity Report), the DOE Laboratory Operations Board, Chaired by the Under Secretary for Energy, Ernest Moniz met at BNL. By chance all the NSLS Chairmen except Martin Blume (acting NSLS Chair 84-85) were present as recorded in the picture. Under their leadership the NSLS has improved dramatically: (1) The VUV Ring current has increased from 100 mA in October 1982 to nearly 1 A today. For the following few years 10 Ahrs of current were delivered most weeks - NSLS now exceeds that every day. (2) When the first experiments were performed on the X-ray ring during FY1985 the electron energy was 2 GeV and the current up to 100 mA - the X-Ray Ring now runs routinely at 2.5 GeV and at 2.8 GeV with up to 350 mA of current, with a very much longer beam half-life and improved reliability. (3) Starting in FY 1984 the proposal for the Phase II upgrade, mainly for a building extension and a suite of insertion devices and their associated beamlines, was pursued - the promises were delivered in full so that for some years now the NSLS has been running with two undulators in the VUV Ring and three wigglers and an undulator in the X-Ray Ring. In addition two novel insertion devices have been commissioned in the X13 straight. (4) At the start of FY 1998 the NSLS welcomed its 7000th user - attracted by the opportunity for pursuing research with high quality beams, guaranteed not to be interrupted by 'delivery failures', and welcomed by an efficient and caring user office and first class teams of PRT and NSLS staff. R & D have lead to the possibility of running the X-Ray Ring at the higher energy of 2.8 GeV. Figure 1 shows the first user beam, which was provided thereafter for half of the running time in FY 1998. In combination with the development of narrow gap undulators this mode opens the possibility of new undulators which could produce hard X-rays in the fundamental, perhaps up to 10 keV. On 27 September 1998, a low horizontal emittance lattice became operational at 2.584 GeV. This results in approximately a 50% decrease in the horizontal beam-size on dipole bending magnet beamlines, and somewhat less of a decrease on the insertion device lines. The beam lifetime is not degraded by the low emittance lattice. This represents an important achievement, enhancing for all users the x-ray ring brightness. The reduced horizontal emittance electron beam will produce brighter x-ray beams for all the beamlines, both bending magnets and insertion devices, adding to other recent increases in the X-Ray ring brightness. During FY 1999 users will gain experience of the new running mode and plans are in place to do the same at 2.8GeV during further studies sessions. Independent evidence of the reduced emittance is shown in Figure 2. This is a pinhole camera scan showing the X-ray beam profile, obtained on the diagnostic beamline X28. Finally, work has begun to update and refine the proposal of the Phase III upgrade endorsed by the Birgeneau panel and BESAC last year. With the whole NSLS facility in teenage years and with many demonstrated enhancements available, the time has come to herald in the next stage of life at the Light Source.

  17. Measurement of action spectra of light-activated processes

    NASA Astrophysics Data System (ADS)

    Ross, Justin; Zvyagin, Andrei V.; Heckenberg, Norman R.; Upcroft, Jacqui; Upcroft, Peter; Rubinsztein-Dunlop, Halina H.

    2006-01-01

    We report on a new experimental technique suitable for measurement of light-activated processes, such as fluorophore transport. The usefulness of this technique is derived from its capacity to decouple the imaging and activation processes, allowing fluorescent imaging of fluorophore transport at a convenient activation wavelength. We demonstrate the efficiency of this new technique in determination of the action spectrum of the light mediated transport of rhodamine 123 into the parasitic protozoan Giardia duodenalis.

  18. Floating Vegetation in Pantanal

    Mass of floating vegetation (embalsado)on Rio Negro river on the border between Paraguay and Bolivia. Located near RAMSAR site and Rio Negro National Park in the Pantanal ecoregion. This region, situated in the extreme northeastern corner of western Paraguay and extending south along the Paraguay ri...

  19. Floating Vegetation in Pantanal

    Mass of floating vegetation (embalsado) on Rio Negro river along the border between Paraguay and Bolivia. Located near RAMSAR site and Rio Negro National Park in the Pantanal ecoregion. This region, situated in the extreme northeastern corner of western Paraguay and extending south along the Paragua...

  20. Compound floating pivot micromechanisms

    DOEpatents

    Garcia, Ernest J.

    2001-04-24

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use compound floating pivot structures to attain far greater tilt angles than are practical using other micromechanical techniques. The new mechanisms are also capable of bi-directional tilt about multiple axes.

  1. 33 CFR 144.01-1 - Life floats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Life floats. 144.01-1 Section 144.01-1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least...

  2. 33 CFR 144.01-15 - Alternates for life floats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Alternates for life floats. 144.01-15 Section 144.01-15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-15 Alternates for life floats. (a) Approved...

  3. 33 CFR 144.01-15 - Alternates for life floats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Alternates for life floats. 144... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-15 Alternates for life floats. (a) Approved lifeboats, approved life rafts or approved inflatable life rafts may...

  4. 33 CFR 144.01-15 - Alternates for life floats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Alternates for life floats. 144... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-15 Alternates for life floats. (a) Approved lifeboats, approved life rafts or approved inflatable life rafts may...

  5. 33 CFR 144.01-15 - Alternates for life floats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Alternates for life floats. 144... (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-15 Alternates for life floats. (a) Approved lifeboats, approved life rafts or approved inflatable life rafts may...

  6. 33 CFR 144.01-10 - Equipment for life floats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Equipment for life floats. 144.01-10 Section 144.01-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-10 Equipment for life floats. (a) Each lifefloat...

  7. 33 CFR 144.01-1 - Life floats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Life floats. 144.01-1 Section 144.01-1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each...

  8. National Synchrotron Light Source 2008 Activity Report

    SciTech Connect

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for work explaining how one class of proteins helps to generate nerve impulses.

  9. Advanced Light Source: Activity report 1993

    SciTech Connect

    Not Available

    1994-11-01

    The Advanced Light Source (ALS) produces the world`s brightest light in the ultraviolet and soft x-ray regions of the spectrum. The first low-energy third-generation synchrotron source in the world, the ALS provides unprecedented opportunities for research in science and technology not possible anywhere else. This year marked the beginning of operations and the start of the user research program at the ALS, which has already produced numerous high quality results. A national user facility located at Lawrence Berkeley Laboratory of the University of California, the ALS is available to researchers from academia, industry, and government laboratories. This report contains the following: (1) director`s message; (2) operations overview; (3) user program; (4) users` executive committee; (5) industrial outreach; (6) accelerator operations; (7) beamline control system; (8) insertion devices; (9) experimental systems; (10) beamline engineering; (11) first results from user beamlines; (12) beamlines for 1994--1995; (13) special events; (14) publications; (15) advisory panels; and (16) ALS staff.

  10. Light Bridge in a Developing Active Region. I. Observation of Light Bridge and its Dynamic Activity Phenomena

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Katsukawa, Yukio; Cheung, Mark C. M.

    2015-10-01

    Light bridges, the bright structures that divide the umbra of sunspots and pores into smaller pieces, are known to produce a wide variety of activity events in solar active regions (ARs). It is also known that the light bridges appear in the assembling process of nascent sunspots. The ultimate goal of this series of papers is to reveal the nature of light bridges in developing ARs and the occurrence of activity events associated with the light bridge structures from both observational and numerical approaches. In this first paper, exploiting the observational data obtained by Hinode, the Interface Region Imaging Spectrograph, and the Solar Dynamics Observatory, we investigate the detailed structure of the light bridge in NOAA AR 11974 and its dynamic activity phenomena. As a result, we find that the light bridge has a weak, horizontal magnetic field, which is transported from the interior by a large-scale convective upflow and is surrounded by strong, vertical fields of adjacent pores. In the chromosphere above the bridge, a transient brightening occurs repeatedly and intermittently, followed by a recurrent dark surge ejection into higher altitudes. Our analysis indicates that the brightening is the plasma heating due to magnetic reconnection at lower altitudes, while the dark surge is the cool, dense plasma ejected from the reconnection region. From the observational results, we conclude that the dynamic activity observed in a light bridge structure such as chromospheric brightenings and dark surge ejections are driven by magnetoconvective evolution within the light bridge and its interaction with the surrounding magnetic fields.

  11. Floating mechanism of a small liquid marble

    NASA Astrophysics Data System (ADS)

    Ooi, Chin Hong; Plackowski, Chris; Nguyen, Anh V.; Vadivelu, Raja K.; John, James A. St.; Dao, Dzung Viet; Nguyen, Nam-Trung

    2016-02-01

    Flotation of small solid objects and liquid droplets on water is critical to natural and industrial activities. This paper reports the floating mechanism of liquid marbles, or liquid droplets coated with hydrophobic microparticles. We used X-ray computed tomography (XCT) to acquire cross-sectional images of the floating liquid marble and interface between the different phases. We then analysed the shape of the liquid marble and the angles at the three-phase contact line (TPCL). We found that the small floating liquid marbles follow the mechanism governing the flotation of solid objects in terms of surface tension forces. However, the contact angles formed and deformation of the liquid marble resemble that of a sessile liquid droplet on a thin, elastic solid. For small liquid marbles, the contact angle varies with volume due to the deformability of the interface.

  12. Floating mechanism of a small liquid marble.

    PubMed

    Ooi, Chin Hong; Plackowski, Chris; Nguyen, Anh V; Vadivelu, Raja K; John, James A St; Dao, Dzung Viet; Nguyen, Nam-Trung

    2016-01-01

    Flotation of small solid objects and liquid droplets on water is critical to natural and industrial activities. This paper reports the floating mechanism of liquid marbles, or liquid droplets coated with hydrophobic microparticles. We used X-ray computed tomography (XCT) to acquire cross-sectional images of the floating liquid marble and interface between the different phases. We then analysed the shape of the liquid marble and the angles at the three-phase contact line (TPCL). We found that the small floating liquid marbles follow the mechanism governing the flotation of solid objects in terms of surface tension forces. However, the contact angles formed and deformation of the liquid marble resemble that of a sessile liquid droplet on a thin, elastic solid. For small liquid marbles, the contact angle varies with volume due to the deformability of the interface. PMID:26902930

  13. Floating mechanism of a small liquid marble

    PubMed Central

    Ooi, Chin Hong; Plackowski, Chris; Nguyen, Anh V.; Vadivelu, Raja K.; John, James A. St.; Dao, Dzung Viet; Nguyen, Nam-Trung

    2016-01-01

    Flotation of small solid objects and liquid droplets on water is critical to natural and industrial activities. This paper reports the floating mechanism of liquid marbles, or liquid droplets coated with hydrophobic microparticles. We used X-ray computed tomography (XCT) to acquire cross-sectional images of the floating liquid marble and interface between the different phases. We then analysed the shape of the liquid marble and the angles at the three-phase contact line (TPCL). We found that the small floating liquid marbles follow the mechanism governing the flotation of solid objects in terms of surface tension forces. However, the contact angles formed and deformation of the liquid marble resemble that of a sessile liquid droplet on a thin, elastic solid. For small liquid marbles, the contact angle varies with volume due to the deformability of the interface. PMID:26902930

  14. Freely floating smectic films.

    PubMed

    May, Kathrin; Harth, Kirsten; Trittel, Torsten; Stannarius, Ralf

    2014-05-19

    We have investigated the dynamics of freely floating smectic bubbles using high-speed optical imaging. Bubbles in the size range from a few hundred micrometers to several centimeters were prepared from collapsing catenoids. They represent ideal model systems for the study of thin-film fluid dynamics under well-controlled conditions. Owing to the internal smectic layer structure, the bubbles combine features of both soap films and vesicles in their unique shape dynamics. From a strongly elongated initial shape after pinch-off, they relax towards the spherical equilibrium, first by a slow redistribution of the smectic layers, and finally by weak, damped shape oscillations. In addition, we describe the rupture of freely floating smectic bubbles, and the formation and stability of smectic filaments. PMID:24692347

  15. Light-mediated Activation of Nitrate Reductase in Synchronous Chlorella

    PubMed Central

    Tischner, Rudolf; Hüttermann, Aloys

    1978-01-01

    The mechanism underlying the sharp increase in activity of nitrate reductase (EC 1.6.6.1) in Chlorella vulgaris forma tertia (strain 211 8k) during the first hour of the 7 hours/5 hours light/dark cycle was investigated. Using the method of density labeling and isopycnic centrifugation, it could be demonstrated that this rapid increase in activity is based on light-mediated activation rather than de novo synthesis of the enzyme. The problematic nature of cycloheximide specificity and models of nitrate reductase activation are discussed. PMID:16660502

  16. Blue Light Stimulates Cognitive Brain Activity in Visually Blind Individuals

    PubMed Central

    Vandewalle, Gilles; Collignon, Olivier; Hull, Joseph T.; Daneault, Véronique; Albouy, Geneviève; Lepore, Franco; Phillips, Christophe; Doyon, Julien; Czeisler, Charles A.; Dumont, Marie; Lockley, Steven W.; Carrier, Julie

    2015-01-01

    Light regulates multiple non-image-forming (or non-visual) circadian, neuroendocrine and neurobehavioral functions, via outputs from intrinsically-photosensitive retinal ganglion cells (ipRGCs). Exposure to light directly enhances alertness and performance, so that light is an important regulator of wakefulness and cognition. The roles of rods, cones and ipRGCs in the impact of light on cognitive brain functions remain unclear, however. A small percentage of blind individuals retain non-image-forming photoreception and offer a unique opportunity to investigate light impacts in the absence of conscious vision, presumably through ipRGCs. Here, we show that three such patients were able to choose non-randomly about the presence of light despite their complete lack of sight. Furthermore, 2s of blue light modified EEG activity when administered simultaneously to auditory stimulations. FMRI further showed that, during an auditory working memory task, less than a minute of blue light triggered the recruitment of supplemental prefrontal and thalamic brain regions involved in alertness and cognition regulation, as well as key areas of the default mode network. These results, which have to be considered as a proof of concept, show that non-image-forming photoreception triggers some awareness for light and can have a more rapid impact on human cognition than previously understood, if brain processing is actively engaged. Furthermore, light stimulates higher cognitive brain activity, independently of vision, and engages supplemental brain areas to perform an ongoing cognitive process. To our knowledge, our results constitute the first indication that ipRGC signaling may rapidly affect fundamental cerebral organization, so that it could potentially participate to the regulation of numerous aspects of human brain function. PMID:23859643

  17. Advanced light source. Activity report 1995

    SciTech Connect

    1996-07-01

    The ALS Activity Report is designed to share the breadth, variety, and interest of the scientific program and ongoing R&D efforts in a form that is accessible to a broad audience. Recent research results are presented in six sections, each representing an important theme in ALS science. These results are designed to demonstrate the capabilities of the ALS, rather than to give a comprehensive review of 1995 experiments. Although the scientific program and facilities report are separate sections, in practice the achievements and accomplishments of users and ALS staff are interdependent. This user-staff collaboration is essential to help us direct our efforts toward meeting the needs of the user community, and to ensure the continued success of the ALS as a premier facility.

  18. Active Learning Strategies for Introductory Light and Optics

    ERIC Educational Resources Information Center

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among…

  19. Light-activated reassembly of split green fluorescent protein.

    PubMed

    Kent, Kevin P; Boxer, Steven G

    2011-03-23

    Truncated green fluorescent protein (GFP) with the 11th β-strand removed is potentially interesting for bioconjugation, imaging, and the preparation of semisynthetic proteins with novel spectroscopic or functional properties. Surprisingly, the truncated GFP generated by removing the 11th strand, once refolded, does not reassemble with a synthetic peptide corresponding to strand 11 but does reassemble following light activation. The mechanism of this process has been studied in detail by absorption, fluorescence, and Raman spectroscopy. The chromophore in this refolded truncated GFP is found to be in the trans configuration. Upon exposure to light a photostationary state is formed between the trans and cis conformations of the chromophore, and only truncated GFP with the cis configuration of the chromophore binds the peptide. A kinetic model describing the light-activated reassembly of this split GFP is discussed. This unique light-driven reassembly is potentially useful for controlling protein-protein interactions. PMID:21351768

  20. Spatial Confinement of Laser Light in Active Random Media

    NASA Astrophysics Data System (ADS)

    Cao, H.; Xu, J. Y.; Zhang, D. Z.; Chang, S.-H.; Ho, S. T.; Seelig, E. W.; Liu, X.; Chang, R. P. H.

    2000-06-01

    We have observed spatial confinement of laser light in micrometer-sized random media. The optical confinement is attributed to the disorder-induced scattering and interference. Our experimental data suggest that coherent amplification of the scattered light enhances the interference effect and helps the spatial confinement. Using the finite-difference time-domain method, we simulate lasing with coherent feedback in the active random medium.

  1. Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements.

    PubMed

    Kern, Christoph; Trick, Sebastian; Rippel, Bernhard; Platt, Ulrich

    2006-03-20

    We present what is to our knowledge the first use of light-emitting diodes (LEDs) as light sources for long-path differential optical absorption spectroscopy (LP-DOAS) measurements of trace gases in the open atmosphere. Modern LEDs represent a potentially advantageous alternative to thermal light sources, in particular to xenon arc lamps, which are the most common active DOAS light sources. The radiative properties of a variety of LEDs were characterized, and parameters such as spectral shape, spectral range, spectral stability, and ways in which they can be influenced by environmental factors were analyzed. The spectra of several LEDs were found to contain Fabry-Perot etalon-induced spectral structures that interfered with the DOAS evaluation, in particular when a constant temperature was not maintained. It was shown that LEDs can be used successfully as light sources in active DOAS experiments that measure NO2 and NO3 near 450 and 630 nm, respectively. Average detection limits of 0.3 parts in 10(9) and 16 parts in 10(12) respectively, were obtained by use of a 6 km light path in the open atmosphere. PMID:16579579

  2. The Floating Ball Paradox

    NASA Astrophysics Data System (ADS)

    Wente, Henry C.

    2008-11-01

    In capillary theory there are two kinds of surface tension. There is the surface tension at the interface between two immiscible fluids. Thomas Young [9] also allowed for there to be a surface tension associated with a liquid-solid interface. He proceeded to use a balance of forces argument to derive the well-known contact angle condition along a liquid-liquid-solid intersection. The validity of this argument has recently been called into question by R. Finn [6]. A floating ball experiment discussed in that paper leads to an apparent paradox. We address this issue.

  3. Point-light biological motion perception activates human premotor cortex.

    PubMed

    Saygin, Ayse Pinar; Wilson, Stephen M; Hagler, Donald J; Bates, Elizabeth; Sereno, Martin I

    2004-07-01

    Motion cues can be surprisingly powerful in defining objects and events. Specifically, a handful of point-lights attached to the joints of a human actor will evoke a vivid percept of action when the body is in motion. The perception of point-light biological motion activates posterior cortical areas of the brain. On the other hand, observation of others' actions is known to also evoke activity in motor and premotor areas in frontal cortex. In the present study, we investigated whether point-light biological motion animations would lead to activity in frontal cortex as well. We performed a human functional magnetic resonance imaging study on a high-field-strength magnet and used a number of methods to increase signal, as well as cortical surface-based analysis methods. Areas that responded selectively to point-light biological motion were found in lateral and inferior temporal cortex and in inferior frontal cortex. The robust responses we observed in frontal areas indicate that these stimuli can also recruit action observation networks, although they are very simplified and characterize actions by motion cues alone. The finding that even point-light animations evoke activity in frontal regions suggests that the motor system of the observer may be recruited to "fill in" these simplified displays. PMID:15240810

  4. Design, synthesis, and cercaricidal activity of novel high-efficient, low-toxic self-spreading PEG-N-salicylanilide derivatives against cercariae larvae of Schistosome Japonicum floating on the water surface.

    PubMed

    Guo, Wei; Zheng, Lv-Yin; Wu, Ren-Miao; Fan, Xiao-Lin

    2015-05-01

    Novel cercaricides of PEG-N-salicylanilide derivatives that could self-spread and float on the water surface were designed and synthesized according to the particular habit of cercariae larvae of Schistosome japonicum. The structures of the cercaricides were characterized by the infrared spectra (IR), magnetic resonance ((1) H NMR), and mass spectrum (MS). The images of the floating cercaricides on the water surface were investigated by the Brewster angle microscopy (BAM). When the cercaricides were dropped on the water surface, they could spread along the air-water interface automatically and form thin membranes floating on the water surface immediately. The lethality rate of cercariae for 5a and 6a was more than 90% in 120 min at a surface concentration of 0.008 mg/cm(2) . The non-ionic surfactant-cercaricides not only showed strong cercaricidal activities against the cercariae larvae but also exhibited low toxicities, which offered an effective and environment-friendly approach for the reduction of population infection rate and the realization of schistosome control. PMID:25244005

  5. Analysis of an anomaly: the increase in time float following consumption.

    PubMed

    Qi, Jianxun; Su, Zhixiong

    2014-01-01

    One fundamental axiom for project plan and schedule relates to the notion that time float will be reduced following its consumption. However, an anomalous scenario can emerge in which an activity's time float increases following its consumption. By exploring the associations between time float and paths in activity networks, we (a) reveal the conditions under which the anomaly occurs and (b) summarize laws related to total float. An activity's total float increases in parallel with its duration prolongation within a given boundary but remains constant or decreases in parallel with a prolongation outside the boundary. Furthermore, whereas a prolongation of an activity's duration in excess of classic total float does not delay project completion time, a lag of its start time to a degree slightly greater than the total float does. This analysis reveals different types of total float that correspond to different ways of usage. From this, we offer definitions for translation total float and prolongation total float that deviate from traditional conventions regarding the uniqueness of total float. PMID:25250376

  6. Regioselective chromatic orthogonality with light-activated metathesis catalysts.

    PubMed

    Levin, Efrat; Mavila, Sudheendran; Eivgi, Or; Tzur, Eyal; Lemcoff, N Gabriel

    2015-10-12

    The ability to selectively guide consecutive chemical processes towards a preferred pathway by using light of different frequencies is an appealing concept. Herein we describe the coupling of two photochemical reactions, one the photoisomerization and consequent activation of a sulfur-chelated latent olefin-metathesis catalyst at 350?nm, and the other the photocleavage of a silyl protecting group at 254?nm. Depending on the steric stress exerted by a photoremovable neighboring chemical substituent, we demonstrate the selective formation of either five- or six-membered-ring frameworks by light-triggered ring-closing metathesis. The orthogonality of these light-induced reactions allows the initiation of these processes independently and in interchangeable order, according to the wavelength of light used to promote them. PMID:25782974

  7. The effect of light-activation sources on tooth bleaching

    PubMed Central

    Baroudi, Kusai; Hassan, Nadia Aly

    2014-01-01

    Vital bleaching is one of the most requested cosmetic dental procedures asked by patients who seek a more pleasing smile. This procedure consists of carbamide or hydrogen peroxide gel applications that can be applied in-office or by the patient (at-home/overnight bleaching system). Some in-office treatments utilise whitening light with the objective of speeding up the whitening process. The objective of this article is to review and summarise the current literature with regard to the effect of light-activation sources on in-office tooth bleaching. A literature search was conducted using Medline, accessed via the National Library of Medicine Pub Med from 2003 to 2013 searching for articles relating to effectiveness of light activation sources on in-office tooth bleaching. This study found conflicting evidence on whether light truly improve tooth whitening. Other factors such as, type of stain, initial tooth colour and subject age which can influence tooth bleaching outcome were discussed. Conclusions: The use of light activator sources with in-office bleaching treatment of vital teeth did not increase the efficacy of bleaching or accelerate the bleaching. PMID:25298598

  8. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Technical Reports Server (NTRS)

    Howard, Richard (Inventor)

    1994-01-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprises at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  9. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor); Bell, Joseph L. (Inventor)

    1996-01-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprising at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  10. The effect of rf plasma fluctuation on floating harmonic probes

    NASA Astrophysics Data System (ADS)

    Lee, Jaewon; Kim, Kyunghyun; Jeon, Sangbum; Chung, Chin-Wook

    2014-10-01

    Measurement of electron temperature, plasma density and ion flux with floating harmonic method (FHM) has several advantages for RF plasma diagnosis. In principle, RF oscillation of plasma does not distort the characteristic of the probe at a floating potential. Thus, an active or passive RF compensation is unnecessary. However, in fact, the uncompensated probe results in higher electron temperature than the rf compensated probe especially at low plasma density. Plasma parameters from the FHM and that of Langmuir probe was compared, and it shows that the measured plasma parameter from RF compensated floating probe (FHM) has great agreements with Langmuir probe.

  11. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, J.G.

    1993-11-16

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

  12. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, James G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  13. Obesity = physical activity + dietary intake + sleep stages + light exposure.

    PubMed

    Partonen, Timo

    2014-08-01

    Daily levels of physical activity and calories from dietary intake have been the focus of obesity prevention measures. Recent findings have made a twist in the line of thinking. The timing of physical exercise and that of dietary intake are also important to obesity prevention. Night-time sleep and exposure to light are therefore important targets of intervention. PMID:25088724

  14. Selenium bond decreases ON resistance of light-activated switch

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Vitrified amorphous selenium bond decreases the ON resistance of a gallium arsenide-silicon light-activated, low-level switch. The switch is used under a pulse condition to prolong switch life and minimize errors due to heating, devitrification, and overdrawing.

  15. Advanced Light Source Activity Report 1997/1998

    SciTech Connect

    Greiner, Annette

    1999-03-01

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

  16. Floating Silicon Method

    SciTech Connect

    Kellerman, Peter

    2013-12-21

    The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

  17. Poking a floating sheet

    NASA Astrophysics Data System (ADS)

    Davidovitch, Benny; Huang, Jiangshui; Menon, Narayanan; Russell, Thomas P.; Vella, Dominic

    2014-03-01

    Poking of liquid surface leads to a simple deformation of the surface, whose characteristic scale is nothing but the capillary length. In contrast, the poking of a circular solid sheet floating on a liquid bath demonstrates a surprisingly complex phenomenology, with numerous distinct length scales that are determined by the capillary length as well as by the poking amplitude and the stretching modulus of the sheet. The fundamental physical mechanism that underlies this complex response is intimately related to the emergence of an highly anisotropic stress, whose radial component is tensile and its hoop component is asymptotically compression-free. In this talk I will discuss the various parameter regimes that describe this problem and will identify the characteristic patterns of the poked sheet in these regimes. Experimental results will be presented and compared to theoretical predictions.

  18. Light-Activated Proteolysis for the Spatiotemporal Control of Proteins.

    PubMed

    Delacour, Quentin; Li, Chenge; Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Aujard, Isabelle; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2015-07-17

    The regulation of proteolysis is an efficient way to control protein function in cells. Here, we present a general strategy enabling to increase the spatiotemporal resolution of conditional proteolysis by using light activation as trigger. Our approach relies on the auxin-inducible degradation system obtained by transposing components of the plant auxin-dependent degradation pathway in mammalian cells. We developed a photoactivatable auxin that acts as a photoactivatable inducer of degradation. Upon local and short light illumination, auxin is released in cells and triggers the degradation of a protein of interest with spatiotemporal control. PMID:25938742

  19. Floating into Deep Space

    NASA Astrophysics Data System (ADS)

    La Frenais, R.; Saraceno, T.; Powell, J.

    2014-04-01

    Is it possible for spaceflight to become more sustainable? Artist and architect Tomas Saraceno proposes a long-term artscience research project based on his initial work with solar balloons to join with the efforts of engineers such as John Powell, working on the Airship to Orbit experiments, which describe a three stage process of using airships to fly to a large suborbital "Dark Sky Station' then literally floating into orbit with additional electrical and chemical propulsion. (See: http://www.jpaerospace.com) In his artworks Tomás Saraceno proposes cell-like flying cities as possible architectonic living spaces in direct reference to Buckminster Fuller's Cloud Nine (circa 1960). The fantastic architectural utopia Cloud Nine consists of a freely floating sphere measuring one mile in diameter that offers living space to several autonomous communities encompassing thousands of inhabitants each. The notion of the cloud is essential to the artist's work. The cloud as metaphor stands for artistic intention, for the meaning of territory and border in today's (urban) society, and for exploring possibilities for the sustainable development of the human living environment. In Saraceno's work this environment is not limited to the earth, but is explicitly conceived to reach into outer space. (Biomimetic Constructions- On the works of Tomás Saraceno By Katharina Schlüter) Saraceno is also interested in human factors experiments using his existing constructions as analogue environments for living on Mars and is proposing carry out a series of workshops, experiments and solar balloon launces in White Sands desert in early 2016 in collaboration with the curator Dr Rob La Frenais, the Rubin Center at The University of Texas at El Paso and various scientific partners.

  20. Active control of light beam in transformation optics (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Liu, Hui

    2015-09-01

    The control of electromagnetic radiation in transformation optical metamaterials brings the development of vast variety of optical devices. Of a particular importance is the possibility to control the propagation of light with light. In this work, we use a structured planar cavity to enhance the thermo-optic effect in a transformation optical waveguide. In the process, a control laser produces apparent inhomogeneous refractive index change inside the waveguides. The trajectory of a second probe laser beam is then continuously tuned in the experiment. The experimental results agree well with the developed theory. The reported method can provide a new approach toward development of transformation optical devices where active all-optical control of the impinging light can be achieved.

  1. Wiring the retinal circuits activated by light during early development

    PubMed Central

    2014-01-01

    Background Light information is sorted by neuronal circuits to generate image-forming (IF) (interpretation and tracking of visual objects and patterns) and non-image-forming (NIF) tasks. Among the NIF tasks, photic entrainment of circadian rhythms, the pupillary light reflex, and sleep are all associated with physiological responses, mediated mainly by a small group of melanopsin-expressing retinal ganglion cells (mRGCs). Using Xenopus laevis as a model system, and analyzing the c-fos expression induced by light as a surrogate marker of neural activity, we aimed to establish the developmental time at which the cells participating in both systems come on-line in the retina. Results We found that the peripheral retina contains 80% of the two melanopsin-expressing cell types we identified in Xenopus: melanopsin-expressing horizontal cells (mHCs; opn4m+/opn4x+/Prox1+) and mRGCs (2.7% of the total RGCs; opn4m+/opn4x+/Pax6+/Isl1), in a ratio of 6:1. Only mRGCs induced c-fos expression in response to light. Dopaminergic (tyrosine hydroxylase-positive; TH+) amacrine cells (ACs) may be part of the melanopsin-mediated circuit, as shown by preferential c-fos induction by blue light. In the central retina, two cell types in the inner nuclear layer (INL) showed light-mediated induction of c-fos expression [(On-bipolar cells (Otx2+/Isl1+), and a sub-population of ACs (Pax6−/Isl1−)], as well as two RGC sub-populations (Isl1+/Pax6+ and Isl1+/Pax6−). Melanopsin and opsin expression turned on a day before the point at which c-fos expression could first be activated by light (Stage 37/38), in cells of both the classic vision circuit, and those that participate in the retinal component of the NIF circuit. Key to the classic vision circuit is that the component cells engage from the beginning as functional ‘unit circuits’ of two to three cells in the INL for every RGC, with subsequent growth of the vision circuit occurring by the wiring in of more units. Conclusions We identified melanopsin-expressing cells and specific cell types in the INL and the RGC layer which induce c-fos expression in response to light, and we determined the developmental time when they become active. We suggest an initial formulation of retinal circuits corresponding to the classic vision pathway and melanopsin-mediated circuits to which they may contribute. PMID:24521229

  2. Quality Control and Application of Oxygen Data from Profiling Floats

    NASA Astrophysics Data System (ADS)

    Takeshita, Y.; Martz, T. R.; Johnson, K. S.; Plant, J.; Riser, S.; Gilbert, D.

    2010-12-01

    Profiling floats provide a near-ideal platform for monitoring the seasonal evolution of both physical and chemical processes at the regional, basin, and global scale. Although temperature, salinity, and pressure data must pass well-defined Quality Control protocols at Global Data Assembly Centers, no such protocol exists for chemical data (oxygen and nitrate) now being measured on 348 “Argo Equivalents” (of which ~150 are still active) within the ~3200 float array. With the number of chemical measurements returned from the Argo array rapidly growing, it is important to develop and evaluate new QC procedures for these data in order to use the chemical Argo dataset for quantitative descriptions of oceanic biogeochemical processes. We initiated a preliminary assessment of quality control protocols for profiling float data, with the ultimate goal of using the QC'd dataset for biogeochemical studies, including use of float oxygen data to constrain a model that calculates rates of Net Community Production. Profiling float oxygen data prior to June 2010 were compared to the World Ocean Atlas 2009 monthly climatology. Large deviations from the climatology were observed for many floats, indicating the need for a QC protocol for float oxygen data, and possibly also indicating real processes not accounted for in the climatology. Approximately 100 floats were selected to calculate net community production in the euphotic zone. Here we discuss different QC methods that we have explored, and evaluate how each method affects the calculated NCP rates. Depending on which QC method is used, the sign of the NCP rates can change, thus further highlighting the importance of establishing a proper QC protocol for float oxygen data.

  3. Channelrhodopsins: visual regeneration and neural activation by a light switch

    PubMed Central

    Natasha, G; Tan, Aaron; Farhatnia, Yasmin; Rajadas, Jayakumar; Hamblin, Michael R.; Khaw, Peng T.; Seifalian, Alexander M.

    2013-01-01

    The advent of optogenetics provides a new direction for the field of neuroscience and biotechnology, serving both as a refined investigative tool and as potential cure for many medical conditions via genetic manipulation. Although still in its infancy, recent advances in optogenetics has made it possible to remotely manipulate in vivo cellular functions using light. Coined Nature Methods’ ‘Method of the Year’ in 2010, the optogenetic toolbox has the potential to control cell, tissue and even animal behaviour. This optogenetic toolbox consists of light-sensitive proteins that are able to modulate membrane potential in response to light. Channelrhodopsins (ChR) are light-gated microbial ion channels, which were first described in green algae. ChR2 (a subset of ChR) is a seven transmembrane a helix protein, which evokes membrane depolarization and mediates an action potential upon photostimulation with blue (470 nm) light. By contrast to other seven-transmembrane proteins that require second messengers to open ion channels, ChR2 form ion channels themselves, allowing ultrafast depolarization (within 50 milliseconds of illumination). It has been shown that integration of ChR2 into various tissues of mice can activate neural circuits, control heart muscle contractions, and even restore breathing after spinal cord injury. More compellingly, a plethora of evidence has indicated that artificial expression of ChR2 in retinal ganglion cells can reinstate visual perception in mice with retinal degeneration. PMID:23664865

  4. Controlling Protein Activity and Degradation Using Blue Light.

    PubMed

    Lutz, Anne P; Renicke, Christian; Taxis, Christof

    2016-01-01

    Regulation of protein stability is a fundamental process in eukaryotic cells and pivotal to, e.g., cell cycle progression, faithful chromosome segregation, or protein quality control. Synthetic regulation of protein stability requires conditional degradation sequences (degrons) that induce a stability switch upon a specific signal. Fusion to a selected target protein permits to influence virtually every process in a cell. Light as signal is advantageous due to its precise applicability in time, space, quality, and quantity. Light control of protein stability was achieved by fusing the LOV2 photoreceptor domain of Arabidopsis thaliana phototropin1 with a synthetic degron (cODC1) derived from the carboxy-terminal degron of ornithine decarboxylase to obtain the photosensitive degron (psd) module. The psd module can be attached to the carboxy terminus of target proteins that are localized to the cytosol or nucleus to obtain light control over their stability. Blue light induces structural changes in the LOV2 domain, which in turn lead to activation of the degron and thus proteasomal degradation of the whole fusion protein. Variants of the psd module with diverse characteristics are useful to fine-tune the stability of a selected target at permissive (darkness) and restrictive conditions (blue light). PMID:26965116

  5. Channelrhodopsins: visual regeneration and neural activation by a light switch.

    PubMed

    G, Natasha; Tan, Aaron; Farhatnia, Yasmin; Rajadas, Jayakumar; Hamblin, Michael R; Khaw, Peng T; Seifalian, Alexander M

    2013-06-25

    The advent of optogenetics provides a new direction for the field of neuroscience and biotechnology, serving both as a refined investigative tool and as potential cure for many medical conditions via genetic manipulation. Although still in its infancy, recent advances in optogenetics has made it possible to remotely manipulate in vivo cellular functions using light. Coined Nature Methods' 'Method of the Year' in 2010, the optogenetic toolbox has the potential to control cell, tissue and even animal behaviour. This optogenetic toolbox consists of light-sensitive proteins that are able to modulate membrane potential in response to light. Channelrhodopsins (ChR) are light-gated microbial ion channels, which were first described in green algae. ChR2 (a subset of ChR) is a seven transmembrane α helix protein, which evokes membrane depolarization and mediates an action potential upon photostimulation with blue (470 nm) light. By contrast to other seven-transmembrane proteins that require second messengers to open ion channels, ChR2 form ion channels themselves, allowing ultrafast depolarization (within 50 milliseconds of illumination). It has been shown that integration of ChR2 into various tissues of mice can activate neural circuits, control heart muscle contractions, and even restore breathing after spinal cord injury. More compellingly, a plethora of evidence has indicated that artificial expression of ChR2 in retinal ganglion cells can reinstate visual perception in mice with retinal degeneration. PMID:23664865

  6. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights.

    PubMed

    Rowse, Elizabeth G; Harris, Stephen; Jones, Gareth

    2016-01-01

    We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum 'white' light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these 'light-intolerant' bat species. PMID:27008274

  7. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights

    PubMed Central

    Rowse, Elizabeth G.; Harris, Stephen; Jones, Gareth

    2016-01-01

    We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum ‘white’ light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these ‘light-intolerant’ bat species. PMID:27008274

  8. Light-induced self-assembly of active rectification devices.

    PubMed

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E

    2016-04-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics-a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or "rectified") by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured "primordial soup" of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath. PMID:27051883

  9. Light-induced self-assembly of active rectification devices

    PubMed Central

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E.

    2016-01-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics—a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or “rectified”) by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured “primordial soup” of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath. PMID:27051883

  10. Activation of visual pigments by light and heat.

    PubMed

    Luo, Dong-Gen; Yue, Wendy W S; Ala-Laurila, Petri; Yau, King-Wai

    2011-06-10

    Vision begins with photoisomerization of visual pigments. Thermal energy can complement photon energy to drive photoisomerization, but it also triggers spontaneous pigment activation as noise that interferes with light detection. For half a century, the mechanism underlying this dark noise has remained controversial. We report here a quantitative relation between a pigment's photoactivation energy and its peak-absorption wavelength, λ(max). Using this relation and assuming that pigment activations by light and heat go through the same ground-state isomerization energy barrier, we can predict the relative noise of diverse pigments with multi-vibrational-mode thermal statistics. The agreement between predictions and our measurements strongly suggests that pigment noise arises from canonical isomerization. The predicted high noise for pigments with λ(max) in the infrared presumably explains why they apparently do not exist in nature. PMID:21659602

  11. NULL Convention Floating Point Multiplier

    PubMed Central

    Ramachandran, Seshasayanan

    2015-01-01

    Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation. PMID:25879069

  12. NULL convention floating point multiplier.

    PubMed

    Albert, Anitha Juliette; Ramachandran, Seshasayanan

    2015-01-01

    Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation. PMID:25879069

  13. Control development for floating wind

    NASA Astrophysics Data System (ADS)

    Savenije, Feike; Peeringa, Johan

    2014-06-01

    Control of a floating wind turbine has proven to be challenging, but essential for lowering the cost of floating wind energy. Topic of a recent joint R&D project by GustoMSC, MARIN and ECN, is the concept design and verification with coupled simulations and model tests of the GustoMSC Tri-Floater. Only using an integral design approach, including mooring and control design, a cost effective system can be obtained. In this project, ECN developed a general floating wind turbine control strategy and applied this in a case study to the GustoMSC Tri-Floater and the OC3Hywind spar, both equipped with the NREL 5MW RWT. The designed controller ensures stable operation, while maintaining proper speed and power regulation. The motions of the floating support are reduced and substantial load reduction has been achieved.

  14. Extra-strong "floating nut"

    NASA Technical Reports Server (NTRS)

    Charles, J. F.; Theakston, H.

    1979-01-01

    Increased bearing area withstands much higher torque than previous designs. Floating nut makes it possible to fasten parts on heavy-duty equipment, such as tractors and cranes, even though they can be reached for tightening from one side only.

  15. Skylab floating ice experiment

    NASA Technical Reports Server (NTRS)

    Campbell, W. J. (Principal Investigator); Ramseier, R. O.; Weaver, R. J.; Weeks, W. F.

    1975-01-01

    The author has identified the following significant results. Coupling of the aircraft data with the ground truth observations proved to be highly successful with interesting results being obtained with IR and SLAR passive microwave techniques, and standard photography. Of particular interest were the results of the PMIS system which operated at 10.69 GHz with both vertical and horizontal polarizations. This was the first time that dual polarized images were obtained from floating ice. In both sea and lake ice, it was possible to distinguish a wide variety of thin ice types because of their large differences in brightness temperatures. It was found that the higher brightness temperature was invariably obtained in the vertically polarized mode, and as the age of the ice increases the brightness temperature increases in both polarizations. Associated with this change in age, the difference in temperature was observed as the different polarizations decreased. It appears that the horizontally polarized data is the most sensitive to variations in ice type for both fresh water and sea ice. The study also showed the great amount of information on ice surface roughness and deformation patterns that can be obtained from X-band SLAR observations.

  16. Impact on floating membranes

    NASA Astrophysics Data System (ADS)

    Vandenberghe, Nicolas; Duchemin, Laurent

    2016-05-01

    When impacted by a rigid body, a thin elastic membrane with negligible bending rigidity floating on a liquid pool deforms. Two axisymmetric waves radiating from the impact point propagate. First, a longitudinal wave front, associated with in-plane deformation of the membrane and traveling at constant speed, separates an outward stress-free domain from a stretched domain. Then, in the stretched domain a dispersive transverse wave travels at a speed that depends on the local stretching rate. The dynamics is found to be self-similar in time. Using this property, we show that the wave dynamics is similar to the capillary waves that propagate at a liquid-gas interface but with a surface tension coefficient that depends on impact speed. During wave propagation, we observe the development of a buckling instability that gives rise to radial wrinkles. We address the dynamics of this fluid-body system, including the rapid deceleration of an impactor of finite mass, an issue that may have applications in the domain of absorption of impact energy.

  17. Floating into Thin Air

    SciTech Connect

    Hazi, A U

    2007-02-06

    On May 18, 2005, a giant helium balloon carrying the High Energy Focusing Telescope (HEFT) sailed into the spring sky over the deserts of New Mexico. The spindly steel and aluminum gondola that houses the optics, detectors, and other components of the telescope floated for 25 hours after its launch from Fort Sumner, New Mexico. For 21 of those hours, the balloon was nearly 40 kilometers above Earth's surface--almost four times higher than the altitude routinely flown by commercial jet aircraft. In the upper reaches of Earth's atmosphere, HEFT searched the universe for x-ray sources from highly energetic objects such as binary stars, galaxy clusters, and supermassive black holes. Before landing in Arizona, the telescope observed and imaged a dozen scientific targets by capturing photons emitted from these objects in the high-energy (hard) x-ray range (above 10 kiloelectronvolts). Among these targets were the Crab synchrotron nebula, the black hole Cygnus X-1 (one of the brightest x-ray sources in the sky), and the blazar 3C454.3. The scientific data gathered from these targets are among the first focused hard x-ray images returned from high altitudes.

  18. 33 CFR 144.01-10 - Equipment for life floats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....01-10, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Equipment for life floats. 144.01... type constructed in accordance with 46 CFR Subpart 161.010, except a water light constructed...

  19. Electrically floating, near vertical incidence, skywave antenna

    DOEpatents

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  20. Acceptor impurity activation in III-nitride light emitting diodes

    NASA Astrophysics Data System (ADS)

    Römer, Friedhard; Witzigmann, Bernd

    2015-01-01

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  1. Acceptor impurity activation in III-nitride light emitting diodes

    SciTech Connect

    Römer, Friedhard Witzigmann, Bernd

    2015-01-12

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  2. Photocatalytic activities of various pentavalent bismuthates under visible light irradiation

    SciTech Connect

    Takei, Takahiro; Haramoto, Rie; Dong, Qiang; Kumada, Nobuhiro; Yonesaki, Yoshinori; Kinomura, Nobukazu; Mano, Takayuki; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Miyake, Michihiro

    2011-08-15

    LiBiO{sub 3}, NaBiO{sub 3}, MgBi{sub 2}O{sub 6}, KBiO{sub 3}, ZnBi{sub 2}O{sub 6}, SrBi{sub 2}O{sub 6}, AgBiO{sub 3}, BaBi{sub 2}O{sub 6} and PbBi{sub 2}O{sub 6} were synthesized by various processes such as hydrothermal treatment, heating and so on. These materials were examined for their photocatalytic activities in the decolorization of methylene blue and decomposition of phenol under visible light irradiation. For methylene blue decolorization, the presence of KBiO{sub 3} resulted in complete decoloration within 5 min. For phenol decomposition, NaBiO{sub 3} showed the highest activity, while LiBiO{sub 3}, SrBi{sub 2}O{sub 6} and BaBi{sub 2}O{sub 6} possessed almost comparable decomposition rates. Their decomposition rates were apparently higher than that by anatase (P25) under UV irradiation. - Graphical abstract: Nine pentavalent bismuthates were synthesized and were examined for their photocatalytic activities by decomposition of phenol under visible light irradiation. NaBiO{sub 3}, LiBiO{sub 3}, SrBi{sub 2}O{sub 6} and BaBi{sub 2}O{sub 6} indicated faster decomposition rate than that of anatase (P25) under UV-vis light irradiation. Highlights: > KBiO{sub 3} decolorize methylene blue aqueous solution immediately within 5 min. > NaBiO{sub 3}, LiBiO{sub 3}, SrBi{sub 2}O{sub 6} and BaBi{sub 2}O{sub 6} indicated high decomposition rate of phenol. > The d electron of Zn, Ag and Pb form broad conduction band. > The broad conduction band poses to diminish photocatalytic activity.

  3. Plasmonic Metamaterials for Active and Passive Light Control

    NASA Astrophysics Data System (ADS)

    Lu, Danyong Dylan

    Fundamental study on plasmonics excites surface plasmons opening possibility for stronger light-matter interaction at nanoscales and optical frequencies. On the other hand, metamaterials, known as artificial materials built with designable subwavelength units, offer unprecedented new material properties not existing in nature. By combining unique advantages in these two areas, plasmonic metamaterials gain tremendous momentum for fundamental research interest and potential practical applications through the active and passive interaction with and control of light. This thesis is focused on the theoretical and experimental study of plasmonic metamaterials with tunable plasmonic properties, and their applications in controlling spontaneous emission process of quantum emitters, and manipulating light propagation, scattering and absorption. To break the limitation of surface plasmon properties by existing metal materials, composite- and multilayer-based metamaterials are investigated and their tunable plasmonic properties are demonstrated. Nanopatterned multilayer metamaterials with hyperbolic dispersion relations are further utilized to enhance spontaneous emission rates of molecules at desired frequencies with improved far-field radiative power through the Purcell effect. Theoretical calculations and experimental lifetime characterizations show the tunable broadband Purcell enhancement of 76 fold on the hyperbolic metamaterials that better aligns with spontaneous emission spectra and the emission intensity improvement of 80 fold achieved by the out-coupling effect of nanopatterns. This concept is later applied to quantum-well light emitting devices for improving the light efficiency and modulation speed at blue and green wavelengths. On the passive light manipulation, in contrast to strong plasmonic scattering from metal patterns, anomalously weak scattering by patterns in multilayer hyperbolic metamaterials is observed and experimentally demonstrated to be insensitive to pattern sizes, shapes and incident angles, and has potential applications in scattering cross-section engineering, optical encryption, low-observable conductive probes and opto-electric devices. Lastly, the concept of metamaterials is also extended to selective control of light absorption and reflection for potential solar energy applications. A high-performance spectrally selective coating based on multi-scaled metamaterials is designed and fabricated with 90-95% solar absorptivity and <30% infrared emissivity near the peak of 500 °C black body radiation, which can be utilized for designing solar absorbers with high thermal efficiency for future high temperature concentrating solar power systems.

  4. Floating intake reduces pump damage

    SciTech Connect

    Kronig, A.

    1993-12-31

    The solution to a costly sand erosion problem at the Grande Dixence hydroelectric project in Switzerland turned out to be as simple as a floating pump. The 726-MW Grande Dixence project drains a 350-square-kilometer reach of the Zermatt and Herens valleys in the southwestern Swiss Alps. About half of the drainage area is covered by active glaciers. Because the glaciers in Zermatt Valley are so low in altitude, their water is collected in Z`mutt Reservoir at the base of the Matterhorn, then pumped up 500 meters for transport to the main Grande Disence Reservoir near Sion. The glacier water is heavily laden with sand. In spite of a gravel pass and a desilter, the 700,000-acubic-meter Z`mutt Reservoir receives large quantities of sand. The sand tends to remain in solution because of the low water temperatures (1 to 2 degrees Centigrade). In the original intake system, the sand would be sucked into the pump intakes, causing extensive erosion to the pump wheels and an expensive yearly program of repair. (Pump damage averaged 200,000 Swiss Francs ($284,000 U.S.) per year between 1980 and 1985.)

  5. [Functional significance of a floating eye model].

    PubMed

    Galoian, V R

    1989-01-01

    The role of the floating eye model in the organization of situating and producing eye micromovements was studied. There is presented a hydromechanical model of orthophoria of latent and obvious squint. It is shown that the multiformity of obvious squint depends on the variety of combinations of nonuniform forces in the right eye aparting from the left one, which is the result of nonuniform deviations of both eyes from the norm, and heterophoria is the result of combinations of uniform forces aparting and of analogous deviations of both eyes form. It is shown that the concomittant squint is caused by the existence of different polar heterophoria at both eyes, and their multiformity is the result of their various combinations. The essential necessity of the eye floating for the organization of micromovements--eye tremor and drift is established. It is shown that the eye tremor which takes place under incomplete tetanus of the musole is possible only at optimal equilibrium of the eye and absence of friction they both are at floating. The non-muscle moving character of the eye drift is revealed. It proceeds under the influence of hydromechanical forces of aparting and nonequilibrated gravity of the cornea as a result of weakening of the eye movement muscle under fixation. The cause of the optic, axis divergence (OA) with optic line (OL) and the necessity with it of postnatal development of the eye dioptrics under active influence of the motor apparatus was discovered. Physiology of the eye floating, new conclusions and a hypothesis concerning the model are discussed. PMID:2765574

  6. Design, Synthesis, and Monitoring of Light-Activated Motorized Nanomachines

    NASA Astrophysics Data System (ADS)

    Chiang, Pinn-Tsong

    Our group has developed a family of single molecules termed nanocars, which are aimed at performing controllable motion on surfaces. In this work, a series of light-activated motorized nanomachines incorporated with a MHz frequency light-activated unidirectional rotary motor were designed and synthesized. We hope the light-activated motor can serve as the powering unit for the nanomachines, and perform controllable translational motion on surfaces or in solution. A series of motorized nanovehicles intended for scanning tunneling microscopy (STM) imaging were designed and synthesized. A p-carborane-wheeled motorized nanocar was synthesized and monitored by STM. Single-molecule imaging was accomplished on a Cu(111) surface. However, further manipulations did lead to motor induced lateral motion. We attributed this result to the strong molecule-surface interactions between the p-carborane-wheeled nanocar and the Cu(111) surface and possible energy transfer between the rotary motor and the Cu(111) surface. To fine-tune the molecule-surface interactions, an adamantane-wheeled motorized nanocar and a three-wheel nanoroadster were designed and synthesized. In addition, the STM substrates will be varied and different combinations of molecule-surface interactions will be studied. As a complimentary imaging method to STM, single-molecule fluorescence microscopy (SMFM) also provides single-molecule level resolution. Unlike STM experiment requires ultra-high vacuum and conductive substrate, SMFM experiment is conducted at ambient conditions and uses non-conductive substrate. This imaging method allows us to study another category of molecule-surface interactions. We plan to design a fluorescent motorized nanocar that is suitable for SMFM studies. However, both the motor and fluorophore are photochemically active molecules. In proximity, some undesired energy transfer or interference could occur. A cyanine 5- (cy5-) tagged motorized nanocar incorporated with the MHz motor was designed and synthesized in order to minimize the potential energy transfer or interference between the motor and the fluorophore. The SMFM study of this cy5-tagged motorized nanocar is currently undergoing. The design of light-activated motorized nanocar inspired the design of nanosubmarines. We used fluorescence quenching and fluorescence correlation spectroscopy (FCS) to study the diffusion of single molecules. The fluorescence quenching experiments of Ru(bpy)3+2 by a quenching nanosubmarine was conducted, but no motor induced acceleration of the molecule were observed. Another fluorescent nanosubmarine was monitored by FCS, and no increase of diffusion coefficient was found. Finally, a 1-D channel approach was adopted for decreasing the effects of Brownian motion, and acceleration of nanosubmarine was observed.

  7. Asymmetric photoredox transition-metal catalysis activated by visible light

    NASA Astrophysics Data System (ADS)

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-01

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.

  8. Lighting.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  9. Light Activated Serotonin for Exploring Its Action in Biological Systems

    PubMed Central

    Rea, Adam C.; Vandenberg, Laura N.; Ball, Rebecca E.; Snouffer, Ashley A.; Hudson, Alicia G.; Zhu, Yue; McLain, Duncan E.; Johnston, Lindsey L.; Lauderdale, James D.; Levin, Michael; Dore, Timothy M.

    2013-01-01

    Summary Serotonin (5-HT) is a neuromodulator involved in regulating mood, appetite, memory, learning, pain, and establishment of left-right (LR) asymmetry in embryonic development. To explore the role of 5-HT in a variety of physiological contexts, we have created two forms of “caged” 5-HT, BHQ-O-5HT and BHQ-N-5HT. When exposed to 365- or 740-nm light, BHQ-O-5HT releases 5-HT through 1- or 2-photon excitation, respectively. BHQ-O-5HT mediated changes in neural activity in cultured primary sensory neurons from mouse and the trigeminal ganglion and optic tectum of intact zebrafish larvae in the form of high amplitude spiking in response to light. In Xenopus laevis embryos, 5-HT released from BHQ-O-5HT upon exposure to light increased the occurrence of LR patterning defects. Maximal rates of LR defects were observed when 5-HT was released at stage 5 compared to stage 8. These experiments show the potential for BHQ-caged serotonins in studying 5-HT-regulated physiological processes. PMID:24333002

  10. Influence of different types of low substituted hydroxypropyl cellulose on tableting, disintegration, and floating behaviour of floating drug delivery systems

    PubMed Central

    Diós, Péter; Pernecker, Tivadar; Nagy, Sándor; Pál, Szilárd; Dévay, Attila

    2014-01-01

    The object of the present study is to evaluate the effect of application of low-substituted hydroxypropyl cellulose (L-HPC) 11 and B1 as excipients promoting floating in gastroretentive tablets. Directly compressed tablets were formed based on experimental design. Face-centred central composite design was applied with two factors and 3 levels, where amount of sodium alginate (X1) and L-HPC (X2) were the numerical factors. Applied types of L-HPCs and their 1:1 mixture were included in a categorical factor (X3). Studied parameters were floating lag time, floating time, floating force, swelling behaviour of tablets and dissolution of paracetamol, which was used as a model active substance. Due to their physical character, L-HPCs had different water uptake and flowability. Lower flowability and lower water uptake was observed after 60 min at L-HPC 11 compared to L-HPC B1. Shorter floating times were detected at L-HPC 11 and L-HPC mixtures with 0.5% content of sodium alginate, whereas alginate was the only significant factor. Evaluating results of drug release and swelling studies on floating tablets revealed correlation, which can serve to help to understand the mechanism of action of L-HPCs in the field development of gastroretentive dosage forms. PMID:26702261

  11. Alternative chromophores for use in light-activated surgical adhesives

    NASA Astrophysics Data System (ADS)

    Byrd, Brian D.; Heintzelman, Douglas L.; McNally-Heintzelman, Karen M.

    2003-06-01

    A study was conducted to determine the feasibility of using alternative chromophores in light-activated surgical adhesives. Two commonly used chromophores, indocyanine green (ICG), and methylene blue (MB) were investigated, as well as three different food colorings: red #40, blue #1, and green food coloring consisting of yellow #5 and blue #1. The study consisted of three components. First, the absorption profiles of the five chromophores, both diluted in deionized water and bound to protein, were recorded with a UV-Vis-NIR spectrophotometer. Second, the effect of accumulated thermal dosages on the stability of the absorption profiles was investigated. Third, the stability of the absorption profiles of the chromophore solutions when exposed to ambient light for an extended period of time was investigated. The peak absorption wavelengths of ICG, MB, red #40, and blue #1, were found to be 780 nm, 665 nm, 500 nm, and 630 nm respectively. The green food coloring had two absorption peaks at 417 nm and 630 nm, corresponding to the two dye components comprising this color. The peak absorption wavelength of the ICG shifted to 805 nm when bound to protein. ICG and MB showed a significant decrease in absorbance units with increased time and temperature when heated to temperatures up to 100 degrees C. Negligible change in absorption with accumulated thermal dose was observed for any of the three food colorings investigated. Photobleaching was observed in both ICG and MB solutions with exposure to a white light source. An 88% decrease in absorption was seen in ICG deionized water solution after 7 days of exposure with a corresponding 33% decrease in absorption seen in the MB deionized water solution. A negligible drop in absorption was observed from exposure to ambient light for a 12-week period with the three food colorings investigated.

  12. Manipulation of P2X Receptor Activities by Light Stimulation.

    PubMed

    Kim, Sang Seong

    2016-01-01

    P2X receptors are involved in amplification of inflammatory responses in peripheral nociceptive fibers and in mediating pain-related signals to the CNS. Control of P2X activation has significant importance in managing unwanted hypersensitive neuron responses. To overcome the limitations of chemical ligand treatment, optical stimulation methods of optogenetics and photoswitching achieve efficient control of P2X activation while allowing specificity at the target site and convenient stimulation by light illumination. There are many potential applications for photosensitive elements, such as improved uncaging methods, photoisomerizable ligands, photoswitches, and gold nanoparticles. Each technique has both advantages and downsides, and techniques are selected according to the purpose of the application. Technical advances not only provide novel approaches to manage inflammation or pain mediated by P2X receptors but also suggest a similar approach for controlling other ion channels. PMID:26884649

  13. Manipulation of P2X Receptor Activities by Light Stimulation

    PubMed Central

    Kim, Sang Seong

    2016-01-01

    P2X receptors are involved in amplification of inflammatory responses in peripheral nociceptive fibers and in mediating pain-related signals to the CNS. Control of P2X activation has significant importance in managing unwanted hypersensitive neuron responses. To overcome the limitations of chemical ligand treatment, optical stimulation methods of optogenetics and photoswitching achieve efficient control of P2X activation while allowing specificity at the target site and convenient stimulation by light illumination. There are many potential applications for photosensitive elements, such as improved uncaging methods, photoisomerizable ligands, photoswitches, and gold nanoparticles. Each technique has both advantages and downsides, and techniques are selected according to the purpose of the application. Technical advances not only provide novel approaches to manage inflammation or pain mediated by P2X receptors but also suggest a similar approach for controlling other ion channels. PMID:26884649

  14. Visible-light active conducting polymer nanostructures with superior photocatalytic activity

    PubMed Central

    Ghosh, Srabanti; Kouame, Natalie Amoin; Remita, Samy; Ramos, Laurence; Goubard, Fabrice; Aubert, Pierre-Henri; Dazzi, Alexandre; Deniset-Besseau, Ariane; Remita, Hynd

    2015-01-01

    The development of visible-light responsive photocatalysts would permit more efficient use of solar energy, and thus would bring sustainable solutions to many environmental issues. Conductive polymers appear as a new class of very active photocatalysts under visible light. Among them poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most promising conjugated polymer with a wide range of applications. PEDOT nanostructures synthesized in soft templates via chemical oxidative polymerization demonstrate unprecedented photocatalytic activities for water treatment without the assistance of sacrificial reagents or noble metal co-catalysts and turn out to be better than TiO2 as benchmark catalyst. The PEDOT nanostructures exhibit a narrow band gap (E = 1.69 eV) and are characterized by excellent ability to absorb light in visible and near infrared region. The novel PEDOT-based photocatalysts are very stable with cycling and can be reused without appreciable loss of activity. Interestingly, hollow micrometric vesicular structures of PEDOT are not effective photocatalysts as compared to nanometric spindles suggesting size and shape dependent photocatalytic properties. The visible-light active photocatalytic properties of the polymer nanostructures present promising applications in solar light harvesting and broader fields. PMID:26657168

  15. Visible-light active conducting polymer nanostructures with superior photocatalytic activity.

    PubMed

    Ghosh, Srabanti; Kouame, Natalie Amoin; Remita, Samy; Ramos, Laurence; Goubard, Fabrice; Aubert, Pierre-Henri; Dazzi, Alexandre; Deniset-Besseau, Ariane; Remita, Hynd

    2015-01-01

    The development of visible-light responsive photocatalysts would permit more efficient use of solar energy, and thus would bring sustainable solutions to many environmental issues. Conductive polymers appear as a new class of very active photocatalysts under visible light. Among them poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most promising conjugated polymer with a wide range of applications. PEDOT nanostructures synthesized in soft templates via chemical oxidative polymerization demonstrate unprecedented photocatalytic activities for water treatment without the assistance of sacrificial reagents or noble metal co-catalysts and turn out to be better than TiO2 as benchmark catalyst. The PEDOT nanostructures exhibit a narrow band gap (E = 1.69 eV) and are characterized by excellent ability to absorb light in visible and near infrared region. The novel PEDOT-based photocatalysts are very stable with cycling and can be reused without appreciable loss of activity. Interestingly, hollow micrometric vesicular structures of PEDOT are not effective photocatalysts as compared to nanometric spindles suggesting size and shape dependent photocatalytic properties. The visible-light active photocatalytic properties of the polymer nanostructures present promising applications in solar light harvesting and broader fields. PMID:26657168

  16. Visible-light active conducting polymer nanostructures with superior photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ghosh, Srabanti; Kouame, Natalie Amoin; Remita, Samy; Ramos, Laurence; Goubard, Fabrice; Aubert, Pierre-Henri; Dazzi, Alexandre; Deniset-Besseau, Ariane; Remita, Hynd

    2015-12-01

    The development of visible-light responsive photocatalysts would permit more efficient use of solar energy, and thus would bring sustainable solutions to many environmental issues. Conductive polymers appear as a new class of very active photocatalysts under visible light. Among them poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most promising conjugated polymer with a wide range of applications. PEDOT nanostructures synthesized in soft templates via chemical oxidative polymerization demonstrate unprecedented photocatalytic activities for water treatment without the assistance of sacrificial reagents or noble metal co-catalysts and turn out to be better than TiO2 as benchmark catalyst. The PEDOT nanostructures exhibit a narrow band gap (E = 1.69 eV) and are characterized by excellent ability to absorb light in visible and near infrared region. The novel PEDOT-based photocatalysts are very stable with cycling and can be reused without appreciable loss of activity. Interestingly, hollow micrometric vesicular structures of PEDOT are not effective photocatalysts as compared to nanometric spindles suggesting size and shape dependent photocatalytic properties. The visible-light active photocatalytic properties of the polymer nanostructures present promising applications in solar light harvesting and broader fields.

  17. Light-mediated antibacterial activity of Lippia origanoides H.B.K. in vitro.

    PubMed

    Barreto, Humberto M; Coelho, Bruno R C; Menezes-Silva, Suellen M P; Siqueira-Júnior, José P; Coutinho, Henrique D M; Lemos, Izabel Cristina S; Sousa, Taciana O; Silva, Romézio A C; Medeiros, Maria das Graças F; Citó, Antonia M G L; Lopes, José A D

    2014-12-01

    An ethanol extract and different partition fractions obtained from Lippia origanoides H.B.K. were assayed for light-mediated activity against strains of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Identical assays were conducted with and without exposure to UV-A (400-315 nm) light to test for light enhanced activity. The ethanol extract and dichloromethane fraction showed light-mediated activity against the S. aureus strain, but not against the E. coli strain. The dichloromethane fraction was more active than the ethanol extract. Naringenin did not display light-mediated activity against the tested bacteria, indicating that the light-mediated antimicrobial activity of the dichloromethane fraction is not due to its major component. The results represent the first report of light-mediated antimicrobial activity of Lippia origanoides and show that its phytochemicals could be used as light-mediated antimicrobial agents. PMID:25360993

  18. Mechanism of activation of light-activated phosphodiesterase and evidence for homology with hormone-activated adenylate cyclase

    SciTech Connect

    Bitensky, M.W.; Yamazaki, A.; Wheeler, M.A.; George, J.S.; Rasenick, M.M.

    1983-01-01

    Light-activated cGMP phosphodiesterase (PDE) is one of the effector proteins in the rod outer segments in vertebrate retina. The hydrolysis of cGMP in rod occurs with a speed and light sensitivity which suggests a role for this hydrolysis in visual transduction. In fact, there is electrophysiological data which supports the possibility that cGMP could regulate rod membrane voltage. PDE shows very rapid activation in the presence of photons and GTP. We have called attention to the intriguing analogy between light activated rod phosphodiesterase and hormone activated adenylate cyclase. A number of studies have implicated the binding of GTP to a GTP binding protein as a factor in the hormone dependent activation of adenylate cyclase. Moreover, Cassel and Selinger have shown that hydrolysis of GTP is a component in the inactivation of the hormone dependent adenylate cyclase. We review here recent additional data which provide specific molecular details of the mechanism of light activation of rod PDE as well as demonstrate the exchange of components between light activated PDE and hormone activated cyclase.

  19. Detection of Floating Inputs in Logic Circuits

    NASA Technical Reports Server (NTRS)

    Cash, B.; Thornton, M. G.

    1984-01-01

    Simple modification of oscilloscope probe allows easy detection of floating inputs or tristate outputs in digital-IC's. Oscilloscope probe easily modified with 1/4 W resistor and switch for detecting floating inputs in CMOS logic circuits.

  20. White Floats out the Open Hatch

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Edward H. White II, pilot for the Gemini-Titan 4 space flight, floats in zero gravity of space. The extravehicular activity was performed during the third revolution of the Gemini 4 spacecraft. White is attached to the spacecraft by a 25-ft. umbilical line and a 23-ft. tether line, both wrapped in gold tape to form one cord. In his right hand White carries a Hand-Held Self-Maneuvering Unit (HHSMU). The visor of his helmet is gold plated to protect him from the unfiltered rays of the sun.

  1. Airship-floated wind turbine

    SciTech Connect

    Watson, W. K.

    1985-01-01

    A wind turbine, by use of a tethered airship for support, may be designed for the economical recovery of power at heights of 2,000 feet or more above ground, at which height power density in the wind is typically three times the power density available to a conventionally supported wind turbine. Means can be added to such an airship-floated wind turbine which will permit its generators to be used to meet load demand even during periods of little or no wind. Described to this end is a wind turbine system which combines, among other novel features: a novel tether line system which provides access for men and materials to the supporting airship while in active service, a novel system for providing additional buoyant lift at the nose of the turbine-supporting airship to offset the vertical component of tension induced in the tether line by the downwind force exerted by the turbine blades, a novel bearing assembly at the nose of the supporting airship which permits the airship to rotate as a unit with the turbine it supports without causing a similar rotation of the tether line, a novel turbine airship structure which handles concentrated loads from the turbine efficiently and also permits the safe use of hydrogen for buoyancy, a novel ''space frame'' structure which supports the turbine blades and greatly reduces blade weight, a novel system for controlling turbine blade angle of incidence and for varying blade incidene in synchrony with blade angular position abut the turbine axis to provide greater control over airship movement, a novel system for locating propellor-driven generators out at the wind turbine perimeter and for using lightweight, high-RPM generators to produce electrical energy at a power line frequency, which greatly reduces the weight required to convert turbine blade torque into useful power, and a novel system for incorporating compressed air storage and combustion turbine components into the wind turbine's generator drive systems.

  2. Active dielectric antenna on chip for spatial light modulation

    PubMed Central

    Qiu, Ciyuan; Chen, Jianbo; Xia, Yang; Xu, Qianfan

    2012-01-01

    Integrated photonic resonators are widely used to manipulate light propagation in an evanescently-coupled waveguide. While the evanescent coupling scheme works well for planar optical systems that are naturally waveguide based, many optical applications are free-space based, such as imaging, display, holographics, metrology and remote sensing. Here we demonstrate an active dielectric antenna as the interface device that allows the large-scale integration capability of silicon photonics to serve the free-space applications. We show a novel perturbation-base diffractive coupling scheme that allows a high-Q planer resonator to directly interact with and manipulate free-space waves. Using a silicon-based photonic crystal cavity whose resonance can be rapidly tuned with a p-i-n junction, a compact spatial light modulator with an extinction ratio of 9.5 dB and a modulation speed of 150 MHz is demonstrated. Method to improve the modulation speed is discussed. PMID:23152946

  3. Floating ports: Design and construction practices

    SciTech Connect

    Tsinker, G.P.

    1986-01-01

    This book is a guide to designing and constructing floating piers, wharves, docks, mooring systems, and small craft marinas. It presents engineering fundamentals and techniques. After a general introduction to floating marine terminals, the book discusses design loads and forces, and examines floating pier design requirements and considerations. Buoyancy and stability of various floating designs are discussed in detail, along with mooring systems and approach bridges. The concluding chapter contains case histories.

  4. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    PubMed Central

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-01-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces. PMID:27098010

  5. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections.

    PubMed

    Leyland, Nigel S; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J; Quilty, Brid; Pillai, Suresh C

    2016-01-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces. PMID:27098010

  6. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    NASA Astrophysics Data System (ADS)

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-04-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces.

  7. Dendrimer Conjugates for Light-activated Delivery of Antisense Oligonucleotides

    PubMed Central

    Yuan, Ahu; Hu, Yiqiao; Ming, Xin

    2015-01-01

    Therapeutic oligonucleotides, such as splice switching ONs (SSOs), provide opportunities for treating serious, life-threatening diseases. However, the development of ONs as therapeutic agents has progressed slowly, because difficult cytosolic delivery of SSOs into the cytosol and nucleus remains a major barrier. Photochemical internalization (PCI), a promising strategy for endosomal escape, was introduced to disrupt the endosomal membrane using light and a photosensitizer. Here we constructed Poly(amido amine) (PAMAM) dendrimer conjugates to simultaneously deliver SSOs and photosensitizers into endo/lysosomal compartments. After photo-irradiation, considerable ONs were observed to diffuse into the cytosol and accumulate in the nucleus. Furthermore, the PCI mediated cytosolic delivery of SSOs effectively enhanced their nuclear splice switching activity. PMID:26146545

  8. Diamond light emitting diode activated with Xe optical centers

    NASA Astrophysics Data System (ADS)

    Zaitsev, A. M.; Bergman, A. A.; Gorokhovsky, A. A.; Huang, Mengbing

    2006-02-01

    A diamond light emitting diode (LED) activated with Xe-related optical centres is reported. The device was made on a high quality single crystal CVD diamond substrate using B+ and Li+ ion implantation, subsequent implantation by Xe+ ions and vacuum annealing to 1400 °C. A diode behaviour with the rectification ratio of 105 at 100 V was achieved. The electroluminescence (EL) of the device was found to concentrate at the B+ ion doped p-type area likely as a result of dominating injection of holes. The room temperature EL spectrum in the range 450 to 850 nm was presented by a narrow band emission of the zero phonon lines 812.5 nm and 794 nm of the Xe centre on a low emission background of the 575 nm nitrogen-related centre.

  9. Have Floating Rates Been a Success?

    ERIC Educational Resources Information Center

    Higham, David

    1983-01-01

    Floating exchange rates have not lived up to all expectations, but neither have they performed as badly as some critics have suggested. Examined are the impact of floating rates on balance of payments adjustment, domestic economic policy, and inflation and the claim that floating rates have displayed excessive fluctuations. (Author/RM)

  10. Light-activated shape memory polymers and associated applications

    NASA Astrophysics Data System (ADS)

    Havens, Ernie; Snyder, Emily A.; Tong, Tat H.

    2005-05-01

    Continuous product development and technology integration efforts using shape memory polymers (SMPs) have uncovered a need for faster response times. As with most smart materials, SMP responds to a specific stimulus. Traditionally SMP is triggered by thermal stimulus; increasing the temperature of the SMP above a Tg will transition the polymer from a glassy state to a rubbery state. The transition is reversible upon cooling below the Tg. It has been determined that many SMP applications can be significantly enhanced with non-thermal triggering. Non-thermal triggering eliminates the need for heating mechanisms and reduces cycle time. Furthermore, it has been found that with a faster response time many new applications become viable. Previous successful attempts have been made to improve response time of SMP by increasing its thermal conductivity with various thermally conductive additives1. However, thermal heating and cooling of polymers and composites of substantial thickness, thermally conductive or not, takes time. In an effort to facilitate system integration and increase the response time of SMP, researchers at Cornerstone Research Group, Inc. (CRG) have sought to eliminate the thermal dependency of SMP by developing light-activated shape memory polymer (LASMP). In this work, monomers which contain photo-crosslinkable groups in addition to the primary polymerizable groups were developed. These monomers were formulated and cured with other monomers to form LASMP. The mechanical properties of these materials, the kinetics, and the reversibility of the light-activated shape memory effect were studied. The near-, mid-, and far-term potential of this new material technology for system level applications is discussed.

  11. Mathematical Modeling of Floating Ice

    NASA Astrophysics Data System (ADS)

    Holland, D. M.

    2001-05-01

    A significant fraction of the surface of the global ocean is covered by floating ice, the presence of which has profound influences on the state of the global climate system. The floating ice appears both in the form of sea-ice, created in situ over the open ocean, and in the form of ice shelves, the result of land ice sheets draining into the ocean. Ice is arguably one of the most complex fluids in the climate system, both from a dynamical and thermodynamical point of view. The former because of its inherently non-linear rheology and the later because of the ice-albedo feedback mechanism. Added to these complexities, the mathematical and computational modeling of floating has the pragmatic difficulty of properly treating phenomena that occur both on sub-grid scales and disparate time scales. Examples of sub-grid scale phenomena include the treatment of sea-ice thickness distributions and the effects of ocean geostrophic turbulence on the sea ice. This talk presents an overview of the role of floating ice in the climate system, some of the outstanding theoretical challenges, and the role in which modern applied mathematics may play in the future development of the field.

  12. Designing seaplane hulls and floats

    NASA Technical Reports Server (NTRS)

    Benoit,

    1926-01-01

    Experimental data, such as the results of tank tests of models, render it possible to predict, at least in principle, as to how a hull or float of a given shape will comport itself. We will see further along, however, how uncertain these methods are and how they leave room for empiricism, which will reign for a long time yet in seaplane research bureaus.

  13. Optics: Light, Color, and Their Uses. An Educator's Guide with Activities in Science and Mathematics.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This educator's guide from discusses optics, light, color and their uses. Activities include: (1) "Reflection of Light with a Plane (Flat) Mirror--Trace a Star"; (2) "Reflection of Light with Two Plane Mirrors--Double Mirrors Placed at a 90-Degree Angle"; (3) "Reflection of Light with Two Plane Mirrors--Double Mirrors Placed at a Number of…

  14. 33 CFR 144.01-5 - Location and launching of life floats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Location and launching of life... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-5 Location and launching of life floats. The life floats shall be distributed in accessible locations...

  15. 33 CFR 144.01-5 - Location and launching of life floats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Location and launching of life... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-5 Location and launching of life floats. The life floats shall be distributed in accessible locations...

  16. 33 CFR 144.01-5 - Location and launching of life floats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Location and launching of life floats. 144.01-5 Section 144.01-5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-5 Location and launching of life floats....

  17. 33 CFR 144.01-5 - Location and launching of life floats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Location and launching of life... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-5 Location and launching of life floats. The life floats shall be distributed in accessible locations...

  18. Some Activities with Polarized Light from a Laptop LCD Screen

    ERIC Educational Resources Information Center

    Fakhruddin, Hasan

    2008-01-01

    The LCD screen of a laptop computer provides a broad, bright, and extended source of polarized light. A number of demonstrations on the properties of polarized light from a laptop computer screens are presented here.

  19. The dying of the light: crepuscular activity in Culicoides and impact on light trap efficacy at temperate latitudes.

    PubMed

    Meiswinkel, R; Elbers, A R W

    2016-03-01

    The light trap is the tool of choice for conducting large-scale Culicoides (Diptera: Ceratopogonidae) vector surveillance programmes. Its efficacy is in doubt, however. To assess this, hourly changes in Culicoides activity over the 24-h diel were determined comparatively by way of light trapping and aerial sweeping, and correlated against light intensity. In the Netherlands, sweeping around cattle at pasture revealed that, in early summer, Culicoides are active throughout the diel, and that their abundance peaks during the crepuscular period and falls to a low during the brightest hours of the day. By contrast, the light trap was able to accumulate Culicoides only at night (i.e. after illuminance levels had dropped to 0 lux and midge activity had begun to decline). Although Culicoides chiopterus and species of the Culicoides obsoletus complex were similarly abundant around livestock, they differed critically in their hours of peak activity, being largely diurnal and nocturnal, respectively. This polarity helps to explain why, routinely, the C. obsoletus complex dominates light trap collections and C. chiopterus does not. Inability to accumulate Culicoides at light intensity levels above 0 lux means that, at ever-higher latitudes, particularly beyond 45 N, the progressive northward lengthening of the twilight period will have an increasingly adverse impact upon the efficacy of the light trap as a vector surveillance tool. PMID:26555116

  20. 75 FR 80471 - Takes of Marine Mammals Incidental to Specified Activities; St. George Reef Light Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... Specified Activities; St. George Reef Light Station Restoration and Maintenance at Northwest Seal Rock, Del... conducting aircraft operations, and lighthouse renovation and light maintenance activities on the St. George Reef Light Station on Northwest Seal Rock (NWSR) in the northeast Pacific Ocean. Pursuant to the...

  1. Phytoremediation of perchlorate by free floating macrophytes.

    PubMed

    Bhaskaran, Krishnakumar; Vijaya Nadaraja, Anupama; Tumbath, Soumya; Babu Shah, Liji; Gangadharan Puthiya Veetil, Prajeesh

    2013-09-15

    Phytoremediation of perchlorate by free floating macrophytes (Eichornia, Pistia, Salvinia and Lemna) was evaluated in this study. Among the plants tested, Pistia showed 63.8 4% (w/v) removal of 5 mg/L level perchlorate in 7 days, whereas the removal was absent in other plants. Phyto-accumulation (18.2%) and rhizo-degradation (45.68%) were identified as the mechanisms involved in perchlorate removal in Pistia. Whole plant extraction yielded 45.4 ?g perchlorate/g dry weight biomass in 7 days period. High intensity of light and presence of nitrate negatively affected perchlorate removal by Pistia. An enrichment of Pistia root homogenate exhibited faster reduction of perchlorate where 100mg/L of the compound was reduced completely in 48 h under anoxic condition. A novel perchlorate reducing bacterium, isolated from Pistia root homogenate enrichment was identified as Acinetobacter sp. NIIST (Genbank JX467695). PMID:23872336

  2. Laser light triggered-activated carbon nanosystem for cancer therapy.

    PubMed

    Chu, Maoquan; Peng, Jinliang; Zhao, Jiajia; Liang, Shanlu; Shao, Yuxiang; Wu, Qiang

    2013-02-01

    Among carbon-based nanomaterials, activated carbon (AC) may be an ideal candidate as a carrier for tumor therapeutic agents. Here we found a new property of nanoscale activated carbon (NAC) with narrow size distribution, namely the rapid conversion of light to thermal energy both in vitro and in vivo. An aqueous suspension of 200 μL of NAC (1 mg/mL) exhibited a rapid temperature increase of more than 35 °C after irradiation for 20 min with a 655-nm laser; this was within the temperature range for effective tumor treatment. We demonstrated that lung cancer cells (H-1299) incubated with bamboo nano-AC (BNAC) were killed with high efficiency after laser irradiation. In addition, mouse tumors with sizes smaller than the laser spot that had been injected with BNAC disappeared after irradiation. For tumors larger than the laser spot area, the incorporation of the photosensitizer ZnPc obviously increased the tumor growth inhibition efficiency of BNAC. BNAC-ZnPc was found to exhibit a synergistic effect when photothermal and photodynamic therapies were administered in combination. These results indicated that NAC can be used for high efficiency cancer phototherapy. PMID:23228422

  3. Active Learning Strategies for Introductory Light and Optics

    NASA Astrophysics Data System (ADS)

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among the characteristics of these curricula are: (1) use of a learning cycle in which students are challenged to compare predictions—discussed with their peers in small groups—to observations of the physical world, (2) use of guided hands-on work to construct basic concepts from observations, and (3) use of computer-based tools. It has been possible to change the lecture and laboratory learning environments at a large number of universities, colleges, and high schools without changing the structure of the introductory course. For example, in the United States, nearly 200 physics departments have adopted RTP, and many others use pre-publication, open-source versions or have adopted the RTP approach to develop their own labs. Examples from RTP and ILDs (including optics magic tricks) are described in this paper.

  4. Will My Fossil Float?

    ERIC Educational Resources Information Center

    Riesser, Sharon; Airey, Linda

    1993-01-01

    Explains how young students can be introduced to fossils. Suggests books to read and science activities including "Fossils to Eat" where students make fossils from peanut butter, honey, and powdered milk. (PR)

  5. A "Floating" Nature Center.

    ERIC Educational Resources Information Center

    Nolan, Karen

    1980-01-01

    Presents an overview of the educational programs, concerts, and other activities which take place aboard the 76-foot sloop "Clearwater" in a privately-funded effort to bring New York's Hudson River closer to the people. (WB)

  6. Three floating metatarsals and a half-floating cuneiform.

    PubMed

    Madi, Sandesh; Vijayan, Sandeep; Naik, Monappa; Rao, Sharath

    2015-01-01

    Floating metatarsals are rare and complex injury patterns in the world of foot trauma. The injury is typically characterised by concomitant dislocations of the metatarsals from both articular ends ('bipolar dislocations'). Fascination arises from the fact that there have been only 15 cases reported in the English literature from 1964 to date. The first metatarsal has been more frequently reported than the lesser metatarsals. More than one floating metatarsal is also extremely uncommon. Inter-cuneiform diastasis is another rare entity seen in low velocity injuries and sports injuries; this condition is very difficult to diagnose clinically and radiologically. The occurrence of these two injury patterns in isolation is itself rare, making their combination even more unique. PMID:26452415

  7. Organic nano-floating-gate transistor memory with metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Van Tho, Luu; Baeg, Kang-Jun; Noh, Yong-Young

    2016-04-01

    Organic non-volatile memory is advanced topics for various soft electronics applications as lightweight, low-cost, flexible, and printable solid-state data storage media. As a key building block, organic field-effect transistors (OFETs) with a nano-floating gate are widely used and promising structures to store digital information stably in a memory cell. Different types of nano-floating-gates and their various synthesis methods have been developed and applied to fabricate nanoparticle-based non-volatile memory devices. In this review, recent advances in the classes of nano-floating-gate OFET memory devices using metal nanoparticles as charge-trapping sites are briefly reviewed. Details of device fabrication, characterization, and operation mechanisms are reported based on recent research activities reported in the literature.

  8. 33 CFR 144.01-15 - Alternates for life floats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Alternates for life floats. 144.01-15 Section 144.01-15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-15...

  9. 33 CFR 143.120 - Floating OCS facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT OCS Facilities § 143.120 Floating OCS facilities... CFR part 107 which relate to the facility. All plans and information must be submitted according to... (Marine Engineering) and J (Electrical Engineering) of 46 CFR chapter I and 46 CFR part 108 (Design...

  10. Advanced Light Source activity report 1996/97

    SciTech Connect

    1997-09-01

    Ten years ago, the Advanced Light Source (ALS) existed as a set of drawings, calculations, and ideas. Four years ago, it stored an electron beam for the first time. Today, the ALS has moved from those ideas and beginnings to a robust, third-generation synchrotron user facility, with eighteen beam lines in use, many more in planning or construction phases, and hundreds of users from around the world. Progress from concepts to realities is continuous as the scientific program, already strong in many diverse areas, moves in new directions to meet the needs of researchers into the next century. ALS staff members who develop and maintain the infrastructure for this research are similarly unwilling to rest on their laurels. As a result, the quality of the photon beams the authors deliver, as well as the support they provide to users, continues to improve. The ALS Activity Report is designed to share the results of these efforts in an accessible form for a broad audience. The Scientific Program section, while not comprehensive, shares the breadth, variety, and interest of recent research at the ALS. (The Compendium of User Abstracts and Technical Reports provides a more comprehensive and more technical view.) The Facility Report highlights progress in operations, ongoing accelerator research and development, and beamline instrumentation efforts. Although these Activity Report sections are separate, in practice the achievements of staff and users at the ALS are inseparable. User-staff collaboration is essential as they strive to meet the needs of the user community and to continue the ALS's success as a premier research facility.

  11. Dragging a floating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Lee, Duck-Gyu; Kim, Ho-Young

    2010-11-01

    A cylinder immersed in a fluid stream experiences a drag, and it is well known that the drag coefficient is a function of the Reynolds number only. Here we study the force exerted on a long horizontal cylinder that is dragged perpendicular to its axis while floating on an air-water interface with a high Reynolds number. In addition to the flow-induced drag, the floating body is subjected to capillary forces along the contact line where the three phases of liquid/solid/gas meet. We first theoretically predict the meniscus profile around the horizontally moving cylinder assuming the potential flow, and show that the profile is in good agreement with that obtained experimentally. Then we compare our theoretical predictions and experimental measurement results for the drag coefficient of a floating horizontal cylinder that is given by a function of the Weber number and the Bond number. This study can help us to understand the horizontal motion of partially submerged objects at air-liquid interface, such as semi-aquatic insects and marine plants.

  12. Instability of floating extensional flows

    NASA Astrophysics Data System (ADS)

    Sayag, Roiy; Worster, Grae

    2015-11-01

    We study the propagation of a viscous fluid over a thin layer of a denser and inviscid fluid. The viscous fluid is released axisymmetrially at constant flux, and is driven by gravity. Near the origin, where the viscous layer is thick, the flow is dominated by vertical shear. In the outer region where the viscous layer is thinner, it floats over the inviscid layer and the dominant stress is extensional. The floating region of such flows remains axisymmetric when the viscous fluid is Newtonian. In contrast, when the viscous fluid is non Newtonian, the floating region can be distributed in an array of extensional tongues. We use experimental and theoretical analysis to study the symmetry breaking of the extensional region. Experiments using polymeric fluids show that the characteristic wavelength of the tongues increases with flux. Theoretically, we model the symmetry breaking as flow instability of a power-law fluid that becomes Newtonian at low strain rates. Our model predicts unstable modes at the strongly non-Newtonian limit, and stable, axisymmetric mode in the Newtonian limit.

  13. Float zone experiments in space

    NASA Technical Reports Server (NTRS)

    Verhoeven, J. D.; Noack, M. A.; Gill, W. N.; Hau, C. C.

    1984-01-01

    The molten zone/freezing crystal interface system and all the mechanisms were examined. If Marangoni convection produces oscillatory flows in the float zone of semiconductor materials, such as silicon, then it is unlikely that superior quality crystals can be grown in space using this process. The major goals were: (1) to determine the conditions for the onset of Marangoni flows in molten tin, a model system for low Prandtl number molten semiconductor materials; (2) to determine whether the flows can be suppressed by a thin oxide layer; and (3) based on experimental and mathematical analysis, to predict whether oscillatory flows will occur in the float zone silicon geometry in space, and if so, could it be suppressed by thin oxide or nitride films. Techniques were developed to analyze molten tin surfaces in a UHV system in a disk float zone geometry to minimize buoyancy flows. The critical Marangoni number for onset of oscillatory flows was determined to be greater than 4300 on atomically clean molten tin surfaces.

  14. Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report

    NASA Technical Reports Server (NTRS)

    Salazar, George A.

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits from the environmental testing results by understanding its performance limitations/shortcomings to improve subsequent generations of AMOLED technology. Note that the AMOLED used in this test was not deSigned for the space environment but rather for commercial/industrial terrestrial applications.

  15. The Coolest `Stars' are Free-Floating Planets

    NASA Astrophysics Data System (ADS)

    Joergens, V.; Bonnefoy, Mickael; Liu, Y.; Bayo, A.; Wolf, S.

    2015-01-01

    We show that the coolest known object that is probably formed in a star-like mode is a free-floating planet. We discovered recently that the free-floating planetary mass object OTS 44 (M9.5, ˜12 Jupiter masses, age ˜2 Myr) has significant accretion and a substantial disk. This demonstrates that the processes that characterize the canonical star-like mode of formation apply to isolated objects down to a few Jupiter masses. We detected in VLT/SINFONI spectra that OTS 44 has strong, broad, and variable Paschen β emission. This is the first evidence for active accretion of a free-floating planet. The object allows us to study accretion and disk physics at the extreme and can be seen as free-floating analog of accreting planets that orbit stars. Our analysis of OTS 44 shows that the mass-accretion rate decreases continuously from stars of several solar masses down to free-floating planets. We determined, furthermore, the disk mass (10 Earth masses) and further disk properties of OTS 44 through modeling its SED including Herschel far-IR data. We find that objects between 14 and 0.01 solar masses have the same ratio of the disk-to-central-mass of about 1%. Our results suggest that OTS 44 is formed like a star and that the increasing number of young free-floating planets and ultra-cool T and Y field dwarfs are the low-mass extension of the stellar population.

  16. UV light induced plasticization and light activated shape memory of spiropyran doped ethylene-vinyl acetate copolymers.

    PubMed

    Zhang, Xianzhe; Zhou, Qingqing; Liu, Huarong; Liu, Hewen

    2014-06-01

    Light activated shape memory polymers (LASMPs) are relatively new kinds of smart materials and have significant technological applications ranging from biomedical devices to aerospace technology. EVA films doped with spiropyran with contents ranging from 0.1% to 3% show efficient UV activated shape memory behaviors if the fixed shape deformation is limited within 80%. For EVA films containing 3% spiropyran, UV irradiation causes a decrease in EVA modulus of about 44%. FT-IR and solid (13)C NMR in association with UV-vis absorption analysis demonstrate that UV irradiation transforms spiropyran from the SP form to the MC form, meanwhile, it induces an increase in the molecular mobility in the amorphous phase of EVA. Thus, the spiropyran-doped EVA films act as LASMPs via a mechanism of light induced plasticization. Light activated spiropyran acts as a plasticizer to EVA. PMID:24686814

  17. Effects of light intensity on activity in four sympatric anuran tadpoles.

    PubMed

    Ding, Guo-Hua; Lin, Zhi-Hua; Zhao, Li-Hua; Fan, Xiao-Li; Wei, Li

    2014-07-01

    Though light conditions are known to affect the development and anti-predation strategies of several aquatic species, relatively little is known about how different species react to light, or how light can affect these species during different points in their life-cycle. In this study, we used four sympatric anuran tadpoles (Bufo gargarizans, B. melanostictus, Pelophylax nigromaculatus and Microhyla fissipes) as animal system to examine species-specific activities of the underdoing different light intensity treatments, so as to better understand how they respond to light. We exposed four different species of tadpoles to 1660 and 14 lux light intensity treatments and then measured several parameters including development stage, body length and tail length, and as well as their basic activities. The results of this observation and analysis showed that the activities of tadpoles were significantly greater in B. gargarizans and B. melanostictus than in P. nigromaculatus and M. fissipes; and were also significantly greater during times of high light intensity as compared to during low light intensity. Moreover, the observed relationship between species and light intensity was significant. The activities of B. gargarizans and B. melanostictus tadpoles were greater in high light, while the activity of P. nigromaculatus tadpoles was greater in low light intensity, while M. fissipes tadpoles showed no differences in either low or high intensity light. Furthermore, the activities of B. gargarizans, B. melanostictus and M. fissipes tadpoles in terms of developmental stage, body size or tail length did not seem to differ with light intensity, but during early larval developmental period of P. nigromaculatus, the activity of tadpoles was negatively correlated with development stage, but irrelevant to either body size or tail length in different light intensities. These results lead us to conclude the observed activities of the four sympatric anuran tadpoles are closely correlated with their specific anti-predation strategies. PMID:25017754

  18. Temporal and spatial distribution of floating objects in coastal waters of central-southern Chile and Patagonian fjords

    NASA Astrophysics Data System (ADS)

    Hinojosa, Iván A.; Rivadeneira, Marcelo M.; Thiel, Martin

    2011-03-01

    Floating objects are suggested to be the principal vector for the transport and dispersal of marine invertebrates with direct development as well as catalysts for carbon and nutrient recycling in accumulation areas. The first step in identifying the ecological relevance of floating objects in a specific area is to identify their spatio-temporal distribution. We evaluated the composition, abundance, distribution, and temporal variability of floating objects along the continental coast of central-southern Chile (33-42°S) and the Patagonian fjords (42-50°S) using ship surveys conducted in austral winter (July/August) and spring (November) of the years 2002-2005 and 2008. Potential sources of floating items were identified with the aid of publicly available databases and scientific reports. We found three main types of floating objects, namely floating marine debris (mainly plastic objects and Styrofoam), wood (trunks and branches), and floating kelps ( Macrocystis pyrifera and Durvillaea antarctica). Floating marine debris were abundant along most of the examined transects, with markedly lower abundances toward the southern fjord areas. Floating marine debris abundances generally corresponded to the distribution of human activities, and were highest in the Interior Sea of Chiloé, where aquaculture activities are intense. Floating wood appeared sporadically in the study area, often close to the main rivers. In accordance with seasonal river run-off, wood was more abundant along the continental coast in winter (rainy season) and in the Patagonian fjords during the spring surveys (snow melt). Densities of the two floating kelp species were similar along the continental coast, without a clear seasonal pattern. M. pyrifera densities increased towards the south, peaking in the Patagonian fjords, where it was dominant over D. antarctica. Densities of M. pyrifera in the Patagonian fjords were highest in spring. Correlation analyses between the abundances of floating objects and the distance to the nearest sources were generally non-significant, suggesting that post-supply processes affect the distribution of the floating objects in the study region. The identification of several major retention zones supports this idea. Accumulation areas of floating objects appear to be more common in the fjord zones. In general, the results underscore the abundance of floating objects throughout the study region and the fact that floating marine debris sources are mostly local, whereas floating algae may be dispersed over greater distances. Future studies should focus on the ecological role of floating objects in biota dispersal and nutrient cycling.

  19. Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase.

    PubMed

    Gasser, Carlos; Taiber, Sandra; Yeh, Chen-Min; Wittig, Charlotte Helene; Hegemann, Peter; Ryu, Soojin; Wunder, Frank; Möglich, Andreas

    2014-06-17

    Sensory photoreceptors elicit vital physiological adaptations in response to incident light. As light-regulated actuators, photoreceptors underpin optogenetics, which denotes the noninvasive, reversible, and spatiotemporally precise perturbation by light of living cells and organisms. Of particular versatility, naturally occurring photoactivated adenylate cyclases promote the synthesis of the second messenger cAMP under blue light. Here, we have engineered a light-activated phosphodiesterase (LAPD) with complementary light sensitivity and catalytic activity by recombining the photosensor module of Deinococcus radiodurans bacterial phytochrome with the effector module of Homo sapiens phosphodiesterase 2A. Upon red-light absorption, LAPD up-regulates hydrolysis of cAMP and cGMP by up to sixfold, whereas far-red light can be used to down-regulate activity. LAPD also mediates light-activated cAMP and cGMP hydrolysis in eukaryotic cell cultures and in zebrafish embryos; crucially, the biliverdin chromophore of LAPD is available endogenously and does not need to be provided exogenously. LAPD thus establishes a new optogenetic modality that permits light control over diverse cAMP/cGMP-mediated physiological processes. Because red light penetrates tissue more deeply than light of shorter wavelengths, LAPD appears particularly attractive for studies in living organisms. PMID:24889611

  20. Tank Tests of Twin Seaplane Floats

    NASA Technical Reports Server (NTRS)

    Herrman, H; Kempf, G; Kloess, H

    1928-01-01

    The following report contains the most essential data for the hydrodynamic portion of the twin-float problem. The following points were successfully investigated: 1) difference between stationary and nonstationary flow; 2) effect of the shape of the step; 3) effect of distance between floats; 4) effect of nose-heavy and tail-heavy moments; 5) effect of the shape of floats; 6) maneuverability.

  1. 14 CFR 27.753 - Main float design.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Main float design. 27.753 Section 27.753... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure...

  2. 14 CFR 29.753 - Main float design.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Main float design. 29.753 Section 29.753... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure...

  3. 14 CFR 29.753 - Main float design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 29.753 Section 29.753... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure...

  4. 14 CFR 27.753 - Main float design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 27.753 Section 27.753... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure...

  5. Modeling International Space Station (ISS) Floating Potentials

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Gardner, Barbara

    2002-01-01

    The floating potential of the International Space Station (ISS) as a function of the electron current collection of its high voltage solar array panels is derived analytically. Based on Floating Potential Probe (FPP) measurements of the ISS potential and ambient plasma characteristics, it is shown that the ISS floating potential is a strong function of the electron temperature of the surrounding plasma. While the ISS floating potential has so far not attained the pre-flight predicted highly negative values, it is shown that for future mission builds, ISS must continue to provide two-fault tolerant arc-hazard protection for astronauts on EVA.

  6. Preliminary study for improving the VIIRS DNB low light calibration accuracy with ground based active light source

    NASA Astrophysics Data System (ADS)

    Cao, Changyong; Zong, Yuqing; Bai, Yan; Shao, Xi

    2015-09-01

    There is a growing interest in the science and user community in the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) low light detection capabilities at night for quantitative applications such as airglow, geophysical retrievals under lunar illumination, light power estimation, search and rescue, energy use, urban expansion and other human activities. Given the growing interest in the use of the DNB data, a pressing need arises for improving the calibration stability and absolute accuracy of the DNB at low radiances. Currently the low light calibration accuracy was estimated at a moderate 15%-100% while the long-term stability has yet to be characterized. This study investigates selected existing night light point sources from Suomi NPP DNB observations and evaluates the feasibility of SI traceable nightlight source at radiance levels near 3 nW·cm-2·sr-1, that potentially can be installed at selected sites for VIIRS DNB calibration/validation. The illumination geometry, surrounding environment, as well as atmospheric effects are also discussed. The uncertainties of the ground based light source are estimated. This study will contribute to the understanding of how the Earth's atmosphere and surface variability contribute to the stability of the DNB measured radiances, and how to separate them from instrument calibration stability. It presents the need for SI traceable active light sources to monitor the calibration stability, radiometric and geolocation accuracy, and point spread functions of the DNB. Finally, it is also hoped to address whether or not active light sources can be used for detecting environmental changes, such as aerosols.

  7. Light/dark modulation of enzyme activity in developing barley leaves

    SciTech Connect

    Sibley, M.H.; Anderson, L.E. )

    1989-12-01

    Light/dark modulation of the ribulose-5-phosphate kinase, NADP{sup +}-glyceraldehyde-3-phosphate dehydrogenase, and fructose-1,6-bisphosphatase activity was measured in the developing primary leaf of barley (Hordeum vulgare L.) seedlings. Ribulose-5-phosphate kinase and NADP{sup +}-glyceraldehyde-3-phosphate dehydrogenase were fully light activated even at the earliest developmental stage sampled. In contrast, light modulation of fructose-1,6-bisphosphatase exhibited a complex response to leaf developmental status. Light stimulation of fructose-1,6-bisphosphatase activity (measured at pH 8.0) increased progressively during leaf development. On the other hand, acid fructose-1,6-bisphosphatase activity (measured at pH 6.0) was inhibited by light, and this light inhibition was greater in the base of the leaf than in the tip of the leaf.

  8. Floating platform well production apparatus

    SciTech Connect

    Nobileau, P.C.

    1980-10-21

    A plurality of wells are clustered around a central riser which is maintained under tension from a floating platform. A plurality of spiders on the riser carry funnels in vertical alignment with the wells. The funnels are sufficiently large to permit the passage of wellhead connectors and master block valves, and the production risers include centralizers which brace the production riser from the funnels through a limited vertical range. Tensioning of the production riser is with a lower force and through a limited range which precludes disengagement of the centralizers from the funnel. Some centralizers are located to facilitate entry and attachment to the wellhead.

  9. Wave drag on floating bodies

    PubMed Central

    Le Merrer, Marie; Clanet, Christophe; Quéré, David; Raphaël, Élie; Chevy, Frédéric

    2011-01-01

    We measure the deceleration of liquid nitrogen drops floating at the surface of a liquid bath. On water, the friction force is found to be about 10 to 100 times larger than on a solid substrate, which is shown to arise from wave resistance. We investigate the influence of the bath viscosity and show that the dissipation decreases as the viscosity is increased, owing to wave damping. The measured resistance is well predicted by a model imposing a vertical force (i.e., the drop weight) on a finite area, as long as the wake can be considered stationary. PMID:21876186

  10. Nanoflare Properties throughout Active Regions: Comparing SDO/AIA Observations with Modeled Active Region Light Curves

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen

    2012-01-01

    Coronal plasma in active regions is typically measured to be at temperatures near 1-3 MK. Is the majority of the coronal plasma in hydrostatic equilibrium, maintained at these temperatures through a form of quasi-steady heating, or is this simply a measure of the average temperature of widely varying, impulsively heated coronal plasma? Addressing this question is complicated by the fact that the corona is optically thin: many thousands of flux tubes which are heated completely independently are contributing to the total emission along a given line of sight. There is a large body of work focused on the heating of isolated features - coronal loops - which are impulsively heated, however it is the diffuse emission between loops which often comprises the majority of active region emission. Therefore in this study we move beyond isolated features and analyze all of the emission in an entire active region from all contributing flux tubes. We investigate light curves systematically using SDO/AIA observations. We also model the active region corona as a line-of-sight integration of many thousands of completely independently heated flux tubes. The emission from these flux tubes may be time dependent, quasi-steady, or a mix of both, depending on the cadence of heat release. We demonstrate that despite the superposition of randomly heated flux tubes, different distributions of nanoflare cadences produce distinct signatures in light curves observed with multi-wavelength and high time cadence data, such as those from SDO/AIA. We conclude that the majority of the active region plasma is not maintained in hydrostatic equilibrium, rather it is undergoing dynamic heating and cooling cycles. The observed emission is consistent with heating through impulsive nanoflares, whose energy is a function of location within the active region.

  11. Floating full-color image with computer-generated alcove rainbow hologram

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2014-02-01

    We have investigated the floating full color image display with the computer-generated hologram (CGH). The floating image, when utilized as a 3D display, gives strong impression to the viewer. In our previous study, to change the CGH shape from the flat type to the half cylindrical type, the floating image from the output CGH has the nearly 180 degrees viewing angle. However, since the previous CGH does not have wavelength-selectivity, reconstructed image only has a single color. Also, the huge calculation amount of the fringe pattern is big problem. Therefore, we now propose the rainbow-type computer generated alcove hologram. To decrease the calculation amount, the rainbow hologram sacrifices the vertical parallax. Also, this hologram can reconstruct an image with white light. Compared with the previous study of the Fresnel type, the calculation speed becomes 165 times faster. After calculation, we print this hologram with a fringe printer, and evaluate reconstructed floating full color images. In this study, we introduce the computer-generated rainbow hologram into the floating image display. The rainbow hologram can reconstruct full color image with white light illumination. It can be recorded by using a horizontal slit to limit the vertical parallax. Therefore, the slit changes into the half cylindrical slit, the wide viewing angle floating image display can reconstruct full color image.

  12. Global Night-Time Lights for Observing Human Activity

    NASA Technical Reports Server (NTRS)

    Hipskind, Stephen R.; Elvidge, Chris; Gurney, K.; Imhoff, Mark; Bounoua, Lahouari; Sheffner, Edwin; Nemani, Ramakrishna R.; Pettit, Donald R.; Fischer, Marc

    2011-01-01

    We present a concept for a small satellite mission to make systematic, global observations of night-time lights with spatial resolution suitable for discerning the extent, type and density of human settlements. The observations will also allow better understanding of fine scale fossil fuel CO2 emission distribution. The NASA Earth Science Decadal Survey recommends more focus on direct observations of human influence on the Earth system. The most dramatic and compelling observations of human presence on the Earth are the night light observations taken by the Defence Meteorological System Program (DMSP) Operational Linescan System (OLS). Beyond delineating the footprint of human presence, night light data, when assembled and evaluated with complementary data sets, can determine the fine scale spatial distribution of global fossil fuel CO2 emissions. Understanding fossil fuel carbon emissions is critical to understanding the entire carbon cycle, and especially the carbon exchange between terrestrial and oceanic systems.

  13. Sequential Folding using Light-activated Polystyrene Sheet

    NASA Astrophysics Data System (ADS)

    Lee, Yonghee; Lee, Hyeok; Hwang, Taesoon; Lee, Jong-Gu; Cho, Maenghyo

    2015-11-01

    A pre-strained polystyrene (PS) polymer sheet is deformed when it approaches the glass transition state as a result of light absorption. By controlling the light absorption of the polymer sheet, non-contact sequential folding can be accomplished. Line patterns of different transparencies and shapes are used to control the light absorption. The line pattern shape is closely related to the folding angle and folding start time. The relation between the line pattern design and folding performance was evaluated experimentally to develop a technique for folding PS sheets. The results show that sequential folding of PS sheets can be accomplished by changing the degree of transparency of the line pattern. Using the technique developed in this study, self-folding origami structures with complicated shapes can be designed and manufactured.

  14. Sequential Folding using Light-activated Polystyrene Sheet

    PubMed Central

    Lee, Yonghee; Lee, Hyeok; Hwang, Taesoon; Lee, Jong-Gu; Cho, Maenghyo

    2015-01-01

    A pre-strained polystyrene (PS) polymer sheet is deformed when it approaches the glass transition state as a result of light absorption. By controlling the light absorption of the polymer sheet, non-contact sequential folding can be accomplished. Line patterns of different transparencies and shapes are used to control the light absorption. The line pattern shape is closely related to the folding angle and folding start time. The relation between the line pattern design and folding performance was evaluated experimentally to develop a technique for folding PS sheets. The results show that sequential folding of PS sheets can be accomplished by changing the degree of transparency of the line pattern. Using the technique developed in this study, self-folding origami structures with complicated shapes can be designed and manufactured. PMID:26559611

  15. Visible-Light-Activated Bactericidal Functions of Carbon "Quantum" Dots.

    PubMed

    Meziani, Mohammed J; Dong, Xiuli; Zhu, Lu; Jones, Les P; LeCroy, Gregory E; Yang, Fan; Wang, Shengyuan; Wang, Ping; Zhao, Yiping; Yang, Liju; Tripp, Ralph A; Sun, Ya-Ping

    2016-05-01

    Carbon dots, generally defined as small carbon nanoparticles with various surface passivation schemes, have emerged as a new class of quantum-dot-like nanomaterials, with their optical properties and photocatalytic functions resembling those typically found in conventional nanoscale semiconductors. In this work, carbon dots were evaluated for their photoinduced bactericidal functions, with the results suggesting that the dots were highly effective in bacteria-killing with visible-light illumination. In fact, the inhibition effect could be observed even simply under ambient room lighting conditions. Mechanistic implications of the results are discussed and so are opportunities in the further development of carbon dots into a new class of effective visible/natural light-responsible bactericidal agents for a variety of bacteria control applications. PMID:27064729

  16. Experimental studies of light propagation in active scattering media

    NASA Astrophysics Data System (ADS)

    Perkins, Amy Elizabeth

    1998-10-01

    Over the past several years there has been a great deal of renewed interest in multiple scattering systems with gain. Laser action has been demonstrated in systems containing high gain laser dyes mixed with passive scattering particles. In these materials, known as photonic paint, the scatterers redirect the light and provide the feedback mechanism to initiate lasing. A method of decreasing the linewidth which has been used in conventional laser systems is injection locking, in which a seed at the desired wavelength is introduced into the cavity to initiate lasing. Experiments are presented which demonstrate injection locking of this new laser system. It is also of particular interest to study the phenomenon of weak localization of light in these photonic paint systems. The interference between scattered light paths increases the probability of light traveling opposite to the direction of the incident light, and produces a cone of enhanced reflected light in that direction. In the presence of amplification, the coherent backscattering cone narrows. In this high gain scattering system, an unstudied regime can be achieved in which significant amplification takes place over one scattering length. The results of the coherent backscattering experiment in a high gain scattering system is discussed. There are certain intrinsic problems with inversion gain systems, such as photonic paint, which makes the narrowing of the coherent backscattering cone less pronounced. In Raman materials, these effects are greatly reduced. Experimental studies of the amplification of a probe beam in a disordered Raman scattering medium, and the Monte Carlo simulations of this experiment, are presented. It is also of interest to study absorptive scattering systems which appear in a number of different situations, including the determination of the excitation volume in a scattering gain system and the modeling of biological tissue. The addition of an absorbing species into a scattering medium has also been shown to affect the coherent backscattering effect. Experimental studies of absorbing scattering media, as well as theoretical Monte Carlo simulations, are described.

  17. Floating liquid bridge charge dynamics

    NASA Astrophysics Data System (ADS)

    Teschke, Omar; Soares, David Mendez; Gomes, Whyllerson Evaristo; Valente Filho, Juracyr Ferraz

    2016-01-01

    The interaction of liquid with electric fields is investigated in a configuration where up to 13 kV are applied between electrodes resulting in a 106 V/m electric field in the capillaries and where there is the formation of a free-standing fluid bridge in the interelectrode gap. The Mott-Gurney equation was fitted to the measured ionization current vs applied voltage curve which indicates that the ionization rate at the high-voltage anode electrode dimethylsulfoxide (DMSO) interface and space charging in the interelectrode gap determine the floating liquid bridge current for a given cathode-to-anode voltage. Space charge effects were measured in the cathode becker and also at the liquid bridge since the ionized charges at the anode migrate to the bridge outer surface and decrease the interfacial tension from 43 mJ/m2 to 29 mJ/m2. Two distinct structural regions then form the bridge, a charged plastic (bulk modulus ˜100 MPa) conducting outer layer with a surface conductivity of ˜10-9 Ω-1, which shapes and supports the floating fluid structure, and an inner liquid cylinder, where DMSO molecules flow.

  18. Combinatorial Control of Light Induced Chromatin Remodeling and Gene Activation in Neurospora

    PubMed Central

    Sancar, Cigdem; Ha, Nati; Yilmaz, Rüstem; Tesorero, Rafael; Fisher, Tamas; Brunner, Michael; Sancar, Gencer

    2015-01-01

    Light is an important environmental cue that affects physiology and development of Neurospora crassa. The light-sensing transcription factor (TF) WCC, which consists of the GATA-family TFs WC1 and WC2, is required for light-dependent transcription. SUB1, another GATA-family TF, is not a photoreceptor but has also been implicated in light-inducible gene expression. To assess regulation and organization of the network of light-inducible genes, we analyzed the roles of WCC and SUB1 in light-induced transcription and nucleosome remodeling. We show that SUB1 co-regulates a fraction of light-inducible genes together with the WCC. WCC induces nucleosome eviction at its binding sites. Chromatin remodeling is facilitated by SUB1 but SUB1 cannot activate light-inducible genes in the absence of WCC. We identified FF7, a TF with a putative O-acetyl transferase domain, as an interaction partner of SUB1 and show their cooperation in regulation of a fraction of light-inducible and a much larger number of non light-inducible genes. Our data suggest that WCC acts as a general switch for light-induced chromatin remodeling and gene expression. SUB1 and FF7 synergistically determine the extent of light-induction of target genes in common with WCC but have in addition a role in transcription regulation beyond light-induced gene expression. PMID:25822411

  19. Future float zone development in industry

    NASA Technical Reports Server (NTRS)

    Sandfort, R. M.

    1980-01-01

    The present industrial requirements for float zone silicon are summarized. Developments desired by the industry in the future are reported. The five most significant problems faced today by the float zone crystal growth method in industry are discussed. They are economic, large diameter, resistivity uniformity, control of carbon, and swirl defects.

  20. 32 CFR 935.165 - Floating objects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Floating objects. 935.165 Section 935.165 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Public Safety § 935.165 Floating objects. No person may anchor, moor, or...

  1. 32 CFR 935.165 - Floating objects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Floating objects. 935.165 Section 935.165 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Public Safety § 935.165 Floating objects. No person may anchor, moor, or...

  2. 32 CFR 935.165 - Floating objects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Floating objects. 935.165 Section 935.165 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Public Safety § 935.165 Floating objects. No person may anchor, moor, or...

  3. 32 CFR 935.165 - Floating objects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Floating objects. 935.165 Section 935.165 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Public Safety § 935.165 Floating objects. No person may anchor, moor, or...

  4. 32 CFR 935.165 - Floating objects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Floating objects. 935.165 Section 935.165 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Public Safety § 935.165 Floating objects. No person may anchor, moor, or...

  5. Vertical pump with free floating check valve

    DOEpatents

    Lindsay, Malcolm

    1980-01-01

    A vertical pump with a bottom discharge having a free floating check valve isposed in the outlet plenum thereof. The free floating check valve comprises a spherical member with a hemispherical cage-like member attached thereto which is capable of allowing forward or reverse flow under appropriate conditions while preventing reverse flow under inappropriate conditions.

  6. A Variable Light Domain Fluorogen Activating Protein Homodimerizes To Activate Dimethylindole Red

    SciTech Connect

    Senutovitch, Nina; Stanfield, Robyn L.; Bhattacharyya, Shantanu; Rule, Gordon S.; Wilson, Ian A.; Armitage, Bruce A.; Waggoner, Alan S.; Berget, Peter B.

    2012-07-11

    Novel fluorescent tools such as green fluorescent protein analogues and fluorogen activating proteins (FAPs) are useful in biological imaging for tracking protein dynamics in real time with a low fluorescence background. FAPs are single-chain variable fragments (scFvs) selected from a yeast surface display library that produce fluorescence upon binding a specific dye or fluorogen that is normally not fluorescent when present in solution. FAPs generally consist of human immunoglobulin variable heavy (V{sub H}) and variable light (V{sub L}) domains covalently attached via a glycine- and serine-rich linker. Previously, we determined that the yeast surface clone, V{sub H}-V{sub L} M8, could bind and activate the fluorogen dimethylindole red (DIR) but that the fluorogen activation properties were localized to the M8V{sub L} domain. We report here that both nuclear magnetic resonance and X-ray diffraction methods indicate the M8V{sub L} forms noncovalent, antiparallel homodimers that are the fluorogen activating species. The M8V{sub L} homodimers activate DIR by restriction of internal rotation of the bound dye. These structural results, together with directed evolution experiments with both V{sub H}-V{sub L} M8 and M8V{sub L}, led us to rationally design tandem, covalent homodimers of M8V{sub L} domains joined by a flexible linker that have a high affinity for DIR and good quantum yields.

  7. Synthesis and polymorphic control for visible light active titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaewgun, Sujaree

    Titania (TiO2) is useful for many applications in photocatalysis, antimicrobials, pigment, deodorization, and decomposition of harmful organics and undesirable compounds in the air and waste water under UV irradiation. Among the three phases of TiO2, Rutile, Anatase, and Brookite, studies have been more focused on the anatase and rutile phases. Pure brookite is the most difficult phase to prepare, even under hydrothermal conditions. Predominantly brookite phase TiO2 nanoparticles were prepared by the Water-based Ambient Condition Sol (WACS) process in our laboratory. The objectives of this research were to enhance visible light active (VLA) photocatalytic properties of polymorphic brookite TiO2 by minimizing the lattice defects and narrowing band gap of titania by nitrogen and/or carbon chromophone, and to investigate the deactivation, reusability, and regeneration of the VLA titania in order to design better titania catalysts for organic compound degradation applications. In order to study the influence of hydroxyl content on photocatalytic activities (PCAs) of polymorphic titania nanoparticles, the WACS samples were post-treated by a Solvent-based Ambient Condition Sol (SACS) process in sec-butanol (sec-BuOH). All samples were characterized for phase composition, surface area, hydroxyl contamination, and particle morphology by x-ray diffraction, N2 physisorption, FT-IR, solid state 1H NMR and scanning electron microscopy, and then compared to a commercial titania, Degussa P25. Evaluation of methyl orange (MO) degradation under UV irradiation results showed that the lower lattice hydroxyl content in SACS titania enhanced the PCA. As-prepared titania and SACS samples, which have similar surface areas and crystallinity, were compared in order to prove that the superior PCA came from the reduction in the lattice hydroxyl content. To enhance PCA and VLA properties of WACS, an alternative high boiling point polar solvent, N-methylpyrrolidone (NMP), was utilized in the SACS process at a higher treatment temperature to modify polymorphic titania nanoparticles. This SACS sample was called "SACS-NMP". SACS, using NMP as the solvent, could also extract lattice hydroxyls, and decorate nitrogen on the titania surface. The PCA of SACS-NMP was superior to that of SACS-sec-BuOH. Nitrogen incorporation of SACS-NMP titania was investigated by CHN analysis and x-ray photoelectron spectroscopy (XPS). VL absorbance for all samples was characterized by UV-Vis absorption spectrophotometry. PCA of MO degradation under UV and VL showed that SACS-NMP is a powerful treatment to enhance PCA by minimizing lattice hydroxyls and doping the titania surface with nitrogen. The effect of calcination conditions on SACS-NMP samples was also studied. The calcination conditions, especially the temperature and calcination atmosphere, have an influence on the BET surface area, crystallite size, titania phase content, and PCA under VL irradiation. SACS-NMP samples calcined in air at 200°C for 2 hours showed the best VL activated photocatalytic performance in this research. Additionally, the SACS-NMP sample exhibited superior VL properties to several available reference anatase titania samples. This could be explained as the effective charge separation by the intercrystalline electron transport from brookite to anatase grains complemented by strong VL absorption by the nitrogen species in NMP. The deactivation and regeneration of the VLA titania were investigated and compared to a commercial titania, Kronos VLP7000. PCA of the titania under VL for MO decolorization gradually decreased with increasing testing time and the number of runs. The cause of the deactivation was identified as the deposition of the decomposed MO or the carbonaceous deposit. Among the possible regeneration procedures for used SACS-NMP samples, methanol washing was shown to be the most effective up to ˜80% of the PCA recovery. Accordingly, the SACS-NMP samples could not be completely recovered since a regeneration process would possibly remove some of nitrogen species responsible for the VL properties.

  8. Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory

    SciTech Connect

    Han, Jinhua; Wang, Wei Ying, Jun; Xie, Wenfa

    2014-01-06

    An ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory was demonstrated, with discrete distributed gold nanoparticles, tetratetracontane (TTC), pentacene as the floating-gate layer, tunneling layer, and active layer, respectively. The electron traps at the TTC/pentacene interface were significantly suppressed, which resulted in an ambipolar operation in present memory. As both electrons and holes were supplied in the channel and trapped in the floating-gate by programming/erasing operations, respectively, i.e., one type of charge carriers was used to overwrite the other, trapped, one, a large memory window, extending on both sides of the initial threshold voltage, was realized.

  9. Mitogen-Activated Protein Kinase Kinase 3 Is Required for Regulation during Dark-Light Transition

    PubMed Central

    Lee, Horim

    2015-01-01

    Plant growth and development are coordinately orchestrated by environmental cues and phytohormones. Light acts as a key environmental factor for fundamental plant growth and physiology through photosensory phytochromes and underlying molecular mechanisms. Although phytochromes are known to possess serine/threonine protein kinase activities, whether they trigger a signal transduction pathway via an intracellular protein kinase network remains unknown. In analyses of mitogen-activated protein kinase kinase (MAPKK, also called MKK) mutants, the mkk3 mutant has shown both a hypersensitive response in plant hormone gibberellin (GA) and a less sensitive response in red light signaling. Surprisingly, light-induced MAPK activation in wild-type (WT) seedlings and constitutive MAPK phosphorylation in dark-grown mkk3 mutant seedlings have also been found, respectively. Therefore, this study suggests that MKK3 acts in negative regulation in darkness and in light-induced MAPK activation during dark-light transition. PMID:26082029

  10. Laser-activated remote phosphor light engine for projection applications

    NASA Astrophysics Data System (ADS)

    Daniels, Martin; Mehl, Oliver; Hartwig, Ulrich

    2015-09-01

    Recent developments in blue emitting laser diodes enable attractive solutions in projection applications using phosphors for efficient light conversion with very high luminance levels. Various commercially available projectors incorporating this technology have entered the market in the past years. While luminous flux levels are still comparable to lamp-based systems, lifetime expectations of classical lamp systems are exceeded by far. OSRAM GmbH has been exploring this technology for several years and has introduced the PHASER® brand name (Phosphor + laser). State-of-the-art is a rotating phosphor wheel excited by blue laser diodes to deliver the necessary primary colors, either sequentially for single-imager projection engines, or simultaneously for 3-panel systems. The PHASER® technology enables flux and luminance scaling, which allows for smaller imagers and therefore cost-efficient projection solutions. The resulting overall efficiency and ANSI lumen specification at the projection screen of these systems is significantly determined by the target color gamut and the light transmission efficiency of the projection system. With increasing power and flux level demand, thermal issues, especially phosphor conversion related, dominate the opto-mechanical system design requirements. These flux levels are a great challenge for all components of an SSL-projection system (SSL:solid-state lighting). OSRAḾs PHASER® light engine platform is constantly expanded towards higher luminous flux levels as well as higher luminance levels for various applications. Recent experiments employ blue laser pump powers of multiple 100 Watts to excite various phosphors resulting in luminous flux levels of more than 40 klm.

  11. LIGHT, a member of the TNF superfamily, activates Stat3 mediated by NIK pathway

    SciTech Connect

    Nadiminty, Nagalakshmi; Chun, Jae Yeon; Hu, Yan; Dutt, Smitha; Lin, Xin; Gao, Allen C. . E-mail: allen.gao@roswellpark.org

    2007-07-27

    Stat3, a member of the signal transducers and activators of transcription (STAT) family, is a key signal transduction protein activated by numerous cytokines, growth factors, and oncoproteins that controls cell proliferation, differentiation, development, survival, and inflammation. Constitutive activation of Stat3 has been found frequently in a wide variety of human tumors and induces cellular transformation and tumor formation. In this study, we demonstrated that LIGHT, a member of tumor necrosis factor superfamily, activates Stat3 in cancer cells. LIGHT induces dose-dependent activation of Stat3 by phosphorylation at both the tyrosine 705 and serine 727 residues. The activation of Stat3 by LIGHT appears to be mediated by NIK phosphorylation. Expression of a kinase-inactive NIK mutant abolished LIGHT induced Stat3 activation. Overexpression of an active NIK induces Stat3 activation by phosphorylation at the both tyrosine 705 and serine 727 residues. Activation of Stat3 by NIK requires NIK kinase activity as showed by kinase assays. In addition, LIGHT increases the expression of Stat3 target genes including cyclin D1, survivin, and Bcl-xL, and stimulates human LNCaP prostate cancer cell growth in vitro which can be blocked by expression of a dominant-negative Stat3 mutant. Taken together, these results indicate that in addition to activating NF-{kappa}B/p52, LIGHT also activates Stat3. Activation of Stat3 together with activating non-canonical NF-{kappa}B/p52 signaling by LIGHT may maximize its effects on cellular proliferation, survival, and inflammation.

  12. Structured-light stereo: Comparative analysis and integration of structured-light and active stereo for measuring dynamic shape

    NASA Astrophysics Data System (ADS)

    Jang, Wonkwi; Je, Changsoo; Seo, Yongduek; Lee, Sang Wook

    2013-11-01

    In computer vision, two major active range imaging methods have been frequently employed for rapid and efficient shape recovery: (a) conventional active stereo vision and (b) conventional structured-light vision. This paper presents a comparative analysis and an integration of the two active approaches, namely, a structured-light stereo approach for the acquisition of dynamic shape. We first investigate the strengths and weaknesses of the two approaches in terms of accuracy, computational cost, field of view, depth of field, and color sensitivity. Based on this analysis, we propose a novel integrated method, the structured-light stereo, to recover dynamic shapes from a wider view with less occlusion by taking most of the benefits of the two approaches. The main idea is as follows. We first build a system composed of two cameras and a single projector (just a basic setup for conventional active stereo), and the projector projects a single "one-shot" color-stripe pattern. The next step is to estimate reliable correspondences between each camera and the projector via an accurate and efficient pattern decoding technique, and some remaining unresolved regions are explored by a stereo matching technique, which is less sensitive to object surface colors and defocus due to the projector's short depth of field, to estimate additional correspondences. We demonstrate the efficacy of the integrated method through experimental results.

  13. El Hierro's floating stones as messengers of crust-magma interaction at depth

    NASA Astrophysics Data System (ADS)

    Burchardt, S.; Troll, V. R.; Schmeling, H.; Koyi, H.; Blythe, L. S.; Longpré, M. A.; Deegan, F. M.

    2012-04-01

    During the early stages of the submarine eruption that started on October 10 2011 south of El Hierro, Canary Islands, Spain, peculiar eruption products were found floating on the sea surface. These centimetre- to decimetre-sized "bombs" have been termed "restingolites" after the nearby village La Restinga and consist of a basaltic rind and a white to light grey core that resembles pumice in texture. According to Troll et al. (2011; see also Troll et al. EGU 2012 Abstracts), this material consists of a glassy matrix hosting extensive vesicle networks, which results in extremely low densities allowing these rocks to float on sea water. Mineralogical and geochemical analyses reveal that the "restingolites" originate from the sedimentary rocks (sand-, silt-, and mudstones) that form layer 1 of the oceanic crust beneath El Hierro. During the onset and early stages of the eruption, magma ponded at the base of this sedimentary sequence, breaking its way through the sedimentary rocks to the ocean floor. The textures of the "restingolites" reveal that crust-magma interaction during fragmentation and transport of the xenoliths involved rapid partial melting and volatile exsolution. Xenoliths strikingly similar to those from El Hierro are known from eruptions on other Canary Islands (e.g. La Palma, Gran Canaria, and Lanzarote). In fact, they resemble in texture xenoliths of various protoliths from volcanic areas worldwide (e.g. Krakatao, Indonesia, Cerro Quemado, Guatemala, Laacher See, Germany). This indicates that the process of partial melting and volatile exsolution, which the "restingolites" bear witness of, is probably occurring frequently during shallow crustal magma emplacement. Thermomechanical numerical models of the effect of the density decrease associated with the formation of vesicle networks in partially molten xenoliths show that xenoliths of crustal rocks initially sink in a magma chamber, but may start to float to the chamber roof once they start to heat up and vesiculate. The "floating stones" from El Hierro thus represent the products of crust-magma interaction beneath the Canary Islands, but is probably relevant in most volcanic areas and tectonic settings. In addition, xenolith devolatilisation has important general implications for the mechanics of crustal recycling, magma emplacement into the upper crust and volatile release from active volcanic systems.

  14. Night-Time Light Data: A Good Proxy Measure for Economic Activity?

    PubMed Central

    Mellander, Charlotta; Lobo, José; Stolarick, Kevin; Matheson, Zara

    2015-01-01

    Much research has suggested that night-time light (NTL) can be used as a proxy for a number of variables, including urbanization, density, and economic growth. As governments around the world either collect census data infrequently or are scaling back the amount of detail collected, alternate sources of population and economic information like NTL are being considered. But, just how close is the statistical relationship between NTL and economic activity at a fine-grained geographical level? This paper uses a combination of correlation analysis and geographically weighted regressions in order to examine if light can function as a proxy for economic activities at a finer level. We use a fine-grained geo-coded residential and industrial full sample micro-data set for Sweden, and match it with both radiance and saturated light emissions. We find that the correlation between NTL and economic activity is strong enough to make it a relatively good proxy for population and establishment density, but the correlation is weaker in relation to wages. In general, we find a stronger relation between light and density values, than with light and total values. We also find a closer connection between radiance light and economic activity, than with saturated light. Further, we find the link between light and economic activity, especially estimated by wages, to be slightly overestimated in large urban areas and underestimated in rural areas. PMID:26496428

  15. Role of the Essential Light Chain in the Activation of Smooth Muscle Myosin by Regulatory Light Chain Phosphorylation

    PubMed Central

    Taylor, Kenneth A.; Feig, Michael; Brooks, Charles L.; Fagnant, Patricia M.; Lowey, Susan; Trybus, Kathleen M.

    2014-01-01

    The activity of smooth and non-muscle myosin II is regulated by phosphorylation of the regulatory light chain (RLC) at serine 19. The dephosphorylated state of full-length monomeric myosin is characterized by an asymmetric intramolecular head-head interaction that completely inhibits the ATPase activity, accompanied by a hairpin fold of the tail, which prevents filament assembly. Phosphorylation of serine 19 disrupts these head-head interactions by an unknown mechanism. Computational modeling suggested that formation of the inhibited state is characterized by both torsional and bending motions about the myosin heavy chain (HC) at a location between the RLC and the essential light chain (ELC). Therefore, altering relative motions between the ELC and the RLC at this locus might disrupt the inhibited state. Based on this hypothesis we have derived an atomic model for the phosphorylated state of the smooth muscle myosin light chain domain (LCD). This model predicts a set of specific interactions between the N-terminal residues of the RLC with both the myosin HC and the ELC. Site directed mutagenesis was used to show that interactions between the phosphorylated N-terminus of the RLC and helix-A of the ELC are required for phosphorylation to activate smooth muscle myosin. PMID:24361582

  16. Energy expenditure and physical activity in domestic fowl kept on standard and interrupted lighting patterns.

    PubMed

    MacLeod, M G; Jewitt, T R; Anderson, J E

    1988-06-01

    1. The energy expenditure (H) and physical activity of laying hens were measured under lighting regimes of 14L:10D (standard), 2L:10D:2L:10D (interrupted) and (15 X (13 min L:47 min D]: 9D (fragmented). 2. Neither of the intermittent regimes produced a significant change in total daily energy expenditure, although large alterations occurred in the distribution of H between the lighting phases. The absence of change in total H resulted from the combined effects of greater H in the light in the intermittent regimes, greater H in darkness during the interrupted day than at night and slightly greater H at night in the intermittent regimes. 3. Physical activity count, like H, was redistributed over time but, unlike H, was also significantly reduced in total; changes in the energy cost of unit activity, however, were such that no reduction occurred in the total amount of H attributable to activity. 4. In the standard groups, 90% of total activity costs were incurred in the light; in the fragmented-day and interrupted-day groups, respectively, 7% and 55% of total activity costs were incurred in the light periods and 85% and 30% in daytime darkness. 5. In terms of both H and activity, there was clear differentiation between night darkness and subjective-day darkness. 6. Even when the energy cost of activity was excluded, significant differences remained between H at night, H in the light and H in daytime darkness. PMID:3409070

  17. Double floating probe measurements on S3-A.

    NASA Technical Reports Server (NTRS)

    Maynard, N. C.; Cauffman, D. P.

    1973-01-01

    Model calculations are made to explain the behavior of the potential of a pair of symmetrical floating probes used for the measurement of dc electric fields inside the plasmapause on the S3-A satellite launched on Nov. 15, 1971, into an eccentric orbit. Data representing the behavior of three regions of the plasmapause on and around Dec. 17, 1971, are discussed. The behavior of the plasmapause is found to be generally similar to that determined by previous observations involving variable magnetic activity.

  18. WindWaveFloat Final Report

    SciTech Connect

    Alla Weinstein, Dominique Roddier, Kevin Banister

    2012-03-30

    Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

  19. Floating point arithmetic in future supercomputers

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Barton, John T.; Simon, Horst D.; Fouts, Martin J.

    1989-01-01

    Considerations in the floating-point design of a supercomputer are discussed. Particular attention is given to word size, hardware support for extended precision, format, and accuracy characteristics. These issues are discussed from the perspective of the Numerical Aerodynamic Simulation Systems Division at NASA Ames. The features believed to be most important for a future supercomputer floating-point design include: (1) a 64-bit IEEE floating-point format with 11 exponent bits, 52 mantissa bits, and one sign bit and (2) hardware support for reasonably fast double-precision arithmetic.

  20. Evaluation, 1979: a look at conservation projects and activities at Seattle City Light

    SciTech Connect

    Not Available

    1980-01-01

    The attempt at systematic evaluation of energy conservation activities and programs at Seattle City Light is reviewed. In 1979, 22 projects/activities were evaluated and categorized in-house, i.e., commercial/industrial; residential; outreach efforts;support activities; (not targeting the public); research, development, and demonstration; and in-house conservation activities. Details of each of these projects are presented. Four studies conducted by outside consultants are: Evaluation of the Seattle City Light Neighborhood Energy Conservation Program (Battelle Institute); Seattle City Light Conservation Office Evaluation Plan Review (Communication Design); Residential Customer Conservation Attitude and Awareness Study (Communication Design); and A Case Study of Seattle City Light's Utility/Bank/Contractor Insulation Program (Brown and Caldwell). Summaries of the reports are included as appendices.

  1. Young Scientists Explore Light & Color. Book 12--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of light and color. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each…

  2. Lighting

    SciTech Connect

    Audin, L.

    1994-12-31

    EPAct covers a vast territory beyond lighting and, like all legislation, also contains numerous {open_quotes}favors,{close_quotes} compromises, and even some sleight-of-hand. Tucked away under Title XIX, for example, is an increase from 20% to 28% tax on gambling winnings, effective January 1, 1993 - apparently as a way to help pay for new spending listed elsewhere in the bill. Overall, it is a landmark piece of legislation, about a decade overdue. It remains to be seen how the Federal Government will enforce upgrading of state (or even their own) energy codes. There is no mention of funding for {open_quotes}energy police{close_quotes} in EPAct. Merely creating such a national standard, however, provides a target for those who sincerely wish to create an energy-efficient future.

  3. A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light.

    PubMed

    Jones, Matthew Alan; Hu, Wei; Litthauer, Suzanne; Lagarias, J Clark; Harmer, Stacey Lynn

    2015-09-01

    The sensitivity of the circadian system to light allows entrainment of the clock, permitting coordination of plant metabolic function and flowering time across seasons. Light affects the circadian system via both photoreceptors, such as phytochromes and cryptochromes, and sugar production by photosynthesis. In the present study, we introduce a constitutively active version of phytochrome B-Y276H (YHB) into both wild-type and phytochrome null backgrounds of Arabidopsis (Arabidopsis thaliana) to distinguish the effects of photoreceptor signaling on clock function from those of photosynthesis. We find that the YHB mutation is sufficient to phenocopy red light input into the circadian mechanism and to sustain robust rhythms in steady-state mRNA levels even in plants grown without light or exogenous sugars. The pace of the clock is insensitive to light intensity in YHB plants, indicating that light input to the clock is constitutively activated by this allele. Mutation of YHB so that it is retained in the cytoplasm abrogates its effects on clock function, indicating that nuclear localization of phytochrome is necessary for its clock regulatory activity. We also demonstrate a role for phytochrome C as part of the red light sensing network that modulates phytochrome B signaling input into the circadian system. Our findings indicate that phytochrome signaling in the nucleus plays a critical role in sustaining robust clock function under red light, even in the absence of photosynthesis or exogenous sources of energy. PMID:26157113

  4. 14 CFR 23.753 - Main float design.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Main float design. 23.753 Section 23.753... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Floats and Hulls § 23.753 Main float design. Each seaplane main float must meet the requirements of § 23.521....

  5. 14 CFR 23.753 - Main float design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 23.753 Section 23.753... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Floats and Hulls § 23.753 Main float design. Each seaplane main float must meet the requirements of § 23.521....

  6. 14 CFR 27.751 - Main float buoyancy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Main float buoyancy. 27.751 Section 27.751... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the buoyancy necessary to support the maximum weight of the rotorcraft in...

  7. 14 CFR 27.751 - Main float buoyancy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Main float buoyancy. 27.751 Section 27.751... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the buoyancy necessary to support the maximum weight of the rotorcraft in...

  8. 14 CFR 27.751 - Main float buoyancy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Main float buoyancy. 27.751 Section 27.751... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the buoyancy necessary to support the maximum weight of the rotorcraft in...

  9. 14 CFR 27.751 - Main float buoyancy.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Main float buoyancy. 27.751 Section 27.751... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the buoyancy necessary to support the maximum weight of the rotorcraft in...

  10. 14 CFR 25.751 - Main float buoyancy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float buoyancy. 25.751 Section 25.751 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Floats and Hulls § 25.751 Main float buoyancy. Each main float must have— (a)...

  11. 14 CFR 29.751 - Main float buoyancy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float buoyancy. 29.751 Section 29.751 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.751 Main float buoyancy. (a) For main floats,...

  12. 14 CFR 27.751 - Main float buoyancy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float buoyancy. 27.751 Section 27.751 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the...

  13. Rapid prototyping of reflectors for vehicle lighting using laser activated remote phosphor

    NASA Astrophysics Data System (ADS)

    Lachmayer, Roland; Kloppenburg, Gerolf; Wolf, Alexander

    2015-03-01

    Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class vehicles mainly use HID or LED as light source. As a further step in this development laser diode based systems offer high luminance, efficiency and allow the realization of new styling concepts and new dynamic lighting functions. These white laser diode systems can either be realized by mixing different spectral sources or by combining diodes with specific phosphors. Based on the approach of generating light using a laser and remote phosphor, lighting modules are manufactured. Four blue laser diodes (450 nm) are used to activate a phosphor coating and thus to achieve white light. A segmented paraboloid reflector generates the desired light distribution for an additional car headlamp. We use high speed milling and selective laser melting to build the reflector system for this lighting module. We compare the spectral reflection grade of these materials. Furthermore the generated modules are analyzed regarding their efficiency and light distribution. The use of Rapid Prototyping technologies allows an early validation of the chosen concept and is supposed to reduce cost and time in the product development process significantly. Therefor we discuss costs and times of the applied manufacturing technologies.

  14. Extended Onshore Control of a Floating Wind Turbine with Wave Disturbance Reduction

    NASA Astrophysics Data System (ADS)

    Christiansen, S.; Knudsen, T.; Bak, T.

    2014-12-01

    Reaching for higher wind resources beyond the water depth limitations of monopile wind turbines, there has arisen the alternative of using floating wind turbines. But the response of wave induced loads significantly increases for floating wind turbines. Applying conventional onshore control strategies to floating wind turbines has been shown to impose negative damped oscillations in fore-aft due to the low natural frequency of the floating structure. Thus, we suggest a control loop extension of the onshore controller which stabilizes the system and reduces the wave disturbance. The results shows that when adding the suggested control loop with disturbance reduction to the system, improved performance is observed in power fluctuations, blade pitch activity, and platform oscillations.

  15. Light Evokes Melanopsin-Dependent Vocalization and Neural Activation Associated with Aversive Experience in Neonatal Mice

    PubMed Central

    Delwig, Anton; Logan, Anne M.; Copenhagen, David R.; Ahn, Andrew H.

    2012-01-01

    Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are the only functional photoreceptive cells in the eye of newborn mice. Through postnatal day 9, in the absence of functional rods and cones, these ipRGCs mediate a robust avoidance behavior to a light source, termed negative phototaxis. To determine whether this behavior is associated with an aversive experience in neonatal mice, we characterized light-induced vocalizations and patterns of neuronal activation in regions of the brain involved in the processing of aversive and painful stimuli. Light evoked distinct melanopsin-dependent ultrasonic vocalizations identical to those emitted under stressful conditions, such as isolation from the litter. In contrast, light did not evoke the broad-spectrum calls elicited by acute mechanical pain. Using markers of neuronal activation, we found that light induced the immediate-early gene product Fos in the posterior thalamus, a brain region associated with the enhancement of responses to mechanical stimulation of the dura by light, and thought to be the basis for migrainous photophobia. Additionally, light induced the phosphorylation of extracellular-related kinase (pERK) in neurons of the central amygdala, an intracellular signal associated with the processing of the aversive aspects of pain. However, light did not activate Fos expression in the spinal trigeminal nucleus caudalis, the primary receptive field for painful stimulation to the head. We conclude that these light-evoked vocalizations and the distinct pattern of brain activation in neonatal mice are consistent with a melanopsin-dependent neural pathway involved in processing light as an aversive but not acutely painful stimulus. PMID:23028470

  16. Construction of Control System for Floating High Energy Capacitors

    NASA Astrophysics Data System (ADS)

    Tobin, Zachary; Bellan, Paul

    2011-10-01

    The circuitry for the Caltech magnetic reconnection experiment under construction requires two independent floating high energy capacitor power supplies to create linked plasma loops. This project requires the building of systems for controlling plasma generation, including timing circuitry to control the sequences of operation. Unlike with previous designs, timing functions are completely contained on a single printed circuit board. This allows the design to be easily replicated for use with the multiple independent capacitor involved. The timing circuitry first activates a high voltage power supply, then connects the power supply to the capacitor, and then disconnects the power supply so that the charged capacitor is floating. The circuitry then sends out a ``ready'' signal to a sequencer, which sequentially triggers the gas puff valves, bias magnetic field supply, and ignitron switch for the capacitor. The control circuit sequencing has been tested successfully with the capacitor discharging into a dummy load.

  17. Preparation and evaluation of floating tablets of pregabalin.

    PubMed

    Kanwar, Navjot; Kumar, Rakesh; Sarwal, Amita; Sinha, V R

    2016-04-01

    Floating tablets of pregabalin were prepared using different concentrations of the gums (xanthan gum and guar gum), Carbopol 974P NF and HPMC K100. Optimized formulations were studied for physical tests, floating time, swelling behavior, in vitro release studies and stability studies. In vitro drug release was higher for tablet batches containing guar and xanthan gum as compared to the batches containing Carbopol 974P NF. Tablet batches were subjected to stability studies and evaluated by different parameters (drug release, drug content, FTIR and DSC studies). The optimized tablet batch was selected for in vivo pharmacodynamic studies (PTZ induced seizures). The results obtained showed that the onset of jerks and clonus were delayed and extensor phase was abolished with time in treated groups. A significant difference (p > 0.05) was observed in control and treated group behavior indicating an excellent activity of the formulation for a longer period (>12 h). PMID:26146770

  18. Light promotes an increase of cytokinin oxidase/dehydrogenase activity during senescence of barley leaf segments.

    PubMed

    Schlüter, Torsten; Leide, Jana; Conrad, Klaus

    2011-05-01

    Following a study of the relationship between cytokinin oxidase/dehydrogenase (CKX) and senescence in darkened barley leaf segments, we have now investigated the influence of light on the in vitro activity of CKX. Seedlings of Hordeum vulgare L. were grown for 8d under a light/dark regime of 18h white light and 6h darkness. Then apical parts of 7cm length were cut from the first foliage leaves and their bases were placed in water. In segments kept in the dark, the CKX activity measured by cleavage of N(6)-(Δ(2)-isopentenyl)adenine rose from 0.1pkat (gFW)(-1) to 0.8pkat (g initial FW)(-1) within the first 4d of incubation. In contrast, in segments kept under the light/dark regime it reached a value of 8.6pkat (g initial FW)(-1) over the same time period. The chlorophyll a content declined slightly slower during light/dark cycling than in darkness. In contrast to segments and isolated laminae, corresponding attached laminae exhibited less CKX activity after 2d under light/dark conditions than after 2d in the dark. The activity in attached laminae of first foliage leaves of plants growing in light/dark cycling increased strongly only when the plants were older than 4 weeks. In line with this, the CKX activity in attached laminae of flag leaves of barley growing in fields increased in a late developmental state. The senescence of darkened isolated laminae of Zea mays L. and Phragmites australis (Cav.) Trin. ex Steudel was associated with an enhancement of CKX activity too. Because in most cases a positive correlation between CKX activity and senescence was found, it is likely that the enzyme promotes senescence by destroying cytokinins, which help to keep Poaceae leaves green. Light may promote not only cytokinin degradation but also the formation of bioactive cytokinins in leaf segments. PMID:21106275

  19. Objective Light-Intensity Physical Activity Associations With Rated Health in Older Adults

    PubMed Central

    Buman, Matthew P.; Hekler, Eric B.; Haskell, William L.; Pruitt, Leslie; Conway, Terry L.; Cain, Kelli L.; Sallis, James F.; Saelens, Brian E.; Frank, Lawrence D.; King, Abby C.

    2010-01-01

    The extent to which light-intensity physical activity contributes to health in older adults is not well known. The authors examined associations between physical activity across the intensity spectrum (sedentary to vigorous) and health and well-being variables in older adults. Two 7-day assessments of accelerometry from 2005 to 2007 were collected 6 months apart in the observational Senior Neighborhood Quality of Life Study of adults aged >65 years in Baltimore, Maryland, and Seattle, Washington. Self-reported health and psychosocial variables (e.g., lower-extremity function, body weight, rated stress) were also collected. Physical activity based on existing accelerometer thresholds for moderate/vigorous, high-light, low-light, and sedentary categories were examined as correlates of physical health and psychosocial well-being in mixed-effects regression models. Participants (N = 862) were 75.4 (standard deviation, 6.8) years of age, 56% female, 71% white, and 58% overweight/obese. After adjustment for study covariates and time spent in moderate/vigorous physical activity and sedentary behavior, low-light and high-light physical activity were positively related to physical health (all P < 0.0001) and well-being (all P < 0.001). Additionally, replacing 30 minutes/day of sedentary time with equal amounts of low-light or high-light physical activity was associated with better physical health (all P < 0.0001). Objectively measured light-intensity physical activity is associated with physical health and well-being variables in older adults. PMID:20843864

  20. Verification of floating-point software

    NASA Technical Reports Server (NTRS)

    Hoover, Doug N.

    1990-01-01

    Floating point computation presents a number of problems for formal verification. Should one treat the actual details of floating point operations, or accept them as imprecisely defined, or should one ignore round-off error altogether and behave as if floating point operations are perfectly accurate. There is the further problem that a numerical algorithm usually only approximately computes some mathematical function, and we often do not know just how good the approximation is, even in the absence of round-off error. ORA has developed a theory of asymptotic correctness which allows one to verify floating point software with a minimum entanglement in these problems. This theory and its implementation in the Ariel C verification system are described. The theory is illustrated using a simple program which finds a zero of a given function by bisection. This paper is presented in viewgraph form.

  1. Activating neurons by light in free-moving adult flies

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chin; Hsiao, Po-Yen; Chu, Li-An; Lin, Yen-Yin; Fu, Chien-Chung; Chiang, Ann-Shyn

    2015-01-01

    In this presentation, we show our preliminary results which is related to neurons activation in vivo by laser. A laser scanning system was adopted to guide laser beam to an assigned fly and an assigned position. A 473-nm laser can be a heat punishment source to restrain a wild-type fly's moving area. Furthermore, neurons in optogenetics transgene flies can be triggered by the blue laser in this system.

  2. Archimedes' floating bodies on a spherical Earth

    NASA Astrophysics Data System (ADS)

    Rorres, Chris

    2016-01-01

    Archimedes was the first to systematically find the centers of gravity of various solid bodies and to apply this concept in determining stable configurations of floating bodies. In this paper, we discuss an error in a proof developed by Archimedes that involves determining whether a uniform, spherical cap will float stably with its base horizontal in a liquid on a spherical Earth. We present a simpler, corrected proof and discuss aspects of his proof regarding a spherical cap that is not uniform.

  3. Multiple valued floating potentials of Langmuir probes

    NASA Technical Reports Server (NTRS)

    Nam, Cheol-Hee; Hershkowitz, N.; Cho, M. H.; Intrator, T.; Diebold, D.

    1988-01-01

    It is shown that Langmuir probes can have three different floating potentials in plasmas produced by a hot filament discharge in a multi-dipole device when the primary and secondary electron currents are comparable. The measured floating potential depends on the probe's initial condition - the most negative and the least negative potentials are found to be stable and the in-between value is found to be unstable. Results are compared to a simple theoretical model.

  4. Orexinergic signaling mediates light-induced neuronal activation in the dorsal raphe nucleus

    PubMed Central

    Adidharma, Widya; Leach, Greg; Yan, Lily

    2012-01-01

    Seasonal affective disorder (SAD), a major depressive disorder recurring in the fall and winter, is caused by the reduction of light in the environment, and its depressive symptoms can be alleviated by bright light therapy. Both circadian and monoaminergic systems have been implicated in the etiology of SAD. However, the underlying neural pathways through which light regulates mood are not well understood. The present study utilized a diurnal rodent model, Arvicanthis niloticus, to explore the neural pathways mediating the effects of light on brain regions involved in mood regulation. Animals kept in constant darkness received light exposure in early subjective day, the time when light therapy is usually applied. The time course of neural activity following light exposure was assessed using Fos as a marker in the following brain regions/cells: the suprachiasmatic nucleus (SCN), orexin neurons in the perifornical-lateral hypothalamic area (PF-LHA) and the dorsal raphe nucleus (DRN). A light-induced increase in Fos expression was observed in orexin neurons and the DRN, but not in the SCN. As the DRN is densely innervated by orexinergic inputs, the involvement of orexinergic signaling in mediating the effects of light on the DRN was tested in the second experiment. The animals were injected with the selective orexin receptor type 1 (OXR1) antagonist SB-334867 prior to the light exposure. The treatment of SB-334867 significantly inhibited the Fos induction in the DRN. The results collectively point to the role of orexin neurons in mediating the effects of light on the mood-regulating monoaminergic areas, suggesting an orexinergic pathway that underlies light-dependent mood fluctuation and the beneficial effects of light therapy. PMID:22710065

  5. Cadmium uptake by floating macrophytes.

    PubMed

    Maine, M A; Duarte, M V; Su, N L

    2001-08-01

    Cd uptake capacity of a group of floating macrophytes (Salvinia herzogii, Pistia stratiotes, Hydromistia stolonifera and Eichhornia crassipes) was determined in outdoors experiments during the lowest temperature period of the year. Although all studied species were highly efficient in the Cd uptake, Pistia stratiotes was selected for further research because of its superior performance and its higher average relative growth rate. Cadmium% removal by Pistia stratiotes was greater in the first 24 h of the experiments (63, 65, 72 and 74% of the added Cd for 1, 2, 4 and 6 mg Cd 1(-1), respectively). After 31 days of growth, Pistia statiotes efficiently removed Cd at the studied concentrations. The macrophyte was able to keep its capacity for Cd removal even though some toxicity symptoms appeared at 4 and 6 mg Cd 1(-1). The greater the initial concentration, the greater Cd bioaccumulation rates. The increase of Cd concentration in plant tissues occurred especially in roots and was linearly related to the quantity of Cd added. Cd sorption by roots is faster than translocation to the plant aerial part and it occurs mainly during the first 24h. PMID:11456161

  6. NSLS 2003 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2003)

    SciTech Connect

    MILLER,L.

    2004-05-01

    The scientific productivity of the NSLS continues to be outstanding and the research conducted here has high impact. 2003 was no exception and some of the many highlights from this year's research activity are included in this Activity Report. We are especially pleased that one of our users, Professor Roderick MacKinnon (Rockefeller University), was the co-recipient of the 2003 Nobel Prize in Chemistry for work, much of which was done at the NSLS, explaining how proteins known as ion channels help to generate nerve impulses. It is also a particular pleasure to note that NSLS accelerator physicist Li Hua Yu was awarded the 2003 International Free Electron Laser Prize in recognition of his outstanding achievements, especially demonstrating High Gain Harmonic Generation (HGHG) at the DUV-FEL. Our vision for the NSLS in the next five to 10 years is for it to continue to serve as a vital resource for the nation and especially for the strong Northeast research community. To accomplish this, we are working to preserve and enhance its outstanding scientific productivity by providing increased user support and upgrading beamline and endstation instrumentation. For example, this past year we collaborated with scientists from the Albert Einstein College of Medicine and the BNL Biology Department to develop a new undulator beamline, X29, to meet the needs of macromolecular crystallography for high brightness x-rays. A new endstation on the undulator beamline X13B is being equipped with optics and instrumentation for microdiffraction and microprobe experiments. The wiggler beamline, X21, is being upgraded to provide high intensity and increased capacity for small angle x-ray scattering experiments on nanotemplated soft matter, biomaterials, and other systems. We are collaborating with the BNL Center for Functional Nanomaterials to develop a beamline for LEEM/PEEM studies, which will add important new capabilities for nanoscience and catalysis research. A new high-speed, high-resolution curved position sensitive detector for powder diffraction was also developed and made available to users to enable time-resolved studies of reaction mechanisms, phase transformations, chemical kinetics, and material dynamics. At the DUV-FEL, this past year saw the achievement of HGHG light at 266 nm, with a substantial third harmonic at 89 nm. User science experiments were initiated and published in Physical Review Letters and a successful workshop was held to identify the new scientific opportunities in the chemical sciences enabled by this unique light source. These and many other important projects are described more fully in the Facility Report.

  7. A device to improve the SNR of the measurement of the positional floating reference point

    NASA Astrophysics Data System (ADS)

    Jiang, Jingying; Rong, Xuzheng; Zhang, Hao; Xu, Kexin

    2013-02-01

    Previous studies have preliminarily validated the floating reference method and shown that it has the potential to improve the accuracy of non-invasive blood glucose sensing by Near-Infrared Spectroscopy. In order to make this method practical, it is necessary to precisely verify and measure the existence and variation features of the positional floating reference point. In this talk, a device which can precisely verify and measure the positional floating reference point is built. Since the light intensity of diffuse reflectance from the tested sample is very weak, a multipath detecting fibers system was built to improve signal-to-noise ratio. In this system, the fibers encircle the light source fiber which is regarded as the reference center of detecting fibers while they are moving. In addition, the position of each fiber is accurately controlled by manual translation stage to keep all detecting fibers always in the same radius around light source fiber. This ensures that received signal is coming from the same radial distance of light source. The variation of signal-to-noise ratio along with the different radial distance was investigated based on experiments. Results show that the application of this device could improve signal-to-noise ratio, and provide a new experimental method for the further study of positional floating reference point.

  8. Light and Excess Manganese1

    PubMed Central

    González, Alonso; Steffen, Kenneth L.; Lynch, Jonathan P.

    1998-01-01

    The effect of light intensity on antioxidants, antioxidant enzymes, and chlorophyll content was studied in common bean (Phaseolus vulgaris L.) exposed to excess Mn. Leaves of bean genotypes contrasting in Mn tolerance were exposed to two different light intensities and to excess Mn; light was controlled by shading a leaflet with filter paper. After 5 d of Mn treatment ascorbate was depleted by 45% in leaves of the Mn-sensitive genotype ZPV-292 and by 20% in the Mn-tolerant genotype CALIMA. Nonprotein sulfhydryl groups and glutathione reductase were not affected by Mn or light treatment. Ten days of Mn-toxicity stress increased leaf ascorbate peroxidase activity of cv ZPV-292 by 78% in low light and by 235% in high light, and superoxide dismutase activity followed a similar trend. Increases of ascorbate peroxidase and superoxide dismutase activity observed in cv CALIMA were lower than those observed in the susceptible cv ZPV-292. The cv CALIMA had less ascorbate oxidation under excess Mn-toxicity stress. Depletion of ascorbate occurred before the onset of chlorosis in Mn-stressed plants, especially in cv ZPV-292. Lipid peroxidation was not detected in floating leaf discs of mature leaves exposed to excess Mn. Our results suggest that Mn toxicity may be mediated by oxidative stress, and that the tolerant genotype may maintain higher ascorbate levels under stress than the sensitive genotype. PMID:9765534

  9. Light-Activated Staudinger-Bertozzi Ligation within Living Animals.

    PubMed

    Shah, Lisa; Laughlin, Scott T; Carrico, Isaac S

    2016-04-27

    The ability to regulate small molecule chemistry in vivo will enable new avenues of exploration in imaging and pharmacology. However, realization of these goals will require reactions with high specificity and precise control. Here we demonstrate photocontrol over the highly specific Staudinger-Bertozzi ligation in vitro and in vivo. Our simple approach, photocaging the key phosphine atom, allows for the facile production of reagents with photochemistry that can be engineered for specific applications. The resulting compounds, which are both stable and efficiently activated, enable the spatial labeling of metabolically introduced azides in vitro and on live zebrafish. PMID:27010217

  10. The Light Wavelength Affects the Ontogeny of Clock Gene Expression and Activity Rhythms in Zebrafish Larvae

    PubMed Central

    Di Rosa, Viviana; Frigato, Elena; López-Olmeda, José F.; Sánchez-Vázquez, Francisco J.; Bertolucci, Cristiano

    2015-01-01

    Light plays a key role in synchronizing rhythms and setting the phase of early development. However, to date, little is known about the impact of light wavelengths during the ontogeny of the molecular clock and the behavioural rhythmicity. The aim of this research was to determine the effect of light of different wavelengths (white, blue and red) on the onset of locomotor activity and clock gene (per1b, per2, clock1, bmal1 and dbp) expression rhythms. For this purpose, 4 groups of zebrafish embryo/larvae were raised from 0 to 7 days post-fertilization (dpf) under the following lighting conditions: three groups maintained under light:dark (LD) cycles with white (full visible spectrum, LDW), blue (LDB), or red light (LDR), and one group raised under constant darkness (DD). The results showed that lighting conditions influenced activity rhythms. Larvae were arrhythmic under DD, while under LD cycles they developed wavelength-dependent daily activity rhythms which appeared earlier under LDB (4 dpf) than under LDW or LDR (5 dpf). The results also revealed that development and lighting conditions influenced clock gene expression. While clock1 rhythmic expression appeared in all lighting conditions at 7 dpf, per1b, per2 and dbp showed daily variations already at 3 dpf. Curiously, bmal1 showed consistent rhythmic expression from embryonic stage (0 dpf). Summarizing, the data revealed that daily rhythms appeared earlier in the larvae reared under LDB than in those reared under LDW and LDR. These results emphasize the importance of lighting conditions and wavelengths during early development for the ontogeny of daily rhythms of gene expression and how these rhythms are reflected on the behavioural rhythmicity of zebrafish larvae. PMID:26147202

  11. 2001 NSLS ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE).

    SciTech Connect

    CORWIN, M.A.

    2002-05-01

    The year 2001 has been another highly productive year at the NSLS, with over 2500 users, including 720 first time users, conducting nearly 1200 experiments in fields ranging from the life, materials, chemical, and environmental sciences to applied science and technology. An impressive array of highlights from this scientific activity is included in this Activity Report. They include the first demonstration of a direct structural probe of the superconducting ground state in the cuprates by utilizing anomalous soft x-ray resonance effects to selectively enhance the scattering from doped holes. Another highly significant result was the determination of the structure of the potassium channel membrane protein. This is especially significant as it provides insight into how the channel functions and how it selects a particular kind of ion. In the nanoscience area, small angle x-ray scattering measurements played an essential role in determining that preferential sequestering of tailored metal nanocrystals into a self-assembled lamellar diblock copolymer can produce high quality metallodielectric photonic bandgap structures, demonstrating the potential of these nanocomposites for photonic crystal engineering. The infrared microscopy program continued to yield noteworthy results, including an important study that characterized the types and abundances of organic materials in contaminated and uncontaminated sediments from the New York/New Jersey Harbor. These results will be useful in devising improved methods for the destruction or removal of these environmental contaminants.

  12. Effects of oxygen on light activation in covalent adaptable network polymers.

    PubMed

    Zhao, Zeang; Mu, Xiaoming; Sowan, Nancy; Pei, Yongmao; Bowman, Christopher N; Jerry Qi, H; Fang, Daining

    2015-08-14

    Light activated polymers are a novel group of active materials that deform when irradiated with light at specific wavelengths. This paper focuses on the understanding and evaluation of light activated covalent adaptable networks formed by radical polymerization reactions, which have potential applications as novel actuators, surface patterning, and light-induced bending and folding. In these polymer networks, free radicals are generated upon light irradiation and lead to evolution of the polymer network structure through bond exchange reactions. It is well known that oxygen is an important inhibitor in radical-based chemistry as oxygen reacts with free radicals and renders them as inactive species towards further propagation and reaction. However, it is unclear how radical depletion by oxygen may affect the light-induced actuation. This paper studies the effects of oxygen on both stress relaxation and bending actuation. Light induced stress relaxation experiments are conducted in an environmental chamber where the concentration of oxygen is controlled by the nitrogen flow. A constitutive model that considers oxygen diffusion, radical termination due to oxygen, and the polymer network evolution is developed and used to study the stress relaxation and bending, and the model predictions agree well with experiments. Parametric studies are conducted to identify the situations where the effects of oxygen are negligible and other conditions where they must be considered. PMID:26138805

  13. The twilight zone: ambient light levels trigger activity in primitive ants.

    PubMed

    Narendra, Ajay; Reid, Samuel F; Hemmi, Jan M

    2010-05-22

    Many animals become active during twilight, a narrow time window where the properties of the visual environment are dramatically different from both day and night. Despite the fact that many animals including mammals, reptiles, birds and insects become active in this specific temporal niche, we do not know what cues trigger this activity. To identify the onset of specific temporal niches, animals could anticipate the timing of regular events or directly measure environmental variables. We show that the Australian bull ant, Myrmecia pyriformis, starts foraging only during evening twilight throughout the year. The onset occurs neither at a specific temperature nor at a specific time relative to sunset, but at a specific ambient light intensity. Foraging onset occurs later when light intensities at sunset are brighter than normal or earlier when light intensities at sunset are darker than normal. By modifying ambient light intensity experimentally, we provide clear evidence that ants indeed measure light levels and do not rely on an internal rhythm to begin foraging. We suggest that the reason for restricting the foraging onset to twilight and measuring light intensity to trigger activity is to optimize the trade-off between predation risk and ease of navigation. PMID:20129978

  14. Body Size, Rather Than Male Eye Allometry, Explains Chrysomya megacephala (Diptera: Calliphoridae) Activity in Low Light

    PubMed Central

    Smith, J. L.; Palermo, N. A.; Theobald, J. C.; Wells, J. D.

    2015-01-01

    Male Chrysomya megacephala (F.) blow fly compound eyes contain an unusual area of enlarged dorsal facets believed to allow for increased light capture. This region is absent in females and has been hypothesized to aid in mate tracking in low light conditions or at greater distances. Many traits used in the attraction and capture of mates are allometric, growing at different rates relative to body size. Previous reports concerning C. megacephala eye properties did not include measurements of body size, making the relationship between the specialized eye region and body size unclear. We examined different morphological features of the eye among individuals of varying sizes. We found total eye size scaled proportionately to body size, but the number of enlarged dorsal facets increased as body size increased. This demonstrated that larger males have an eye that is morphologically different than smaller males. On the basis of external morphology, we hypothesized that since larger males have larger and a greater number of dorsally enlarged facets, and these facets are believed to allow for increased light capture, larger males would be active in lower light levels than smaller males and females of equal size. In a laboratory setting, larger males were observed to become active earlier in the morning than smaller males, although they did not remain active later in the evening. However, females followed the same pattern at similar light levels suggesting that overall body size rather than specialized male eye morphology is responsible for increased activity under low light conditions. PMID:26411786

  15. Body Size, Rather Than Male Eye Allometry, Explains Chrysomya megacephala (Diptera: Calliphoridae) Activity in Low Light.

    PubMed

    Smith, J L; Palermo, N A; Theobald, J C; Wells, J D

    2015-01-01

    Male Chrysomya megacephala (F.) blow fly compound eyes contain an unusual area of enlarged dorsal facets believed to allow for increased light capture. This region is absent in females and has been hypothesized to aid in mate tracking in low light conditions or at greater distances. Many traits used in the attraction and capture of mates are allometric, growing at different rates relative to body size. Previous reports concerning C. megacephala eye properties did not include measurements of body size, making the relationship between the specialized eye region and body size unclear. We examined different morphological features of the eye among individuals of varying sizes. We found total eye size scaled proportionately to body size, but the number of enlarged dorsal facets increased as body size increased. This demonstrated that larger males have an eye that is morphologically different than smaller males. On the basis of external morphology, we hypothesized that since larger males have larger and a greater number of dorsally enlarged facets, and these facets are believed to allow for increased light capture, larger males would be active in lower light levels than smaller males and females of equal size. In a laboratory setting, larger males were observed to become active earlier in the morning than smaller males, although they did not remain active later in the evening. However, females followed the same pattern at similar light levels suggesting that overall body size rather than specialized male eye morphology is responsible for increased activity under low light conditions. PMID:26411786

  16. A Classroom Demonstration of Rayleigh Light Scattering in Optically Active and Inactive Systems.

    ERIC Educational Resources Information Center

    Pecina, Monica Avalos; Smith, Charles A.

    1999-01-01

    Argues that the concept of optical activity is vague to students because it is difficult for instructors to demonstrate the phenomenon in the classroom. Presents a demonstration that allows students to observe and manipulate the optical path of polarized light through optically inactive and active solutions. (CCM)

  17. Rapid light-induced activation of retinal microglia in mice lacking Arrestin-1

    PubMed Central

    Levine, Emily S.; Zam, Azhar; Zhang, Pengfei; Pechko, Alina; Wang, Xinlei; FitzGerald, Paul; Pugh, Edward N.; Zawadzki, Robert J.; Burns, Marie E.

    2014-01-01

    Microglia dynamically prune synaptic contacts during development, and digest waste that accumulates in degeneration and aging. In many neurodegenerative diseases, microglial activation and phagocytosis gradually increase over months or years, with poorly defined initial triggering events. Here, we describe rapid retinal microglial activation in response to physiological light levels in a mouse model of photoreceptor degeneration that arises from defective rhodopsin deactivation and prolonged signaling. Activation, migration and proliferation of microglia proceeded along a well-defined time course apparent within 12 hours of light onset. Retinal imaging in vivo with optical coherence tomography (OCT) revealed dramatic increases in light-scattering from photoreceptors prior to the outer nuclear layer thinning classically used as a measure of retinal neurodegeneration. This model is valuable for mechanistic studies of microglial activation in a well-defined and optically accessible neural circuit, and for the development of novel methods for detecting early signs of pending neurodegeneration in vivo. PMID:25091460

  18. Imaging Microglial Activation with TSPO PET: Lighting Up Neurologic Diseases?

    PubMed

    Vivash, Lucy; O'Brien, Terence J

    2016-02-01

    Neuroinflammation is implicated in the pathogenesis of a wide range of neurologic and neuropsychiatric diseases. For over 20 years, (11)C-PK11195 PET, which aims to image expression of the translocator protein (TSPO) on activated microglia in the brain, has been used in preclinical and clinical research to investigate neuroinflammation in vivo in patients with brain diseases. However, (11)C-PK11195 suffers from two major limitations: its low brain permeability and high nonspecific and plasma binding results in a low signal-to-noise ratio, and the use of (11)C restricts its use to PET research centers and hospitals with an on-site cyclotron. In recent years, there has been a great deal of work into the development of new TSPO-specific PET radiotracers. This work has focused on fluorinated radiotracers, which would enable wider use and improved signal-to-noise ratios. These radiotracers have been utilized in preclinical and clinical studies of several neurologic diseases with varying degrees of success. Unfortunately, the application of these second-generation TSPO radiotracers has revealed additional problems, including a polymorphism that affects TSPO binding. In this review, the developments in TSPO imaging are discussed, and current limitations and suggestions for future directions are explored. PMID:26697963

  19. Floating Ice-Algal Aggregates below Melting Arctic Sea Ice

    PubMed Central

    Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  20. Floating ice-algal aggregates below melting arctic sea ice.

    PubMed

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  1. Light-activated hypericin induces cellular destruction of nasopharyngeal carcinoma cells

    NASA Astrophysics Data System (ADS)

    Xu, C. S.; Leung, A. W. N.

    2010-01-01

    Hypericin from Hypericum perforatum plants shows an important promise in the photodynamic therapy on malignant tumor. The present study investigated that light-activated hypericin induced the cellular destruction of nasopharyngeal carcinoma cells. The result showed that hypericin resulted in a drug- and light-dose dependent cytotoxicity in the CNE-2 cells, meaning the photocytotoxicity of hypericin depends on both of the drug concentration (0 - 2.5 μM) and light-doses (1 - 8 J/cm2). We further investigated the apoptosis of the CNE-2 cells 8 hours after photosensitization of hypericin using fluorescence microscopy with Hoechst 33258 staining. Flow cytometry with annexin V-FITC and PI staining was used to analyze early and late apoptosis. These data demonstrated that light-activated hypericin could significantly lead to the cellular destruction of the CNE-2 cells and induce early apoptosis as a prominent mode of cell death.

  2. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Storage Vessels §...

  3. Implementation of a novel night float call system: resident satisfaction and quality of life

    PubMed Central

    Mann, Stephen M.; Borschneck, Daniel P.; Harrison, Mark M.

    2014-01-01

    Background Compliance with Professional Association of Internes and Residents of Ontario duty hour guidelines has been problematic at our institution. To facilitate orthopedic residents’ ability to go home postcall without significant disruption of ongoing clinical activities, a novel call system was adopted at our tertiary care centre. We sought to evaluate the satisfaction and quality of life of orthopaedic residents with that system. Methods We administered questionnaires to on-service residents. These included the Short Form–36 questionnaire and others addressing topics including education, stress, work-related problems and miscellaneous concerns. Results Seventeen residents were surveyed: 6 who had just completed a night float rotation, and 11 who were on a regular orthopedic service rotation while the night float system was in place. Quality of life was similar between residents on the night float block and those on the standard rotation; it was also similar to age-matched Canadian normative data. Eighty-nine percent of residents agreed that the presence of the night float rotation improved their quality of life on standard rotations, and 100% felt that their education was improved on standard rotations by having the night float system in place. Conclusion This call system results in improved resident quality of life and widespread overall satisfaction, and may be considered as a viable alternative to traditional call formats. Follow-up data as more residents experience the night float block will be valuable. PMID:24461221

  4. Spatio-temporally precise activation of engineered receptor tyrosine kinases by light

    PubMed Central

    Grusch, Michael; Schelch, Karin; Riedler, Robert; Reichhart, Eva; Differ, Christopher; Berger, Walter; Inglés-Prieto, Álvaro; Janovjak, Harald

    2014-01-01

    Receptor tyrosine kinases (RTKs) are a large family of cell surface receptors that sense growth factors and hormones and regulate a variety of cell behaviours in health and disease. Contactless activation of RTKs with spatial and temporal precision is currently not feasible. Here, we generated RTKs that are insensitive to endogenous ligands but can be selectively activated by low-intensity blue light. We screened light-oxygen-voltage (LOV)-sensing domains for their ability to activate RTKs by light-activated dimerization. Incorporation of LOV domains found in aureochrome photoreceptors of stramenopiles resulted in robust activation of the fibroblast growth factor receptor 1 (FGFR1), epidermal growth factor receptor (EGFR) and rearranged during transfection (RET). In human cancer and endothelial cells, light induced cellular signalling with spatial and temporal precision. Furthermore, light faithfully mimicked complex mitogenic and morphogenic cell behaviour induced by growth factors. RTKs under optical control (Opto-RTKs) provide a powerful optogenetic approach to actuate cellular signals and manipulate cell behaviour. PMID:24986882

  5. A Fluorometric Activity Assay for Light-Regulated Cyclic-Nucleotide-Monophosphate Actuators.

    PubMed

    Schumacher, Charlotte Helene; Körschen, Heinz G; Nicol, Christopher; Gasser, Carlos; Seifert, Reinhard; Schwärzel, Martin; Möglich, Andreas

    2016-01-01

    As a transformative approach in neuroscience and cell biology, optogenetics grants control over manifold cellular events with unprecedented spatiotemporal definition, reversibility, and noninvasiveness. Sensory photoreceptors serve as genetically encoded, light-regulated actuators and hence embody the cornerstone of optogenetics. To expand the scope of optogenetics, ever more naturally occurring photoreceptors are being characterized, and synthetic photoreceptors with customized, light-regulated function are being engineered. Perturbational control over intracellular cyclic-nucleotide-monophosphate (cNMP) levels is achieved via sensory photoreceptors that catalyze the making and breaking of these second messengers in response to light. To facilitate discovery, engineering and quantitative characterization of such light-regulated cNMP actuators, we have developed an efficient fluorometric assay. Both the formation and the hydrolysis of cNMPs are accompanied by proton release which can be quantified with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). This assay equally applies to nucleotide cyclases, e.g., blue-light-activated bPAC, and to cNMP phosphodiesterases, e.g., red-light-activated LAPD. Key benefits include potential for parallelization and automation, as well as suitability for both purified enzymes and crude cell lysates. The BCECF assay hence stands to accelerate discovery and characterization of light-regulated actuators of cNMP metabolism. PMID:26965118

  6. KillerOrange, a Genetically Encoded Photosensitizer Activated by Blue and Green Light.

    PubMed

    Sarkisyan, Karen S; Zlobovskaya, Olga A; Gorbachev, Dmitry A; Bozhanova, Nina G; Sharonov, George V; Staroverov, Dmitriy B; Egorov, Evgeny S; Ryabova, Anastasia V; Solntsev, Kyril M; Mishin, Alexander S; Lukyanov, Konstantin A

    2015-01-01

    Genetically encoded photosensitizers, proteins that produce reactive oxygen species when illuminated with visible light, are increasingly used as optogenetic tools. Their applications range from ablation of specific cell populations to precise optical inactivation of cellular proteins. Here, we report an orange mutant of red fluorescent protein KillerRed that becomes toxic when illuminated with blue or green light. This new protein, KillerOrange, carries a tryptophan-based chromophore that is novel for photosensitizers. We show that KillerOrange can be used simultaneously and independently from KillerRed in both bacterial and mammalian cells offering chromatic orthogonality for light-activated toxicity. PMID:26679300

  7. Analysis of the variations in the light curve of U Pegasi and starspot activity

    NASA Astrophysics Data System (ADS)

    Zhai, Di-Sheng; Zhang, Xiao-Yu

    1989-03-01

    Nine two-color light curves observed between 1950 and 1983 of the W UMa type contact binary U Peg were analyzed. The distortions in the light curves during 1958-1970 can be successfully simulated with starspot activity. Using an improved W-D program containing differential correction of spot parameters, the spot parameters, longitude, latitude, temperature and radius, and their time variations are obtained. The photometric solutions at the various epochs also show that there may be other factors causing light curve distortion, including variation in the temperature difference between the two components, instability of the common shell and some other physical factors unaccounted for by present physical models.

  8. KillerOrange, a Genetically Encoded Photosensitizer Activated by Blue and Green Light

    PubMed Central

    Bozhanova, Nina G.; Sharonov, George V.; Staroverov, Dmitriy B.; Egorov, Evgeny S.; Ryabova, Anastasia V.; Solntsev, Kyril M.; Mishin, Alexander S.; Lukyanov, Konstantin A.

    2015-01-01

    Genetically encoded photosensitizers, proteins that produce reactive oxygen species when illuminated with visible light, are increasingly used as optogenetic tools. Their applications range from ablation of specific cell populations to precise optical inactivation of cellular proteins. Here, we report an orange mutant of red fluorescent protein KillerRed that becomes toxic when illuminated with blue or green light. This new protein, KillerOrange, carries a tryptophan-based chromophore that is novel for photosensitizers. We show that KillerOrange can be used simultaneously and independently from KillerRed in both bacterial and mammalian cells offering chromatic orthogonality for light-activated toxicity. PMID:26679300

  9. A light-inducible CRISPR/Cas9 system for control of endogenous gene activation

    PubMed Central

    Polstein, Lauren R.; Gersbach, Charles A.

    2015-01-01

    Optogenetic systems enable precise spatial and temporal control of cell behavior. We engineered a light-activated CRISPR/Cas9 effector (LACE) system that induces transcription of endogenous genes in the presence of blue light. This was accomplished by fusing the light-inducible heterodimerizing proteins CRY2 and CIB1 to a transactivation domain and the catalytically inactive dCas9, respectively. The versatile LACE system can be easily directed to new DNA sequences for the dynamic regulation of endogenous genes. PMID:25664691

  10. Investigation of tunable LED lighting for general illumination employing preliminary activity recognition sensor network

    NASA Astrophysics Data System (ADS)

    Thompson, Maria; Spaulding, Jeremy; Larson, Kent; Hall, Harrison

    2011-10-01

    Digitally controlled solid state lighting systems can afford a range of different qualities of light, adjustable to users' requirements. Sensor networks allow lighting changes to be actuated in response to the location, activities, and paths of the occupants. This paper reports initial results of an ongoing research to explore strategic control of a tunable LED system, in response to a preliminary activity recognition platform, as well as the associated human factors. Tunable LED panels connected to a sensor network were installed to illuminate three distinct occupied spaces: a private office, a public office space and a corridor at MIT Media Lab. Human factors experiments were conducted to assess visual acceptability under changing lighting conditions. In the first phase variations in color rendering were applied to verify perception of subtle changes in white lighting. Results from this phase indicate that it is possible to correlate activities with sensitivity to spectral change. In the second phase the question is how colored light can be used for energy savings and as a communication medium in these commercial spaces.

  11. Control of Protein Activity and Cell Fate Specification via Light-Mediated Nuclear Translocation

    PubMed Central

    Zimmerman, Seth P.; Bear, James E.; Goldstein, Bob; Hahn, Klaus; Kuhlman, Brian

    2015-01-01

    Light-activatable proteins allow precise spatial and temporal control of biological processes in living cells and animals. Several approaches have been developed for controlling protein localization with light, including the conditional inhibition of a nuclear localization signal (NLS) with the Light Oxygen Voltage (AsLOV2) domain of phototropin 1 from Avena sativa. In the dark, the switch adopts a closed conformation that sterically blocks the NLS motif. Upon activation with blue light the C-terminus of the protein unfolds, freeing the NLS to direct the protein to the nucleus. A previous study showed that this approach can be used to control the localization and activity of proteins in mammalian tissue culture cells. Here, we extend this result by characterizing the binding properties of a LOV/NLS switch and demonstrating that it can be used to control gene transcription in yeast. Additionally, we show that the switch, referred to as LANS (light-activated nuclear shuttle), functions in the C. elegans embryo and allows for control of nuclear localization in individual cells. By inserting LANS into the C. elegans lin-1 locus using Cas9-triggered homologous recombination, we demonstrated control of cell fate via light-dependent manipulation of a native transcription factor. We conclude that LANS can be a valuable experimental method for spatial and temporal control of nuclear localization in vivo. PMID:26083500

  12. Individual and combined suppressive effects of submerged and floating-leaved macrophytes on algal blooms.

    PubMed

    Seto, Mayumi; Takamura, Noriko; Iwasa, Yoh

    2013-02-21

    Shallow lakes and ponds are often characterised either by clear water with abundant submerged macrophytes or by turbid water with abundant phytoplankton. Blooms of toxic filamentous blue-green algae (cyanobacteria) often dominate the phytoplankton community in eutrophic lakes, which threatens ecological functions and biodiversity of freshwater ecosystems. We studied a simple lake model in order to evaluate individual and combined suppressive effects of rooted submerged and rooted floating-leaved macrophytes on algal blooms. Floating-leaved plants are superior competitors for light, whereas submerged plants absorb and reduce available phosphorus in a water column that rooted floating-leaved plants exploit to a lesser extent. We found that mixed vegetation that includes both submerged and floating-leaved plants is more resistant than vegetation comprised by a single plant type to algal invasion triggered by phosphorus loading. In addition, competitive exclusion of submerged plants by floating-leaved plants may promote an algal bloom. These predictions were confirmed by the decision tree analysis of field data from 35 irrigation ponds in Hyogo Prefecture, Japan. PMID:23219493

  13. Seeing the Moon: A Series of Inquiry Activities Using Light to Investigate the Moon

    NASA Astrophysics Data System (ADS)

    Shupla, Christine; Runyon, C.; Shipp, S.; Tremain, A. H.

    2007-12-01

    Seeing the Moon: Using Light to Investigate the Moon is a series of educational activity modules created for the Moon Mineralogy Mapper instrument aboard the Chandrayaan-1. In these modules, classroom students investigate light and the geologic history of the Moon. Through the hands-on inquiry based activities, 5th to 8th grade students experiment with light and color, collect and analyze authentic data from rock samples using an ALTA reflectance spectrometer, map the rock types of the Moon, and develop theories of the Moon's history. This poster will describe the activities and share the location of the modules. This poster will also share information on the availability of loaner kits which including rock samples and sets of the ALTA reflectance spectrometer.

  14. Enhanced Visible Light Photocatalytic Activity of Br-Doped Bismuth Oxide Formate Nanosheets.

    PubMed

    Feng, Xin; Cui, Wen; Zhong, Junbo; Liu, Xiaoying; Dong, Fan; Zhang, Yuxin

    2015-01-01

    A facile method was developed to enhance the visible light photocatalytic activity of bismuth oxide formate (BiOCOOH) nanosheets via Br-doping. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, the Brunauer-Emmett-Teller surface area, UV-vis diffuse reflectance spectroscopy, photoluminescence spectra, and N₂ adsorption-desorption isotherms measurement. The Br- ions replaced the COOH- ions in the layers of BiOCOOH, result in a decreased layer distance. The photocatalytic activity of the as-prepared materials was evaluated by removal of NO in qir at ppb level. The results showed that the Br-doped BiOCOOH nanosheets showed enhanced visible light photocatalytic activtiy with a NO removal of 37.8%. The enhanced activity can be ascribed to the increased visible light absorption and the promoted charge separation. PMID:26506332

  15. Active differential optical absorption spectroscopy for NO2 gas pollution using blue light emitting diodes

    NASA Astrophysics Data System (ADS)

    Aljalal, Abdulaziz; Gasmi, Khaled; Al-Basheer, Watheq

    2015-05-01

    Availability of high intensity light emitting diodes in the blue region offer excellent opportunity for using them in active Differential Optical Absorption Spectroscopy (DOAS) to detect air pollution. Their smooth and relatively broad spectral emissions as well as their long life make them almost ideal light sources for active DOAS. In this study, we report the usage of a blue light emitting diode in an active DOAS setup to measure traces of NO2 gas and achieving few parts per billion detection limit for a path length of 300 m. Details of the setup will be presented along with the effects on measurement accuracy due to shifts in the measured spectra calibration and due to using theoretical instrument Gaussian function instead of the measured instrument function.

  16. IN VITRO STUDY OF THE PULP CHAMBER TEMPERATURE RISE DURING LIGHT-ACTIVATED BLEACHING

    PubMed Central

    Carrasco, Thaise Graciele; Carrasco-Guerisoli, Laise Daniela; Fröner, Izabel Cristina

    2008-01-01

    This study evaluated in vitro the pulp chamber temperature rise induced by the light-activated dental bleaching technique using different light sources. The root portions of 78 extracted sound human mandibular incisors were sectioned approximately 2 mm below the cementoenamel junction. The root cavities of the crowns were enlarged to facilitate the correct placing of the sensor into the pulp chamber. Half of specimens (n=39) was assigned to receive a 35% hydrogen peroxide gel on the buccal surface and the other halt (n=39) not to receive the bleaching agent. Three groups (n=13) were formed for each condition (bleach or no bleach) according to the use of 3 light sources recommended for dental bleaching: a light-emitting diode (LED)-laser system, a LED unit and a conventional halogen light. The light sources were positioned perpendicular to the buccal surface at a distance of 5 mm and activated during 30 s. The differences between the initial and the highest temperature readings for each specimen were obtained, and, from the temperature changes, the means for each specimen and each group were calculated. The values of temperature rise were compared using Kruskal-Wallis test at 1% significance level. Temperature rise varied significantly depending on the light-curing unit, with statistically significant differences (p<0.01) among the groups. When the bleaching agent was not applied, the halogen light induced the highest temperature rise (2.38±0.66°C). The LED unit produced the lowest temperature increase (0.29±0.13°C); but there was no significant difference between LED unit and LED-laser system (0.35±0.15°C) (p>0.01). When the bleaching agent was applied, there were significant differences among groups (p<0.01): halogen light induced the highest temperature rise (1.41±0.64°C), and LED-laser system the lowest (0.33±0.12°C); however, there was no difference between LED-laser system and LED unit (0.44±0.11°C). LED and LED-laser system did not differ significantly from each other regardless the temperature rise occurred with or without bleaching agent application. It may be concluded that during light-activated tooth bleaching, with or without the bleaching agent, halogen light promoted higher pulp chamber temperature rise than LED unit and LED-laser system. The tested light-curing units provided increases in the pulp chamber temperature that were compatible with pulpal health. PMID:19089234

  17. Floating seal system for rotary devices

    DOEpatents

    Banasiuk, H.A.

    1983-08-23

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10[degree] to about 30[degree] in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device. 5 figs.

  18. Battery charging in float vs. cycling environments

    SciTech Connect

    COREY,GARTH P.

    2000-04-20

    In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

  19. Floating seal system for rotary devices

    DOEpatents

    Banasiuk, Hubert A.

    1983-01-01

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10.degree. to about 30.degree. in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device.

  20. Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material.

    PubMed

    Xia, Qi; Batentschuk, Miroslaw; Osvet, Andres; Richter, Peter; Häder, Donat P; Schneider, Juergen; Brabec, Christoph J; Wondraczek, Lothar; Winnacker, Albrecht

    2013-11-01

    The spectral conversion of incident sunlight by appropriate photoluminescent materials has been a widely studied issue for improving the efficiency of photovoltaic solar energy harvesting. By using phosphors with suitable excitation/emission properties, also the light conditions for plants can be adjusted to match the absorption spectra of chlorophyll dyes, in this way increasing the photosynthetic activity of the plant. Here, we report on the application of this principle to a high plant, Spinacia oleracea. We employ a calcium strontium sulfide phosphor doped with divalent europium (Ca0.4Sr0.6S:Eu(2+), CSSE) on a backlight conversion foil in photosynthesis experiments. We show that this phosphor can be used to effectively convert green to red light, centering at a wavelength of ~650 nm which overlaps the absorption peaks of chlorophyll a/b pigments. A measurement system was developed to monitor the photosynthetic activity, expressed as the CO2 assimilation rate of spinach leaves under various controlled light conditions. Results show that under identical external light supply which is rich in green photons, the CO2 assimilation rate can be enhanced by more than 25% when the actinic light is modified by the CSSE conversion foil as compared to a purely reflecting reference foil. These results show that the phosphor could be potentially applied to modify the solar spectrum by converting the green photons into photosynthetically active red photons for improved photosynthetic activity. PMID:24514932

  1. ADHESIVES WITH DIFFERENT PHS: EFFECT ON THE MTBS OF CHEMICALLY ACTIVATED AND LIGHT-ACTIVATED COMPOSITES TO HUMAN DENTIN

    PubMed Central

    Mallmann, André; de Melo, Renata Marques; Estrela, Verbênia; Pelogia, Fernanda; Campos, Laura; Bottino, Marco Antonio; Valandro, Luiz Felipe

    2007-01-01

    Purpose: To evaluate the bond strength between human dentin and composites, using two light-activated single-bottle total-etch adhesive systems with different pHs combined with chemically activated and light-activated-composites. The tested hypothesis was that the dentin bond strength is not influenced by an adhesive system of low pH, combined with chemically activated or light-activated composites. Material and Method: Flat dentin surfaces of twenty-eight human third molars were allocated in 4 groups (n=7), depending on the adhesive system: (One Step Plus-OS and Prime & Bond NT-PB) and composite (light-activated Filtek Z-100 [Z100] and chemically activated Bisfil 2B [B2B]). Each adhesive system was applied on acid-etched dentin and then one of the composites was added to form a 5 mm-high resin block. The specimens were stored in tap water (37°C/24 h) and sectioned into two axes, x and y. This was done with a diamond disk under coolant irrigation to obtain beams with a cross-section area of approximately 0.8 mm2. Each specimen was then attached to a custom-made device and submitted to the microtensile test (1 mm.min−1). Data were analyzed using two-way ANOVA and Tukey’s tests (p<0.05). Results: The anticipated hypothesis was not confirmed (p<0.0001). The bond strengths (MPa) were not statistically different between the two adhesive systems when light-activated composite was used (OS+Z100 = 24.7±7.1ª; PB+Z100 = 23.8±5.7ª). However, with use of the chemically activated composite (B2B), PB (7.8±3.6b MPa) showed significantly lower dentin bond strengths than OS (32.2±7.6ª). Conclusion: The low pH of the adhesive system can affect the bond of chemically activated composite to dentin. On the other hand, under the present conditions, the low pH did not seem to affect the bond of light-activated composites to dentin significantly. PMID:19089142

  2. Compressive strength of dental composites photo-activated with different light tips

    NASA Astrophysics Data System (ADS)

    Galvão, M. R.; Caldas, S. G. F. R.; Calabrez-Filho, S.; Campos, E. A.; Bagnato, V. S.; Rastelli, A. N. S.; Andrade, M. F.

    2013-04-01

    The aim of this study was to evaluate the compressive strength of microhybrid (Filtek™ Z250) and nanofilled (Filtek™ Supreme XT) composite resins photo-activated with two different light guide tips, fiber optic and polymer, coupled with one LED. The power density was 653 mW cm-2 when using the fiber optic light tip and 596 mW cm-2 with the polymer. After storage in distilled water at 37 ± 2 °C for seven days, the samples were subjected to mechanical testing of compressive strength in an EMIC universal mechanical testing machine with a load cell of 5 kN and speed of 0.5 mm min-1. The statistical analysis was performed using ANOVA with a confidence interval of 95% and Tamhane’s test. The results showed that the mean values of compressive strength were not influenced by the different light tips (p > 0.05). However, a statistical difference was observed (p < 0.001) between the microhybrid composite resin photo-activated with the fiber optic light tip and the nanofilled composite resin. Based on these results, it can be concluded that microhybrid composite resin photo-activated with the fiber optic light tip showed better results than nanofilled, regardless of the tip used, and the type of the light tip did not influence the compressive strength of either composite. Thus, the presented results suggest that both the fiber optic and polymer light guide tips provide adequate compressive strength to be used to make restorations. However, the fiber optic light tip associated with microhybrid composite resin may be an interesting option for restorations mainly in posterior teeth.

  3. The Effect of Multiple Sequential Light Sources to Activate Aminolevulinic Acid in the Treatment of Actinic Keratoses: A Retrospective Study

    PubMed Central

    Goldman, Mitchel P.; Fabi, Sabrina G.; Guiha, Isabella

    2014-01-01

    There is a lack of research regarding the sequential use of multiple light sources for topical 5-aminolevulinic acid activation in photodynamic therapy for actinic keratosis. This study evaluated 5-aminolevulinic acid-photodynamic therapy for actinic keratosis using blue light combined with red light, pulsed dye laser, and/or intense pulsed light in a retrospective fashion. Field-directed 5-aminolevulinic acid-photodynamic therapy was performed with blue light only, blue light + pulsed dye laser, blue light + intense pulsed light, blue light + pulsed dye laser + intense pulsed light, or blue light + red light + pulsed dye laser + intense pulsed light for nonhyperkeratotic actinic keratoses of face, scalp, or upper trunk. Blue light + intense pulsed light + pulsed dye laser produced greater patient-reported improvement in actinic keratoses than blue light or blue light + intense pulsed light and greater subject-reported improvement in overall skin quality than blue light + intense pulsed light. The addition of red light led to no further benefit in either outcome measure. Photodynamic therapy with multiple, sequential laser and light sources led to greater patient-graded improvement in actinic keratoses than that with a single light source (blue light), without significant differences in post-treatment adverse events. However, the small, widely disparate number of patients between groups and follow-up times between patients, as well as retrospective assessments based on subjective patient recall, severely limit the significance of these findings. Nevertheless, the results raise interesting questions regarding the use of multiple light and laser sources for photodynamic therapy of actinic keratoses and warrant further research with a prospective, randomized, controlled study. PMID:25276272

  4. The effect of multiple sequential light sources to activate aminolevulinic Acid in the treatment of actinic keratoses: a retrospective study.

    PubMed

    Friedmann, Daniel P; Goldman, Mitchel P; Fabi, Sabrina G; Guiha, Isabella

    2014-09-01

    There is a lack of research regarding the sequential use of multiple light sources for topical 5-aminolevulinic acid activation in photodynamic therapy for actinic keratosis. This study evaluated 5-aminolevulinic acid-photodynamic therapy for actinic keratosis using blue light combined with red light, pulsed dye laser, and/or intense pulsed light in a retrospective fashion. Field-directed 5-aminolevulinic acid-photodynamic therapy was performed with blue light only, blue light + pulsed dye laser, blue light + intense pulsed light, blue light + pulsed dye laser + intense pulsed light, or blue light + red light + pulsed dye laser + intense pulsed light for nonhyperkeratotic actinic keratoses of face, scalp, or upper trunk. Blue light + intense pulsed light + pulsed dye laser produced greater patient-reported improvement in actinic keratoses than blue light or blue light + intense pulsed light and greater subject-reported improvement in overall skin quality than blue light + intense pulsed light. The addition of red light led to no further benefit in either outcome measure. Photodynamic therapy with multiple, sequential laser and light sources led to greater patient-graded improvement in actinic keratoses than that with a single light source (blue light), without significant differences in post-treatment adverse events. However, the small, widely disparate number of patients between groups and follow-up times between patients, as well as retrospective assessments based on subjective patient recall, severely limit the significance of these findings. Nevertheless, the results raise interesting questions regarding the use of multiple light and laser sources for photodynamic therapy of actinic keratoses and warrant further research with a prospective, randomized, controlled study. PMID:25276272

  5. Light- and GTP-activated hydrolysis of phosphatidylinositol bisphosphate in squid photoreceptor membranes

    SciTech Connect

    Baer, K.M.; Saibil, H.R.

    1988-01-05

    Light stimulates the hydrolysis of exogenous, (/sup 3/H)inositol-labeled phosphatidylinositol bisphosphate (PtdInsP2) added to squid photoreceptor membranes, releasing inositol trisphosphate (InsP3). At free calcium levels of 0.05 microM or greater, hydrolysis of the labeled lipid is stimulated up to 4-fold by GTP and light together, but not separately. This activity is the biochemical counterpart of observations on intact retina showing that a rhodopsin-activated GTP-binding protein is involved in visual transduction in invertebrates, and that InsP3 release is correlated with visual excitation and adaptation. Using an in vitro assay, we investigated the calcium and GTP dependence of the phospholipase activity. At calcium concentrations between 0.1 and 0.5 microM, some hydrolysis occurs independently of GTP and light, with a light- and GTP-activated component superimposed. At 1 microM calcium there is no background activity, and hydrolysis absolutely requires both GTP and light. Ion exchange chromatography on Dowex 1 (formate form) of the water-soluble products released at 1 microM calcium reveals that the product is almost entirely InsP3. Invertebrate rhodopsin is homologous in sequence and function to vertebrate visual pigment, which modulates the concentration of cyclic GMP through the mediation of the GTP-binding protein transducin. While there is some evidence that light also modulates PtdInsP2 content in vertebrate photoreceptors, the case for its involvement in phototransduction is stronger for the invertebrate systems. The results reported here support the scheme of rhodopsin----GTP-binding protein----phospholipase C activation in invertebrate photoreceptors.

  6. Development and Progress in Enabling the Photocatalyst Ti02 Visible-Light-Active

    NASA Technical Reports Server (NTRS)

    Levine, Lanfang H.; Coutts, Janelle L.; Clausen, Christian A.

    2011-01-01

    Photocatalytic oxidation (PCO) of organic contaminants is a promising air and water quality management approach which offers energy and cost savings compared to thermal catalytic oxidation (TCO). The most widely used photocatalyst, anatase TiO2, has a wide band gap (3.2 eV) and is activated by UV photons. Since solar radiation consists of less than 4% UV, but contains 45% visible light, catalysts capable of utilizing these visible photons need to be developed to make peo approaches more efficient, economical, and safe. Researchers have attempted various approaches to enable TiO2 to be visible-light-active with varied degrees of success'. Strategies attempted thus far fall into three categories based on their electrochemical' mechanisms: 1) narrowing the band gap of TiO2 by implantation of transition metal elements or nonmetal elements such as N, S, and C, 2) modifying electron-transfer processes during PCO by adsorbing sensitizing dyes, and 3) employing light-induced interfacial electron transfer in the heteronanojunction systems consisting of narrow band gap semiconductors represented by metal sulfides and TiO2. There are diverse technical approaches to implement each of these strategies. This paper presents a review of these approaches and results of the photocatalytic activity and photonic efficiency of the end .products under visible light. Although resulting visible-light-active (VLA) photocatalysts show promise, there is often no comparison with unmodified TiO2 under UV. In a limited number of studies where such comparison was provided, the UV-induced catalytic activity of bare TiO2 is much greater than the visible-light-induced catalytic activity of the VLA catalyst. Furthermore, VLA-catalysts have much lower quantum efficiency compared to the approx.50% quantum efficiency of UV-catalysts. This stresses the need for continuing research in this area.

  7. Pattern of stylet penetration activity by Homalodisca vitripennis (Hemiptera: Cicadellidae) adults in relation to environmental temperature and light conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of ambient spring air temperature and light intensity on stylet penetration activities of the glassy-winged sharpshooter, Homalodisca vitripennis (Germar) were studied outdoors, at ambient light and temperatures, using an electrical penetration graph (EPG). EPG waveforms representing saliva...

  8. NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)

    SciTech Connect

    Miller ,L.; Nasta, K.

    2008-05-01

    The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materials Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam SAXS capabilities and much-needed beam time for the life sciences, soft condensed matter physics, and nanoscience communities. Looking toward the future, a significant step has been made in expanding the user base and diversifying the work force by holding the first Historically Black Colleges and Universities (HBCU) Professors' Workshop. The workshop, which brought 11 professors to the NSLS to learn how to become successful synchrotron users, concluded with the formation of an HBCU User Consortium. Finally, significant contributions were made in optics and detector development to enhance the utilization of the NSLS and address the challenges of NSLS-II. In particular, x-ray detectors developed by the NSLS Detector Section have been adopted by an increasing number of research programs both at the NSLS and at light sources around the world, speeding up measurement times by orders of magnitude and making completely new experiments feasible. Significant advances in focusing and high-energy resolution optics have also been made this year.

  9. Vibration characteristics of floating slab track

    NASA Astrophysics Data System (ADS)

    Kuo, Chen-Ming; Huang, Cheng-Hao; Chen, Yi-Yi

    2008-11-01

    Coupled equilibrium equations of suspended wheels and floating slab track system were solved with the fourth-order Runge-Kutta method to obtain the deflections, vibration velocities, and wheel-rail contact forces. The program was validated through several aspects. Cases with various vehicle speed, slab mass, and stiffness of slab bearing were analyzed to reveal the effects of slab bearing on track responses. The correlation between wheel-rail resonance and train speed was also discussed. It was found that rail deflections increase significantly as train speed increases. Although large slab mass may lower tuning frequency, it could also result in higher wheel-rail contact force and rail deflections. The floating slab track is effective in isolating loading above 10 Hz, which might present in some railway sections with irregularities. Adopting floating slab track for vibration control for environment along the railway may cause concerns about ride quality and track damages.

  10. Anti-pollution and antifire floating barrier

    SciTech Connect

    Bossa, E.D.

    1981-07-21

    The barrier of this invention is formed by barrier sections and each of them can be wound up about a reel or bobbin, which is pivotably mounted within a main floating hollow element, which not only has the task of receiving, transporting, towing, launching and trawling the barrier section housed therein, but also it serves to provide anchoring points for this barrier. Each main barrier element is shaped in the form of a cage-like container provided with at least a side vertical entrance passage , through which a barrier section can be returned inside the container, or this section can be caused to come out, each main floating element thus serving as floating container for the transport of at least one of the barrier sections to or from their use place.

  11. Floating zone melting of cadmium telluride

    NASA Technical Reports Server (NTRS)

    Chang, Wen-Ming; Regel, L. L.; Wilcox, W. R.

    1992-01-01

    To produce superior crystals of cadmium telluride, floating zone melting in space has been proposed. Techniques required for floating zone melting of cadmium telluride are being developed. We have successfully float-zoned cadmium telluride on earth using square rods. A resistance heater was constructed for forming the molten zone. Evaporation of the molten zone was controlled by adding excess cadmium to the growth ampoule combined with heating of the entire ampoule. An effective method to hold the feed rod was developed. Slow rotation of the growth ampoule was proven experimentally to be necessary to achieve a complete symmetric molten zone. Most of the resultant cylindrical rods were single crystals with twins. Still needed is a suitable automatic method to control the zone length. We tried a fiber optical technique to control the zone length, but experiments showed that application of this technique to automate zone length control is unlikely to be successful.

  12. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Liu, Ruihua; Lian, Suoyuan; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2013-03-01

    Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry.Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00092c

  13. Optical imaging of fast light-evoked fast neural activation in amphibian retina

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; George, John S.

    2006-02-01

    High performance functional imaging is needed for dynamic measurements of neural processing in retina. Emerging techniques of visual prosthesis also require advanced methodology for reliable validation of electromagnetic stimulation of the retina. Imaging of fast intrinsic optical responses associated with neural activation promises a variety of technical advantages over traditional single and multi-channel electrophysiological techniques for these purposes, but the application of fast optical signals for neural imaging has been limited by low signal to noise ratio and high background light intensity. However, using optimized near infrared probe light and improved optical systems, we have improved the optical signals substantially, allowing single pass measurements. Fast photodiode measurements typically disclose dynamic transmitted light changes of whole retina at the level of 10 -4 dI/I, where dI is the dynamic optical change and I is the baseline light intensity. Using a fast high performance CCD, we imaged fast intrinsic optical responses from isolated retina activated by a visible light flash. Fast, high resolution imaging disclosed larger local optical responses, and showed evidence of multiple response components with both negative- and positive-going signals, on different timescales. Darkfield imaging techniques further enhanced the sensitivity of optical measurements. At single cell resolution, brightfield imaging disclosed maxima of optical responses ~5% dI/I, while darkfield imaging showed maxima of optical responses exceeding 10% dI/I. In comparison with simultaneous electrophysiological recording, optical imaging provided much better localized patterns of response over the activated area of the retina.

  14. Preparation of hollow titania spheres and their photocatalytic activity under visible light.

    PubMed

    Liu, Chun; Yin, Hengbo; Shi, Liping; Wang, Aili; Feng, Yonghai; Shen, Linqin; Wu, Zhanao; Wu, Gang; Jiang, Tao

    2014-09-01

    Hollow titania spheres with different shell thicknesses were facilely prepared starting from TiCl4 and using ploystyrene methyl acrylic acid latexes as the sacrificial templates. The average diameters of the hollow titania spheres ranging from 294 to 340 nm were tuned by changing the weight ratios of TiO2 to ploystyrene methyl acrylic acid latex from 0.8:1 to 1.4:1. The hollow titania spheres were constructed by the small-sized anatase TiO2 nanoparticles with the average diameter of ca. 18 nm (SEM). In addition to UV light absorption caused by the primary anatase TiO2 nanoparticles, the hollow titania spheres also had visible light absorption performance. Photocatalytic results showed that all the hollow titania spheres had higher photocatalytic activity for the degradation of phenol under visible light irradiation than the commercial TiO2 nanoparticles (P25). The photocatalytic activity of the hollow titania spheres increased with the increase in sell thickness, being consistent with their visible light absorbance. The visible light photocatalytic activity was probably due to the presence of additional energy levels between valence and conduction bands, which were caused by the formation of oxygen bridging bonds between the primary TiO2 nanoparticles. PMID:25924373

  15. Well casing float shoe or collar

    SciTech Connect

    Kaufman, H. J.

    1985-08-06

    A well casing float shoe which is adapted for a variety of well installations consists of a tubular metal shoe member filled with cementitious material having a longitudinal bore surrounding and securing in place a tubular metal sleeve. The metal sleeve is threaded at the top and bottom ends to receive a variety of sizes and types of check valves. A well casing float collar has the same construction, but the tubular shoe member is replaced with a tubular metal collar with threaded connections both above and below the cementitious filler material.

  16. Force inversion in floating plate dynamics

    NASA Astrophysics Data System (ADS)

    Dempsey, Kevin M.; Grossman, Nathaniel; Vasileva, Irina V.

    2006-02-01

    An axisymmetric floating plate of infinite extent is subjected to prescribed dynamics under the action of a point load. The problem of inverting the forcing is studied mathematically with a view to classifying its properties within the framework of integral equations. In the process, the floating plate problem is shown to be moderately ill-posed and the rate of change of the forcing is shown to initially be directly proportional to the acceleration of the plate. This latter result is incorporated into the numerical study that follows. Throughout the paper, a model problem is used as an analytical and numerical benchmark.

  17. Effects of hydroxyl radical scavengers KCN and CO on ultraviolet light-induced activation of crude soluble guanylate cyclase

    SciTech Connect

    Karlsson, J.O.; Axelsson, K.L.; Andersson, R.G.

    1985-01-01

    The crude soluble guanylate cyclase (GC) from bovine mesenteric artery was stimulated by ultraviolet (UV) light (366 nm). Addition of free radical scavengers, dimethylsulfoxide or superoxide dismutase and/or catalase to the GC assay did not abolish the stimulatory effect of UV light. On the contrary, the UV light-induced activation was enhanced in the presence of these scavengers. KCN (1 mM) did not affect the UV light-induced activation, while 0.1 mM of CO potentiated the activation. These results may indicate that UV light is operating through a direct interaction with the ferrous form of the GC-heme.

  18. Development of White-Light Emitting Active Layers in Nitride Based Heterostructures for Phosphorless Solid State Lighting

    SciTech Connect

    Jan Talbot; Kailash Mishra

    2007-12-31

    This report provides a summary of research activities carried out at the University of California, San Diego and Central Research of OSRAM SYLVANIA in Beverly, MA partially supported by a research contract from US Department of Energy, DE-FC26-04NT422274. The main objective of this project was to develop III-V nitrides activated by rare earth ions, RE{sup 3+}, which could eliminate the need for phosphors in nitride-based solid state light sources. The main idea was to convert electron-hole pairs injected into the active layer in a LED die to white light directly through transitions within the energy levels of the 4f{sup n}-manifold of RE{sup 3+}. We focused on the following materials: Eu{sup 3+}(red), Tb{sup 3+}(green), Er{sup 3+}(green), Dy{sup 3+}(yellow) and Tm{sup 3+}(blue) in AlN, GaN and alloys of AlN and GaN. Our strategy was to explore candidate materials in powder form first, and then study their behavior in thin films. Thin films of these materials were to be deposited on sapphire substrates using pulsed laser deposition (PLD) and metal organic vapor phase epitaxy (MOVPE). The photo- and cathode-luminescence measurements of these materials were used to investigate their suitability for white light generation. The project proceeded along this route with minor modifications needed to produce better materials and to expedite our progress towards the final goal. The project made the following accomplishments: (1) red emission from Eu{sup 3+}, green from Tb{sup 3+}, yellow from Dy{sup 3+} and blue from Tm{sup 3+} in AlN powders; (2) red emission from Eu{sup 3+} and green emission from Tb{sup 3+} in GaN powder; (3) red emission from Eu{sup 3+} in alloys of GaN and AlN; (4) green emission from Tb{sup 3+} in GaN thin films by PLD; (5) red emission from Eu{sup 3+} and Tb{sup 3+} in GaN thin films deposited by MOVPE; (6) energy transfer from host to RE{sup 3+}; (7) energy transfer from Tb{sup 3+} to Eu{sup 3+} in AlN powders; (8) emission from AlN powder samples codoped with (Eu{sup 3+} ,Tb{sup 3+} ) and (Dy{sup 3+}, Tm{sup 3+}); and (9) white emission from AlN codoped with Dy{sup 3+} and Tm{sup 3+}. We also extensively studied the stabilities of rare earth ions in GaN, and the nature of oxygen defects in GaN and its impact on the optical properties of the host material, using first principles method. Results from these theoretical calculations together with fluorescence measurements from the materials essentially proved the underlying concepts for generating white light using RE{sup 3+}-activated nitrides. For this project, we successfully built a horizontal MOVPE reactor and used it to deposit thin films of undoped and doped nitrides of GaN and InGaN, which is a very significant achievement. Since this reactor was designed and built by in-house experts, it could be easily modified and reassembled for specific research purposes. During this study, it was successfully modified for homogeneous distribution of rare earth ions in a deposited film. It will be an ideal tool for future research involving novel thin film material concepts. We examined carefully the suitability of various metal organic precursors for incorporating RE{sup 3+}. In order to avoid oxygen contamination, several oxygen-free RE{sup 3+} precursors were identified. Both oxygen-free and oxygen- containing metal organic precursors were used for certain rare earth ions (Eu{sup 3+}, Tb{sup 3+} and Er{sup 3+}). However, the suitability of any particular type of precursor for MOVPE deposition was not established during this study, and further study is needed. More intensive research in the future is needed to improve the film quality, and eliminate the separation of rare earth oxide phases during the deposition of thin films by MOVPE. The literature in the area of the chemistry of rare earth ions in nitrides is almost nonexistent, in spite of the significant research on luminescence of RE{sup 3+} in nitrides. Consequently, MOVPE as a method of deposition of RE{sup 3+}-activated nitrides is relatively unexplored. In the following sections of this report, the outcomes from this study are described in detail. The present investigations have clearly validated the underlying concepts for generating white light within the LED die itself and its importance for fabricating a new generation of solid state light sources. Yet, significant research is still needed to transform these concepts into products.

  19. Photosynthetic activity and growth analysis of the plant {Costus spicatus} cultivated under different light conditions

    NASA Astrophysics Data System (ADS)

    Campos, V. M.; Pasin, L. A. A. P.; Barja, P. R.

    2008-01-01

    The aim of the present work was to evaluate the effect of different radiance levels (25%, 50% and 100% of full sunlight) in growth (height, leaf area, number of leaves) and photosynthetic activity of the plant Costus spicatus, popularly known in Brazil as Caninha do Brejo. Photoacoustic (PA) measurements were performed in order to evaluate comparatively the photosynthetic activity rate of plants submitted to different light intensity regimes. The results obtained show that plants maintained under low light intensity levels (25% of sunlight) presented higher height, leaf area and number of leaves, while plants grown under full sunlight presented higher radicular length. PA measurements indicated higher photosynthetic rate for plants grown under 50% of full sunlight, but plants developed under 25% of full sunlight (75% shading) presented the fastest response to light incidence (photosynthetic induction).

  20. Older adults’ rest-activity and light exposure patterns in the home setting: a methodological case study

    PubMed Central

    Higgins, Patricia A.; Hornick, Thomas R.; Figueiro, Mariana G.

    2012-01-01

    Background This methodological case study describes light exposure and rest-activity patterns in an older adult with dementia and his caregiver spouse. Methods Two devices were used to measure rest-activity and light exposure data: a wrist-worn actigraph with a light sensor to record full spectrum light exposure data and an eye-level wavelength sensitive light meter (Daysimeter™). The wife wore both devices simultaneously; the husband wore only the actigraph. Results There were minimal feasibility issues in using the devices in the home setting. The wife’s light exposure was considerably better than her husband’s, but she spent little time in bright lighting. Her circadian stimulus (CS) and activity values suggest high level of circadian disruption. Conclusion This case study provides beginning support for the use of the Daysimeter in the home setting while also highlighting unrecognized circadian disturbances and very low light levels in an older couple’s home. PMID:20237336

  1. Stable blue thermally activated delayed fluorescent organic light-emitting diodes with three times longer lifetime than phosphorescent organic light-emitting diodes.

    PubMed

    Kim, Mounggon; Jeon, Sang Kyu; Hwang, Seok-Ho; Lee, Jun Yeob

    2015-04-17

    High quantum efficiency above 18% and extended lifetime three times longer than that of phosphorescent organic light-emitting diodes (OLEDs) are demonstrated in blue thermally activated delayed fluorescent OLEDs. PMID:25757226

  2. Improvements in floating point addition/subtraction operations

    DOEpatents

    Farmwald, P.M.

    1984-02-24

    Apparatus is described for decreasing the latency time associated with floating point addition and subtraction in a computer, using a novel bifurcated, pre-normalization/post-normalization approach that distinguishes between differences of floating point exponents.

  3. New light sources and sensors for active optical 3D inspection

    NASA Astrophysics Data System (ADS)

    Osten, Wolfgang; Jueptner, Werner P. O.

    1999-11-01

    The implementation of active processing strategies in optical 3D-inspection needs the availability of flexible hardware solutions. The system components illumination and sensor/detector are actively involved in the processing chain by a feedback loop that is controlled by the evaluation process. Therefore this article deals with new light sources and sensor which appeared recently on the market and can be applied successfully for the implementation of active processing principles. Some applications where such new components are used to implement an active measurement strategy are presented.

  4. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity.

    PubMed

    Kooijman, Sander; van den Berg, Rosa; Ramkisoensing, Ashna; Boon, Mariëtte R; Kuipers, Eline N; Loef, Marieke; Zonneveld, Tom C M; Lucassen, Eliane A; Sips, Hetty C M; Chatzispyrou, Iliana A; Houtkooper, Riekelt H; Meijer, Johanna H; Coomans, Claudia P; Biermasz, Nienke R; Rensen, Patrick C N

    2015-05-26

    Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces β3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity. PMID:25964318

  5. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity

    PubMed Central

    Kooijman, Sander; van den Berg, Rosa; Ramkisoensing, Ashna; Boon, Mariëtte R.; Kuipers, Eline N.; Loef, Marieke; Zonneveld, Tom C. M.; Lucassen, Eliane A.; Sips, Hetty C. M.; Chatzispyrou, Iliana A.; Houtkooper, Riekelt H.; Meijer, Johanna H.; Coomans, Claudia P.; Biermasz, Nienke R.; Rensen, Patrick C. N.

    2015-01-01

    Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces β3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity. PMID:25964318

  6. Optics: Light, Color, and Their Uses. An Educator's Guide With Activities In Science and Mathematics

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This document includes information on the Chandra X-Ray Observatory, the Hubble Space Telescope, the Next Generation Space Telescope, Soft X-Ray Imager, and the Lightning Imaging System. Classroom activities from grades K-12 are included, focusing on light and color, using mirrors, lenses, prisms, and filters.

  7. Light and Heavy Heterosexual Activities of Young Canadian Adolescents: Normative Patterns and Differential Predictors

    ERIC Educational Resources Information Center

    Williams, Trish; Connolly, Jennifer; Cribbie, Robert

    2008-01-01

    The objectives of this research were to explore patterns of heterosexual activity in early adolescence and to examine the differential pathways to light and heavy heterosexuality. We utilized the National Longitudinal Survey of Canadian Children and Youth (NLSCY) in which heterosexual behaviors, as well as puberty, parenting processes, peer…

  8. Carbon nanotube-assisted optical activation of TGF-β signalling by near-infrared light

    NASA Astrophysics Data System (ADS)

    Lin, Liang; Liu, Ling; Zhao, Bing; Xie, Ran; Lin, Wei; Li, He; Li, Yaya; Shi, Minlong; Chen, Ye-Guang; Springer, Timothy A.; Chen, Xing

    2015-05-01

    Receptor-mediated signal transduction modulates complex cellular behaviours such as cell growth, migration and differentiation. Although photoactivatable proteins have emerged as a powerful tool for controlling molecular interactions and signalling cascades at precise times and spaces using light, many of these light-sensitive proteins are activated by ultraviolent or visible light, which has limited tissue penetration. Here, we report a single-walled carbon nanotube (SWCNT)-assisted approach that enables near-infrared light-triggered activation of transforming growth factor β (TGF-β) signal transduction, an important signalling pathway in embryonic development and cancer progression. The protein complex of TGF-β and its latency-associated peptide is conjugated onto SWCNTs, where TGF-β is inactive. Upon near-infrared irradiation, TGF-β is released through the photothermal effect of SWCNTs and becomes active. The released TGF-β activates downstream signal transduction in live cells and modulates cellular behaviours. Furthermore, preliminary studies show that the method can be used to mediate TGF-β signalling in living mice.

  9. GAS PHASE SELECTIVE PHOTOXIDATION OF ALCOHOLS USING LIGHT-ACTIVATED TITANIUM DIOXIDE AND MOLECULAR OXYGEN

    EPA Science Inventory

    Gas Phase Selective Oxidation of Alcohols Using Light-Activated Titanium Dioxide and Molecular Oxygen

    Gas phase selective oxidations of various primary and secondary alcohols are studied in an indigenously built stainless steel up-flow photochemical reactor using ultravi...

  10. Core-shell structured TiO2@polydopamine for highly active visible-light photocatalysis.

    PubMed

    Mao, Wen-Xin; Lin, Xi-Jie; Zhang, Wei; Chi, Zi-Xiang; Lyu, Rong-Wen; Cao, An-Min; Wan, Li-Jun

    2016-06-01

    This communication reports that the TiO2@polydopamine nanocomposite with a core-shell structure could be a highly active photocatalyst working under visible light. A very thin layer of polydopamine at around 1 nm was found to be critical for the degradation of Rhodamine B. PMID:27165843

  11. The Effects of Computer-Aided Concept Cartoons and Outdoor Science Activities on Light Pollution

    ERIC Educational Resources Information Center

    Aydin, Güliz

    2015-01-01

    The purpose of this study is to create an awareness of light pollution on seventh grade students via computer aided concept cartoon applications and outdoor science activities and to help them develop solutions; and to determine student opinions on the practices carried out. The study was carried out at a middle school in Mugla province of Aegean…

  12. 1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994

    SciTech Connect

    Rothman, E.Z.

    1995-05-01

    This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility.

  13. Highly Efficient, Simplified, Solution-Processed Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diodes.

    PubMed

    Kim, Young-Hoon; Wolf, Christoph; Cho, Himchan; Jeong, Su-Hun; Lee, Tae-Woo

    2016-01-27

    Highly efficient, simplified, solution-processed thermally activated delayed-fluorescence organic light-emitting diodes can be realized by using pure-organic thermally activated delayed fluorescence emitters and a multifunctional buffer hole-injection layer, in which high EQE (≈24%) and current efficiency (≈73 cd A(-1) ) are demonstrated. High-efficiency fluorescence red-emitting and blue-emitting devices can also be fabricated in this manner. PMID:26619309

  14. Maximizing the captured information of integral floating microscopy

    NASA Astrophysics Data System (ADS)

    Hong, Jong-Young; Jeong, Youngmo; Kim, Jonghyun; Yeom, Jiwoon; Lee, Byoungho

    2015-10-01

    To capture the three-dimensional (3D) information of microscopic (micro) object, the light field microscopy (LFM) has been studied. A lens array is inserted into the conventional microscope and 3D information of micro object is captured in single shot. However, since the lateral resolution decreases severely because of lens array, the integral floating microscopy (IFM) is proposed. The IFM is modified version of the LFM which concentrates on the lateral resolution rather than the angular resolution by changing the location of specimen and the lens array. The specimen should be located at the front focal plane and the lens array should be located at the back focal plane of the objective lens in the IFM but it is hard to locate the lens array into the back focal length of the objective lens because the back focal length lies in the barrel of the objective lens in general. In this paper, we propose the modified version of the integral floating microscopy which can place the lens array at the optimum position. The structure of the whole system is changed and the relay lens is added to relay the back focal length outside. By placing the lens array at the optimum position, the captured information could be maximized, and by changing the focal length of the relay lens, the field of view (FOV) mismatch problem can be also mitigated. The relationship between the captured information and the specification of the system is analyzed and proper experiments are presented for the verification.

  15. Observation of ambipolar switching in a silver nanoparticle single-electron transistor with multiple molecular floating gates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto; Shinohara, Shuhei; Tamada, Kaoru; Ishii, Hisao; Noguchi, Yutaka

    2016-03-01

    Ambipolar switching behavior was observed in a silver nanoparticle (AgNP)-based single-electron transistor (SET) with tetra-tert-butyl copper phthalocyanine (ttbCuPc) as a molecular floating gate. Depending on the wavelength of the incident light, the stability diagram shifted to the negative and positive directions along the gate voltage axis. These results were explained by the photoinduced charging of ttbCuPc molecules in the vicinity of AgNPs. Moreover, multiple device states were induced by the light irradiation at a wavelength of 600 nm, suggesting that multiple ttbCuPc molecules individually worked as a floating gate.

  16. Inhibition of Cathepsin Activity in a Cell-Based Assay by a Light-Activated Ruthenium Compound

    PubMed Central

    Respondek, Tomasz; Sharma, Rajgopal; Herroon, Mackenzie K.; Garner, Robert N.; Knoll, Jessica D.; Cueny, Eric; Turro, Claudia; Podgorski, Izabela; Kodanko, Jeremy J.

    2014-01-01

    Light-activated inhibition of cathepsin activity was demonstrated with in a cell-based assay. Inhibitors of cathepsin K, Cbz-Leu-NHCH2CN (2) and Cbz-Leu-Ser(OBn)-CN (3), were caged within the complexes cis-[Ru(bpy)2(2)2]Cl2 (4) and cis-[Ru(bpy)2(3)2](BF4)2 (5), where bpy = 2,2′-bipyridine, as 1:1 mixtures of Δ- and Λ stereoisomers. Complexes 4 and 5 were characterized by 1H NMR, IR and UV-vis spectroscopies and electrospray mass spectrometry. Photochemical experiments confirm that 4 releases two molecules of 2 upon exposure to visible light for 15 min, whereas release of 3 by 5 requires longer irradiation times. IC50 determinations against purified cathepsin K under light and dark conditions with 4 and 5 confirm that inhibition is enhanced from 35 to 88-fold, respectively, upon irradiation with visible light. No apparent toxicity was observed for 4 in the absence or presence of irradiation in bone marrow macrophage (BMM) or PC-3 cells, as judged by the MTT assay, at concentrations up to 10 μM. Compound 5 is well tolerated at lower concentrations (<1 μM) but does show growth inhibitory effects at higher concentrations. Confocal microscopy experiments show that 4 reduces intracellular cathepsin activity in osteoclasts with light activation. These results support further development of caged nitrile-based inhibitors as chemical tools for investigating spatial aspects of proteolysis within living systems. PMID:24729544

  17. Leishmania tropica: the effect of darkness and light on biological activities in vitro.

    PubMed

    Allahverdiyev, Adil M; Koc, Rabia Cakir; Ates, Sezen Canim; Bagirova, Malahat; Elcicek, Serhat; Oztel, Olga Nehir

    2011-08-01

    Leishmania parasites can be exposed to effects of light in their vectors and hosts, at various periods. However, there is no information about the effects of light on Leishmania parasites. The aim of this study is to investigate the effects of light on various cell parameters of Leishmania tropica, in vitro. All experiments were conducted on L. tropica promastigotes and amastigote-macrophage cultures, using flow cytometric analysis, MTT and phenol-sulfuric acid assay, DAPI and Giemsa. The results showed that the morphology of parasites has changed; the cell cycle has been affected and this caused parasites to remain at G0/G1 phase. Furthermore the proliferation, infectivity, glucose consumption and mitochondrial dehydrogenase activities of parasites were decreased. Thus, for the first time, in this study, the effects of light on biological activities of Leishmania parasites were shown. These new information about parasites' biology, would be very important to investigate the effects of light on the parasites in infected vectors and hosts. PMID:21510933

  18. Association of Light Exposure on Physical Activity and Sedentary Time in Young People

    PubMed Central

    Aggio, Daniel; Smith, Lee; Fisher, Abigail; Hamer, Mark

    2015-01-01

    Background: To investigate whether light exposure was associated with objectively measured physical activity (PA) and sedentary behaviour in young people. Methods: Participants (n = 229, 46.7% female) were young people (mean 8.8 years [SD 2.2]) from the borough of Camden, UK. Daily sedentary time, moderate and vigorous PA (MVPA) and light exposure were measured using a tri-axial accelerometer with an ambient light sensor during the summer. Multiple linear regression models examined associations between average daily light exposure, sedentary time and time in MVPA. Models were repeated investigating weekdays and weekend days separately. Analyses were adjusted for pre-specified covariables, including age, sex, device wear time, ethnic group, school and body fat. Results: There were significant associations between average daily light exposure and time sedentary (? coefficient = ?11.2, 95% CI, ?19.0 to ?3.4) and in MVPA (? coefficient = 3.5, 95% CI, 1.2 to 5.9). Light exposure was significantly associated with weekend sedentary time (? coefficient = ?10.0, 95% CI, ?17.6, ?2.4), weekend MVPA (? coefficient = 3.7, 95% CI, 1.7, 5.7), weekday sedentary time (? coefficient = ?15.0, 95% CI, ?22.7 to ?7.2), but not weekday MVPA (? coefficient = 2.0, 95% CI, ?0.5 to 4.5). Conclusion: Average daily light exposure is positively associated with time in MVPA and negatively associated with sedentary time. Increasing daylight exposure may be a useful intervention strategy for promoting physical activity. PMID:25764057

  19. 14 CFR 25.753 - Main float design.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Main float design. 25.753 Section 25.753 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Floats and Hulls § 25.753 Main float...

  20. 14 CFR 25.535 - Auxiliary float loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Auxiliary float loads. 25.535 Section 25.535 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Water Loads § 25.535 Auxiliary float loads. (a) General. Auxiliary floats and...

  1. 14 CFR 25.535 - Auxiliary float loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Water Loads § 25.535 Auxiliary float loads. (a..., the prescribed water loads may be distributed over the float bottom to avoid excessive local loads.... The resultant water load must be applied in the plane of symmetry of the float at a point...

  2. 14 CFR 25.753 - Main float design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 25.753 Section 25.753 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Floats and Hulls § 25.753 Main float...

  3. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant apparatus... 46 Shipping 4 2011-10-01 2011-10-01 false Life floats and buoyant apparatus. 131.870 Section...

  4. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant apparatus... 46 Shipping 4 2010-10-01 2010-10-01 false Life floats and buoyant apparatus. 131.870 Section...

  5. 40 CFR 63.1063 - Floating roof requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subpart, whichever occurs first. (ii) External floating roof. An EFR shall be equipped with one of the... degassed, or every 5 years, whichever occurs first. (2) External floating roofs. External floating roofs...) The length of each gap shall be determined by inserting the probe into the gap (vertically)...

  6. 14 CFR 29.757 - Hull and auxiliary float strength.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and auxiliary float strength. 29.757 Section 29.757 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 29.757 Hull and auxiliary float strength. The hull, and auxiliary floats if used, must withstand...

  7. Erect floating stumps in Spirit Lake, Washington

    NASA Astrophysics Data System (ADS)

    Coffin, Harold G.

    1983-05-01

    The eruption of Mount St. Helens in May 1980 carried thousands of trees into Spirit Lake, where a giant log raft formed. Many of these broken stumps, especially those with roots, now float suspended vertically in the water. This phenomenon could have been responsible for erect petrified trees in other volcanic areas such as Yellowstone.

  8. Genetics Home Reference: Floating-Harbor syndrome

    MedlinePlus

    ... by age 6 to 12. Delay in speech development (expressive language delay) may be severe in Floating-Harbor syndrome , and language impairment can lead to problems in verbal communication. Most affected ... Their development of motor skills, such as sitting and crawling, ...

  9. Study on the activation of styrene-based shape memory polymer by medium-infrared laser light

    SciTech Connect

    Leng Jinsong; Yu Kai; Lan Xin; Zhang Dawei; Liu Yanju

    2010-03-15

    This paper demonstrates the feasibility of shape memory polymer (SMP) activation by medium-infrared laser light. Medium-infrared light is transmitted by an optical fiber embedded in the SMP matrix, and the shape recovery process and temperature distribution are recorded by an infrared camera. Light-induced SMP exhibits potential applications in biomedicines and flexible displays.

  10. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    SciTech Connect

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-06-09

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  11. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Nishide, Jun-ichi; Nakanotani, Hajime; Hiraga, Yasuhide; Adachi, Chihaya

    2014-06-01

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  12. The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles.

    PubMed

    Perni, Stefano; Piccirillo, Clara; Pratten, Jonathan; Prokopovich, Polina; Chrzanowski, Wojciech; Parkin, Ivan P; Wilson, Michael

    2009-01-01

    We report the formation of polysiloxane polymers containing embedded methylene blue and gold nanoparticles incorporated by a swell-encapsulation-shrink method. These polymers show significant antimicrobial activity against methicillin-resistant Staphylococcus aureus and Escherichia coli with up to a 3.5 log(10) reduction in the viable count when exposed for 5 min to light from a low power 660 nm laser. The bacterial kill is due to the light-induced production of singlet oxygen and other reactive oxygen species by the methylene blue. Interestingly, the presence of 2 nm gold nanoparticles significantly enhanced the ability of the methylene blue to kill bacteria. PMID:18838166

  13. Lightening up Light Therapy: Activation of Retrograde Signaling Pathway by Photobiomodulation.

    PubMed

    Kim, Hong Pyo

    2014-11-01

    Photobiomodulation utilizes monochromatic (or quasimonochromatic) light in the electromagnetic region of 600?1000 nm for the treatment of soft tissues in a nondestructive and nonthermal mode. It is conceivable that photobiomodulation is based upon the ability of the light to alter cell metabolism as it is absorbed by general hemoproteins and cytochrome c oxidase (COX) in particular. Recently it has been suggested radiation of visible and infrared (IR) activates retrograde signaling pathway from mitochondria to nucleus. In this review, the role of COX in the photobiomodulation will be discussed. Further a possible role of water as a photoreceptor will be suggested. PMID:25489415

  14. Lightening up Light Therapy: Activation of Retrograde Signaling Pathway by Photobiomodulation

    PubMed Central

    Kim, Hong Pyo

    2014-01-01

    Photobiomodulation utilizes monochromatic (or quasimonochromatic) light in the electromagnetic region of 600∼1000 nm for the treatment of soft tissues in a nondestructive and nonthermal mode. It is conceivable that photobiomodulation is based upon the ability of the light to alter cell metabolism as it is absorbed by general hemoproteins and cytochrome c oxidase (COX) in particular. Recently it has been suggested radiation of visible and infrared (IR) activates retrograde signaling pathway from mitochondria to nucleus. In this review, the role of COX in the photobiomodulation will be discussed. Further a possible role of water as a photoreceptor will be suggested. PMID:25489415

  15. Cerium Oxide Nanoparticles Reduce Microglial Activation and Neurodegenerative Events in Light Damaged Retina

    PubMed Central

    Fiorani, Lavinia; Passacantando, Maurizio; Santucci, Sandro; Di Marco, Stefano; Bisti, Silvia; Maccarone, Rita

    2015-01-01

    The first target of any therapy for retinal neurodegeneration is to slow down the progression of the disease and to maintain visual function. Cerium oxide or ceria nanoparticles reduce oxidative stress, which is known to play a pivotal role in neurodegeneration. Our aim was to investigate whether cerium oxide nanoparticles were able to mitigate neurodegeneration including microglial activation and related inflammatory processes induced by exposure to high intensity light. Cerium oxide nanoparticles were injected intravitreally or intraveinously in albino Sprague-Dawley rats three weeks before exposing them to light damage of 1000 lux for 24 h. Electroretinographic recordings were performed a week after light damage. The progression of retinal degeneration was evaluated by measuring outer nuclear layer thickness and TUNEL staining to quantify photoreceptors death. Immunohistochemical analysis was used to evaluate retinal stress, neuroinflammatory cytokines and microglial activation. Only intravitreally injected ceria nanoparticles were detected at the level of photoreceptor outer segments 3 weeks after the light damage and electoretinographic recordings showed that ceria nanoparticles maintained visual response. Moreover, this treatment reduced neuronal death and “hot spot” extension preserving the outer nuclear layer morphology. It is noteworthy that in this work we demonstrated, for the first time, the ability of ceria nanoparticles to reduce microglial activation and their migration toward outer nuclear layer. All these evidences support ceria nanoparticles as a powerful therapeutic agent in retinal neurodegenerative processes. PMID:26469804

  16. Light is an active contributor to the vital effects of coral skeleton proxies

    NASA Astrophysics Data System (ADS)

    Juillet-Leclerc, Anne; Reynaud, Stéphanie; Dissard, Delphine; Tisserand, Guillaume; Ferrier-Pagès, Christine

    2014-09-01

    Symbiotic colonies of the coral Acropora sp. were cultured in a factorial design of three temperatures (21, 25 and 28 °C) and two light intensities (200 and 400 μmol photon m-2 s-1), under constant conditions. A temperature of 25 °C and a light intensity of 200 μmol photon m-2 s-1 was the starting culture condition. Metabolic (photosynthesis, respiration, calcification and surface expansion rate) and geochemical measurements (δ18O, δ13C, Sr/Ca and Mg/Ca) were conducted on 6 colonies for each experimental condition. Metabolic measurements confirmed that respiration, photosynthesis, calcification and surface expansion rate responded to the combined effect of temperature and light. Under each light intensity, mean calcification rate was linearly correlated with mean photosynthetic activity. Geochemical measurements were also influenced by temperature and, to a lesser degree, by light. All geochemical proxies measured on 6 nubbins showed a wide scattering of values, regardless of the environmental condition. Compared to the other proxies, δ18O exhibited a different behavior. It was the only proxy exhibiting temperature tracer behavior. However, while mean values of Sr/Ca, Mg/Ca and δ13C were well correlated, the correlation between the later and mean δ18O differed with light level. This suggests that both skeleton deposition and temperature oxygen fractionation differs according to light intensity. Overall, the effect of light on geochemical values seems to compromise the use of proxy calibrations solely based on temperature influence. Under high light conditions, the great amplitude shown by individual net photosynthesis is directly proportional to the highly variable zooxanthellae density. As light is affecting all of the proxies, we thus assume that the strong geochemical variability observed could be explained by various algae densities, each nubbin responding according to its zooxanthellae amount. Accordingly, we suggest that each symbiosome (the assemblage of few corallites with their symbionts) presents its own vital effect influence over time. Therefore, at a bulk sample scale, light could be considered as one of the major causes of what is commonly referred to as the ‘vital effect’. The meaning of δ18O calibration versus temperature established from distinct colonies differs from calibration calculated from samples collected following the growth axis of a single coral head. Finally, in order to quantitatively reconstruct climatic condition, we suggest a new paradigm based on the statistical treatment of the combination of time-series information from several proxies, all measured on the same sample from a continuous symbiosome.

  17. Effects of Geroprotectors on Age-Related Changes in Proteolytic Digestive Enzyme Activities at Different Lighting Conditions.

    PubMed

    Morozov, A V; Khizhkin, E A; Svechkina, E B; Vinogradova, I A; Ilyukha, V A; Anisimov, V N; Khavinson, V Kh

    2015-10-01

    We studied the effect of melatonin and epithalon on age-related changes in proteolytic digestive enzyme activity in the pancreas and gastric mucosa of rats kept under different lighting conditions. In rats kept under standard illumination, pepsin activity and the total proteolytic activity in the stomach and pancreas increased by the age of 12 months, but then decreased. Constant and natural lighting disturbed the age dynamics of proteolytic digestive enzyme activity. Administration of melatonin and epithalon to animals exposed to constant lighting restored age dynamics of pepsin activity and little affected total proteolytic activity. PMID:26519279

  18. Visible-Light-Induced Effects of Au Nanoparticle on Laccase Catalytic Activity.

    PubMed

    Guo, Sijie; Li, Hao; Liu, Juan; Yang, Yanmei; Kong, Weiqian; Qiao, Shi; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2015-09-23

    A deep understanding of the interaction between the nanoparticle and enzyme is important for biocatalyst design. Here, we report the in situ synthesis of laccase-Au NP (laccase-Au) hybrids and its catalytic activity modulation by visible light. In the present hybrid system, the activity of laccase was significantly improved (increased by 91.2% vs free laccase) by Au NPs. With a short time visible light illumination (λ > 420 nm, within 3 min), the activity of laccase-Au hybrids decreased by 8.1% (vs laccase-Au hybrid without light), which can be restored to its initial one when the illumination is removed. However, after a long time illumination (λ > 420 nm, over 10 min), the catalytic activity of laccase-Au hybrids consecutively decreases and is not reversible even after removing the illumination. Our experiments also suggested that the local surface plasma resonance effect of Au NPs causes the structure change of laccase and local high temperature near the Au NPs. Those changes eventually affect the transportation of electrons in laccase, which further results in the declined activity of laccase. PMID:26322738

  19. A spinal opsin controls early neural activity and drives a behavioral light response

    PubMed Central

    Friedmann, Drew; Hoagland, Adam; Berlin, Shai; Isacoff, Ehud Y.

    2014-01-01

    Non-visual detection of light by the vertebrate hypothalamus, pineal, and retina is known to govern seasonal and circadian behaviors [1]. However, the expression of opsins in multiple other brain structures [2–4] suggests a more expansive repertoire for light-regulation of physiology, behavior, and development. Translucent zebrafish embryos express extra-retinal opsins early on [5, 6], at a time when spontaneous activity in the developing central nervous system plays a role in neuronal maturation and circuit formation [7]. Though the presence of extra-retinal opsins is well documented, the function of direct photoreception by the central nervous system remains largely unknown. Here we show that early activity in the zebrafish spinal central pattern generator (CPG) and the earliest locomotory behavior are dramatically inhibited by physiological levels of environmental light. We find that the photo-sensitivity of this circuit is conferred by vertebrate ancient long opsin (VALopA), which we show to be a Gαi-coupled receptor that is expressed in the neurons of the spinal network. Sustained photo-activation of VALopA not only suppresses spontaneous activity but also alters the maturation of time-locked correlated network patterns. These results uncover a novel role for non-visual opsins and a mechanism for environmental regulation of spontaneous motor behavior and neural activity in a circuit previously thought to be governed only by intrinsic developmental programs. PMID:25484291

  20. [Preparation and characterization of visible-light response activated carbon with antibacterial behavior].

    PubMed

    Zhang, Hui-Shu; Wang, Zi-Qiang; Wang, Rui; Liu, Shou-Xin

    2011-01-01

    A visible-light response activated carbon with antibacterial activity was prepared by calcinations of the mixture of TiO2 precursor obtained by acid catalyzed hydrolysis method and commercial granular activated carbon (GAC) in NH3/N2 atmosphere. The antibacterial activity of the prepared activated carbon towards E. coil was investigated under the visible-light irradiation. X-ray diffraction (XRD), Scanning electron spectroscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and N2 adsorption analyser were used to characterize the crystal phase structure, surface morphology, spectral characteristics and pore properties. The results show there is no influence for crystal phase structure of TiO2 supported AC. The crystal size of TiO2 is 9.8 nm. Non-crystal phase layer and strong adsorption force of carrier can inhibit the grain growth of TiO2, and AC combines with TiO2 in Ti-O-C so that TiO2 formestight film on AC. The sample calcinated at 500 degrees C for 5 h exhibits the highest bactericidal performance, and the bactericidal rate reached up to 67% after 4 h irradiation, which was better than that of nature light (39%) in the same condition. PMID:21404678

  1. Characterization of nucleoside triphosphatase activity in isolated pea nuclei and its photoreversible regulation by light

    NASA Technical Reports Server (NTRS)

    Chen, Y. R.; Roux, S. J.

    1986-01-01

    A nucleoside triphosphatase (NTPase) present in highly purified preparations of pea nuclei was partially characterized. The activity of this enzyme was stimulated by divalent cations (Mg2+ = Mn2+ > Ca2+), but was not affected by the monovalent cations, Na+ and K+. The Mg(2+)-dependent activity was further stimulated by concentrations of Ca2+ in the low micromolar range. It could catalyze the hydrolysis of ATP, GTP, UTP, and CTP, all with a pH optimum of 7.5. The nuclear NTPase activity was not inhibited by vanadate, oligomycin, or nitrate, but was inhibited by relatively low concentrations of quercetin and the calmodulin inhibitor, compound 48/80. The NTPase was stimulated more than 50% by red light, and this effect was reversed by subsequent irradiation with far-red light. The photoreversibility of the stimulation indicated that the photoreceptor for this response was phytochrome, an important regulator of photomorphogenesis and gene expression in plants.

  2. Influence of softening test and light-activation protocols on resin composite polymer structure

    PubMed Central

    Giorgi, Maria Cecília Caldas; Lima, Débora Alves Nunes Leite; Marchi, Giselle Maria; Ambrosano, Gláucia Maria; Aguiar, Flávio Henrique Baggio

    2014-01-01

    Objective: This study analyzed the influences of the light-activation protocol and softening test on the degree of conversion (DC) and Knoop Hardness (KHN) of a microhybrid resin composite. Materials and Methods: Filtek Z250 (3M ESPE) was light-activated with a third-generation light-emitting diode (Valo Ultradent) by three protocols – standard, high power, and plasma emulation – or with a quartz-tungsten halogen XL 3000 (3M ESPE) in conventional mode. All modes were set to deliver 19 J/cm2. The DC (N = 20) was determined by Fourier transform infrared spectrometry on the top (T) and bottom (B) surfaces. For the KHN test, samples were subdivided in four groups (n = 5 each) according to the storage media: absolute ethanol, 75% ethanol, distilled water, and air (control group). The KHN values were evaluated on T and B before and 24 h after immersion in the storage media. Data were analyzed by split-plot analysis of variance (ANOVA; for DC) or repeated-measures split-plot ANOVA (for KHN), followed by Tukey's test (α = 0.05). Results: For the DC, the light-activation protocol did not influence the results and there was no difference between T and B. For the KHN test, the light-activation protocol did not influence the results and T showed higher microhardness values than B for all experimental conditions. There were significant differences in KHN depending on the storage media. Samples immersed in absolute ethanol generally presented lower KHN values, with no differences compared to samples in 75% ethanol. Conclusion: The storage media affected the outcomes of the softening test. PMID:24966740

  3. Biomechanical model produced from light-activated dental composite resins: a holographic analysis

    NASA Astrophysics Data System (ADS)

    Pantelić, Dejan; Vasiljević, Darko; Blažić, Larisa; Savić-Šević, Svetlana; Murić, Branka; Nikolić, Marko

    2013-11-01

    Light-activated dental composites, commonly applied in dentistry, can be used as excellent material for producing biomechanical models. They can be cast in almost any shape in an appropriate silicone mold and quickly solidified by irradiation with light in the blue part of the spectrum. In that way, it is possible to obtain any number of nearly identical casts. The models can be used to study the behavior of arbitrary structure under mechanical loads. To test the technique, a simple mechanical model of the tooth with a mesio-occluso-distal cavity was manufactured. Composite resin restoration was placed inside the cavity and light cured. Real-time holographic interferometry was used to analyze the contraction of the composite resin and its effect on the surrounding material. The results obtained in the holographic experiment were in good agreement with those obtained using the finite element method.

  4. Mass spectrometry footprinting reveals the structural rearrangements of cyanobacterial orange carotenoid protein upon light activation.

    PubMed

    Liu, Haijun; Zhang, Hao; King, jeremy D; Wolf, Nathan R; Prado, Mindy; Gross, Michael L; Blankenship, Robert E

    2014-12-01

    The orange carotenoid protein (OCP), a member of the family of blue light photoactive proteins, is required for efficient photoprotection in many cyanobacteria. Photoexcitation of the carotenoid in the OCP results in structural changes within the chromophore and the protein to give an active red form of OCP that is required for phycobilisome binding and consequent fluorescence quenching. We characterized the light-dependent structural changes by mass spectrometry-based carboxyl footprinting and found that an ? helix in the N-terminal extension of OCP plays a key role in this photoactivation process. Although this helix is located on and associates with the outside of the ?-sheet core in the C-terminal domain of OCP in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent carotenoid conformational changes to global protein conformational dynamics in favor of functional phycobilisome binding, and is an essential part of the OCP photocycle. PMID:25256653

  5. Active-region Tilt Angles: Magnetic versus White-light Determinations of Joy's Law

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.; Colaninno, R. C.; Baranyi, T.; Li, J.

    2015-01-01

    The axes of solar active regions are inclined relative to the east-west direction, with the tilt angle tending to increase with latitude ("Joy's law"). Observational determinations of Joy's law have been based either on white-light images of sunspot groups or on magnetograms, where the latter have the advantage of measuring directly the physically relevant quantity (the photospheric field), but the disadvantage of having been recorded routinely only since the mid-1960s. White-light studies employing the historical Mount Wilson (MW) database have yielded tilt angles that are smaller and that increase less steeply with latitude than those obtained from magnetic data. We confirm this effect by comparing sunspot-group tilt angles from the Debrecen Photoheliographic Database with measurements made by Li and Ulrich using MW magnetograms taken during cycles 21-23. Whether white-light or magnetic data are employed, the median tilt angles significantly exceed the mean values, and provide a better characterization of the observed distributions. The discrepancy between the white-light and magnetic results is found to have two main sources. First, a substantial fraction of the white-light "tilt angles" refer to sunspots of the same polarity. Of greater physical significance is that the magnetograph measurements include the contribution of plage areas, which are invisible in white-light images but tend to have greater axial inclinations than the adjacent sunspots. Given the large uncertainties inherent in both the white-light and the magnetic measurements, it remains unclear whether any systematic relationship exists between tilt angle and cycle amplitude during cycles 16-23.

  6. Blue-light-activated phototropin2 trafficking from the cytoplasm to Golgi/post-Golgi vesicles.

    PubMed

    Aggarwal, Chhavi; Banaś, Agnieszka Katarzyna; Kasprowicz-Maluśki, Anna; Borghetti, Carolina; Labuz, Justyna; Dobrucki, Jerzy; Gabryś, Halina

    2014-07-01

    Phototropins are plasma membrane-localized UVA/blue light photoreceptors which mediate phototropism, inhibition of primary hypocotyl elongation, leaf positioning, chloroplast movements, and stomatal opening. Blue light irradiation activates the C-terminal serine/threonine kinase domain of phototropin which autophosphorylates the receptor. Arabidopsis thaliana encodes two phototropins, phot1 and phot2. In response to blue light, phot1 moves from the plasma membrane into the cytosol and phot2 translocates to the Golgi complex. In this study the molecular mechanism and route of blue-light-induced phot2 trafficking are demonstrated. It is shown that Atphot2 behaves in a similar manner when expressed transiently under 35S or its native promoter. The phot2 kinase domain but not blue-light-mediated autophosphorylation is required for the receptor translocation. Using co-localization and western blotting, the receptor was shown to move from the cytoplasm to the Golgi complex, and then to the post-Golgi structures. The results were confirmed by brefeldin A (an inhibitor of the secretory pathway) which disrupted phot2 trafficking. An association was observed between phot2 and the light chain2 of clathrin via bimolecular fluorescence complementation. The fluorescence was observed at the plasma membrane. The results were confirmed using co-immunoprecipitation. However, tyrphostin23 (an inhibitor of clathrin-mediated endocytosis) and wortmannin (a suppressor of receptor endocytosis) were not able to block phot2 trafficking, indicating no involvement of receptor endocytosis in the formation of phot2 punctuate structures. Protein turnover studies indicated that the receptor was continuously degraded in both darkness and blue light. The degradation of phot2 proceeded via a transport route different from translocation to the Golgi complex. PMID:24821953

  7. ACTIVE-REGION TILT ANGLES: MAGNETIC VERSUS WHITE-LIGHT DETERMINATIONS OF JOY'S LAW

    SciTech Connect

    Wang, Y.-M.; Colaninno, R. C.; Baranyi, T.; Li, J. E-mail: robin.colaninno@nrl.navy.mil E-mail: jli@igpp.ucla.edu

    2015-01-01

    The axes of solar active regions are inclined relative to the east-west direction, with the tilt angle tending to increase with latitude ({sup J}oy's law{sup )}. Observational determinations of Joy's law have been based either on white-light images of sunspot groups or on magnetograms, where the latter have the advantage of measuring directly the physically relevant quantity (the photospheric field), but the disadvantage of having been recorded routinely only since the mid-1960s. White-light studies employing the historical Mount Wilson (MW) database have yielded tilt angles that are smaller and that increase less steeply with latitude than those obtained from magnetic data. We confirm this effect by comparing sunspot-group tilt angles from the Debrecen Photoheliographic Database with measurements made by Li and Ulrich using MW magnetograms taken during cycles 21-23. Whether white-light or magnetic data are employed, the median tilt angles significantly exceed the mean values, and provide a better characterization of the observed distributions. The discrepancy between the white-light and magnetic results is found to have two main sources. First, a substantial fraction of the white-light ''tilt angles'' refer to sunspots of the same polarity. Of greater physical significance is that the magnetograph measurements include the contribution of plage areas, which are invisible in white-light images but tend to have greater axial inclinations than the adjacent sunspots. Given the large uncertainties inherent in both the white-light and the magnetic measurements, it remains unclear whether any systematic relationship exists between tilt angle and cycle amplitude during cycles 16-23.

  8. Light-dependent activation of G proteins by two isoforms of chicken melanopsins.

    PubMed

    Torii, Masaki; Kojima, Daisuke; Nishimura, Akiyuki; Itoh, Hiroshi; Fukada, Yoshitaka

    2015-11-01

    In the chicken pineal gland, light stimuli trigger signaling pathways mediated by two different subtypes, Gt and G11. These G proteins may be activated by any of the three major pineal opsins, pinopsin, OPN4-1 and OPN4-2, but biochemical evidence for the coupling has been missing except for functional coupling between pinopsin and Gt. Here we investigated the relative expression levels and the functional difference among the three pineal opsins. In the chicken pineal gland, the pinopsin mRNA level was significantly more abundant than the others, of which the OPN4-2 mRNA level was higher than that of OPN4-1. In G protein activation assays, Gt was strongly activated by pinopsin in a light-dependent manner, being consistent with previous studies, and weakly activated by OPN4-2. Unexpectedly, illuminated OPN4-2 more efficiently activated G protein(s) that was endogenously expressed in HEK293T cells in culture. On the other hand, Gq, the closest analogue of G11, was activated only by OPN4-1 although the activity was relatively weak under these conditions. These results suggest that OPN4-1 and OPN4-2 couple with Gq and Gt, respectively. Two melanopsins, OPN4-1 and OPN4-2, appear to have acquired mutually different functions through the evolution. PMID:26411960

  9. Complement activation in the follicular light zone of human lymphoid tissues.

    PubMed Central

    Yamakawa, M; Imai, Y

    1992-01-01

    A comparative immunohistochemical study of the distribution pattern of complement components and regulatory proteins within secondary lymphoid follicles was performed by the immunoperoxidase technique. Fifteen lymphoid tissues including appendices. Peyer's patches and tonsils were analysed. Sixty secondary lymphoid follicles with evident polarity, that is, the distinct coexistence of a light zone, dark zone and mantle zone in the same lymphoid follicle, were tested with single antibodies. The light zones were consistently immunostained in a dendritic meshwork pattern with all antibodies. The immunostaining patterns were classified into two major groups based on the immunoreactivity of the dark zone. One immunostaining pattern was characterized by no immunostaining of the dark zone to the majority of the antigens. The second group was characterized by a diffusely weak to moderate dendritic meshwork pattern of the dark zone to some of the immunostainings of C9 (monoclonal), S-protein, and DF-DRC1, and all immunostainings of CR1 (CD35), Ber-Mac-DRC (CD35), CR2 (CD21), and R4/23. All four complement regulatory proteins were localized by immunoelectron microscopy attached to the cell surface of the cells, including follicular dendritic cells, in the light zone. Our data indicate that there is an evident functional difference between the light zone and the dark zone, and that complete activation of the complement system occurs only in the light zone. Images Figure 1 Figure 2 PMID:1388134

  10. A spinal opsin controls early neural activity and drives a behavioral light response.

    PubMed

    Friedmann, Drew; Hoagland, Adam; Berlin, Shai; Isacoff, Ehud Y

    2015-01-01

    Nonvisual detection of light by the vertebrate hypothalamus, pineal, and retina is known to govern seasonal and circadian behaviors. However, the expression of opsins in multiple other brain structures suggests a more expansive repertoire for light regulation of physiology, behavior, and development. Translucent zebrafish embryos express extraretinal opsins early on, at a time when spontaneous activity in the developing CNS plays a role in neuronal maturation and circuit formation. Though the presence of extraretinal opsins is well documented, the function of direct photoreception by the CNS remains largely unknown. Here, we show that early activity in the zebrafish spinal central pattern generator (CPG) and the earliest locomotory behavior are dramatically inhibited by physiological levels of environmental light. We find that the photosensitivity of this circuit is conferred by vertebrate ancient long opsin A (VALopA), which we show to be a Gα(i)-coupled receptor that is expressed in the neurons of the spinal network. Sustained photoactivation of VALopA not only suppresses spontaneous activity but also alters the maturation of time-locked correlated network patterns. These results uncover a novel role for nonvisual opsins and a mechanism for environmental regulation of spontaneous motor behavior and neural activity in a circuit previously thought to be governed only by intrinsic developmental programs. PMID:25484291

  11. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae.

    PubMed

    Schroll, Christian; Riemensperger, Thomas; Bucher, Daniel; Ehmer, Julia; Völler, Thomas; Erbguth, Karen; Gerber, Bertram; Hendel, Thomas; Nagel, Georg; Buchner, Erich; Fiala, André

    2006-09-01

    During classical conditioning, a positive or negative value is assigned to a previously neutral stimulus, thereby changing its significance for behavior. If an odor is associated with a negative stimulus, it can become repulsive. Conversely, an odor associated with a reward can become attractive. By using Drosophila larvae as a model system with minimal brain complexity, we address the question of which neurons attribute these values to odor stimuli. In insects, dopaminergic neurons are required for aversive learning, whereas octopaminergic neurons are necessary and sufficient for appetitive learning. However, it remains unclear whether two independent neuronal populations are sufficient to mediate such antagonistic values. We report the use of transgenically expressed channelrhodopsin-2, a light-activated cation channel, as a tool for optophysiological stimulation of genetically defined neuronal populations in Drosophila larvae. We demonstrate that distinct neuronal populations can be activated simply by illuminating the animals with blue light. Light-induced activation of dopaminergic neurons paired with an odor stimulus induces aversive memory formation, whereas activation of octopaminergic/tyraminergic neurons induces appetitive memory formation. These findings demonstrate that antagonistic modulatory subsystems are sufficient to substitute for aversive and appetitive reinforcement during classical conditioning. PMID:16950113

  12. Light-activated endosomal escape using upconversion nanoparticles for enhanced delivery of drugs

    NASA Astrophysics Data System (ADS)

    Gnanasammandhan, Muthu Kumara; Bansal, Akshaya; Zhang, Yong

    2013-02-01

    Nanoparticle-based delivery of drugs has gained a lot of prominence recently but the main problem hampering efficient delivery of payload is the clearing or degradation of nanoparticles by endosomes. Various strategies have been used to overcome this issue and one such effective solution is Photochemical Internalization (PCI). This technique involves the activation of certain photosensitizing compounds by light, which accumulate specifically in the membranes of endocytic vesicles. The activated photosensitizers induce the formation of reactive oxygen species which in turn induces localized disruption of endosomal membranes. But the drawback of this technique is that it needs blue light for activation and hence confined to be used only in in-vitro systems due to the poor tissue penetration of blue light. Here, we report the use of Upconversion nanoparticles (UCNs) as a transducer for activation of the photosensitizer, TPPS 2a. NIR light has good tissue penetrating ability and thus enables PCI in greater depths. Highly monodisperse, uniformly-sized, sub-100 nm, biocompatible upconversion nanoparticles were synthesized with a mesoporous silica coating. These UCNs activated TPPS 2a efficiently in solution and in cells. Paclitaxel, an anti-cancer drug was used as a model drug and was loaded into the mesoporous silica coating. B16F0 cells transfected with drug-loaded UCNs and irradiated with NIR showed significantly higher nanoparticle uptake and in turn higher cell death caused by the delivered drug. This technique can be used to enhance the delivery of any therapeutic molecule and thus increase the therapeutic efficiency considerably.

  13. Light Intensity and Carbon Dioxide Availability Impact Antioxidant Activity in Green Onions (Allium fistulosumm L)

    NASA Astrophysics Data System (ADS)

    Levine, Lanfang; Bisbee, Patricia; Pare, Paul

    The prospect of long-duration manned space missions poses many challenges, including the development of a sustainable life support system and effective methods of space-radiation protection. To mitigate the risk of increased space-radiation, functional foods rich in antioxidant properties such as green onions are of particular interest. However it has yet to be established whether antioxidant properties can be preserved or enhanced in space environment where carbon dioxide, lighting intensity, gravity and pressure differ from which plants have acclimated to on earth. In this study, green onions (Allium fistulosumm L. cultivar Kinka) rich in antioxidant flavonoids are used as a model system to investigate variations in antioxidant capacity with plants grown under varying light intensities and CO2 concentrations. The antioxidant potential is determined using both radical cation scavenging and oxygen radical absorbance assays. For all light intensities assayed, antioxidant potential in water extract of green onions per gram biomass declined with CO2 increases up to 1200 ppm, and then leveled off with further CO2 increase to 4000 ppm. This inverse carbon dioxide versus antioxidant activity correlation suggests lower accumulation rates for water soluble antioxidant compounds compared to total biomass under increasing CO2 concentrations. The effect of increasing atmospheric CO2 concentration on antioxidant activity of ethanol extracts were light intensity dependent. The implications of these findings are discussed in the context of traditional plant antioxidants including vitamin C and the major onion flavonoid quercetin.

  14. Enhanced catalytic activity of the surface modified TiO2-MWCNT nanocomposites under visible light.

    PubMed

    Božič, Mojca; Vivod, Vera; Vogrinčič, Robert; Ban, Irena; Jakša, Gregor; Hribernik, Silvo; Fakin, Darinka; Kokol, Vanja

    2016-03-01

    Fusing multiwall carbon nanotubes (MWCNTs) with TiO2 at the nano-scale level promotes the separation of those electron-hole charges generated upon UV and daylight irradiation. In this study, we investigated facile sonochemical synthesis, combined with the calcination process for the preparations of TiO2-MWCNT composites with different mole ratios of titanium and carbon. In order to produce stable nano dispersions we exploited an innovative biotechnology-based approach for the covalent functionalizations of TiO2-MWCNTs with in-situ synthesized soluble phenoxazine dye molecules. The none and functionalized TiO2-MWCNTs composites were analyzed by a range of analytical techniques including XRD, Raman, XPS, SEM and UV-vis diffuse reflectance spectroscopy (DRS), and dynamic light scattering (DLS). The photocatalytic activity was evaluated toward the liquid-phase degradation of MB in aqueous solution under both UV and visible light irradiation. TiO2-MWCNTs with optimized mole ratio exhibit much higher photocatalytic activity and stability than bare TiO2. The as-prepared TiO2-MWCNTs photocatalyst possessed good adsorptivity of dyes, extended light absorption range and efficient charge separation properties simultaneously. The results indicated that the soluble phenoxazine dyes and amino-benzenesulfonic acid monomers were covalently grafted on to the surfaces of TiO2-MCNTs, which promoted good aquatic dispersibility and extended light absorption, resulting in increased photocatalytic efficiency. PMID:26669495

  15. An improved chloride-conducting channelrhodopsin for light-induced inhibition of neuronal activity in vivo

    PubMed Central

    Wietek, Jonas; Beltramo, Riccardo; Scanziani, Massimo; Hegemann, Peter; Oertner, Thomas G.; Simon Wiegert, J.

    2015-01-01

    Channelrhodopsins are light-gated cation channels that have been widely used for optogenetic stimulation of electrically excitable cells. Replacement of a glutamic acid in the central gate with a positively charged amino acid residue reverses the ion selectivity and produces chloride-conducting ChRs (ChloCs). Expressed in neurons, published ChloCs produced a strong shunting effect but also a small, yet significant depolarization from the resting potential. Depending on the state of the neuron, the net result of illumination might therefore be inhibitory or excitatory with respect to action potential generation. Here we report two additional amino acid substitutions that significantly shift the reversal potential of improved ChloC (iChloC) to the reversal potential of endogenous GABAA receptors. As a result, light-evoked membrane depolarization was strongly reduced and spike initiation after current injection or synaptic stimulation was reliably inhibited in iChloC-transfected neurons in vitro. In the primary visual cortex of anesthetized mice, activation of iChloC suppressed spiking activity evoked by visual stimulation. Due to its high operational light sensitivity, iChloC makes it possible to inhibit neurons in a large volume of brain tissue from a small, point-like light source. PMID:26443033

  16. Dark pulses affect the circadian rhythm of activity in hamsters kept in constant light.

    PubMed

    Ellis, G B; McKlveen, R E; Turek, F W

    1982-01-01

    We compared the effects of light pulses in constant darkness (DD) and dark pulses in constant light (LL) on the free-running rhythm of locomotor activity in male golden hamsters. Light pulses yielded advances, delays, or no change in the rhythm of activity. These data conform to a typical phase-response curve; this curve was unaffected by pinealectomy. Dark pulses occurring either late in the subjective night or early in the subjective day had little effect. In contrast, dark pulses occurring either late in the subjective day or early in the subjective night altered the rhythm in one of three ways: advance of the rhythm; splitting into two components; or induction of a new component, in phase with the pulse. Because dark pulses in LL perturb the circadian system in a different manner than do light pulses in DD, they may have value in identifying heretofore unknown aspects of circadian systems. As such, the use of dark pulses to perturb circadian rhythmicity will be a useful tool in examining the formal properties of circadian systems. PMID:7058930

  17. Visible-Light-Induced Bactericidal Activity of Titanium Dioxide Co-doped with Nitrogen and Silver

    PubMed Central

    Wu, Pinggui; Xie, Rongcai; Imlay, Kari; Shang, Jian-Ku

    2011-01-01

    Titanium dioxide nanoparticles co-doped with nitrogen and silver (Ag2O/TiON) were synthesized by the sol-gel process and found to be an effective visible light driven photocatalyst. The catalyst showed strong bactericidal activity against Escherichia coli (E. coli) under visible light irradiation (λ> 400 nm). In x-ray photoelectron spectroscopy and x-ray diffraction characterization of the samples, the as-added Ag species mainly exist as Ag2O. Spin trapping EPR study showed Ag addition greatly enhanced the production of hydroxyl radicals (•OH) under visible light irradiation. The results indicate that the Ag2O species trapped eCB− in the process of Ag2O/TiON photocatalytic reaction, thus inhibiting the recombination of eCB− and hVB+ in agreement with the stronger photocatalytic bactericidal activity of Ag2O/TiON. The killing mechanism of Ag2O/TiON under visible light irradiation is shown to be related to oxidative damages in the forms of cell wall thinning and cell disconfiguration. PMID:20726520

  18. Activation of retinal tyrosine hydroxylase: tolerance induced by chronic treatment with haloperidol does not modify response to light

    SciTech Connect

    Cohen, J.; Neff, N.H.

    1982-05-01

    A single dose of haloperidol administered to rats in the dark increases the activity of retinal tyrosine hydroxylase. The ability of haloperidol to activate the enzyme is diminished 24 hr after terminating 22 to 30 days of treatment with haloperidol. The retinal enzyme is also tolerant to activation by treatment with chlorpromazine. In contrast, exposure of the animals to light activates the enzyme to the same extent in chronic haloperidol-treated and control animals. Thus, chronic haloperidol treatment does not modify the ability of the retinal enzyme system to respond to the physiological stimulus, light. Apparently, activation of retinol tyrosine hydroxylase by haloperidol and light occurs by independent mechanisms.

  19. An advanced tunnel oxide layer process for 65 nm NOR floating-gate flash memories

    NASA Astrophysics Data System (ADS)

    Chiu, Shengfen; Xu, Yue; Ji, Xiaoli; Liao, Yiming; Wu, Fuwei; Yan, Feng

    2015-10-01

    An advanced tunnel oxide layer process for 65 nm NOR-type floating-gate flash memory is proposed to improve tunnel oxide quality by an additive sacrificial oxide layer growth. The sacrificial oxide layer process effectively controls the thickness variation of tunnel oxide and improves the flatness of the SiO2/Si interface across the active area. The interface traps generation during program/erase cycling of flash cells is found to be reduced, and the reliability property is significantly improved as compared to flash cells without the sacrificial oxide layer process. The technology is applicable to further scaled floating-gate flash memories.

  20. On the Assimilation of Argo Float Trajectories into the Mediterranean Forecasting System

    NASA Astrophysics Data System (ADS)

    Nilsson, Jenny A. U.; Dobricic, Srdjan; Taillandier, Vincent; Poulain, Pierre-Marie; Pinardi, Nadia

    2010-05-01

    The Mediterranean Forecasting System (MFS) has been in operations for nearly a decade, and it is continuously providing analyses on a weekly basis for the region. These forecasts are of great importance as they provide local and basin-scale information of the environmental state of the sea, and are also highly useful for tracking oil spill and search-and-rescue missions. The circulation in the interior Mediterranean Sea is to a large extent characterized by meso-scale eddies, which often have proved somewhat difficult to simulate in an adequate manner due to their high temporal and spatial variability. Data assimilation is a widely used method to improve the forecast skill of operational models and, in this study, the three-dimensional variational (OceanVAR) scheme has been extended to include Argo float trajectories, with the objective to constrain and ameliorate the numerical output primarily in terms of the subsurface velocity fields. The method of implementing the float positions into the cost function is highly unique, since it uses a tangent-linear trajectory model as the observational operator. The modeled float trajectories are obtained by integration of the linearized particle advection equation during 5-day periods, corresponding to the time when the Argo floats are drifting at parking depth (350m). For the first time, basin-wide numerical experiments have been undertaken for a 3-year period (2005-2007), and it was concluded that the trajectory assimilation significately improves the simulation of Argo float trajectories based upon analyses. Indeed, statistical studies of the root-mean-square differences between the observed and analysed float positions showed that the new OceanVar scheme yields ~20% better estimates of the predicted ocean currents. It was furthermore established that the extended OceanVAR scheme does not compromise the forecast/analysis quality of the other state variables (e.g. SLAs, temperature, salinity). A notable decrease in availability of Argo-float data was noted during the period, with the maximum amount and spread of floats in 2005. The impact of the fall-off in float abundance was studied in terms of analyses, and implications on the operational activities will be pointed out.

  1. Effect of light-activation with different light-curing units and time intervals on resin cement bond strength to intraradicular dentin.

    PubMed

    Miguel-Almeida, Maria Eleonora; Azevedo, Mario Lucio da Costa; Rached-Jnior, Fuad Abi; Oliveira, Camila Favero; Silva, Ricardo Gariba; Messias, Danielle Cristine

    2012-01-01

    The aim of this study was to assess the bond strength of a resin cement to intraradicular dentin varying the light-curing unit and the moment at which the light was applied. Post spaces of endodontically treated canines were prepared. The roots were distributed into 6 groups (n=10) according to the light-curing unit and the moment of light exposure: I) Quartz tungsten halogen-600 mW/cm (QTH) + immediate light activation (t0); II) QTH + light activation after 10 min (t10); III) Light-emitting diodes (LED)-800 mW/cm (LED-800)+ t0; IV) LED-800 + t10; V) LED-1,500 mW/cm (LED-1500)+ t0; VI) LED-1500 + t10. After post cementation, slices from coronal, middle and apical post/root regions were submitted to the push-out test and failure evaluation. It was verified that LED-800 (4.40 3.00 MPa) and LED-1500 (4.67 3.04 MPa) provided bond strength statistically superior to QTH (3.13 1.76 MPa) (p<0.05), and did not differ from each other (p>0.05). There was no significant difference between t0 and t10 (p>0.05). Coronal post/root region (4.75 3.10 MPa) presented significantly higher bond strength than the apical (3.32 2.30 MPa) (p<0.05) and middle regions (4.14 2.99 MPa) showed intermediate values. Adhesive failures were predominant when using QTH. Adhesive and mixed failures occurred more frequently in the apical region. Higher adhesion of the resin cement to intraradicular dentin was observed in the coronal region with LED light-activation, regardless of the moment of light exposure. PMID:23207850

  2. Construction of carbon nanodots/tungsten trioxide and their visible-light sensitive photocatalytic activity.

    PubMed

    Yan, Fanyong; Kong, Depeng; Fu, Yang; Ye, Qianghua; Wang, Yinyin; Chen, Li

    2016-03-15

    Herein we designed a simple and effective method for synthesizing carbon nanodots/tungsten trioxide nanocomposite with high photocatalytic activity. The as-prepared carbon nanodots/ tungsten trioxide has strong photoabsorption under visible light irradiation. Then, carbon nanodots/tungsten trioxide was successfully applied to the degradation of methylene blue. The photodegradation efficiency of methylene blue can be reached as high as 100% after 0.5h visible light illumination. In addition, carbon nanodots/tungsten trioxide could also be used to degrade rhodamine B and methyl orange. Most importantly, the photocatalytic activity of carbon nanodots/tungsten trioxide did not exhibit obvious changes after five cycles. The results indicate that carbon nanodots/tungsten trioxide has potential applications in the degradation of organic pollutants in industrial waste water. PMID:26745743

  3. Preparation and characterization of porous C-modified anatase titania films with visible light catalytic activity

    SciTech Connect

    Xie Yi; Zhao Xiujian Chen Yunxia; Zhao Qingnan; Yuan Qihua

    2007-12-15

    Visible-light-activated C-modified anatase titania films have been synthesized from TiCl{sub 4} and carbonic ink by using the sol-gel route. The synthesized photocatalysts were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical measurements. The modifying carbon not only produces homogeneous worm-like structure with uniform pores, but also extends the absorbance spectra of the as-prepared films into visible region. The results of visible-light-induced degradation of methyl orange (MO) show that the C-modified titania films exhibits much higher photocatalytic activities than that of pure titania film prepared at the same conditions. - Graphical abstract: Carbon modifying not only produces homogeneous worm-like structure with uniform pores, but also extends the absorbance spectra of the as-prepared titania films into visible region.

  4. Rapidly light-activated surgical protein glue inspired by mussel adhesion and insect structural crosslinking.

    PubMed

    Jeon, Eun Young; Hwang, Byeong Hee; Yang, Yun Jung; Kim, Bum Jin; Choi, Bong-Hyuk; Jung, Gyu Yong; Cha, Hyung Joon

    2015-10-01

    Currently approved surgical tissue glues do not satisfy the requirements for ideal bioadhesives due to limited adhesion in wet conditions and severe cytotoxicity. Herein, we report a new light-activated, mussel protein-based bioadhesive (LAMBA) inspired by mussel adhesion and insect dityrosine crosslinking chemistry. LAMBA exhibited substantially stronger bulk wet tissue adhesion than commercially available fibrin glue and good biocompatibility in both in vitro and in vivo studies. Besides, the easily tunable, light-activated crosslinking enabled an effective on-demand wound closure and facilitated wound healing. Based on these outstanding properties, LAMBA holds great potential as an ideal surgical tissue glue for diverse medical applications, including sutureless wound closures of skin and internal organs. PMID:26197411

  5. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation

    PubMed Central

    Berglund, Ken; Clissold, Kara; Li, Haofang E.; Wen, Lei; Park, Sung Young; Gleixner, Jan; Klein, Marguerita E.; Lu, Dongye; Barter, Joseph W.; Rossi, Mark A.; Augustine, George J.; Yin, Henry H.; Hochgeschwender, Ute

    2016-01-01

    Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales. PMID:26733686

  6. Real-time RMS active damping augmentation: Heavy and very light payload evaluations

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.; Gilbert, Michael G.; Lepanto, Janet A.; Flueckiger, Karl W.; Bains, Elizabeth M.; Jensen, Mary C.

    1994-01-01

    Controls-Structures Integration Technology has been applied to the Space Shuttle Remote Manipulator System (RMS) to improve on-orbit performance. The objective was to actively damp undesired oscillatory motions of the RMS following routine payload maneuvering and Shuttle attitude control thruster firings. Simulation of active damping was conducted in the real-time, man-in-the-loop Systems Engineering Simulator at NASA's Johnson Space Center. The simulator was used to obtain qualitative and quantitative data on active damping performance from astronaut operators. Using a simulated three-axis accelerometer mounted on the RMS, 'sensed' vibration motions were used to generate joint motor commands that reduced the unwanted oscillations. Active damping of the RMS with heavy and light attached payloads was demonstrated in this study. Five astronaut operators examined the performance of active damping following operator commanded RMS maneuvers and Shuttle thruster firings. Noticeable improvements in the damping response of the RMS with the heavy, Hubble Space Telescope payload and the very light, astronaut in Manipulator Foot Restraint payload were observed. The potential of active damping to aid in precisely maneuvering payloads was deemed significant.

  7. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation.

    PubMed

    Berglund, Ken; Clissold, Kara; Li, Haofang E; Wen, Lei; Park, Sung Young; Gleixner, Jan; Klein, Marguerita E; Lu, Dongye; Barter, Joseph W; Rossi, Mark A; Augustine, George J; Yin, Henry H; Hochgeschwender, Ute

    2016-01-19

    Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales. PMID:26733686

  8. Cystic acne improved by photodynamic therapy with short-contact 5-aminolevulinic acid and sequential combination of intense pulsed light and blue light activation.

    PubMed

    Melnick, Stuart

    2005-01-01

    Photodynamic therapy with short-contact 5-aminolevulinic acid (Levulan Kerastick, Dusa Pharmaceuticals, Inc.) and activation by intense pulsed light in an initial treatment and blue light in 3 subsequent treatments has resulted in significant improvement in severity of acne, reduction in the number of lesions, improvement in skin texture, and smoothing of scar edges in an Asian patient with severe (class 4) facial cystic acne and scarring. PMID:16302560

  9. Effect of light on the activity of motor cortex neurons during locomotion

    PubMed Central

    Armer, Madison C.; Nilaweera, Wijitha U.; Rivers, Trevor J.; Dasgupta, Namrata M.; Beloozerova, Irina N.

    2013-01-01

    The motor cortex plays a critical role in accurate visually guided movements such as reaching and target stepping. However, the manner in which vision influences the movement-related activity of neurons in the motor cortex is not well understood. In this study we have investigated how the locomotion-related activity of neurons in the motor cortex is modified when subjects switch between walking in the darkness and in light. Three adult cats were trained to walk through corridors of an experimental chamber for a food reward. On randomly selected trials, lights were extinguished for approximately four seconds when the cat was in a straight portion of the chamber's corridor. Discharges of 146 neurons from layer V of the motor cortex, including 51 pyramidal tract cells (PTNs), were recorded and compared between light and dark conditions. It was found that while cats’ movements during locomotion in light and darkness were similar (as judged from the analysis of three-dimensional limb kinematics and the activity of limb muscles), the firing behavior of 49% (71/146) of neurons was different between the two walking conditions. This included differences in the mean discharge rate (19%, 28/146 of neurons), depth of stride-related frequency modulation (24%, 32/131), duration of the period of elevated firing ([PEF], 19%, 25/131), and number of PEFs among stride-related neurons (26%, 34/131). 20% of responding neurons exhibited more than one type of change. We conclude that visual input plays a very significant role in determining neuronal activity in the motor cortex during locomotion by altering one, or occasionally multiple, parameters of locomotion-related discharges of its neurons. PMID:23680161

  10. Effect of light on the activity of motor cortex neurons during locomotion.

    PubMed

    Armer, Madison C; Nilaweera, Wijitha U; Rivers, Trevor J; Dasgupta, Namrata M; Beloozerova, Irina N

    2013-08-01

    The motor cortex plays a critical role in accurate visually guided movements such as reaching and target stepping. However, the manner in which vision influences the movement-related activity of neurons in the motor cortex is not well understood. In this study we have investigated how the locomotion-related activity of neurons in the motor cortex is modified when subjects switch between walking in the darkness and in light. Three adult cats were trained to walk through corridors of an experimental chamber for a food reward. On randomly selected trials, lights were extinguished for approximately 4s when the cat was in a straight portion of the chamber's corridor. Discharges of 146 neurons from layer V of the motor cortex, including 51 pyramidal tract cells (PTNs), were recorded and compared between light and dark conditions. It was found that while cats' movements during locomotion in light and darkness were similar (as judged from the analysis of three-dimensional limb kinematics and the activity of limb muscles), the firing behavior of 49% (71/146) of neurons was different between the two walking conditions. This included differences in the mean discharge rate (19%, 28/146 of neurons), depth of stride-related frequency modulation (24%, 32/131), duration of the period of elevated firing ([PEF], 19%, 25/131), and number of PEFs among stride-related neurons (26%, 34/131). 20% of responding neurons exhibited more than one type of change. We conclude that visual input plays a very significant role in determining neuronal activity in the motor cortex during locomotion by altering one, or occasionally multiple, parameters of locomotion-related discharges of its neurons. PMID:23680161

  11. Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy.

    PubMed

    Qian, Chenggen; Yu, Jicheng; Chen, Yulei; Hu, Quanyin; Xiao, Xuanzhong; Sun, Wujin; Wang, Chao; Feng, Peijian; Shen, Qun-Dong; Gu, Zhen

    2016-05-01

    A light-activated hypoxia-responsive conjugated polymer-based nanocarrier is developed for efficiently producing singlet oxygen ((1) O2 ) and inducing hypoxia to promote release of its cargoes in tumor cells, leading to enhanced antitumor efficacy. This dual-responsive nanocarrier provides an innovative design guideline for enhancing traditional photodynamic therapeutic efficacy integrated with a controlled drug-release modality. PMID:26948067

  12. Millisecond time scale atmospheric light pulses associated with solar and magnetospheric activity.

    NASA Technical Reports Server (NTRS)

    Ogelman, H.

    1973-01-01

    By using a wide-angle photomultiplier system a class of millisecond time scale diffuse atmospheric light emission of terrestrial origin has been discovered. These fast atmospheric pulsation events also show damped oscillations around 10-kHz frequency, which distinguishes them from ordinary lightning-type events. Evidence is presented for the enhancement in the rate of these events induced by solar flare activity.

  13. Light effects and diel variations of nitrate reductase activity in phytoplankton from the northwest Africa upwelling region

    NASA Astrophysics Data System (ADS)

    Martinez, Rosa; Packard, Theodore T.; Blasco, Dolors

    1987-06-01

    Light kinetics and diel cycles of nitrate reductase (NR) activity were studied in the upwelling ecosystem off northwest Africa. The activity of the enzyme showed a strong response to light at low intensities but became saturated at light intensities above 15-30% of the incident light intensity. At higher irradiances, NR activity showed photoinhibition. At sea surface irradiances an average inhibition of 32% in the NR activity was observed. Diel cycles of NR activity exhibited the following characteristics: a low pre-dawn value (0.03-0.009 μmol NO 3-N (μg Chl α) -1), a rapid increase with the onset of daylight, a maximum before noon (tripling the dark value), a secondary maximum in the early afternoon, and an afternoon-evening decrease that coincided with the decrease in sunlight. To simulate these characteristics a continuous polynomial function of light and time was developed.

  14. Characterization of a light-responding trans-activator responsible for differentially controlling reaction center and light-harvesting-I gene expression in Rhodobacter capsulatus.

    PubMed Central

    Buggy, J J; Sganga, M W; Bauer, C E

    1994-01-01

    The purple nonsulfur photosynthetic bacterium Rhodobacter capsulatus regulates synthesis of its photosystem in response to two environmental stimuli, oxygen tension and light intensity. Here we describe the identification and characterization of the trans-acting regulatory gene hvrA, which we show is involved in differentially controlling reaction center and light-harvesting gene expression in response to alterations in light intensity. An hvrA mutant strain is shown to lack the capability to trans-activate light-harvesting-I and reaction center gene expression but retain normal light-harvesting-II and photopigment regulation, in response to a reduction in light intensity. As a consequence of altered expression, hvrA mutant strains exhibit reduced photosynthetic growth capabilities under dim-light conditions. The results of this study and additional studies indicate that regulated synthesis of the photosystem involves complex sets of overlapping regulatory circuits that differentially control photosystem gene expression in response to environmental stimuli such as oxygen tension and light intensity. Images PMID:7961455

  15. Influence of Green, Red and Blue Light Emitting Diodes on Multiprotein Complex Proteins and Photosynthetic Activity under Different Light Intensities in Lettuce Leaves (Lactuca sativa L.)

    PubMed Central

    Muneer, Sowbiya; Kim, Eun Jeong; Park, Jeong Suk; Lee, Jeong Hyun

    2014-01-01

    The objective of this study was to investigate the response of light emitting diodes (LEDs) at different light intensities (70 and 80 for green LEDs, 88 and 238 for red LEDs and 80 and 238 μmol m−2 s−1 for blue LEDs) at three wavelengths in lettuce leaves. Lettuce leaves were exposed to (522 nm), red (639 nm) and blue (470 nm) LEDs of different light intensities. Thylakoid multiprotein complex proteins and photosynthetic metabolism were then investigated. Biomass and photosynthetic parameters increased with an increasing light intensity under blue LED illumination and decreased when illuminated with red and green LEDs with decreased light intensity. The expression of multiprotein complex proteins including PSII-core dimer and PSII-core monomer using blue LEDs illumination was higher at higher light intensity (238 μmol m−2 s−1) and was lowered with decreased light intensity (70–80 μmol m−2 s−1). The responses of chloroplast sub-compartment proteins, including those active in stomatal opening and closing, and leaf physiological responses at different light intensities, indicated induced growth enhancement upon illumination with blue LEDs. High intensity blue LEDs promote plant growth by controlling the integrity of chloroplast proteins that optimize photosynthetic performance in the natural environment. PMID:24642884

  16. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.).

    PubMed

    Muneer, Sowbiya; Kim, Eun Jeong; Park, Jeong Suk; Lee, Jeong Hyun

    2014-01-01

    The objective of this study was to investigate the response of light emitting diodes (LEDs) at different light intensities (70 and 80 for green LEDs, 88 and 238 for red LEDs and 80 and 238 μmol m-2 s-1 for blue LEDs) at three wavelengths in lettuce leaves. Lettuce leaves were exposed to (522 nm), red (639 nm) and blue (470 nm) LEDs of different light intensities. Thylakoid multiprotein complex proteins and photosynthetic metabolism were then investigated. Biomass and photosynthetic parameters increased with an increasing light intensity under blue LED illumination and decreased when illuminated with red and green LEDs with decreased light intensity. The expression of multiprotein complex proteins including PSII-core dimer and PSII-core monomer using blue LEDs illumination was higher at higher light intensity (238 μmol m-2 s-1) and was lowered with decreased light intensity (70-80 μmol m-2 s-1). The responses of chloroplast sub-compartment proteins, including those active in stomatal opening and closing, and leaf physiological responses at different light intensities, indicated induced growth enhancement upon illumination with blue LEDs. High intensity blue LEDs promote plant growth by controlling the integrity of chloroplast proteins that optimize photosynthetic performance in the natural environment. PMID:24642884

  17. Plants Actively Avoid State Transitions upon Changes in Light Intensity: Role of Light-Harvesting Complex II Protein Dephosphorylation in High Light1[OPEN

    PubMed Central

    Suorsa, Marjaana; Rantala, Marjaana; Aro, Eva-Mari

    2015-01-01

    Photosystem II (PSII) core and light-harvesting complex II (LHCII) proteins in plant chloroplasts undergo reversible phosphorylation upon changes in light intensity (being under control of redox-regulated STN7 and STN8 kinases and TAP38/PPH1 and PSII core phosphatases). Shift of plants from growth light to high light results in an increase of PSII core phosphorylation, whereas LHCII phosphorylation concomitantly decreases. Exactly the opposite takes place when plants are shifted to lower light intensity. Despite distinct changes occurring in thylakoid protein phosphorylation upon light intensity changes, the excitation balance between PSII and photosystem I remains unchanged. This differs drastically from the canonical-state transition model induced by artificial states 1 and 2 lights that concomitantly either dephosphorylate or phosphorylate, respectively, both the PSII core and LHCII phosphoproteins. Analysis of the kinase and phosphatase mutants revealed that TAP38/PPH1 phosphatase is crucial in preventing state transition upon increase in light intensity. Indeed, tap38/pph1 mutant revealed strong concomitant phosphorylation of both the PSII core and LHCII proteins upon transfer to high light, thus resembling the wild type under state 2 light. Coordinated function of thylakoid protein kinases and phosphatases is shown to secure balanced excitation energy for both photosystems by preventing state transitions upon changes in light intensity. Moreover, PROTON GRADIENT REGULATION5 (PGR5) is required for proper regulation of thylakoid protein kinases and phosphatases, and the pgr5 mutant mimics phenotypes of tap38/pph1. This shows that there is a close cooperation between the redox- and proton gradient-dependent regulatory mechanisms for proper function of the photosynthetic machinery. PMID:25902812

  18. Oxygen deficient ZnO1-x nanosheets with high visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Guo, Hong-Li; Zhu, Qing; Wu, Xi-Lin; Jiang, Yi-Fan; Xie, Xiao; Xu, An-Wu

    2015-04-01

    Zinc oxide is one of the most important wide-band-gap (3.2 eV) materials with versatile properties, however, it can not be excited by visible light. In this work, we have developed an exquisite and simple way to prepare oxygen-deficient ZnO1-x nanosheets with a gray-colored appearance and excellent visible light photocatalytic activity. Detailed analysis based on UV-Vis absorption spectra, X-band electron paramagnetic resonance (EPR) spectra, and photoluminescence (PL) spectra confirms the existence of oxygen vacancies in ZnO1-x. The incorporation of oxygen defects could effectively extend the light absorption of ZnO1-x into the visible-light region due to the fact that the energy of the localized state is located in the forbidden gap. Thus, our obtained ZnO1-x shows a higher photodegradation of methyl orange (MO) compared to defect-free ZnO under visible light illumination. Additionally, the high content of &z.rad;OH radicals with a strong photo-oxidation capability over the ZnO1-x nanosheets significantly contributes to the improvement in the photocatalytic performance. Our oxygen deficient ZnO1-x sample shows a very high photocatalytic activity for the degradation of MO even after 5 cycles without any obvious decline. The results demonstrate that defect engineering is a powerful tool to enhance the optoelectronic and photocatalytic performances of nanomaterials.Zinc oxide is one of the most important wide-band-gap (3.2 eV) materials with versatile properties, however, it can not be excited by visible light. In this work, we have developed an exquisite and simple way to prepare oxygen-deficient ZnO1-x nanosheets with a gray-colored appearance and excellent visible light photocatalytic activity. Detailed analysis based on UV-Vis absorption spectra, X-band electron paramagnetic resonance (EPR) spectra, and photoluminescence (PL) spectra confirms the existence of oxygen vacancies in ZnO1-x. The incorporation of oxygen defects could effectively extend the light absorption of ZnO1-x into the visible-light region due to the fact that the energy of the localized state is located in the forbidden gap. Thus, our obtained ZnO1-x shows a higher photodegradation of methyl orange (MO) compared to defect-free ZnO under visible light illumination. Additionally, the high content of &z.rad;OH radicals with a strong photo-oxidation capability over the ZnO1-x nanosheets significantly contributes to the improvement in the photocatalytic performance. Our oxygen deficient ZnO1-x sample shows a very high photocatalytic activity for the degradation of MO even after 5 cycles without any obvious decline. The results demonstrate that defect engineering is a powerful tool to enhance the optoelectronic and photocatalytic performances of nanomaterials. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c5nr00271k

  19. Study of microparticles' anomalous diffusion in active bath using speckle light fields (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pince, Ercag; Sabareesh, Sabareesh K. P.; Volpe, Giorgio; Gigan, Sylvain; Volpe, Giovanni S.

    2015-08-01

    Particles undergoing a stochastic motion within a disordered medium is a ubiquitous physical and biological phenomenon. Examples can be given from organelles as molecular machines of cells performing physical tasks in a populated cytoplasm to human mobility in patchy environment at larger scales. Our recent results showed that it is possible to use the disordered landscape generated by speckle light fields to perform advanced manipulation tasks at the microscale. Here, we use speckle light fields to study the anomalous diffusion of micron size silica particles (5 μm) in the presence of active microswimmers. The microswimmers we used in the experiments are motile bacteria, Escherichia coli (E.coli). They constitute an active background constantly agitating passive silica particles within complex optical potentials. The speckle fields are generated by mode mixing inside a multimode optical fiber where a small amount of incident laser power (maximum power = 12 μW/μm2) is needed to obtain an effective random landscape pattern for the purpose of optical manipulation. We experimentally show how complex potentials contribute to the anomalous diffusion of silica particles undergoing collisions with swimming bacteria. We observed an enhanced diffusion of particles interacting with the active bath of E.coli inside speckle light fields: this effect can be tuned and controlled by varying the intensity and the statistical properties of the speckle pattern. Potentially, these results could be of interest for many technological applications, such as the manipulation of microparticles inside optically disordered media of biological interests.

  20. The Stellar Activity of an M Dwarf Binary from Deconvolved Kepler Light Curves

    NASA Astrophysics Data System (ADS)

    Lurie, John C.; Davenport, James R. A.; Hawley, Suzanne L.; Wilkinson, Tessa D.

    2015-01-01

    The M5+M5 pair GJ 1245AB was monitored almost continuously by Kepler for four years, providing a unique opportunity to study the stellar activity of two coeval, nearly-equal mass M dwarfs that are fully convective. The stars are 7" apart on the sky, and separate light curves for each star cannot be generated via aperture photometry due to Kepler's large 4"/pixel plate scale. Instead, we generated separate light curves from the target pixel files using the PyKE pixel response function modeling procedures. Intriguingly, the angular separation of the two stars decreases over the four years of Kepler observations in a manner consistent with an astrometric perturbation from the much fainter, unseen M8 (GJ 1245C) companion to GJ 1245A. Analyzing the separated light curves, we observe long lived starspot features on both stars that evolve on multi-year timescales. Both stars flare at nearly the same rate, despite having rotation rates that differ by almost a factor of three. Consistent with recent studies of active M dwarf binaries, these results provide further insight into the roles of age and rotation rate in stellar activity.

  1. Manipulation of long-term dynamics in a colloidal active matter system using speckle light fields

    NASA Astrophysics Data System (ADS)

    Pince, Ercag; Velu, Sabareesh K. P.; Callegari, Agnese; Elahi, Parviz; Gigan, Sylvain; Volpe, Giovanni; Volpe, Giorgio

    Particles undergoing a stochastic motion within a disordered medium is a ubiquitous physical and biological phenomena. Examples can be given from organelles performing tasks in the cytoplasm to large animals moving in patchy environment. Here, we use speckle light fields to study the anomalous diffusion in an active matter system consisting of micron-sized silica particles(diameter 5 μm) and motile bacterial cells (E. coli). The speckle light fields are generated by mode mixing inside a multimode optical fiber where a small amount of incident laser power is needed to obtain an effective disordered optical landscape for the purpose of optical manipulation. We experimentally show how complex potentials contribute to the long-term dynamics of the active matter system and observed an enhanced diffusion of particles interacting with the active bacterial bath in the speckle light fields. We showed that this effect can be tuned and controlled by varying the intensity and the statistical properties of the speckle pattern. Potentially, these results could be of interest for many technological applications, such as the manipulation of microparticles inside optically disordered media of biological interest.

  2. Theoretical studies of floating-reference method for NIR blood glucose sensing

    NASA Astrophysics Data System (ADS)

    Shi, Zhenzhi; Yang, Yue; Zhao, Huijuan; Chen, Wenliang; Liu, Rong; Xu, Kexin

    2011-03-01

    Non-invasive blood glucose monitoring using NIR light has been suffered from the variety of optical background that is mainly caused by the change of human body, such as the change of temperature, water concentration, and so on. In order to eliminate these internal influence and external interference a so called floating-reference method has been proposed to provide an internal reference. From the analysis of the diffuse reflectance spectrum, a position has been found where diffuse reflection of light is not sensitive to the glucose concentrations. Our previous work has proved the existence of reference position using diffusion equation. However, since glucose monitoring generally use the NIR light in region of 1000-2000nm, diffusion equation is not valid because of the high absorption coefficient and small source-detector separations. In this paper, steady-state high-order approximate model is used to further investigate the existence of the floating reference position in semi-infinite medium. Based on the analysis of different optical parameters on the impact of spatially resolved reflectance of light, we find that the existence of the floating-reference position is the result of the interaction of optical parameters. Comparing to the results of Monte Carlo simulation, the applicable region of diffusion approximation and higher-order approximation for the calculation of floating-reference position is discussed at the wavelength of 1000nm-1800nm, using the intralipid solution of different concentrations. The results indicate that when the reduced albedo is greater than 0.93, diffusion approximation results are more close to simulation results, otherwise the high order approximation is more applicable.

  3. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity

    SciTech Connect

    Zhang, Ligang; Chen, Xiufang; Guan, Jing; Jiang, Yijun; Hou, Tonggang; Mu, Xindong

    2013-09-01

    Graphical abstract: - Highlights: • P-doped g-C{sub 3}N{sub 4} has been prepared by a one-pot green synthetic approach. • The incorporation of P resulted in favorable textural and electronic properties. • Doping with P enhanced the visible-light photocatalytic activity of g-C{sub 3}N{sub 4}. • A postannealing treatment further enhanced the activity of P-doped g-C{sub 3}N{sub 4}. • Photogenerated holes were the main species responsible for the activity. - Abstract: Phosphorus-doped carbon nitride materials were prepared by a one-pot green synthetic approach using dicyandiamide monomer and a phosphorus containing ionic liquid as precursors. The as-prepared materials were subjected to several characterizations and investigated as metal-free photocatalysts for the degradation of organic pollutants (dyes like Rhodamine B, Methyl orange) in aqueous solution under visible light. Results revealed that phosphorus-doped carbon nitride have a higher photocatalytic activity for decomposing Rhodamine B and Methyl orange in aqueous solution than undoped g-C{sub 3}N{sub 4}, which was attributed to the favorable textural, optical and electronic properties caused by doping with phosphorus heteroatoms into carbon nitride host. A facile postannealing treatment further improved the activity of the photocatalytic system, due to the higher surface area and smaller structural size in the postcalcined catalysts. The phosphorus-doped carbon nitride showed high visible-light photocatalytic activity, making them promising materials for a wide range of potential applications in photochemistry.

  4. Activation of Organic Photovoltaic Light Detectors Using Bend Leakage from Optical Fibers.

    PubMed

    Griffith, Matthew J; Willis, Matthew S; Kumar, Pankaj; Holdsworth, John L; Bezuidenhout, Henco; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul C

    2016-03-30

    This work investigates the detection and subsequent utilization of leaked light from bends in a silica optical fiber using organic photovoltaic detectors. The optic power lost by single mode and multimode silica optical fibers was calibrated for bend radii between 1 and 7 mm for 532 and 633 nm light, exhibiting excellent agreement with previous theoretical solutions. The spatial location of maximum power leakage on the exterior of the fiber was found to exist in the same plane as the fiber, with a 10° offset from the normal. Two different organic photovoltaic detectors fabricated using a poly(3-hexylthiophene):indene-C60-bisadduct donor-acceptor blend cast from chloroform and chlorobenzene were fabricated to detect the leaked light. The two detectors exhibited different photovoltaic performances, predominantly due to different active layer thicknesses. Both devices showed sensitivity to leakage light, exhibiting voltages between 200 and 300 mV in response to leaked light from the fiber. The temporal responses of the devices were observed to differ, with a rise time from 10% to 90% of maximum voltage of 1430 μs for the chlorobenzene device, and a corresponding rise time of 490 μs for the higher performing chloroform device. The two OPVs were used to simultaneously detect leaked light from induced bends in the optical fiber, with the differing temporal profiles employed to create a unique time-correlated detection signal with enhanced security. The delay between detection of each OPV voltage could be systematically varied, allowing for either a programmable and secure single detection signal or triggering of multiple events with variable time resolution. The results reported in this study present exciting avenues toward the deployment of this simple and noninvasive optical detection system in a range of different applications. PMID:26891938

  5. Floating and Sinking: Second Teacher Trials. Learning in Science Project (Primary). Working Paper No. 121.

    ERIC Educational Resources Information Center

    Biddulph, Fred; And Others

    Two booklets were developed by the Learning in Science Project (primary)--LISP(P)--to help teachers adopt an approach to science teaching which would enhance children's understanding of floating and sinking; the strategy enables teachers to reconceptualize their teaching task from activity-driven, didactic teaching to conceptual-change teaching.…

  6. Floating and Sinking: First Teacher Trials. Learning in Science Project (Primary). Working Paper No. 120.

    ERIC Educational Resources Information Center

    Appleton, Ken; And Others

    Two booklets were developed by the Learning in Science Project (Primary)--LISP(P)--to help teachers adopt an approach to primary science teaching which would enhance children's understanding of floating and sinking. Both booklets were designed to enable teachers to reconceptualize their teaching task from activity-driven, didactic teaching to…

  7. Sink or Float. Modified Primary. Revised. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Defendorf, Jean, Ed.

    This publication provides information and activities for teaching about water, whether certain objects will sink or float, and process skills including observing, classifying, inferring, measuring, predicting, and collecting and interpreting data. There are 14 lessons in the unit. The first four lessons deal with the classification of objects and

  8. 33 CFR 144.01-5 - Location and launching of life floats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Location and launching of life floats. 144.01-5 Section 144.01-5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms §...

  9. Sink or Float. Modified Primary. Revised. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Defendorf, Jean, Ed.

    This publication provides information and activities for teaching about water, whether certain objects will sink or float, and process skills including observing, classifying, inferring, measuring, predicting, and collecting and interpreting data. There are 14 lessons in the unit. The first four lessons deal with the classification of objects and…

  10. Floating production systems planned for Italy, Nigeria

    SciTech Connect

    Not Available

    1985-05-01

    EMH has signed a contract to design, fabricate and install a permanent deepwater, gravity-based single-point mooring (SPM) system and floating oil storage facility in Societa Energio Montedison's (SEM) Vega field off Italy. The design of the system is described. The system is designed to accomodate production rates of 75,000 bpd. The oil will be loaded from the storage tanker into shuttle tankers which will take it to area refineries. The shuttle tankers can moor either in tandem or side-by-side for loading. Also described in this paper are three Nigerian offshore fields -- Akam, Adanga and Ebughu -- being developed by Ashland Oil. They will be brought onstream through the use of an integrated floating production, storage and offloading (FPSO) system. Production from all three fields will be piped to a central manifold platform to which a tanker will be permanently moored via a soft-yoke mooring system.

  11. OCD metrology by floating n/k

    NASA Astrophysics Data System (ADS)

    Yu, Shinn-Sheng; Huang, Jacky; Ke, Chih-Ming; Gau, Tsai-Sheng; Lin, Burn J.; Yen, Anthony; Lane, Lawrence; Vuong, Vi; Chen, Yan

    2007-03-01

    In this paper, one of the major contributions to the OCD metrology error, resulting from within-wafer variation of the refractive index/extinction coefficient (n/k) of the substrate, is identified and quantified. To meet the required metrology accuracy for the 65-nm node and beyond, it is suggested that n/k should be floating when performing the regression for OCD modeling. A feasible way of performing such regression is proposed and verified. As shown in the presented example, the measured CDU (3σ) with n/k fixed and n/k floating is 1.94 nm and 1.42 nm, respectively. That is, the metrology error of CDU committed by assuming n/k fixed is more than 35% of the total CDU.

  12. Electrowetting propulsion of water-floating objects

    NASA Astrophysics Data System (ADS)

    Chung, Sang Kug; Ryu, Kyungjoo; Cho, Sung Kwon

    2009-07-01

    This letter describes a propulsion principle along with experimental verification of this principle by which an air-to-water interface vertically oscillated by ac electrowetting generates a quasisteady, "streaming" flow that can be utilized to propel water-floating objects. This propulsion does not require any mechanical moving parts. Using a centimeter-sized boat whose outer surfaces were covered with microfabricated electrowetting electrodes, linear, and rotational motions of the boat were achieved up to maximum speeds of 5 mm/s and 20 rpm, respectively. By combining the above two motions, the boat was successfully propelled and steered along a curvilinear pathline. A potential application of this principle is to propel and maneuver various water-floating mini/microrobots and boats used for water/air quality monitoring or surveillance/security purposes.

  13. GaAs based floating point module

    NASA Astrophysics Data System (ADS)

    Lange, Thomas; Tetzlaff, David E.; Snodgrass, Thomas D.; Woods, Jordon W.

    1990-10-01

    GaAs integrated circuit technology is being applied to improve the performance and functionality of the Digital Video Mapping System. A 400 MFLOP 32 bit floating point processor will be used to accelerate data and graphics processing algorithms. The GaAs processor will contain 4 circuit types interconnected using a thin film multilayer packaging technology. The processor clock rate is 200 MHz and the I/Os are at CMOS levels operating at less than 50MHz.

  14. Time Variant Floating Mean Counting Algorithm

    Energy Science and Technology Software Center (ESTSC)

    1999-06-03

    This software was written to test a time variant floating mean counting algorithm. The algorithm was developed by Westinghouse Savannah River Company and a provisional patent has been filed on the algorithm. The test software was developed to work with the Val Tech model IVB prototype version II count rate meter hardware. The test software was used to verify the algorithm developed by WSRC could be correctly implemented with the vendor''s hardware.

  15. Increased antioxidant activity and changes in phenolic profile of Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) specimens grown under supplemental blue light.

    PubMed

    Nascimento, Luana B S; Leal-Costa, Marcos V; Coutinho, Marcela A S; Moreira, Nattacha dos S; Lage, Celso L S; Barbi, Nancy dos S; Costa, Sônia S; Tavares, Eliana S

    2013-01-01

    Antioxidant compounds protect plants against oxidative stress caused by environmental conditions. Different light qualities, such as UV-A radiation and blue light, have shown positive effects on the production of phenols in plants. Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) is used for treating wounds and inflammations. Some of these beneficial effects are attributed to the antioxidant activity of plant components. We investigated the effects of blue light and UV-A radiation supplementation on the total phenol content, antioxidant activity and chromatographic profile of aqueous extracts from leaves of K. pinnata. Monoclonal plants were grown under white light, white plus blue light and white plus UV-A radiation. Supplemental blue light improved the antioxidant activity and changed the phenolic profile of the extracts. Analysis by HPLC of supplemental blue-light plant extracts revealed a higher proportion of the major flavonoid quercetin 3-O-α-L-arabinopyranosyl (1→2) α-L-rhamnopyranoside, as well as the presence of a wide variety of other phenolic substances. These findings may explain the higher antioxidant activity observed for this extract. Blue light is proposed as a supplemental light source in the cultivation of K. pinnata, to improve its antioxidant activity. PMID:23057576

  16. Microwave hydrothermal synthesis of AgInS{sub 2} with visible light photocatalytic activity

    SciTech Connect

    Zhang, Wenjuan; Li, Danzhen; Chen, Zhixin; Sun, Meng; Li, Wenjuan; Lin, Qiang; Fu, Xianzhi

    2011-07-15

    Highlights: {yields} AgInS{sub 2} nanoparticles were synthesized by a microwave hydrothermal method. {yields} This method involves no organic solvents, catalysts, or surfactants. {yields} AgInS{sub 2} showed higher activity for photocatalytic degradation MO than TiO{sub 2-x}N{sub x}. {yields} Holes, O{sub 2}{center_dot}{sup -}, and H{sub 2}O{sub 2} played an important role in the photocatalytic process. -- Abstract: AgInS{sub 2} nanoparticles with superior visible light photocatalytic activity were successfully synthesized by a microwave hydrothermal method. This method is a highly efficient and rapid route that involves no organic solvents, catalysts, or surfactants. The photocatalytic activity of AgInS{sub 2} nanoparticles was investigated through the degradation of dyes under visible light irradiation. Compared with TiO{sub 2-x}N{sub x}, AgInS{sub 2} has exhibited a superior activity for photocatalytic degradation MO under the same condition. The experiment results showed that superoxide radicals (O{sub 2}{center_dot}{sup -}), hydrogen peroxides (H{sub 2}O{sub 2}) and holes (h{sup +}) were the mainly active species for the degradation of organic pollutants over AgInS{sub 2}. Through the determination of flat band potential, the energy band structure of the sample was obtained. A possible mechanism for the degradation of organic pollutant over AgInS{sub 2} was proposed.

  17. Phase-shifting the light-dark cycle influences food-anticipatory activity in golden shiners.

    PubMed

    Lague, M; Reebs, S G

    This study provides evidence that a circadian light-entrainable oscillator is at least partially involved in the timing of food-anticipatory activity (FAA) in a fish, the golden shiner, Notemigonus crysoleucas. Shoals of four golden shiners were fed for 11-20 days at a fixed daily time (either early night, midnight, late night, early day, midday, or late day). Most (78%) shoals developed peaks of FAA during that period of time. Food was then withheld for 7 days, and the light-dark (LD) cycle was either advanced or delayed by 6 h on the first of those days. The activity waveform of most (53-58%) shoals shifted along with the LD cycle, as indicated by significant correlation coefficients between pre- and postshift waveforms plotted relative to LD. Nonsignificant correlations were linked to low activity levels rather than to persistence of the activity peak at the old clock time. Activity shifts were gradual, taking 2-4 days, which indicates that the underlying mechanism is circadian rather than hourglass. PMID:10978478

  18. Capillary effects on floating cylindrical particles

    NASA Astrophysics Data System (ADS)

    Dixit, Harish N.; Homsy, G. M.

    2012-12-01

    In this study, we develop a systematic perturbation procedure in the small parameter, B1/2, where B is the Bond number, to study capillary effects on small cylindrical particles at interfaces. Such a framework allows us to address many problems involving particles on flat and curved interfaces. In particular, we address four specific problems: (i) capillary attraction between cylinders on flat interface, in which we recover the classical approximate result of Nicolson ["The interaction between floating particles," Proc. Cambridge Philos. Soc. 45, 288-295 (1949), 10.1017/S0305004100024841], thus putting it on a rational basis; (ii) capillary attraction and aggregation for an infinite array of cylinders arranged on a periodic lattice, where we show that the resulting Gibbs elasticity obtained for an array can be significantly larger than the two cylinder case; (iii) capillary force on a cylinder floating on an arbitrary curved interface, where we show that in the absence of gravity, the cylinder experiences a lateral force which is proportional to the gradient of curvature; and (iv) capillary attraction between two cylinders floating on an arbitrary curved interface. The present perturbation procedure does not require any restrictions on the nature of curvature of the background interface and can be extended to other geometries.

  19. Floating debris in the Mediterranean Sea.

    PubMed

    Suaria, Giuseppe; Aliani, Stefano

    2014-09-15

    Results from the first large-scale survey of floating natural (NMD) and anthropogenic (AMD) debris (>2 cm) in the central and western part of the Mediterranean Sea are reported. Floating debris was found throughout the entire study area with densities ranging from 0 to 194.6 items/km(2) and mean abundances of 24.9 AMD items/km(2) and 6.9 NMD items/km(2) across all surveyed locations. On the whole, 78% of all sighted objects were of anthropogenic origin, 95.6% of which were petrochemical derivatives (i.e. plastic and styrofoam). Maximum AMD densities (>52 items/km(2)) were found in the Adriatic Sea and in the Algerian basin, while the lowest densities (<6.3 items/km(2)) were observed in the Central Tyrrhenian and in the Sicilian Sea. All the other areas had mean densities ranging from 10.9 to 30.7 items/km(2). According to our calculations, more than 62 million macro-litter items are currently floating on the surface of the whole Mediterranean basin. PMID:25127501

  20. Mixed layer depth and chlorophyll a: Profiling float observations in the Kuroshio-Oyashio Extension region

    NASA Astrophysics Data System (ADS)

    Itoh, Sachihiko; Yasuda, Ichiro; Saito, Hiroaki; Tsuda, Atsushi; Komatsu, Kosei

    2015-11-01

    Variability in the chlorophyll a concentration (Chl) in relation to fluctuations in the mixed layer (ML) was investigated together with turbidity (Tur) in the Kuroshio-Oyashio Extension region, using profiling floats. A particular focus was the validity of two hypotheses concerning the spring bloom: the critical depth hypothesis (CDH) and the recently proposed alternative, the disturbance-recovery hypothesis (DRH). During the period from winter to early spring, Chl and Tur integrated over the photosynthetically active layer (PL; defined as the greatest depth of the ML and the euphotic layer) increased with increasing PL depth (PLD), indicating an increase in the phytoplankton biomass. This result is partly consistent with the DRH in that the observed increase in biomass was not explained by an increase in production. Instead, it was more likely attributable to a reduction in the loss rate. However, theoretical analyses revealed that grazer dilution alone could not cause this increase in biomass because such an increase in the ML in the real ocean (as opposed to a dilution experiment within a bottle) would cause a reduction in the mean light intensity. Despite the loss-controlled fluctuation in biomass during the period of low light, a production-driven fluctuation in biomass was also revealed. This occurred when the light intensity was elevated, particularly after late spring, and was consistent with the CDH. Thus, the present study suggests that both the production-driven and loss-driven hypotheses are responsible for the dynamics of the phytoplankton dynamics from winter to spring in the Kuroshio-Oyashio Extension region.

  1. Helicobacter pylori CagA Disrupts Epithelial Patterning by Activating Myosin Light Chain

    PubMed Central

    Muyskens, Jonathan B.; Guillemin, Karen

    2011-01-01

    Helicobacter pylori infection is a leading cause of ulcers and gastric cancer. We show that expression of the H. pylori virulence factor CagA in a model Drosophila melanogaster epithelium induces morphological disruptions including ectopic furrowing. We find that CagA alters the distribution and increases the levels of activated myosin regulatory light chain (MLC), a key regulator of epithelial integrity. Reducing MLC activity suppresses CagA-induced disruptions. A CagA mutant lacking EPIYA motifs (CagAEPISA) induces less epithelial disruption and is not targeted to apical foci like wild-type CagA. In a cell culture model in which CagAEPISA and CagA have equivalent subcellular localization, CagAEPISA is equally potent in activating MLC. Therefore, in our transgenic system, CagA is targeted by EPIYA motifs to a specific apical region of the epithelium where it efficiently activates MLC to disrupt epithelial integrity. PMID:21445303

  2. Sedentary behaviors and light-intensity activities in relation to colorectal cancer risk.

    PubMed

    Keum, NaNa; Cao, Yin; Oh, Hannah; Smith-Warner, Stephanie A; Orav, John; Wu, Kana; Fuchs, Charles S; Cho, Eunyoung; Giovannucci, Edward L

    2016-05-01

    A recent meta-analysis found that sedentary behaviors are associated with an increased colorectal cancer (CRC) risk. Yet, the finding on TV viewing time, the most widely used surrogate of sedentary behaviors, was based on only two studies. Furthermore, light-intensity activities (e.g., standing and slow walking), non-sedentary by posture but close to sedentary behaviors by Metabolic Equivalent Task values, have not been investigated in relation to CRC risk. Thus, we prospectively analyzed the relationships based on 69,715 women from Nurses' Health Study (1992-2010) and 36,806 men from Health Professionals Follow-Up Study (1988 - 2010). Throughout follow-up, time spent on sedentary behaviors including sitting watching TV and on light-intensity activities were assessed repeatedly; incidence of CRC was ascertained. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models from each cohort. A total of 1,119 and 913 incident cases were documented from women and men, respectively. The multivariable HR comparing ≥ 21 versus < 7 hr/week of sitting watching TV was 1.21 (95% CI = 1.02 to 1.43, ptrend =.01) in women and 1.06 (95% CI = 0.84 to 1.34, ptrend =.93) in men. In women, those highly sedentary and physically less active had an approximately 41% elevated risk of CRC (95% CI = 1.03 to 1.92) compared with those less sedentary and physically more active. The other sedentary behaviors and light-intensity activities were not related to CRC risk in women or men. In conclusion, we found that prolonged sitting time watching TV was associated with an increased CRC risk in women but not in men. PMID:26649988

  3. Visible light activated photocatalytic behaviour of rare earth modified commercial TiO{sub 2}

    SciTech Connect

    Tobaldi, D.M.; Seabra, M.P.; Labrincha, J.A.

    2014-02-01

    Highlights: • RE gave more surface hydroxyl groups attached to the photocatalyst's surface. • RE gave the modified and fired samples a high specific surface area. • Photocatalytic activity was assessed in gas–solid phase under visible-light exposure. • Thermal treated RE-TiO{sub 2}s showed a superior visible-light photocatalytic activity. • La-TiO{sub 2} was the best performing photocatalyst. - Abstract: A commercial TiO{sub 2} nanopowder, Degussa P25, was modified with several rare earth (RE) elements in order to extend its photocatalytic activity into the visible range. The mixtures were prepared via solid-state reaction of the precursor oxides, and thermally treated at high temperature (900 and 1000 °C), with the aim of investigating the photocatalytic activity of the thermally treated samples. This thermal treatment was chosen for a prospective application as a surface layer in materials that need to be processed at high temperatures. The photocatalytic activity (PCA) of the samples was assessed in gas–solid phase – monitoring the degradation of isopropanol (IPA) – under visible-light irradiation. Results showed that the addition of the REs lanthanum, europium and yttrium to TiO{sub 2} greatly improved its photocatalytic activity, despite the thermal treatment, because of the presence of more surface hydroxyl groups attached to the photocatalyst's surface, together with a higher specific surface area (SSA) of the modified and thermally treated samples, with regard to the unmodified and thermally treated Degussa P25. The samples doped with La, Eu and Y all had excellent PCA under visible-light irradiation, even higher than the untreated Degussa P25 reference sample, despite their thermal treatment at 900 °C, with lanthanum producing the best results (i.e. the La-, Eu- and Y-TiO{sub 2} samples, thermally treated at 900 °C, had, respectively, a PCA equal to 26, 27 and 18 ppm h{sup −1} – in terms of acetone formation – versus 15 ppm h{sup −1} for the 900 °C thermally treated Degussa P25). On the other hand, Ce–TiO{sub 2}s had no significant photocatalytic activity.

  4. Study of a light-gas gun for launching active transient internal probes

    NASA Astrophysics Data System (ADS)

    Kim, Hyundae

    The Transient Internal Probe (TIP) is a diagnostic for the measurements of local parameters in high temperature plasmas. An optic probe is launched into a plasma at ˜1.8 km/s using a two-stage light gas gun, while a polarized laser light illuminates the probe and the light retroreflected after double-pass through the probe is continuously detected with an ellipsometer. The polarization state change of the light corresponds to Faraday rotation or Pockels effect depending on the probe material. Recently developed refractory clad probes and catseye retroreflecting probes are presented in this paper. One component of magnetic field or electric field profile measurements along the transit of the probe can be achieved by using the present passive optic probes. The next step of the TIP will be active probes utilizing on-board sensors and telemetry, which will allow measurements of multiple plasma parameters, possibly including the plasma temperature and density. At issue is the survivability of the on-board electronic components under the high acceleration during launch. Experimental and numerical study of the TIP light gas gun has been performed to lower the maximum acceleration of the probe while the probe velocity is still high (≥1.5 km/s) to avoid ablation during transit through a plasma. A microwave cavity technique is used to measure the probe position versus time during launch, from which the in-bore velocity and the acceleration profiles are determined. Piezoelectric pressure sensors measure the pressure history of the gun gas at several locations. A numerical code ('SIMTIP') is used to simulate the TIP two-stage light gas gun and the code output is compared to the measurements. This paper provides an optimum gun operation condition for launching an on-board active TIP. A prototype of the active TIP has been gun-launched. The probe includes a timer, a capacitor, and a Vertical Cavity Surface Emitting Laser (VCSEL). It survived ≥160,000 g's of acceleration and achieved a velocity of 1,700 m/s.

  5. The activation of directional stem cell motility by green light-emitting diode irradiation.

    PubMed

    Ong, Wei-Kee; Chen, How-Foo; Tsai, Cheng-Ting; Fu, Yun-Ju; Wong, Yi-Shan; Yen, Da-Jen; Chang, Tzu-Hao; Huang, Hsien-Da; Lee, Oscar Kuang-Sheng; Chien, Shu; Ho, Jennifer Hui-Chun

    2013-03-01

    Light-emitting diode (LED) irradiation is potentially a photostimulator to manipulate cell behavior by opsin-triggered phototransduction and thermal energy supply in living cells. Directional stem cell motility is critical for the efficiency and specificity of stem cells in tissue repair. We explored that green LED (530 nm) irradiation directed the human orbital fat stem cells (OFSCs) to migrate away from the LED light source through activation of extracellular signal-regulated kinases (ERK)/MAP kinase/p38 signaling pathway. ERK inhibitor selectively abrogated light-driven OFSC migration. Phosphorylation of these kinases as well as green LED irradiation-induced cell migration was facilitated by increasing adenosine triphosphate (ATP) production in OFSCs after green LED exposure, and which was thermal stress-independent mechanism. OFSCs, which are multi-potent mesenchymal stem cells isolated from human orbital fat tissue, constitutionally express three opsins, i.e. retinal pigment epithelium-derived rhodopsin homolog (RRH), encephalopsin (OPN3) and short-wave-sensitive opsin 1 (OPN1SW). However, only two non-visual opsins, i.e. RRH and OPN3, served as photoreceptors response to green LED irradiation-induced OFSC migration. In conclusion, stem cells are sensitive to green LED irradiation-induced directional cell migration through activation of ERK signaling pathway via a wavelength-dependent phototransduction. PMID:23261211

  6. Dextran causes aggregation of mitochondria and influences their oxidoreductase activities and light scattering.

    PubMed

    Lemeshko, Victor V; Solano, Sigifredo; López, Luis F; Rendón, Dairo A; Ghafourifar, Pedram; Gómez, Luis A

    2003-04-15

    It has been reported that dextrans diminish the intermembrane space of mitochondria, increase the number of contact sites between the inner and the outer mitochondrial membranes, decrease the outer membrane permeability to adenosine 5(')-diphosphate, and change the kinetic properties of mitochondrial kinases. In the present work the influence of dextran M40 (5% w/v) on the oxidoreductase activities of the inner and outer membranes of mitochondria, the interaction of cytochrome c with mitochondrial membranes, and the light scattering by rat liver mitochondria were studied. No influence of dextran on the release of cytochrome c from mitochondria or its interaction with mitochondrial membranes was observed. Decreases in the NADH-oxidase (to 80+/-2% of the control), NADH-cytochrome c reductase (to 26+/-2%), succinate-cytochrome c reductase (to 70+/-5%), and NADH-ferricyanide reductase (to 75+/-3%) activities induced by dextran, which may be due to the mitochondrial aggregation, were observed. The formation of aggregates was registered by light scattering, confirmed by light microscopy, and explained within the framework of the Gouy-Chapman theory of the electrical double layer. The observed mitochondrial aggregation seems to be useful also for understanding the mechanisms of mitochondrial condensation and perinuclear clustering during apoptosis. PMID:12667481

  7. Light-activated serotonin for exploring its action in biological systems.

    PubMed

    Rea, Adam C; Vandenberg, Laura N; Ball, Rebecca E; Snouffer, Ashley A; Hudson, Alicia G; Zhu, Yue; McLain, Duncan E; Johnston, Lindsey L; Lauderdale, James D; Levin, Michael; Dore, Timothy M

    2013-12-19

    Serotonin (5-HT) is a neuromodulator involved in regulating mood, appetite, memory, learning, pain, and establishment of left-right (LR) asymmetry in embryonic development. To explore the role of 5-HT in physiology, we have created two forms of "caged" 5-HT, BHQ-O-5HT and BHQ-N-5HT. When exposed to 365 or 740nm light, BHQ-O-5HT releases 5-HT through one- or two-photon excitation, respectively. BHQ-O-5HT mediated changes in neural activity in cultured mouse primary sensory neurons and the trigeminal ganglion and optic tectum of intact zebrafish larvae in the form of high-amplitude spiking in response to light. In Xenopus laevis embryos, light-activated 5-HT increased the occurrence of LR patterning defects. Maximal rates of LR defects were observed when 5-HT was released at stage 5 compared with stage 8. These experiments show the potential for BHQ-caged serotonins in studying 5-HT-regulated physiological processes. PMID:24333002

  8. Floating Oil-Spill Containment Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2012-01-01

    Previous oil containment booms have an open top that allows natural gas to escape, and have significant oil leakage due to wave action. Also, a subsea pyramid oil trap exists, but cannot move relative to moving oil plumes from deepsea oil leaks. The solution is to have large, moveable oil traps. One version floats on the sea surface and has a flexible tarp cover and a lower weighted skirt to completely entrap the floating oil and natural gas. The device must have at least three sides with boats pulling at each apex, and sonar or other system to track the slowly moving oil plume, so that the boats can properly locate the booms. The oil trap device must also have a means for removal of the oil and the natural gas. A second design version has a flexible pyramid cover that is attached by lines to ballast on the ocean floor. This is similar to fixed, metal pyramid oil capture devices in the Santa Barbara Channel off the coast of California. The ballast lines for the improved design, however, would have winches that can move the pyramid to always be located above the oil and gas plume. A third design is a combination of the first two. It uses a submerged pyramid to trap oil, but has no anchor and uses boats to locate the trap. It has ballast weights located along the bottom of the tarp and/or at the corners of the trap. The improved floating oil-spill containment device has a large floating boom and weighted skirt surrounding the oil and gas entrapment area. The device is triangular (or more than three sides) and has a flexible tarp cover with a raised gas vent area. Boats pull on the apex of the triangles to maintain tension and to allow the device to move to optimum locations to trap oil and gas. The gas is retrieved from a higher buoyant part of the tarp, and oil is retrieved from the floating oil layer contained in the device. These devices can be operated in relatively severe weather, since waves will break over the devices without causing oil leaking. Also, natural gas is entrapped and can be retrieved. All designs can use sonar to locate the moving oil plume, and then be relocated by using boats or winches to move the oil trapping devices. These devices can be constructed of treated, non-permeable DuPont Kevlar cloth (or similar material).

  9. Float processing of high-temperature complex silicate glasses and float baths used for same

    NASA Technical Reports Server (NTRS)

    Cooper, Reid Franklin (Inventor); Cook, Glen Bennett (Inventor)

    2000-01-01

    A float glass process for production of high melting temperature glasses utilizes a binary metal alloy bath having the combined properties of a low melting point, low reactivity with oxygen, low vapor pressure, and minimal reactivity with the silicate glasses being formed. The metal alloy of the float medium is exothermic with a solvent metal that does not readily form an oxide. The vapor pressure of both components in the alloy is low enough to prevent deleterious vapor deposition, and there is minimal chemical and interdiffusive interaction of either component with silicate glasses under the float processing conditions. Alloys having the desired combination of properties include compositions in which gold, silver or copper is the solvent metal and silicon, germanium or tin is the solute, preferably in eutectic or near-eutectic compositions.

  10. Secular light curve of 2P/Encke, a comet active at aphelion

    NASA Astrophysics Data System (ADS)

    Ferrín, Ignacio

    2008-09-01

    We present the secular light curve of Comet 2P/Encke in two phase spaces, the log plot, and the time plot. The main conclusions of this work are: (a) The comet shows activity at perihelion and aphelion, caused by two different active areas: Source 1, close to the south pole, active at perihelion, and Source 2, at the north pole, centered at aphelion. (b) More than 18 physical parameters are measured from the secular light curves, many of them new, and are listed in the individual plots of the comet. Specifically we find for Source 1 the location of the turn on and turn off points of activity, R=-1.63±0.03 AU, R=+1.49±0.20 AU, T=-87±5 d, T=+94±15 d, the time lag, LAG(q)=6±1 d, the total active time, T=181±16 d, and the amplitude of the secular light curve, A(1,1)=4.8±0.1 mag. (c) From this information the photometric age and the time-age defined in Ferrín [2005a. Icarus 178, 493-516; 2006. Icarus 185, 523-543], can be calculated, and we find P-AGE = 97 ± 8 comet years and T-AGE = 103 ± 9 comet years (cy). Thus Comet 2P/Encke is an old comet entering the methuselah stage (100 cy < age). (d) The activity at aphelion (Source 2), extends for T=815±30 d and the amplitude of the secular light curve is A(1,Q)=3.0±0.2 mag. (e) From a new phase diagram an absolute magnitude and phase coefficient for the nucleus are determined, and we find R(1,1,0)=15.05±0.14, and β=0.066±0.003. From this data we find a nucleus effective diameter D=5.12(+2.5;-1.7) km. These values are not much different from previous determinations but exhibit smaller errors. (f) The activity of Source 1 is due to H 2O sublimation because it shows curvature. The activity of Source 2 might also be due to H 2O due to the circumstantial situation that the poles point to the Sun at perihelion and aphelion. (g) We found a photometric anomaly at aphelion, with minimum brightness between +393 and +413 days after perihelion that may be an indication of topography. (h) We have re-reduced the 1858 secular light curve of Kamel [1991. Icarus 93, 226-245]. There are secular changes in 7 physical parameters, and we achieve for the first time, an absolute age calibration. We find that the comet entered the inner Solar System and began sublimating in 1645±40 AD. (i) It is concluded that the secular light curve can place constraints on the pole orientation of the nucleus of some comets, and we measure the ecliptic longitude of the south pole of 2P/Encke equal to 213.2±4.5°, in excellent agreement with other determinations of this parameter, but with smaller error. (j) Using the observed absolute magnitude of 1858 and 2003 and a suitable theoretical model, the extinction date of the comet is determined. We obtain ED=2056±3 AD, implying that the comet's lifetime is 125±12 revolutions about the Sun after entering the inner Solar System.

  11. Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity

    NASA Astrophysics Data System (ADS)

    Kalathil, Shafeer; Khan, Mohammad Mansoob; Ansari, Sajid Ali; Lee, Jintae; Cho, Moo Hwan

    2013-06-01

    We report a simple biogenic-route to narrow the band gap of TiO2 nanocrystals for visible light application by offering a greener method. When an electrochemically active biofilm (EAB) was challenged with a solution of Degussa-TiO2 using sodium acetate as the electron donor, greyish blue-colored TiO2 nanocrystals were obtained. A band gap study showed that the band gap of the modified TiO2 nanocrystals was significantly reduced (Eg = 2.85 eV) compared to the unmodified white Degussa TiO2 (Eg = 3.10 eV).

  12. An in vitro thermal analysis during different light-activated hydrogen peroxide bleaching

    NASA Astrophysics Data System (ADS)

    Kabbach, W.; Zezell, D. M.; Bandéca, M. C.; Pereira, T. M.; Andrade, M. F.

    2010-09-01

    This study measured the critical temperature reaching time and also the variation of temperature in the surface of the cervical region and within the pulp chamber of human teeth submitted to dental bleaching using 35% hydrogen peroxide gel activated by three different light sources. The samples were randomly divided into 3 groups ( n = 15), according to the catalyst light source: Halogen Light (HL), High Intensity Diode Laser (DL), and Light Emmited Diode (LED). The results of temperature variation were submitted to the analysis of variance and Tukey test with p < 0.05. The temperature increase (mean value and standard deviation) inside the pulp chamber for the HL group was 6.8 ± 2.8°C; for the DL group was 15.3 ± 8.8°C; and for the LED group was 1.9 ± 1.0°C for. The temperature variation (mean value and standard deviation) on the tooth surface, for the group irradiated with HL was 9.1 ± 2.2°C; for the group irradiated with DL were 25.7 ± 18.9°C; and for the group irradiated with LED were 2.6 ± 1.4°C. The mean temperature increase values were significantly higher for the group irradiated with DL when compared with groups irradiated with HL and LED ( p < 0.05). When applying the inferior limits of the interval of confidence of 95%, an application time of 38.7 s was found for HL group, and 4.4 s for DL group. The LED group did not achieve the critical temperatures for pulp or the periodontal, even when irradiated for 360 s. The HL and DL light sources may be used for dental bleaching for a short period of time. The LED source did not heat the target tissues significantly within the parameters used in this study.

  13. Earthquake lights and the stress-activation of positive hole charge carriers in rocks

    USGS Publications Warehouse

    St-Laurent, F.; Derr, J.S.; Freund, F.T.

    2006-01-01

    Earthquake-related luminous phenomena (also known as earthquake lights) may arise from (1) the stress-activation of positive hole (p-hole) charge carriers in igneous rocks and (2) the accumulation of high charge carrier concentrations at asperities in the crust where the stress rates increase very rapidly as an earthquake approaches. It is proposed that, when a critical charge carrier concentration is reached, the p-holes form a degenerated solid state plasma that can break out of the confined rock volume and propagate as a rapidly expanding charge cloud. Upon reaching the surface the charge cloud causes dielectric breakdown at the air-rock interface, i.e. corona discharges, accompanied by the emission of light and high frequency electromagnetic radiation. ?? 2006 Elsevier Ltd. All rights reserved.

  14. Light-induced gradual activation of photosystem II in dark-grown Norway spruce seedlings.

    PubMed

    Pavlovič, Andrej; Stolárik, Tibor; Nosek, Lukáš; Kouřil, Roman; Ilík, Petr

    2016-06-01

    Gymnosperms, unlike angiosperms, are able to synthesize chlorophyll and form photosystems in complete darkness. Photosystem I (PSI) formed under such conditions is fully active, but photosystem II (PSII) is present in its latent form with inactive oxygen evolving complex (OEC). In this work we have studied light-induced gradual changes in PSII function in dark-grown cotyledons of Norway spruce (Picea abies) via the measurement of chlorophyll a fluorescence rise, absorption changes at 830nm, thermoluminescence glow curves (TL) and protein analysis. The results indicate that in dark-grown cotyledons, alternative reductants were able to act as electron donors to PSII with inactive OEC. Illumination of cotyledons for 5min led to partial activation of PSII, which was accompanied by detectable oxygen evolution, but still a substantial number of PSII centers remained in the so called PSII-QB-non-reducing form. Interestingly, even 24h long illumination was not sufficient for the full activation of PSII centers. This was evidenced by a weak attachment of PsbP protein and the absence of PsbQ protein in PSII particles, the absence of PSII supercomplexes, the suboptimal maximum yield of PSII photochemistry, the presence of C band in TL curve and also the presence of up-shifted Q band in TL in DCMU-treated cotyledons. This slow light-induced activation of PSII in dark-grown cotyledons could contribute to the prevention of PSII overexcitation before the light-induced increase in PSI/PSII ratio allows effective operation of linear electron flow. PMID:26901522

  15. Leaky Integrate-and-Fire Neuron Circuit Based on Floating-Gate Integrator

    PubMed Central

    Kornijcuk, Vladimir; Lim, Hyungkwang; Seok, Jun Yeong; Kim, Guhyun; Kim, Seong Keun; Kim, Inho; Choi, Byung Joon; Jeong, Doo Seok

    2016-01-01

    The artificial spiking neural network (SNN) is promising and has been brought to the notice of the theoretical neuroscience and neuromorphic engineering research communities. In this light, we propose a new type of artificial spiking neuron based on leaky integrate-and-fire (LIF) behavior. A distinctive feature of the proposed FG-LIF neuron is the use of a floating-gate (FG) integrator rather than a capacitor-based one. The relaxation time of the charge on the FG relies mainly on the tunnel barrier profile, e.g., barrier height and thickness (rather than the area). This opens up the possibility of large-scale integration of neurons. The circuit simulation results offered biologically plausible spiking activity (<100 Hz) with a capacitor of merely 6 fF, which is hosted in an FG metal-oxide-semiconductor field-effect transistor. The FG-LIF neuron also has the advantage of low operation power (<30 pW/spike). Finally, the proposed circuit was subject to possible types of noise, e.g., thermal noise and burst noise. The simulation results indicated remarkable distributional features of interspike intervals that are fitted to Gamma distribution functions, similar to biological neurons in the neocortex.

  16. Traffic Sign Recognition with Invariance to Lighting in Dual-Focal Active Camera System

    NASA Astrophysics Data System (ADS)

    Gu, Yanlei; Panahpour Tehrani, Mehrdad; Yendo, Tomohiro; Fujii, Toshiaki; Tanimoto, Masayuki

    In this paper, we present an automatic vision-based traffic sign recognition system, which can detect and classify traffic signs at long distance under different lighting conditions. To realize this purpose, the traffic sign recognition is developed in an originally proposed dual-focal active camera system. In this system, a telephoto camera is equipped as an assistant of a wide angle camera. The telephoto camera can capture a high accuracy image for an object of interest in the view field of the wide angle camera. The image from the telephoto camera provides enough information for recognition when the accuracy of traffic sign is low from the wide angle camera. In the proposed system, the traffic sign detection and classification are processed separately for different images from the wide angle camera and telephoto camera. Besides, in order to detect traffic sign from complex background in different lighting conditions, we propose a type of color transformation which is invariant to light changing. This color transformation is conducted to highlight the pattern of traffic signs by reducing the complexity of background. Based on the color transformation, a multi-resolution detector with cascade mode is trained and used to locate traffic signs at low resolution in the image from the wide angle camera. After detection, the system actively captures a high accuracy image of each detected traffic sign by controlling the direction and exposure time of the telephoto camera based on the information from the wide angle camera. Moreover, in classification, a hierarchical classifier is constructed and used to recognize the detected traffic signs in the high accuracy image from the telephoto camera. Finally, based on the proposed system, a set of experiments in the domain of traffic sign recognition is presented. The experimental results demonstrate that the proposed system can effectively recognize traffic signs at low resolution in different lighting conditions.

  17. Increased visible-light photocatalytic activity of TiO2 via band gap manipulation

    NASA Astrophysics Data System (ADS)

    Pennington, Ashley Marie

    Hydrogen gas is a clean burning fuel that has potential applications in stationary and mobile power generation and energy storage, but is commercially produced from non-renewable fossil natural gas. Using renewable biomass as the hydrocarbon feed instead could provide sustainable and carbon-neutral hydrogen. We focus on photocatalytic oxidation and reforming of methanol over modified titanium dioxide (TiO2) nanoparticles to produce hydrogen gas. Methanol is used as a model for biomass sugars. By using a photocatalyst, we aim to circumvent the high energy cost of carrying out endothermic reactions at commercial scale. TiO2 is a semiconductor metal oxide of particular interest in photocatalysis due to its photoactivity under ultraviolet illumination and its stability under catalytic reaction conditions. However, TiO2 primarily absorbs ultraviolet light, with little absorption of visible light. While an effective band gap for absorbance of photons from visible light is 1.7 eV, TiO2 polymorphs rutile and anatase, have band gaps of 3.03 eV and 3.20 eV respectively, which indicate ultraviolet light. As most of incident solar radiation is visible light, we hypothesize that decreasing the band gap of TiO2 will increase the efficiency of TiO2 as a visible-light active photocatalyst. We propose to modify the band gap of TiO2 by manipulating the catalyst structure and composition via metal nanoparticle deposition and heteroatom doping in order to more efficiently utilize solar radiation. Of the metal-modified Degussa P25 TiO2 samples (P25), the copper and nickel modified samples, 1%Cu/P25 and 1%Ni/P25 yielded the lowest band gap of 3.05 eV each. A difference of 0.22 eV from the unmodified P25. Under visible light illumination 1%Ni/P25 and 1%Pt/P25 had the highest conversion of methanol of 9.9% and 9.6%, respectively.

  18. Direct observation of frequency modulated transcription in single cells using light activation

    PubMed Central

    Larson, Daniel R; Fritzsch, Christoph; Sun, Liang; Meng, Xiuhau; Lawrence, David S; Singer, Robert H

    2013-01-01

    Single-cell analysis has revealed that transcription is dynamic and stochastic, but tools are lacking that can determine the mechanism operating at a single gene. Here we utilize single-molecule observations of RNA in fixed and living cells to develop a single-cell model of steroid-receptor mediated gene activation. We determine that steroids drive mRNA synthesis by frequency modulation of transcription. This digital behavior in single cells gives rise to the well-known analog dose response across the population. To test this model, we developed a light-activation technology to turn on a single steroid-responsive gene and follow dynamic synthesis of RNA from the activated locus. DOI: http://dx.doi.org/10.7554/eLife.00750.001 PMID:24069527

  19. Floating and fixed artificial habitats: Spatial and temporal patterns of benthic communities in a coral reef environment

    NASA Astrophysics Data System (ADS)

    Perkol-Finkel, S.; Zilman, G.; Sella, I.; Miloh, T.; Benayahu, Y.

    2008-04-01

    While natural marine habitats with motion capabilities, e.g., kelps and seaweeds, have been studied alongside their associated fouling communities, little is known of the effect of motion on the communities of floating artificial habitats such as buoys, rafts, and pontoons, particularly in tropical systems. Hydrodynamic features greatly differ between floating and fixed artificial substrata, which in turn affect the structure of their associated communities. This study tested the hypothesis that floating and fixed artificial installations in a tropical reef system (Eilat, Red Sea) would support different benthic communities throughout space and time. Specifically, we examined differences in communities recruited onto settlement plates between floating and fixed installations deployed at three different sites, along a two-year monitoring period. The three sites exhibited distinct differences in species assemblages between the monitoring dates (6, 12, 18 and 24 months post deployment), mainly between the first and the last two dates. The average level of dissimilarity between floating and fixed installations increased over time at all sites. Over 50% of the dissimilarity between the floating and fixed installations resulted from five taxonomic groups i.e., bryozoans, bivalves, barnacles, sponges, including the amount of bare space on the settlement plates. The contribution of these groups to the dissimilarity changed both temporally within each site, and spatially among sites. The observed differences were related to the hydrodynamic characteristics of floating and fixed habitats, interacting with biotic features such as predation, successional processes and seasonality; and abiotic features including small-scale spatial changes, light, and position in the water column.

  20. The influence of negative ionization of the air on motor activity in Syrian hamsters ( Masocricetus auratus Waterhouse) in light conditions

    NASA Astrophysics Data System (ADS)

    Lenkiewicz, Zofia; Dabrowska, Barbara; Schiffer, Zofia

    1989-12-01

    The motor activity of Syrian hamsters ( Mesocricetus auratus Waterhouse) under the influence of negative ionization of the atmosphere applied for 10, 20 or 30 min per day was investigated. An ionizer with output of 14000 light negative ions per 1 cm3 of air was used. Studies carried out in the light phase of a 12∶12 h light/dark regime revealed a relation between the reaction of the animal and the time of day at which ionization was applied. Ionization for 20 or 30 min in the light phase decreased motor activity, while 10 min of ionization increased it compared to control animals. Ionization in the dark phase gave a more distinct rise in activity than that applied in the light phase for all three durations of ionization.

  1. An Analysis of the Full-Floating Journal Bearing

    NASA Technical Reports Server (NTRS)

    Shaw, M C; Nussdorfer, T J , Jr

    1947-01-01

    An analysis of the operating characteristics of a full-floating journal bearing, a bearing in which a floating sleeve is located between the journal and bearing surfaces, is presented together with charts from which the performance of such bearings may be predicted. Examples are presented to illustrate the use of these charts and a limited number of experiments conducted upon a glass full-floating bearing are reported to verify some results of the analysis.

  2. Trident: An FPGA Compiler Framework for Floating-Point Algorithms.

    SciTech Connect

    Tripp J. L.; Peterson, K. D.; Poznanovic, J. D.; Ahrens, C. M.; Gokhale, M.

    2005-01-01

    Trident is a compiler for floating point algorithms written in C, producing circuits in reconfigurable logic that exploit the parallelism available in the input description. Trident automatically extracts parallelism and pipelines loop bodies using conventional compiler optimizations and scheduling techniques. Trident also provides an open framework for experimentation, analysis, and optimization of floating point algorithms on FPGAs and the flexibility to easily integrate custom floating point libraries.

  3. Visible light photocatalytic activity of BiVO4 particles with different morphologies

    NASA Astrophysics Data System (ADS)

    Lin, Xue; Yu, Lili; Yan, Lina; Li, Hongji; Yan, Yongsheng; Liu, Chunbo; Zhai, Hongju

    2014-06-01

    Bismuth vanadate (BiVO4) particles with different morphologies were synthesized by a one-step hydrothermal process and their optical and photocatalytic properties were investigated. Their crystal structure and microstructures were characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). XRD patterns demonstrate that the as-prepared samples are monoclinic cell. FESEM shows that BiVO4 crystals can be fabricated in different morphologies by simply manipulating the reaction parameters of hydrothermal process. The UV-visible diffuse reflectance spectra (UV-vis DRS) reveal that the band gaps of BiVO4 photocatalysts are about 2.07-2.21 eV. The as-prepared BiVO4 photocatalysts exhibit higher photocatalytic activities in the degradation of rhodamine B (Rh B) under visible light irradiation (λ > 420 nm) compared with traditional N-doped TiO2 (N-TiO2). Furthermore, wheat like BiVO4 sample reveals the highest photocatalytic activity. Up to 100% Rh B is decolorized after visible light irradiation for 180 min. The reason for the difference in the photocatalytic activities for BiVO4 samples obtained at different conditions were systematically studied based on their shape, size and the variation of local structure.

  4. A Light-Controlled TLR4 Agonist and Selectable Activation of Cell Subpopulations.

    PubMed

    Stutts, Lalisa; Esser-Kahn, Aaron P

    2015-08-17

    The spatial and temporal aspects of immune cell signaling are key parameters in defining the magnitude of an immune response. Toll-like receptors (TLRs) on innate immune cells are important in the early detection of pathogens and initiation of an immune response. Controlling the spatial and temporal signaling of TLRs would enable further study of immune synergies and assist in the development of new vaccines. Here, we show a light-based method for the spatial control of TLR4 signaling. A TLR4 agonist, pyrimido[5,4-b]indole, was protected with a cage at a position critical for receptor binding. This afforded a photocontrollable agonist that was inactive while caged, yet effected NF-?B activity in cells following UV photocontrolled deprotection. We demonstrated spatial control of NF-?B activation within a population of cells by treating all cells with the caged TLR4 agonist and constraining light exposure and consequent activation to a region of interest. PMID:26097006

  5. Effects of light activated in-office bleaching on permeability, microhardness, and mineral content of enamel.

    PubMed

    Parreiras, S O; Vianna, P; Kossatz, S; Loguercio, A D; Reis, A

    2014-01-01

    The aim of this study was to evaluate the permeability (PE), microhardness (KHN), and mineral change in enamel after LED/laser activated in-office bleaching. For PE, the coronal portion of premolars (n=51) was subjected to bleaching with 35% hydrogen peroxide (Whiteness HP Maxx, FGM Dental Products, Joinville, SC, Brazil). The samples were stained via the histochemical method, which involves a copper sulphate solution and rubeanic acid. The penetration of dye into the enamel was measured. The KHN of enamel was assessed before treatment, immediately after the bleaching treatment, and again after one week. The calcium and phosphorus content were analyzed with a scanning electron microscope with energy-dispersive X-ray (JSM 6360LV, Jeol Ltd, Tokyo, Japan). The data set from each test was subjected to appropriate parametric statistical analysis (α=0.05). No significant differences were observed for PE in NLA and LA compared to the control group (p=0.98), as well as for calcium (p=0.16) and phosphorus (p=0.80) content. Significant reduction of KHN after bleaching occurred for both groups (p<0.001). After immersion in artificial saliva, the KHN of the enamel for all groups was similar to that seen before bleaching. Light activation during in-office bleaching does not produce significant changes in the enamel compared to a non-light-activated technique. PMID:24815914

  6. Experience the magic of light and color: outreach activity by Universidad del Valle student chapter

    NASA Astrophysics Data System (ADS)

    Valdes, Claudia; Reyes, Camilo; Osorio, Alberto; Solarte, Efrain

    2010-08-01

    During 2007, the Universidad del Valle Student Chapter presented a proposal for developing an educational outreach activity for children from an underprivileged zone to the Optical Society of America Foundation (OSAF) and to SPIE. The activity was carried out jointly by OSA and SPIE Universidad del Valle Student Chapters in the hillsides of Santiago de Cali, in a zone known as "Pueblo Joven" during 2008. It was aimed to boys and girls with ages between 8 and 13 years and was called "Experience the magic of light and color". The main purpose was to bring the children some basic concepts on optics and to encourage them to explore science through optics. The Universidad del Valle Student Chapters designed a series of talks and practical workshops where children participated in hands-on experiments that easily explain the fundamental concepts of light phenomena. Afterwards the children presented their achievements in a small science fair offered to the community and tried to explain in their own words what they learned and built. In this work, we present the most successful experimental designs and the educational standards we tried to develop with this activity.

  7. A coronagraph based on two spatial light modulators for active amplitude apodizing and phase corrections

    NASA Astrophysics Data System (ADS)

    Dou, Jiangpei; Ren, Deqing; Zhang, Xi; Zhu, Yongtian; Zhao, Gang; Wu, Zhen; Chen, Rui; Liu, Chengchao; Yang, Feng; Yang, Chao

    2014-08-01

    Almost all high-contrast imaging coronagraphs proposed until now are based on passive coronagraph optical components. Recently, Ren and Zhu proposed for the first time a coronagraph that integrates a liquid crystal array (LCA) for the active pupil apodizing and a deformable mirror (DM) for the phase corrections. Here, for demonstration purpose, we present the initial test result of a coronagraphic system that is based on two liquid crystal spatial light modulators (SLM). In the system, one SLM is served as active pupil apodizing and amplitude correction to suppress the diffraction light; another SLM is used to correct the speckle noise that is caused by the wave-front distortions. In this way, both amplitude and phase error can be actively and efficiently compensated. In the test, we use the stochastic parallel gradient descent (SPGD) algorithm to control two SLMs, which is based on the point spread function (PSF) sensing and evaluation and optimized for a maximum contrast in the discovery area. Finally, it has demonstrated a contrast of 10-6 at an inner working angular distance of ~6.2 ?/D, which is a promising technique to be used for the direct imaging of young exoplanets on ground-based telescopes.

  8. Activation of the General Stress Response of Bacillus subtilis by Visible Light.

    PubMed

    van der Steen, Jeroen B; Hellingwerf, Klaas J

    2015-01-01

    A key challenge for microbiology is to understand how evolution has shaped the wiring of regulatory networks. This is amplified by the paucity of information of power-spectra of physicochemical stimuli to which microorganisms are exposed. Future studies of genome evolution, driven by altered stimulus regimes, will therefore require a versatile signal transduction system that allows accurate signal dosing. Here, we review the general stress response of Bacillus subtilis, and its upstream signal transduction network, as a candidate system. It can be activated by red and blue light, and by many additional stimuli. Signal integration therefore is an intricate function of this system. The blue-light response is elicited via the photoreceptor YtvA, which forms an integral part of stressosomes, to activate expression of the stress regulon of B. subtilis. Signal transfer through this network can be assayed with reporter enzymes, while intermediate steps can be studied with live-cell imaging of fluorescently tagged proteins. Different parts of this system have been studied in vitro, such that its computational modeling has made significant progress. One can directly relate the microscopic characteristics of YtvA with activation of the general stress regulon, making this system a very well-suited system for network evolution studies. PMID:26189730

  9. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes.

    PubMed

    Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R; Castillo, Gabriel R; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng

    2014-01-01

    Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips. PMID:25100561

  10. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes

    PubMed Central

    Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R.; Castillo, Gabriel R.; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng

    2014-01-01

    Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips. PMID:25100561

  11. Nonmetal species in the carbon modified TiO2 and its visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Shi, Yanfen; Chen, Feng; Zhang, Jinlong

    2013-01-01

    A carbon modified TiO2 (CT) was synthesized by hydrolyzing titanium tetrachloride with diethylamine and calcination at 400 °C. CT was then handled with a NaOH aqueous solution elution and a subsequent re-assembling treatment. X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), thermogravimetric and differential thermal analysis (TG-DTA), chemical oxygen demand (COD) and UV-vis diffuse reflectance spectroscopy (DRS) were then used to assess the changes of CT during the whole process. It is revealed that carbon in the CT should mostly be presented as surface deposited organic matters but not likely doped into the TiO2 lattice. CT exhibits obvious visible absorption and high photocatalytic activity for the degradation of 2,4-dichlorophenol (DCP) under visible light irradiation. Meanwhile, CT photocatalyst possesses excellent stability and reusability. NaOH solution elution washes off a large amount of surface deposited organics and worsens the visible absorbance and photocatalytic activity of CT, which can be well recovered by the re-assembling treatment. The re-assembled photocatalyst, CTSL, exhibits exhibits a very similar photocataytic activity with CT for degradation of DCP under the visible light irradiation, but is much higher than that of CTS.

  12. RNA self-cleavage activated by ultraviolet light-induced oxidation

    PubMed Central

    Ariza-Mateos, Ascensión; Prieto-Vega, Samuel; Díaz-Toledano, Rosa; Birk, Alex; Szeto, Hazel; Mena, Ignacio; Berzal-Herranz, Alfredo; Gómez, Jordi

    2012-01-01

    A novel UV-C-light-induced ribozyme activity was discovered within the highly structured 5′-genomic regions of both Hepatitis C Virus (HCV) and the related Classic Swine Fever Virus (CSFV). Cleavage is mediated by exposure to UV-C light but not by exogenous oxygen radicals. It is also very selective, occurring at base positions HCV C79 and CSFV A45 in some molecules and at the immediately adjacent 5′-positions HCV U78 and CSFV U44 in others. Among other reaction products, the majority of biochemically active products detected contained 3′-phosphate and 5′-phosphate-end groups at the newly generated termini, along with a much lower amount of 3′-hydroxyl end group. While preservation of an E-loop RNA structure in the vicinity of the cleavage site was a requisite for HCV RNA self-cleavage, this was not the case for CSFV RNA. The short size of the reactive domains (∼33 nt), which are compatible with primitive RNA motifs, and the lack of sequence homology, indicate that as-yet unidentified UV-activated ribozymes are likely to be found throughout structured RNAs, thereby providing clues to whether early RNA self-cleavage events were mediated by photosensitive RNA structures. PMID:21989404

  13. Comparative Mutagenesis Studies of Retinal Release in Light-Activated Zebrafish Rhodopsin Using Fluorescence Spectroscopy.

    PubMed

    Morrow, J M; Chang, B S W

    2015-07-28

    Rhodopsin is the visual pigment responsible for initiating scotopic (dim-light) vision in vetebrates. Once activated by light, release of all-trans-retinal from rhodopsin involves hydrolysis of the Schiff base linkage, followed by dissociation of retinal from the protein moiety. This kinetic process has been well studied in model systems such as bovine rhodopsin, but not in rhodopsins from cold-blooded animals, where physiological temperatures can vary considerably. Here, we characterize the rate of retinal release from light-activated rhodopsin in an ectotherm, zebrafish (Danio rerio), demonstrating in a fluorescence assay that this process occurs more than twice as fast as bovine rhodopsin at similar temperatures in 0.1% dodecyl maltoside. Using site-directed mutagenesis, we found that differences in retinal release rates can be attributed to a series of variable residues lining the retinal channel in three key structural motifs: an opening in metarhodopsin II between transmembrane helix 5 (TM5) and TM6, in TM3 near E122, and in the "retinal plug" formed by extracellular loop 2 (EL2). The majority of these sites are more proximal to the β-ionone ring of retinal than the Schiff base, indicating their influence on retinal release is more likely due to steric effects during retinal dissociation, rather than alterations to Schiff base stability. An Arrhenius plot of zebrafish rhodopsin was consistent with this model, inferring that the activation energy for Schiff base hydrolysis is similar to that of bovine rhodopsin. Functional variation at key sites identified in this study is consistent with the idea that retinal release might be an adaptive property of rhodopsin in vertebrates. Our study is one of the few investigating a nonmammalian rhodopsin, which will help establish a better understanding of the molecular mechanisms contributing to vision in cold-blooded vertebrates. PMID:26098991

  14. Light microscopy observation of lytic enzymatic activity of the organisms associated with bacterial vaginosis.

    PubMed

    Demirezen, S

    2003-12-01

    In this study, cervico-vaginal smears taken from 500 patients were examined cytologically using the Papanicolaou technique. Seventeen of the 500 were classified as having bacterial vaginosis. Lytic enzymatic activity of the organisms on clue cells were determined at light microscopic level. The integrity of the cell and the smoothness of the cell membrane were disrupted. Small cavities on the cell membrane and hollows in the cytoplasm were observed. Due to the loss of cytoplasm, very narrow and thin tracks around the nucleus and in the cytoplasm resembling a cobweb were seen. It is suggested that these lytic cellular changes might be formed by the organisms on clue cells. PMID:14768789

  15. Tests of monolithic active pixel sensors at national synchrotron light source

    NASA Astrophysics Data System (ADS)

    Deptuch, G.; Besson, A.; Carini, G. A.; Siddons, D. P.; Szelezniak, M.; Winter, M.

    2007-01-01

    The paper discusses basic characterization of Monolithic Active Pixel Sensors (MAPS) carried out at the X12A beam-line at National Synchrotron Light Source (NSLS), Upton, NY, USA. The tested device was a MIMOSA V (MV) chip, back-thinned down to the epitaxial layer. This 1M pixels device features a pixel size of 17×17 μm2 and was designed in a 0.6 μm CMOS process. The X-ray beam energies used range from 5 to 12 keV. Examples of direct X-ray imaging capabilities are presented.

  16. LIGHT MODULATION OF RUBISCO ACTIVATION IN SPECIES WITHOUT A LARGER ACTIVASE ISOFORM - EXISTANCE OF AN ACTIVASE REGULATORY PROTEIN?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rubisco activase in some species like tobacco consists of only the shorter isoform. In Arabidopsis lack of the redox regulated, larger isoform results in an inability to modulate Rubisco activity in response to light intensity. However, light modulation can be observed in tobacco with characteristic...

  17. The effect on emotions and brain activity by the direct/indirect lighting in the residential environment.

    PubMed

    Shin, Yu-Bin; Woo, Seung-Hyun; Kim, Dong-Hyeon; Kim, Jinseong; Kim, Jae-Jin; Park, Jin Young

    2015-01-01

    This study was performed to explore how direct/indirect lighting affects emotions and brain oscillations compared to the direct lighting when brightness and color temperature are controlled. Twenty-eight subjects (12 females; mean age 22.5) participated. The experimental conditions consisted of two lighting environments: direct/indirect lighting (400 lx downlight, 300 lx uplight) and direct lighting (700 lx downlight). On each trial, a luminance environment was presented for 4 min, followed by participants rated their emotional feelings of the lighting environment. EEG data were recorded during the experiment. Spectral analysis was performed for the range of delta, theta, alpha, beta, and gamma ranges. The participants felt cooler and more pleasant and theta oscillations on the F4, F8, T4, and TP7 electrodes were more enhanced in the direct/indirect lighting environment compared to the direct lighting environment. There was significant correlation between the "cool" rating and the theta power of the F8 electrode. The participants felt more pleasant in the direct/indirect lighting environment, indicating that space with direct/indirect lighting modulated subjective perception. Additionally, our results suggest that theta oscillatory activity can be used as a biological marker that reflects emotional status in different lighting environments. PMID:25281545

  18. Mass spectrometry footprinting reveals the structural rearrangements of cyanobacterial orange carotenoid protein upon light activation

    SciTech Connect

    Liu, Haijun; Zhang, Hao; King, Jeremy D.; Wolf, Nathan R.; Prado, Mindy; Gross, Michael L.; Blankenship, Robert E.

    2014-12-01

    The orange carotenoid protein (OCP), a member of the family of blue light photoactive proteins, is required for efficient photoprotection in many cyanobacteria. Photoexcitation of the carotenoid in the OCP results in structural changes within the chromophore and the protein to give an active red form of OCP that is required for phycobilisome binding and consequent fluorescence quenching. We characterized the light-dependent structural changes by mass spectrometry-based carboxyl footprinting and found that an α helix in the N-terminal extension of OCP plays a key role in this photoactivation process. Although this helix is located on and associates with the outside of the β-sheet core in the C-terminal domain of OCP in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent carotenoid conformational changes to global protein conformational dynamics in favor of functional phycobilisome binding, and is an essential part of the OCP photocycle.

  19. Performance Study of the Two-Stage Light Gas Gun for Active TIP Probes

    NASA Astrophysics Data System (ADS)

    Kim, H.; Jarboe, T. R.; Mattick, A. T.; Smith, R. J.

    2002-11-01

    The Transient Internal Probe (TIP) is a diagnostic for measuring local parameters across a cord of a plasma using a refractory-clad probe that traverses the plasma at a speed of 1.8 km/sec, fast enough that heating of the probe will not cause significant ablation during transit. To date, TIP has used passive magneto-optic probes illuminated during transit by a polarized laser, and having a retroreflector to return light to an ellipsometer after a double-pass through the probe. One component of the local magnetic fields is deduced by Faraday rotation of the return light. Electro-optic probes have also been studied. A richer set of parameters, potentially including plasma temperature and density, would be afforded by active TIP probes, using on-board microelectronic sensors; information would be encoded by modulation of radiation generated on-board (i.e., LED or laser diode). This approach also avoids distortion of signals from passive probes created by stress-induced polarization effects. At issue is the survivability of on-board microelectronics under acceleration of the probe by a two-stage light-gas gun. This paper describes analytical and experimental studies of acceleration of TIP probes versus gun operating parameters. The results will be used to determine optimal gun parameters for minimizing acceleration stress, while still reaching the needed probe speeds of 1.6-1.8 km/sec.

  20. The amino terminal helix modulates light activated conformational changes in AsLOV2

    PubMed Central

    Zayner, Josiah P.; Antoniou, Chloe; Sosnick, Tobin R.

    2012-01-01

    The mechanism of light-triggered conformational change and signaling in light-oxygen-voltage (LOV) domains remains elusive in spite of extensive investigation and their use in optogenetic studies. The LOV2 domain of Avena Sativa phototropin1 (AsLOV2), a member of the Per-Arnt-Sim (PAS) family, contains an FMN chromophore that forms a covalent bond with a cysteine upon illumination. This event leads to the release of the carboxy terminal Jα helix, the biological output signal. Using mutational analysis, circular dichroism and NMR, we find that the largely ignored amino terminal helix is a control element in AsLOV2’s light-activated conformational change. We further identify a direct amino-to-carboxy terminal “input-output” signaling pathway. These findings provide a framework to rationalize the LOV domain architecture, as well as the signaling mechanisms in both isolated and tandem arrangements of PAS domains. This knowledge can be applied in engineering LOV-based photoswitches, opening up new design strategies and improving existing ones. PMID:22406525

  1. Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels

    NASA Astrophysics Data System (ADS)

    Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari

    2010-10-01

    A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.

  2. Active materials for automotive adaptive forward lighting Part 1: system requirements vs. material properties

    NASA Astrophysics Data System (ADS)

    Keefe, Andrew C.; Browne, Alan L.; Johnson, Nancy L.

    2011-04-01

    Adaptive Frontlighting Systems (AFS in GM usage) improve visibility by automatically optimizing the beam pattern to accommodate road, driving and environmental conditions. By moving, modifying, and/or adding light during nighttime, inclement weather, or in sharp turns, the driver is presented with dynamic illumination not possible with static lighting systems The objective of this GM-HRL collaborative research project was to assess the potential of active materials to decrease the cost, mass, and packaging volume of current electric stepper-motor AFS designs. Solid-state active material actuators, if proved suitable for this application, could be less expensive than electric motors and have lower part count, reduced size and weight, and lower acoustic and EMF noise1. This paper documents Part 1 of the collaborative study, assessing technically mature, commercially available active materials for use as actuators. Candidate materials should reduce cost and improve AFS capabilities, such as increased angular velocity on swivel. Additional benefits to AFS resulting from active materials actuators were to be identified as well such as lower part count. In addition, several notional approaches to AFS were documented to illustrate the potential function, which is developed more fully in Part 2. Part 1 was successful in verifying the feasibility of using two active materials for AFS: shape memory alloys, and piezoelectrics. In particular, this demonstration showed that all application requirements including those on actuation speed, force, and cyclic stability to effect manipulation of the filament assembly and/or the reflector could be met by piezoelectrics (as ultrasonic motors) and SMA wire actuators.

  3. Accurately resolving PIC and POC from autonomous floats

    NASA Astrophysics Data System (ADS)

    Orrico, C.; Bishop, J. K.; Weiss, G.; Wood, T. J.; Strubhar, W.; Derr, A.; Barnard, A. H.; Moore, C.

    2012-12-01

    Real-time measurement of particulate inorganic carbon (PIC) and particulate organic carbon (POC) is essential to improve our spatial and temporal understanding of carbon flux in the world's oceans and the effects of ocean acidification on the biological pump. Beam transmission can be used to detect the concentration of both PIC and POC. Birefringence of calcium carbonate (CaCO3) is widely used as a method to identify PIC. A modified WET Labs C-star beam transmissometer was developed to measure the concentration of suspended CaCO3 minerals in the optical path of polarized light from a laser source while birefringent light which is partially depolarized is detected at the other end (25-cm path length). Work is focused on the design of neutrally buoyant PIC and POC sensors for deployment on the Carbon Explorers (CE) autonomous floats, and optimization of the optical design for accurately resolving PIC. Results from the evaluation of polarizer mounting methods from the laboratory and recent water-column PIC measurements collected in the field are presented.

  4. Advances in recording scattered light changes in crustacean nerve with electrical activation

    SciTech Connect

    Carter, K. M.; Rector, D. M.; Martinez, A. T.; Guerra, F. M.; George, J. S.

    2002-01-01

    We investigated optical changes associated with crustacean nerve stimulation using birefringent and large angle scattered light. Improved detection schemes disclosed high temporal structure of the optical signals and allowed further investigations of biophysical mechanisms responsible for such changes. Most studies of physiological activity in neuronal tissue use techniques that measure the electrical behavior or ionic permeability of the nerve, such as voltage or ion sensitive dyes injected into cells, or invasive electric recording apparatus. While these techniques provide high resolution, they are detrimental to tissue and do not easily lend themselves to clinical applications in humans. Electrical and chemical components of neural excitation evoke physical responses observed through changes in scattered and absorbed light. This method is suited for in-vivo applications. Intrinsic optical changes have shown themselves to be multifaceted in nature and point to several different physiological processes that occur with different time courses during neural excitation. Fast changes occur concomitantly with electrical events, and slow changes parallel metabolic events including changes in blood flow and oxygenation. Previous experiments with isolated crustacean nerves have been used to study the biophysical mechanisms of fast optical changes. However, they have been confounded by multiple superimposed action potentials which make it difficult to discriminate the temporal signatures of individual optical responses. Often many averages were needed to adequately resolve the signal. More recently, optical signals have been observed in single trials. Initially large angle scattering measurements were used to record these events with much of the signal coming from cellular swelling associated with water influx during activation. By exploiting the birefringent properties derived from the molecular stiucture of nerve membranes, signals appear larger with a greater contrast, but direct comparison of birefringent and 90{sup o} scattering signals has not been reported. New developments in computer and optical technology allow optical recording with higher temporal resolution than could be achieved previously. This has led us to undertake more detailed studies of the biophysical mechanisms underlying these transient changes. Optimization of this technology in conjunction with other technical developments presents a path to noninvasive dynamic clinical observation of optical responses. To conduct these optical recordings, we placed dissected leg, claw and ventral cord nerves from crayfish and lobster in a recording chamber constructed from black Delrin. The chamber consisted of several wells situated perpendicularly to the long axis of the nerve that could beelectrically isolated for stimulating and recording electrical activation, and a window in the center for optical measurements. To measure the birefringence from the nerve, light from a 120W halogen bulb was focused onto the nerve from below the window through a 10X microscope objective and polarized at a 45 degree angle with respect to the long axis of the nerve bundle. A second polarizer turned 90 degrees with respect to the first polarizer was placed on top of the chamber and excluded direct source illumination, passing only birefringent light from the nerve. A large area photodiode placed directly on top of the polarizer detected the magnitude of the birefringent light. To measure light scattered 90 degrees by the nerve, a short length of image conduit placed perpendicularly to the nerve directed large angle scattered light from the nerve to a second photodiode. The output of each photodiode was amplified by a first stage amplifier which produced a DC level output, and was coupled to an AC amplifier (0.3 Hz High Pass) with a gain of 1000 to optimally record changes across time.

  5. Red light is necessary to activate the reproductive axis in chickens independently of the retina of the eye.

    PubMed

    Baxter, M; Joseph, N; Osborne, V R; Bédécarrats, G Y

    2014-05-01

    Photoperiod is essential in manipulating sexual maturity and reproductive performance in avian species. Light can be perceived by photoreceptors in the retina of the eye, pineal gland, and hypothalamus. However, the relative sensitivity and specificity of each organ to wavelength, and consequently the physiological effects, may differ. The purpose of this experiment was to test the impacts of light wavelengths on reproduction, growth, and stress in laying hens maintained in cages and to determine whether the retina of the eye is necessary. Individual cages in 3 optically isolated sections of a single room were equipped with LED strips providing either pure green, pure red or white light (red, green, and blue) set to 10 lx (hens levels). The involvement of the retina on mediating the effects of light wavelength was assessed by using a naturally blind line (Smoky Joe) of chickens. Red and white lights resulted in higher estradiol concentrations after photostimulation, indicating stronger ovarian activation, which translated into a significantly lower age at first egg when compared with the green light. Similarly, hens maintained under red and white lights had a longer and higher peak production and higher cumulative egg number than hens under green light. No significant difference in BW gain was observed until sexual maturation. However, from 23 wk of age onward, birds exposed to green light showed higher body growth, which may be the result of their lower egg production. Although corticosterone levels were higher at 20 wk of age in hens under red light, concentrations were below levels that can be considered indicative of stress. Because no significant differences were observed between blind and sighted birds maintained under red and white light, the retina of the eye did not participate in the activation of reproduction. In summary, red light was required to stimulate the reproductive axis whereas green light was ineffective, and the effects of stimulatory wavelengths do not appear to require a functional retina of the eye. PMID:24795325

  6. Cell Wall Free Space of Cucumis Hypocotyls Contains NAD and a Blue Light-Regulated Peroxidase Activity.

    PubMed

    Shinkle, J R; Swoap, S J; Simon, P; Jones, R L

    1992-04-01

    Solutions were obtained from the cell wall free space of red light-grown cucumber (Cucumis sativus L.) hypocotyl sections by a low-speed centrifugation technique. The centrifugate contained NAD and peroxidase but no detectable cytoplasmic contamination, as indicated by the absence of the activity of glucose-6-phosphate dehydrogenase from the cell wall solution. Peroxidase activity centrifuged from the cell wall of red light-grown cucumber hypocotyl section could be resolved into at least three cathodic isoforms and two anodic isoforms by isoelectric focusing. Treatment of red light-grown cucumber seedlings with a 10-minute pulse of high-intensity blue light increased the level of cell wall peroxidase by about 60% and caused a qualitative change in the anodic isoforms of this enzyme. The increase in peroxidase activity was detectable within 25 minutes after the start of the blue light pulse, was maximal at 35 minutes, and declined to control levels by 45 minutes of irradiation. The inhibitory effect of blue light on hypocotyl elongation was more rapid than the effect of blue light on total wall peroxidase activity, leading to the conclusion that growth and peroxidase activity are not causally related. PMID:16668797

  7. How floating production units accelerate payout

    SciTech Connect

    Shumaker, F.E.; Key, J.W.

    1983-07-01

    Economic advantages of early revenues may spark demand for as many as 100 floating production units by 1990. Much of this can be met by converted tankers fully equipped and ready for lease at short notice. The traditional approach to offshore oil and gas development is to locate a field, appraise the reservoir, install a fixed platform, drill the wells and hook up production equipment to bring the field on-stream. Typically this process has required up to five years from obtaining the lease to initial production, and longer in deeper water, where novel technology is needed, or where litigation has intervened.

  8. Floating hydrometer with energy dissipating baffle

    SciTech Connect

    Kownurko, W.A.

    1987-11-24

    This patent describes a floating hydrometer employable for purposes of obtaining measurements of the presence of suspended solids in a fluid substance contained in a receptacle comprising: a. a probe portion operative as an instrument-bearing housing; b. an elongated tubular element having a hollow interior and at least one open end so as to enable the flow into the hollow interior of the elongated tubular element through the open end; and c. energy dissipating baffle means having a first mode of action and a second mode of action and including a member having a hollow interior.

  9. An integrated circuit floating point accumulator

    NASA Technical Reports Server (NTRS)

    Goldsmith, T. C.

    1977-01-01

    Goddard Space Flight Center has developed a large scale integrated circuit (type 623) which can perform pulse counting, storage, floating point compression, and serial transmission, using a single monolithic device. Counts of 27 or 19 bits can be converted to transmitted values of 12 or 8 bits respectively. Use of the 623 has resulted in substantial savaings in weight, volume, and dollar resources on at least 11 scientific instruments to be flown on 4 NASA spacecraft. The design, construction, and application of the 623 are described.

  10. Development and in vivo floating behavior of verapamil HCl intragastric floating tablets.

    PubMed

    Patel, Anand; Modasiya, Moin; Shah, Dushyant; Patel, Vishnu

    2009-01-01

    A novel gastro retentive controlled release drug delivery system of verapamil HCl was formulated in an effort to increase the gastric retention time of the dosage form and to control drug release. Hydroxypropylmethylcellulose (HPMC), carbopol, and xanthan gum were incorporated for gel-forming properties. Buoyancy was achieved by adding an effervescent mixture of sodium bicarbonate and anhydrous citric acid. In vitro drug release studies were performed, and drug release kinetics was evaluated using the linear regression method. The optimized intragastric floating tablet composed of 3:2 of HPMC K4M to xanthan gum exhibited 95.39% drug release in 24 h in vitro, while the buoyancy lag time was 36.2 s, and the intragastric floating tablet remained buoyant for >24 h. Zero-order and non-Fickian release transport was confirmed as the drug release mechanism from the optimized formulation (F7). X-ray studies showed that total buoyancy time was able to delay the gastric emptying of verapamil HCl intragastric floating tablet in mongrel dogs for more than 4 h. Optimized intragastric floating tablet showed no significant change in physical appearance, drug content, total buoyancy time, or in vitro dissolution pattern after storage at 40 degrees C/75% relative humidity for 3 months. PMID:19296224

  11. Light Modulation of the Activity of Carbon Metabolism Enzymes in the Crassulacean Acid Metabolism Plant Kalancho 1

    PubMed Central

    Gupta, Vimal K.; Anderson, Louise E.

    1978-01-01

    When intact Kalancho plants are illuminated NADP-linked malic dehydrogenase and three enzymes of the reductive pentose phosphate pathway, ribulose-5-phosphate kinase, NADP-linked glyceraldehyde-3-phosphate dehydrogenase, and sedoheptulose-1,7-diphosphate phosphatase, are activated. In crude extracts these enzymes are activated by dithiothreitol treatment. Light or dithiothreitol treatment does not inactivate the oxidative pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase. Likewise, neither light, in vivo, nor dithiothreitol, in vitro, affects fructose-1,6-diphosphate phosphatase. Apparently the potential for modulation of enzyme activity by the reductively activated light effect mediator system exists in Crassulacean acid metabolism plants, but some enzymes which are light-dark-modulated in the pea plant are not in Kalancho. PMID:16660316

  12. Design of optical metamaterial mirror with metallic nanoparticles for floating-gate graphene optoelectronic devices.

    PubMed

    Lee, Seungwoo; Kim, Juyoung

    2015-08-24

    The purpose of this work is to conceive the idea for using the gate dielectrics of floating-gate memory device (i.e., Au nanoparticle (AuNP) monolayer embedded within polymeric matrix) as a magnetic mirror, so as to harness the broadband light absorption of thin film optoelectronics. In particular, we systematically examined whether the versatile assembly of spherical AuNP monolayer can be indeed treated as the effective magnetic mirror for floating-gate graphene optoelectronic device. High amenability of the AuNP assembly with the large-area device fabrication procedures may make this strategy widely applicable to various thin film optoelectronic devices. Our study thereby advances the design of mirror for thin film optoelectronics. PMID:26368157

  13. Controlling an actively-quenched single photon detector with bright light.

    PubMed

    Sauge, Sebastien; Lydersen, Lars; Anisimov, Andrey; Skaar, Johannes; Makarov, Vadim

    2011-11-01

    We control using bright light an actively-quenched avalanche single-photon detector. Actively-quenched detectors are commonly used for quantum key distribution (QKD) in the visible and near-infrared range. This study shows that these detectors are controllable by the same attack used to hack passively-quenched and gated detectors. This demonstrates the generality of our attack and its possible applicability to eavsdropping the full secret key of all QKD systems using avalanche photodiodes (APDs). Moreover, the commercial detector model we tested (PerkinElmer SPCM-AQR) exhibits two new blinding mechanisms in addition to the previously observed thermal blinding of the APD, namely: malfunctioning of the bias voltage control circuit, and overload of the DC/DC converter biasing the APD. These two new technical loopholes found just in one detector model suggest that this problem must be solved in general, by incorporating generally imperfect detectors into the security proof for QKD. PMID:22109239

  14. I-TiO2/PVC film with highly photocatalytic antibacterial activity under visible light.

    PubMed

    Deng, Weihua; Ning, Shangbo; Lin, Qianying; Zhang, Hualei; Zhou, Tanghua; Lin, Huaxiang; Long, Jinlin; Lin, Qun; Wang, Xuxu

    2016-08-01

    Iodine-modified TiO2(I-TiO2) film were coated on medical-grade PVC material by impregnation-deposition method and subsequently characterized by XRD, SEM, TEM, AFM, DRS and XPS. The photocatalytic anti-bacterial activity of I-TiO2/PVC was investigated both by in vitro anti-bacterial experiments and by clinical study. The results revealed that I-TiO2/PVC exhibit excellent photocatalytic antibacterial activity, which can destroy the propagation of the Escherichia coli and cause the deactivation and death of most E. coli bacteria within 30min visible light illumination. Clinical study on animals showed that I-TiO2 coated on PVC decrease the formation of biofilm on PVC surface in the mechanical ventilation. Furthermore, I-TiO2/PVC can effectively reduce inflammation of tracheal tissue of bam suckling pig and prevents the occurrence of VAP. PMID:27088189

  15. Impact of slow-light enhancement on optical propagation in active semiconductor photonic-crystal waveguides

    NASA Astrophysics Data System (ADS)

    Chen, Yaohui; de Lasson, Jakob Rosenkrantz; Gregersen, Niels; Mørk, Jesper

    2015-11-01

    We derive and validate a set of coupled Bloch wave equations for analyzing the reflection and transmission properties of active semiconductor photonic-crystal waveguides. In such devices, slow-light propagation can be used to enhance the material gain per unit length, enabling, for example, the realization of short optical amplifiers compatible with photonic integration. The coupled-wave analysis is compared to numerical approaches based on the Fourier modal method and a frequency domain finite-element technique. The presence of material gain leads to the buildup of a backscattered field, which is interpreted as distributed feedback effects or reflection at passive-active interfaces, depending on the approach taken. For very large material gain values, the band structure of the waveguide is perturbed, and deviations from the simple coupled Bloch wave model are found.

  16. Visible-light photocatalytic activity of graphene oxide-wrapped Bi2WO6 hierarchical microspheres

    NASA Astrophysics Data System (ADS)

    Zhai, Jiali; Yu, Hongwen; Li, Haiyan; Sun, Lei; Zhang, Kexin; Yang, Hongjun

    2015-07-01

    A facile approach of fabricating homogeneous graphene oxide (GO)-wrapped Bi2WO6 microspheres (GO/Bi2WO6) is developed. The transmission electron microscopy (TEM) results show that a heterojunction interface between GO and Bi2WO6. The UV-vis diffuse reflection spectra (DRS) reveal that the as-prepared GO/Bi2WO6 composites own more intensive absorption in the visible light range compared with pure Bi2WO6. These characteristic structural and optical properties endow GO/Bi2WO6 composites with enhanced photocatalytic activity. The enhanced photocatalytic activity of the GO/Bi2WO6 is attributed predominantly to the synergetic effect between GO and Bi2WO6, causing rapid generation and separation of photo-generated charge carriers.

  17. Structural details of light activation of the LOV2-based photoswitch PA-Rac1.

    PubMed

    Winkler, Andreas; Barends, Thomas R M; Udvarhelyi, Anikó; Lenherr-Frey, Daniel; Lomb, Lukas; Menzel, Andreas; Schlichting, Ilme

    2015-02-20

    Optical control of cellular processes is an emerging approach for studying biological systems, affording control with high spatial and temporal resolution. Specifically designed artificial photoswitches add an interesting extension to naturally occurring light-regulated functionalities. However, despite a great deal of structural information, the generation of new tools cannot be based fully on rational design yet; in many cases design is limited by our understanding of molecular details of light activation and signal transduction. Our biochemical and biophysical studies on the established optogenetic tool PA-Rac1, the photoactivatable small GTPase Rac1, reveal how unexpected details of the sensor-effector interface, such as metal coordination, significantly affect functionally important structural elements of this photoswitch. Together with solution scattering experiments, our results favor differences in the population of pre-existing conformations as the underlying allosteric activation mechanism of PA-Rac1, rather than the assumed release of the Rac1 domain from the caging photoreceptor domain. These results have implications for the design of new optogenetic tools and highlight the importance of including molecular details of the sensor-effector interface, which is however difficult to assess during the initial design of novel artificial photoswitches. PMID:25368973

  18. Parallel Optical Control of Spatiotemporal Neuronal Spike Activity Using High-Speed Digital Light Processing

    PubMed Central

    Jerome, Jason; Foehring, Robert C.; Armstrong, William E.; Spain, William J.; Heck, Detlef H.

    2011-01-01

    Neurons in the mammalian neocortex receive inputs from and communicate back to thousands of other neurons, creating complex spatiotemporal activity patterns. The experimental investigation of these parallel dynamic interactions has been limited due to the technical challenges of monitoring or manipulating neuronal activity at that level of complexity. Here we describe a new massively parallel photostimulation system that can be used to control action potential firing in in vitro brain slices with high spatial and temporal resolution while performing extracellular or intracellular electrophysiological measurements. The system uses digital light processing technology to generate 2-dimensional (2D) stimulus patterns with >780,000 independently controlled photostimulation sites that operate at high spatial (5.4 μm) and temporal (>13 kHz) resolution. Light is projected through the quartz–glass bottom of the perfusion chamber providing access to a large area (2.76 mm × 2.07 mm) of the slice preparation. This system has the unique capability to induce temporally precise action potential firing in large groups of neurons distributed over a wide area covering several cortical columns. Parallel photostimulation opens up new opportunities for the in vitro experimental investigation of spatiotemporal neuronal interactions at a broad range of anatomical scales. PMID:21904526

  19. Enhanced visible light photocatalytic activity of sulfated CuO-Bi2O3 photocatalyst

    NASA Astrophysics Data System (ADS)

    Liu, Xinlu; Zeng, Jun; Zhong, Junbo; Li, Jianzhang

    2015-09-01

    Sulfate (SO4 2-)-modified CuO-Bi2O3 composite photocatalysts with different loadings of SO4 2- were prepared by a facile pore impregnating method using ammonium persulfate (NH4)2S2O8 solution. The surface parameters, structure, morphology, the response ability to light, the binding energy of Bi 4 f and O 1 s, the hydroxyl content on the surface and the separation rate of photoinduced hole-electron pairs were characterized by Brunauer-Emmett-Teller method, X-ray diffraction, scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy and surface photovoltage spectroscopy, respectively. The results reveal that sulfating of CuO-Bi2O3 decreases the band gap, increases the hydroxyl content on the surface, the separation rate of photoinduced hole-electron pairs and the adsorption of Rhodamine B on the sulfated photocatalysts. The photocatalytic activity of SO4 2-/CuO-Bi2O3 for decolorization of Rhodamine B aqueous solution was evaluated. The result shows that when the molar ratio of S/Bi is 5 %, SO4 2-/CuO-Bi2O3 exhibits the best photocatalytic activity under visible light irradiation and the possible reason is discussed.

  20. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing

    PubMed Central

    Madisen, Linda; Mao, Tianyi; Koch, Henner; Zhuo, Jia-min; Berenyi, Antal; Fujisawa, Shigeyoshi; Hsu, Yun-Wei A.; Garcia, Alfredo J.; Gu, Xuan; Zanella, Sebastien; Kidney, Jolene; Gu, Hong; Mao, Yimei; Hooks, Bryan M.; Boyden, Edward S.; Buzsáki, György; Ramirez, Jan Marino; Jones, Allan R.; Svoboda, Karel; Han, Xue; Turner, Eric E.; Zeng, Hongkui

    2012-01-01

    Cell-type-specific expression of optogenetic molecules allows temporally precise manipulation of targeted neuronal activity. Here we present a toolbox of 4 knock-in mouse lines engineered for strong, Cre-dependent expression of channelrhodopsins ChR2-tdTomato and ChR2-EYFP, halorhodopsin eNpHR3.0, and archaerhodopsin Arch-ER2. All 4 transgenes mediate Cre-dependent, robust activation or silencing of cortical pyramidal neurons in vitro and in vivo upon light stimulation, with ChR2-EYFP and Arch-ER2 demonstrating light sensitivity approaching that of in utero or virally transduced neurons. We further show specific photoactivation of parvalbumin-positive interneurons in behaving ChR2-EYFP reporter mice. The robust, consistent, and inducible nature of our ChR2 mice represents a significant advancement over previous lines, whereas the Arch-ER2 and eNpHR3.0 mice are the first demonstration of successful conditional transgenic optogenetic silencing. When combined with the hundreds of available Cre-driver lines, this optimized toolbox of reporter mice will enable widespread investigations of neural circuit function with unprecedented reliability and accuracy. PMID:22446880

  1. Reflection of light: a teaching and learning activity with primary school children

    NASA Astrophysics Data System (ADS)

    Varela, Paulo; Abreu, Cátia; Costa, Manuel F. M.

    2014-08-01

    Light and its properties is a subject that strongly attracts children from very early ages. Inquiry-based science teaching although addressed in the curricula of various countries and suggested by some international organizations, continues to have a very low expression in the teaching practices of the majority of primary school teachers and preschool educators. In this sense, we have organized several continuing training courses in order to encourage these education professionals to promote this approach to science teaching in the classroom, with the children. As part of this training process, teachers and educators put into practice, with their students, the didactic knowledge they have developed, in order to become aware of the virtues of an inquiry-based approach to children's learning. Through the implementation of the "Reflection of Light" activity, in this article, we intend to analyze the process of teaching and learning promoted in a 3rd grade class by one of the teachers participating in the training courses. The analysis of the process reveals that the teacher in training carried out a successful didactic integration of the inquiry-based science teaching approach recommended for children. In turn, the children also developed a good understanding of the contents of the activity explored in the classroom.

  2. Synthesis of Solar-Light-Responsive ZnO/TaON Nanocomposite and Their Photocatalytic Activity.

    PubMed

    Kim, Tae-Ho; Jo, Yong-Hyun; Lee, Soo-Wohn; Cho, Sung-Hun; Kim, Seung-Ho

    2015-09-01

    The effects of the preparation conditions of ZnO-modified TaON on the photocatalytic activity for degradation of rhodamine B dye (Rh. B) under simulated solar light were investigated. The ZnO/TaON nanocomposite were prepared by loading particulate Ta2O5 with ZnO using different ZnO contents, followed by thermal nitridation at 1123 K for 5 h under NH3 flow (20 ml min(-1)). The as-prepared samples were characterized by XRD, UV-Vis-DRS, and SEM-EDX. The results revealed that the band gap energy absorption edge of as prepared nanocomposite samples was shifted to a longer wavelength as compared to ZnO and Ta2O5, and the 60 wt% ZnO/TaON nanocomposite exhibited the highest percentage (99.2%) of degradation of Rh. B and the highest reaction rate constant (0.0137 min(-1)) in 4 h which could be attributed to the enhanced absorption of the ZnO/TaON nanocomposite photocatalyst. Hence, these results suggest that the ZnO/TaON nanocomposite exhibits enhanced photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation in comparison to the commercial ZnO, Ta2O5, and TaON. PMID:26716281

  3. Light-activated, -inhibited and -independent denitrification by a denitrifying phototrophic bacterium.

    PubMed

    Satoh, T

    1977-12-15

    Effects of illumination on denitrification by a freshly isolated denitrifying phototrophic bacterium were investigated. Denitrification activity was induced when cells were grown in either light or darkness in the presence of nitrate without oxygen. Denitrification of nitrate with malate as the electron donor by cells at a phase of exponential growth occurred independently of illumination while that by cells in a stationary phase was activated. Effects of illumination on denitrification varied with electron donors. Using malate or succinate, denitrification by cells in a stationary phase was accelerated by illumination, inhibited when glucose or lactate was used, and independent of illumination when pyruvate was used. Denitrification by cells in an exponential phase was independent of illumination when succinate, malate or pyruvate was used and inhibited by it when glucose or lactate was used. Effects of illumination on the denitrification of nitrite were similar to those involving nitrate. Effects of various inhibitors on denitrification were examined in light-succinate and dark-lactate systems. Differences between the two systems are discussed. PMID:304709

  4. Preparation and visible light photocatalytic activity of N-doped titania.

    PubMed

    Hu, Yulong; Liu, Hongfang; Chen, Weiran; Chen, Debin; Yin, Jiwei; Guo, Xingpeng

    2010-03-01

    N-doped titania powders were prepared with titanium tetraisopropoxide (TTIP) as the titanium source and urea as the nitrogen source by the sol-gel method. The samples were characterized using X-ray diffraction (XRD), diffuse reflectance spectrum (DRS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The XRD and TEM results indicated that urea played an important role in controlling the size and aggregation process of titania nanoparticles. As an appropriate amount of urea was added into the titania sol, the size of the particles decreased. However, the excess urea reduced the dispersion of the particles and resulted in the aggregation. At the same time, the size of particle increased, and the size distribution broadened. The XPS and DRS results showed that the nitrogen was incorporated into titania lattice successfully, which brought about the redshift of the absorption edge and induced the photocatalytic activity in the visible light region. The photocatalytic experiments showed that the N-doped titania nanoparticles could effectively photodegrade methyl orange (MO) aqueous solution under visible light irradiation. The photocatalytic activity increased with the increase of the nitrogen doping level in the titania lattice, but decreased with the increase of the particle size and the organic surface residues caused by excess urea. PMID:20355662

  5. Effect of light and vigorous physical activity on balance and gait of older adults.

    PubMed

    Pau, Massimiliano; Leban, Bruno; Collu, Giorgia; Migliaccio, Gian Mario

    2014-01-01

    This study aims to quantitatively assess the effects of vigorous and light physical activity (VPA, LPA) on static balance, gait and sit-to-stand (STS) tasks in a cohort of healthy older adults. To this end, 34 individuals of age >65 years were divided into two groups (n=17 each) who underwent 36 sessions (3×12 weeks) of PA characterized by different levels of intensity, assessed through continuous heart rate monitoring during the training session. Their balance and mobility were objectively evaluated on the basis of postural sway and time of STS measurements performed using a force platform. The main spatiotemporal parameters of gait (i.e. speed, stride and gait cycle duration, stance, swing and double support phase duration) were also acquired using a wearable inertial measurement unit. The results show that most gait parameters and STS time significantly improve in the VPA group but not in the LPA one. For the latter group a reduction only of swing phase duration was detected. PA also induced a generalized reduction of postural sway in both groups in the case of absence of visual input. These findings suggest that PA programs characterized by superior levels of intensity might be more suitable in generally improving static and dynamic daily motor tasks, while in terms of static balance acceptable results can be achieved even when only light activity is performed. PMID:25127848

  6. Bi1-xLaxCuSeO as New Tunable Full Solar Light Active Photocatalysts.

    PubMed

    Wang, Huanchun; Li, Shun; Liu, Yaochun; Ding, Jinxuan; Lin, Yuan-Hua; Xu, Haomin; Xu, Ben; Nan, Ce-Wen

    2016-01-01

    Photocatalysis is attracting enormous interest driven by the great promise of addressing current energy and environmental crises by converting solar light directly into chemical energy. However, efficiently harvesting solar energy for photocatalysis remains a pressing challenge, and the charge kinetics and mechanism of the photocatalytic process is far from being well understood. Here we report a new full solar spectrum driven photocatalyst in the system of a layered oxyselenide BiCuSeO with good photocatalytic activity for degradation of organic pollutants and chemical stability under light irradiation, and the photocatalytic performance of BiCuSeO can be further improved by band gap engineering with introduction of La. Our measurements and density-functional-theory calculations reveal that the effective mass and mobility of the carriers in BiCuSeO can be tuned by the La-doping, which are responsible for the tunable photocatalytic activity. Our findings may offer new perspectives for understanding the mechanism of photocatalysis through modulating the charge mobility and the effective mass of carriers and provide a guidance for designing efficient photocatalyts. PMID:27095046

  7. A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light1[OPEN

    PubMed Central

    Jones, Matthew Alan; Hu, Wei; Litthauer, Suzanne; Lagarias, J. Clark; Harmer, Stacey Lynn

    2015-01-01

    The sensitivity of the circadian system to light allows entrainment of the clock, permitting coordination of plant metabolic function and flowering time across seasons. Light affects the circadian system via both photoreceptors, such as phytochromes and cryptochromes, and sugar production by photosynthesis. In the present study, we introduce a constitutively active version of phytochrome B-Y276H (YHB) into both wild-type and phytochrome null backgrounds of Arabidopsis (Arabidopsis thaliana) to distinguish the effects of photoreceptor signaling on clock function from those of photosynthesis. We find that the YHB mutation is sufficient to phenocopy red light input into the circadian mechanism and to sustain robust rhythms in steady-state mRNA levels even in plants grown without light or exogenous sugars. The pace of the clock is insensitive to light intensity in YHB plants, indicating that light input to the clock is constitutively activated by this allele. Mutation of YHB so that it is retained in the cytoplasm abrogates its effects on clock function, indicating that nuclear localization of phytochrome is necessary for its clock regulatory activity. We also demonstrate a role for phytochrome C as part of the red light sensing network that modulates phytochrome B signaling input into the circadian system. Our findings indicate that phytochrome signaling in the nucleus plays a critical role in sustaining robust clock function under red light, even in the absence of photosynthesis or exogenous sources of energy. PMID:26157113

  8. Solution-Processed Nanoparticle Super-Float-Gated Organic Field-Effect Transistor as Un-cooled Ultraviolet and Infrared Photon Counter

    PubMed Central

    Yuan, Yongbo; Dong, Qingfeng; Yang, Bin; Guo, Fawen; Zhang, Qi; Han, Ming; Huang, Jinsong

    2013-01-01

    High sensitivity photodetectors in ultraviolet (UV) and infrared (IR) range have broad civilian and military applications. Here we report on an un-cooled solution-processed UV-IR photon counter based on modified organic field-effect transistors. This type of UV detectors have light absorbing zinc oxide nanoparticles (NPs) sandwiched between two gate dielectric layers as a floating gate. The photon-generated charges on the floating gate cause high resistance regions in the transistor channel and tune the source-drain output current. This “super-float-gating” mechanism enables very high sensitivity photodetectors with a minimum detectable ultraviolet light intensity of 2.6 photons/μm2s at room temperature as well as photon counting capability. Based on same mechansim, infrared photodetectors with lead sulfide NPs as light absorbing materials have also been demonstrated. PMID:24048259

  9. Purification and characterization of a sea urchin egg Ca2+-calmodulin-dependent kinase with myosin light chain phosphorylating activity.

    PubMed

    Chou, Y H; Rebhun, L I

    1986-04-25

    The crude actomyosin precipitate from sea urchin (Arbacia punctulata) egg extracts contains Ca2+-sensitive myosin light chain kinase activity. Activity can be further increased by exogenous calmodulin (CaM). Egg myosin light chain kinase activity is purified from total egg extract by fractionating on three different chromatographic columns: DEAE ion exchange, gel filtration on Sephacryl-300, and Affi-Gel-CaM affinity. The purified egg kinase depends totally on Ca2+ and CaM for activity. Unphosphorylated egg myosin has very little actin-activated ATPase. After phosphorylation of the phosphorylable light chain by either egg kinase or gizzard myosin light chain kinase, the actin-activated ATPase of egg myosin is enhanced several fold. However, the egg kinase bears some unique characteristics which are very different from conventional myosin light chain kinases of differentiated tissues. The purified egg kinase has a native molecular mass of 405 kDa, while on sodium dodecyl sulfate-polyacrylamide electrophoresis it shows a single subunit of 56 kDa. The affinity of egg kinase for CaM (Ka = 0.4 microM) is relatively weaker than that of the gizzard myosin light chain kinase. The egg kinase autophosphorylates in the presence of Ca2+ and CaM and has a rather broad substrate specificity. The possible relationship between this egg Ca2+-CaM-dependent kinase and the Ca2+-CaM-dependent kinases from brain and liver is discussed. PMID:2937787

  10. Take-off activity and orientation of triatomines (Heteroptera: Reduviidae) in relation to the presence of artificial lights.

    PubMed

    Minoli, Sebastián A; Lazzari, Claudio R

    2006-03-01

    We analysed the flying activity of Triatoma infestans and Rhodnius prolixus when confronted to artificial lights of different spectral quality. We found that the presence of light sources (white or ultraviolet) did not affect their spontaneous take-off rate. The comparison between species showed that R. prolixus was more prone to fly than T. infestans. Females of T. infestans initiated flight more frequently than males of the same species. Although the same tendency was observed in R. prolixus, no significant differences were assessed between sexes. Concerning the orienting behaviour of triatomines at take-off in relation to the position of the light source, T. infestans showed a significant tendency to fly towards white light, but a non-oriented response when confronted to UV light or in the absence of a light source. R. prolixus also preferred to fly towards a source of white light and exhibited a non-oriented response with no light. However, when the UV light was presented, these bugs exhibited a bimodal attraction/repellence-behaviour. Our results support true attraction by white light rather than menotaxis or arrival by chance. These findings are discussed in relation to the colonization of human dwellings by Chagas disease vectors. PMID:16460653

  11. Science Teachers Without Classrooms of Their Own: A Study of the Phenomenon of Floating

    NASA Astrophysics Data System (ADS)

    Dubois, Shannon L.; Luft, Julie A.

    2014-02-01

    "Floating" teachers, or teachers without their own classroom, experience unique affordances and constraints as they develop professionally. To increase the knowledge in this area, this study looks at how traveling to different classrooms affects beginning secondary science teachers' development and instruction. The participants in this study were three first-year floating secondary science teachers whose experiences were analyzed through a cultural historical activity theory framework. The data revealed how floating can either support or constrain the development of beginning science teachers, and limit the implementation of standards-based instruction. Finally, this study shows that high levels of human, physical, and social resources are necessary for progress towards standards-based science teaching. It suggests that if science teachers must move to different classrooms, we need to create ways in which to support their instruction and development. Furthermore, this study recommends that all teachers and supervisors work toward a deeper understanding of the school community's role in the experience of the floating science teacher.

  12. Theophylline loaded gastroretentive floating tablets based on hydrophilic polymers: preparation and in vitro evaluation.

    PubMed

    Khan, Ferdous; Ibn Razzak, Shaikhul Millat; Khan, Ziaur Rahman; Azad, Mohammad Abul Kalam; Chowdhury, Jakir Ahmed; Reza, Selim

    2009-04-01

    This investigation describes the preparation and in vitro evaluation of gastroretentive floating tablet of theophylline. Two hydrophilic cellulose derivatives, Methocel K100M and Methocel K15MCR were evaluated for their gel forming and release controlling properties. Sodium bicarbonate and citric acid were incorporated as gas generating agents. The effects of soluble components (sodium bicarbonate and citric acid), gel forming agents and amount variation of theophylline on drug release profile and floating properties were investigated. Tablets were prepared by direct compression technique. Formulations were evaluated for in vitro buoyancy and drug release study was evaluated for eight hours using USP XXII paddle-type dissolution apparatus using 0.1N HCl as dissolution medium. The release mechanisms were explored and explained with zero order, first order, Higuchi and Korsmeyer equations. The release rate, extent and mechanisms were found to be governed by polymer and floating agent content. The content of active ingredient was also a vital factor in controlling drug release pattern. It was found that polymer content and amount of floating agent significantly affected the mean dissolution time, percentage drug release after 8 hours, release rate constant and diffusion exponent. PMID:19339225

  13. Ultra light-sensitive and fast neuronal activation with the Ca²+-permeable channelrhodopsin CatCh.

    PubMed

    Kleinlogel, Sonja; Feldbauer, Katrin; Dempski, Robert E; Fotis, Heike; Wood, Phillip G; Bamann, Christian; Bamberg, Ernst

    2011-04-01

    The light-gated cation channel channelrhodopsin-2 (ChR2) has rapidly become an important tool in neuroscience, and its use is being considered in therapeutic interventions. Although wild-type and known variant ChR2s are able to drive light-activated spike trains, their use in potential clinical applications is limited by either low light sensitivity or slow channel kinetics. We present a new variant, calcium translocating channelrhodopsin (CatCh), which mediates an accelerated response time and a voltage response that is ~70-fold more light sensitive than that of wild-type ChR2. CatCh's superior properties stem from its enhanced Ca²(+) permeability. An increase in [Ca²(+)](i) elevates the internal surface potential, facilitating activation of voltage-gated Na(+) channels and indirectly increasing light sensitivity. Repolarization following light-stimulation is markedly accelerated by Ca²(+)-dependent BK channel activation. Our results demonstrate a previously unknown principle: shifting permeability from monovalent to divalent cations to increase sensitivity without compromising fast kinetics of neuronal activation. This paves the way for clinical use of light-gated channels. PMID:21399632

  14. Improved bioavailability through floating microspheres of lovastatin

    PubMed Central

    Kumar, S.; Nagpal, K; Singh, SK.; Mishra, DN.

    2011-01-01

    Background and the purpose of the study Lovastatin is an antihyperlipidemic agent which has low bioavailability due to the extensive first pass metabolism. It was sought to increase gastric retention of lovastatin by development of a sustained release gastroretentive drug delivery system leading to reduced fluctuation in the plasma concentration and improved bioavailability. Mehods Floating microspheres were prepared by emulsion solvent diffusion technique, using various polymers and their blends. The in vitro performance was evaluated for drug-polymer compatibility, percent yield, particle size, drug entrapment efficiency, in vitro onset and duration of floatation, in vitro drug release as well as in vivo determination of serum cholesterol level. Results The mean particle size of microspheres was observed to be between 6.9 to 9.5 m and the maximum particle size was around 50 m. In vivo studies of the selected batches indicated lower level of serum cholesterol compared to the marketed tablet at the same dose but was not significant. Major conclusion The data obtained in this study suggested that a microparticulate floating dosage form of lovastatin can be successfully designed to yield controlled delivery with improved therapeutic efficacy. PMID:22615640

  15. Solar grade floating-zone silicon

    NASA Astrophysics Data System (ADS)

    Ludsteck, A.; Fenzl, H. J.

    An economic use of photovoltaic solar energy on a large scale depends on the availability of low-cost solar silicon and a high efficiency regarding the conversion of sunlight into electrical energy. Metallurgical grade silicon meets the cost requirements. However, its impurity level in the 1 percent range is far too high for a use in solar cells. Suitable approaches for purifying metallurgical grade silicon are investigated, taking into account float-zone (FZ) growth and Czochralski (CZ)-pulling. The reduction of the impurity level by FZ and CZ techniques is compared for each individual impurity. The remaining impurity concentration is below 1 percent in the case of float zone growth, while the corresponding value is more than 50 percent for CZ pulling. At the present time more than one zone pass is necessary for an appropriate crystallization of metallurgical grade silicon. Parameters and direct production cost of solar grade monocrystalline silicon are presented in a table, taking into account the FZ and the CZ process.

  16. Evaporation mitigation using floating modular devices

    NASA Astrophysics Data System (ADS)

    Hassan, M. Mahmudul; Peirson, William Leslie; Neyland, Bryce M.; Fiddis, Nicholas McQuistan

    2015-11-01

    Reducing evaporation losses from open water storages is of paramount importance in the improvement of water security in arid countries, including Australia. Widespread adoption of evaporation mitigation techniques has been prevented by their high capital and maintenance or operating costs. The use of clean, floating recycled materials to mitigate evaporation technique has been investigated systematically at sites within both the coastal and semi-arid zones of Australia. Evaporation reduction systematically increases with the proportion of covered surface. Evaporation is reduced by 43% at coastal site and 37% at arid zone site at the maximum packing densities achievable for a single layer of floating devices. The study highlights the importance of both long-term investigations and the climatic influences in the robust quantification of evaporation mitigation. The effects of solar radiation, temperature, wind speed and relative humidity on the evaporation rate at both study sites have been determined in terms of both the classical Penman model and FAO Penman Monteith model with corresponding pan coefficients quantified. FAO Penman Monteith model better estimates evaporation from the open reference tank.

  17. Drilling and production from a floating spar

    SciTech Connect

    Brooks, I.H.; Carroll, J.P.

    1994-12-31

    A deepwater drilling and production platform has been designed based on a floating spar. The spar is a catenary-moored cylindrical vessel having a deep draft which minimizes heave motions. The concept is an economic competitor with other deep water designs such as compliant towers and tension leg platforms. The spar`s oil storage capacity makes it particularly applicable for remote areas where pipeline infrastructure is unavailable and production is primarily from oil reservoirs. Without the need for a swivel, offloading of oil can be accomplished either directly from the spar, by use of a floating hose and support vessel, or by transfer to an offloading buoy. The concept is compatible with early production or phased development scenarios, permits surface completions of producing and injection wells, and allows for direct well intervention. The ability to reposition the spar by manipulations of the mooring lines favors a system of individual wellheads on the seafloor. Wells can be drilled, completed, and produced without pulling the drilling riser. When production from the field reaches its economic limit, the entire system can be towed to a new location and reused.

  18. Thermal Performance of the LDX Floating Coil

    NASA Astrophysics Data System (ADS)

    Zhukovsky, A.; Garnier, D. T.; Radovinsky, A. L.

    2006-04-01

    The Levitated Dipole Experiment (LDX) is an innovative facility to study plasma confinement in a dipole magnetic field, created by a superconducting solenoid (floating coil), which is magnetically levitated in the center of a 5 m diameter by 3 m tall vacuum chamber. The floating coil (F-coil) consists of a Nb3Sn magnet installed inside a strong vessel filled with high-pressure helium gas at room temperature. It is surrounded by a fiberglass-lead composite radiation shield and by a toroidal vacuum shell. The cryostat design provides the ability to operate the magnet for several hours of wanning while suspended in the middle of the vacuum chamber without electric and cryogenic connections to the coil. For this reason the magnet is charged/discharged inductively in a lower part of the vacuum chamber. The retractable cryogenic transfer lines serve to cool down the magnet to 4.5 K before it is lifted to the operating position. The F-coil can be re-cooled multiple times while maintaining its field and current. This paper describes the thermal performance of the F-coil.

  19. 40 CFR 426.50 - Applicability; description of the float glass manufacturing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... float glass manufacturing subcategory. 426.50 Section 426.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Float Glass Manufacturing Subcategory § 426.50 Applicability; description of the float...

  20. 40 CFR 426.50 - Applicability; description of the float glass manufacturing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... float glass manufacturing subcategory. 426.50 Section 426.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Float Glass Manufacturing Subcategory § 426.50 Applicability; description of the float...